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Abstract. Successful operation of Stirling pulse tube cryocoolers relies on minimising flow 

mixing within the pulse tube. Hence, the pulse tube and the flow straighteners at either end must 

be designed with great care. In this study, the flow within the pulse tube of an existing Stirling 

pulse tube cryocooler is numerically analysed and alternative flow straightener designs are 

suggested. The numerical simulation have been carried out using CONVERGE CFD, a finite 

volume Navier-Stokes solver. The standard k-ε RANS turbulence model has been used to 

account for the effects of turbulence within the pulse tube. 

1.  Introduction 

Stirling pulse tube cryocoolers (SPTCs) are small low temperature refrigerators that can provide cooling 

for electronic devices such as infrared sensors and superconducting devices. The pulse tube within an 

SPTC acts as a gas spring and replaces the cold end displacer used in traditional Stirling cryocoolers. In 

order to ensure successful operation, the gas within the pulse tube of an SPTC needs to remain stratified 

and flow mixing must be minimised. Hence, the inlet and outlet to the pulse tube must be designed with 

great care.  

 

A schematic of a typical in-line SPTC arrangement is shown in Fig. 1. The assembly consists of: 

 An oil free linear compressor. 

 A regenerator which is typically filled with fine stainless steel wire mesh (REG in Fig. 1). 

 A cold end heat exchanger which is typically filled with copper wire mesh (CHX in Fig. 1). 

  A pulse tube (PT in Fig. 1). 

 A warm end heat exchanger also filled with copper wire mesh (WHX in Fig. 1). 

 A phase control mechanism which can either consist of a long inertance tube and a reservoir 

[1,2] or a phase shifter [3,4]. 

 A vacuum chamber around the cold head assembly, consisting of the regenerator and the pulse 

tube, in order to minimise convective losses. 

 

The heat exchangers either side of the pulse tube also act as flow straighteners. A uniform flow is 

required inside the pulse tube as this will help maintain a stratified profile. However, these flow 

straighteners will introduce additional pressure drops which should be kept to a minimum as a significant 

pressure drop will have an adverse effect on the overall SPTC efficiency. 
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This study focuses on the design of suitable flow straighteners that minimise flow mixing inside the 

pulse tube without introducing significant pressure drops. Initially, the flow within an existing in-line 

SPTC design is numerically examined. Thereafter, alternative flow straightener designs are suggested 

and assessed numerically. By examining the flow and pressure drops across three designs, a suitable 

flow straightener design is selected. Experimental validations of the numerical work presented here will 

be carried out in future studies. 

2.  Methodology 

Fig. 2 shows simplified drawings of three different pulse tube and flow straightener assembly designs. 

Design A is based on an existing in-line SPTC developed by the Cryogenic Engineering Group at the 

University of Oxford in collaboration with Honeywell Hymatic. This SPTC has a typical operating 

frequency of around 60 Hz and a fill pressure of 28 bar. It has a thin walled stainless steel pulse tube 

with an internal diameter of 7.7 mm and a height of 85 mm. The heat exchangers (i.e. flow straighteners) 

are filled with copper 50-mesh (wires per inch). During operation, the cold end is maintained at 80 K 

             
 

Figure 2. The three different pulse tube and flow straightener assembly designs considered. All dimensions 

are in millimeters. Not drawn to scale. 

 
 

Figure 1. In-line SPTC schematic with abbreviations REG for regenerator, PT for pulse tube, CHX for cold 

end heat exchanger and WHX for warm end heat exchanger. 
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and the warm end is kept at ambient temperature. Designs B and C are two alternative designs under 

consideration where the focus has been on removing the abrupt change in cross section from WHX and 

CHX to the pulse tube in design A. Design B has a uniform cross section throughout and in design C 

tapered flow straighteners (i.e. heat exchangers) are used to gradually change the internal diameter. 

2.1.  Numerical model 

The numerical simulations were carried out using CONVERGE CFD [5], a finite volume Navier-Stokes 

solver. The rotational symmetry of the pulse tube geometry meant that a 2D axisymmetric model could 

be used for the numerical simulations. A sinusoidal velocity, uWHX m/s, was prescribed at the inlet to the 

warm end 

𝑢𝑊𝐻𝑋 = 𝑢0 sin(2𝜋𝑓𝑡),                       (1) 

 

with operating frequency f set to 60 Hz and where t is time in seconds and 𝑢0 = 31.7 m/s (based on a 

1.4 g/s peak-to-peak mass flow variation). Similarly, a sinusoidal pressure, PCHX bar, was applied at the 

cold end 

𝑃𝐶𝐻𝑋 = 28 + 3 sin(2𝜋𝑓𝑡 + 4𝜋/3),                 (2) 

 

where a peak-to-peak variation of 6 bar and a phase difference of 4π/3 was assumed. The temperatures 

at the top and bottom boundaries were fixed at 300 K and 80 K, respectively. All other external 

boundaries were assumed to be adiabatic. Furthermore, the standard k-ε RANS turbulence model was 

used to account for the effects of turbulence within the pulse tube. In order to establish cyclic steady 

state, the numerical simulations were run for 20 cycles. 

3.  Results 

The velocity magnitude during maximum flow from the warm end (WHX) to the cold end (CHX) and 

vice versa are shown in Fig.3 & 4. In order to look at the differences in greater detail, velocity profiles 

at three different location along the pulse tube are shown in Fig.5 (flow direction WHX to CHX) and 

Fig.6 (flow direction CHX to WHX). Based on these results, the current inlet design (i.e. design A) leads 

to the greatest mixing, while design B leads to the most uniform profile. Design C is an improvement 

on design A, but does not perform as well as design B. 

 

Based on the velocity profiles, design B is the clear favourite. However, the reduced cross-section in 

design B will lead to a greater pressure drop across the flow straighteners. In order to examine this in 

detail, the averaged pressures at various locations along the pulse tube for all three designs were 

calculated and the results are shown in Fig.7. The increase in pressure drop in design B is by no means 

insignificant, however given that the peak-to-peak variation in pressure within the SPTC is of the order 

of a few bars, an increase in pressure drop in the order of 10 mbar might not have a significant effect on 

the overall cryocooler efficiency. In order to be able to quantify this, experiments will be carried out in 

the future to see if the advantages of the uniform flow in design B outweigh the potential drop in 

efficiency due to this increase in pressure drop. If the additional pressure drop is not shown to have a 

big effect on the overall efficiency, then design B will be the design of choice. 

4.  Conclusions and Future Work 

The flow within the pulse tube of an existing SPTC has been numerically analysed. With the aid of the 

numerical simulations, a new inlet/outlet has been designed that will reduce flow mixing within the 

pulse tube. The next step will be to experimentally validate the results of the simulations. 
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Figure 3. Velocity magnitude during 

maximum flow from WHX to CHX. 
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Figure 4. Velocity magnitude during 

maximum flow from CHX to WHX. 
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Figure 5. Cross-section velocity profiles at three different locations along the pulse tube during maximum 

flow (WHX to CHX). The locations are shown in Fig. 3. 

             
 

Figure 7. Average pressure along the pulse tube for all three designs during maximum flow. In all three 

designs, CHX starts at y=0 and ends at y=5.5 mm and WHX starts at y=90.5 mm and ends at y=96 mm. 

             
 

Figure 6. Cross-section velocity profiles at three different locations along the pulse tube during maximum 

flow (CHX to WHX). The locations are shown in Fig. 4. 


