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Abstract. In the present paper, force driven vibrations of a physically nonlinear plate are 
studied by the method of multiple time scales when the plate is subjected to the conditions 
of the one-to-one internal resonance. The damping features of the surrounding medium are 
described by the fractional derivative Kelvin-Voight model. The influence of viscosity on the 
energy exchange mechanism between interacting nonlinear modes has been analyzed. For the 
one-to-one internal resonance, the nonlinear set of resolving equations in terms of amplitudes 
and phase differences has been obtained, and a comparative analysis of numerical calculations 
of free and forced vibrations are presented.

1. Introduction
It is well known that the analysis of forced nonlinear vibrations of plates is the important area of
applied mechanics, since plates, which could be made of different materials, are used as structural
elements in many fields of industry and technology [1]. Moreover, nonlinear vibrations could be
accompanied by such a phenomenon as the internal resonance, resulting in multimode response
with a strong interaction of the modes involved [2]. The internal resonance could be found
within a certain combination of natural frequencies of one and the same type of vibrations, when
vibratory motions are described by one equation [3], or between natural frequencies belonging to
different types of vibrations, when two or more equations are used for the description of dynamic
behaviour of a structure [4].

Nonlinear free damped vibrations of a rectangular plate described by three nonlinear
differential equations have been studied in [5], wherein the procedure resulting in decoupling
linear parts of equations has been proposed with the further utilization of the generalized
method of multiple scales [6] for solving nonlinear governing equations of motion, in so doing the
amplitude functions are expanded into power series in terms of the small parameter and depend
on different time scales. All possible types of the internal resonance within the considered model
of nonlinear plate’s behaviour have been revealed in [5].

In the present paper, the approaches proposed in [5] for free vibrations of plates and in [7]
for forced vibrations of a nonlinear oscillator with weak fractional damping have been extended
to the force driven vibrations of a thin plate under the one-to-one internal resonance with the
force frequency approximately equal to a certain natural frequency of vertical vibrations.
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2. Problem formulation and the method of solution
Let us consider the dynamic behavior of a free supported nonlinear thin rectangular plate (figure
1), forced vibrations of which in a viscoelastic fractional derivative medium are described by the
following three differential equations in the dimensionless form (free damped equations presented
in [5] are supplemented herein by the vertical harmonic force applied at the point with the
coordinates x0, y0):
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where u = u(x, y, t), v = v(x, y, t), and w = w(x, y, t) are the displacements of points located
in the plate’s middle surface in the x−, y−, and z−directions, respectively, ν is the Poisson’s
ratio, β1 = a/b and β2 = h/a are the parameters defining the dimensions of the plate, a and
b are the plate’s dimensions along the x− and y−axes, respectively, h is the thickness, t is the
time, an overdot denotes the time-derivative, lower indices label the derivatives with respect
to the corresponding coordinates, U0(x, y), V 0(x, y) and W 0(x, y) are functions describing the
distribution of the initial velocities of the points lying in the middle surface of the plate, ε
is a small dimensionless parameter of the same order of magnitude as the amplitudes, F is
the amplitude of the harmonic force with the frequency ΩF , δ is the Dirac delta function,
æi = εµiτ

γ
i (i = 1, 2, 3) are damping coefficients, µi are finite values, τi are the relaxation times,

and Dγ
0+ is the Riemann-Liouville fractional derivative of the γ–order [8].

The set of equations (1)-(3) admits the solution of the Navier type for the simply-supported
plate (figure 1), which could be represented in terms of the time-dependent generalized
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Figure 1. Scheme of a freely supported rectangular plate

displacements ximn(t) (i = 1, 2, 3) and eigen-functions of the mn-th natural modes of linear
vibrations with the natural frequencies ωimn of the plate. The procedure resulting in decoupling
linear parts of nonlinear equations of motion has been proposed in [5] with the further utilization
of the generalized method of multiple scales [6] for solving nonlinear governing equations of
motion, in so doing the amplitude functions are expanded into power series in terms of the
small parameter and depend on different time scales with T0 = t as a fast time characterizing
oscillatory motions with eigenfrequencies, and T1 = εt, T2 = ε2t as slow scales characterizing
the modulation of amplitudes and phases of nonlinear vibrations.

It has been revealed [5] that nonlinear vibrations of the plate could be accompanied by
different types of the internal resonance when two or more modes could be coupled. Moreover,
its type depends on the order of smallness of the viscosity involved into consideration. Thus,
at the ε2-order, damped vibrations could be accompanied by the one-to-one, one-to-one-to-one,
and combinational resonances of the additive and difference types .

In [5] it has been shown that the one-to-one internal resonance could be of two types: (1)
when the natural frequencies of two modes of in-plane vibrations are close to each other, i.e.,
when ω1 = ω2 = ω, and (2) when the natural frequency of the out-of-plane mode is close to
the natural frequency of one of the in-plane modes, i.e., ω3 = ω1 = ω or ω3 = ω2 = ω. From
hereafter the indices mn are omitted for the ease of presentation.

2.1. One-to-one internal resonance, when ω1 = ω2 = ω, but ω3 6= ω
Now let us consider the case of the one-to-one internal resonance ω1 = ω2 = ω when coupled with
the external resonance ω3 ≈ ΩF 6= ω, in so doing the external force, following [7], is assumed to
be F sinπx0 sinπy0 = ε3f .

Using the system of solvability equations to eliminate secular terms in the case of free
vibrations [5], and adding the external resonance, we obtain the following solvability equations
for the case of force driven vibrations:
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+ (ζ13k8 + ζ23k5)A1Ā2A3 − 2f = 0, (10)

where Aj mn(T2) and Āj mn(T2)(j = 1, 2, 3) are complex conjugate functions to be found, ζ2, ζ13,
and ζ23 are coefficients depending on the plate dimensions and numbers of excited modes [5],
while coefficients ki (i = 1, 2, ..., 8) have the form
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.

Let us multiply equations (8)–(10), respectively, by Ā1, Ā2, and Ā3 and find their complex
conjugates. Adding every pair of the mutually adjoint equations with each other and subtracting
one from another, and considering that the functions Ai(T2) could be represented in the polar
form ai(T2)e

i ϕi(T2) (i = 1, 2, 3), where ai and ϕi are amplitudes and phases, as a result we arrive
at a set of six coupled nonlinear differential equations(
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where δ = ϕ2−ϕ1 is the phase difference, an overdot denotes the differentiation with respect to
T2, si = µiτ

γ
i ω

γ−1
i sinψ, σi = µiτ

γ
i ω

γ−1
i cosψ, and ψ = πγ/2 (i = 1, 2, 3).

2.2. The case of free damped vibrations
In the absence of the external force equations (13) and (16) are reduced to(
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From equation (17) it is seen that it is independent of all other five equations, and its solution
has the form

a23 = c3e
−s3T2 , (19)

where c3 is a constant of integration to be determined from the initial conditions, while reference
to equation (18) shows that the phase ϕ3 depends only on squared amplitudes of all three
interacting modes of vibrations.
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Introducing new functions ξ1(T2) and ξ2(T2) such that

a21 =
ζ1 (k6 + k8)

ω
ξ1 exp(−s1T2), a22 =

ζ2 (k5 + k7)

ω
ξ2 exp(−s2T2), (20)

and adding equations (11) and (12) with due account for (20) yield

ξ̇2 + ξ̇1e
(s2−s1)T2 = 0, (21)

while subtracting (14) from (15) we obtain

δ̇ = ϕ̇2 − ϕ̇1 = Σ + ω−1 [ζ2 (k6 + k8)− ζ1 (k5 + k7)] a
2
3

+ω−1
[
ζ2 (k5 + k7) a

2
1 − ζ1 (k6 + k8) a

2
2

] a23
a1a2

cos δ, (22)

where Σ = 1
2(σ2 − σ1).

Considering (20), equation (22) could be reduced to

δ̇ − Σ = Ke−s3T2 +
1

2

(
ξ̇1
ξ1

+
ξ̇2
ξ2

)
cot δ, (23)

where K = ω−1 [ζ2 (k6 + k8)− ζ1 (k5 + k7)] c3.

2.3. The case K = 0
For this case at Σ = 0, the first integral of the set of equations (11)–(16) has been found in [5]
in a form of the stream-function G(ξ, δ)

G1(ξ, δ) = ξ1/2(1− ξ)1/2 cos δ = G0
1(ξ0, δ0). (24)

where ξ0 and δ0 are the initial magnitudes of the relative amplitude and phase difference,
respectively.

The stream-lines of the phase fluid in the phase plane ξ − δ are presented in figure (2).
Magnitudes of G are indicated by digits near the curves which correspond to the stream-lines;
the flow direction of the phase fluid elements are shown by arrows on the stream-lines.

Reference to figure (2) shows that the phase fluid flows within the circulation zones, which
tend to be located around the perimeter of the rectangles bounded by the lines ξ = 0, ξ = 1,
and δ = ±(π/2) ± 2πn (n = 0, 1, 2, ...). As this takes place, the flow in each such rectangle
becomes isolated. On all four rectangle sides G = 0 and inside it the value G preserves its sign.
The function G attains its extreme magnitudes ±0.5 at the points with the coordinates ξ = 0.5,
δ = ±πn (n = 0, 1, 2, ...).

The transition of fluid elements from the points ξ = 0, δ = π/2 ± 2πn to the points
ξ = 0, δ = −π/2±2πn (n = 0, 1, 2...) and from the points ξ = 1, δ = −π/2±2πn to the points
ξ = 1, δ = π/2 ± 2πn (n = 0, 1, 2...) proceeds instantly, because according to the distribution
of the phase velocity v along the section δ = 0 its magnitude tends to infinity as ξ → 0 and
ξ → 1, respectively, [5].

The transition of fluid elements from the points ξ = 1, δ = −π/2 ± 2πn to the points
ξ = 1, δ = π/2 ± 2πn (n = 0, 1, 2...) proceeds instantly as well, because according to the
distribution of the phase velocity v along the section δ = 0 its magnitude [5] tends to infinity
as ξ → 1.

Along the lines δ = ±(π/2) ± 2πn (n = 0, 1, 2, ...) pure amplitude modulated aperiodic
motions are realized, since with an increase in time t the value ξ increases from ξ0 to 1 (along
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Figure 2. Phase portrait for the case of 1:1 internal resonance ω1 = ω2 at K = 0

the line δ = −π/2) or decreases from ξ0 to 0 (along the line δ = π/2), and the solution could be
written in the form of a soliton-like [5].

Stream-lines give a pictorial estimate of the connection of G with all types of the energy-
exchange mechanism. Thus, in the case of undamped vibrations, i.e., when the damping
coefficient is equal to zero and s = 0, the points with the coordinates ξ0 = 1/2, δ0 = ±πn
(n = 0, 1, 2, ...) correspond to the stationary regime, since ξ̇ = 0 and δ̇ = 0. The stationary
points ξ0 = 1/2, δ0 = ±πn are centers, as with a small deviation from a center, a phase element
begins to move around the stationary point along a closed trajectory. Closed stream-lines
correspond to the periodic change of both amplitudes and phases.

3. Numerical investigations
Equations (11)–(16) have been solved numerically using the Runge-Kutta fourth-order
algorithm. The results calculated for the cases of free (f = 0) and force driven (f 6= 0) vibrations
are presented in figure 3 for different magnitudes of the fractional parameter γ: 0 (the case of
undamped vibrations), 0.25 and 0.5 (fractionally damped vibrations).

From figure 3, wherein the T2-dependence of the amplitudes a1 (dashed lines) and a2 (solid
lines) is shown for the initial amplitudes ai0 = 0.5, it is seen that the presence of small viscosity
results in damping of the energy exchange between two coupled modes of in-plane vibrations
due to the one-to-one internal resonance ω1m1n1 ≈ ω2m2n2 and in the increase of the energy cycle
with time. In so doing the damping character of the energy interchange is amplified with the
increase in the fractional parameter. The points of tangency of the envelopes in figure 3a allows
one to calculate the value characterizing the energy decay as ln (ai+1/ai) / (Ti+1 − Ti).

Reference to figures 3b-d shows the influence of the external force on the amplitudes of
vibrations. It is evident that even in the case under consideration when the frequency of the
external vertical harmonic force is close to one of the frequencies of plate’s vertical vibrations
ωF ≈ ω3 which is not involved in the internal resonance ω1 ≈ ω2, the external force increases the
amplitudes of plate’s in-plane vibrations which are coupled due to the internal resonance between
the frequencies of horizontal modes. With the increase of the magnitude of force amplitude, the
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Figure 3. The T2-dependence of the amplitudes a1 (dashed lines) and a2 (solid lines) at
ν = 0.27, β1 = 4.75, β2 = 0.067, m1 = m2 = m3 = 1, n1 = n3 = 3, n2 = 5, ω1m1n1 = 44.88,
ω2m2n2 = 45.11, and ω3m3n3 ≈ ΩF = 22.45: (a) free vibrations, and forced vibrations (b) f = 3,
(c) f = 103, (d) f = 5 · 103

energy exchange process has been amplified, and the periods of energy interchange cycles have
been decreased.

The case of stationary vibrations corresponding to the stationary center-like point with the
coordinates ξ0 = 0.5, δ0 = 0 in the phase portrait (figure 2) is shown in figure 4 for the initial
amplitudes a10 = 0.05 and a20 = 0.03. In the case of free vibrations (figure 4a), there is
no energy exchange between the modes. However, the presence of the small external vertical
harmonic force initiates the process of energy exchange between the modes of in-plane vibrations
what is seen in figure 4b.

4. Conclusions
In the present paper, nonlinear force driven vibrations of thin plates in a viscoelastic medium
have been studied, when the motion of the plate is described by a set of three coupled
nonlinear differential equations subjected to the condition of the one-to-one internal resonance
accompanied by the external resonance, resulting in the interaction of three modes corresponding
to the mutually orthogonal displacements. Nonlinear sets of resolving equations in terms of
amplitudes and phase differences have been obtained. The influence of viscosity and external
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Figure 4. Steady-case vibrations (a) free vibrations, and (b) forced vibrations, at ν = 0.27,
f = 2 · 104, β1 = 2.75, and β2 = 0.0386, m1 = m2 = m3 = 1, n1 = n3 = 3, n2 = 5, γ = 0,
ω1m1n1 = 26.108, ω2m2n2 = 26, 166, and ω3 ≈ ΩF = 7.60: a2 (T2) - solid line, a1 (T2) - dashed
line

vertical harmonic force on the energy exchange mechanism between the coupled modes has been
analyzed.
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