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Abstract. Composite materials are considered as complex systems with corresponding system 
attributes. The necessity of studying the properties and structure of composite materials as a 
whole as systems connected by relationships that generate integrative qualities is pointed out. 
When synthesizing a composite, it is proposed to use the principle of simulability: a complex 
system is represented by a finite set of models reflecting a certain facet of its essence. This 
makes it possible to investigate a certain property or group of properties of a building material 
using one or several simplified (narrowly-oriented) models. Identification of new properties 
and entities is done on the basis of building up a set of simplified models (the reflection of a 
complex system as a whole is provided by the interaction of simplified models). Using the 
principle of purposefulness makes it possible to describe the quality of the material by some 
functionality for an integrated system. Internal causal relationships, the existence and function 
of the composite material (system) are based on the principle described physicality (any system 
regardless of the inherent physical laws of nature, possibly unique); no other laws are required 
to describe the operation of the system. The study of material properties is made on the basis of 
parametric identification of kinetic processes of formation of physical and mechanical 
characteristics of composite materials. For special purpose building materials, a number of 
particular criteria (properties) are determined, and their description is formalized using the 
principal component method (reducing the dimensionality of problems in assessing the quality 
of a material with simultaneous determination of a set of independent partial criteria). The 
results of the practical application of the method for evaluating the quality of composite 
materials with special properties are presented. Among the priority criteria were: strength, 
density and porosity of the material. Their dependences on the coded volume fractions of 
aggregate and filler were obtained by methods of mathematical experiment planning. It is 
shown that for most properties one can confine oneself to second-order differential models; 
each of the properties of the composite is considered as one of the particular criteria. 
Appendices are given to the development of composite materials for various purposes. Using 
the methods of control theory, an analytical description of the durability of the composite 
material is given; parametric identification is reduced to the determination of time constants in 
a second-order differential model, taking into account their dependencies on the prescription 
and technological parameters. Assessment of durability of a radiation protective composite 
taking into account dependences of the main properties on the prescription and technological 
parameters received on the basis of the generalized model is made.  

1.  Introduction 
The necessity to solve the problems of engineering protection of personnel, population, equipment, 
buildings and structures in a number of industries, including the storage of highly toxic and radioactive 
waste and materials, significantly increased the relevance of creating composite materials with special 
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properties and the possibility of regulating their structure. The complexity of the problem makes it 
necessary to develop fundamental foundations and new mathematical methods, algorithms for 
interpreting the full-scale experiment on the basis of its mathematical model. An important task is not 
only the creation of a theoretical basis for obtaining various materials with a given set of operational 
properties, but carrying out in-depth analysis using the system approach and control theory. 
Investigation of the properties and structure of composite materials is carried out as integral systems 
with elements connected by relationships that generate integrative qualities. Based on this, the 
methods, stages of studying and developing the material are determined. The role of random factors is 
determined from the standpoint of the synergetic approach, and the possibilities of analyzing the 
impact of these factors on the properties of systems are indicated.  

From the standpoint of the homeostatic approach to composite materials, mechanisms and 
permissible limits for controlling integrative parameters of the structure and properties of the material 
are determined. Systemic, general homeostasis ensures the preservation of integrative quality, and the 
particular - the specific component. When the integrative parameters of the system approach the 
maximum permissible, a systemic crisis occurs - the system enters the zone of bifurcation. Proceeding 
from this, the durability is determined.  

2.  Parametric identification of kinetic processes  
Parametric identification of the kinetic processes of the formation of physico-mechanical 
characteristics of composite materials [1 ... 3] reduces to the study of the system 

Axx =   

(in most cases - the second order). In fact, the problem reduces to solving the operator equation 

( ) 02 =Δ+− Xpp σ  (1) 

or   
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In this case, the roots of the characteristic equation will be equal to 
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    Without loss of generality we can put 10 =x . 
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At the inflection point ( пt  - parameter optimization) ( ) 0=пtx . We have 
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The value пt , determined from the experimental plot, can be used for monitoring or for 
approximate calculation m : 
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The identification method was used when setting up a particular composite model with known 
parameters 2;1,5,0 21 === mTT . Here the exact solution has the form: 
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The numerical values ( )ktx  of  are given in the table: 
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tey −= 21  2 1,8 1,55 1,2 0,74 0,27 0,164 0,1 0,037 0,013 0,074 
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42,32211 −=+ aa . 
From the last equations, two of the coefficients ija  can be determined for two given coefficients. If 

the inflection point  пt  is determined by the form of the kinetic process, then for the definition of m  it 
is better to use formula 
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in the presence of realizations ( )tx  and  the estimate ( )tx  is better defined by the relation ( ) 21
1

T
t

m

п
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3.  Ranking of specific quality criteria  
Traditionally, material quality management is performed on the basis of a set of experimentally 
determined basic properties [5 ... 7]. The number of elements of this set is established proceeding from 
a differential threshold at allocation of classes of quality (with maintenance of a necessary level of a 
signal-to-noise ratio). As a rule, partial criteria (assessment of the completeness of their set is 
subjective) are contradictory and dependent. Recently, a chemometric approach has been used to 
reduce the dimensionality of problems in assessing the quality of a material and to determine the set of 
independent criteria. Here we use projective mathematical methods that allow us to extract latent 
variables in large data sets and analyse the connections in the system under study. Unfortunately, 
despite the simplicity and effectiveness of this (often visual) approach to the analysis of experimental 
data, it is practically not used in construction materials science. The method of the principal 
components of K. Pearson is also effective; consists in finding a multidimensional ellipsoid of 
dispersion of empirical data in the factor space, which is determined by the location and lengths of the 
semi axes (main directions and standard deviations in the space of the principal directions). 

Using the method of the main components of the PCA (Principal Component Analysis), the quality 
criteria were ranked according to the obtained values for the experimental samples. The first main 
component was defined as the direction of the largest change (spread along some central axis-a new 
variable) of data njpiqij ,1,,1, ===q  in the Descartes coordinate system pqqOq ...21  (approximately 

purely geometrically, refinement - based on the best linear approximation of all the points ijq  by the 
least squares method). The second main component was taken (by definition!) orthogonal to the 
direction of the first (the next largest change in values occurs along it), and the third component -  
perpendicular to both the first and the second (lies in the direction in which the third largest change in 
the data occurs). The following main directions were determined in a similar way. The resulting 
system of principal components gives a set of orthogonal axes, each of which lies in the direction of 
the maximum data change in order of decreasing these quantities. Due to the orthogonality of the 
principal components in the resulting new set, the variables - linear combinations of the original 
variables no longer correlate with each other. The transition from the original Descartes coordinate 
system to a new set of orthogonal axes allows one to get rid of the relationship between the criteria. 
The upper limit of the number of principal components does not exceed { }pn ,1max − . The effective 
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dimension of the space of principal components is determined by the rank of the matrix ijq=q . The 
last major component lies in the direction in which the difference between the samples will be minimal 
(in fact, the distinction of the samples is impossible here, since all these differences are only random 
noise). The main components with large numbers were considered as directions in which the main 
component is noise. Thus, the PCA method allowed the decomposition of the original data matrix into 
a structural part (several main first components lying in the directions of maximum changes) and to 
noise (directions in which the difference between the position of the points is small and can be 
neglected). 

The computing method admits a compact representation. Here, for sampling { }iux , ki ,1= , Nu ,1= ,  
the values of the primary characteristics (k - the number of features, N - the number of measurements), 
the following procedures are performed successively.  

1. Centering of characteristics (partial criteria): 
iuiui xx −=ξ , ki ,1= , Nu ,1= , 

 

where 
=

=
N

u
uii x

N
x

1

1  selective average of i-th attribute. 

2. Definition of the covariance matrix: 
( ) ΞΞ== T

ijcC , 
where ( )uiξ=Ξ  is the matrix of centered features. 

3. Determination of eigenvalues λ i  and eigenvectors of the covariance matrix (always has k 
real non-negative eigenvalues, including multiple ones). 

4.  Sorting of eigenvectors in order of decreasing eigenvalues. The unit eigenvectors defining 
the principal directions make the rows of the matrix L of the k-th order. A linear homogeneous 
operator with matrix L transforms the original centered data into uncorrelated and with decreasing 
variances. 

Unlike the method of least squares, the assumption of the normal distribution of empirical 
information is not used in the method of principal components (applicable for arbitrary data). 

Lowering the dimension (separation of the input data into the content part and noise) within the 
framework of the principal component method is achieved by discarding directions corresponding to 
small eigenvalues. Apparently, there are no general rules for choosing the number of significant 
principal components (it is determined by the values of the eigenvalues of the covariance matrix, the 
research problems (visualization on the plane or in space), the intuition of the researcher, etc.). 

Let us present the results of the practical application of the method of principal components in 
evaluating the quality of composite materials with special properties. Among the priority criteria were: 
strength, density and porosity of the material. The dependence of the porosity ( )211 , xxq ,%, compressive 
strength ( )212 , xxq , MPa and density ( )213 , xxq , kg/m3 from the coded volume fractions of the aggregate 
(lead shot with a diameter of 4-5 mm) [ ]6,0;5,01 ∈x  and the filler (barite, 250=ssS m2/kg) [ ]4,0;35,02 ∈x
, obtained by methods of mathematical planning of the experiment: 

( ) ;83,333,196,044,318,5, 2
12121211 xxxxxxxq +−++= ( ) ;87,243,172,35,22, 2

121212 xxxxxq −+−=  
( ) 2

11213 7,1811477143, xxxxq −−= .  
The covariance matrix obtained on the experimental values uiξ  of the listed indicators has the form: 
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









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

−

−
=

−
=

5,21149,035,1
149,0220,0023,0
35,1023,0169,0

1
1

ui
T

uiN
C ξξ  ; 

226,01 =λ , 077,02 =λ , 6,213 =λ - a Eigen values, ( )0;975,0;221,01 =v , ( )063,0;221,0;973,02 −=v , 
( )998,0;0;063,03 −=v - a Eigen vectors of the covariance matrix: 
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226,01 =λ , ( )0;975,0;221,01 =v ; 
077,02 =λ , ( )063,0;221,0;973,02 −=v ; 
6,213 =λ , ( )998,0;0;063,03 −=v . 

The transition matrix to the principal components  1Г , 2Г , 3Г   has the form: 

















−

−
=

063,0021,0973,0
0975,0221,0

998,00063,0
L ; 

the main components are related to the initial exponents 321 ,, qqq  linearly: 
311 990,0063,0 qqГ +−= , 

212 975,0221,0 qqГ −= , 
3213 063,0021,0973,0 qqqГ +−= . 

By virtue of 13 λλ >>  and 23 λλ >> , the significant principal component is unique and corresponds 
to the principal direction 3v ; the vector of the first principal direction forms a small angle with the axis 
of the third original variable. The dominant is the average density (third indicator). 

Simulation of longevity 
In system theory, the destruction of a system is seen as a catastrophe associated with a disruption of 
homeostasis. It is believed that the systems always work as damaged: the system continues to function, 
since it contains many additional means of ensuring stability; its work can be considered as a 
permanently changing combination of failures and component recovery. When noticeable global 
failures occur, and several small, individually harmless failures, unite, a global systemic failure is 
created. Each of the failures provokes an accident (the result of a joint impact of failures); the 
possibilities for the occurrence of systemic accidents are much greater than the manifest incidents. 
With an aperiodic reduction in the performance characteristics of the material, the evaluation of 
durability is reduced to parametric identification of the function ( )tx  (Fig. 1, without loss of generality 
of reasoning for linear systems, the performance value can be assumed ( ) 10 =x ). 

Formally the function ( )tx  can be considered as a solution of the operator equation (1). 
     We have: 
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Figure 1. Parametrical identification of performance characteristics 
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Let us determine the value 21tt =  of  so that for 21tt ≥  with an accuracy of β % the approximate 
equality carry out 

( ) ( )tytx 1≈ . 
When 21tt ≥   
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= β  and after 21tt = , we can ( )ty2  neglect with accuracy β

%. 
     By virtue of ( ) ( )tytx 1≈  21tt ≥∀  
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In this way, ( ) ≈21tk mm
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

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
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The true value ( )21tk  is determined by the formula 

( )
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The value 2T  is determined at the end of the transition process ( )tx . Here ( )tx , in essence, is a 
solution of equation 

( ) 012 =+ xpT ; ( ) 2T
t

cetx
−

= ; 
c  is determined from the initial condition ( ) ( )ktxx =0 , ( )0xc = . 

We have 
( )

( )
( )

( )
2

2

1

0

00 T

Tk
e

ex

xk
tx
x

Τ

Τ−
Τ ===

Τ+
. 

Then 

Τ

Τ=
k

T
ln2  (2) 

 
With known tabular values of the performance characteristics of the material, it is determined: 

( )
( )ktx

xk 0= ;  
2

1ln
T
tk k= ,

Τ
= ΤkT ln

2 . 

By 1k  from 
mkk

m
mk

11

1
1

−

−
=  is determined m , and then the second optimization parameter 

m
TT 2

1 = . (3) 

The proposed approach was used to determine the longevity of the radiation-protective composite 
according to (2) and (3), taking into account the dependences of the basic protective properties on the 
prescription technological parameters obtained on the basis of the generalized model [7 ... 9]. 
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4.  Conclusions 
1. Composite materials are presented as complex systems with corresponding system attributes.  
2. The technique of objective evaluation of formation of properties and durability of composite 

materials on the basis of mathematical modeling is given. 
3. In modelling the principles of modelling, purposefulness and physicality are fully used. 
4. The study of material properties is made on the basis of parametric identification of the kinetic 

processes of formation of physico-mechanical characteristics of composite materials. 
5. Reducing the dimension of tasks to assess the quality of the material with the simultaneous 

determination of a set of independent partial criteria is made on the basis of the method of 
principal components. 

6. The results of the synthesis of special-purpose materials are presented, based on a set of 
ranked partial criteria (porosity, compressive strength and density). 
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