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Abstract. This paper designs the control strategies and start procedure of MMC-HVDC. The 

start procedure consists of three stages, uncontrollable charging stage, controllable charging 

stage and power-raising stage. The current circuit is analysed and the equivalent circuit is 

obtained in uncontrolled charging stage. The computational formula of current-limit resistor is 

obtained in the uncontrollable stage. Two different control strategies to further charge the 

capacitors to the rated voltage in controllable charging stage are designed. Strategy one makes 

use of DC voltage control and balancing strategy of capacitor voltage while Strategy two 

divides the capacitors of one arm into two groups. In power-raising stage, to avoid the impact 

of power step, slope control is used in power outer loop. Finally, a simulation model is 

established in the PSCAD/EMTDC. The simulation results show that the effectiveness and 

rationality of the designed start procedure and control strategies 

1. Introduction 

VSC-HVDC refers to HVDC based on voltage source converter (VSC), and it is suitable for the 

technical fields, such as the integration of renewable energy and the connection of asynchronous AC 

grids because it can control the active power and the reactive power independently and quickly and 

commutate without the need of power grid [1-6]. In 2001, A. Lesnicar proposed modular multilevel 

converter (MMC) [7]. HVDC based on MMC (MMC-HVDC) not only possesses the above 

advantages of VSC-HVDC but also can output voltage waveform with low harmonics. Besides, 

MMC-HVDC doesn’t need any filters and has good expansibility due to its modular structure. For all 

the advantages above, MMC-HVDC has been becoming the research hotspot in the field of HVDC [8-

12]. 

Every arm of MMC consists of a series of serial submodules and every submodule contains one or 

more capacitors which are used to store energy. Before the start of MMC, the capacitors are uncharged. 

Because the trigger circuit of the submodules needs to take energy from the capacitors, the capacitors 

of the submodules need to be pre-charged during the start of MMC before the trigger circuit can work 

properly [13-17].  

During the initial stage of pre-charging, the voltage of capacitors is low and the charging current 

will be too high to burnout the devices if the MMC is charged directly by the power grid. So it is need 

to insert a resistor into the charging circuit, which is called limit-current resistor. The resistance of 

limit-resistor is dependent on the maximum charging current the devices can tolerate. The reasonable 

and economical selection of limit-resistor needs to analyse the charging current loop in detail. The 

charging current is the result of the interreaction between three-phase voltage of power grid and all the 

arms of MMC, but the existing research about the relationship between limit-resistor and charging 
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current just considers the charging current under the action of two-phase voltage, so the computational 

formula of limit-resistor obtained is wildly inaccurate. 

This paper concludes the previous research and redesigns the start procedure of MMC-HVDC. The 

start procedure consists of three stages, uncontrollable charging stage, controllable charging stage and 

power-raising stage. The current circuit is analysed and the equivalent circuit is obtained in 

uncontrolled charging stage. The computational formula of current-limit resistor is obtained in the 

uncontrollable stage. Two different control strategies to further charge the capacitors to the rated 

voltage in controllable charging stage are designed. Strategy one makes use of DC voltage control and 

balancing strategy of capacitor voltage while Strategy two divides the capacitors of one arm into two 

groups. In power-raising stage, to avoid the impact of power step, slope control is used in power outer 

loop. Finally, a simulation model is established in the PSCAD/EMTDC. The simulation results show 

that the effectiveness and rationality of the designed start procedure and control strategies 

2. The topology of MMC 

The topology of single-ended MMC is shown in Figure 1. The MMC is made up of three phase units 

and every phase unit consists of two arms. Every arm consists of n serial half-bridge submodular and a 

reactor 0L [18].  
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Figure 1. The typology of MMC 

3. The start procedure of MMC-HVDC 

3.1. The start procedure of MMC-HVDC 

The start procedure of MMC-HVDC can be divided into three basic stages, i.e., uncontrolled charging 

stage, controlled stage and power-raising stage. In the initial start stage of MMC, the capacitors of 

submodular are uncharged so the MMC is uncontrollable, so this stage is called uncontrolled stage. 

During the uncontrolled stage, all the IGBTs are turned off, the capacitors are charged by the power 

grid through diodes. Due to the restriction of the voltage of power grid and the structure of MMC, the 

capacitors cannot be charged to the rated voltage in the uncontrolled stage. After uncontrolled stage, 

the voltage of capacitors has reached the working voltage of trigger circuit of MMC, so the MMC is 

controllable. In the controlled stage, the capacitors are charged to the rated voltage. After the 

controlled stage, the power-raising stage begins and the power transmitted by MMC-HVDC increases 

gradually from zero to the rating. Then the whole start procedure is finished. 

3.2. Analysis of the uncontrolled stage 

As described above, in the uncontrolled stage, the submodules are blocked and the capacitors can only 

be charged by diodes. In this stage, the equivalent circuit of submodular is decided by the direction of 

charging current. Suppose the direction of current from A to B is positive. When the charging current 

is positive, the submodular can be equivalent to a diode in series with a capacitor. When the charging 
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current is negative, the submodular can be equivalent to a diode. The equivalent circuit is shown in 

Figure 2. 

 

                     (a) The charging current is positive             (b) The charging current is negative 

Figure 2. The equivalent circuit of submodular 

The simple equivalent circuit of MMC in the uncontrolled stage is shown in Figure 3. The three-

phase upper arm is listed as the ap, bp and cp, three-phase lower arm as an, bn and cn respectively. sR  

is the equivalent system resistor , sL  is the equivalent system reactor, limR  is the limit-current resistor. 

 
Figure 3. The simple equivalent circuit in uncontrolled stage 

In the uncontrolled stage, the voltage of capacitors of submodules increases gradually, which will 

block the charging current, so the maximum charging current generally appears within the half circle 

after the charging beginning. Suppose the voltage of phase a is the highest and the initial phase angle 

is zero and that of phase b is the lowest, then the expression of the phase-a voltage is shown in (1), 

where U refers to effective value of phase voltage of power grid. 

( ) 2 sin( )au t U t                                 (1) 

The current directions of all the phases and arms are shown in Figure 3. Based on KCL and KVL, 

the following equations can be obtained for phase a, b and phase a, c. 

a b ci i i                                    (2) 

ap bp cpi i i                                   (3) 

an bn cni i i                                   (4) 

lim lim( ) ( ) ( )ab a s ap L bp C L b su i Z R i Z i Z Z i Z R                         (5) 

lim lim( ) ( ) ( )ab a s an C L bn L b su i Z R i Z Z i Z i Z R                         (6) 

lim lim( ) ( ) ( )ac a s ap L cp C L c su i Z R i Z i Z Z i Z R                         (7) 

lim lim( ) ( ) ( ) ( )ac a s an C L cn C L c su i Z R i Z Z i Z Z i Z R                       (8) 

0a b cu u u                                 (9) 

Considering the capacitive reactance of the capacitors is much less than resistance of the 

limit-current resistor, (10) can be obtained from (2)-(9). 

lim lim6 6 ( ) 3 ( ) 6 ( ) 3a a s a L a C ap cn C a s a L a Cu i Z R i Z i Z i i Z i Z R i Z i Z                  (10) 
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Where ( , , ; , )mi m a b c k p n   refer to the instantaneous value of three phase current, 

( , , ; , )mki m a b c k p n  refer to the instantaneous value of six arm current, 
abu and 

acu  refer to the 

instantaneous value of line voltage of phase a and b and phase a and c, ( , , )mu m a b c  refer to the 

instantaneous value of three phase voltage, 
s s sZ R j L  refers to the system impedance, 

0LZ j L

refers to inductive reactance of arm inductor, 
01/ ( / )CZ j C n refers to the capacitive reactance of 

arm capacitor. (11) can be obtained from (10). 

0
lim
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1
( )

2 (6 / )
a a s s
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u i R R j L

j C n
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

  
      

  
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Based on (11), the charging loop of the initial stage in uncontrolled stage can be further equivalent 

to the circuit shown in Figure 4, where s au u , lim e sR R R , 0 / 2 e sL L L , 06 /eC C n . 
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Figure 4. The equivalent circuit of MMC in initial stage of the uncontrolled stage 

The capacitor and inductor are uncharged in the initial stage of the uncontrolled stage, so the 

equivalent circuit can be regarded as a second order RLC series circuit with zero state response. (12)-

(14) can be obtained from Figure 4, where pi  refers to the steady component of the charging current 

and hi  refers to the transient component of the charging current [19]. 

 p hi i i                                                                    (12) 

sin( ) pi I t                                                               (13) 
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Where 
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R L C 
 and   1tan 1/ ( ) / e e eL C R   . Because the eR  is far 

greater than eL , the c decays very fast. So the maximum charging current mainly decided by the 

steady component. 
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When the allowable maximum charging current is known, the resistance of limit-resistor can be 

calculated by (16). 

 
2
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lim 2
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2
1 / ( )   e e s
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R L C R

i
                      (16) 

3.3. The control strategy of MMC in the controlled stage 

As analysed above, the capacitors cannot be charged to the rated voltage in the uncontrolled stage. 

After the uncontrolled stage, the submodular become controllable, so the capacitors can be charged to 

the rated voltage through related control strategies. This paper designs two different control strategies 

in the controlled stage based on the characteristic of half-bridge submodular. 

Strategy one: After the uncontrolled stage, the decoupling controller of the inner and outer loop is 

put into operation immediately. The outer-loop controller adopts constant dc voltage control strategy 
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and constant ac-side reactive power control strategy and balancing control strategy of capacitor 

voltage is put into operation simultaneously. To reduce the time from the inner and outer loop 

controller are put into operation to the capacitors are charged to the rated voltage, the capacitors 

should be charged to a high voltage. However, in the later stage of uncontrolled stage, the rise of 

capacitor voltage becomes slower and slower. Considering the both two factors above, the capacitor 

voltage is set to 70% of the rated voltage after the uncontrolled stage being finished in this strategy. 

Strategy two: This strategy divides the capacitors of the same arm evenly into two groups and then 

charge the capacitors belonging to different groups separately. When charging the capacitors of the 

first group, the capacitors of the second group are bypassed. After the first group is charged to the 

rated voltage, the second group begins to be charged. When all the capacitors are charged to the rated 

voltage, the controlled stage is finished. Considering the charging speed becomes slower and slower in 

the later period of uncontrolled stage, this strategy need not charge the capacitors to the 70% of the 

rated voltage. In practical engineering, when the voltage of capacitors reaches 30% of the rated voltage, 

the trigger circuit can work properly, so the capacitor voltage is set to 30% of the rated voltage after 

the uncontrolled stage being finished in this strategy. 

4. Simulation verification 

4.1. The establishment of simulation system. 

A two-terminal digital model is established in the PSCAD/EMTDC. Every arm has eight submodules, 

whose capacitance is 10000uF and the rated voltage of the capacitor is 100kV. The line voltage of the 

power grid is 500kV and the ratio of the transformer is 500:420. The rated dc voltage is 800kV and the 

inductance of arm inductor is 45mH. 

4.2. The establishment of simulation system. 

Based on the model above, the simulation study about the start control of MMC-HVDC is conducted 

and the simulation waveforms are shown in Figure 5. 

 
                                          (a) Strategy one                                 (b) Strategy two 

Figure 5. The waveforms of three-phase current and the voltage of capacitors in strategy one and two 

All the charging stages of strategy one can be figured out clearly from Figure 5. The ac-side 

breakers are closed at 0.2s and the MMC station begins to be charged by the power grid. With the 

voltage of capacitors rising, the charging current becomes smaller and smaller, so the charging speed 

becomes slower and slower. At 2.2s, the voltage of capacitors reaches 70kV (70% of the rated voltage), 

so the uncontrolled stage ends and controlled stage begins. In the controlled stage, under the control of 

the outer and inner loop controller, the capacitors are gradually charged to the rated voltage (100kV). 

Because the current-limit resistor is cut off immediately after the uncontrolled stage, the charging 

current will increase suddenly in the beginning of the controlled stage. However, the charging current 

will not exceed the tolerant current of the devices because the voltage of the capacitors is enough high 

after the uncontrolled stage. After the capacitors are charged to the rated voltage, the MMC stations 

are blocked and the power exchange between power grid and the MMC station decreases to zero. 

After that, the related on-off operations can be conducted. Then the MMC stations are unblocked and 

the transmitted power between two MMC stations are gradually raised to the rating. 
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All the charging stages of strategy two are shown in Figure 6. Different with strategy one, after the 

capacitors being charged to 30kV, the capacitors of the same arm are divided into two groups to be 

further charged. The ac-side breakers are closed and all the capacitors are charged simultaneously at 

0.2s. At approximately 0.4s, the uncontrolled stage is finished. Then the first groups of all the arm 

capacitors are charged furtherly whose voltages continue to increase while the second groups are 

bypassed and their voltages remain unchanged. At around 1.3s, the first groups are charged to the 

rated voltage and then the second groups continue to be charged. The rest procedures are same with 

strategy one. 

To verify the validity of the above derivation about the limit-current resistor, the calculated values 

by (11) and the simulation values of the maximum charging current are obtained by changing the 

resistance of the limit-resistor and the results are shown in Figure 6. We can see that the calculated 

values are little bigger than the simulation values when the limit-current resistor is small. When the 

limit-current resistor is bigger than 30 ohm, the calculated values are almost equal to the simulation 

values. In practical engineering, the limit-current resistor is generally several hundred ohm or even 

bigger, so (11) and (12) possess enough accuracy 

 
Figure 6. The relationship between the maximum charging current and the limit-current resistor 

5. Conclusion 
This paper designs the control strategies and start procedure of MMC-HVDC. The start procedure 

consists of three stages, uncontrollable charging stage, controllable charging stage and power-raising 

stage. The current circuit is analysed and the equivalent circuit is obtained in uncontrolled charging 

stage. The computational formula of current-limit resistor is obtained in the uncontrollable stage. Two 

different control strategies to further charge the capacitors to the rated voltage in controllable charging 

stage are designed. Strategy one makes use of DC voltage control and balancing strategy of capacitor 

voltage while Strategy two divides the capacitors of one arm into two groups. In power-raising stage, 

to avoid the impact of power step, slope control is used in power outer loop. Finally, a simulation 

model is established in the PSCAD/EMTDC. The simulation results show that the effectiveness and 

rationality of the designed start procedure and control strategies 
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