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Abstract. We have carried out the verifications of the solutions for the equations governing 

fluid flows. The equations solved are the similar equation of the boundary layer flow and the 

two-dimensional Navier-Stokes equations in the formulation of the stream function and the 

vorticity. The methods of the verification are the interval analysis and the Krawczyk operator 

based on the fixed point theorem. A modified Gaussian elimination method is introduced to 

solve the system of linear interval equations. The Krawczyk operator presents the results with a 

high accuracy. The modified elimination method gives the results with an accuracy of one or 

two order(s) of magnitude higher than those obtained by the original interval analysis. 

1.  Introduction 

Numerical simulations have given useful results in many areas. Some of the results, however, predict 

feasible phenomena different from those found in the real world. In order to find and reduce these 

contradictions, the standards of the verification and validation [1] give guidelines to investigate the 

quality of the predictions. Numerical calculation suffers from numerical errors of the truncation error, 

loss of trailing digits, cancellation of significant digits and round-off error. When we numerically 

solve the differential equations in the real space, we also have a problem of the discretization error. 

These errors mainly result from the conversion of the real values to the floating-point representations 

defined by IEEE 754 [2]. In this paper, we pick up the round-off error in the numerical calculations. 

Two major methods, the interval analysis and the method based on the fixed-point theorem, help to 

estimate the round-off error [3]. These methods enclose a real number in an interval with bounds of 

floating-point values. The interval method ensures the intervals before and after the arithmetic 

operations and guarantees the accuracy. The method based on the fixed-point theorem accepts the 

constraints defining the phenomena and then it makes the intervals shorter and identify the narrowest 

interval that includes the exact value. We apply these methods to the two problems in fluid dynamics. 

One is the two-point boundary value problem of the self-similar boundary layer flow. The other is the 

two-dimensional lid-driven square cavity flow formulated by the stream function and the vorticity. 

The discretization method is the finite difference method. The solution method of the similar equation 

uses the Gaussian elimination method to resolve the system of linear equations presented by the 

Newton iteration method. In the elimination process, we modify the interval operation of the pivoting 

process and improve the results of the interval analysis. An iterative procedure of the Jacobi method is 

adopted to solve the Poisson equation with a diagonally dominant coefficient matrix in the problem of 

the cavity flow. The results obtained by these methods show that the method based on the fixed-point 

theorem gives a reasonable results with high accuracy. 

2.  Formulation 
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2.1.  Interval analysis 

In this subsection, we review the interval analysis. In this analysis, the interval X  that includes the 

real value x  has a representation of [ , ] { | }a b x a x b    [4, 5]. Here, a  and b  denote the lower 

bound x  and the upper bound x , respectively. For simplicity, we express [ , ]x x  as [ ]x . 

In arithmetic between intervals X  and Y , 

[ , ]X Y x y x y    ,     (1) 

[ , ]X Y x y x y    ,     (2) 

[min( , , , ),max( , , , )]X Y x y x y x y x y x y x y x y x y  ,   (3) 

/ [min( / , / , / , / ),max( / , / , / , / )]X Y x y x y x y x y x y x y x y x y .  (4) 

When the division has an interval denominator including 0.0, it is assumed that the division returns an 

error. The midpoint of the interval [ ]x  is given by 

([ ]) ([ , ])
2

x x
mid x mid x x


  .    (5) 

In the manipulation of the intervals expressed in the floating-point representation, we need to convert 

the real values into floating-point values. In order to determine the lower and upper bounds of the 

result of the interval arithmetic, we first obtain the candidates of these bounds obtained from the 

arithmetic between two intervals. Then, we apply the round downward and round upward operations 

to these candidates and specify the superior of the lower bound and the inferior of the upper bound in 

the floating-point representation. 

In the present study, we use PROFIL/BIAS [6] to perform the interval analysis, which is a 

numerical library including the operations among the interval scalars, interval vectors and interval 

matrices. 

2.2.  Self-similar equation of the boundary layer on a flat plate 

The following equation derived by the Falkner-Skan transformation governs the self-similar boundary 

layer flow on a flat plate [7], 

21
''' '' (1 ( ') ) 0

2

m
f f f m f


    ,    (6) 

with the two-point boundary conditions 

0.0 : 0.0, ' 0.0f f    ,    (7) 

: ' 1.0e f   .      (8) 

Here,   is the normalized normal coordinate from the flat plate and f  is the normalized stream 

function. The prime denotes the derivative with respect to  . The streamwise velocity component is 

'eU f , where eU  is the velocity component of the external stream at the edge of the boundary layer. 

With x  that is the distance from the leading edge of the flat plate, the pressure gradient parameter m  

is ( / )( )e ex U dU dx , and it is assumed to be constant in the present study. The surface of the flat plate 

and the edge of the boundary layer are at 0   and e  , respectively. 

We use the Keller’s box method [8] to solve the differential equations. The third-order equation (6) 

has the following system of the first-order equations with new dependent variables of u  and v , 

'f u ,         (9) 

'u v ,       (10) 

21
' (1 )

2

m
v f v m u


    .     (11) 

The boundary conditions are 

0.0 : 0.0, 0.0f u    ,     (12) 
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: 1.0e u   .      (13) 

When we take 1NJ   grid points from 0 0   to NJ e   on the   axis and derive the central 

difference equations of equations (9), (10) and (11), we obtain the 3 NJ  system of nonlinear 

equations. Substituting 1n n
j j jf f f    , 1n n

j j ju u u     and 1n n
j j jv v v     into these nonlinear 

equations and omitting the second-order terms of  , we obtain a system of linear equations with the 

boundary conditions of 0 0f  , 0 0u   and 0NJu  , which uses the n-th approximate solutions 

of n
jf , n

ju  and n
jv  and determines jf , ju  and jv  with j from 0 to NJ. Updating the n-th 

approximate solutions with jf , ju  and jv  gives the Newton method determining (n+1)-th 

approximate solutions. In the present study, the Gaussian elimination method is used to solve the 

system of linear equations. 

2.3.  Lid-driven square cavity flow 

The lid-driven square cavity flow studied in the pioneering work by Ghia et al. [9] presents one of the 

benchmark problems. Here, we consider the cavity flow given by the following Navier-Stokes 

equations in the stream function   and vorticity   formulation in the Cartesian coordinate ( , )Tx y  

with 0.0 1.0x   and 0.0 1.0y   

2 2

2 2

1

Ret y x x y x y

             
            

,   (14) 

2 2

2 2x y

 


 
  

 
.      (15) 

The boundary conditions are the unity velocity component in x  coordinate direction on the driving lid 

at 1.0y   and the no slip condition on the stationary walls at 0.0x  , 1.0x   and 0.0y  . 

The partial differential equations are discretized on the collocated square grid, and no singular 

problem at the corners between the moving and stationary walls [10] is considered. The Poisson 

equation (15) gives a system of linear equations whose coefficient matrix has a diagonal component of 

- 4.0 and other four non-diagonal components of 1.0. That is, at the grid points j  and k  in the x  and 

y  coodinates, respectively, the difference equation centered for ,j k  can be expressed as 

2
1, , 1 , , 1 1, ,4j k j k j k j k j k j kh              .   (16) 

Here, h  is the uniform grid spacing in x  and y  directions. While the direct method such as the 

Gaussian elimination method is applicable to solve the system of linear equations (16), the iterative 

method such as the Jacobi method is effective to resolve a large system in two or three-dimensional 

space. The diagonal dominancy of the coefficient matrix assures the convergence of the iterative 

process. Therefore, we assume that the n-th iteration solutions are similar to the (n+1)-th iteration 

solutions and 
1 1

, , ,4 4 8n n n
j k j k j k     .     (17) 

Then, we rewrite equation (16) as follows 
1 1 1 1 1 2
1, , 1 , , 1 1, , ,      8 4n n n n n n

j k j k j k j k j k j k j kh          
          .  (18) 

This rewriting makes the coefficient matrix diagonally dominant and a favorable convergence is 

expected. Let denote the coefficient matrix, the constant vector and the unknown vector of equation 

(18) by A , b  and x , respectively, and have an expression 

A x b .      (19) 
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We decompose the coefficient matrix into the diagonal matrix D  and the matrix LRA  with zeros on 

its diagonal 

LRA D A  .     (20) 

The n-th iteration solutions nx  give the (n+1)-th iteration solutions 1nx   by 
1 1( )n n

LRx D A x b    .    (21) 

3.  Solution Method 

3.1.  Krawczyk operator based on the fixed-point theorem 

One of the methods to assure the accuracy of the numerical solution is the one that uses the interval 

analysis described in subsection 2.1. The other method regards the problem described by equations as 

a constraint satisfaction problem and uses the operator that makes the intervals of the solutions 

narrower. We express the governing equations with their boundary conditions as ( ) 0f x  , where 

each component of the vector function f  represents one equation or one boundary condition. When 

approximate interval solution vector is assumed to be given by [ ]x , the iterative operator based on the 

Krawczyk method is given as follows [3, 5], 

0 ([ ])x mid x ,      (22) 

1
0( )fM J x


 ,      (23) 

[ ] ([ ])k fJ I M J x  ,     (24) 

0 0 0[ ] ( ) [ ]([ ] )kr x M f x J x x    ,    (25) 

[ ] [ ] [ ]x x r  ,      (26) 

where fJ  and 
1

fJ


 are the Jacobian matrix of f  and its approximated inverse matrix, respectively, 

and I  is the identity matrix. The operation   gives an intersection of two intervals. The interval [ ]x  

obtained by equation (26) presents new iterative solutions. 

3.2.  Modification of forward process in Gaussian elimination method 

The forward process of the Gaussian elimination method consists of the reduction of unknown 

variables. We now consider two equations 

[ ][ ] [ ][ ] [ ]jp p jq q ja x a x b    ,    (27) 

[ ][ ] [ ][ ] [ ]kp p kq q ka x a x b    .    (28) 

In order to eliminate the unknown variable [ ]px , a new equation will be derived from, for example, 

equation (27) 

[ ] [ ] [ ]
[ ][ ] [ ][ ] [ ]

[ ] [ ] [ ]

kp kp kp
jp p jq q j

jp jp jp

a a a
a x a x b

a a a
    .   (29) 

This derivation is required only to make the coefficient of [ ]px  consistent between two equations and 

the application of the interval analysis that may introduces additional inaccuracy is not appropriate. 

Therefore, instead of equation (29), we use the equation obtained by the pointwise operation with 

midpoints of ([ ])jp jpa mid a  and ([ ])kp kpa mid a  

[ ][ ] [ ][ ] [ ]
kp kp kp

jp p jq q j
jp jp jp

a a a
a x a x b

a a a
    ,   (30) 

and modify the forward elimination process.  

All the numerical simulations have been performed by the programs written in gcc and g++ on 

Linux with double precision calculations. 
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4.  Result and Discussion 

The floating-point calculation, the original interval analysis shown in subsection 2.1, the modified 

Gaussian elimination method (MGEM) and the Krawczyk operator are used to solve a system of linear 

equations for the self-similar equation in subsection 2.2. The results are shown in table 1, where the 

pressure gradient parameter m is 0.0 and - 0.05 and an interval of the form, for example, 0.33 [12, 24] 

means the interval of [0.3312, 0.3324]. The grid spacing is constant and it is 0.1. The intervals in the 

table show those of 0v  that corresponds the velocity gradient on the flat plate. The value of IT is the 

iteration numbers used to obtain a converged solution. Being compared with the result of the floating-

point calculation, the original interval analysis has an accuracy of 2 or 3 digits. The result of MGEM 

gives the errors with one or three orders of magnitude smaller than those of the original interval 

method. This fact shows an approving effect of the current modification applied to the Gaussian 

elimination method. The Krawczyk operator offers a much higher accuracy when it is compared with 

the result of the original interval analysis or MGES. The decimal digits of the floating-point 

representation is 15.9 at most. Therefore, the result of the Krawczyk operator applied to the present 

similar equation shows an accuracy comparable with the resolution of the floating-point value. 

 

Table 1. Solutions of the self-similar equation. 8.0e  . 

  m = 0.0 m = - 0.05  

 

 

floating point  

calculation 
0.3320414384213981,    IT = 6 0.2135095226597685,  IT = 6 

 

 
interval analysis 

0.33[12183451442928, 

        28570033968403],  IT = 3 

0.213[5073633921204, 

          622998266781],  IT = 4 

 

 interval analysis  

with MGEM 

0.33204[06663353578, 

              22105826957],  IT = 5 

0.2135[063433007140, 

            127020193930],  IT = 5 

 

 

 

Krawczyk 

operator 

0.33204143842139[79, 

                                84],  IT = 4 

0.213509522659768[3, 

                                  8],  IT = 4 

 

 

For the calculation of the lid-driven square cavity flow, we use the Krawczyk operator and the 

Jacobi method noted in subsection 2.3. The terms other than those in equation (15) is formulated by 

the central difference method with the original interval method. Figure 1 shows the contour of the 

midpoint of the stream function   obtained by the Krawczyk operator. The Reynolds number is 300 

and the grid points in the x  and y  coodinates are 100. Figure 2 represents the profiles of the upper 

and lower bounds of the intervals of the stream function at x  = 0.6. The result of the Krawczyk 

operator is depicted in figure 2 (a). On the end walls at y  = 0.0 and 1.0 where the Dirichlet boundary 

condition of the velocity component is applied, the errors are near zero. At the center of the flow field,  

 

  

Figure 1. Solution of the lid-driven 

cavity flow obtained by using 

Krawczyk operator. The plots are 

the contours of the midpoints of   

and the Reynolds number is 300. 
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(a) Krawczyk method (b) Jacobi iteration method 

Figure 2. Estimated interval of the solution of the lid-driven cavity flow. y = 0.6. 

 

the interval is bounded by 82.5 10   and a favorable result is obtained. Figure 2 (b) shows the 

bounds obtained by the Jacobi method. While the solutions near the center of the flow are bounded 

within a certain range, the width between the bounds near the walls where the steep velocity gradient 

appears is large and the accuracy of the solution is low. 

5.  Conclusion 

The interval analysis is applied two fluid dynamics problems. One problem is the ordinary differential 

equations governing the self-similar boundary layer flow. The other is the lid-driven cavity flow 

formulated with the stream function and the vorticity. The discretization method is the finite difference 

method. The Gaussian elimination method with the original interval analysis, the Gaussian elimination 

method with the modification of the pivoting process (MGEM), the Jacobi iteration method and the 

Krawczyk operator are used to solve the system of linear equations. For the solution of the self-similar 

boundary layer, MGEM gives the accuracy with one to three orders of magnitude higher than that of 

the original interval analysis. The accuracy obtained by the Krawczyk operation is almost comparable 

with the accuracy of the floating-point representation. For the solution of the lid-driven cavity flow, 

the Krawczyk operator presents the accuracy digits of half of the decimal digits of the floating-point 

representation. The result obtained by the interval Jacobi method does not offer any reasonable 

predictions of the flow near the stationary walls. 
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