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Abstract. This paper presents a new tuning method for P and PID controller in a double-loop 
feedback structures. The stability region is first determined by Routh-Hurtwitz stability criteria. 
Simple tuning rules are established to determine the optimal P/PID parameter values within the 
stability regions, to meet desired performance-robustness criteria. The effectiveness of the 
newly established tuning rules are evaluated via numerical study and compared with those 
based on the same existing PID tuning methods. 

1.  Introduction 
Routh-Hurwitz criteria for stability analysis can be used to determine how many closed-loop system 
poles are on the left half-plane, and/or on the right half-plane of a complex plane. The method also 
yields stability information without the need to solve for the close-loop system poles, i.e., the 
characteristics equation. In the present research, we use the Routh-Hurwitz criteria to establish 
stability regions of PID controller for a class of second-order integrating processes with time-delays. 
In process industry, many real systems possess integrating behaviours, such as a high purity 
distillation column, and storage tank with a pump at the outlet. Integrating processes are non-self-
regulating, which means that when subjected to an input change, the process will not attain a new 
steady state condition. These processes are often difficult to control compared with self-regulating 
processes 

Note that several different PID tuning methods have been proposed by different researcher in order 
to control integrating systems, e.g., methods that related to stability analysis. Among them are method 
proposed by Luyben [1]-[2], Chidambaram [3]. A computational method by Hermite-Biehler theorem 
[4], [5] on stabilizing parameter region of PI and PID controller was also proposed. Others methods 
include stability boundary locus approach by Tan et al. [6], which determines the PID parameter plane 
that will stabilize the system, Nyquist plot approach by Söylemez et al. [7], and Munro and Söylemez 
[8] based on finite value real-axis crossing the Nyquist plot of the system with test compensator with 
real values of frequency and corresponding gains. 

Based on the PID stability theorem developed by Seer and Nandong [9] we propose to develop 
stability regions for P and PID controllers applied to a double-loop control structure (Figure 1). Since 
PID stability theorem in [9] is based on unstable process model, while in this research we use 
integrating process as process model. So we use the theorem in [9] as a guide to find new parameter 
regions for PID controller for the integrating process.  First, we determine the controller gain (of a P-



CUTSE

IOP Conf. Series: Materials Science and Engineering 495 (2019) 012048

IOP Publishing

doi:10.1088/1757-899X/495/1/012048

2

 
 
 
 
 
 

only controller) in the inner feedback loop within, which a tuning value is obtained. Upon completing 
the tuning of the inner loop, an augmented plant, i.e., pre-stabilized system is formed based on which 
the outer (PID) controller is designed. Second, the overall system stability is to be addressed via the 
Routh stability criteria [10]. Stability regions are obtained using the PID stability theorem; tuning 
values of the PID controllers are obtained within the established stability regions. 

2.  Integrating Process Stability 

2.1.  PID Controller Design 

 

Figure 1.  The double-loop structure of feedback control scheme. 

 

Figure 2.  The equivalent single-loop structure of double-loop control scheme. 

Figure 1 the block diagram of double-loop control structure. There are two controllers involved: the 
inner controller (Gc2) is used to provide pre-stabilization of the process or system P. Meanwhile, the 
outer controller (Gc1) is used to provide an overall performance specification for the system. The 
double-loop control structure in Figure 1 can be reduced to a standard single-loop control structure 
shown in Figure 2. Here, Pa denotes the pre-stabilized plant of system P. 

Let us consider a class of process given by the second-order integrating plus dead-time model as 
follows 
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Hence, pK ,τ and θ  represent the process gain, time constant and dead-time for the integrating process 

in (1) respectively. 
The double-loop consists of two controllers: a primary controller 1cG  and secondary controller 2cG . 

1cG is chosen to be a PID controller given by  
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where  cK , Iτ
 
and Dτ  denote the controller gain, reset time and derivative time respectively.  

Note that, for the purpose of conducting stability analysis on the secondary loop, the dead-time term is 
approximated using the first-order Taylor series, i.e.: 
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2.2.  Inner-loop Controller Design 
Figure 2 shows that the augmented plant (transfer function) from C to Y is given by 
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From equation 4, the closed loop characteristics equation for the secondary loop is given as follow 
 0)(1 2 =+ sPGc  (5) 

By approximating the dead-time as in (3), the close-loop characteristics equation (5) can be expressed 
in a polynomial form 
 0)1(2

2
=−++ sKKss pc ατ  (6) 

Based on the necessary condition of Routh stability, for the inner loop stability, the secondary loop 
gain must be bounded  
 

α2
1

0 2 << pc KK  (7) 

where the secondary loop gain is pcL KKK =2 . Equivalently, the range in (7) can be written in the 

following form 
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 Here, , ��� is a dimensionless parameter with a value lying between 0 and 1. This parameter can be 
used for tuning the inner controller gain. 

The augmented plant (4) can now be expressed as a second-order process model as follow 
 

1
)(

1
2

2

0

++
=

−

sasa

eK
sp

s
p

a

θ

 (9) 

It can be readily shown that, 222 )2/( Lppc KrKK == α , which is a positive scalar parameter used for 

tuning the value of loop gain pc KK 2 . The scaling parameter must lie in the range of )1,0(2 ∈pr  to 

ensure closed-loop stability of the inner loop. Note that, 0
pK , 2a and 1a are given in the forms of 
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2.3.  Overall Controller 
The closed-loop set-point tracking transfer function based on Figure 2 can be written as 
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By selecting, the primary controller as in (2), the overall close-loop characteristic equation is 
 0)(1 1 =+ sPG ac  (14) 

Let 1
0

Lpc KKK = and (13) be written as follow 
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where the coefficients of the equations are 
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In the Routh array, the necessary elements to be determined are as follows 
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From the the necessary condition, the coefficient of 3s , 2s
 and s lead to an upper limit (18) and two 

lower limits (19)-(20) for the primary loop gain: 
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The above concludes that according to the necessary condition, the close-loop is stable if and only if 
the loop gain in (18) is bounded 
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Let us rearrange (21), so that it becomes 
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where rp1 is another dimensionless tuning parameter. 

2.4.  Sufficient Condition for Closed-loop Stability  
The element of 1b  from the Routh array (16) provides a set for sufficient criterion of Routh stability, 

from which one can establish another lower limit of Iτ  given by 
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Equation (23) is valid provided that ατ >D . With this condition, we suggest the tuning for the value of 
derivative time be done via two simple equations 
 1,2 >= ddD rr ατ  (24) 

and 
 1},,2max{ min >= iiiI rr τατ  (25) 

In summary, we have 4 dimensionless tuning parameters based on [9], for the double-loop control 
system with a combination of P and PID controllers. These are 2pr , 1pr , ir  and dr . 

3.  Result and Discussion 
Example 1 
Let use consider the second-order integrating process with dead-time (1), and compare the proposed 
method with that from the work in Jin and Liu [11]: 
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     The performance of the proposed double-loop P/PID scheme is compared with that of the single-
loop PID scheme, tuned using two different methods: method by Jin and Liu [11] and MoReRT 
method [12]. The tuning values are shown in table 1. 

TABLE I.  CONTROLLER PARAMETER VALUES FOR EXAMPLE 1 

Method cK  Iτ  Dτ  2cK  
Proposed 4.210

5 
3.7 3.8 

2.5 

MoReRT 3.75 12 2.667 - 
Jin and Liua 2.378 13.741 2.835 - 

 
aSet point filter = 

1

1
2 ++ ss idI τττ

 

In the example 1, the proposed method shows better performance in terms of Integral Absolute 
Error (IAE) value than the others two methods as shown in Figure 3. We set the values as 8.01 =pr ,

5.02 =pr , 7.3=ir  and 8.3=dr . The introduction of set point filter indeed increases the performance in 

term of IAE as shown in figure 3. Figures 3 shows that the nominal response for 1 unit setpoint change 
followed by 1 unit in output disturbance change. The proposed double-loop control method shows the 
smallest IAE. Please note that, a 20% modeling error is also introduced (to simulate a perturbed 
condition) to the deadtime in (26). Figure 4 shows the response under this perturbed condition. The 
proposed double-loop control still outperforms the methods of Jin and Liu [11] and MoReRT method 
[12]. 
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Figure 3.  Step response proposed method, [11] method and [12] method under normimal condition for 
the close-loop system example 1. 

 

Figure 4.  Closed-loop responses for proposed method, [11] method and [12] under perturbed condition 
(20% modeling error) in deadtime. 

 
   Example 2 

 
     In this example, consider an integrating process with dead-time and inverse response as in [13]. We 
compare the performance of the double-loop scheme with some existing methods reported in Tyreus 
and Luyben [2], and in Jeng and Lin [13]. We set the dimensionless parameter values as  1.01 =pr ,

025.02 =pr , 29=ir  and 14=dr . The controller parameters are shown in Table 2. 

     Under the nominal condition, the responses shown in Figure 5 indicate that the proposed scheme 
outperforms the methods of Jeng and Lin [13] and Tyreus and Luyben [2], i.e., the proposed scheme 
results in the smallest IAE value. This shows that the P/PID tunings based on the rigorous analysis of 
stability regions can result in better selection of parameter values. 

     Figure 6 shows the responses under the modelling error of 20% in process gain and deadtime. It is worth 
noting that, the proposed double-loop scheme still performs better than the other methods; in fact, the proposed 
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scheme shows very little degradation in its performance in the presence of the aforementioned modeling 
error. 
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TABLE II.  CONTROLLOR PARAMETER VALUES FOR EXAMPLE 2 

Method 
cK  Iτ  Dτ  fτ  2cK  

Proposed 1.3842 12.7955 1.4 - 0.457 
Jeng and Lin [13] 1.608 3.518 1.06 0.029 - 
Tyreus and Luyben [2] 1.610 5.75 1.15 - - 

 

 

Figure 5.  Closed-loop responses under nominal condition for example 2. 

 

Figure 6.  Closed-loop responses for  example 2 under  20% modeling error in process gain and dead-
time. 

The stability analysis of P and PID controllers in the double-loop structure has been conducted for a 
class of second-order integrating process with deadtime. The stability regions have been established 
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based on the Routh-Hurwitz criteria with the aid of PID theorem. Simple P and PID controller tunings 
for the inner and outer loops respectively have been proposed. Simulation results have shown that the 
proposed scheme using double-loop structure can outperform the standard single-loop PID control 
scheme tuned using some of the best methods reported in the literature. In future research, it is worth 
to explore the application of the proposed double-loop scheme for different types of process models. 
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