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Abstract. Numerical analysis of the propagation of an edge crack in a plate was performed in 
this study. The theoretical model of fatigue crack progression is based on linear fracture 
mechanics. Calibration functions for short edge cracks are applied in stochastic models and the 
stochastic dependencies between input random variables and the fatigue resistance are 
described. Attention is focused on the domain of the relative crack length. Results are obtained 
using the Latin Hypercube Sampling method. Sensitivity analysis is evaluated using methods 
ranging from the screening method to quantitative techniques based on correlation 
measurements. Pearson correlation coefficient, Spearman rank-correlation coefficient and 
Kendall rank correlation coefficient are used for the evaluation of sensitivity analysis. The 
study demonstrates the application of several numerical simulation procedures covering both 
qualitative and quantitative sensitivity analysis using a one-sample base. The effects of non-
linear stochastic dependencies and outliers on the results of sensitivity analysis are discussed. 

1.  Introduction 
Problems with older steel bridges are mainly related to insufficient care and associated decreasing 
durability and lifespan. State-of-the-art reviews on the assessment of the fatigue life of steel bridges 
are published, for e.g. in [1-5]. The lifetime of Czech steel bridges is affected by the type of steel used, 
the type of structure chosen and the ever-increasing traffic intensity. Experimental research identifies 
fatigue characteristics of building structures [6]. The degradation of fatigue life can be countered by 
timely repairs using information from regular inspections, analysis of the resistance and stress states of 
the load bearing structural parts [7]. The finite element method is the main tool for the analysis of the 
limit states of load bearing structural systems [8-10] including the related geotechnical aspects [11]. 
Other significant parameters include the strength material characteristics of steel, which have been 
monitored over a long period of time [12-14]. An important part of theoretical analysis is the computer 
modelling of fracture tests [15, 16] and reliability assessment of the structure based on statistical [17, 
18], probabilistic [19-22], sensitivity analysis [23-27] and the optimization branch of non-linear and 
non-convex programming problems [28]. Probabilistic methods [19] along with linear fracture 
mechanics [29] and experimentally obtained data [6] are used to identify stochastic interactions of 
failure prediction [30]. Several methodological complications resulting from the identification of 
higher statistical characteristics of variables in the limit state functions were found [30]. This overview 
also includes decision-making methods developed for dealing with uncertainties and applied to the 
solution of civil engineering problems [31-32]. This article deals with the solution of some 
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methodological problems we face in stochastic applications of results of experimental research [6] in 
linear fracture mechanics. 

2.  Linear fracture mechanics 
Linear elastic fracture mechanics examines the propagation of crack length a from initial size a0 to the 
critical size acr, then fatigue fracture occurs. The crack grows depending on the number of fatigue 
cycles N. Fatigue crack growth is generally described using Paris’s law expressed by Paris and 
Erdogan [34]: 

 ୢ௔ୢே = 𝐶(𝐾)௠ (1) 

 

where m and C are Paris-Erdogan law constants that depend on the material, environment and stress 
ratio and ΔK is the range of the stress intensity factor during the fatigue cycle, which can be 
determined as:  

 𝐾 = 𝜎√𝜋𝑎𝐹(𝑎/𝑊) (2) 

 
where F(a/W) is the calibration function (geometric factor) describing the course of crack propagation 
with respect to the sample geometry and Δσ is the quasi–constant stress range. Integration of Paris’s 
law can be written as: 
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where NF is the total number of cycles at crack growth from a0 to acr, Δσ is the quasi–constant stress 
range. C, m are material constants according (6) 

( ) mccC 21log +=     (4) 
 

where c1, c2 can be considered as c1 = -11.141, c2 = -0.507 for steel grade S235 [16]. F(a) is the 
calibration function evaluated from experimental research for pure bending in the form published in 
[6], see also Figure 1. The full line in Figure 1 represents pure bending, the other curves are obtained 
for three- and four-point bending specimen configuration, see the detailed specification in [6]. 

In this article, a new curve is determined (4), which supplements the experimental results published 
in [6] and presented here in Figure 1 on the interval of relative crack length a/W∈ 〈0,  0.5〉. 

 𝐹 ቀ ௔ௐቁ = 1.114 − 0.8975 ቀ ௔ௐቁ + 2.752 ቀ ௔ௐቁଶ + 1.1323( ௔ௐ)ଷ  (5) 
 

where W is specimen width in the direction of crack propagation. The question, which arises, is for 
which aspects of the reliability analysis can the extended domain a/W∈ 〈0,  0.5〉 be beneficial and 
under what circumstances can the standard interval a/W∈ 〈0,  0.3〉 be considered. 
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Figure 1. Experimentally determined calibration functions f(a/W) [6] 

The propagation of a fatigue crack is a stochastic phenomenon brought about by inherent 
uncertainties stemming from material properties, environmental conditions and cyclic loads. 
Stochastic processes thus provide a suitable framework for the modelling and prediction of crack 
propagation. 

3.  Statistical and sensitivity analysis 
The influence of uncertainties can be considered using stochastic modelling strategies. The modelling 
of fatigue crack propagation using the framework of stochastic processes has been addressed in several 
papers. This framework enables the introduction of certain variabilities to the typical deterministic 
laws to describe fatigue crack growth under constant or variable amplitude fatigue loading, see for e.g. 
[34]. 

The main analysed variable in the assessment of limit states is the fatigue resistance NF. The input 
random variables of the probabilistic model are listed in Table 1. The statistical characteristics of input 
variables were taken from [35] with the exception of the second and third variables, which are 
introduced with approximately the same variation coefficients as in [35]. Initial crack size a0 has a log-
normal probability density function (pdf), the other random variables have Gauss pdf with the 
exception of Δσ, which is modelled with Hermite pdf, which is available in the software Statrel 3.10.  

 
Table 1. Input random quantities 

Random 
variables 

 Symbol 
 

Distribution Unit Mean 
value 

Std. 
deviation

Skewness Kurtosis 

Initial crack a0 Log-norm [mm] 0.526 0.504 3.73 33.75 
Critical crack acr Gauss [mm] 200 16 0 3 

Specimen width W Gauss [mm] 460 23 0 3 
Parameter  m Gauss [-] 3 0.03 0 3 

Stress range Δσ Hermite [MPa] 61.36 10.22 -0.2495 2.9782 
 
Statistical and sensitivity analysis is performed with ten thousand samples using LHS [36, 37]. 

Statistical characteristics of NF evaluated for this number of samples are: mean value 526E3 and 
standard deviation 502E3. Statistical dependencies between NF and input random variables in Table 1 
are depicted in Figure 2 to Figure 7. Figure 2 and Figure 7 show the non-linear dependence between a0 
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vs NF and Δσ vs NF. The smaller the size of the initial crack a0 the greater the value of NF and the 
smaller the value of the quasi–constant stress range Δσ the greater the value of NF. 

 
 

Figure 2. Sampling-based dependence between a0 and NF. 
 

 
 

Figure 3. Sampling-based dependence between acr and NF. 
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Figure 4. Sampling-based dependence between NF and NF (v2), NF and NF (v3). 
 
Correlation analysis, which is used to quantify the strength of the statistical relationship between 

two random variables, is among the core research paradigms in nearly all branches of scientific and 
engineering fields. If the correlation is large and positive, there is a high probability that large (small) 
values of one variable occur in conjunction with large (small) values of another. If the direction is 
reversed the correlation should be large and negative. 

Figure 3 shows the stochastic dependence between acr and NF. The samples shown in Figure 3 are 
divided into two parts. Samples acr with size greater than 230 mm are in the grey section. The higher 
the value of random realization acr the greater the probability that a/W will be higher than the domain 
(4). The right side of Figure 3 represents the same realizations acr, however, NF is calculated with the 
difference that brittle fracture can occur only for random realizations of critical crack depths smaller 
than 230 mm (variant v2). Practically, random realizations of acr were fixed at the value of 230 mm in 
cases where this value was exceeded. It is apparent from Figure 3 that runs NF calculated in this 
manner are practically identical with the results on the left side of Figure 3. The left side of Figure 4 
shows that the correlation between both variants is 1. On the right side of Figure 4, the study is 
evaluated using the same methodology, but for the fixed value of 4.6 mm (variant v3). In this case, the 
correlation is no longer 100%, because the achieved number of cycles in variant v3 is significantly 
lower than in the basic (first) variant of the NF calculation. 

Sensitivity analysis is performed using Pearson correlation coefficients between input random 
variables and NF. It is apparent form Table 2 that the variability of Δσ and a0 has a dominant effect on 
NF. The influence of the other variables is relatively small. Pearson correlation coefficient is the basic 
method for evaluating statistical dependencies that reflect linear dependence. Pearson correlation 
coefficient is greatly influenced by outliers found in this presented study. 
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Figure 5. Sampling-based dependence between W and NF. 
 
An extension for the evaluation of certain types of non-linear dependencies is presented by 

Spearman rank-correlation coefficient. It is a nonparametric correlation coefficient, which is robust 
with regard to outliers and generally to deviations from normality because, like many other 
nonparametric methods, it only works with the rankings of the observed values. Unlike Pearson 
correlation coefficient, which describes the linear relationship between input and output variables, 
Spearman rank-correlation coefficient describes how well the relationship between two random 
variables corresponds to a monotonic function, which may be non-linear. This Spearman rank-
correlation coefficient property is often used in non-linear structural mechanics, see e.g. [38]. The 
comparison of both approaches in Table 2 shows that the results are almost identical. This could be 
due to the small sensitivity of Spearman rank-correlation coefficient to outliers. However, outliers may 
be an important part of reliability assessment, and therefore should be components of sensitivity 
measurements in advanced building industry [39].  

The third approach to evaluating sensitivity is using Kendall rank correlation coefficient 
(Kendall's τ). Kendall's τ is a measure of rank correlation: the similarity of the orderings of the data 
when ranked by each of the quantities. Kendall's τ has greater sensitivity to certain non-linear 
relationships. 

Table 2. Correlation coefficients 
Random variables  Symbol 

 
Pearson 

correlation 
Spearman 
correlation 

Kendall's tau 
correlation 

Initial crack a0 -0.2999 -0.2999 -0.4216 
Critical crack acr 0.0025 0.0025 0.0088 

Specimen width W -0.0123 -0.01233 -0.0052 
Parameter  M -0.1004 -0.1004 -0.1078 

Stress range Δσ -0.6566 -0.6566 -0.5488 
 
Other possible approaches to sensitivity analysis include variance-based sensitivity indices [40], 

SAFD sensitivity assessment [41] or measuring the differences between the unconditional failure 
probability and conditional failure probability on certain input variables [42], which may be 
particularly suitable for probabilistic assessment of reliability. 
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Figure 6. Sampling-based dependence between m and NF. 
 

 
 

Figure 7. Sampling-based dependence between σ and NF. 

4.  Conclusions 
Stochastic dependencies between input random variables and the fatigue resistance evaluated using 
linear fracture mechanics as the total number of cycles at crack growth from initial crack size to 
critical crack size are analysed in this article. The article presents further processing of experimentally 
obtained results in the course of the calibration function. The calibration functions for short edge 
cracks are compared for various loads and the basic calibration function for pure bending is presented 
on an extended domain of relative crack length. It is shown that the calibration function describing the 
course of crack propagation can be reliably defined on the basic domain of the relative crack length. 

Sensitivity analysis showed the dominant effects of initial crack size and quasi-constant stress 
range on the fatigue resistance. The results of sensitivity analysis obtained using Pearson correlation 
coefficient were the same as results obtained using Spearman rank-correlation coefficient. Sensitivity 
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evaluated using Kendall's τ is slightly different. The obtained sensitivity analysis results are in contrast 
with the expected influence due to the occurrence of outliers. In further research it is necessary to 
focus on other types of sensitivity analysis aimed at the analysis of the influence of outliers on 
structural reliability. 
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