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Abstract. This paper is concerned with the discussion of passivity results and the 

characterization of the regenerative versus passive systems counterparts in dynamic systems. In 

particular, the various concepts of passivity as standard passivity, strict input passivity, strict 

output passivity and very strict passivity (i.e. joint strict input and output passivity) are given and 

related to the existence of a storage function and a dissipation function. The obtained results are 

related to external positivity of systems and positivity or strict positivity of the transfer matrices 

and transfer functions in the time- invariant case. 

1. Introduction  

This paper discusses certain aspects of passivity results in dynamic systems as well as the 

characterization of the regenerative versus passive systems counterparts. In particular, the various 

concepts of passivity as standard passivity, strict input passivity, strict output passivity and very strict 

passivity (i.e. joint strict input and output passivity) are given and related to the existence of a storage 

function and a dissipation function. Basic previous background concepts on passivity and positivity 

have been given in [1-5], in [6-9], and also in [10-12] and in some related references therein. The 

obtained results are linked to the properties of external positivity of dynamic systems and the positivity 

and the strict positivity of the transfer matrices and transfer functions in the time- invariant case. The 

way of proceeding in the case of passivity failing or how to eventually increase the passivity effects via 

linear feedback is also discussed to the light of the synthesis of the appropriate feed-forward or feedback 

controllers or, simply, by adding a positive parallel direct input-output matrix interconnection gain 

having a minimum positive lower-bounding threshold gain which is also an useful idea for asymptotic 

hyperstability of parallel disposals of systems, [10]. Finally, the concept of passivity is discussed for 

switched systems which can have both passive and non-passive configurations which become active 

governed by switching functions. The passivity property is guaranteed by the switching law under a 

minimum residence time at passive active configurations provided that the first active configuration of 

the switched disposal is active and that there are no two consecutive active non-passive configurations in 

operation. 

2. Notation 

 00   RR , where   0:  rr RR ,  p,....,,p 21 , 

 00   RZ , where   0:  rr RZ , 

0D  denotes that the real matrix D  is positive definite while 0D denotes that it is positive 

semidefinite,  .min and  .max  denote, respectively, the minimum and maximum eigenvalues of the 

real symmetric  . -matrix,  PRĜ denotes that the transfer matrix  sĜ  of a linear time-invariant 
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system is positive real, i.e.   0sĜRe  for all 0sRe  and   SPRĜ  denotes that it is strictly positive 

real, i.e.   0sĜRe  for all 0sRe . 

A dynamic system is positive (respectively, externally positive) if all the state components  

(respectively, if all the output components) are non-negative for all time 0t for any given 

non-negative initial conditions and non-negative input , 1i  is the complex unity, mI  is the m -th 

identity matrix, the superscript T stands for matrix transposition. 

H is the Hardy space of all complex-valued functions  sF  of a complex variable s  which are 

analytic and bounded in the open right half-plane 0sRe  of norm 

     Ri 


 :0: FsupsResFsupF ( by the maximum modulus theorem) and RH is the 

sub set of real-rational functions of H . 

3. Basic Concepts and Results 

Consider a dynamic system eeG HH : with state nx R , input mu R  and output my R , where 

eH is the extended space of the Hilbert space H  endowed with the inner product  .,. from ee HH  to 

R  consisting of the truncated functions     uut   for  t,0  and   0tu ;    0Rt,t   and 

mu RR 0: . If eu H then 0t . 

Definitions [2].The above dynamic system is: 2L -stable if mLu 2  implies mLGu 2 . 

Nonexpansive if   and 0  s. t. for all eu H  

           duuduuG t Tt T
  0

2
0 ; 0t . 

Passive if 0  such that       duyt T
0  ; 0t . 

Strictly- input passive if 0 and  0 u  s. t.  

         duyduy t T
u

t T
  00 ; 0t . 

Strictly- output passive if 0 and  0 y  s. t.  

         dyyduy t T
y

t T
  00 ; 0t . 

Strictly input/output passive (or very strictly passive) if 0 , 0 u and  0 y  s. t. 

             dyyduyduy t T
y

t T
u

t T
  000  ; 0t . 

The constants  , u  and y are, respectively, referred to as the passivity, input passivity and output 

passivity constants. 

Proposition 1. Consider a linear time-invariant SISO (i.e. m=1) system whose transfer function 

 PRĜ . Then, the following properties hold: 

    00   duyt and     0tuty ; 0t  and, furthermore, if 2Lu  then 2Ly  so that the  system is 

passive. 

Assume, in addition, that  SPRĜ . Then        
t

u
t duduy 0

2

0  for any   ,t 0  

and some  0R , .  

If, furthermore, the system is externally positive in the sense that the output is non-negative for all 

time if the initial consditions are non-negative and the input is non-negative for all time,  then 

    00   duyt ; 0t  for any given non-negative initial conditions and non-negative input. 
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Define 
 
 

 
 






 i

i

i

i

R Ĝ

Ĝ
sup

Ĝ

Ĝ
R

Ĝ 










1

1

1

1

0

 as the relative passivity index of the transfer function 

 
 
   RH
sD̂

sN̂
sĜ (  sN̂  and  sD̂  being the numerator and denominator polynomials of  sĜ ). Then, 

the constraint 
   
    G

GG

GG
ĜG b

N̂D̂

N̂D̂
Ra 











ii

ii
is guaranteed for some    0RGGG ab,a if 

 
     ii GG

G

G N̂ReD̂Re

a

a 22

2

2

12

1






 
     ii GG

G

G N̂ReD̂Re

b

b 22

2

2

12

1





  ;  0R .If 

1Gb (respectively, 1Gb ) then  PRĜ (respectively,  SPRĜ ).  

Note that positivity is a very important property in some dynamic systems related to biological or 

epidemic-type models. See, for instance, [5-9] and references therein The generalization of Proposition 

1 to the multi input multi-output (MIMO) case (i.e. 1m ) is direct by replacing the instantaneous power 

   tuty  by the scalar product    tutyT in the corresponding expressions. In particular, the subsequent 

two results discuss how the basic passivity property can become a stronger property as, for instance, 

strict-input passivity or very strict passivity, by incorporating to the input-output operator a suitable 

parallel static input-output interconnection structure. 

4. Hyperstability and Passivity and Non-passivity of Dynamic Systems  

It turns out  that passive systems are intrinsically stable and either consume or dissipate energy for all 

time. However, unstable systems are essentially non-passive although some stable systems are also 

non-passive. Looking at Definition 3, we can give the next one: 

Definition 7. A dynamic system is said to be Non-passive (or Active or, so-called, Regenerative) if 

    00 
i

i
t

t T duy   for some unbounded sequences    0R
it

E  ,    0RitT  which satisfy the 

conditions: 

  iiii tt  110  ;  0Zi for some positive bounded sequence  i  , 


 ittti iii

~ 
110  ;  0Zi for some positive bounded sequence  i  , 

ii t, as i . 

The subsequent results follow: 

Proposition 2. The following input output energy constraint  is fulfilled by non-passive dynamic 

systems     


 duylim t T

t
0 . 

Note that non-passive systems can reach an absolute infinity energy measure in finite time under 

certain atypical inputs as, for instance, a second-order impulsive Dirac input of appropriate component 

signs at some time instant 1t  with   0tu  for 1tt  . Then,          


 duylimduy t T

t

t T
00

1 .  

Proposition 3. The following properties hold: 

A passive system cannot be non-passive in any time sub-interval. A non-passive system in some time 

interval cannot be a passive system. 

A passive system is always stable and also dissipative (i.e. the dissipative energy function takes 

non-negative values for all time) including the conservative particular case implying identically zero 

dissipation through time. 

A non-passive system can be stable or unstable (so, stable systems are non- necessarily passive). 

It is convenient to point out that, under certain rather weak assumptions about  the switching 

operation, a switched system is passive for all time under a switching law 

 q,....,p,p,...,,SW 121: 0 R  , with at least one configuration being active, if: 

a) The first active configuration of the switching law on   PSWt,t  10 0 . 

b) The switching law does not involve two consecutive active configurations being non-passive. 
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c) Each active passive configuration respects a minimum residence time, quantified in the proof,   

which can exceed a minimum common residence at such a configuration before next switching to 

another one to be marked as active. 

A related property to passivity is that of the hyperstability. Such a property is a strong absolute 

stability property implying that the controlled system is closed-loop stable under a very general class of 

feedback controllers which satisfy a so-called Popov ś inequality. An asymptotically hyperstable system 

has a non-negative bounded input- output energy for all time which is also (strictly) positive within any 

nonzero time interval Consider the subsequent dynamic system under eventually time-delayed 

disturbances, whose nominal feed-forward part is linear and time-invariant while the feedback 

controller is nonlinear and, eventually, time-varying belonging to a class to be characterized later on 

through a Popov ś inequality:  

                          ttubtxAtx 
 ;        ttudtxcty T

0    (1) 

                                     t,tytu     (2) 

where nx R is the state vector and  tu  and  ty are the scalar input and output, where A is  real square 

matrices of order n , b  and c are real n - vectors and d is a real scalar,  which is subject to initial 

conditions    ttx   for   00 ,ht   where  Mm h,hh 0: R  is a, in general, bounded 

piecewise-continuous time- varying internal delay and    n,h R 00:  is an absolutely  continuous 

n -vector function with eventual finite isolated  jump discontinuities,    00 x ,       t,tu,txt h   

and       t,tu,txt  0  are, in general, unstructured real n -vector disturbance functions which take 

account of parametrical and unmodeled dynamics uncertainties and noise disturbances being eventually 

subjected to an internal delay   mhth  , where  txh  is the strip    nt,thtx R: ; 0Rt .  

It is assumed that the disturbance functions are subject to certain regularity conditions such as 

Lipschitz continuous with respect to all their arguments in order to ensure the existence and uniqueness 

of the solution for any bounded admissible initial conditions. 

The nominal system is defined as the disturbance- free one, that is        0 t,tu,txt h , 

       00  t,tu,txt  . Note that the nominal system is delay- free. 

The function RRR  0:  defining the, in general, eventually non-linear and time-varying 

controller is any member of a class    satisfying a Popov ś -type integral inequality of the form: 

                        00
0

   d,yyt,t t
t

  (3) 

for some finite 0 R ;     RR 000 tt,t . Such a class    is said to be a hyperstable class of 

controllers and any    is said to be  -hyperstable. 

If the closed-loop system is globally stable for  any controller    with the forward- time 

invariant block having a positive real transfer function  then it is said to be  -hyperstable so that the 

sate and the output are uniformly bounded for all time for any given finite initial conditions. If, in 

addition,  the feed-forward block has  a strictly positive real transfer function then the closed-loop 

system is  -asymptotically hyperstable, so that the state and output are uniformly bounded and  

converge asymptotically to zero as time tends to infinity, that is, it is globally asymptotically stable for 

any finite initial conditions and any controller of class   . Thus: 

1) the feed-forward controlled plant is asymptotically hyperstable (or strictly positive, or strictly 

passive) if its transfer function is strictly positive real,  

2) the class   of feedback controllers is hyperstable if it satisfies the above Popov ś type inequlity, 

3) any closed-loop configuration of the controlled  -asymptotically hyperstable (respectively, 

 -hyperstable) plant with a controller of class    (i.e. with a  -hyperstable controller) is 

 -asymptotically hyperstable (respectively,  - hyperstable). 



MSEE 2018

IOP Conf. Series: Materials Science and Engineering 472 (2019) 012013

IOP Publishing

doi:10.1088/1757-899X/472/1/012013

5

Now, define truncate functions and h -delay truncated functions   for any T0 , respectively, as 

              
   










Tt

T,ttv
tvT

for0

0for
 ;  

    










Tt

T,thttv
tvhT

for0

for
  (4) 

It is assumed that nn
RRR  


0

1: , RRR  


0
1: n  and RRR  0:  satisfy standard 

regularity conditions (so as to guarantee the uniqueness of the state and output trajectory solutions for 

any given finite initial conditions on   00 ,h . Such solutions can be expressed by the concourse of the 

truncated relevant signals of the system by assuming that   0 tu , 

   0 tht and    00  tht ;  Rt , as follows:  

  0tx ;   0h,t   ;    ttx  ;   00 ,ht    

          dbuexetx tht
AAt  

 
00 ;  0Rt  

             ttuddbuexecty tht
AAtT

000   
   

        tdexecty th
AAtT

f 00   



 ;  0Rt  

where  ty f  is the forced output. It is well- known that the Fourier transform exist of any 

absolutely-integrable vector real function on   , . Truncated functions with no escape time instants 

over finite time intervals  always fulfil this property so that  for any finite  0Rt , the Fourier transforms 

 itû ,  itx̂ ,  iŷ ,   ihtˆ  and   i0ˆ  exist for all R . From Parseval ś theorem, it follows that 

the following input-output energy measure  tE  on the time interval  t,0  fulfils the subsequent 

associated relationships for any  0Rt : 

           duyduytE tt
t



 0  

    


dûŷ tt ii  



2

1
   tE

~
tE  0  ;  0Rt  

where the nominal value and its incremental term generated by the combination of the unforced output 

response and the contributions of the uncertainties to the output  tE0  and  tE
~

 

The main relevant result whose proof is omitted follows. 

Proposition 4. Assume that  

a) the dynamic system is under feedback control generated by any controller   , where the 

class    is defined by the Popov ś -type inequality , 

b) the nominal transfer function, namely, that when        0 t,tu,txt h  and 

       00  t,tu,txt  , satisfies  SSPRĝ   such that   dĝmin 





i
R0

for some real 

constant  10 , , where the direct input-output interconnection gain d  is positive, 

c)      t~tE
~

 ;  0Rt  for some real function RR 0:~  subject to the constraint: 

      du~t~ t 2
0 ;  0Rt   

Thus, the following properties hold: 

(i) 2Lu (the space of square-integrable functions on  ,0 ) ,   0tu as t ,   



tusupess
t 0R

, 

  



tE
~

sup
t 0R

,    tE0 and     tE00 ;   Rt  for any non-identically zero control on a 

time interval  00 t,  of nonzero measure if d~   . Also,  tx  and  ty  are uniformly bounded for all 

time for any given admissible  finite initial conditions. 
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(ii) If  
2

 and 0 are in 21 LLL   then the state       nn,h,x RR  000:  and output 

      RR  n,h,y 000:  are uniformly bounded for each given vector function of initial 

conditions. As a result, the closed-loop system is  - hyperstable for the class    of output feedback 

controllers defined by the Popov ś inequality. Furthermore, if those unstructured functions describing 

the uncertainties are identically zero then the closed-loop system is  -asymptotically hyperstable for 

any finite initial conditions, i.e. globally asymptotically stable for any member of the class    of 

output feedback controllers being defined by the Popov ś inequality.  

Proposition 5. A switched system is passive for all time under a switching law with at least one of the 

inviolved configurations is active, if for  it  ;  0Zi  being the sequence of switching time instants: 

a) The first active configuration of the switching law on  10 0 t,t   is passive 

b) The switching law does not involve two consecutive active configurations being non-passive. 

c) Each active passive configuration respects a minimum residence time, quantified in the proof, 

which can exceed a minimum common residence time which depends on the parameterizations and can 

be explicitly calculated. 

5. Conclusions 

Some relationships between positivity, passivity and hyperstability in dynamic systems, as well as and 

the characterization of the regenerative versus passive systems counterparts, have been described and 

mutually inter-linked in a simple way. 
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