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Abstract: The present study has dwelled on the implementation and evaluation of an artificial 

intelligence model for the determination of predicted foundry physical properties; linear 

expansion, bulk density, apparent porosity, thermal shock resistance cycles and cold crushing 

strength of carbon nanotube (CNT) reinforced silica refractory nanocomposite. A multi input 

and multi output Artificial Neural Network (ANN) models were developed using the Levenberg 

Marquardt Back Propagation algorithm (LMBPA) in the neural network toolbox of MATLAB 

R2015a to train/predict the foundry physical properties of the CNT-silica refractory 

nanocomposite bricks obtained experimentally from the previous study. The predicted models 

were compared with the experimental test results in order to evaluate the power and the accuracy 

of the artificial intelligence model for the characterization of the entire series of CNT-silica 

refractory nanocomposite bricks. The developed (LMBPA ANN) model satisfactorily predicts 

the foundry physical properties of CNT reinforced silica nanocomposite with a coefficient of 

determination (R2) in the range 0.75 ≥ 𝑅2 ≤ 1. 

1. Introduction to Artificial Intelligence Modelling 

Recently, artificial intelligence has been proven to be an important approach which has fascinated both 

the academic and industries in expanding  the attainable study output via the enhancement of inputs 

from the experimental results [1, 2]. The needs for artificial intelligence has been rooted as mentioned 

in the previous study; [3] as; (i) Nonlinearity permits improved data fit. (ii) Noise-insensitivity gives 

proper prediction in the presence of unreliable data and measurement errors. (iii) High parallelism 

signifies fast processing and hardware failure-tolerance. (iv) Learning and flexibility enable the system 

to modify its internal structure in response to environmental change. (v) And generalization allows 

application of the model to un-learned data.  

 Example of such artificial intelligence tools, which has been employed extensively in addressing 

numerous scientific problems is the artificial neural network (ANN) [4]. The artificial neural network is 

a computer-based programs inspired by the ability of the human brain in processing information. An 

outstanding attribute of the ANN is offering high computational power to model sophisticated nonlinear 

processes by repeated training of a set of data until the output provides an agreeable value that correlates 

with the expected target rather than depending on mere computer programs [5]. Generally, the artificial 
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neural network technique is highly powerful and provides satisfactory level of accuracy. In addition, 

their characteristics are of pivotal importance in capturing the different material characteristics. Beside 

this, ANNs are very useful in preliminary prediction of characteristics of new materials prior to 

experimental work. 

1.1. ANN Model Structure and Training Algorithm 

Figure 1, is the flow chart depicting a sequence and procedural steps in the development of the ANN 

models for the characterization of CNTs-reinforced silica refractory nanocomposites. As demonstrated 

in the figure, the predictive modeling in the present research can be categorised via three fundamental 

steps consisting of data acquisition, model training, and predictions.  

 

Start

Define input and output

Normalize the feed data set into Neural 

network tool box (MATLAB R2015a)

Specify the network architecture 

(Number of hidden layer and neurons)

Set training parameters

1. Training function

2. Performance function

3. Transfer function

4. Number of epochs

5. Learning rate

Execute network training

Error goal 

reached

(R2   0.95)

Select best architecture 

based on optimum number 

of hidden layers, neurons & 

variance based on R2, 

RMSE and MAE 

Network is ready for 

performance prediction

Define network failure

Stop 

Select another 

network architecture

Declare success and 

save trained weight 

 

Figure 1. The flow chart for developing the neural network models 
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1.2. The ANN Modeling 

A total of 11 data patterns; input and output, sourced from all sample formulations were employed in 

training the ANN. The overall data in the present model were divided into three classes, consisting of 

80% training, 10% validation and 10% testing. Furthermore, the input and output data have been 

normalized between 0 and 1 with the aids of the equation (1), to establish the proper implementation of 

the sigmoid transfer function. 

 

𝑋𝑛𝑜𝑟𝑚 =
𝑋 −  𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −  𝑋𝑚𝑖𝑛
                                                               (1) 

 

Where 𝑋𝑛𝑜𝑟𝑚 is the normalized value, 𝑋 is the true value of the variable, 𝑋𝑚𝑖𝑛 & 𝑋𝑚𝑎𝑥 are the minimum 

& maximum values of the dataset respectively. 

 The network model ANN, was programmed by a supervised multilayer perceptron (MLP) trained 

with the back propagation (BP) algorithm (section 1.3; Levenberg Marquardt (LM) algorithm) using the 

neural network toolbox of MATLAB R2015a. For the ANN; Figure 2, MLP ANN has two input 

parameters (Quartzite content and CNTs content) and five output parameters (linear expansion, bulk 

density, apparent porosity, thermal shock resistance cycles and cold crushing strength) was developed 

and evaluated. 

  

Figure 2. The ANN model for characterizing the CNTs-silica refractory nanocomposite 

 
 Due to the lack of standards for obtaining the required hidden layers and neurons, preliminary study 

revealed that two hidden layers provided the optimum performance value; minimum absolute error 

values for the training and testing datasets compared to one hidden layer. Thus, while evaluating the 

best number of neurons needed for building the neural network models, the number of hidden layers 

was set at two for the ANN model. Furthermore, after many iterations the optimum ANN topologies 

were chosen based on: (i) The hyperbolic tan-sigmoid transfer function; equation (2) in both hidden 

layers. (ii) A linear transfer function; equation (3) in the output layer. (iii) And best performance criteria. 

𝑇𝑎𝑛𝑠𝑖𝑔 (𝑛) =  
2

(1 + exp(−2𝑛)) − 1
                                 (2) 

𝑃𝑢𝑟𝑒𝑙𝑖𝑛 (𝑛) = 𝑛                                                                      (3) 
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While, the network performance and the goodness of fit of the various ANN topologies tested in the 

present study were assessed via three statistical parameters: R2 (coefficient of determination); equation 

(4). RMSE (root mean square error); equation (5). And MAE (mean absolute error ); equation (6) [6]. 

𝑅2 = 1 −
∑ (𝑦𝑝𝑟𝑒𝑑

𝑖 −  𝑦𝑡𝑎𝑟𝑔
𝑖 )

2𝑁
𝑖=1

∑ (𝑦𝑝𝑟𝑒𝑑
𝑖 −  𝑦̅)

2𝑁
𝑖=1

                                          (4) 

𝑅𝑀𝑆𝐸 =  √∑ (𝑦𝑝𝑟𝑒𝑑
𝑖 −  𝑦𝑡𝑎𝑟𝑔

𝑖 )
2𝑁

𝑖=1

𝑁
                                       (5) 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦𝑝𝑟𝑒𝑑

𝑖
𝑁

𝑖=1
−  𝑦𝑡𝑎𝑟𝑔

𝑖 |                                         (6) 

Where 𝑦𝑝𝑟𝑒𝑑
𝑖  is the predicted value, 𝑦𝑡𝑎𝑟𝑔

𝑖  is the real value retrieved from the experimental data,  𝑦̅  is 

the average of the actual observation and 𝑁 is the number of observations. 

1.3. Levenberg-Marquardt Back Propagation Algorithm (LMBPA) 

Levenberg Marquardt (LM) algorithm; a trust-region type of Gauss-Newton technique and a second 

order back propagation algorithm has been recommended as the preferred supervised training algorithm 

[7-9]. In order to minimize the error function until a particular minimum or stopping gradient is attend, 

the algorithm trains a neural network via repeated modification and update of the weight and bias values 

[10]. Thus, despite consuming a comparatively greater memory and processing resources than other 

algorithms, the Levenberg-Marquardt Back Propagation Algorithm has been selected in the present 

research as the training algorithm because of its high efficiency and accuracy. Figure 3 summarizes the 

standard LMBPA. 

 

             

Figure 3. Pseudo-code for LMBPA [11, 12]. 

 

 

Step 1: The weights and parameter are initialize μ (μ = 0.01 is suitable). 

Step 2: The sum of the squared errors over all inputs F(w) applying equation (7) is 

compute: 

F(w) = eTe              (7). 

Where w = [w1, w2… wn] includes all weights of the network, e is the error vector 

containing the error for all the training examples. 

Step 3: The weight increment Δw is computed via equation (8): 

Δw = [JTJ + μI]-1JTe            (8). 

Where J is the Jacobian matrix, μ is the learning rate that is to be updated employing 

the β based on the outcome. Specifically, μ is multiplied by decay rate, where β (0<β<1). 

Step 4: Applying w+Δw as the trial w, and judge: 

IF performance index F(w) < F(w) in step 2 THEN 

W = w + Δw 

μ = μ. β 

go back to step 2 

ELSE 

μ = μ/ β 

go back to step 4 

END IF 
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2. Performance of the LMBPA-ANN Models 

To validate the performance of the LMBPA ANN in determining the properties of various grades of 

CNT-silica refractory nanocomposites developed in the present work, different ANN topologies were 

deployed in training the network by altering the number of hidden neurons. Table 1, highlight the 

network performance for each of the ANN topology; hidden neuron configuration used in developing 

the ANN model. Over 15 different ANN topologies were tested by systematically permuting the number 

of neurons in the hidden layers (between 4 & 20) [13].  

 

Also, Figure 4 depicted the coefficient of determination (R2) values for the selected best topology models 

based on the training, validation and test data. 12-10 is the best topology for the developed ANN. 

 

Table 1. Variation of hidden neurons employed in developing the ANN model  

Hidden 

neurons 

Train Validation Test 

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

4-6 

4-8 

4-18 

5-5 

6-6 

5-10 

5-15 

10-5 

10-6 

10-12 

10-15 

10-20 

12-10* 

15-20 

20-20 

0.9764 

0.9744 

0.9596 

0.9753 

0.9023 

0.7930 

0.9209 

0.9798 

0.9209 

0.9656 

0.9264 

0.9644 

0.9690 

0.9803 

0.9593 

0.1990 

0.1925 

0.1792 

0.2115 

0.2068 

0.1999 

0.1865 

0.2113 

0.2209 

0.2000 

0.3181 

0.1843 

0.1762 

0.2108 

0.1995 

0.1649 

0.1521 

0.1418 

0.1724 

0.1634 

0.1628 

0.1392 

0.1665 

0.1600 

0.1659 

0.2016 

0.1442 

0.1392 

0.1691 

0.1678 

0.9757 

0.8645 

0.9848 

0.9780 

0.9845 

1.0000 

0.9418 

0.9692 

0.9994 

0.9779 

1.0000 

0.9749 

0.9994 

0.9773 

0.9618 

0.0412 

0.0113 

0.0066 

0.0022 

0.0091 

0.0620 

0.5071 

0.0505 

0.0781 

0.0027 

0.0323 

0.0028 

0.1808 

0.0562 

0.0247 

0.0412 

0.0113 

0.0066 

0.0022 

0.0091 

0.0620 

0.5071 

0.0505 

0.0781 

0.0027 

0.0323 

0.0028 

0.1808 

0.0562 

0.0247 

0.8448 

0.9989 

0.9726 

0.8370 

0.9407 

0.8680 

0.9900 

0.7887 

0.8980 

0.9596 

1.0000 

0.9860 

0.9838 

0.8162 

0.9234 

0.0124 

0.1602 

0.2840 

0.0199 

0.0505 

0.0017 

0.0503 

0.0204 

0.0044 

0.0405 

0.0096 

0.2428 

0.0407 

0.0277 

0.0005 

0.0124 

0.1602 

0.2840 

0.0199 

0.0505 

0.0017 

0.0503 

0.0204 

0.0044 

0.0405 

0.0096 

0.2428 

0.0407 

0.0277 

0.0005 
* Best model based on training, validation and test data. 
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Figure 4. Coefficient of determination (R2) of the selected topology. 12-10 for the ANN model, 

processed with the aid of MATLAB R2015a. 

 

     Based on the cumulative RMSE values of the various ANN topologies tested, the performance of the 

ANN model in predicting the output parameters is depicted in Figure 5. From both the Table 1 and 

Figures 4 and 5, it is clear that the best hidden neuron configurations on the basis of highest coefficient 

of determination (R2) and the lowest training error (RMSE and MAE) is 12-10 for the dataset trained in 

the model ANN. Hence, the 2-12-10-5 is selected as the preferred and the most accurate ANN 

architectures deployed in training and predicting the output parameters of the ANN. 
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 Figure 5. The performance of the ANN in characterizing CNT-silica refractory 

nanocomposites in terms of RMSE values. Where: L/E stands for linear expansion. BD; bulk density. 

AP; apparent porosity. TSC; thermal shock resistance cycles. CCS; cold crushing strength. And 

CRMSE; cumulative root mean square error.  

 

 As can be seen from Figures 6, the predicted values determined by using the optimum ANN 

topologies in the developed ANN model are close to the experimental results. Eventhougth the deviation 

of some points is obvious, especially for bulk density, thermal shock resistance cycles and cold crushing 

strength, which could be attributed to limited experimental dataset employed for training the ANN 

model. From the ANN model, R2 values ≥ 0.92 was obtained for the output parameters, with the 

exception of the bulk density where R2 value of approximately 0.75 was registered. 
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 Figure 6. Comparison between predicted and experimental results for the CNT-silica 

refractory nanocomposites  
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3. Conclusion 

As seen from the Figure 6, a good fit between the experimental values (the straight line) and the predicted 

values (the data points) signifies that the proposed ANN  model has the ability to adequately predict 

with a minimal error, the foundry physical properties; specifically, linear expansion, apparent porosity, 

thermal shock resistance cycles and cold crushing strength of CNT-silica refractory nanocomposites 

having formulations within the range of those values employed in the experimental process as mentioned 

elsewhere (PART A study). 
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