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Abstract. To solve the problem that the impact dynamics model is nonlinear and cannot be 

resolved the analytical solution, the differential equations of the characteristic line compatible 

relation are constructed, the initial value conditions and the boundary value conditions are 

determined. The dynamic state of the whole domain is gradually recurred by selecting the 

appropriate time step and the space step. The theoretical results are consistent with the 

experimental results, indicating that the method of solving the model is feasible. This method 

provides an effective theoretical analysis and calculation method for the study of dynamic 

characteristics of structures under impact. 

1.  Introduction 

The solution of the nonlinear dynamic model is the basis of studying the dynamic characteristics of the 

structure under the impact environment. Because the impact dynamics model is nonlinear, the 

analytical solution cannot be found for the nonlinear problems. To solve this problem, the theory and 

application of nonlinear viscoelastic wave propagation are discussed in the reference [1]. The 

numerical analysis method is used to simulate the constitutive model constructed in [2-3]. Two-stage 

finite element modeling and analysis techniques are used in the reference [4], and this method is used 

to analyze the overall stability and local residual strength of structural frame systems and components. 

The impact analytical model based on Hertzian elastic contact law is proposed in reference [5], and the 

analytical method is given. The one-dimensional dynamic model is solved by a precise integration 

method in reference [6], and the structural dynamic response of missile-borne devices is obtained 

under a high overload environment. In this paper, the differential equations of the characteristic line 

compatible relation are constructed, the initial value conditions and the boundary value conditions are 

determined. The dynamic state of the whole domain is gradually recurred by selecting the appropriate 
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time step and the space step. This method provides an effective theoretical analysis and calculation 

method for the study of dynamic characteristics of structures under impact. 

2.  The establishment of the compatible equation based on the characteristic method 

Because of the coupling of stress wave and strain rate, the mechanical behavior of viscoelastic 

material is nonlinear. The propagation of force wave in one-dimensional nonlinear viscoelastic 

material can be determined by the following three equations, and the dynamic process of the whole 

viscoelastic material model can be obtained by the following equations [7-10]. 

 (1) Continuous equation 
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In equations (1), (2) and (3), 2 2 2E=  ,
2 3

0e E   = + + , 1E , 2E , 0E , ,   and 2  are the 

material's property parameter, 1E , 2E  and 0E  are the elastic modulus,   and   are the 

nonlinear correlation, 2  is the relaxation time, η2 is viscous parameter, 0ρ  is the material density, 

v  is the particle velocity,   is the stress ,   is and the strain. 

The dynamic process of the whole viscoelastic material model can be described by the above three 

equations (1), (2) and (3), and the above three equations can be solved by using the characteristic line 

method. 

The concrete practice is as follows: 

The above three equations are multiplied by 0A , 0B , 0C , and then added together: 
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In formula (4),  ),( f  is a one-item function of 、, 、 . 

According to the compatibility of the characteristic lines, it can be got as follows:  
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The original partial differential equations can be transformed into ordinary differential equations 

consisting of the compatible relations of three families of characteristic lines by formula (5). 
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Vdx C dt=                                  (6) 
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When 0A = 0B =0, and 0 0C  , then 0dx = , then the corresponding third family characteristic lines 

are: 
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In formula (8),
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From the above, as long as knowing the corresponding material parameters,  ,  , and v  can be 

solved by using equations(6),(7), and(8) together. Among them, the strength of the material is 

characterized by  , the deformation degree of the material is characterized by  , the particle motion 

of the material is characterized by v , the velocity of the particle and the compatibility condition of the 

strain are the embodiment of the conservation of mass. The relation of the stress and velocity is the 

embodiment of the conservation of momentum. The relationship between the strain and the stress is 

the embodiment of the constitutive model of the material, and the three parameters are known. The 

whole impact problem can be solved. 

3.  Numerical solution of nonlinear dynamic equations 

3.1.  Characteristic line method for solving nonlinear dynamic equations 

Compared with the compatibility relation of linear elastomers, the propagation term of the nonlinear 

viscoelastic body contains terms related to strain rate and cannot be decoupled. Therefore, equations 

(6), (7) and (8) do not have analytic solutions at the same time. The only way to solve equations is by 

numerical means. In this paper, the above equations are solved by the characteristic line method, and 

the specific solution is shown in Figure 1. 
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Figure 1. Three characteristic lines of nonlinear dynamic equations. 

 

Figure 1 shows the propagation of stress waves on viscoelastic materials, which can be divided into 

three regions: the first region is the AOX region, which represents the undisturbed region and the data 

are all zero; the second region is on the t-axis, which represents the external disturbance of the 

viscoelastic material model and belongs to the boundary condition; the third one is in the AOX region. 

It is the AOt region, with the OA line as the firm discontinuous boundary, indicating the disturbance 

situation in front of and behind the wavefront when the first stress wave propagates, the disturbance 

area above OA, and the undisturbed area below OA. Thus, in the AOt area, it satisfies: 
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Thus, for any point 2N
 

in the AOt plane, the above three compatible relations can be obtained 

simultaneously. However, it is noticed that all the three compatible equations contain functions of  . 

 Changes with time and displacement, and cannot be solved directly. A difference equation which 

satisfies the CFL condition, i.e., the necessary condition for the convergence of the difference scheme, 

is constructed. The key idea is to characterize the curve. The solution is simplified to a linear elastic 

model by linearizing it into several small linear segments, and then the solution of the whole 

perturbation region is obtained by recursion along three characteristic lines in the entire perturbation 

region. 

The specific measures are as follows: 

To obtain the numerical solution of each point in the AOt domain, the points in the computational 

domain can be divided into: (1) discontinuous points (points on OA); boundary points (points on Ot); 
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and (3) interior points. The above analysis shows that the breakpoints and boundary points are unique 

and can be determined. 

For any interior point, it is possible to set the internal pointer to A, as shown in figure 2. There 

must be three classes of characteristic lines passing through this point and all satisfy the compatible 

equations (6), (7) and (8). As long as the appropriate time and space steps are intercepted, the 

corresponding difference equations can be constructed along the three characteristic lines. In the area 

adjacent to the point A, three points B, C, and D having a time step of t  and a space step of x  

are obtained. Then, the original characteristic line of a curve can be approximated as a straight line, 

and the complex nonlinear dynamic problem can be simplified as a recursive calculation of several 

linear problems. 

 

Figure 2. Schematic diagram of internal point calculation. 

 

As long as the initial shock disturbance and loading conditions are known, the numerical solutions 

of each point in the whole disturbance region can be derived successively by the corresponding 

differential equations. 

Thus, point A satisfies the compatibility equation along three characteristic lines: 
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Because the data of point B, C, and D are all obtained in the previous step, the solution of point A 

can be calculated by the solution of point B, C and D. By analogy, the solution of point A can be 
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recursively extended to the whole disturbance region until the arrival of the boundary stops, and then 

the numerical solution of the entire AOt region can be obtained. 

3.2.  The establishment of difference scheme 

When choosing the difference scheme, because the characteristic line is a curve, then select the 

appropriate space step x , and then let Vt x C =  , the specific feature line family as shown in 

figure 3. In this way, the AOt in the whole perturbation region is discretized into a lattice, and the 

solution corresponding to each point is the numerical solution of the entire plane. In particular, it 

should be pointed out that when solving along the 0dx =  characteristic line, the characteristic line 

0dx =  is a straight line. Then, the nonlinear dynamic equation can be addressed directly by the OA 

characteristic line, which is consistent with the linear elastic model. 

 

Figure 3. Characteristic lines in calculation area. 

According to the physical meaning of the characteristic line, a certain space step and time step can be 

selected, and the computational domain can be divided into a small area with the characteristic line, as 

shown in Figure 1. In these regions, all stress states are equal, and the stress states in the adjacent areas 

satisfy the compatible relationship of stress waves. In this way, with known loading and boundary 

conditions, as long as the material parameters are known, the stress state of each small area can be 

calculated recursively from the differential format of the compatible relation. For ij the area, its stress 

state is ultimately obtained by the logical relation of 1ij −  , 1 1i j− +  and 1i j−  regions, and the 

specific equations are as follows: 
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Equations (13), (14) and (15) are the differential equations of nonlinear viscoelastic materials, 

which are the display formats. All the stress states in the computational domain can be solved, 

including stress, strain and particle velocity. 

4.  Simulation calculation and result analysis 

Based on the above discrete solution, the stress state of the subregion of the target depends on the 

stress state of its circumferential region, and the stress state of any subregion will only affect the four 

adjacent subregions. In such a mechanical property, the continuous equation is discretized by building 

differential equations (13), (14) and (15). And the numerical calculation program based on Lagrange 

coordinates is compiled with FORTRAN90. The initial value of the stress state parameters is 0, the 

boundary condition is set as the free end boundary, and the appropriate time and space step are 

selected, and stress , strain , and particle velocityv  can be obtained by the recursive calculation. 

Combined with the actual situation and material size, the length of the calculation area is set to 

77.5mm, the computation time is 50 s , the space step length is 0.5mm, and the time step is 0.5 s . 

The waveforms of the input stress are simplified to rectangular waves and are solved in equations (13), 

(14) and (15). The comparison between theoretical calculation and experimental results is shown in 

Table 1. 

 

Table 1. Comparison of output stress experiment and theoretical calculation. 

Test number Input stress /MPa 
Output stress /MPa Absolute value 

of error Experimental value Calculated value 

1 165.3 49.9 51.7 3.6% 

2 179.5 50.7 52.8 4.1% 

3 153.6 48.7 51.1 4.9% 

4 149.9 38.8 40.7 4.9% 

5 166.1 46.7 48.9 4.7% 

6 194.6 65.0 68.1 4.8% 

 

From table 1, it can be seen that the output stress calculated theoretically and the output stress error 

measured experimentally are within 5 %, indicating that the model solution method is feasible. 

5.  Conclusion 

Based on the propagation characteristics of stress waves, a three-group independent characteristic line 

equation is constructed. Because the characteristic line equation is nonlinear, the analytical solution 

cannot be derived. For this reason, the differential equations of the characteristic line compatible 

relation are constructed, the initial value conditions and the boundary value conditions are determined, 

and the dynamic state of the entire computational domain is gradually deduced by selecting the 

appropriate time step length and space step length. The theoretical results are in good agreement with 

the experimental results, which verify the correctness of the nonlinear dynamic model solving method 
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based on the characteristic line method. This method provides an effective theoretical analysis and 

calculation method for the study of dynamic characteristics of structures under impact. 
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