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Abstract. Automotive Air conditioning (AAC) is a unit that uses a high measure of energy from 

a car total engine power. In equatorial climate country such as Malaysia, high usage of AAC is 

inevitable due to hot, humid and rainy weather throughout the year. An understanding about the 

energy and exergy losses is essential to find the potential improvement to maximise the 

efficiency in an AAC system. The main objective of this study is to study the performance of 

energy and the exergy of a compact automotive air conditioning system. This cycle uses R134a 

and PAG lubricant as the working fluid. The different ranges of initial refrigerant charge and 

compressor speed have been tested on the AAC to evaluate the effect of different major 

thermodynamic parameters in performance. A theoretical model is developed to work out the 

thermodynamic parameters such as coefficient of performance, exergy destruction ratio, 

component efficiency defect as well as the dimensionless exergy balance for the AAC system 

components. The results of this study have shown that most of the energy has been destructed in 

evaporator part. In order to maximize the efficiency and performance of AAC system, further 

optimization needs to be done in order to improve the evaporator component. 

1. Introduction 

Automotive air-conditioning (AAC) system is as important providing thermal comfort to the user in a 

vehicle passenger compartment. It has a large influence on our overall intellectual activity during 

travelling. AAC is one of the systems that helps us experience a comfortable ride as it provides the 

optimum temperature inside our vehicle and improving the indoor air quality inside the vehicle. It is 

very important to implement the AAC system in a country that experiencing summer and hot conditions, 

especially in equatorial or tropical countries like Malaysia that experiencing hot and humid climate 

throughout the year. 

The AAC system work using the thermodynamic principle of vapour compression refrigeration cycle 

[1]. Çengel and Boles [2] found that in a vapour compression refrigeration system, large amounts of 

heat are being released and absorbed into and from the environment due to thermodynamic processes. 

The temperature in the designated area can be lower down by using the thermodynamic principle. In the 

vapour compression refrigeration system, various irreversibility occur which affect the performance of 

the system. Yumrutaş, Kunduz and Kanoğlu [3] shown that the major source of irreversibility in the 

vapour compression refrigeration cycle is due to heat transfer between the system and the surrounding 

http://creativecommons.org/licenses/by/3.0
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environment which take place at a finite temperature difference. The performance of system degrades 

in the form of losses due to irreversibility.  Dincer and Al-Muslim [4] found that the optimization of the 

cycle can be done by minimizing the irreversibility. Bejan [5] found that the evaluation of the losses in 

the vapour compression cycle can be done by considering individual thermodynamic processes that 

make up the cycle. 

There is two methods used in the analysis of thermal systems which are energy analysis and exergy 

analysis. According to Dinçer and Rosen [6], energy analysis is based on the first law of thermodynamics 

while exergy analysis is based on both the first law and second law of thermodynamics. Exergy analysis 

is one of the technique for thermodynamic analysis. Bridges, Harshbarger and Bullard [7] found that the 

limitation of energy analysis is it does not provide any information on the location of inefficiencies in 

the system. A study from Dinçer [8] show that the exergy analysis can better and more accurately 

identify the causes and location of thermodynamic losses as well as performance degradation in the 

system. Saidur, Masjuki and Jamaluddin [9] found that exergy calculations on the process can provide 

deeper insight in the system as well as new improvements as a complement to the present materials and 

energy balances. Exergy analysis is a powerful tool in optimization, improving, designing and 

performance evaluation of energy systems. Exergy analysis is a powerful tool in optimization, 

improving, designing and performance evaluation of energy systems. Ahamed, Saidur and Masjuki [10]  

found that exergy is a better analysis as it considers the irreversibility and presents the actual 

performance of the system. The aim of exergy analysis is to determine the maximum performance of 

the system and to the sites of exergy destruction. Ozgener and Hepbasli [11] shown that exergy analysis 

can be performed on each of the components in the system and it can describe all the losses in the system 

components. The performance of the system can be optimized by using the result from exergy analysis. 

The direction for potential improvement in vapour compression refrigeration system can be shown by 

identifying the main sites of exergy destruction were studied by [10].  
There are few studies in the current literature deal with energy and exergy analysis of automotive air 

conditioning system [12-14]. However, there are no experimental data for exergy efficiency are reported 

for small AAC system mostly used in compact cars. This work is a continuation of the previous study 

done by Redhwan et al. [15] where the study only stops at energy analysis of the same AAC system.  In 

this paper, an energy and exergy analysis of an AAC system using R134a is carried out experimentally. 

The analysis takes into account the variation of mass charge of R134a, as well as different compressor 

speed. 

 

2.0 Methodology 

 

2.1 AAC Experimental Setup.  

The AAC experimental setup was modified from the previous research [15, 16]. The original AAC 

system has been re-used which consist of four primary components: swash plate piston type compressor, 

a fan-cooled microchannel condenser, a thermostatic expansion valve and a microchannel evaporator. 

The system components are mounted on a frame by imitating the actual position as in the original car. 

The evaporator component is inserted into an insulated water tank containing circulating water inlet and 

outlet. The hot water goes into the tank and transfers its thermal energy to the evaporator. The difference 

of the water inlet and the outlet is used to calculate refrigeration mass flow rate and cooling capacity in 

accordance to the ASHRAE standard of Standard 41.9-2000: Calorimeter Test Methods for Mass Flow 

Measurements of Volatile Refrigerants.  

     The AAC setup in this experiment uses refrigerant R134a and PAG lubricant as the operating fluid. 

The measurement of temperature and pressure will be taken using the T-type thermocouple and pressure 

transducer. The temperature and pressure reading will be taken and stored in the PC using data 

acquisition hardware. The location of all sensors is shown in Figure 1. The experimental setup will be 

placed in a special room with constant ambient temperature, which 25 °C with an increment of ± 0.1 °C 

and constant humidity. The uncertainty for each measurement devices is summarised in table 1. 
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Figure 1. Schematic diagram of Automotive Air Conditioning experimental set-up. 

 

Table 1. The summary for the uncertainties of the experimental parameters. 

 

Parameters Full scale Uncertainty 

pressure gauge, psi 0- 200 ±0.1 

K-type thermocouples, K 233.15 to 648.15 ±1.5 

water flow meter, LPM 0-100 ±0.1 

Weighing scale, kg 0-25 ±0.001 

Tachometer, rpm 0-20,000 ±2 

 

2.2 Performance analysis of the AAC system 

 

2.2.1 Energy analysis of the AAC system. The model according to the first law of thermodynamics 

analysis were derived for AAC vapour compression refrigeration system setup. In order to evaluate the 

performance of energy for this setup, a steady-state process was assumed. The pressure drops in the 

pipelines and components, loses in the heat transfer, the kinetic, chemical and potential energy of the 

system were neglected. 

     Among the important energy parameter for refrigeration performance is the coefficient of 

performance (COP), which is the ratio of the cooling capacity and the compressor power input which is 

expressed by: 
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Hence, the cooling capacity, LQ  are expressed as: 
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The refrigerant mass flow rate, rm  are obtained by using the following relation: 
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And the compressor power, inW  are expressed as: 

 

)( 52 hhmW rin    

 

2.2.2 Exergy analysis of the AAC system. The model according to the second law of thermodynamics 

analysis were derived for AAC vapour compression refrigeration system setup. The limitation of the 

energy analysis is that it cannot find the nature of irreversibility in the refrigeration system. There are 

several irreversibility such as heat transfer, finite temperature difference and friction losses in all 

elements. Exergy analysis is a better tool to understand the magnitude, location and cause of the losses 

in a thermal system. The destroyed exergy that represents real losses in the quality of energy can be 

identified in exergy balance. The overall exergy balance to evaluate the irreversibility of system 

component is expressed as: 
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The exergy rate, E  are expressed by:   
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The specific exergy,    is expressed by: 
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The differences of exergy rate are simplify to the following relation [10, 17]:  
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The respective exergy balance for each component of AAC system is written as: 

 

Compressor: 
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Condenser: 
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THXeredre IEEE  cov56
  

THXorTHX EssThhmI   )]()[( 5656
 

 

Evaporator: 
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The total exergy destruction at all component were expressed by: 
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2.3 Experimental procedures.  

Before starting the experiment, all the conditions of the equipment used and conditions of the test setup 

must be checked and ensured that all safety precautions were followed before the experiment started. 

The experimental procedure of the AAC performance investigation will be conducted by following the 

regulations and recommendations from the standard of SAEJ2765 [18]. The AAC experimental test set-

up was vacuum first by using a vacuum pump to remove the moisture and to determine if there are leaks 

in the system.  The compressor lubricant is filled into the compressor with 110 mL. The charging 

machine will be utilized to charge the refrigerant R134a into the AAC system. The desired amount of 

refrigerant charge is charged into the system. The refrigerant tank will be weighed on a weighing scale 

(11) 

(16) 

(19) 

(18) 

(14) 

(13) 

(12) 

(15) 

(17) 



1st International Postgraduate Conference on Mechanical Engineering (IPCME2018)

IOP Conf. Series: Materials Science and Engineering 469 (2019) 012042

IOP Publishing

doi:10.1088/1757-899X/469/1/012042

6

 
 
 
 
 
 

to determine the amount of refrigerant charge. The water in the calorimetric water tank was heated up 

until the temperatures for the inlets and outlets were the same. Then, the experiment started by starting 

the induction motor with a speed of 900 rpm, which is adjusted by the frequency inverter. The 

experiment was kept running for 20 minutes and the data reading of temperatures, pressure, power 

analysers, and water mass flow rates was taken for 10 minutes after that. The data will be recorded and 

analysed. The variables of the following parameters were used to evaluate the response of the AAC 

system performance [15]: 

 

1. Compressor speed: 900 rpm to 2100 rpm. 

2. Initial refrigerant charge: 95 g to 160 g                                                                    

 

 

3. Results and discussion 

 

3.1. Energy performance of the AAC system. 

The performance of the AAC cycle system is normally measured by COP of refrigeration obtained in 

the experiment. A high COP indicates that the VCRS system is well-functioned and running efficiently 

with the minimum energy required. Figure 2 shows the graph of COP for various initial refrigerant 

charges at different compressor speeds. This figure shows that the COP value tends to be higher with an 

increase in initial refrigerant charges. However, COPs decrease with the increase of compressor speed. 

The finding is consistent with the findings of past studies [16, 17]. It is noted that this AAC system is 

designed for a compact car which has a small engine. So, it is normal for the system to have a high value 

of COP because it needs to use the most minimum power from the engine to cool down the car cabin. 
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Figure 2. Variation of COP for various initial refrigerant charges at different compressor speeds. 

 

     Figure 3 shows the graph of cooling capacity against different compressor speeds for various initial 

refrigerant charges. It can be seen that the cooling capacity for the higher refrigerant charge is better 

than the lower refrigerant charge. The addition of the refrigerant will increase the pressure in the AAC 

system which also increases the enthalpy differences in the evaporator. It may be seen that cooling 

capacity of the system increase with the compressor speed increment. This is due to the increase of 
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refrigerant mass flow rate thus the heat transfer at evaporator also increase. Figure 4 demonstrates the 

effect of compressor speed and initial refrigerant charge towards the compressor power. The figure show 

that the compressor power increases with the increasing amount of initial refrigerant charge and 

compressor speed. As the refrigerant charge and compressor speed increase, the compressor needs to 

work harder in order to pump the refrigerant throughout the AAC system. 
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Figure 3. Variation of cooling capacity against different compressor speeds. 
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Figure 4. Variation of compressor speed and initial refrigerant charge against the compressor power. 
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3.2. Exergy performance of the AAC system.  

Figure 5 shows the variation compressor speed of exergy destruction ratio at different initial refrigerant 

charges. According to the theory, the less EDR means that the system has lower irreversibility which is 

beneficial for the system. The increase of compressor speed has also increased the EDR. This is induced 

by the increase of the entropy flow throughout all the components in the system. The higher refrigerant 

charge also tends to have high EDR. These means that at a higher refrigerant charge, there is more 

irreversibility throughout the system. From the first stage analysis of the AAC system, the higher 

refrigerant charge gives out better performance in term of COP and cooling capability. Yet, further 

analysis also shows that the compressor work and EDR are better at a lower refrigerant charge. On the 

other hand, Figure 6 shows the average efficiency defects for all components in the AAC system. The 

lower value of efficiency defects means that less exergy was destructed at that particular component. 

From the figure, it can be concluded that the most exergy destructed at evaporator components. In order 

to maximize the efficiency and performance of AAC system, further optimization needs to be done in 

order to improve the evaporator component. In order to obtain a better energy and exergy performance 

of the AAC system, replacing the working fluid of the system with the nanolubricant is a recommendable 

option [16, 19-24]. 
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Figure 5. Variation of exergy destruction ratio at different compressor speed. 
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Figure 6. The average efficiency defects for all components in the AAC system. 

 

 

4. Conclusions 

The energy and exergy methods were utilized to analyse the AAC system with R134a refrigerant. The 

work was carried out by analysing the effect of the initial refrigerant charge and on the coefficient of 

performance, cooling capacity, compressor power, exergy destruction ratio, and efficiency defect of 

each component. The various compressor speed and mass of refrigerant charge of R13a show the 

different effect on the energy the exergy of the AAC system. This result shows that the COP value tends 

to be higher with an increase in initial refrigerant charges. However, COPs decrease with the increase 

of compressor speed. The cooling capacity of the AAC system increase with the increment of initial 

refrigerant charge and compressor speed. Also, the compressor power increases with the increasing 

amount of initial refrigerant charge and compressor speed.  The optimum thermodynamic performances 

were found at higher refrigerant mass charges. The exergy analysis show that the losses for the system 

tend to be higher at the higher compressor speed and higher initial refrigerant charge.  In addition, the 

evaporator component in the AAC system has the highest losses compare to compressor, condenser and 

the expansion valve of the system. Therefore, detailed optimization procedures should be made to 

minimize losses in all system components especially the evaporator component. 
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