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Abstract. The emphasis of the article is a potential usage of Jordan – Gauss 
successive elimination method for reduction of a differential equation system (DES) to 
one differential equation and determining its solution providing all other solutions of 
DES. This approach is different from standard method of determining of eigen vectors 
and eigen values of matrix of DES, which are necessary to determine fundamental 
system of solutions of homogeneous differential equations of n-th order with constant 
coefficients denoted in norm form. In the article analytical solution is searched for in 
general form and can be used for other similar mathematical problems. 

1. Introduction 
Floatation methods are widely used for practical tasks of wastewater treatment and separation of fine 
suspensions in processes of mineral processing [1-10]. In this connection efficiency enhancement of 
floatation process may contribute to major economic benefit. Application of effective mathematical 
methods plays an important role at solution of many problems concerning separation processes, such 
as floatation process [11-30]. 

For example, usage of Jordan – Gauss successive elimination method for reduction of differential 
equation system (DES) to one differential equation and its determining its solution providing all other 
solutions of DES.  

2. Basic concepts and suggestions 
Let’s consider the nature of the proposed approach in greater detail. Matrix A of differential equation 
system (DES) is given: 

A:=matrix(n,n,[]):with components: 

k1:=1/2*10^(-3):k2:=1/10*10^(-6):k3:=1/10*10^(-3): 
k4:=1/10*10^(-5): 
k5:=1/10*10^(-5):k6:=1/2*10^(-6): 
A[1,1]:=-k1-k5:A[1,2]:=k2:A[1,3]:=k6: 
A[2,1]:=k1:A[2,2]:=-k2-k3:A[2,3]:=k4: 
A[3,1]:=k5:A[3,2]:=k3:A[3,3]:=-k4-k6: 

according to which let’s write down normal homogeneous DES of n-th order in vector-matrix form: 

http://creativecommons.org/licenses/by/3.0
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( )dX t
A X

dt
     (1) 

Let’s define the order of DES and vector of solutions 

n:=3: X:=vector(n,[seq(y[j](t),j=1..n)]) 

DES (1) according to [2] can be transformed to the following form 

[ ]Z B s X                     (2) 

Let’s express vector X from (2) if inverse matrix  1B s  exists 

1[ ]X B s Z       (3) 

Expression (3) allows to reduce DES (1) to one differential equation (DE) of n-th order for any 
variable x[s](t), s = 1..n. It can be shown that inverse matrix B[s]^(–1) always exists if  det(A)<>0. 
Therefore research or solution of DES (1) should be started from determining of  det(A).  In case if 
det(A) = 0, it is necessary to find principal minor Am in matrix A and write down new DES (4), which 
is equivalent to previous system (1) 

( )mdX t
Am Xm

dt
  (4) 

Without loss of generality it can be assumed that principal minor Am is placed in first  m rows and 
columns of matrix A, and basis solutions of (1) are first m components of vector X, which means  
Xm = (x[1](t), x[2](t), ..., x[m](t)), m<= n. In this case components that are left x[m+1](t), ...,x[n](t)  are 
linearly connected with basis ones. This relation is defined from linear dependence equations of  
A-matrix rows of DES (1): 

, , ,
1

,   1.. ,   1..
m

j i j k k m i
j

A u A i n k n m


          (5) 

,
1

( ) ,  1..
m

j j k k m
j

d d
x t u x k n m

dt dt




     

Where {u[j,k]}, j = 1...m, k = 1...n– m matrix of coefficients defining linear dependence of rows of 
matrix A. Definition of matrix Aa = {A[j,i]}, j = 1...m, i = 1...n allows to denote previously shown 
dependencies in the following vector-matrix form in Maple package 

( , ) ( , ),T TAa col u k col A k m                                 (6) 

( , ) ,  1..k mXm col u k x k n m                                          (7) 

The last of them (7) defines relation between basis and non-basis solutions of DES. It is important 
to note that such transformations decrease the order of initial DES and remarkably simplify the 
process of its solution by reduction to one differential equation. In Maple package coefficient matrix 
{u[j,k]} can be defined by means of standard tools of the package, among them is Jordan — Gauss 
method. 

Further it is necessary to define new DES, which doesn’t contain linearly dependent rows and 
columns and its rank is  rank(Ap) = m, and then decrease its order. Decrease of order of DES, which is 
important for solution of differential equations [3], is carried out the following way: first m equations 
(5) are differentiated termwise, while other variables are excluded:  

,
1

,  1..
m

m k j j k
j

x x u k n m


                                         (8) 
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then a system of m equations with m variables is obtained, and it is necessary to introduce new 
variables  v 

,  ,  1..i i i ix v x v i m                 (9) 

The result of termwise differentiation (5) is as follows 

2

, ,2
1 1

( ) ,  1..
m n

j j i i j i i
i i m

d
x t A x A x j n

dt   

        

Thus, by usage of new variables, new DES is obtained 

, , ,
1 1

,  1..
m n m

j j p j m k p k p
p k

v A A u v j m



 

 
     

 
                (10) 

This DES will be equivalent to the initial one in case of fulfillment of conditions (8), defined by 
new variables  

,
1

,  1..
m

m k j j k
j

v v u k n m


     

Consequently, DES coefficients (10) are defined by formulae:  

1

[ , ] : [ , ] [ , ] [ , ],  1.. ,  1..
n m

k

Ap j p A j p A j m k u p k j m p m




                  (11) 

Here, as it has been mentioned above, determinant of matrix Apis not equal to zero, while its rank 
is m which can be confirmed by direct verification. 

Here the process of DES (10) solution can be started. Let’s introduce basis vector V of new 
variables   v[j](t),  j = 1 .. mand derivatives of V 

dV:=map(diff,[seq(v[j](t),j=1..m)],t) 

The formula defining right-hand side of DES (10) is SD:=evalm(Ap&*V). DES in new variables, 
which relation to old variables is defined by formulas (9) 

sys1:=seq(dV[k]=SD[k],k=1..m); fcn1:={seq(v[j](t),j=1..m)}: 

System of differential equations defining one of the new variables, for example, v[s](t), s = 1, is 

 
 
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0
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1
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...... ...

,

s
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s m
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     
              
         

                             (12) 

The system (12) allows to obtain a differential equation for each variable v[s](t) and solve it. 
When inverse matrix Bb is known, from (12) differential equation defining components of vector V 

by the following formula is obtained 

1

2
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                     (13) 



Hydraulics

IOP Conf. Series: Materials Science and Engineering 492 (2019) 012009

IOP Publishing

doi:10.1088/1757-899X/492/1/012009

4

 
 
 
 
 
 

or inserting expressions (9)  into (13), formula defining calculations of components of vector Xm 
belonging to initial DES (5) is obtained as follows 

1

2

( 1)

[ ] ,  1..
... ...

s

s

m
m s

x x

x x
Bb s s m

x x 

   
   
     
   
   
   

 

 



        (14) 

Thus, for s = 1 differential equation of order m+1 is obtained for defining component x[1](t). Let’s 
firstly solve equation (13) using derivatives vector 

dVV:=[seq(diff(v[1](t),t$j),j=1..m)]; evalm(Bb&*dVV) 

and transform the equation as follows 

ur:=V[1]=evalm(row(Bb,1)&*dVV); 

Let’s set up a task for solution of ur 

resh:=dsolve(ur); rhs(resh);v[1](t): 

On integrating solution v[1](t) xm[1](t) is obtained. 
Solutions v[1](t) and xm[1](t) differ by a constant, for example, H1.  
Let’s define a vector of constants h, which is necessary for notation of DES solutions 

1

1
1

: i
m

rs t
i

i

xm t h e




   

Other solutions are defined on the base of previously found xm[1](t) with addition of a constant, 
occurring while integration and decreasing the order of differential equation by one. 

Let’s introduce a vector of solutions of the initial DES with new name xM. Consistency conditions 
(8), defining relation between non-basis variables and basis variables, are also applied to solutions of 
the initial DES and provide (n-m) solutions more with imperative introduction of constants hn[i],  
i = 1...n – m on the same basis 

Let’s calculate these solutions:  

,
1

:
m

m k j j k k
j

xM xM U hn


 
   
 
  

Calculated xM[i], i=1...n are valid with an accuracy to constants, but cannot be considered as 
solutions of the initial DES.  “Excessive” constants hb[k], hn[i] should be expressed through h[3], 
according to substitution of solutions xM[i] in the initial DES.  

As the result equations defining relations between constants are obtained, from which (n – 1) 
constants are expressed through constant h[3]: 

1 3 1 3
15020 1018025

6 : ,  
1003 1003

p hb h hn h
        

 

Defined values of constants are used in vector of solutions xM. 
Solutions y[i](t), i = 1..n, obtained in general form are valid for the initial DES. 
Vectors h, hbstay unknown because they depend on vector of initial conditionsCn of the initial 

DES. That particular vector is defined and on the base of this vectorthe constants h[i],hb[j] are 
calculated, as it is shown below.  

Let’s introduce a vector of initial (or boundary conditions if they are determined) condition for 
each solution from y[i](t), i = 1...n for the initial DES: 
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Cn:=vector(n,[]): 

Let’s determine relation between initial conditions Cn[i], i=1...n and constants h[i], hb[j]. In order 
to do this nequations are defined by using t = 0 in the system determined by vector xM 

s4:=seq( Cn[i]=simplify( subs(t=0,xM[i]) ),i=1..n ): 

from which we determine 

s2:=solve({s4},[seq(h[i],i=1..m+1),seq(hb[j],j=1..n-m-1)]): 

3. Results processing and discussion 
Let’s proceed to plot construction for DES. Particular values for initial conditions are defined: 

Cn[1]:=100:Cn[2]:=0:Cn[3]:=0: 

and constants are calculated  

 1 2 33: 100.024,  0.123,  0.098s h h h        

Determined constants are used in obtained solutions defined by vector xM. 
Obtained solutions are expressed in digitalized form and plots are constructed (figures 1-4). 

 

Figure 1. Solutions plot 

 

Figure 2. Analytical kinetic dependence of floatation process of fat-containing wastewaters 
purification: solid curve (red) — extraction of pollution particles out of water (%) to time (sec) and its 
experimental approve shown in discrete points. 
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Figure 3. Analytical kinetic dependence of floatation process of fat-containing wastewaters 
purification: solid curve (blue) — formation of floatation complexes particle-bubble (%) to time (sec) 
and its experimental approve shown in discrete points. 

 

Figure 4. Analytical kinetic dependence of floatation process of fat-containing wastewaters 
purification: solid curve (black) — formation froth product (%) to time (sec) and its experimental 
approve shown in discrete points. 

 
Each curve shown on figure 1 was approved by results of experiments conducted during floatation 

purification of fat-containing wastewaters.  Plots of experimental calculations are shown below on 
figures 2-4 in reduced scale, which, however, allows to estimate accuracy of coincidence between 
them and theoretical curves and to draw conclusion about adequacy of mathematical model used. 

Difference between experimental and theoretical data does not exceed 5-7%, which is affordable 
for process of wastewater floatation purification. Obtained data allows to estimate dimensions of 
flotators with adequate accuracy on the base of general parameter which is floatation time.  

4. Conclusion 
Thus, proposed approach allows to obtain basic kinetic dependencies of floatation process of 
separation non-homogeneous systems, in particular wastewaters and fine suspensions. Proposed 
approach is approved during the process of design of floatation units for purification of wastewaters of 
different manufactures. Upon that, the results of tests show that theoretical data are close enough to 
experimental data. 
 
 
Published under licence in Materials Science and Engineering by IOP Publishing Ltd. 
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