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Abstract. Pristine WS2 multilayer nanosheets (NSs), which thickness hNS varies from 1 to 12 

monolayers (MLs), as well as single- and multi-walled nanotubes (SW and MW NTs) of different 

chirality, which diameter dNT exceeds 1.9 nm, display photocatalytic suitability to split H2O 

molecules. Obviously, such a phenomenon can occur since the band gap of these nanostructures 

corresponds to the energy range of visible light between the red and violet edges of spectrum 

(1.55 eV < gap < 2.65 eV). For all the studied WS2 NSs and NTs, the levels of the top of the 

valence band and the bottom of the conduction band must be properly aligned relatively to H2O 

oxidation and reduction potentials separated by 1.23 eV: VB < O2/H2O < H+/H2
 < CB. The values 

of gap decrease with growth of hNS and increase with enlargement of dNT. 1 ML nanosheet can 

be considered as a limit of infinite SW NT thickness growth (dNT), which band gap increases 

up to ~2.65 eV. First principles calculations have been performed using the hybrid DFT-HF 

method (HSE06 Hamiltonian) adapted for 2H WS2 bulk. The highest solar energy conversion 

efficiency (15-18%) expected at gap = 2.0-2.2 eV (yellow-green range) has been found for 2 

ML thick (stoichiometric) WS2 (0001) NS as well as WS2 NTs with diameters 2.7-3.2 nm 

(irrespectively on morphology and chirality indices n of nanotubes). Moreover, unlike discrete 

variation of hNS magnitudes, tuning of dNT values provides much higher energy resolution. 

1.  Introduction 

Photocatalytic water splitting under influence of solar light in vicinity of semiconducting electrode 

immersed in aqueous medium is a clean and renewable source for the production of hydrogen fuel [1], 

which plays essential role in contemporary energetics. A number of semiconductors of various chemical 

nature, dimensionality and morphology were studied previously as potential candidates for 

photocatalytic electrodes, including transition metal dichalcogenides (TMDC) attracting enhanced 

attention during last 10-15 years due to the progress in their fabrication and application [2]. The optimum 

band gap of semiconducting electrode for dissociation of H2O molecules caused by the influence of 

visible light lies in the range of 2.0–2.2 eV [3]. Absorption of photons results in migration of excited 

electrons over the bottom of conduction band (CB), which simultaneously creates holes under the top 

of valence band. Since centers of dissociation located on the catalyst surface are important for the water 

splitting in order to prevent recombination between electrons and holes [4], reproducible fabrication of 

nanostructures is one of ways how to ensure the direct exit of recombination centers to the surface, thus 

noticeably enhancing photocatalytic efficiency. First of all 2D nanothin films, 1D nanotubes and 

nanoribbons as well as 0D fullerene-like nanocages and nanoclusters can be applied for photocatalytic 

splitting of water. In the current study, we analyze periodic nanosystems only. 

Morphology of TMDC bulk materials can be presented in the form of 1T, 2H and 3R phases 

corresponding to trigonal, hexagonal as well as rhombohedral crystalline lattices described by D3d, D3h 

and 𝐶3𝑣
5  point groups, respectively [5]. These types of crystals establish the class of two-periodic layered 

structures characterized by strong chemical (mainly covalent) bonds within the single monolayers (MLs) 

and weak coupling between the neighboring MLs. Of particular interest is their high catalytic activity 
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towards the hydrogen evolution reaction [6], which could support efficient and low-cost production of 

hydrogen without reliance on expensive Pt-based catalysts. The most widespread two-periodic transition 

metal dichalcogenides applied for photocatalytic splitting of water and other molecules were found to 

be MoS2 and WS2 disulfides [7], which prefer to be stacked in 2H c bulk phase and can be “restacked” 

from separate graphene-like monolayers when using the corresponding experimental methods [8].  

When applying the layered TMDC materials engineering, various experimental techniques (e.g., 

atomic force microscopy and optical contrast) provide precise control of perfectness and thickness of 

nanothin films deposited on supporting substrates [9]. Atomically thin WS2 nanosheets were prepared 

applying sulfurization of the ultrathin WO3 films [10] by adjusting the number of plasma enhanced 

atomic layer deposition during the process cycles. The high uniformity of mono-, bi-, and tetra-layered 

WS2 films synthesized upon -Al2O3 and SiO2/Si substrates was achieved when using the low-pressure 

chemical vapor deposition (CVD) method [11, 12] which is predominantly applied until now. 

Mechanically exfoliated WS2 flakes consisting of a few monolayers covered the transparent quartz or 

SiO2/Si substrates with incorporated iodine (providing abundant active edges for photocatalytic 

reactions) were carefully studied using CVD method too [13]. Nanothin films consisting of a few WS2 

monolayers were also experimentally observed to grow upon [0001]-oriented ZnO nanowires [14], 

formation of which was confirmed by using the methods of transmission electron microscopy, Raman 

scattering and optical spectroscopy. Photoluminescence of WS2 nanosheets, as reported recently [15], 

weakens with increasing number of monolayers due to a transition from the direct band gap in a 

monolayer to the indirect gap in multilayers.  

To determine the band structure of WS2 single crystal and monolayer, both augmented spherical 

wave calculations based on density functional theory (DFT) and angle-resolved photoelectron 

spectroscopy using synchrotron radiation source were applied [16]. Comprehensive DFT plane wave 

study of the electronic structure and photocatalytic properties for a number of TMDC single MX2 

monolayers was performed recently [17] using many-body G0W0 Green function approach and either 

GGA PBE [18] or hybrid HSE06 functionals [19]. In order to estimate the proper alignment of the top 

of valence band VB and the bottom of conduction band CB with the oxidation and reduction potentials 

(O2/H2O and H+/H2, respectively) as a criterion of photocatalytic suitability, the quasiparticle band gap 

was constructed relatively to its center following the method proposed by Toroker et al [20].  

For the first time, R. Tenne et al. synthesized WS2 nanotubes (NTs) in 1992 [21] following the later 

intensive experimental studies on them. For example, a successful attempt to synthesize Nb-doped WS2 

NTs was undertaken [22], which inhibits the formation of defective nanotubes unlike routine synthesis 

of pristine nanotubes. Controlled Re-doping of WS2 nanotubes and fullerene-shaped structures resulted 

in a drop of the electrical resistivity, leading to a more efficient electron transport through the 

corresponding nanotubes [23]. Combination of metallic Co nanoparticles and semiconducting WS2 NTs 

results in essential enhancement of the photoactivity of hybrid nanostructures [24]. Therefore, efficient 

light absorption by nanotubes can occur and subsequent charge separation between the semiconducting 

WS2 nanotube and the metallic nanocluster takes place under visible light illumination. 

However, theoretical characterization of WS2 NTs is still in its infancy [25, 26]. The latter took into 

account approaches based on the line symmetry group formalism, using either valence force-fields 

combined with semi-empirical density functional tight binding theory (DFTB) [25] or an ab initio hybrid 

DFT-HF formalism using the HSE06 functional in which the DFT Hamiltonian is extended by inclusion 

of Hartree-Fock (HF) exchange and correlation [26]. Recent ab initio calculations have focused on 

comparison between the electronic structures in WS2 bulk as well as its layered and nanotubular forms 

[27]. In those publications and additionally in Ref. [28] both vibrational and electronic properties of 

WS2 NTs were calculated and analyzed, however, not their possible photocatalytic applications.  

To fill the gap existing in comprehensive investigations of WS2 monoperiodic structures, especially 

their photocatalytic suitability for water splitting, we have evaluated recently various WS2 nanosheets 

[9] and nanotubes [29] performing for this aim large-scale ab initio calculations on their electronic 

structure. In this study, we compare the corresponding results to estimate which efficiency is higher.   



Functional Materials and Nanotechnologies (FM&NT 2018)

IOP Conf. Series: Materials Science and Engineering 503 (2019) 012002

IOP Publishing

doi:10.1088/1757-899X/503/1/012002

3

 

 

 

 

 

 

2.  Theoretical background 

2.1.  Hybrid DFT&HF-LCAO method 

Large scale ab initio calculations on [0001]-oriented WS2 nanosheets and nanotubes with varied 

thickness hNS and diameter dNT, respectively, have been performed using the hybrid density functional 

theory (DFT)/Hartree-Fock (HF) calculations using the CRYSTAL14 computer code [30]. It utilizes 

localized Gaussian type functions (GTFs) in the form of atom-centered basis sets (BSs) for expansion 

of periodic crystalline orbitals as linear combinations of atomic orbitals (LCAO). We have used the 

HSE06 hybrid functional [19], which proved to be the most adequate for reproducing the experimental 

value of band gap for tungsten disulfide bulk (1.58 eV vs. 1.4 eV obtained in our fully relaxed 

calculations [9] and experimental measurements [31], respectively). Balanced summation in both direct 

and reciprocal WS2 nanosheets and nanotubes requires choice of the reciprocal space integration by 

sampling the Brillouin zone (BZ) with 18×18×1 and 18×1×1 Monkhorst−Pack meshes [32], 

respectively, which result in total of 37 and 10 k-points evenly distributed over the corresponding BZs.  

 

For the fixed crystalline geometry, calculations converge 

when the total energy differs by less than 10−9 a. u. in two 

successive cycles of the self-consistent field (SCF) procedure 

[30]. Full geometry optimization has been performed for all 

considered in this study WS2 bulk, slab and tubular models. 

2.2.  Models of WS2 nanosheets and nanotubes  
The primitive unit cell of hexagonal 2H c phase mentioned 

above as the most stable for WS2 bulk consists of two atomic 

inversely arranged layers containing three atomic planes each 

[14]. Inner planes of each WS2 layer contain only tungsten 

atoms while in its turn outer planes contain sulfur atoms. Due 

to weak interaction forces acting between monolayers, as 

considered above, the inter-layer distance, which corresponds 

to a half of the lattice constant c for bulk tungsten disulphide) 

is essentially larger (6.16 Å) as compared to the constant a 

(3.15 Å) [14].  In order to check   the photocatalytic suitability 

of graphene-type WS2 (0001) nanosheets with varied 

thicknesses hNS, we have constructed stacks of 1-12 MLs 

(corresponding to 0.31-5.91 nm thickness) and, additionally, 

models containing up to 20, 30, and 40 MLs. Models of 

tungsten disulfide nanothin films consisting of single- and 

double-layered are shown in Figure 1. Nanosheets containing  

Figure 1. Models of single- and double- 
layered WS2 (0001) nanosheets described by 
hexagonal symmetry of 2H c phase (aside (a) 
and atop (b) views). W and S atoms are 
marked with large green (dark) balls and 
small yellow (light) balls, respectively. 

 

odd (1, 3, 5, . . ., 2n+1 MLs) and even (2, 4, 6, . . ., 2n MLs) numbers of WS2 monolayers, where n = 0, 

1, 2, . . ., possess two different layer symmetry groups 𝑃6̅m2  and  𝑃3̅m1, respectively.  
 

(a) (b) 

  

(12, 12)@(24, 24) NT (21, 0)@(42, 0) NT 

  
 

Figure 2. Models of SW (a, axonometric images) and DW (b, cross-sections perpendicular to NT axes) [0001]-

oriented WS2 nanotubes possessing armchair (n, n) and zigzag-type (n, 0) chiralities. W and S atoms are marked 

with large dark balls and small light balls, respectively. 
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Construction of [0001] oriented WS2 NTs described by folding the corresponding nanolayer results 

in formation of the cylindrical nanotubes by rolling up the graphene-structured nanosheets using the 

formalism of line groups [25, 26]. For this purpose the nomenclature of single-walled (m, n) carbon 

nanotubes can be expressed via the so-called chirality indices m and n as described earlier [33]. To 

clarify dependence of photocatalytic suitability on NT morphology, we have performed ab initio 

calculations on WS2 NTs with both achiral single-walled armchair (n, n) and zigzag-type (n, 0) structure 

and diameters dNT > 1.0 nm (Figure 2a) as well as double-walled (m, m)@(n, n) and (m, 0)@(n, 0) 

nanotubes, internal diameters of which exceed 1.0 nm (Figure 2b).  

The achiral armchair (n, n) and zigzag (n, 0) single-walled tungsten disulphide nanotubes with 

hexagonal morphology belong to 4 and 8 line-group families with L(2n)n/m and L(2n)n mc symmetry, 

accordingly [26]. Both types of WS2 NTs with achiral morphology possess the helical axes of order 2n. 
 

3.  Results of calculations, their analysis and comparison 

3.1.  Suitability of periodic pristine WS2 nanostructures for photocatalytic applications 

Several special conditions are required for a material to be photocatalytically active for water splitting. 

First, the band gap of the catalyst must correspond to the visible light range between 1.5-2.7 eV. For the 

solar intensity distribution, the maximum efficiency is achievable for a band gap between 2.0 and 2.2 

eV. The energy conservation condition requires that both the oxidation and the reduction potentials of 

the H2O molecule in solution defined thermodynamically (O2/H2O = -5.67 eV and H+/H2 = - 4.44 eV) [1] 

must be positioned inside the band gap of the photocatalytic electrode. Thus, the following inequalities 

have to be hold: 

                                                       VB < O2/H2O < H+/H2 < CB.                   (1) 

  
 

Figure 3. Dependence of WS2 (0001) band 

gap parameters on nanolayer thickness with 

alignment of CB and VB edges relative to the 

redox potentials. 

Figure 4. Dependence of band gap parameters for 

SW and DW WS2 NTs on the values of dNW (inner 

for DW) with alignment of CB and VB edges 

relative to O2/H2O and H+/H2 levels. 
 

Figures 3 and 4 present results of our calculations on the band edge parameters of twelve WS2 nanosheets 

and approximately forty different nanotubes, respectively, including the positions of O2/H2O and H+/H2 

at the energy scale. One can see that levels of VB for all NSs and NTs are always below the O2/H2O level; 

thus, the left part of Eq. (1) is satisfied for all nanotubes. In contrary, if for all nanosheets the right part 

of Eq. (1) is always satisfied, then for thin NTs (dNT < 1.9 nm), the level of CB is located below the 

O2/H2O, which prevents the catalytic decomposition of H2O molecules. However, further increase of dNT 

leads to a rapid shift of the εCB level upward, thus, Eq. (1) is valid for all nanotubes, diameter of which 

exceeds 1.9 nm, irrespective of chirality. We note that the increase of the band gap of nanosheets with 
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reduced thickness can be attributed to the quantum confinement effect, while in nanotubes the strain 

effect is predominant and therefore the bandgap shrinks with reducing nanotube’s diameter. 

 

3.2 Comparison of band structure for double- and monoperiodic pristine WS2 nanostructures 

We have performed recently detailed analysis of DOSs for WS2 nanosheets [9] and nanotubes [29]. In 

this study, we analyze and compare the band structure of tungsten disulphide nanosheets and two achiral 

nanotubes, respectively. In Figure 5, we compare the band structures of WS2 (0001) monolayer and 

bilayer using Γ(0, 0, 0) – M(1/2, 0, 0) – K(1/3, 1/3, 1/3) – Γ(0, 0, 0) paths for both in the Brillouin Zone. 

In the case of 1 ML, the optical direct band gap is located at K-point. For bilayers and more thick 

nanosheets, we observe indirect gaps only. When the number of monolayers increases, the fundamental 

band gap decreases and tends to bulk value. 

 
 

Figure 5. Band structure for WS2 

NSs  consisting of 1 ML (dashed 

lines) and 2 ML (solid lines). 

Figure 6. Band structure for WS2 NTs possessing armchair and 

zigzag-type chiralities: (a) SW (12,12) WS2 NT, (b) DW 

(12,12)@(24,24) WS2 NT, (c) SW (21,0) WS2 NT, and (d)  DW 

(21,0) @(42,0) WS2 NT. 
  

In the case of both achiral SW and DW WS2 NTs (Figure 6), the indirect band gaps characterize 

armchair (ac) chirality (a, b), while for zigzag-type (zz) nanotubes, our calculations yield direct Γ– Γ 

band gap, irrespectively to the number of NT walls (c, d). These results contradict to conclusion drawn 

for band structures of single- and double-layered WS2 (0001) nanosheet (Figure 5) characterized by 

direct and indirect transitions from the bottom of the CB to the top of the VB, respectively.  

4.  Conclusions 

We have simulated the electronic structure of pristine WS2 multilayer nanosheets with varied thickness 

as well as single- and double-walled WS2 nanotubes of different chirality with varied diameter. 2D-

peiodic nanostructures are found suitable for photocatalytic applications since their band gaps 

correspond to the whole range of visible light between the red and violet edges (1.5 eV < gap < 2.7 eV) 

while the top of valence band and the bottom of conduction band are properly aligned relative to the 

oxidation and reduction potentials, i.e.:  VB < O2/H2O < H+/H2 < CB.  

The only limitation for photocatalytic suitability of WS2 NTs is determined by dNT > 1.9 nm (for DW 

NTs, this condition concerns the internal wall). On the other hand, tuning of dNT provides much higher 

energy resolution than in the case of nanosheets. Moreover, energies of gap edges depend only on 

diameter dNT (increasing monotonously with increasing diameter) and do not depend on chirality indices 

n. Principal difference between both types of WS2 nanostructures is that the value of gap for nanotubes 

grows with increasing dNT, while that of nanosheets decreases with enlargement of hNS. Furthermore, 

the bandgap of DW NT is smaller than the correspondinggap values for each of its constituents. 
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The highest conversion efficiency of single-walled nanotubes is achieved between the yellow-green 

ranges of visible spectrum (2.0 < gap < 2.2 eV), which corresponds to diameter variation 2.7 nm < dNT 

< 3.2 nm, irrespectively on chirality. For WS2 (0001) nanosheets, the highest photocatalytic efficiency 

is achieved for 2 ML thickness due to discreteness of hNS values, thus giving a preference to nanotubes. 
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