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Abstract. The second-order analysis is used to examine the laced built-up member with two 

extruded I-sections under combined compression and bending. The member bottom end is fixed, 

and the upper one is free in the case of in-plane buckling. The member is restrained against out-

of-plane buckling at both ends. The global initial sway imperfection is taken into account instead 

of the local bow imperfection.  

1.  Introduction 

Eurocodes EN 1993 [1] and EN 1999 [2] provide the guidance limited to the design of uniform built-up 

member under compression with hinged ends laterally supported only. This way of calculation follows 

the concept published in [3] based on equivalent bending and shear stiffness. Eurocodes [1, 2] use the 

local bow imperfection e0 = L / 500. The numerical examples of built-up steel members were solved 

according to the former Czechoslovak standard ČSN 731401 in [4], according to the former German 

code in [5, 6] and according to Eurocode [1] in publications[7, 8]. However, the calculations in [6] are 

not complete, while those in [7] contain significant errors. This paper investigates a more general case 

described in the abstract. The numerical example of the built-up member made of aluminum alloy is 

only part of the large parametrical study of the battened and laced built-up members. In the parametrical 

study, the analysis was used based on the Rubin analytical solutions and formulas [4]. All numerical 

results were verified by the independent program IQ 100 [9], which revealed zero deviations. 

2.  Analyzed laced built-up column 

The analysis of the second order with imperfection is used in calculations. The geometrical equivalent 

global initial sway imperfection is taken according to [1, 2]. The column is made of EN-AW 6061-T6 

aluminum alloy, of buckling class A. The material possesses the yield strength f0 = 240 MPa and elastic 

modulus modulus E = 70 GPa. The material safety margin γM1  = 1.1 is used, while the design values of 

the external forces and moments applied to the column top (figure 1) are  

                                       kNFEd 430= ,    kNH Ed 11= ,   kNmM eEd 175, =                                   (1) 

The height of the column equals to L = 7.2 m. The boundary conditions are defined by the buckling 

lengths: Lcr,y = L and Lcr,z = 2L (table 6.8 in [2]). The distance between the posts of the lacing is a = 1.2 

m. The initial sway imperfection is determined according to clause 5.3.2 [1, 2]: 
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The total design value of the horizontal force at the top of the column after the replacement of the 

initial imperfections by the equivalent horizontal forces: 

                                    kNkNkNNHH EdEdtotEd 603.12603.111, =+=+=                                    (3) 

The properties of the cross-section class 3 extruded I section (Class 3 cross-section: flanges 120 x 12 

mm, section height 240 mm, web thickness 9 mm, radius 16 mm), which creates a chord of the built 

member are as follows: 

     244.50 cmAch = , 4
, 4742 cmI ych = , 4

, 5.348 cmI zch = , 3
,, 2.395 cmW yelch = , 3

,, 09.58 cmW zelch =  (4) 

The distance between the centroids of the chords is h0 = 40 cm. The properties of the built-up member 

(two I sections): 

             288.100 cmA = ,   
49484 cmI y = ,   4162099 cmI z = ,  cmiy 7.9= ,  cmiz 1.40=             (5) 

                    0= ,     ( )  462

0, 1016142/2 mmhAII chzcheff =+=  ,   
4161402 cmIeff =                 (6) 

The two chords (I-sections) of the member are connected by the lacing consisting of diagonals L 40 

x 4 mm and posts L 40 x 4 mm, Class 4 cross-section. 

The discrete structure of the built-up column smeared to a continuum has the bending stiffness EIeff 

= 112 981 kNm2 and shear stiffness Sv = 45 721.5 kN. 
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The parameter of the member ε used in the analysis of the 2nd order takes into account the influence 

of the shear deformations through the parameter γ  
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3.  Internal forces of the smeared continuum 

The internal forces NEd (constant), VEd (non-linear) and MEd (non-linear) are calculated according to the 

theory of the 2nd order with the sway initial imperfection and the influence of the shear deformations (Sv 

= 9429.9 kN, γ = 1.048, ε = 0.455, ξH = 1.0). Their distributions are drawn in figure 1 with solid lines 

and their values are written in bold. The internal forces were calculated via Eqs. [5], which are valid for 

any point of horizontal force HEd application xH from the interval (0 m ≤ xH ≤ L) or (0 ≤ ξ H = xH / L ≤ 

1.0) and for any point of bending moment MEd,e application xM from the interval (0 m ≤ xM ≤ L) or (0 ≤ 

ξ M = xM / L ≤ 1.0) 

The bending moment due to horizontal force HEd,tot at the top of the column:  
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The bending moment due to external bending moment MEd,e at the top of the column:  
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The total bending moment and shear force are as follows: 

( ) ( ) ( ) M
Ed

H
EdEd MMM += ,   VEd(ξ) = [dMEd(ξ) / dξ] / L                                                              (13) 

The distributions of the internal forces NEd (constant), VEd (non-linear) and MEd (non-linear) 

calculated according to the theory of the 2nd order with the sway initial imperfection but without the 

influence of the shear deformations (Sv = ∞ kN,  γ = 1.0, ε = 0.444, ξH = 1.0, ξM = 1.0) are written in 

figure 1 in italic. 

 The distributions of the internal forces NEd, VEd (constant) and MEd (non-linear) calculated according 

to the theory of the 1st order with the sway initial imperfection (ε = 0, ξH = 1.0, ξM = 1.0) are drawn in 

figure 1 with dotted lines. Their values are given in the brackets. If these values are multiplied by the 

ratio 11/12.603, one obtains the results valid for the case without imperfection. 

  Figure 1 also shows the values of the horizontal deflections at the top of the built-up column. 

 

Figure 1. Column geometry, actions and distributions of the internal forces Nx(x), Vy(x), Mz(x).   

4.  Internal forces of the components of the built-up column 

Internal forces in the chords, diagonals, and posts may be calculated from the internal forces of the 

continuum with smeared stiffness (figure 2a). This approximate calculation according to [1, 2] was 

performed twice with bending stiffness: (i) EIz = 162099 cm4 (μ = 1), (ii) EIeff  = 161400 cm4 (μ = 0). 

The differences are negligible. The values in figure 2a are compared with the internal forces in the 

chords, diagonals, and posts calculated more exactly on the calculation model represented by the frame 

structure (figure 2b). The frame structure was calculated by the second order theory twice: (i) all 

compression and tension forces were taken into account. These values are more exact and are given in 
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figure 2b in brackets, (ii) only compression forces were taken into account. The differences between (i) 

and (ii) values are from the practical point of view negligible. The comparison of the values in figure 2a 

and 2b confirmed that approximate Eurocode way of internal forces calculation on the model with 

smeared bending and shear stiffnesses is possible to use in the practical design of laced built-up columns. 

4.1.  Verification of the in-plane buckling of the column 

The axial forces in the chords Nch,Ed used for the verification of the in-buckling resistance of the chord 

determined at the fixed bottom end 
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The in-plane buckling resistance of the chord in compression at the bottom fixed end (figure 2a) 

            kN
a

EI
N

zch
zchcr 2.1672

2

,
2

,, ==


, 6.45, =zch , 851.0, =zch ,  ,2.0=  1.00 =              (16) 

                     937.0, =zch ,     752.0, =zch ,   kN
f

AN
M

chzchRdzbch 65.827
1

0
,,,, ==


                    (17) 

Verification equation of the in-plane buckling resistance of the chord in compression:  
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Figure 2. Comparisons of axial forces per 1 chord, 1 diagonal and 1 post calculated by the model 
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of: (i) continuum with smeared stiffnesses, according to [1, 2] and (ii) discrete frame structures 

4.2.  Verification of the out-of-plane buckling of the column 
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Utility grade due to the axial force only is 
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Utility grade due to bending moment only. The bending moment Mz,Ed.H,Me = 235.565 kNm in the 

section x = 3.6 m due to the horizontal force HEd = 22 kN and MEd,e = 175 kNm is taken into account:  

                 ( ) kNmmxM MeHtotEdz 236.2426.3,,, == ,   ( ) kNmmxM MeHEdz 565.2356.3,,, ==           (22) 
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Verification of the out-of-plane buckling resistance of the column is done in the middle of the column 

height. Utility grade due to the axial force and the bending moment is 

                                        0.1729.0268.0461.0, =+=+= Myby UUU                                         (24) 

4.3.  Verification of the cross-section resistance of the diagonal in tension 

The diagonals L 40 x 4 are in tension. The maximal axial force is at the top of the column (figure 2a) 
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If diagonals would be in the compression 
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4.4.  Verification of the buckling resistance of the post in compression 

The maximal axial compression force in the post L 40 x 4 (figure 2a) 
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The buckling length and the slenderness about the weakest axis 
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The post L 40 x 4 is the class 4 cross-section 
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Reduction factor for the local buckling 
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Effective area 
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Critical force of the flexural buckling 
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Relative slenderness and effective relative slenderness (formula (BB.1) in [1]) 
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The design flexural buckling resistance of the post and utility grade are 
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5.   Conclusion 

It was confirmed that the general procedure proposed by the authors is possible to use for in-plane 

buckling verification of the laced built-up members with any boundary conditions under any 

combination of actions. Eurocodes [1, 2] give no guidance for such special cases.   

The out-of-plane flexural buckling resistance verification of the built-up column took into account 

also influence of the bending moment due to in-plane actions. This was not solved in [3-9]. 
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