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Abstract. Through using next-generation sequencers to decode DNA symbols has been 
a majorly breakthrough in the area of genomic research for decades. A plenty of 
current approaches of next-generation sequencers with high throughput rates as well 
as relatively low costs, but it is still challenged for the assembly of the reads which 
those sequencers produces. We proposed, in this paper, a novel Hidden Markov Model 
based (HMM-based) approach for next-generation genome sequence assembly 
programs. The paper introduces the major challenges that currently existed assemblers 
encounter in the next-generation environment, and four basic stages included in our 
proposed method: a) pre-processing filtering, b) a graph construction process, c) a 
graph simplification process, d) post-processing filtering. Experimental results prove 
the performance of the new approach meets or exceeds the state-of-art by testing a 
number of DNA open-source datasets. 

1.  Introduction 

With the advent of massively parallel sequencing technologies, biological research has rapidly 
changed recently, in one of which approach is well known as next-generation sequencing (NGS) [1]. 
High throughputs at low costs are its notable performance [2, 3] for those sequences for short lengths.  

The difficulty of genome assembly is the impossibility of directly sequencing the whole genomic 
sequence within one read via using any of current genome sequencing methods [4]. The shotgun for 
sequencing techniques is to divide a whole genome sequence into a number of random reads and then 
to independently sequence each of reads [5], all of which will be followed by the process – called as 
genome assembly – of the reconstruction of a whole genome via assembling those reads together [6] 
back up to the chromosomal level. Sanger method, during the past two decade, was the top approach 
in genomic sequencing, which works for long reads (800-1000 base pairs) and outputs low throughput 
with high costs [1, 4, 7]. The development of a descent framework which organizes the procedure of 
establishing an assembler being a pipeline with interleaved processes [8, 9] will be the first step to 
overcome the assembly challenge in NGS. NGS assembly processes, generally, contained four stages: 
pre-processing filtering, graph construction, graph simplification, and post-processing filtering [10].  

A large amount of communication information should be in transferring among above four stages in 
which of each stage only work for its individual input for the purpose of producing the outputs which 
can reach to be maximally functional by itself [11]. These stages can be found in a majority of recent 
assemblers in the next-generation environment [12]; however, some other assemblers postpone the 
pre-processing filtering until the later stages [13]. To propose an assembler aiming to the next-
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generation has a plenty of challenges - for instances, the sequencers of high-throughput nature [14], 
sequencing errors [15], short-read lengths [16, 17], and genomic repeats [18], all of which will cause 
the genome assembly task more complex  and complicated and increase the needs for computational 
resources in hardware and software [19]. 

2.  Proposed Approaches and Models 

2.1.  Hidden Markov Model 

Hidden Markov model (HMM) is a statistical or stochastic Markov model working for the system is 
modeled under the assumption that the modelling is a Markov process with unobserved states. One of 
the simplest representatives of HMM is dynamic Bayesian network, which is associated with a 
previous research about the optimal non-linear filtering problem [20] which, as Figure 1 shows, was 
the first work to define and determine the so-call “forward-backward” procedure. 

 
Figure 1. Hidden Markov Model with Stochastic Features 

A HMM is a model where the hidden variables who control if the mixture component is selected or 
not based on every observation from data level, are associated with each other via a Markov process 
instead of independent [21]. During recent years, HMMs have been in generalization as two types – 
pairwise hidden Markov models and triplet hide Markov models, the latter of which is supposed to 
handle more complex data structures especially for modelling non-stationary data. Current research 
claims HMMs may combine with statistical or stochastic significances such as probability for better 
performance. HMMs together with Viterbi algorithm are applied to estimate the relevance for an 
output sequence based on a hypothesis, where the statistical significances demonstrate the false 
positive ratio related to the failure of rejecting the hypothesis for the particular sequence.  

2.2.  Graph Construction Models 

Overlap-based graph construction and K-Spectrum–Based graph construction are the two major graph 
construction models currently, both of which are widely used in geometric sequencing research. 

Overlap-based assemblers (example of Figure 2) start with detecting the overlaps based on a large 
number of unassembled reads. Secondly, the overlapping information will be put into a construction 
graph, whose nodes are reads and whose edges are the overlaps between pairwise nodes.  

K-Spectrum–Based Construction is another approach in current research. Such assemblers (example of 
Figure 3) firstly extract all k-mers in the reads, referring to their k-spectrum, where every node is a k-
mer in the graph while every edge is k–1 overlapping between pairs of nodes. Generally, an Eulerian 
path will traversal every edge exactly once in the construction graph which represents the entire 
chromosome, if the length of sequence is known. 

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003345#pcbi-1003345-g003
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Figure 2. Overlap-based Graph Sequencing Construction 

(A) Graph nodes are reads, in edges are overlapping between which.  
(B) A Hamiltonian path as example traversing every node only once. 
 (C) Assembled reads based on the above Hamiltonian path in order. 

In Figure 2, the layout step aims to find out a shortest Hamiltonian path which traversal each graph 
node once and exactly once. Thus, a Hamiltonian path is a representative of one assembly solution. 
Last, the overlaps between the nodes will be merged for construction purpose at the consensus step. 

 
Figure 3. K-spectrum–based Graph Sequencing Construction 

(A) Nodes are k-mers, whose edges are k–1 overlapping between.  
(B) Example showing an Eulerian path traversing every edge only once.  

(C) Assembled reads according to the Eulerian path above. 

For the case of assembling a genome with high-coverage or high-error profiles, the approach increases 
the number of both repeated and distinct k-mers in such graph, causing performance downgraded a lot. 

3.  Testing and Results 

3.1.  Datasets 

We have downloaded 38 conserved DNA sequences of E.coli helix-turn helix-5 structure from NBCI 
conserved domain databases. The multiple sequence alignment process was done by online tool 
MUSCLE. Next, we extracted the first 37 sequences as the training data set for building HMM profile 
and left the last one as testing. The HMM profile was made by the following steps: 

a) With the multiple sequence alignment results, we first define each column to mutation column or 
insertion column, by the criteria that in the column if the proportion of gap ‘-’ in that column is 
larger than 50%. Then we define it as insertion column and otherwise define it as mutation 
column. 
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b) In order to handle the over-fitting problem, the pseudo-counts were added differently between 
mutation or insertion columns. In each mutation column, we add up to 1 for each symbol of A, T, 
C ,G and ‘-’. And we add a pseudo insertion state by adding 1 for letter symbol and others are all 
set to ‘-’. The positions of adding pseudo insertion states are that at each mutation state if the 
mutation state in the original multiple sequence alignment results is not followed by an insertion. 
Thus, we have 141 Mutation state each followed by 141 Insertion state, like M0, I0, M1, I1, …, 
M141, I141. Here, we assume the emission probability of A, T, C and G in each Insertion state as 
0.25, since that in the random case we should observe the probability of A, T, C and G occurring 
as insertion. Another way is counting the A, T, C and G probability at each Insertion state and add 
some pseudo counts to get the emission probability for Insertion state. However, it is really 
possible that our HMM profile may have some bias to represent the true population. Thus, we 
think 0.25 emission probability for each letter in Insertion State is better. 

c) After adding all the pseudo counts as described above, we have the HMM profile. Then, all the 
transition probability and emission probability are calculated and stored in the transition 
probability matrix and the emission probability matrix, separately. For Deletion state there is no 
corresponding emission probability. 

3.2.  Bioinformatics-based HMM Modelling Algorithm 

Based on the HMM (as Figure 4) and its HMM-Profile, after calculating the transition and emission 
probability matrix, we exploit Dynamic Programming (DP) to do sequencing. 

 
Figure 4. Topology Diagram of Hidden Markov Model for DNA Sequence Assembly 

The transition probability and its DP recursive function from state I to other states are described as (1) 
respectively, in which A is the average length of the sequence, and ∆ is the pseudo count equaling to 1. 
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The transition probability from state M to other states and its DP recursive function are as (2) 
describes respectively, in which of the terms of A and ∆ the same as (1) are. 
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The transition probability from state D to other states and its DP recursive function are as (3) shows 
respectively, where the terms of A and ∆ are the same as (1). 
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We use Viterbi Algorithm to decoding test sequences [22], where the logarithm was applied in 
calculating each transition or emission probability [23], since a large number of very small real 
numbers’ multiplication could cause computing underflow problem [24]. 

3.3.  Experimental Results 

DNA sequences were inputted into the Viterbi decoding algorithm as observation and use it to test our 
Hidden Markov Model. Since the multiple sequence alignment result for the DNA are known already, 
we can statistically compare them. The accordance map results are summarized in Table 1. 

Table 1. HMM Validation Results 
Dataset Sequence Length Mis-match Indels Matches 

1 148 49 (33.1%) 15 (10.1%) 84 (56.8%) 
2 189 58 (30.7%) 18 (9.5%) 113 (59.8%) 
3 202 61 (30.2%) 21 (10.4%) 120 (59.4%) 
4 216 69 (31.9%) 22 (10.2%) 125 (57.9%) 

The result indicates our HMM could accurately decode more than half percent of the sequence. But, 
the mismatch rate is kind of higher than our expectation. The reason for this could be that the HMM 
profile sequence (training dataset) itself is not so conserved, since each of the sequence in training 
dataset is relatively long with 141 mutation state, it is possible that less than half of the mutation state 
is really conserved across 38 helix-turn-helix-5 structural sequences found in NCBI database. In terms 
of Indels, our HMM has an error rate around 10%, which is tolerable. Probably, we could adjust our 
transition probability matrix by changing pseudo counts to increase the accuracy for predicting Indels. 

4.  Future Work 

Further perspectives of research are suggested to focus on a hybrid-based construction [25] which is 
crossover two different models in graph sequencing constructions. It will be supposed to improve the 
assembler's performance via combining advantages from both of motioned models. A hybrid graph 
sequencing constriction between OLC and greedy graph, that combines reads with different quality 
from different sequencers within the procedure named as “hybrid assembly”, has been implemented 
nowadays. Particularly, the greedy overlap–based sequence assembler approach uses a greedy 
algorithm in the graph construction processing, which of the algorithm cannot be proved to output a 
globally optimal solution; however, such the approach is acceptable because the quality of the 
assembly meets or exceeds OLC assemblers via using a decent amount of computational hardware. 

5.  Conclusion 

This paper addressed a new HMM-based method for DNA sequence assembly, which performs a high 
throughput sequencing rate with a relatively low cost. Besides these advantages, the proposed method 
focuses on introducing HMM into graph construction process in order to better assemble genome 
sequences, whose experimental results are proved that its performance meets or exceeds the state-of-
art. Moreover, we point out that future hybrid method can involve new features in graph construction. 
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