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Abstract: Comparing and investigation into different protein-protein interaction 
networks (PPI networks) is significant for discovering new biological function and 
comprehending the evolution of the protein-protein interactions. Because general PPI 
networks are large in scale, existing classical computation algorithms of solving 
alignment and search in PPI networks possess too high time complexity. The time 
complexity is so high that it is impossible for the algorithm to align the whole network 
simultaneously. An effective quantum algorithm, Quantum-walks Algorithm for 
PPI-network Similar Subnets Searching (QPSS), is introduced to improve the situation 
mentioned above based on the continuous-time quantum-walks model in quantum 
computation. The process in detail of the QPSS algorithm is demonstrated. Moreover, 
we discuss the performance evaluation of this algorithm. After the time complexity of 
QPSS algorithm compares with its classical counterpart, it has been proved that the 
QMSM obtains a nearly quadratic speed-up. 

1. Introduction 
Research has shown that almost all proteins cannot function alone, instead, they interact with other 
proteins to perform their functions. In comparison with the interaction networks of different proteins, 
it can search the retained area, discover new biological functions, and understand the evolution of 
protein interaction relationships. In recent years, biomolecular network search methods have attracted 
more and more attention. Some research groups have conducted research in this area and proposed 
various algorithms, such as MNAligner [1], NetMatch based on the picture-matching Cytoscape 
plug-in [2].  

However, in general, these algorithms have the disadvantage of too much time complexity. For 
example, for the MNAligner algorithm, if the quantity of proteins in the searched PPI network is N, 
the method’s time complexity reaches 4( )O N . However, the PPI network of common species is very 
large. For example, there are 4,943 proteins in the PPI network of yeast and 18,440 interactions. 
Therefore, if we apply the MNAligner algorithm to search such a PPI network, the computational 
complexity of the algorithm would reach the order of 1012. 
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Quantum computing provides a new solution to solve the search problem of similar subnets in 
large-scale PPI networks. For the same problem, compared with traditional computational algorithms, 
with appropriately designed quantum algorithm for quantum computing, the computational complexity 
can often be significantly improved. The Shor algorithm [3] and the Grover algorithm are typical 
examples to represent the superiority of quantum computing. The former proposes a large prime 
factorization algorithm with a polynomial complexity, while the corresponding traditional method’s 
time complexity is exponential. The latter proposes a search algorithm for unsorted database, the 
computational complexity of which is O(N1/2), while the computational complexity of the traditional 
algorithm is O(N). 

2. Preliminary  

2.1. Problem description and classical algorithm for solving the problem 
A similar subnet search of a PPI network refers to that under the background of a subnet in a PPI 
network of a certain species (hereinafter referred to as "the species") as a target subnet, to search the 
subnet with the most similar structure and biological meaning in the PPI network of another species 
(hereinafter referred to as "heterogenous species"). This is essentially a problem of network 
comparison. The comparison of two PPI networks is the comparison of two undirected graphs. The 
formal definition of it is given below.                    

Given two PPI networks which are represented by an undirected graph G1= (V1, E1) and another 
undirected graph G2= (V2, E2), respectively. W is defined as a mapping from V1 to V2, i.e. 

1 2W V V⊆ × .Comparison between the undirected graph G2 and G1 corresponds to the mapping W* of 
the aggregate from V1 to V2, the following requirement should be met:  

   
*

1 2
,

( , ) arg max ( , )
a b W

sim G G sim a b
< >∈

= ∑             (1) 

The mapping that maximizes the value of the similarity function between graph G1 and graph G2, 
which is the result of comparison between the PPI networks G1 and G2. In Equation (1), ( , )sim a b
refers to the similarity between the protein node a in the PPI network G1 and the protein node b in the 
network G2. The most common definition of similarity between proteins is the sequence similarity 
between proteins. Proteins with similar sequences are generally referred to as homologous proteins. 
The Blast tool is applied to compare the sequences of proteins a and b, and homologous coefficients 
between proteins a and b can be obtained.  

At present, many traditional graph-based algorithms have been proposed to solve the similar subnet 
search problems of PPI networks, among which the MNAligner method [1] proposed by Li et al. is 
well-known. The basic steps of the MNAligner algorithm are as follows: 

 (1) Firstly, obtain the biological network to be examined, such as the adjacency matrix of the PPI 
network and the similarity matrix between the vertices of the two networks. And the matching matrix 
X of the two networks is the target to be solved in this problem. The matching matrix X is expressed as 

{ }ijX x= . 
 (2) Obtain the adjacency matrix, similarity matrix according to step (1), and the maximum match 

of the comparison between the two networks is reduced to the target function shown as in the 
following equation (2). The constraint is a matching rule for the network comparison. 

1 2
1 1 1 1 1 1

( , ) (1 )max
m n m n m n

ij ij ik jl ij kl
X i j i j k l

f G G s x a b x xl l
= = = = = =

= + −∑∑ ∑∑∑∑           (2) 

 (3) Through modelling following steps (1) and (2), the network comparison problem is reduced as 
an integer quadratic programming problem through further relaxing the constraint, then apply the 
existing method to solve it. 

It is not difficult to conclude from equation (2) that the computational complexity of the 
MNAligner algorithm is higher; assuming that the larger of the protein quantity of the PPI networks 
G1 and G2 is Nmax, so, this method’s time complexity is 4

max( )O N .  
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2.2. Overview of Continuous Time Quantum Walks  
The process of continuous quantum walk on a graph G = (V, E) is detailed as follows. The nodes set V 
is the whole state space for the quantum random walk. The quantum walk migration process is only 
performed between adjacent nodes, and the probability of migration is equal to the reciprocal of the 
degree d(u) of the current node u, i.e. 1/d(u). 

At any time t, the state of the continuous quantum walk on graph G is a superposition of all ground 
states, represented by a state vector tϕ :  

( )t u
u V

t uϕ α
∈

=∑
                      

(3) 

A unitary transformation can realize the migration process of continuous quantum walk.  The 
equation (4) as follows introduces the time-dependent evolution process of the state vector tϕ .  

t t
d iL
dt

ϕ ϕ= −                          (4) 

In the equation (4), L=D-A, and L is graph G’s Laplacian matrix, D is G’s diagonal degree matrix, A is 
G’s adjacency matrix. Given initial state of a continuous quantum walk, i.e. the initial value tϕ  of a 

given state vector 0ϕ , it is possible to obtain the state vector tϕ  at any time t according to 
Equation (4), which is shown as in Equation (5), thereby, the probability distribution of quantum 
walking in each ground state is obtained.  

0
iLt

t eϕ ϕ−=                          (5) 

2.3. Non-isomorphic discrimination algorithm based on continuous quantum walks 
In view of the many drawbacks of the traditional computational algorithms described in Section 2.1, 
we propose a quantum algorithm QPSS based on continuous quantum walk that integrates the Qiang’s 
graph isomorphism based on quantum walk [4]. The following is a brief introduction to Qiang's 
non-homomorphic discrimination algorithm based on continuous quantum walk (herein referred to as 
the "QUID algorithm"). 

Qiang’s distinction non-homomorphic graphs method[4] refers to judge whether the two graphs are 
isomorphic by the algorithm for the given G1, G2 graphs. The main steps of the QUID algorithm are 
as follows: 1)  Select one node set V1 in the graph G1 arbitrarily, then increase Dmax self-loops for 

all the nodes. 2)  Starting from the initial state 0ϕ , continuous quantum walk is performed on the 
graph G1. 3)  At time T, we meter the set V1’s probability amplitudes. 4) Repeat steps 1)-3) until we 
obtain G1’s all node sets’ probability amplitudes. 5) Perform identical above steps 1)-4) on G2. 6)
Calculate the respective individual ID of G1 and G2, then we can obtain the mixed ID of G1 and G2. 
7) We calculate individual ID and mixed ID for multiple times via repeating steps 1)-6). 8) Compare 
G1 and G2’s individual IDs: if (we find that at some time they are not equal) the two graphs are not 
isomorphic and the whole algorithm finishes; else continue to compare both individual IDs at the next 
time. 9) We compare G1 and G2’s mixed ID: if (we find that at some time they are not equal) the two 
figures are not isomorphic; else if their mixed IDs are always equal, the two graphs are isomorphic and 
the algorithm finishes.  

2.4. Isomorphic mapping search algorithm based on comparing probability amplitudes 
In our quantum algorithm QPSS, Qiang's homogeneous mapping search algorithm[4] based on 
probability amplitude comparison (herein referred to as "PIMS algorithm") is also applied. 

The main steps of the PIMS algorithm are as follows: 1) arbitrarily select the node u in the graph G 
and add Dmax self-loops. 2) Starting from the initial state 0ϕ , continuous quantum walking is 
performed on the graph G. 3) At time T, we measure the node u’s probability amplitude and denote it 
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by ( )u Tα . 4) Perform steps 1)-3) by sequence on all the nodes in the graph G, and a set W composed 

of N probability amplitudes is obtained, which is denoted as ( )G Tα . 5) Perform the above steps 

(1)-(4) on the graph H to obtain a set of probability amplitudes ( )H Tα . 6) Difference is made 

between each two elements in ( )G Tα and ( )H Tα , and the probability amplitude difference matrix is 
obtained. 7) Find out the elements with N values of 0 in the probability amplitude difference matrix, 
and obtain the isomorphic mapping relationship between graphs G and H according to their row and 
column coordinates. 

3. A novel solution based on quantum walks to the above-mentioned problem 

3.1. Basic idea of the quantum algorithm QPSS 
For the search problem of similar subnets in the PPI network, the target is to apply a subnet in the PPI 
network of the species as the target subnet. In the PPI network of the heterogeneous species, to search 
the subnet that is the most similar in topology and biological significance to the target subnet. 

The basic idea of the proposed quantum algorithm QPSS is to first select a target subnet G1 in the 
PPI network of the species, and construct a queue for all the nodes in G1 according to the descending 
order of the degrees of the nodes. For each protein node ai in G1 (its degree recorded as d i), search for 
all nodes with a degree not less than di, and construct a queue of nodes in G2 on ai accordingly in the 
heterogeneous PPI network G2 to be searched. Next, construct a linked list Lij for the sub-network G1 
to be detected in G2. Then, for the graphs G1 and H2, the quantum algorithm QUID described in 
section 2.3 is applied to determine whether both are isomorphic. If both are non-isomorphic, it will 
search for the subnet H2 to be detected again. If both are isomorphic, it continues to apply the 
algorithm PIMS as described in Section 2.4 to search for matching pairs of proteins in G1 and H2. The 
entire search process ends until the matching of all proteins in the two networks is completed. 

Table 1 Steps of the algorithm QPSS  

 

3.2. Steps of the algorithm QMSM 
Table 1 is the flow of steps of the QPSS algorithm, among which, G1 represents the target subnet in 
the PPI network of the species, and H2 represents the structurally similar subnet to be searched in the 
PPI network of the heterogeneous species. 

The relevant details of the algorithm shown in Table 1 are as follows: 
In step (2), for each protein node ai in G1 (the degree is d i), all nodes in G2 with a degree not less 

than di are searched, and construct a queue Qi according to the descending order of homologous 

(1) For the target subnet G1, a queue is constructed according to the descending order of each node in G1. 
(2) For each protein node ai (i=1,...,n) in G1, denote its degree by di; in the PPI network G2 to be searched, construct a queue about ai for 
all nodes with a degree not less than di : Qi={bi1, bi2, ..., bim}. 
(3) Construct a queue Lij for the subnet H2 to be searched in G2: firstly, place bij (initial i=1, j=1) into the queue Lij. 
(4) The adjacency point (denoted by bi+1) of the node bi (initially i=1) in G2 is placed in the queue Lij. If i=n-1, it indicates that the subnet 
H2 to be searched has been all generated, and the process proceeds to step (5); otherwise, i+1 is assigned to i, and the process proceeds 
to step (4). 
 (5) For the graph G1=(V1 , E1) and H2=(V2 , E2), where V1 = { a1,a2,……,an }, V2 = { b1,b2,……,bn }, apply the above-mentioned 
sub-algorithm QUID to determine whether the graphs G1 and H2 are isomorphic. If both are isomorphic, go to step (7). 
(6) When G1 and H2 are non-isomorphic, first increase the value of j by one; if the value of j does not exceed n, then the value of i is 
unchanged, and the process proceeds to step (3). If the value of j exceeds n, then the value of i is increased by one; and then, if the value 
of i exceeds n, the algorithm ends with failure; otherwise, the value of j is set to 1, then the process proceeds to step (3). 
(7) Using the sub-algorithm PIMS, the isomorphic mapping relationship f of all node pairs between the graphs G1 and H2 is obtained. 
(8) Construct a similarity matrix S about PPI networks G1 and H2. 
(9) Verify whether there is similarity matching relationship in the biological meaning between nodes ai and bisoGH(i) which has been 
confirmed to be an isomorphic mapping node pair between G1 and H2 in step (7). Among all the node pairs with isomorphic mapping 
relationship, if all the similar matching protein node pairs are searched, the process proceeds to step (10). 
(10) Among the remaining nodes in G1 and H2, apply the NBM algorithm repeatedly, until all the similar matching protein pairs in G1 
and H2 are found. 
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coefficient values with ai (obtained by Blast). 
In step (4), the adjacency point bi+1 of the protein node b i in the network G2 is the protein node 

having an interaction relationship with the protein node bi. It is possible that there are many such 
candidate nodes in G2, and the node with the highest homologous coefficient value with the node a(i+1) 

mod n is taken into the queue Lij as bi+1. 
In step (9), whether there is a similarity matching relationship between the protein node ai and the 

bisoGH(i) is verified by means of testing whether the corresponding value Si,isoGH(i) of a i and b isoGH(i) in the 
similarity matrix is not less than the empirical value ε. That is, if the S i,isoGH(i) meets Equation (6), the 
protein nodes a i and bisoGH(i) are matched with similarity. Generally, the empirical value is taken as 
ε≥0.8. 

S i,isoGH(i)≥ε (i∈V1, isoGH( i )∈V2)                   (6) 

4. Performance analysis of QPSS 
It is not difficult to conclude that the computational complexity of the quantum algorithm QPSS is 
mainly determined by the complexity of the sub-algorithms QUID and PIMS. 

For the sub-algorithm QUID, if the size of the node set is K and the quantity of protein nodes of 
the target sub-network G1 is N, there are a total of NK different node sets. Therefore, it is necessary to 
perform NK continuous quantum walks for the probability amplitude of all node sets according to the 
QUID algorithm. According to the computational complexity of the simulation of a continuous 
quantum walk on a traditional computer, the computational complexity required for NK consecutive 

quantum walks is 3 3( ) ( )K KO N N O N +× = . There are also a total of NK probability amplitude sets of 

NK node sets, and the computational complexity to get the logarithm of similar node sets requires a 

computational complexity of 2( ) ( )K K KO N N O N× = . So, if K=1, the total time complexity of 

QUID is 4( )O N . The Grover technology can achieve acceleration of the continuous quantum walk 

simulation, reducing the computational complexity of continuous quantum walk simulation from 
3( )O N  to 3/2( )O N . Thus, when K=1, the complexity of the sub-algorithm QUID is reduced to 
5/2( )O N . In the PIMS part of the sub-algorithm, under the circumstance where the number of nodes 

of the target sub-network G1 is N, the computational complexity of implementing simulation of 

consecutive quantum walks by N times is 3 4( ) ( )O N N O N× = . The computational complexity 

when constructing the probability amplitude difference matrix is 2( )O N . So, PIMS’s total time 

complexity is 4 2 4( + ) ( )O N N O N= . Similarly, the Grover technology can be applied to accelerate 

the continuous quantum walk simulation; thus, the complexity of the sub-algorithm PIMS can be 

reduced to 5/2( )O N . 

In conclusion, the computational complexity of QPSS algorithm is 5/2 5/2 5/2( + ) (2 )O N N O N= . 

Compared with the traditional computer algorithm for solving the same problem as described in 
Section 2.1, the computational complexity almost achieves secondary acceleration (for example, the 

method MNAligner’s time complexity is about 4( )O N ). Especially for the PPI network comparison 

problem, since the network size is usually large, the time complexity of the traditional calculation 
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algorithm reaches an order of magnitude more than 1012; furthermore, because the time complexity is 
too high, it is often difficult for the traditional algorithm to achieve the comparison of the entire 
network at one time. Therefore, the quantum algorithm QPSS shows a clear advantage in solving this 
problem. 

5. Conclusions 
In this paper, the search problem of similar subnets in PPI networks is studied. Firstly, the 
disadvantages of the existing traditional computational algorithms are analyzed, and the quantum 
algorithm QPSS based on quantum walking is thus proposed. Based on integration of 
non-homogeneous discrimination quantum algorithm and the homogeneous mapping search algorithm 
on the basis of probability amplitude comparison, combined the biological meaning in the PPI network 
comparison, an algorithm QPSS for solving similar subnet searches in PPI networks is proposed as an 
improvement. The execution steps of the QPSS algorithm are described and the performance of the 
algorithm is analyzed. Compared with the previous traditional algorithm, the analysis proves that the 
quantum algorithm QPSS achieves secondary acceleration in terms of time complexity and other 
performance. 
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