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Abstract. State of charge (SOC) is an important indicator for assessing the remaining 

capacity of the battery. An accurate SOC estimation is crucial for ensuring the safe 

operation of lithium batteries and preventing from over-charging or over-discharging 

in electric vehicle (EV) industry. However, to estimate an accurate capacity of SOC of 

the lithium batteries has become a major concern for the EV industry. In this paper, a 

recurrent nonlinear autoregressive external input neural network(NARXNN) model 

optimized by genetic algorithm(GA) is proposed to improve accuracy of SOC of 

lithium battery by finding the optimal value of input delays, feedback delays, and 

hidden layer neurons. The NARXNN based GA model is compared with the 

NARXNN in performance using statistical error values of mean absolute error and 

root mean square error are used to check the performance of the SOC estimation. The 

results show that the NARXNN based genetic algorithm outperforms NARXNN in 

estimating SOC with high accuracy. 

1. Introduction 

Global emissions have been a worrying issue in recent decades. Transportation accounts for 14% of 

global emissions, mainly caused by gasoline and diesel vehicles [1]. To meet the challenge, electric 

vehicles (EVs) are considered as one of the promising alternatives that use sustainable energy to 

reduce greenhouse gas emissions and effect of global warming. In recent years, the performance and 

efficiency of EVs have been improved due to the high storage capacity and long life of energy storage 

devices. However, developing electric vehicles with better quality and efficient energy storage 

management systems is still an important issue for researchers and car manufacturers [2]. There are 

different types of energy storage devices that being used in vehicle operation. Among them, lithium-

ion battery is widely used in EV applications due to high efficiency, high energy density, long 

lifespan, no memory effect, low hysteresis and environmental friendliness [3]. 

The state of charge (SOC) is an important indicator of the amount of remaining charge left in a 

lithium-ion battery [4]. However, an accurate SOC estimation of battery is a big challenge due to 

complex electrochemical reactions of the lithium-ion battery. In addition, lithium-ion batteries are very 
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sensitive to aging and temperature [5]. In order to achieve stable and reliable operation of the EV, 

high-precision SOC estimation must be performed. Accurate and robust SOC estimation technology 

can help to avoid over-charging, over-discharging and overheating of the lithium-ion battery which 

will increase the life of batteries [6]. The SOC is estimated based on current integration which is 

estimated using the available current capacity divided by the nominal capacity [7] as presented in (1). 

 
0

1
= -

n

SOC SOC i dt
C


 (1) 

where 0SOC represents the initial value of SOC , i  represents the battery current , nC  is the 

nominal capacity, t  represents time,   represents coulomb efficiency. 

There are many methods for estimating SOC in recent years, including Coulomb counting method, 

open circuit voltage method, Kalman filter method, particle filter method, fuzzy logic method and 

support vector machine. Coulomb counting is the simplest method implemented in battery 

management systems (BMS) with low power consumption [8]. However, this method fails to 

accurately determine the initial value of the SOC, which causes a large cumulative error. Open circuit 

voltage (OCV) is another commonly used method for estimating SOC with high precision [9]. 

However, OCV requires a long rest period to reach a steady state and it cannot be used to estimate 

SOC online. The Kalman filter method has been used widely for SOC estimation [10]. However, the 

results of the Kalman filter are not very satisfactory due to temperature variations, battery aging, 

inappropriate battery model and highly nonlinear characteristics of battery system. An intelligent 

method called fuzzy logic can estimate SOC with battery aging, temperature variation and noises [11]. 

However, the fuzzy method requires a large storage device to hold a large amount of training data. 

In order to solve the above problems, a method based on an improved artificial neural network 

(ANN) model is proposed. ANN is ideal for modelling nonlinear and complex systems, and it does not 

depend on battery models and mathematical relationships [12]. There are many studies on the SOC 

estimation methods for lithium-ion batteries using ANN, including back-propagation neural networks 

(BPNN) [13] and radial basis function neural networks (RBFNN) [14]. However, the existing ANN 

method has a problem of slow convergence, data over-fitting, and is easily trapped in a local minimum 

[15]. Nonlinear autoregressive with exogenous inputs neural network (NARXNN) performs better 

than BPNN and RBFNN in terms of learning ability, convergence speed, generalization performance 

and high accuracy. The general NARXNN architecture is indicated in Figure 1. At present, there are 

some SOC estimation studies based on NARXNN [16-18], but the performance of NARXNN model 

depends on input delay, feedback delay and hidden layer neurons, and it coats much time to select the 

value of parameters with experience and experiments. The results are not always satisfactory [16], and 

the existing lithium battery SOC estimation research hardly consider the impact of battery aging on 

SOC. This paper develops an improved NARXNN with an optimization algorithm to enhance the 

estimation intelligence and robustness of SOC estimation. Genetic algorithm is extensively utilized to 

solve problem. Using genetic algorithm to find input delay, feedback delay, and number of hidden 

layer neurons. The NARXNN-GA model takes into account the effects of current, voltage, 

temperature, and battery aging. By selecting appropriate training algorithms, activation functions, 

number of hidden layer neurons, and input delay and output delay to improve the performance of SOC 

estimation. The paper is structured as follows. Section two narrates the structure and implementation 

of the model, Section three narrates the results and analysis of experiment, and section four presents 

the conclusion. 
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Figure 1. Recurrent NARXNN architecture. 

2. Recurrent NARXNN based genetic algorithm 

2.1. Recurrent NARX neural network 

Recurrent Neural Network (RNN) is supervised machine learning algorithm with one or more 

feedback loops. In [19], RNN is designed based on control methods for the exact solution of algebraic 

equations with time-varying parameters. NARXNN is a subclass of RNN and is suitable for predicting 

nonlinear and time series problems. The NARXNN network uses limited feedback to form output 

layers instead of hidden layers. NARXNN performs better than traditional RNN in learning ability, 

convergence speed, generalization performance and high precision [20]. NARXNN can be used for 

time series applications with multiple inputs and multiple outputs. In this paper, current, voltage and 

temperature are taken as inputs and SOC is taken as output. A mathematical expression of NARXNN 

with three inputs and one output can be represented by (2). 
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 (2) 

Where  .y ,  .u  represent the output and input of step n  at each discrete time respectively; j  is 

the feedback delay, ik denote input delay of the first layer, the second layer and the third layer 

respectively. ikhw , 
0hw , jhw  denote the weights from input layer to the hidden layer, hidden layer to 

output layer, output feedback layer to hidden layer respectively. 0b , hb  are the biases.  .hf ,  0 .f  

are the functions of the hidden layer and the output layer respectively [21]. A tangent sigmoid transfer 

function(tansig) and a linear transfer function (purelin) are used for the perceptron at the hidden layer 

and the output layer respectively [22]. 

2.2. Experiment implementation  
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This experiment uses genetic algorithms to find the optimal value of the parameters. Genetic algorithm 

is a method of searching for optimal solutions by simulating natural evolutionary processes. The 

process is presented in Figure 2. 
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i = i +1

t = t +1

 

Figure 2. Flowchart of NARX-GA model 

3. Experiment implementation 

3.1. Data description 

The experimental data set was obtained from NASA Ames PCoE's data repository [23], and data of 

the 6th battery was selected for experiments, including training and testing. As the charge and 

discharge cycle progresses, the battery capacity decreased significantly. In practical industrial 

applications, the number of decreased aging data samples may be much larger than this data set. The 

battery capacity of the B0006 battery is shown in Figure 3. 
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Figure 3. Variety of B0006 battery capacity. 

 

The data used in this experiment consists of 109 discharge cycles with a battery capacity range 

from 1.4 Ah to 2.0 Ah. The training set, test set, and verification set are divided into 70%, 15%, and 

15%. The parameters of genetic algorithm are the number of iterations (MAXGEN)=100, the number 

of individual populations (NIND)=40, the number of variables (NAVR)=3, the length of coding 

(PRECI)=20, the generation difference (GGAP)=0.9, the probability of mutation (pm) = 0.001, 

crossover probability (px) = 0.97, and mean square error (MSE) is chosen as the fitness function. 

3.2. Model evaluation 

The NARXNN with optimal value of input delay, feedback delay and hidden layer neurons is trained 

and validated by training set data and test set data, and the model is compared with the NARXNN 

without genetic algorithm optimization. Two network models were used to estimate the SOC and 

compare their forecast results with reference values. The performance of the proposed model is 

checked based on mean square error (MSE) and mean absolute error (MAE). The mathematical 

expression is as follows: 

 

 
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Where 1y , 0y  are the estimated output and reference value of the SOC, respectively. 

The training network model is presented in Figure 4. Network is trained in open loop fashion. 

When using network model to predict SOC, you need to remove a time step, as presented in Figure 5. 
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Figure 4. Open loop NARXNN. 

 

Figure 5. Early prediction NARXNN. 

4. Analysis of results 

4.1. Training performance of model 

The optimal values of input delay, feedback delay, and number of hidden layer neurons are 2, 10, and 

6, respectively. The input delay, feedback delay, and number of hidden layer neurons used in [24] are 

4, 4, and 10, respectively. The training performance of the two models on the dataset in this paper is 

presented in Figure 6 and Figure 7.  

 

 

 

Figure 6. The train performance of 

NARXNN-GA model. 

 Figure 7. The train performance of 

NARXNN model. 

 

As shown in the figure, the NARXNN-GA model obtained best validation performance of 
510  at 179 Epoch. The MSE of the NARXNN-GA model is 

510 , the MAE is 

0.0033, and the model training duration is about 2s. The NARXNN model obtained best validation 

performance of 0.0005012 at 65 Epoch. The MSE of the NARXNN model is 
410 , the MAE 

is 0.0036, and the model training duration is about 1s. The training time of NARXNN-GA has 

increased slightly but the accuracy has been greatly improved. 

4.2. SOC estimation 

The 10th, 33rd, and 79th discharge cycles were selected from data set, and the trained network model 

was used for SOC estimation. The results as follows: 



2019 4th Asia Conference on Power and Electrical Engineering (ACPEE 2019)

IOP Conf. Series: Materials Science and Engineering 486 (2019) 012076

IOP Publishing

doi:10.1088/1757-899X/486/1/012076

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. SOC estimation results of 10

th
, 

33
rd

, 79
th
 discharge cycle. 

 Figure 9. SOC estimation error of 10th, 

33
rd

, 79
th
 discharge cycle. 

 

The capacities of the three discharge cycles are 1.9572 Ah (10th), 1.8553Ah (33rd), and 1.5041Ah 

(79th) respectively. The prediction results of SOC estimation for the 10th, 33rd, and 79th discharge 

cycles using NARXNN-GA and NARXNN respectively are shown in the Figure 8. The MSE of the 

prediction results of the NARXNN-GA model is 
510 , 

510 , 
510  

respectively. And the MSE of the NARXNN model is
410 , 

510 , 
410  

respectively. Figure 9 shows the MAE of the two methods. The MAE of NARXNN-GA model is 

0.0026, 0.0026, 0.0020, the error bound is found at [-0.0119~0.0173], [-0.0163~0.0209], [-

0.0525~0.0150], respectively. And the MAE of NARXNN is 0.0043, 0.0039, 0.0032, the error bound 

is found at [-0.3318~0.0497], [-0.1723~0.0310], [-0.0346~0.0440], respectively. The error of SOC 

estimation of the optimized NARXNN model is significantly reduced. 

5. Conclusion 

This paper proposed a NARXNN-GA model for improvement performance of SOC estimation. This 

study chose a lithium-ion battery because of high capacity and long life. Input delay, feedback delay, 
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hidden layer neurons are the most important parameters, they are usually randomly assigned or 

empirically distributed and do not provide a satisfactory solution. Therefore, genetic algorithm is used 

to improve the capabilities of the NARXNN model. The contribution of this study is to propose a 

robust and accurate SOC estimation method under the uncertainty of considering the battery aging 

leading to capacity change. The proposed model can be implemented in a modular design for real-time 

EV applications. 
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