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Abstract. The article presents research studies, the aim of which was to assess the influence of 
mining impacts in the form of surface deformation, as well as mining tremors, on technical wear 
of traditional residential development in a mining area. A group of 170 single-family masonry 
residential buildings located in the mining area of the Legnica-Głogów Copper District (LGOM) 
were analysed. The assessment was based on the model of technical wear, developed using SVM 
(Support Vector Machine) method in ε-SVR regression approach. In order to interpret the metrics 
describing the monotonicity of the nonlinear ε-SVR model and to confirm the established trends, 
they were confronted with the results obtained using a multiple linear regression model (MLR - 
Multiple Linear Regression). The results confirmed the view that it was the age of the masonry 
buildings located in the Copper District which had the dominant influence on their technical 
wear, while the influence of mining impacts was to be considered secondary, however, 
significant in the statistical sense. 

1.  Introduction 
As far as development in mining areas is concerned, the effect of long-term impacts of continuous 
surface deformation, or possibly mining tremors, on the acceleration of the technical wear of buildings 
appears to be a major problem. This is not the case of the safety of a structure itself or its users, but 
lower comfort of its use as well as a reduction in its value. Technical wear sz is material (physical) wear 
associated with the changes occurring in the matter of a building, interpreted as a decrease in 
performance or value of its individual elements. The dominant component of the technical wear sz is 
natural wear, mainly related to the aging process of building materials in specific environmental and 
operating conditions [1]. The impacts of mining exploitation are an additional factor, random factor in 
the statistical sense, which might accelerate the process. 

The research studies presented in the article aimed to assess the cumulative impact of mining factors 
(surface deformation and mining tremors) on technical wear of traditional residential development in 
the mining area. 

Given the fact that the course of technical wear is described by the domain of various factors having 
a potential impact on its approximated value, and that this mapping is implicit and non-linear, the SVM 
(Support Vector Machine) method was adopted in ε-SVR regression approach. Additionally, in order to 
verify the obtained trends and to enable the interpretation of the metrics used at the stage of studying 
monotonicity of the ε-SVR model, the range of the analysis was extended by developing a 
multidimensional linear regression model (MLR). 
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A group of 170 single-family masonry residential buildings located in the mining area of the Legnica-
Głogów Copper District (LGOM) were subjected to the research studies. 

2.  Research methodology 
The study was based on the database containing information about 170 single-family residential 
buildings, with their age not exceeding 35 years (e.g. Figure 1), located in the same town, within the 
harmful impacts of the Mining Plant of KGHM “PolskaMiedź” S.A. (the mining area of Legnica-
Głogów Copper District). All the buildings included in the analysis have the traditional masonry load-
bearing structure and during the construction stage preventive measures were taken to protect them 
against mining impacts in the form of continuous surface deformation. The study comprised the 
structures which in recent years had not been subjected to major building interference such as complete 
renovation, refurbishment or reconstruction. Survey works were performed as part of the research 
studies carried out in recent years at the Department of Engineering Surveying and Civil Engineering of 
AGH University of Science and Technology. The degree of technical wear sz was determined for each 
structure individually using the weighted average method. The method was based on the individual 
assessment of the degree of wear of particular components and then, by assigning appropriate weights, 
on the determination of the weighted average degree of the wear of the entire building [1]. 

Figure 1. Numerical model of the flyover Examples of building structures included  
in the analysis. Source: own work 

3.  Indices describing the impacts of mining exploitation on the studied development 
Indices describing mining impacts were determined individually for each building, based on the data 
from the mine. 

3.1. Risk index of continuous surface deformation 
The subject of the study were buildings of traditional structure, up to 3 stories tall, and of  
a relatively small size of the horizontal projection. Therefore, in accordance with the current knowledge 
[2], specific horizontal deformations ɛ [mm/m] were adopted as a basic measure of the risk of continuous 
surface deformation [3]. 

At this point, attention should be paid to the study results of the relationship between technical wear 
and specific horizontal deformations, as presented in [4]. 

In this study, significant correlations were obtained with relatively large coefficients for the 
horizontal tensile strains ɛ(+). They were much higher than those obtained for both ɛmax and ɛ(-), even 
though relative to the absolute value of the strain ɛ(-), they were often larger than ɛ(+). The results 
confirm the view that for this type of development, it is the tensile strain, and not the category of the 
land, which are the basic measure of the risk associated with the formation of a mining subsidence. 

Therefore, basing on the information about mining exploitation carried in the studied areas, each 
building was assigned maximum values of specific horizontal tensile strains ɛ(+) which occurred 
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throughout the whole period of the building existence. This index was determined basing on the 
geometric and integral model of mining impacts. 

3.2. Index of the impact of mining tremors 
To study the impact of mining tremors on the technical wear, an index of dynamic influences asg, 
accelerating the technical wear of a building structure, was adopted. It was defined in [5]. It was 
demonstrated that the acceleration of the process of technical wear of building structures is significantly 
influenced by both the number and intensity of seismic phenomena affecting the structure during the 
entire period of its use. The index asg for a structure located in a position with the coordinates (x,y) is as 
follows - Eq. (1): 

 ( ) ( ) ( )yxayxayxa kH

n

k
kHsg ,;,,

1

2
=

=  (1)

where:  
(x,y) - coordinates of the structure, 
aHk (x,y) - the peak value of the horizontal component of vibration acceleration in the frequency range 

of up to10 Hz for the k-th tremor, calculated at the point (x,y), 
n - number of tremors that occurred during the use, and for which the peak value calculated at the 

point (x,y) was greater than the threshold value ap, 
ap -  according to [5], a predetermined threshold value ap = 0.12 m/s2. 
 
A confirmation of the assumption of a significant influence of the number of tremor impacts on the 

technical wear of a building structure, even with relatively small peak values of acceleration, are the 
results of the study of relationships between the technical wear of buildings and mining tremors 
presented in [6]. As a measure of risk, in addition to asg, also amax index was adopted, which is the 
maximum of the peak values of the horizontal component of the acceleration of vibrations. The yielded 
results are significant correlations of medium and high values of coefficients between the degree of 
technical wear and the index of dynamic influences asg. On the other hand, in the studies of dependence 
between the technical wear and amax index, no significant correlation in any of the studied groups was 
obtained. 

To assess the influence of tremors occurring over the period of thirty years of exploitation of copper 
deposits, seismic mining catalogues were used, as well as statistical relationships between the 
parameters of vibrations, the force of a tremor and the distance from the epicentre. 

As a result, for all the studied buildings located in the mining area, peak values of aH were calculated 
(of the horizontal component of vibration acceleration in the frequency range of up to 10 Hz), excited 
at the location of a structure, by all the tremors that occurred in the period from its construction until the 
day when survey works were performed, and then for each building asg index was determined. 

4.  Assessing the effect of mining impacts on the technical wear of masonry buildings located in 
Legnica-Głogów Copper District 
To model the course of technical wear in time of the studied structures, the SVM (Support Vector 
Machine) method in ε-SVR regression approach and the method of multiple linear regression (MLR) 
were used. 

In both approaches, parameters of the models described by the domain of the factors having a 
potential impact on its approximated value which can be interpreted in terms of monotonicity of 
approximators. 

 
4.1. Research Methodology 
4.1.1. Modelling technical wear using SVM in regression approach (ε-SVR). In the course of the search 
for a method allowing for the modelling of non-linear technical wear of buildings in multidimensional 
field of input variables, it was decided to apply the SVM method, which is a special type of Artificial 
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Neural Network (ANN). e.g. in [7, 8]. The regression approach of the SVM method, also known as ε-
SVR (Support Vector Regression) [9, 10], in the context of the structure and operation of the fixed 
system, is very similar to neural networks with radial basis function RBF (Radial Basis Function Neural 
Network – [11, 12]. The difference is revealed in the process associated with learning such systems and 
determining their structure [13]. 

The main advantages of the SVM method, which resulted in the decision to use this method in the 
study, included [9, 10, 14]: 

• a possibility to present the course of technical wear in the multidimensional domain of 
explanatory variables, 

• a possibility to implement a non-linear mapping, 
• no need to give a starting form of mapping, 
• a possibility to conduct a sensitivity analysis with respect to the developed model. 

The SVM method is a tool used both in solving the problems of classification and regression. Given 
the purpose of the research, regression approach called ε-SVR was used  [15]. 

The main advantage of the ε-SVR method, in contrast to typical artificial neural networks, is the 
uniqueness of the optimization process. This process is brought to the problem of solving quadratic 
programming, thereby eliminating the problem of oscillation around local minima of cost function. An 
additional advantage resulting directly from a deterministic description of the ε-SVR approximator (Eq. 
(2)), which preserves the continuity and differentiability in the field of input variables, is a possibility 
to carry out a sensitivity analysis of the developed model. 
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where: 
αk,αk* - Lagrange multipliers, 
K(x, xk) - is the kernel of the system (Chang and Lin 2011). 
 
The main problem during the model development stage in ε-SVR approach is to determine the optimal 

values of the parameters C, ε and γ. Parameter  γ is a result of adopting radial basis function, and, 
according to the Eq. (3), for the developed approximator  it defines its width [13]. 
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On the other hand, the parameters C and ε, resulting from the formulation of the original problem to 

minimize the objective function Eq. (4), are respectively a regularization constant and a tolerance margin 
[14]: 
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With inequality limitations of the function: 
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where: 
w - vector of weights, 
ξk*, ξk–positive slack coefficients, 
C - regularization constant, ε - width of the margin of tolerance, b - free term. 
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An attempt to determine the sought parameters, hereinafter referred to as hyperparameters, was made 
in [16] where, basing on the concept of Meta-SVM [17], the measure of the FPE error (Final Prediction 
Error) [18] was additionally used. In the further course of the research, however, the author decided to 
apply a more efficient method based on the concept described in (Chang and Lin 2011). The ultimate 
stage of this method is the n-fold cross-validation carried out on the pre-prepared sets: training and 
testing ones. For each iteration of the validation, a certain range of the examined parameters C, ε and γ 
is assumed, expressed on a logarithmic scale. Then, according to the proposed optimization algorithm 
grid search, minimization of the objective function is performed, adopted as MSE (Mean Squared 
Error), averaged from all n testing sets used in the validation. As a result, an optimal with respect to the 
strategy set of the sought hyperparameters C, ε and γ is obtained. The grid search algorithm is a gradient 
method of global minimization [19]. However, it has a certain drawback which concerns a necessity to 
provide ranges for the sought area and giving a starting point. Therefore, in this work, instead of the grid 
search algorithm, the optimization method was used, which is based on genetic algorithm. The applied 
method is also a gradientless algorithm that allows to specify the global minimum. A description of 
genetic algorithms used in minimization of the function of several variables can be found in [20, 21]. 

 
4.1.2. Sensitivity analysis using SVM model. The study used a two-stage methodology for evaluating the 
effect of individual input variables on the course of the approximated value of the technical wear of 
building structures. 

The first stage studied how the basic measures of fitting the model changed in relation to the reference 
data when the subsequent input variables were excluded from its description. To assess model sensitivity 
for the removal of subsequent input variables (i) from its description, an auxiliary measure was 
introduced, described by the following formula - Eq. (6): 
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where: 
Ri - coefficient of linear correlation between the model prediction and the reference data, when the i-
th input variable has been removed from the approximator description, 
Rzup - coefficient of linear correlation between the model prediction and the reference data, when all 
the input variables are active. 
 
Auxiliary measure Wi

corr determines the relative degree of worsened fitting quality – the higher the 
value of Wi

corr, the more important the variable which has been removed, for the description of the 
modeled phenomenon. 

The second stage of the study assessed the influence of individual variables in the context of 
monotonicity of the ε-SVR model. For this purpose, analogy with radial neural networks (RBF – Radial 
Basis Function Neural Networks) and the procedure proposed, e.g. in [22, 23] were used. By simulating 
the model, the course of its derivatives was analyzed, which were calculated relative to the various input 
factors. In order to assess the effect of each factor on the modelled course of technical wear, an auxiliary 
measure Msens was introduced. This measure is a vector with a number of components equal to the 
number of analyzed factors, and its individual components are values of partial derivatives, averaged 
from all simulated cases. A reference diagram for developing components of the vector Msens is presented 
in Table 1. 

It should be noted that the results of the first stage reflect the influence of a given factor on explaining 
the variability of the modelled process, contained in the observed data. 

On the other hand, the second stage of the study is focused on a qualitative assessment of the 
influence of a given variable on the course of a modelled phenomenon, which is reduction or increase 
in the value of technical wear. 
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Table 1. Calculation scheme for component determination for the measure Msens 

 Variable x1 Variable x2 … Variable xi … Variable xK 

Msens 

N
dx
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4.1.3. Study results. The primary database was divided into a training data set (120 cases) and a testing 
set (50 cases). Tables 2 and 3 illustrate a comparison of the main characteristics of the model as well as 
the values of the errors for the training and testing data sets. 
 

Table 2. Comparison of the main characteristics of the model 

Model parameters 

Regularization 
parameter C 

Width of kernel 
functions σ 

Width of tolerance 
band ε 

Number of support 
vectors 

5.88 0.27 0.11 35 
 

Table 3. Comparison of errors and coefficients of linear correlation between model prediction  
and references for training and testing data sets 

Results of linear correlation Training data set (N = 120) Testing data set (N = 50) 

MSE 0.0181 0.0142 

Coefficient of correlation R 0.819 0.786 
 
The results contained in Table 2 illustrate that spontaneous expansion of the ε-SVR model resulted 

in the reduction in the size of its structure (the number of Support Vectors nSV = 35) by 60% compared 
to the size of the training data set (120 cases). This is a result of regularization, which occurs in this type 
of approach. 

On the other hand, the values of MSE (Mean Square Errors) and the values of the coefficient of 
linear correlation between the model prediction and the data observed for the training and testing data 
sets contained in Table 3, exhibit high accuracy of the model relative to the observed data, as well as 
good regularization properties. 

The analysis of the significance of input variables of the model of technical wear, developed for the 
building structures of traditional construction, located in the mining area, was carried out in two stages, 
according to the methodology described in section 4.1. Results of the first test stage have been 
summarized in Tables 4 and 5, and the effects of the second stage in Table 6. 

Analysis of the results contained in Tables 4 and 5 allows to conclude that the age of the building t 
has the greatest influence on the variability of the model, whereas both mining factors have a definitely 
lower impact intensity, both at a similar level. 

The research results contained in Table 6 illustrate that the increase of each of the analyzed variables 
entails the increase of the approximated value of the degree of technical wear, however, for the mining 
factors, the variable asg is accompanied by a more intense increase. 
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Table 4. Comparison of the values of the coefficient of linear correlation Rafter the removal  
of individual variables 

Coefficient of linear correlation R 
between model prediction and given 

references [%] 

Input variables 

Age of the building 
structure t 

Maximum horizontal 
strain εmax 

Index of dynamic 
Influences asg 

21,55 inactive active active 

81,59 active inactive active 

79,98 active active inactive 

81,96 active active active 
 

Table 5. Comparison of the values of the Wi
corr index 

 
Input variables 

Age of the building  
structure t 

Maximum horizontal  
strain εmax 

Index of dynamic  
Influences asg 

corr
iW  [%] 73.71 0.41 2.42 

 
Table 6. Comparison of the values of the Msens  index 

 
Input variables 

Age of the building  
structure t 

Maximum horizontal  
strain εmax 

Index of dynamic  
Influences asg 

Msens   0.78 0.0178 0.20 
 

4.2. Modeling the course of technical wear using multiple linear regression (MLR) 
4.2.1. Research methodology. The model of the phenomenon developed using multiple regression 
allows, just like the ε-SVR method, to examine the cumulative effect of the factors determining a given 
process on the course of this process. The MLR method allows for a linear mapping of the process, 
specifying the strength of the individual factors in determining its monotonicity. Studies of the technical 
wear performed by the MLR method have been discussed in detail in [4] In this paper, the MLR model 
is a comparative basis for the results obtained by the ε-SVR method. 

As a result of the multiple regression analysis, we obtain coefficients of multiple correlation R and 
determination R2, regression coefficients (B) and standardized regression coefficients (BETA). The 
values of BETA coefficient allow to compare relative contribution that each independent variable brings 
in the prediction of the dependent variable. The results also present the significance level p for the 
determined parameters of the model (B), which justifies if a given variable should be included in the 
model description as statistically significant. Additionally, F-test is calculated, which refers to the entire 
model and verifies the significance of the slopes (B), the coefficient of determination and the 
significance of the overall linear relationship between the dependent variable and the input variables. 

 
4.2.2. Study results. According to the adopted assumptions, using multiple regression, an analysis of the 
influence of three independent variables: age of the building t, index of horizontal tensile strain ɛ(+), 
and index of the impact of mining tremors asg, on the degree of technical wear sz was performed. The 
results of the analysis are contained in Table 7. 
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Table 7. Study results of the dependence between technical wear sz and the age of a building t, indices 

of mining impacts ɛ(+) and asg, using multiple regression analysis 

Factor 
(independent 

variable) 
 

Standardized  
regression 
coefficient 

BETA 

Coefficient  
of the independent 

variable  
B 

Significance 
level 

 
p 

Correlation 
coefficient 

 
R 

Coefficient  
of determination

 
R2 

t 0.741 0.754 0.000 

0.812 0.660 
ɛ(+) 0.162 3.372 0.001 

asg 0.134 2.595 0.000 

Free term - -5.759 - 
 
The presented results demonstrate that the effect of the analyzed factors explains in total about 66% 

of the variability of technical wear of the studied development. 
On the other hand, the values of standardized regression coefficients (BETA) point to time (the age 

of the buildings t) as dominantly affecting the technical wear of the studied development, which is at 
the level of 74.1%. The effect of mining impacts, compared to the age, must be considered secondary 
(16.2% and 13.4%, respectively), but statistically justified, as proven by significance levels p determined 
for the parameters describing mining impacts. A relatively greater influence of specific horizontal tensile 
strains ɛ(+) on the degree of wear was identified, compared to mining tremors represented by asg. 

5.  Conclusion 
The analysis described in the article aimed to assess the influence of mining impacts on the technical 
wear of 170 masonry residential buildings, with their age not exceeding 35 years. 

The study was based on the SVM method in ε-SVR regression approach, as well as the method of 
multiple linear regression (MLR). Additionally, in order to identify the measures specifying the 
contributions of the individual factors to the course of the modelled phenomenon, a sensitivity analysis 
of the model was performed in the ε-SVR method. These analyzes were carried out in the context of 
variability and monotonicity of the approximator, expressed with ε-SVR. 

Both developed models are characterized by similar levels of accuracy. Additionally, in the case of 
the ε-SVR method, no effects of overfitting were observed, and therefore this model can be considered 
correct in terms of generalization of the acquired knowledge. 

Results of the analyzes performed both by the ε-SVR and MLR methods, identified the age of the 
building as having the dominant effect on the technical wear of masonry residential buildings located in 
Legnica-Głogów Copper District (LGOM). The influence of this factor explains the variability contained 
in the raw data at the level of 74% (see: Tab. 5), which makes the contribution of mining factors of 
secondary importance. 

Moreover, due to the monotonicity of the modelled process, the sensitivity analysis of the ε-SVR 
model revealed a clear effect of ground vibrations, expressed by the index asg (see: Tab. 6). This result 
is not confirmed by the tests using multiple linear regression. This may be a confirmation of the alleged 
non-linear nature of the phenomenon described by the domain of mining factors. 

These results should be treated as an assessment of the phenomenon on a global scale. Determining 
the influence of mining impacts on the technical wear of a single building structure requires individual 
assessment procedure. 

The effects of the presented studies demonstrate the usefulness of the SVM method in analysing 
technical condition of complex building structures in the presence of a variety of input variables. Such 
studies, however, require relatively numerous databases. It is planned that further research will take into 
account the construction factors, such as repairs and preventive protection against mining impacts. 
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