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Abstract. A new machine vision measuring scheme was presented to improve the 

measurement accuracies of machine vision systems with an ord inary industrial lens and thus to 

address the extensive requirements for accurately measuring the diameter of shafts. First, 

method for measuring  diameters based on two images was derived on the basis of a p inhole 

imaging principle, similar triangles and tangent property theorems. Then, a machine vision 

measuring system was introduced. Finally, experiments were performed on a transmission 

screw, and the results indicate that the method has achieved a higher measurement accuracy, 

with systematic errors of approximately 2 μm and uncertainties of 4.9 μm. 

1. Introduction 
Shafts are important mechanical components, which are commonly used in machinery. The geometric 
dimensioning and tolerance of shafts have significant effects on the kinematic performance and the 
service life of a machine. Simultaneously, they also have significant effects on energy savings and 
environmental protection. Therefore, total and efficient on-line measurement of the accuracy of shafts 
is important. 

The machine vision measuring (MVM) technique is a noncontact measurement method which takes 
images as transfer carriers of measurements and information. Therefore, it has been used for geometric 
accuracy in measuring mechanical parts [1]. The commonly used bi-dimensional MVM systems may 
be subdivided into two categories: the telecentric vision (TLV) system and the pinhole vision (PHV) 
system. As a benefit of the special optical design of a telecentric lens, magnifications of TLV systems 
are invariant with a small change in the object distance; therefore, TLV systems can achieve high 
accuracy and usually micron class accuracy [2, 3]. However, the field-of-view (FOV) of TLV systems 
is relatively small since only light rays that are parallel to the principal optic axis can be passed 
through the lens to illuminate the image plane. Therefore, a PHV system has a wider FOV than a TLV 
system when the lens dimensions of the PHV system and the TLV system are approximately equal. 
According to the pinhole camera model, light rays are tangent to the cylindrical surface of the shaft. 

The image of the shaft corresponds to the minor arc  ab, and the pixel equivalent coefficient method 
cannot be used to obtain correct measurements. The incorrect results were defined by Tan et al. as 
pseudo-diameter. Wei and Tan proposed that the intrinsic and extrinsic parameters can be sequentially 
calibrated using Zhang’s method [4] and using a shaft of known diameter. The Levenberg-Marquardt 
algorithm was selected to solve the extrinsic parameters. The measurement accuracy was improved by 
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controlling the illumination area and weakening the fringe effect. Experimental results show that if the 
diameters of the shafts are between ϕ30 mm and ϕ40 mm, measuring errors are less than 0.015 mm 
[5]. However, the distance between the camera and the shaft must be equal to the distance between the 
camera and the calibration shaft during the entire measurement process, but it is difficult to guarantee 
that the two distances are equal. Sun et al. established a vision measurement model for shaft parts on 
the basis of the pinhole imaging principle and geometrical constraints such as tangency and/or 
perpendicularity. The measurement system was calibrated using a plane calibration target fixed in a 
specific location. The mean measurement error of the system was approximatively 0.005 mm [6]. A 
datum plane was adopted, and thus, an error correction model was established on the basis of the 
distance between the datum plane and the camera. Experimental results on measured shafts with 
nominal diameters from ϕ2 mm to ϕ10 mm show that the measurement errors are within 0.009 mm [7]. 
Based on the above results, we can conclude that the higher measurement accuracy was achieved by 
the TLV measurement method. However, a TLV system should be configured with an appropriately 
sized telecentric lens according to the dimensions of the measured shaft. The PHV system has a wider 
FOV than the TLV system, and its measurement accuracy would be significantly improved by 
introducing geometrical constraints to the imaging model. However, Sun’s method [6] requires that 
the calibration target should be fixed in a particular location. Motivated by Sun’s method, a new PHV-
based measuring scheme will be proposed in this paper. Similarly, the geometrical constraints will also 
be employed to improve the performance of the method. One of the most prominent characteristics is 
that two digital images under different object distances will be utilized so that four points are adopted 
to measure the shaft diameter. 

The remainder of the paper is structured as follows: Section 2 introduces the mathematical model 
for measuring shaft diameters and as well as the developed MVM system. Experimental results and a 
comparison study with CMMs are presented in Section 3. Concluding remarks are given in Section 4. 

2. Measuring principle and measuring system 
As shown in Figure 1, the coordinates of tangent point a1 and the camera’s optical center point are 
(xa, ya, za) and (xc, yc, zc), respectively, in the world coordinate system (WCS) ow-xwywzw. o(x, y, z) is 
the center of the section circle. a2 is another tangent intersection point of the light ray and measured 
shaft. 

 

 

Figure 1. Radial direction imaging model of a shaft. 



The 2nd International Workshop on Materials Science and Mechanical Engineering

IOP Conf. Series: Materials Science and Engineering 504 (2019) 012097

IOP Publishing

doi:10.1088/1757-899X/504/1/012097

3

Given that translation transformation is only involved between the camera coordinate system (CCS) 
and WCS, the relationship between the world coordinates and the pixel coordinate of a1 can be 
formulated as: 

 
   

   

0

0

a a c a c

a a c a c

u x x z z f dx u

v y y z z f dy v

    


    

  (1) 

where dx and dy are the center-to-center distances between pixels in the row and column directions, 
respectively; f is the focal length; (u0, v0) is the origin of the image coordinate system in the pixel 
coordinate system; and (ua, va) is the pixel coordinate of a1. 

According to the tangency condition of the light rays and the shaft, one equation can be obtained as 
follows: 

       0a c a a c ax x x x z z z z        (2) 

With the geometrical constraint that the tangent point a1 belongs to the section circle, Eq. (3) can 
be obtained. 

      
2 2 2 2

a a ax x y y z z r        (3) 

where r is the radius of the section circle. 
βa is the measurement scale along the xw-axis of the system at location a1a2, and βc is the 

measurement scale along the xw-axis at location c1c2. Please refer to our previous work [8] for a 

detailed process for deriving the measurement scale. Given that the length of the minor arc 1 2c c  in the 

pixel coordinate system is P pixels, two diameters can be estimated by 

  1 a a c xd P z z f P d        (4) 

  2 c c xd P z z f P d        (5) 

where   1 and   2 are estimation values of the measured shaft diameter d. 
Actually,   1 is the length of the line segment a1a2, and   2 is the length of the line segment c1c2. 

Therefore, the inequality   1 < d <   2 is satisfied. Assuming there exists a location b1b2 between a1a2 
and c1c2 and the measurement scale along the xw-axis of the system at b1b2 between them is βb, as 
shown in Figure 1, a new estimation value of d can be obtained that is exactly equal to the true value. 
βb can be denoted by the weighted average of βa and βc. 

  1b c a         (6) 

where λ is the weight, and its bounds are greater than 0 and less than 1. 
Based on the pinhole camera model, λ can also be calculated by 

 
2

2

4- 16-4
=





  (7) 

where γ is equal to the ratio of the diameter d to the object distance D. As γ decreases with increasing 
D, the weight λ decreasingly approaches 0.5. 

Here, the diameter can be re-estimated by 

  3 1b c ad P P            (8) 

where   3 is the estimation value of the measured shaft diameter d. 
According to the imaging model shown in Figure 1, these implied conditions hold, i.e., x = xc, 

y = yc, and ya = yc. 
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By solving the simultaneous equations of Eq. (1) to Eq. (3), Eq. (8) and the implied conditions, λ 
can also be expressed as 

 
2 2

2

2 4 4 




  
   (9) 

where ω is equal to the ratio of the pixel length P to the x-direction effective focal length fx, which is 
equal to the ratio of f to dx. 

Two images are acquired with different object distances, D1 and D2, and are processed sequentially 
by image preprocessing, feature detection, and feature computation; therefore, two pixel lengths, P1 
and P2, are obtained. Substituting P1 and P2 into Eq. (9) yields λ1 and λ2 and then γ1 and γ2 on the basis 
of Eq. (7). Then, the diameter d can be estimated by Eq. (10). 

 2 1

2 1

d C
 

 
 


  (10) 

where C is a constant which is equal to the difference between D1 and D2.    is the new estimation 
value of the measured shaft diameter d. 

As illustrated in Figure 2, an MVM system was developed to verify the measurement principle 
stated above. The main parameters of our camera are as follows: the size of the image device is 2/3 
inches; the image sizes are 2452 pixels by 2056 pixels in the horizontal and vertical directions, 
respectively; and the pixel sizes are 3.45 μm × 3.45 μm. Two square LED arrays were symmetrically 
installed to illuminate the measuring field to acquire sufficiently detailed information. The positioning 
of the LED lights was studied to achieve uniform illumination, which can be used to acquire high-
quality images. 

 

 

Figure 2. MVM system for shafts 
1 x-direction regulating handle; 2 z-direction 
regulating handle; 3 AVT Stingray F-504B 
Camera; 4 encoded V-block; 5 Square LED 
array; 6 Measured shaft; 7 LED light 
controller; 8 y-direction regulating handle 

3. Experimental results 
Extensive experiments were carried out to verify the performance of the proposed MVM method in 
comparison to CMM. The transmission screw was employed in the experiments. The screw includes 
four segments, i.e., two shaft journals, a shaft head, and the threaded segment. The nominal diameter 
of the threaded segment is ϕ30 mm, and the length is 876 mm. Nine measuring points were distributed 
on the threaded segment. Nine measurements were conducted at each point. Measurement results are 
shown in Table 1. μ is the mean of the nine measurements, and σ is the standard deviation. uA is the 
type A uncertainty, and U95 is the expanded uncertainty when the confidence level is 95%. It should be 
noted that only uA was considered when calculating the combined standard uncertainty uc [9]. 
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Table 1. Comparison of CMM and MVM measuring results. 

Points 

Measuring Results of CMM [mm] Measuring Results of MVM [mm] Systematic 

Error 
[μm] 

Mean μ Std. σ uA U95 Mean μ Std. σ uA U95 

1 29.9383 0.00335 0.00112 ±0.00223 29.9375 0.00794 0.00265 ±0.00529 0.8 

2 29.9407 0.00264 0.00088 ±0.00176 29.9393 0.00643 0.00214 ±0.00429 1.4 

3 29.9508 0.00335 0.00112 ±0.00223 29.9504 0.00518 0.00173 ±0.00345 0.4 

4 29.9544 0.00263 0.00093 ±0.00186 29.9533 0.00657 0.00232 ±0.00465 1.1 

5 29.9589 0.00354 0.00125 ±0.00250 29.9603 0.00972 0.00344 ±0.00688 1.4 

6 29.9575 0.00368 0.00123 ±0.00245 29.9552 0.00685 0.00228 ±0.00457 2.3 

7 29.9670 0.00384 0.00128 ±0.00256 29.9725 0.00594 0.00198 ±0.00396 5.5 

8 29.9665 0.00372 0.00124 ±0.00248 29.9673 0.00818 0.00273 ±0.00545 0.8 

9 29.9649 0.00445 0.00148 ±0.00297 29.9643 0.00838 0.00279 ±0.00559 0.6 

 
From the above table, we observe that (1) the U95 values of CMM and MVM are ± 2.34 μm and 

± 4.9 μm, respectively —, i.e., the half-interval length of MVM is double that of CMM. (2) The 
maximum systematic error, 5.5 μm, occurs at the 7

th
 measuring point. Excluding the 7

th
 measuring 

point, the mean of the systematic errors is 1.1 μm. The results indicate that higher measurement 
accuracy has been achieved by the proposed method. 

 

 

Figure 3. Random errors of MVM at nine measurement points: the colors red, green, blue, cyan, 
magenta, yellow, dark yellow, olive, and purple correspond to the 1

st
, 2

nd
, 3

rd
, 4

th
, 5

th
, 6

th
, 7

th
, 8

th
, and 

9
th

 measurement point, respectively. 
 

As illustrated in Figure 3, in all nine measurements at the 1
st
 measuring point, the maximum 

random error is + 16.1 μm, which occurs during the 3
rd

 measurement, and the second maximum 
random error is - 11.6 μm, which occurs during the 8

th
 measurement. Excluding the 3

rd
 and 8

th
 

measurement results, the range of the remaining random errors is 11.97 μm. For the 2
nd

 measurement 
point, the maximum random error is + 13.3 μm, which occurs in the 5

th
 repeated measurement. 

Excluding the 5
th

 measurement result, the range of the remaining random errors is 12.06 μm. For the 
3

rd
 measurement point, the range of the nine random errors is 14.31 μm. For the 4

th
 measurement point, 

the maximum absolute random error occurs in the 7
th
 measurement. Excluding the 7

th
 measurement 

results, the range of the remaining random errors is 13.88 μm. For the 5
th

 measurement point, the 
absolute random errors of the 1
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 and 7
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 measurements are relatively large, and the maximum error, 

17.50 μm, occurs in the 7
th

 measurement. Removing the 1
st
 and 7

th
 measurement results, the range of 

the remaining random errors is 17.50 μm. For the 6
th

 measurement point, the random error of the 6
th

 
measurement is approximately 12 μm, and the range of the remaining eight random errors is 14.02 μm. 
Compared with the measurement results at the 3

rd
 measurement point, the maximum random error and 

the range at the 7
th
 measurement point is 2 μm and 3.68 μm larger, respectively. The random error of 

the 4
th

 repeated measurement at the 8
th

 measurement point is the largest, and its absolute value is 
16.3 μm. The range of the eight remaining random errors is 15.9 μm. The random error of the 8

th
 

repeated measurement at the 9
th

 measurement point is the highest, and its absolute value is 18.2 μm. 
The range of the eight remaining random errors is 17.47 μm. Based on the above results, the presented 
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method has increased the measurement accuracy. With the exception of a few outliers, the ranges of 
the random errors are within 18 μm. Compared with the measurement results of CMM, the systematic 
errors are within approximately 2 μm if a few outliers are eliminated. 

4. Conclusions 
We presented a new MVM scheme using two images at different object distances to measure the 
diameters of shafts. First, the measurement model was derived on the basis of the pinhole imaging 
principle combined with some geometrical constraints, including tangency and perpendicularity. An 
MVM system was developed subsequently. Experiments on a transmission screw and contrast 
experiments were performed, and the experimental results show the following: (1) the U95 values of 
CMM and MVM are ± 2.34 μm and ± 4.9 μm, respectively —, i.e., the half-interval length of MVM is 
approximately double that of CMM. (2) In contrast with the measurement results of CMM, the 
maximum systematic error is 5.5 μm, and the systematic errors are within approximately 2 μm with 
the elimination of some outliers. (3) With the elimination of some outliers, the range of the random 
errors is within approximately 18 μm. Consequently, the presented MVM method achieved higher 
measurement accuracy, and the random errors could be reduced by multiple measurements in 
laboratories. However, further work is necessary to reduce the random error in a single measurement 
in uncontrolled circumstances. 
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