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Abstract. In various industries where centrifugal pumps are used, a common problem is the 
starting overheating of electric motors. Such overheating can lead to motor failure, especially 
in the case of starting-up the centrifugal pump on the open valve. It happens due to the fact that 
the starting current is many times greater than the rated current, and the rated current with an 
open valve usually makes is much more. In this case, complex methods of centrifugal pumps 
analysis and manuals do not contain any methods of evaluation the magnitude of the starting 
overheating of centrifugal pump electric motors. In order to fill this lacuna, a mathematical 
model of the centrifugal pump start-up, which allows to estimate the starting overheating value, 
is developed in this article. 

1. Introduction 
Centrifugal pumps are widely used in various industries: mining, chemical industry, municipal 
engineering, aviation, astronautics, agriculture, robotics, etc. In this case, one of the actual problems is 
the problem of starting such pumps [1]-[8]. 

The fact is that at the starting time of the electric motor centrifugal pump its starting overheating 
occurs. This happens due to the fact that the starting current is many times greater than the rated 
current. The starting overheating is usually stronger in the case of the pump starting on the open valve, 
than the rated current. It is known from the characteristics of any centrifugal pump, that the rated 
current is greater when the valve is open [9]-[15].  

Due to this, the specifications for any modern centrifugal pump have recommendations about the 
desirability of starting it up on a closed valve [16]-[20]. 

However, there is nothing more detailed except such discrete recommendations like "it is better to 
start up on a closed valve than to open one" in the literature. It is not known from the literature how 
much this or that pump overheats and why and to what extent the amount of starting overheating 
depends. To fill this lacuna, this article proposes a mathematical model of starting up, which is able to 
estimate the amount of starting overheating. 

2. Mathematical model of centrifugal pump starting-up 
Based on the theorem of the change in the amount of motion, the moment equation can be written: 

𝐽 ∙
ௗఠ

ௗ௧
= 𝑀ௗ௩(𝑡) − 𝛼 ∙ 𝑀௥௞(𝑡), (1) 

where 
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J – the moment of inertia of the rotor relative to the axis; 
– angular rotation speed of the pump shaft; 
Mdv – motor moment without load;  
Mrk – impeller moment at starting-up;  
– loss by coupling, bearings, pump seals when the moment is transmitted >. 

Let's consider the terms in equation (1). 
The moment on the impeller is calculated: 

𝑀௥௞ = 𝑀௖ + 𝑀ௗ௧, (2) 

where 
Мc – centrifugal moment; 
Мdt – the moment of disk friction. 

The impeller centrifugal moment: 

𝑀௖ = 𝜌 ∙ 𝑄 ∙ 𝑅ଶ
ଶ ∙ 𝜔(𝑡), (3) 

where 
ρ – working fluid density; 
Q can be determined by the formula 

𝑄 = 𝜇௣ ∙ 𝜋 ∙ 𝐷ଵ ∙ 𝑎ඥ2 ∙ 𝑔 ∙ 𝐻(𝑡), (4) 

where 
D1 – impeller diameter on groove seal; 
µp– the discharge coefficient in the front axial clearance between the impeller and the pump casing. 

The moment of disk friction is equal to: 

Мௗ௧(𝑡) =
ఠ(௧)∙గ∙ఓ∙ோమ

ర

௔
, (5) 

where 
a  – axial clearance between impeller and pump casing.  

Then it turns out that the impeller moment is equal to: 

𝑀௥௞(𝑡) =
ఠ(௧)∙గ∙ఓ∙ோమ

ర

௔
+ 𝜌 ∙ 𝑄 ∙ 𝑅ଶ

ଶ ∙ 𝜔(𝑡) (6) 

The engine moment can be presented in the form of a linear dependence on the angular velocity: 

𝑀ௗ௩(𝑡) = 𝐾 − 𝐾ଵ ∙ 𝜔(𝑡), (7) 

where 
K and К1 – coefficients of the torque-mechanical characteristics of the electric motor. 

Let's make the balance equation for the required pressure: 

𝐻ு = 𝐻௦௧ + 𝐻௧௥ + ℎ௜௡, (8) 

where 
Нн – pump head required to overcome losses;  
Hst – static head between the tanks of the feeder and receiver; 
Нtr – pressure loss in the pipeline;  
hin – inertial head. 

Let's consider the terms in equation (8). 
From the similarity of centrifugal pumps: 

𝐻ு(𝑄; 𝜔) = 𝐻௢ ∙ ቀ
ఠ೚

ఠ
ቁ

ଶ

, (9) 
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where 
Нн,  – head and angular velocity of the pump at starting-up;  
Но,  – head and angular velocity of the pump at initial value. 

The inertial head is determined by the acceleration or deceleration of the fluid flow, therefore, to 
find it, the second Newton law for the element of the stream of an ideal incompressible fluid, will be 
used and the desired equation will be obtained:  

ℎ௜௡ =
ଵ

௚
∫

డ௏

డ௧
∙ 𝑑𝑙 =

௝

௚
∙ 𝑙

௟మ

௟భ
, (10) 

where 
j – the fluid flow acceleration; 
l – the pipeline length. 

The acceleration of the fluid flow will be obatined by differentiating the flow formula j in time t: 

ௗ௏

ௗ௧
= 𝑗 =

ଵ

ி
∙ 𝑄ᇱ (11) 

The pressure losses in the pipeline are the sum of friction losses along the length and losses in local 
resistances, expressed in terms of flow. Based on these conditions, we'll write out the general loss 
formula: 

𝐻௧௥ = ቆ
ఒ

೗

೏
ାక(௧)

ଶ௚∙ிమ
ቇ ∙ 𝑄ଶ(𝑡), (12) 

where 
 – friction resistance coefficient;  
(t) – the aggregated coefficient of local resistance; 
l,d –the length and diameter of the pipeline; 

2

4

d
 F


 – the pipeline cross-sectional area; 

Q(t) – flow rate through the section; 

𝜉(𝑡) = 𝐾ଶ − 𝐾ଷ ∙ 𝑡, (13) 

where 
K2 and K3–coefficientsdescribing the linear law of the resistance coefficient changing. 

The initial conditions for the task are the following conditions: 

 0 0   (14) 

 0 0Q                                                                              (15) 

Thus, the mathematical model of the pump starting-up process is as follows: 

⎩
⎪
⎨

⎪
⎧ 𝐻௢ ∙ ቀ

ఠ೚

ఠ
ቁ

ଶ

= 𝐻௦௧ + ቆ
ఒ

೗

೏
ାక(௧)

ଶ௚∙ிమ
ቇ ∙ 𝑄ଶ(𝑡) +

ொᇲ(௧) ∙ ௟

ி∙௚

𝐽 ∙
ௗఠ

ௗ௧
= ൫𝐾 − 𝐾ଵ ∙ 𝜔(𝑡)൯ − 𝛼 ∙ ቀ

ఠ(௧)∙గ∙ఓ∙ோమ
ర

௔
+ 𝜌 ∙ 𝑄 ∙ 𝑅ଶ

ଶ ∙ 𝜔(𝑡)ቁ

𝜔(0) = 0

𝑄(0) = 0 

  (16) 

Let's solve the system of equations (16). To do this, we'll rewrite the system of equations (16) in 
the form: 
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3. The results of mathematical modeling
The system of equations (17) is solved in the Mathcad system using the 4th order Runge
method. The graph of the angular velocity versus time is obtained (figure 1).

Figure 1.The graph of rotor angular velocity versus time.
 
The graph of flow versus time (figure 2):

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑄ᇱ(𝑡) =

ி∙௚

௟
∙ ൭𝐻௢ ∙ ቀ

ఠ೚

ఠ
ቁ

ଶ

− 𝐻௦௧ − ቆ
ఒ

೗

೏
ା

ଶ௚

𝜔ᇱ(𝑡) =
൫௄ି௄భ∙ఠ(௧)൯ିఈ∙൬

ഘ(೟)∙ഏ∙ഋ∙ೃమ
ర

ೌ
ାఘ

௃

𝜔(0) = 0

𝑄(0) = 0

The results of mathematical modeling 
The system of equations (17) is solved in the Mathcad system using the 4th order Runge

graph of the angular velocity versus time is obtained (figure 1). 

The graph of rotor angular velocity versus time. 

The graph of flow versus time (figure 2): 

ቆ
ାక(௧)

௚∙ிమ
ቇ ∙ 𝑄ଶ(𝑡)൱

ఘ∙ொ∙ோమ
మ∙ఠ(௧)൰   (17) 

The system of equations (17) is solved in the Mathcad system using the 4th order Runge–Kutta 

 



Hydraulics

IOP Conf. Series: Materials Science and Engineering 492 (2019) 012002

IOP Publishing

doi:10.1088/1757-899X/492/1/012002

5

 
 
 
 
 
 

Figure 2.
 
We need both of these graphs to determine th

substitute into the Joule-Lenz law.
Let’s write the law of Joule–Lenz for the amount of heat:

where 
Inom – current intensity; 
Kp – starting coefficient; 
tpp – transition time;  
U – electric potential;  
Сmedi – copper specific thermal capacity; 
mprov – conductor mass; 

T – motor overheating temperature.
Electric current power in the motor winding:

where 
 pump efficiency. 

Let's express the value of the current 

The general equations for temperature from equations (18) and (20)

Thus, we obtain the calculation of the temperature of the motor overheating during starting
4. Conclusion 
A mathematical model of starting
motor is obtained. 

Figure 2. Graph of Q flow versus time. 

We need both of these graphs to determine the time of the transition process, which we can 
Lenz law. 

Lenz for the amount of heat: 

൫𝐼௡௢௠ ∙ 𝐾௣൯ ∙ 𝑈 ∙ 𝑡௣௣ = С௠௘ௗ௜

copper specific thermal capacity;  

motor overheating temperature. 
Electric current power in the motor winding: 

𝑃 =   𝐼௡௢௠

Let's express the value of the current Inom from the equation (19)   

The general equations for temperature from equations (18) and (20) 

∆𝑇 =
൫ூ೙೚೘∙௄೛൯∙௎∙௧೛೛

С೘೐೏೔∙௠೛ೝ೚ೡ
=

Thus, we obtain the calculation of the temperature of the motor overheating during starting

A mathematical model of starting-up of the centrifugal pump rotor with an asynchronous electric 

 

e time of the transition process, which we can 

௠௘ௗ௜ ∙ 𝑚௣௥௢௩ ∙ ∆𝑇, (18) 

௡௢௠ ∙ 𝑈 =
ఘ∙௚∙ொ∙ு

ఎ
, (19) 

𝐼௡௢௠ =
ఘ∙௚∙ொ∙ு

ఎ∙௎
, (20) 

ఘ∙௚∙ொ∙ு∙௄೛∙௧೛೛

С೘೐೏೔∙௠೛ೝ೚ೡ∙ఎ
, (21) 

Thus, we obtain the calculation of the temperature of the motor overheating during starting-up. 

up of the centrifugal pump rotor with an asynchronous electric 
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The described method takes into account such factors as the pressure loss in the pipeline Нtr, the 
inertia pressure hin that occurs during the pump operation, the moment of the impeller Mrk and electric 
motor moment Мd. 

The obtained method of dynamic analysis allows to estimate the overheating of the electric motor 
of a centrifugal pump depending on various factors, and as a consequence, to predict its possible 
failure. 

In the above model, a number of assumptions was made, in particular, it was assumed that during 
the transition process the starting current is constant and multiply more than the rated current with the 
same parameters. 
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