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Abstract. Two-dimensional free jets have been numerically studied in the laminar flow regime. 

The numerical solution was obtained by solving the incompressible Navier-Stokes equations 

with SMAC finite-difference method. The variation of the axial velocity, potential core and jet 

spreading width were investigated to make clear the characteristics of free jet at a low 

Reynolds number. It was found that the fully developed region where the self-similarity is 

satisfied exists in the downstream of the collapsing point of the potential core. The variation of 

the core is depended on the Reynolds number. It showed that the half-width of geometry is 

useful in identifying the similarity. The predicted velocity distributions were in good 

agreement with those of experimental and theoretical results. 

1. Introduction 

Jet flow is one of the fundamental and important topics in fluid mechanics, and due to its geometric 

simplicity it has been studied in various fields such as fluids and combustion engineering, and can be 

seen in a variety of fields around us. In the jet flow, the boundary of the jet, spread, flow distance, 

shear structure, and heat transfer effects are sensitive to the structure of the initial stages of the jet. 

Especially in this regime, the intermixing of complex flow elements such as instability, coherent 

structure, and entrainment flow due to the development of free shear flow exist, therefore it is difficult 

to analyze. Many theoretical and experimental researches on free jet have been studied up to now 

since free jet flow is known to have a self-preservation and similarity [1]-[5]. In particular, theoretical 

analysis on the characteristics of laminar jet by Schlichting [1] has been well  known but is based on 

boundary layer theory, and thus the velocity distribution at the outer edge of the jet flow do not match 

those from experimental results even in regimes where similarity laws are valid. In order to solve this 

problem, various theoretical studies have been conducted for decades [6]-[11]. Unfortunately, however, 

almost of them introduce the concept of boundary layer, there is naturally a limit to which it could be 

applied to various flow regions including the initial region of the jet flow. On the other hand, in recent 

years, due to the improvement in computational environment and rapid propagation of computational 

fluid dynamics (CFD), numerical analysis of complex flow phenomenon has been conducted. 

Research done with CFD is advantageous when analyzing jet flow accompanying the flow phenomena 

change due to flow conditions such as Reynolds number or the shape of the nozzle, but are mostly 

focused on turbulent flow at the high Reynolds number, and very few studies focus on the low 

Reynolds number regime.  

http://creativecommons.org/licenses/by/3.0
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In this study, a computational code based on SMAC finite difference method [12] was developed in 

order to investigate the jet flow characteristics at the low Reynolds number (Re) regimes from the 

initial jet flow region to the fully developed region, and the two-dimensional (2-D) incompressible 

free jet in the range of Re = 30 - 300 is numerically analyzed. Also, from the analysis, characteristics 

of free jet such as variation of the axial velocity, similarity, potential core and jet spread of the jet flow 

are clarified.  

2. Numerical method 

2.1. Fundamental equations and SMAC scheme 

The fundamental equations for the numerical simulation are the continuity equation and the 

incompressible Navier-Stokes equations. 

 

𝛻 ∙ 𝒖 = 0  
 

𝜕𝒖

∆𝑡
+ 𝛻 ∙ 𝒖𝒖 = −𝛻𝑝 +

1

𝑅𝑒
𝛻2𝒖 

 

In this study, the fundamental equations (1) and (2) can be written by applying the Simplified MAC 

(SMAC) scheme as [13]  
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𝑝𝑛+1 − 𝑝𝑛 = 𝜙 
 

where u, and p denote the velocity and pressure, and ϕ represents the pressure increments, superscript 

n is the time level, asterisk * denotes the intermediate time level between n and n+1. In the 

computation of SMAC scheme, the dependent variables u and p are defined at different points of the 

staggered grid. The use of such a staggered grid is advantageous in that spurious errors are completely 

removed as in the MAC scheme. The Euler forward scheme was used to discretize the time derivative 

term, and for the spatial derivative, the 2nd order central difference method was basically applied. 

However, in the computation of high Reynolds numbers flow, a QUICK scheme [14] in the 

convection term was used in order to obtain accuracy and stability of the computation. Also, the 

boundary value problems in equation (5) were determined by using the SOR method with a maximum 

iteration number of 20. 

2.2. Computational domain and boundary conditions  

As can be seen from figure 1, the computational domain was set by 100d in the x direction, ±30d in 

the y direction from the center of the nozzle with 2000×1200 square grids, where d represents the 

nozzle width. The boundary conditions were imposed by the initial velocity distribution at the nozzle 

exit, the Dirichlet conditions for pressure at the downstream, and the Neumann conditions for velocity 

and pressure in all other regions. Also, the Reynolds number was defined by the average velocity at 

the nozzle exit and the nozzle width d. 

(2) 

(3) 

(1) 

(4) 

(5) 

(6) 
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3. Numerical results 

Figure 1. Jet flow geometry and computational domain. 

3.1. Comparison with experimental and theoretical results 

First, in order to check the accuracy and reliability of the present jet flow code by the SMAC scheme, 

predicted results were compared with exiting results. In this computation, iterative computations of the 

explicit time-marching method with ∆t of 0.02 were conducted. The converged solution was obtained 

when the continuity conditions were lower than 1×10
-5

. The time average values were taken from the 

solutions for 200 non-dimensional times.  

Figure 2 shows time averaged axial velocity distributions at several downstream sections with non-

dimensional distance y/d, when the velocity distribution (u0) of the Poiseuille flow with Re = 457 is set 

as the initial condition at the nozzle exit for comparison with experiments. In this Reynolds number 

regime, the jet flow basically showed an asymmetric unsteady flow behaviour [15], but the time 

averaged velocities are in good agreement with experimental results [2] from the initial region of the 

jet to the fully developed regions, for instance, at x/d = 3 and 10.  

 

 

Figure 2. Velocity distribution of Poiseuille flow jet in two different sections of 𝑥/𝑑 at Re = 457. 

 

Figure 3 shows the axial direction velocity distribution at Re = 200 with the uniform flow boundary 

condition at the nozzle exit. Here, axial velocity u is normalized by the maximum velocity umax on the 

centre line at given x/d. In general the numerical results well predicted compared with the 

experimental results [7] as in the case of Poiseuille flow conditions, especially at regions extremely 

close to the nozzle exit. Figure 4 depicts a comparison of the present prediction to Schlichting’s 

theoretical solutions [1]. These results were obtained from the computations with the initial conditions 
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of the Poiseuille flow and the uniform flow at the nozzle exit.  In this figure, y is normalized by the 

half width of velocity 𝑏𝑢which is the distance from the centre line to the point where u/umax=0.5. At 

fully developed flow regions (for example x/d = 15), the present predictions are in good agreement to 

the theoretical solutions even if the inflow conditions are different from each other. There is a 

somewhat discrepancy near the outer edge, but it is due to the fact that at theoretical solutions based 

on the theory of boundary layer: the solution is determined by u = 0 at 𝑦 → ∞. As investigated so far, 

the present method well simulated the 2-D jet flow velocity filed from the nozzle exit to the fully 

developed region where the self-similarity is satisfied with high accuracy, resulting that the present 

numerical method is considered to be sufficiently reliable. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Characteristics of velocity distribution  

In order to investigate the jet velocity at an arbitrary cross section in the axial direction, figure 5 shows 

the axial velocity profiles along the y/𝑏𝑢 from the initial region to the developing region. This result 

was obtained from the uniform flow boundary condition with Re of 100. At initial regions close to the 

nozzle, the distribution is far from a Gaussian curve, shows large deviation from the similarity laws of 

velocity, but as the flow reaches downstream the jet flow develops, and approximately at regions after 

x > 6d, the similarity in velocity profiles begin to appear. Also, since these profiles are in good 

agreement with Sato and Sakao’s experimental results [15] as well as with the analytical solution by 

Schlichting [1], it could be known that these distributions, just as results in figure 4, are nearly velocity 

profiles at fully developed flow regions which satisfy the self-similarity of jet.  

On the other hand, there are several ways to estimate the characteristics of the jet depending on the 

choice of non-dimensional parameters [16]. Figure 6 indicates axial velocity profiles with respect to 

non-dimensional distance by half width of geometry 𝑏𝑔(=b/2, see figure 1) instead of 𝑏𝑢. As in figure 

5, it could be seen that the jet will develop toward the downstream and the velocities satisfy the 

Figure 3. Velocity distribution of uniform flow jet in two different sections near the 

nozzle exit at Re = 200. 

Figure 4. Velocity 

distribution of Poiseuille 

flow jet and uniform flow 

jet in the section of x/d = 15 

at Re = 100. 
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similarity in the fully developed regions. In figure 5, however, velocity curves by the half width of 

velocity are difficult to distinguish among them since the curves have two fixed points at y/𝑏𝑢 of 0.0 

and 1.0, but for ones with half width of geometry in figure 6, the differences in velocity distribution in 

the developing and developed regions are easy to know. Therefore, the evaluation of velocity 

distribution using the half width of geometry is useful for observing jet flow development.  

 

 

 

 

 

 

 

 

 

Figure 7 shows the change in velocity distribution with respect to non-dimensional distance [6] 

using half width of velocity and distance (x) in the axial direction. The variation of velocity due to this 

non-dimensional parameter shows the distinction of boundary between initial regions and regions 

satisfying similarity more vividly compared to figures 5 and 6. Figure 8 depicts the variation of 

velocity with respect to the non-dimensional parameter (𝑦 − 𝑏𝑔 )/x, which uses the half width of 

geometry to imitate figure 7. As discussed in figure 6, the evaluation using the half width of geometry 

shows the transition of the velocity change clearer than that of the half width of velocity, and even at 

developed regions with 𝑥/𝑑 ≥ 6, shows less overlap than compared to figures 6 and 7.  From this, it 

could be inferred that at Re = 100, the fully developed region which satisfy similarity locates on the 

downstream after following transient process after breakdown of the potential core (refer to figure 9).  

3.3. Potential core  

Figure 9 plots the distance to the position where the potential core collapses. Here, the potential core 

length, xp, was defined as the distance from the nozzle exit to the point where 𝑢𝑐 ≈ 0.95𝑢0. 𝑢𝑐 and 𝑢0  

represent axial velocities at the jet centre and the nozzle exit, respectively. When 𝑅𝑒 ≤ 300 , xp 

extends toward downstream with almost linear gradient of 𝑥𝑝/𝑑 ≈ 0.04𝑅𝑒 , but as a result of 

additional investigation for regions of 𝑅𝑒 > 300, the gradient was decreased to around 14 ≤ 𝑥𝑝/𝑑 ≤

15. These results are somewhat different from the case of turbulence flow known as 𝑥𝑝/𝑑 = 12 [17]. 

Figure 10 illustrates the change in the width of potential core (𝑦𝑝/𝑦0) along the dimensionless distance 

𝜉(= (𝑥/𝑑)/𝑅𝑒) in the axial direction [8],[18] with the half width of nozzle 𝑦0. It could be seen that the 

core region decreases and eventually disappears as x moves downstream from the nozzle exit. In the 

Figure 5. Axial velocity profiles with 

respect to the half-width of velocity in 

several downstream sections of x/d at 

Re = 100. 

Figure 6. Axial velocity profiles with 

respect to the half-width of geometry in 

several downstream sections of x/d at 

Re = 100. 
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range of 100 ≤ 𝑅𝑒 ≤ 300 , the relationship between change in 𝑦𝑝/𝑦0  and 𝜉 is in approximately 

similarity, and as seen in figure 9, the distance when the potential core breaks down is around 𝜉 = 0.04.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Jet spread  

Figure 7. Axial velocity profiles with 

respect to the (𝑦 − 𝑏𝑢)/𝑥 in several 

downstream sections of x/d at Re=100. 

Figure 8. Axial velocity profiles with 

respect to the (𝑦 − 𝑏𝑔)/𝑥 in several 

downstream sections of x/d at Re=100. 

Figure 9. Potential core length with 

Reynolds number. 

Figure 10. Variation of potential core 

width with (𝑥/𝑑)/𝑅𝑒. 

Figure 11. Variation of jet spread with 

half-width of velocity along the jet 

axis at Reynolds numbers of 100 and 

200. 
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Figure 11 depicts the variation of jet spread. Jet spread is one of the most important fundamental 

characteristics in the analysis of jet flow characteristics. In this study, therefore, the jet width and its 

change over the axial direction were investigated by using the half width of velocity. The jet width 

spreads as the flow flows downstream from the nozzle exit, and in contrast to figure 10, as the 

Reynolds number increases the spread gradient tends to decrease. Also, it is confirmed that the 

tendency of jet spread obtained from this simulation is almost same as the experimental investigation 

[7]. 

4. Conclusions 

In order to investigate the jet flow characteristics at the low Reynolds number regimes, two-

dimensional incompressible free jets were computed by using SMAC finite difference method. By 

comparing the numerical results with experimental and theoretical results, it was confirmed that the 

present numerical method is sufficiently reliable to predict the jet flow with accuracy. From the 

investigation of the axial velocity distribution, similarity, potential core and jet spread of free jet, it 

was clarified the 2-D jet flow characteristics in the wide range of jet from the initial jet flow region to 

the fully developed region, which was difficult with the conventional analytical method. Also, it 

showed that the evaluation of velocity distribution by the half width of geometry is useful for 

observing jet flow development.  
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