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Abstract.
The aim of this study is to analyze attempts to observe the so called Dynamical Casimir effect

in cavities, changing their optical lengths by means of fast time variations of material properties
(dielectric permeability or conductivity) of thin slabs attached to the cavity walls. The emphasis
is made on the case of semiconductor slabs excited by short laser pulses. Considering the
evolution of the classical electromagnetic field in this case, an approximate analytical solution
for an infinite set of coupled ordinary differential equations for the mode amplitudes is derived
under certain simplifying assumptions. According to this solution, an amplification of the initial
field can be made, provided the induced dielectric permeability can become negative with a large
absolute value. Evaluations of the feasibility of such a scenario are given.

1. Introduction
In 1970, Moore [1] showed that motions of ideal boundaries of a one-dimensional cavity can
result in a generation of quanta of the electromagnetic field from the initial vacuum quantum
state. Since that time, such a remarkable effect (called after [2,3] as Dynamical Casimir Effect –
DCE) attracted attention of many researchers. Reviews of numerous publications on this subject
can be found in [4,5]. One of the main theoretical results obtained in the middle of 1990s was a
simple formula for the mean number of quanta that could be generated during time t inside an
ideal three-dimensional non-degenerate cavity whose walls perform a periodic motion with the
double eigenfrequency 2ω0 of the fundamental cavity mode (the parametric amplification of the
vacuum fluctuations) [6] 〈n〉(t) = sinh2 (εκω0t). Here ε is the maximal relative displacement of
the boundary with respect to the wavelength λ = 2πc/ω0 and κ < 1 is a numerical coefficient
which depends on the cavity geometry. For example, κ = [λ/(2L0)]

3 for a rectangular cavity,
where L0 is the average distance between vibrating walls.

Scholars seeked for a possible experimental verification of the DCE since the early 1990s.
One of the main obstacles is the extreme smallness of parameter ε that could be achieved for
real cavities with moving walls. Indeed, consider cavities with dimensions of the order of a
few centimeters, possessing the fundamental eigenfrequencies ω0/2π of the order of a few GHz.
An idea of [6] was not to move the wall as a whole (since it seems practically impossible at
high frequencies [4]), but to excite oscillations of the surface of the cavity wall. Note that
the amplitude a of a standing acoustic wave at frequency ωw = 2ω0 is related to the relative
deformation amplitude δ as a = vsδ/ωw, where vs is the sound velocity. Since the maximal
deformation of usual materials cannot exceed δmax ∼ 10−2, the maximal possible velocity of
the boundary is vmax ∼ δmaxvs ∼ 50 m/s for vs ∼ 5 km/s. Therefore, the maximal relative
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displacement ε = a/λ equals εmax ∼ vsδmax/(4πc) ∼ 10−8. Using this value, one could get
sinh2(5) ∼ 5000 photons in the initially empty ideal cavity with ω0/(2π) = 3 GHz and κ = 1/2
after t ∼ 50 ms. The required cavity quality factor Q is about 108. If the value of δmax could
be increased by one order of magnitude (and this is the material science problem), then the
necessary time and the cavity quality factor could be diminished by the same one order of
magnitude. The excitation of the surface oscillations with the maximal amplitude at such a
high frequency is a challenge. Probably, this can be achieved with the aid of the so-called ‘film
bulk acoustic resonators’ (FBARs) [7], as was proposed in connection with the DCE in [8, 9].

In fact, the fundamental mechanism of the DCE is the parametric amplification of initial
vacuum fluctuations due to temporal changes of the cavity eigenfrequencies. But such changes
can be achieved not only by means of changing the cavity geometry, but also by changing the
material properties of the cavity. Hence the idea of simulating the DCE and other quantum
effects was suggested by Yablonovitch about three decades ago [2]. Namely, he proposed to use a
medium with a rapidly decreasing in time refractive index (‘plasma window’). Similar ideas were
put forward later in [10,11]. A possibility to use quantum circuits instead of cavities to simulate
the DCE was discussed in [12–16], and it was realized in [17, 18]. The dielectric permeability
can be changed in nonlinear optical materials illuminated by strong laser pulses. This way
of modelling effects predicted by the quantum field theory in a laboratory was considered by
several authors, started from [19–21] (see [22] for a short review). However, no real experiments
were performed till now due to the smallness of the nonlinear optical parameters. This is one
of challenges for the material science: to find (construct) materials with high nonlinear optical
coefficient χ(3) in the microwave domain.

On the other hand, fast big variations of electric properties can be achieved in semiconductors
illuminated by laser pulses, as was pointed out by Yablonovitch [2]. Following this idea,
attempts to observe the analogue of ‘true’ DCE in microwave cavities were performed [23, 24].
In that experiment, a semiconductor slab was periodically illuminated by chains of short (a few
picosecond) laser pulses, so that its conductivity changed from almost zero to almost metallic
values. This resulted in periodical changes of the fundamental mode frequency of the order of
10−3 (or bigger). However, in spite of many efforts, the amplification of the microwave field
was not observed. The main difficulty consists in the inevitable losses inside the semiconductor
slab with a finite electric conductivity. Theoretical models accounting for these losses at the
quantum level were elaborated in [4, 25]. However, it seems that some important factors were
not taken into account there (although experimental results showed a good agreement with some
theoretical predictions). In order to find a possible drawback, the preliminary analysis of the
problem in the classical regime was performed in [26]. The main question was as follows: is it
possible in principle to amplify the classical EM field by means of strong temporal changes of
the electrical properties of a thin conducting slab inside the cavity? What kinds of materials
should be used? Some answers (generalizing results of [26]) are given in the next sections.

2. The classical EM field dynamics: approximate solutions for a thin slab with
time-dependent parameters
Firstly, consider the Maxwell equations for the EM field inside an ideal cavity, filled in with a
stationary, isotropic, non-dispersive and non-magnetic dielectric material:

c rotB = ∂D/∂t, c rotE = −∂B/∂t, D(r, t) = ε(r)E(r, t), ε(r) ≥ 1. (1)

These equations admit the complete set of solutions in the form E(r, t) = En(r) exp (−iωnt),
B(r, t) = −iBn(r) exp (−iωnt), where real time independent functions En(r) and Bn(r) satisfy
the equations (where the ‘vector’ index n combines three integers (l,m, n) and kn = ωn/c)

rotBn = ε(r)knEn, rotEn = knBn.

∫
ε(r)EnEmdV =

∫
BnBmdV = 8πδnm. (2)
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In the general case, E(r, t) =
∑

n En(r)fn(t) and B(r, t) =
∑

n Bn(r)gn(t), the total energy can
be written as

W =

∫
dV

(
εE2 + B2

)
/(8π) =

∑
n

(
f2n + g2n

)
. (3)

For the conducting and nonstationary medium, described by means of functions σ(r, t) and
ε(r) + δε(r, t), the first equation in (1) is replaced with c rotB = 4πσE + ∂ [(ε+ δε)E] /∂t.
This form implies the neglect of temporal dispersion, which seems reasonable for microwave

fields. Using (2), one can write
∑

n En

[
ε
(
ḟn − gnωn

)
+ δεḟn + fn (4πσ + ∂δε/∂t)

]
= 0. Then,

following the standard procedure with account of (2), one can replace the partial differential
equations with the ordinary ones for the time-dependent amplitudes

ġm = −ωmfm, ḟm = ωmgm −
∑
n

αmnfn −
d

dt

∑
n

βmnfn, (4)

αmn(t) =

∫
dV σ(r, t)Em(r)En(r)/2, βmn(t) =

∫
dV δε(r, t)Em(r)En(r)/(8π). (5)

These equations can be significantly simplified for rectangular cavities with 0 < z < L,
|x| < Lx/2, |y| < Ly/2, provided functions ε(r), σ(r, t) and δε(r, t) depend on the single
longitudinal variable z only. Suppose that ε = const > 1 for 0 < z < Ls < L and
ε ≡ 1 for Ls < z < L. Then, the consequence of equations (2) is the Helmholtz equation
∆En + k2

nε(z)En = 0. It is known [25,27,28] that the TM configuration of the electromagnetic
field is much more advantageous than the TE one for the field excitation due to the DCE. In
this case,

Bz ≡ 0, Ez = Φ(r⊥)ψ(z), Ex = k−2⊥
∂Φ

∂x

dψ

dz
, Ey = k−2⊥

∂Φ

∂y

dψ

dz
.

∆⊥Φ + k2
⊥Φ = 0, ψ′′ +

[
k2
nε(z)− k2⊥

]
ψ = 0.

Since the tangential components of the electric field must disappear near all surfaces of the ideal
cavity, the boundary conditions for function ψ(z) are ψ′ ≡ dψ/dz = 0 at z = 0 and z = L,
whereas Φ (r⊥) = cos (klx) cos (kmy), kl = (1 + 2l)π/Lx, km = (1 + 2m)π/Ly. As a consequence,
modes with different indexes l and m are independent. We assume that l = m = 0. Then,
equations (4) can be written in the vector form

ġ = −Ωf , ḟ = Ωg −Af − d(Bf)/dt, (6)

where f ≡ (f0, f1, f2, . . .), g ≡ (g0, g1, g2, . . .), fm ≡ f00m, gm ≡ g00m. The diagonal matrix Ω
has elements ωm ≡ ω00m. The elements of symmetrical matrices A(t) and B(t) are as follows:

amn(t) =

∫ Ls

0
dzσ(z, t)χmn(z), bmn(t) =

∫ Ls

0
dzδε(z, t)χmn(z)/(4π), (7)

χmn(z) = (LxLy/8)
[
ψm(z)ψn(z) + k−2⊥ ψ′m(z)ψ′n(z)

]
. (8)

An immediate consequence of (6) is the equation dW/dt = −2 [fAf + fd(Bf)/dt], where
W = f2 + g2. Since σ(z, t) ≥ 0, matrix A is non-negative: fAf ≥ 0 for any vector f . Therefore,
dW/dt ≤ 0 if σ > 0 and B = 0. This means that the total energy W always decreases if δε = 0.

Since matrices Ω, A, and B do not commute, equations (6) can be solved only numerically
in the general case. However, approximate analytical solutions can be found under certain
assumptions for thin slabs with Ls � L. For the totally empty cavity, one has

ψn(z) = Nn cos (πnz/L) , N−2n = LxLyL
(
1 + µn2

)
(1 + δn0) /(64π), (9)
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ω2
n = ω2

0

(
1 + µn2

)
, ω0 = cπ/(L

√
µ), µ = L2

xL
2
y

[
L2
(
L2
x + L2

y

)]−1
. (10)

If Ls � L, then the electric field outside the slab remains practically the same as in
the stationary case, as well as the eigenfrequencies and normalization constants. But Ez
component of the electric field inside the slab is smaller: ψn(z < Ls) ≈ Nn cos (ζnπnz/L) /ε,
ζn ≈

√
ε+ (ε− 1)/(µn2). Therefore, the ratio of the second term (containing the product of

derivatives) to the first one in the function χmn(z) (8) inside the slab equals approximately
µ(πmnεLs/L)2, so that this term can be neglected for not very big values of mode numbers m
and n and the dielectric constant ε. Using one more approximation cos (ζnπnz/L) ≈ 1, one can
simplify matrices A(t) and B(t) as follows:

A(t) = a(t)Ψ, B(t) = b(t)Ψ, a(t) =

∫ Ls

0
σ(z, t)dz/L, b(t) =

∫ Ls

0
δε(z, t)dz/(4πL). (11)

Here Ψ is the symmetric matrix with the factorized elements Ψmn = ΨmΨn, Ψ0 =
√

4π/ε,

Ψn6=0 =
[
ε2
(
1 + µn2

)
/(8π)

]−1/2
. Moreover, Ψn = ρn−1Ψ for n = 1, 2, 3, . . ., where [26]

ρ = Tr(Ψ) =
∞∑
k=0

Ψ2
k =

(
4π/ε2

) [
1 + 2

∞∑
n=1

(
1 + µn2

)−1]
= 4π2

(
ε2
√
µ
)−1

coth (π/
√
µ) (12)

Consequently, any function of matrix Ψ is proportional to Ψ itself. In view of this finding, let
us make one more approximation, assuming that matrix Ω is proportional to the unity matrix
I: Ω = ωI. Of course, this assumption is rather artificial, but it enables us to solve equations
(6) analytically:

g(t) = [ug(t)I + vg(t)Ψ] g(0) + [zg(t)I + wg(t)Ψ] f(0), (13)

f(t) = [uf (t)I + vf (t)Ψ] g(0) + [zf (t)I + wf (t)Ψ] f(0). (14)

The time-dependent scalar functions in (13) and (14) must obey the following set of linear
ordinary differential equations and initial conditions:

u̇f = ωug, u̇g = −ωuf , żf = ωzg, żg = −ωzf , (15)

v̇f = ωvg − a(t) (uf + ρvf )− d

dt
[b(t) (uf + ρvf )] , v̇g = −ωvf , (16)

ẇf = ωwg − a(t) (zf + ρwf )− d

dt
[b(t) (zf + ρwf )] , ẇg = −ωwf , (17)

ug(0) = zf (0) = 1, uf (0) = zg(0) = vf (0) = vg(0) = wf (0) = wg(0) = 0. (18)

Solutions to (15) are obvious: ug(t) = zf (t) = cos(ωt), uf (t) = −zg(t) = sin(ωt). Equations
(16) and (17) are more complicated, because their coefficients can be arbitrary functions of time
satisfying the conditions a(0) = b(0) = 0. To simplify the problem, let us suppose that functions
a(t) and b(t) grow from zero to some constant values a and b during a very short time interval
δ → 0, then remain at constant levels until the instant t∗ − δ, and finally return very quickly to
the initial zero values at t = t∗. Then (16) and (17) turn into linear inhomogeneous equations
with constant coefficients a and b for δ < t < t∗ − δ. To find the new initial conditions at t = δ
we integrate equations (16) and (17) from 0 to δ, assuming that all functions remain bounded
during this short interval, and then take the limit δ → 0. Thus we arrive at the conditions at
t = 0+: vf (0+) = vg(0+) = wg(0+) = 0, wf (0+) = −b/(1 + bρ). Using the standard scheme,
one can find solutions for any instant of time in the interval δ < t < t∗ − δ. To find the values
at t = t∗, one has to integrate equations (16) and (17) from t∗− δ to t∗ and again take the limit
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δ → 0. Then vg(t∗) = vg(t∗−δ), wg(t∗) = wg(t∗−δ), whereas vf (t∗) = vf (t∗−δ)(1+bρ)+buf (t∗)
and wf (t∗) = wf (t∗ − δ)(1 + bρ) + bzf (t∗). The final results are

vf (t∗) = (rρ)−1
[
2ωβe−λt∗ sinh(κt∗)− r sin(ωt∗)

]
= −wg(t∗),

vg(t∗) = (rρ)−1
{
r
[
e−λt∗ cosh(κt∗)− cos(ωt∗

]
+ aρe−λt∗ sinh(κt∗)

}
,

wf (t∗) = (rρ)−1
{
r
[
e−λt∗ cosh(κt∗)− cos(ωt∗

]
− aρe−λt∗ sinh(κt∗)

}
,

where

λ = aρ/(2β), κ = r/(2β), r =
√

(aρ)2 − 4ω2β, β = 1 + bρ. (19)

The total energy variation equals

∆W ≡ f2(t∗) + g2(t∗)− f2(0)− g2(0) = hffY
2
f + hggY

2
g + 2hfgYfYg, (20)

Yf =
∞∑
n=0

Ψnfn(0), Yg =
∞∑
n=0

Ψngn(0), (21)

ρhff = e−2λt∗
{

[aρ sinh(κt∗)− r cosh(κt∗)]
2 + 4ω2β2 sinh2(κt∗)

}
/r2 − 1 (22)

ρhgg = e−2λt∗
{

[aρ sinh(κt∗) + r cosh(κt∗)]
2 + 4ω2β2 sinh2(κt∗)

}
/r2 − 1 (23)

hfg = −4aωβe−2λt∗ sinh2(κt∗)/r
2. (24)

3. Discussion and conclusions
Formulas (20)-(24) show that the possibility of the EM field amplification depends crucially on
the sign of coefficient β = 1 + bρ. Indeed, the energy variation in the short time limit (|κ|t∗ � 1
and |λ|t∗ � 1) equals ∆W = −2at∗Y

2
f /β + O(t2∗). Consequently, for short pulses of variations

of material properties, the total energy always decreases if β > 0, but it can increase if β < 0. A
similar behavior of ∆W can be observed for long time as well. If β > 0, then λ > 0. If κ is real,
then κ < λ, so that hff = hgg = −1/ρ and hfg = 0 for (λ − κ)t∗ � 1. The same asymptotical
values of these coefficients arise for λt∗ � 1 if κ is an imaginary number. Therefore, the total
energy always decreases for long excitation pulses if β > 0. On the contrary, if β < 0, then κ is
real and λ < 0, so that the total energy can grow as exp [(|λ|+ |κ|) t∗] for |κ|t∗ � 1 due to some
kind of parametric instability.

The fundamental conclusion is that the possibility of the DCE simulation in cavities by
means of temporal variations of conductivity inside a thin slab depends on the sign and maximal
absolute value of the accompanying dielectric permeability variation δε. If δε > 0, then b(t) > 0,
so that no field amplification can be expected. However δε can be negative, e.g., according to
the Drude model: δε(r, t) = −4πn(r, t)e2/

[
mef

(
ω2 + γ2

)]
. Here n(r, t) is the concentration of

free carriers created by the laser pulse, e the electron charge, mef the effective mass, and γ is
the collision frequency. Therefore, the intriguing question is: whether condition |b|maxρ > 1 can
be fulfilled in realistic situations? For realistic values µ < 1 one can replace the coth function in
the right-hand side of (12) by unity. In particular, for the cubical cavity, µ = 1/2 and ρ ≈ 56/ε2.
Since we consider the non-dispersive case, we have to assume that ω � γ. Then, using equations
(10)-(12), one can arrive at the requirement γ2 < 8π2nmaxe

2Ls/(λ0mefε
2), where nmax is the

maximal concentration of free carriers inside the slab and λ0 = 2πc/ω0 is the wave length
corresponding to the fundamental cavity eigenfrequency. Certainly, nmax cannot be higher than
the electron concentration in good metals nmet ∼ 1023 cm−3. Using this value together with the
free electron mass for mef , ε ∼ 10, and taking Ls/λ0 ∼ 10−3, one obtains the upper limit for the
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collision frequency γ < 1014 s−1. For nmax ∼ 1019 cm−3 (as for inferior metals) the limitation
is γ < 1012 s−1. In view of (11), the requirement |b|maxρ > 1 means that it is necessary to
achieve negative values of δε of the order of -104 (under the same assumptions). Variations of
the dielectric function in the photo-excited GaAs to the negative values of the order of -10 were
reported in [29] for the visible light (in a good agreement with the Drude approximation). For
the microwave frequencies, one can expect bigger absolute values of these negative changes, but
this seems to be a task for future experiments.

Note that coefficient b can be written as b = χNs/L, where Ns is the total number of carriers
created by the laser pulse per unit area of the semiconductor surface and χ is the dielectric
susceptibility per one carrier (δε = 4πχn). In turn, Ns = ξΦ/Eg, where Φ is the fluence of laser
pulse, Eg the energy gap of the semiconductor and ξ the efficiency of free carriers generation.
In addition we have L

√
µ ≈ L⊥ - the transverse cavity dimension. Therefore, the condition

|bmax|ρ > 1 results in the following requirement for the fluence: Φ > ε2L⊥Eg/
(
4π2χf

)
. For

L⊥ ∼ 10 cm, Eg ∼ 2 eV, f = 1, γ = 1012 s−1 and other parameters used above, one obtains
Φ > 400 J/m2. This value is close to the threshold 1 kJ/m2 of the permanent damage for the
GaAs material [29]. Note the strongly negative role of the factor ε2 ∼ 100 for the semiconductors
like GaAs. Consequently, materials with smaller ε would be much better. Concluding, the dream
to observe analogs of the DCE in cavities with periodical variations of the effective length is still
alive, although the main challenges are nowadays in the realm of the material science.
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[28] Uhlmann M, Plunien G, Schützhold R and Soff G 2004 Phys. Rev. Lett. 93 193601
[29] Huang L, Callan J P, Glezer E N and Mazur E 1998 Phys. Rev. Lett. 80 185–8


