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Abstract. Since the orbital angular monument (OAM) can improve the channel capability 
enormously, the generation of vortex wave carrying OAM has became research hotspots. In 
this paper, a novel metasurface is proposed which can generate vortex wave in arbitrary 
polarization states. By varying the polarization direction of the incident wave, the polarization 
of the vortex wave switch between linear polarization, elliptical polarization and circular 
polarization. The simulation results verify that the metasurface can generate vortex wave in x-
pol, right hand circular polarization, y-pol and left hand circular polarization in 14GHz. The 
proposed method can pave the way to generate vortex wave in wireless communication 
applications. 

1.  Introduction 
In recent decades, information is generally transmitted through wireless channels and the rapid growth 
of mobile devices has led to congestion in the available radio spectrum even after the application of 
information processing techniques such as dense coding and channel sharing. Consequently, 
exploiting the physical properties of the electromagnetic (EM) wave that hitherto have not been used 
in wireless communication, is of great importance to improve the channel capacity. According to the 
EM theory, EM wave not only carries linear momentum but carry angular momentum [1]. Linear 
momentum is related to the Poynting vector, and the angular momentum consists of spin angular 
momentum (SAM) [2] and orbital angular momentum (OAM) [3]. The SAM depicts the polarization 
states of EM waves while OAM is associated with the twist of a spiral phase wavefront. Since 
different eigenstates of OAM are orthogonal to each other, they can offer an additional degree of 
freedom. Thanks to the OAM features, the spatially orthogonal overlapping and co-propagating OAM 
modes can be utilized as an approach of enhancing data capacity and eliminating limitation of 
communication systems without increasing the frequency bandwidth. In 2007, Thidé performed the 
first radio OAM simulation by phased array antenna, which has produced vortex wave in radio 
frequency domain [4]. In 2012, Fabrizio Tamburini firstly transmit two independent radio channels 
simultaneously in two different OAM states in a real-world setting, which demonstrates that OAM 
states can dramatically enhance the channel capacity in any spectrums [5]. 

To date, various methods are proposed to generate radio and optical vortices, such as spiral phase 
plates [6-7], spiral reflectors [4, 8], holographic diffraction gratings [9-10], antenna arrays [11-12]. 
Metasurface (MS), as a 2D version of metametrial has unprecedented capability of manipulating EM 
wave-fronts and is widely utilized to generate vortex wave. By exploiting Pancharatnam-Berry phase 
concept and anisotropic scatters, reflective and broadband MS are synthesized to create single and 
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Where ax and ay is the unit vectors in x and y direction, Ex and Ey represent the x-polarized and y-

polarized component, 
2

k



 is propagation constant, α is the angle between E and +x-axis. The 

transmitted electric field through the MS is 

( )x yE a a  t x yE E                                                           (5.a) 
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Where xE   and yE   represent the x-polarized and y-polarized component of transmitted E field, T is the 

transmission matrix. To get circular polarized wave, the transmission coefficient should meet the 

following conditions that phase( ) phase( )
2

 xx yyT T


, 1 xx yyT T  and Txy=Tyx=0. The transmitted 

matrix can be described as  
0

0 1
 
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 

jj
T e                                                                (6) 

Thus, there should have 90° phase difference between the phase distribution for x-pol and y-
pol as depicted in for Eq. (7).  

( , ) ( , ) ( , )x pol foc vorm n m n m n                                          (7.a) 

( , ) ( , ) ( , )
2y pol foc vorm n m n m n
                                    (7.b) 

With =vor+foc obtained from MS, in the case of α=0°, 45°, 90° and 135°， the transmitted 
E fields can be calculated as 

 0
xE a    focjjkz jl

t j e e e                                                           (8) 
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2
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135 1
( )

2
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t j e e e    x yE a a                                       (11) 

It is obvious that the hyperbolical phase shift focje   and azimuthal phase dependence e-jl  are 
introduced into the transmitted wave, thus the spherical wavefront will be transformed into spiral 
wavefront. When α=45° and 135°, the vortex waves are in LHCP and RHCP which are different from 
the linear polarization of the incident wave. In the case of α=0°and α=90°, the incident wave only 
contains x-polarized wave or y-polarized wave, and the transmitted wave will be reduced to linearly 
polarized vortex wave. 

2.2.  MS design 
To begin with, an anisotropic rectangular patch is selected as the meta-atom of the MS. As 
shown in Figure 2(a), the anisotropic element is composed of four metallic patch layers and 
three intermediate dielectric layers. Each metallic layer contains the same rectangular patch, 
and dielectric layer has a permittivity of r=4.3 and thickness of h=1 mm. As depicted in 
Figure 2(b), the element is illuminated by a plane wave propagating along +z direction with 
unit cell boundaries applied in the x and y directions, and open boundaries applied in z 
direction. The 2D map of amplitude and phase shift of Tyy versus Px and Py are depicted in 
Figure 2(c), (d), where the phase shift coverage over 360° and transmissivity |Tyy| is greater 
than 0.72. When Px is fixed as 3, the phase shift changes from -330°to 40 by varying Py from 
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