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Abstract. Parallel manipulators are robots with the capability to perform motion up to six 

degrees of freedom. This work presents a surrogate-based optimisation process for designing a 

6-RSS parallel manipulator that is driven by six rotary actuators; the kinematic performance of 

the manipulator is defined by the volume of the total orientation workspace and the global 

conditioning index. The surrogate modelling technique was demonstrated by simulation to be 

highly beneficial in exploring the design landscape thoroughly even for a high-dimensional 

case with six design variables. Computational expense in the optimisation process was reduced 

by sequentially searching the surrogate models instead of the original performance indices. 

One platform geometry with the best compromise between the two contradicting indices was 

obtained in accordance with the weighted-sum function. Despite the fact that this work 

considers a small-scale 6-RSS parallel manipulator, the presented surrogate-based optimal 

design framework is generic and can be applied to different types of manipulators. 

1.  Introduction 

Parallel manipulators (PMs) are robots with several closed-kinematic chains of actuators that are 

connected to the same rigid body. These robots have several advantages over their serial counterparts, 

such as better load-carrying capacity, higher rigidity, and higher positioning accuracy [1, 2]. This work 

consider a 6-RSS type manipulator whose base plate and mobile plate are connected by six identical 

link chains; each chain consists of a revolute actuator (R) and two spherical joints (SS) [3]. 

Due to the revolute actuation, the platform could create more nonlinear effects to the kinematic 

chain when compared to the conventional prismatic actuation ones. This problem was addressed by 

[4], and a kinematic model of a 6-RSS manipulator was analysed for improving quality of trajectory 

tracking control. A closed-form dynamic equations of 6-RSS manipulators was derived by [5] to take 

into account the effect of inertia as well as the external forces on the platform. In spite of the 

nonlinearity, the platforms with rotary actuators have been proven to be practically useful for 

highspeed manipulation [6]. 

Regarding the classical optimal design methodologies, different design criteria are considered as 

objective functions for establishing the best platform design. Performance of different optimisation 

algorithms were compared and discussed in [7]. The concept of Pareto efficiency may be applied when 

multiple design criteria are considered simultaneously [8]. A workspace analysis is the primary 

consideration in a platform design since PMs have relatively small and irregular-shaped workspaces 

when compared to serial manipulators. The workspace of a manipulator may be identified numerically 

by discretising the Cartesian space into a finite number of small grids; each grid is checked against a 
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number of criteria, e.g. that grid is reachable and the joint limits are not violated, and the workspace is 

formed by connecting all the valid grids together [9]. In addition, a local conditioning index (LCI) [10] 

is typically used to gives a measure for how close a particular configuration of the platform is to the 

singular configuration where the platform loses its stiffness or the kinematic chains degenerate. The 

overall dexterity over a given workspace is referred to as the global conditioning index (GCI) [8]; this 

global index is computed numerically by averaging the LCI of the discrete grids over the workspace. 

For further discussion of various performance indices, please refer to [11]. 

Although simple in concept, the discretisation method is the most computationally expensive part 

of the optimisation process. This is the case especially when the total orientation workspace is 

considered because, for every discrete position, the platform must be evaluated at all orientations in a 

given range [12]. Such a high computational expense can be alleviated by using surrogate models 

(SMs) as substitutes for the true objective functions. The approximation models can be based on the 

simple regression models such as polynomial regression [13], but Kriging surrogates appear to be the 

most popular choices for design search and optimisation [14, 15]. The preferred search algorithm is 

then used on the SM to avoid evaluating those expensive objective functions, speeding up the 

optimisation process. 

The main aim of this paper is to present a procedure for establishing the optimal platform design 

via the surrogate modelling approach. To this end, the relevant parameters for a 6-RSS platform are 

described in Section 2. Kinematic performance evaluation is defined in Section 3. The surrogate-based 

optimisation framework is explained in Section 4. This is followed by the results and discussion in 

Section 5. The conclusions are presented in Section 6. 

2.  Platform Geometry 

The PM currently studied is illustrated in Figure 1. It is designed to consist of standard components, 

these are: 1) a base plate with a radius of 𝑟𝑏, 2) a mobile plate with a radius of 𝑟𝑚, 3) six identical RC 

servos mounted to the base plate with horn lengths of 𝑙ℎ, and 4) six identical connecting rods with 

lengths of 𝑙𝑟 (each rod has magnetic ball joints on both ends). 

 

 

  

  

Figure 1. 6-RSS parallel manipulator. Figure 2. Reference frames that are fixed to the base plate 

(left) and the mobile plate (right). 

 

Reference frames that are fixed to the centres of the base plate, 𝑂𝑏, and the mobile plate, 𝑂𝑚, are 

denoted by {𝑏} and {𝑚}, respectively. The joint attachment points on the base plate, 𝐵𝑖, and on the 

mobile plate, 𝑀𝑖, are grouped into three pairs and are distributed evenly on their respective circles (see 

Figure 2). Parameters 𝛾𝑏 and 𝛾𝑚 denote the angle spacing between the joints for each pair on the base 

plate and the mobile plate, respectively. 

Joint positions on the base plate expressed in {𝑏} for 𝑖 = 1,2, … ,6 are: 

 𝐵𝑖 
𝑏 = 𝑟𝑏[cos(Γ𝑏,𝑖) sin(Γ𝑏,𝑖) 0]

⊺
, (1) 
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where 

 Γ𝑏,𝑖 = [𝑖 − 2 − mod(𝑖, 2)]
𝜋

3
+ (−1)𝑖𝛾𝑏. (2) 

Likewise, joint positions on the mobile plate expressed in {𝑚} for 𝑖 = 1,2, … ,6 are: 

 𝑀 
𝑚

𝑖 = 𝑟𝑚[cos(Γ𝑚,𝑖) sin(Γ𝑚,𝑖) 0]
⊺
, (3) 

where 

 Γ𝑚,𝑖 = [𝑖 − 2 − mod(𝑖, 2)]
𝜋

3
+ (−1)𝑖𝛾𝑚. (4) 

The parameter 𝛾ℎ refers to the angle of the servo horn that is shifted from the radial vector on the 

base plate; 𝛿𝑖 denotes the angle of the 𝑖th servo horn relative to the horizontal plane. For simplicity, a 

pivot of the 𝑖th servo is defined to be coincident with 𝐵𝑖. In this regard, the endpoint of the servo horn 

expressed in {𝑏} is: 

 𝐻𝑖 
𝑏 = 𝐵𝑖 

𝑏 + 𝑙ℎ[cos(𝛽𝑖) cos(𝛿𝑖) sin(𝛽𝑖) cos(𝛿𝑖) sin(𝛿𝑖)]⊺, (5) 

where 𝛽𝑖 is the angle that the sweeping plane of the 𝑖th servo horn makes to the x-axis of {𝑏}: 

 𝛽𝑖 = Γ𝑏,𝑖 − (−1)𝑖𝛾ℎ. (6) 

The mobile plate’s configuration (position and orientation) in Cartesian space is converted to an 

angle for each servo horn in joint space with the following inverse kinematic model [16]: 

 𝛿𝑖 = sin−1 (
ℒ

√ℳ2+𝒩2 
) − tan−1 (

𝒩

ℳ
), (7) 

where 

 ℒ = 𝑙𝑖
2 − 𝑙ℎ

2 + 𝑙𝑟
2,    ℳ = 2𝑙ℎ(𝑧𝑚,𝑖 − 𝑧𝑏,𝑖),    and (8)  

 𝒩 = 2𝑙ℎ sin(𝛽𝑖) (𝑥𝑚,𝑖 − 𝑥𝑏,𝑖) − 2𝑙ℎ cos(𝛽𝑖) (𝑦𝑚,𝑖 − 𝑦𝑏,𝑖). 

The parameters 𝑥𝑚,𝑖 and 𝑥𝑏,𝑖 denote the 𝑥 components of 𝑀 
𝑏

𝑖 and 𝐵 
𝑏

𝑖, respectively, and so forth. 

Equation (7) is used to verify whether or not the mobile plate is able to attain a certain configuration. 

3.  Kinematic Performance Evaluation 

3.1.  Workspace 

This paper considers the total orientation workspace, 𝒲, that describes how much translational 

movement is allowed while a parallel robot is still able to perform any orientation in a prescribed set 

[12]. To identify 𝒲, it is necessary to start by discretising the potential range of translational motion 

with a regular grid; this yields a finite number of positions to be evaluated. Then, each position is 

tested with the eight representative orientations which are all combination of ±10 degrees of roll, 

pitch, and yaw. 

A position is said to be a member of 𝒲 if all of the eight representative orientations are attainable. 

The volume of 𝒲 is computed by summing the volumes of all the tiny elements. For generality of the 

analysis, the resulting workspace volume is non-dimensionalised by dividing it by the volume of a 

sphere of radius 𝑟𝑏. 

3.2.  Global Conditioning Index 

The global conditioning index (GCI) is commonly used for describing the overall performance over 

the entire workspace [8, 11]: 

 GCI =
∫ 𝜅(𝑱)−1d𝒲

 

𝒲

∫ d𝒲
 

𝒲

 (9) 
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where 𝑱 is the Jacobian matrix [4] and 𝜅(𝑱) is the condition number [8]. The total orientation 

workspace, 𝒲, is determined as explained in Section 3.1. A higher GCI means that the platform can 

be controlled more precisely. 

3.3.  Mechanism Interference Detection 

The feasibility of the design is limited by the interference between the manipulator's parts. To ensure 

sufficient clearance between the parts, the interference detection algorithm is implemented as follows. 

On each servo, two fixed-radius circles are assigned to both ends of the servo horn and one circle to 

the rear part of the servo body. The joints on the mobile plate are also assigned with the circles. The 

mechanism interference is detected if any of the circle pair intercept, or the servo horns cross. In 

which case both 𝒲 and the GCI are set to zero in order to differentiate the infeasible designs from the 

feasible ones. 

4.  Surrogate-Based Design Optimisation 

The conventional optimisation methods rely on the direct search of the true objective functions. This 

framework may not be practical when dealing with expensive objective functions (either 

computationally or financially or both). However, it is possible to approximate those expensive 

functions by suitable math functions that are relatively less expensive to evaluate; this approximation 

is known as surrogate models (SMs) or response surface models (RSMs). The optimisation then 

performs on the SM to avoid evaluating the expensive objective function. 

The surrogate-based optimisation methods involve three stages. First, the true function is sampled 

at multiple points. This initial data set is used for constructing an SM in the second stage. The search 

and refine strategy is performed on the SM in the last stage, and it iterates until the solution converges. 

This procedure is summarised in Figure 3, and the three states are explained in the following 

subsections. 

 
Figure 3. Three fundamental stages of surrogate-based design optimisation. 

4.1. Sampling Plan 

The surrogate modelling is a process of building an approximation of the original expensive functions. 

In this regard, like other model fitting tools, an initial set of sample data of an original function is 

crucial for constructing an SM. The most straightforward way to obtain a space-filling data set is to 

sample the design space evenly and uniformly with the full-factorial sampling plan [17]. Take for 

instance a 2-dimensional (2D) design space, such a sampling technique will produce a rectangular grid 

of points. This sampling plan, however, is not efficient because the points overlap when projecting on 

an axis. Some of these points may be considered repetitive and could be discarded to save 

computational cost. 

Latin hypercube sampling (LHS) is a more efficient alternative that is commonly employed to 

sample the design space without repetitions. There may be a number of ways to arrange the points in 

the LHS manner, and in some case the points may bias towards one area. To ensure the data points 

thoroughly spread over the design space, the minimum distance between all point pairs should be 

maximised [13]. Since this optimal LHS is space-filling and does not generate repetitive points, it 

allows limited number of samples to gaining as much information of the expensive function as 

possible. 
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4.2. Constructing a Surrogate Model 

Various types of SMs are presented in the literature. These models are relatively less expensive to 

evaluate but is sufficiently good in predicting the original function. Kriging is typically the model of 

choice because it is highly flexible and works well in most situations even with highly-nonlinear, 

multi-modal functions [18]. Another advantageous of the Kriging model is that it can provide 

uncertainty estimation of the approximation [13, 14]. This measure is crucial for searching and 

refining the SM (this point will be discussed in the following subsection). 

It has been shown that the platform workspace volume can be improved with a sacrifice of GCI, 

and vice versa [8]. This means that the ultimate 6-RSS platform design does not exist. Instead, the 

process will give a range of nondominate designs in the form of a Pareto front [8, 9]; all such designs 

are valid and optimal but they have different weights for different indices. It is typical, in practice, to 

combine the two objectives using a weighted-sum function, i.e., 𝑓 = 𝑤1 × 𝑓1 + 𝑤2 × 𝑓2, where 𝑤1 +
𝑤2 = 1. A Kriging surrogate is then constructed for representing the weighted-sum function that 

defines the compromise between the two contradict objectives. 

4.3. Searching and Refining a Surrogate Model 

Once an initial SM has been built, the optimum can be located using one of the existing optimisers 

such as genetic algorithm (GA). It is important to note that this point is only optimal for the 

approximation and may not necessarily be so for the true function. In this regard, the point must be 

considered as an infill point which is then evaluated by the original function and augmented into the 

data set. The SM is refined accordingly and the new optimum is located. By repeating this process, the 

predicted optimum will converge. The major concern for this pure exploitation infill criterion is that 

the SM search and refinement will be concentrated on the first optimal region predicted by the SM. As 

a consequence, the search is highly likely to be trapped in this region, and the global optimum is not 

guaranteed. 

On the other hand, choosing the maximum mean squared error (MSE) as a next infill point will 

help exploring the uncertain regions of the SM where the global optimum might be hiding [13]. 

However, this criterion is pure exploration that only yields a more accurate SM. At some point this 

exploration criterion needs to be stopped and followed by the exploitation search scheme, but at which 

point can be a tough decision. 

Kriging is the Gaussian process-based model that permits the calculation of the expected 

improvement (EI) [14]. This measure corresponds to the magnitude of improvement expected from 

refining the SM at any given point. The maximum EI criterion offer a great compromise between 

exploring uncertain regions and exploiting the current optimum [14, 18]. More importantly, since the 

points that have been sampled have EI = 0, they will not be sampled again; this implies that the design 

landscape will be sampled throughout and the global optimum will be found eventually. Using EI as 

an infill criterion also provides a consistent performance for most situations when compared to other 

advanced infill criteria [19]. Due to these reasons, the maximum EI infill criterion is considered in this 

paper. 

5. Design Optimisation via Surrogate Modelling 

The 6-RSS kinematic model was implemented in MatLab. The surrogate model MatLab toolbox 

employed in this work is available online at: https://optimizationcodes.wordpress.com. Each platform 

design was evaluated within a domain of size 0.25m × 0.25m × 0.10m. The domain was discretised 

with a regular grid. Every position within the domain was tested with the eight representative 

orientations. Then, the total orientation workspace and the GCI were computed numerically. 

Supported by Figure 4, a grid size of 2% of the base plate radius is sufficiently small; this setting 

offers reliable values for both the workspace volume and the GCI with an affordable computing time 

of just under 360 seconds (obtained with a ThinkPad T450, Intel Core i5-5300U, 8GB RAM) per one 

platform design. 
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The surrogate-based optimisation approach was applied for predicting performances of the 6-RSS 

manipulator over the variation of the six design parameters. The first two were the joint angles on the 

base plate (𝛾𝑏) and the mobile plate (𝛾𝑚). Other four more design parameters were as follows: home 

position (𝑧𝐻), mobile plate radius (𝑟𝑚), servo horn's length (𝑙ℎ) and servo azimuth angle (𝛾ℎ). The 

LHS were used for generating 600 initial samples (100 samples per one design variable). These 

sample were evaluated in terms of 𝒲 and the GCI. The interference detection step was also included 

in the evaluation to penalise the designs that were mechanically infeasible. For each data point, the 

two objectives were summed with weights of 0.3 and 0.7 for 𝒲 and the GCI, respectively. A Kriging 

SM of the weighted-sum function were constructed accordingly. More infill points were added by 

sequentially searching and refining the SM with the GA based on the EI of the weighted-sum function. 

 
Figure 4. Grid convergence plot. 

  

Figure 5. Pareto front on the objective space and 

the optimal design regarding the weighted-sum 

function. 

 

Figure 6. The optimal design of the 6-RSS PM: 

𝑙ℎ = 0.05 m, 𝑟𝑏 = 0.1 m, 𝑟𝑚 = 0.042 m, 𝑧𝐻 =
0.18 m, 𝛾𝑏 = 25°, 𝛾𝑚 = 14°, and 𝛾ℎ = 153°. 

 

The SM approach has shown to be highly beneficial in exploring the design landscape thoroughly, 

even for this case with six design variables. Regarding Figure 5, with just 150 infill points (green dots) 

the boundary of the objective space was pushed further from the initial data set (red diamonds) to the 

Pareto front where one objective could not be improved without sacrificing the other objective. On the 

contrary, directly searching on the true performance functions would not be effective because, for 

example, the GA search with 100 individuals for 20 generations would require up to 2000 samples to 

be evaluated with the computationally intensive functions. The presented SM-based approach yielded 

the optimal manipulator configuration as shown in Figure 6. 
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6. Conclusions 

This paper presented a surrogate-based design method for a 6-RSS PM whose performance was 

characterised by the volume of the total orientation workspace and the GCI. The existing toolbox was 

used for generating a space filling sample points as well as for constructing surrogate models of the 

manipulator performances over a range of design parameter variation. The GA optimiser was then 

employed to sequentially refine the approximation models and search for the optimal design. Since the 

surrogate models were relatively less expensive to evaluate when compared to true platform 

performance evaluation, searching on the approximation models could significantly reduce 

computational cost in the optimisation process. 

The SM approach has been demonstrated to be highly beneficial even for a complex case involving 

six design variables; it showed to explore the design landscape thoroughly and the Pareto front was 

identified with just 600 initial samples and 150 infill points. One platform design with the best 

compromise between the two contradict indices were derived regarding the weighted-sum function. 
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