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Abstract. This paper describes the principles of the computerized system for creating 

geometric models of threaded joints with various geometric deviations, which arise during the 

thread turning, and demonstrates the use of these models to determine the dependencies of 

reliability indicators on these deviations by the finite element method. Using the developed 

system, based on Python and FreeCAD, axisymmetric finite element models of drilling tool 

joints and sucker rod couplings with deviations of the profile angle and the thread pitch were 

created and analyzed. 

1.  Statement of the problem 

Requirements for reliability of threaded connections of oil and gas equipment are constantly 

increasing. It is possible to determine the dependencies of reliability indicators on different geometric 

parameters by finite-element (FE) modeling of the stress-strain state [1-3]. But for conducting of such 

studies it is necessary to construct a parametric geometric model of a threaded connection. 

One of the main parameters that affects the reliability of threaded connections is their geometric 

accuracy. Geometric accuracy depends on the machining errors of thread turning (machine errors, load 

induced errors, thermal growth errors, error caused by tool wear and other errors). The purpose of this 

work is the development of the computerized system, which is designed to build models of threaded 

joints with various geometric deviations arising during the thread turning, and the demonstration of the 

use of these models to determine the dependencies of reliability indicators on these deviations. This 

rather complicated geometric problem can be solved with the help of modern geometric modeling 

kernels, in particular Open CASCADE Technology, on which FreeCAD is based. 

2.  Description of the system 

The computerized system being developed is based on the open-source software Python 2.7 and 

FreeCAD 0.17. Python is a high-level general-purpose programming language. FreeCAD is a 

parametric 3D CAD based on Open CASCADE Technology 7.2.0 geometry kernel with Python API. 

Open CASCADE Technology is a software development kit intended for development of applications 

dealing with 3D CAD data. Note that if the FreeCAD capabilities for creating a model are not enough, 

you can use the PythonOCC library [4], in which the Open CASCADE kernel is fully available. 

The developed system has the ability to create the geometrical models of threads with different 

computational complexity and adequacy (Table 1). The most adequate models for the FE simulation of 

the stress-strain state are 3D models with helical threads. But they have the highest computational 
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complexity for geometric and FE simulation. Planar geometric models are often used to create 

axisymmetric FE models [5]. 

Table 1. Computational complexity and adequacy of thread models 

3D real thread (helical) 3D quasi-thread (circular grooves) 2D planar 

high medium low 

We describe the program using the drilling tool joint ZN-80 GOST 5286 model as an example. 

This is the joint with the Z-66 GOST 28487 thread (2 3/8 REG API Spec 7 equivalent). First import 

the necessary modules. 
 

import FreeCAD as App 

import FreeCADGui as Gui 

import Part 

import numpy as np 

from dims import d 

 

The functions in the FreeCAD module allow working with FreeCAD documents. FreeCADGui 

module contains everything related to the Graphical User Interface and the 3D views [6]. The Part 

module is the direct connection between FreeCAD and the Open CASCADE kernel. With this module, 

you can create BREP (boundary representation) topological shapes (Vertex, Edge, Wire, Face, Shell, 

Solid, Compsolid, Compound) [6]. The numpy module provides the routines for fast operations on 

multidimensional arrays. The dims module contains an object d which attributes are equal to 

different parameters of the joint. If you are not using an internal Python interpreter, you must specify 

the path to the FreeCAD modules. 
 

import sys  

sys.path.append("e:\\FreeCAD 0.17x64\\bin") 

 

We can use parametric FreeCAD sketches to simplify the development of the models. The sketches 

of tools, workpieces of pin and box are shown on the Figure 1. 

The function rebuildSketch(dim, sk) can be used to rebuild the parametric sketch. The 

dim parameter is a dictionary with pairs (sketch constraint ID, dimension value), and the sk 

parameter is the name of a sketch. The function calls setDatum(k, v) method for each pair in 

dim to set value v of a distance or angle constraint with ID k, rebuilds the document and returns the 

face. 
 

def rebuildSketch(dim, sk): 

    doc=App.getDocument("Sketches") #get the document object by name 

    sketch=doc.__getattribute__(sk) #get the sketch object by name 

    # for each pair (scketch constraint ID, dimension value) 

    for k,v in dim.iteritems(): 

        sketch.setDatum(k,v) # set dimension value 

    doc.recompute() # rebuild the document 

    w=sketch.Shape.Wires[0] # get the first wire 

    f=Part.Face(w) # create the face 

    return f 

 

The revolve function creates the solid shape by rotating the face f around the Y axis. 
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def revolve(f): 

    return f.revolve(App.Vector(0,0,0), App.Vector(0,1,0)) 

 

 

 

 

a b c 

Figure 1. Parametric sketches of tools (a), pin workpiece (b) and box workpiece (b) 

 

To create the ideal helix, use the makeLongHelix function from the Part module. To avoid 

errors when building long threads, do not use the makeHelix function. It is necessary to rotate the 

helix so that its axis coincides with the Y axis. These operations are executed by the function 

helix(r,h,p,fi), where r is the radius, h is the height, p is the pitch, fi is the cone angle (rad). 
 

def helix(r,h,p,fi): 

    w=Part.makeLongHelix(p,h,r,np.degrees(fi)) 

    w.rotate(App.Vector(0,0,0),App.Vector(1,0,0),-90) 

    return w 

 

The thread on the pin (or box) is created by the makeThread(f, h, s) function, where f is a 

tool face, h is a helix wire, s is a workpiece solid. 
 

def makeThread(f,h,s): 

    s2=h.makePipeShell(f.Wires, True, True) # the helical solid 

    s=s.cut(s2) # Boolean cut operation 

    return s 

 

With the help of these functions, it is possible to create nominal solids of the pin or box (Figure 2). 

 
App.open(u"D:/3/Sketches.FCStd") # open the document with sketches 

fA0=rebuildSketch(dim={6:d.fi, 9:d.H}, sk='Sketch') # tool face 

fA0.translate(d._v2) # move the tool to the starting position 

sA0=revolve(rebuildSketch(dim={20:d.fi, 16:d.d3/2}, sk='Sketch001')) 

# workpiece solid 

hA0=helix(r=d._r, h=d.l4-12, p=d.P, fi=d.fi) # helix wire 

hA0.translate((0,d.l3-d.l4,0)) # move the wire 
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sA1=makeThread(fA0, hA0, sA0) # pin with thread 

 

 

Figure 2. The 3D model of the drilling tool joint ZN-80 (GOST 5286) 

Now simulate threads with different deviations. To simulate various machining errors in the 

program, it is possible to change the values of the geometric parameters of the workpiece and tool and 

the parameters of the tool path relative to the workpiece. The trajectory of the relative movement of 

the workpiece and the tool is a conical helical curve with parametric equations (1). In this equations 

)2/()tan(  pa  , )2/( pb  , t  - parameter (rad), r - start radius,   - cone angle (rad), p  - 

pitch. 

 

.
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The function helixPoints(r, h, p, fi, n) returns an array of points of the conical 

helix. Parameter r is the smaller radius, h - height, p - step, fi - cone angle, n - the number of points 

in one turn. Here t, x, y, z - numpy arrays. 

 

def helixPoints(r, h, p, fi, n):     

    a=np.tan(fi)*p/(2*pi) 

    b=p/(2*pi) 

    k=h/p # number of turns 

    N=int(n*k) # total number of points  

    t=np.linspace(0,h/b,N) 

    x=(r+a*t)*np.cos(-t) 

    z=(r+a*t)*np.sin(-t) 

    y=b*t # helix axis 

    return zip(t,x,y,z) 

 

You can simulate various systematic or random machining errors by using the helix equation with 

deviations (2), where 0x , 0y , 0z  - coordinates of points of a nominal helix, xA , yA , zA , x , y , z  - 

constants or random variables. For nominal thread xA = yA = zA =1, x = y = z =0. For example, the 

constant xA can be used to simulate the spindle radial run-out, and the variable y  - to simulate the 

pitch error. To simulate the random machining errors, the variables xA , yA , zA , x , y , z  must be 

random variables with some distributions. 
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The function perror(points) returns the points coordinates of the helix with the deviations, 

where Δx, Δy, Δz are random variables with a triangular distribution. The points parameter is the 

points of the nominal helix. The user can modify this function to simulate other errors. 
 

def perror(points): 

    epoints=[] # points of the helix with the deviations 

    d=0.2 # triangular distribution parameter 

    for t,x,y,z in points: 

        x=x+np.random.triangular(-d,0,d) 

        y=y+np.random.triangular(-d,0,d) 

        z=z+np.random.triangular(-d,0,d) 

        epoints.append((t,x,y,z)) 

    return epoints 

 

The thread creation algorithm is based on the approximation of the tool movement trajectory by 

splines or polylines. To approximate a helix with deviations by a polyline, use the 

helix2(points) function, where points are the points of the helix with deviations. 
 

def helix2(points): 

    pts=[(x,y,z) for t,x,y,z in points] 

    h=Part.makePolygon(pts) # polyline wire  

    return h 

 

It is possible to create a thread with deviations in different ways. For example, the 

makePipeShell function can be used to create a helical body using a spline (or polyline) and a list 

of tool profiles at each point. But the most simple and universal way is to use shape operations "loft" 

and "cut" for each point helix2(points) (Figure 3). The function makeThread2(f, h, s) 

creates such thread by using copy, rotate, translate, makeLoft and cut functions. The 

parameter f is the face of the tool, h is the helix wire, s is the workpiece solid. Calculations can take a 

long time if there are many points. 
 

def makeThread2(f, h, s): 

    w=f.Wires[0] # tool wire 

    points=[(v.X,v.Y,v.Z) for v in h.Vertexes] # helix points 

    W=[] # profiles at different points of the helix 

    for x,y,z in points: # for each point 

        w_=w.copy() # tool wire copy 

        # tool rotation angle relative to the workpiece 

        t=np.arctan2(-z,x) 

        # rotate the tool around an Y axis 

        w_.rotate(App.Vector(0,0,0),App.Vector(0,1,0),np.degrees(t)) 

        w_.translate(App.Vector(x,y,z)) # move the tool to x,y,z 

        W.append(w_.copy()) # append the tool profile to the list W 

        if len(W)>1: 

            # create a solid shape using two adjacent profiles 

            st=Part.makeLoft([W[-2],W[-1]],True) 
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            s=s.cut(st) # Boolean cut for workpiece and shape st 

    return s,W 

 

 Figure 3. Creating threads with deviations 

You can also simulate the slope of the rake face of the cutting tool and nonzero rake angle γ. To do 

this, rotate the face by an angle γ around the line, that parallel to the helix axis and passes through the 

middle of the profile (Figure 3). The following code creates a pin with the thread that has deviations. 
 

fA3.rotate(App.Vector(0,0,0),App.Vector(0,1,0),-10) # rake angle  

points=perror(points) # points of a helix with deviations 

hA3=helix2(points) # helix with deviations 

hA3.translate((0,d.l3-d.l4,0)) # move the helix 

sA4,W=makeThread2(fA3, hA3, sA0) # pin with thread 

 

It is possible to calculate the volume or area of the symmetrical difference (XOR or union without 

the intersection) for nominal and real threads. Below you can see the corresponding FreeCAD API 

code. The testing of the thread suitability with deviations can be realized by Boolean operations on the 

maximum permissible and real shapes. 
 

# XY plane: 

f=Part.makePlane(400,400,App.Vector(-200,-200,0),App.Vector(0,0,1)) 

f1=sA3.common(f).Faces[0] # axial section of a pin 

f2=sA4.common(f).Faces[0] # axial section of a box 

f3=f1.cut(f2).fuse(f2.cut(f1)) # Boolean XOR operation 

print f3.Area # XOR area 

 

Figure 4 shows the maximum deviations between nominal (γ=0°, xA =0, y =0) and real profiles 

when there is combination of different errors. The nominal profile is indicated by an arrow, and the 

XOR area is between the profiles. Deviations are almost not visible in Figure 4(a). In this case, 

according to the data [7], the deviation of the profile angle is not more than 0.47°. 

Figure 5 shows the 3D nominal thread ( x =0, y =0, z =0) and the 3D thread with deviations 

by equation 2, where x , y , z  - random variables with a triangular distribution (with parameters 

a=-0.2 mm, c=0 mm, b=0.2 mm). Calculated XOR volume is equal 133.79 mm3. 

3.  Use of geometric models for finite element simulation 

The models of threaded connections constructed with this program can be used to simulate the stress-

strain state by the finite element method and justify the values of the thread tolerances. We used an 

open source finite element mesh generator Gmsh 2.7 [8] and a FEA software CalculiX 2.12 [9]. 



International Conference on Applied Sciences

IOP Conf. Series: Materials Science and Engineering 477 (2019) 012032

IOP Publishing

doi:10.1088/1757-899X/477/1/012032

7

 

 

 

 

 

 

   
A b c 

Figure 4. Deviations between nominal and real profiles when there is combination of different errors: 

γ=-10°, y =0, xA =0, XOR area=0.0353 mm2 (a); γ=-10°, y =0, xA =1.01 mm, XOR area=0.8412 

mm2 (b); γ=-10°, y =0.1 mm, xA =1.01 mm, XOR area=0.7744 mm2 (c) 

 

  
a b 

Figure 5. The nominal thread (a) and the thread with random deviations (b) 

Based on the planar geometric model of the drilling tool joint ZN-80, obtained with the help of the 

developed program, an axisymmetric FE model is constructed. The material of the parts is steel 40XH 

(GOST 4543) with the Young's modulus E=2.1e5 MPa, Poisson's ratio  =0.28, yield strength 

y =735 MPa, tensile strength t =882 MPa. Material plasticity and friction are simulated. The size of 

the mesh elements is 0.2 mm. Two steps of the external axial tensile load were created: minF =0 N and 

maxF =1 MN. The joint make-up was simulated by axial deformation Δ of the box shoulder. For each 

tool joint design, a value of Δ was set such that the contact pressure on joint shoulders was 274 MPa 

for maxF . For the standard design Δ = 0.2 mm. For the approximate calculation of the fatigue safety 

factor D, the dependence of Sines [10], [11], with a material endurance limit of 207 MPa was used. 

Note that D values can only be used for the relative comparison of different designs, but not for 

calculating cyclic durability values [1]. A smaller value of D only indicates a lower cyclic durability. 

The Figure 6 shows the values of equivalent von Mises stress v  and fatigue safety factor D as a 

function of the deviation of the thread profile angles of the pin from the nominal value. Deviations are 

determined by the formula  302,12,1  , where 2,1  is the angle between the pin profile side 

(index 1 means unloaded side, 2 - loaded side) and the line perpendicular to the axis, 30° is the 

nominal value. Much larger contact stresses arise on the loaded side 2 (the bottom side in Figure 7) if 

the joint is subjected to an axial tensile load maxF . Deviations 2,1  can be caused by a nonzero rake 

angle γ of the tool and machining error, caused by tool wear. The deviation of the unloaded side 1  

of the pin profile can be caused by the wear of the left cutting edge of the tool. As a rule, the wear of 

the left cutting edge near the corner is greatest, and this increases the angle of the unloaded side of the 

thread profile 1 . 
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Negative values of the deviations are the cause of a sharp increase of v  values and decrease of D 

values (Figure 6). Areas with very small D values appear in the root of the box thread, and D values of 

the pin decreases insignificantly (Figure 7). Positive values of the deviations of both sides 
2,1 are 

somewhat smaller decrease D values. The D value of the first root in the pin thread decreases most of 

all (Figure 7). Positive values of the deviations of the unloaded side 1  almost do not change the 

stress and fatigue strength of the joint (Figure 7). Thus, the tool wear along the left cutting edge has no 

influence on the fatigue strength of the joint. 
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Figure 6. Von Mises stress at maxF  (a) and fatigue safety factor D (b) as a function of 1 (■, ♦) and 

2,1  (□, ◊): □, ■ - maximum value in the joint; ◊, ♦ - value at the first loaded root of the pin thread 

 

 

     
 A b c d e 

Figure 7. Distribution of the fatigue safety factor D for different 2,1 values:  32,1  (a); 

 31  (b);  02,1  (c);  31  (d);  32,1  (e) 

Using the developed program axisymmetric FE models of 19 mm GOST 13877 (3/4 in. API Spec 

11B equivalent) sucker rod couplings were also constructed. According to GOST 13877, the pin 

thread must be rolled, and the box thread can be rolled or manufactured by another method, for 

example, by a single-point cutting tool. The material of the parts is steel 40 (GOST 1050) with 
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E=2.1e5 MPa,  =0.28, 
y =314 MPa, t =559 MPa. Material plasticity and friction are simulated. 

The size of the mesh elements is 0.2 mm. Two steps of the external axial tensile load were created, 

which form in the rod body the stress minP  = 0 MPa and maxP  = 170 MPa. The joint make-up was 

simulated by axial deformation Δ of the box shoulder. For each coupling design, a value of Δ was set 

such that the contact pressure on joint shoulders was 312 MPa for maxP . For the standard design Δ = 

0.12 mm. 

In Figure 8 the von Mises stress and fatigue safety factor D as a function of angle deviation 

21   of box thread profile are shown. The index 1 denotes the unloaded profile side and 2 

- the loaded one. It is noticeable that negative   values cause a slight decrease of stress values and 

an increase of D values in the first loaded root of the pin thread. But contact stresses grow in the zone 

of the minimum diameter of the box thread (Figure 9(a)). Positive   values sharply reduce the D 

values in the first root of the pin thread, but almost do not change the von Mises stress values in it for 

maxP . 

-17,0

-21,0

-26,0

-30,0

-42,0

-50,0

170

220

270

320

370

420

470

520

570

-3 -2 -1 0 1 2

Δφ, °

 

Figure 8. Von Mises stress at maxP  (□, ◊) and 

fatigue safety factor D (∆) as a function of  : □ - 

maximum value in the joint; ◊, ∆ - value at the first 

loaded root of the pin thread 

 

  

a b c 

Figure 9. Von Mises stress distribution (MPa) in the first thread of sucker 

rod coupling at maxP  for different 2,1  values: -3° (a); 0° (b); 2° (c) 

The Figure 10 shows the von Mises stress and fatigue safety factor D as a function of p  - the 

magnitude of decrease the box thread pitch on the each thread turn (starting from the first). Positive 

p  values decrease the pitch of the box thread, and negative values increase the pitch. Positive p  

values are the cause of a sharp decrease of D values due to non uniform load to each thread (Figure 11, 

12). Stresses, which are shown in the Figure 12(a), may occur after multiple make-up of the joint as a 

result of plastic deformation and wear of the first threads. Negative p  values equalize loads in the 

thread, somewhat reduce the von Mises stresses in the first loaded root of the pin thread (Figures 10-

12) and somewhat reduce the area with negative D values (Figure 13). Therefore, you should avoid 
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p >0 but try to provide p <0. For single-point threading on a CNC machine, this can be achieved 

by increasing the feed by the p  value per one revolution of the spindle. 
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Figure 10. Von Mises stress at maxP  (□, ◊) and 

fatigue safety factor D (∆) as a function of p : 

□ - maximum value in the joint; ◊, ∆ - value at 

the first loaded root of the pin thread 

 
Figure 11. The values of the von Mises stress at 

maxP  in the root N of the pin thread for different 

p  values (µm) 

 

 

a b c 

Figure 12. Von Mises stress distribution (MPa) in the sucker rod coupling at maxP  

for different p  values: 8 µm (a); 0 µm (b); -8 µm (c) 

 

 

a b c 

Figure 13. Distribution of the fatigue safety factor D in the first thread of 

sucker rod coupling for different p values: 8 µm (a); 0 µm (b); -8 µm (c) 
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4.  Conclusions 

The developed system can be used to construct 3D and 2D geometric models of threaded connections 

with deviations, justify their tolerances and optimize the geometric parameters with additional 

software for finite element analysis. You can download the source code by the following address: 

https://github.com/vkopey/Thread-turning-simulator 
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