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Abstract. Zinc oxide (ZnO) nanocolumns have interesting material properties such as the 

direct band gap, tunable electrical conductivity, high optical transparency, high thermal 

conductivity, and large surface to volume ratio. Here we present the latest results on the 

enhancement of the infrared optical absorptance and ultraviolet photoluminescence in ZnO 

nanocolumns after hydrogen plasma treatment. The  photoluminescence in near UV region  at 

378 nm has been significantly enhanced by hydrogen plasma treatment at roo temperature 

whereas the defect related yellow photoluminescence (broad band 550650 nm) decreased. 

1.  Introduction 

ZnO is an  direct band gap semi-conductor with optical transparency in the visible spectral range, large 

exciton binding energy and related room temperature photoluminescence, tunable electrical 

conductivity and high thermal conductivity [1]. The native point defects [2] and oxygen vacancies [3] 

have been studied including their sensitivity to hydrogen. Hydrogen works as a shallow donor as 

shown by photoluminescence and photoconductivity measurements [4]. The hydrogen plasma 

treatment of single crystal ZnO passivates deep defects and enhances the band edge luminescence [5]. 

The layers of vertically aligned ZnO nanocolumns can be grown on glass substrate coated by thin 

polycrystalline films [6].  The nanostructure ZnO is attractive for applications in sensors and energy 

converters such as gas sensors [7] and biosensors [8] as  they  possess  useful electrical and optical  

properties  such as tunable electrical conductivity,  low optical absorbance and room temperature 

luminescence [9]. The annealing in H2 atmosphere at temperature above 800°C enhances significantly 

excitonic emission in ZnO nanoparticles [10]. The experimental results indicate that the OH and H 

bonds play the dominant role in facilitating surface recombination [11]. 

In our technology, the seeding layer is deposited by DC reactive magnetron sputtering of Zn target 

in the gas mixture of argon and oxygen plasma followed by the hydrothermal growth of ZnO 

nanocolumns. We have shown that the lack of the seeding layer leads to random growth of low quality 

nanocrystals [12]. We have found that the oxidation by the thermal annealing in air significantly 

reduces the near infrared optical absorption as well as the electrical conductivity in correlation with 

the increased  presence of non-lattice oxygen in the form of Zn–O–H and Zn–O−Zn   [13]. On the 

contrary, the increase of the infrared optical absorption and the electrical conductivity related to free 

carrier concentration was detected below the optical absorption edge after hydrogen plasma treatment 

http://creativecommons.org/licenses/by/3.0
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[14]. Our latest results showed a significant increase in the length of the ZnO nanocolumns grown 

under UV irradiation, as well as the improvement in their uniformity [15]. 

2.  Experimental 

2.1.  Sample preparation 

The seeding layers were prepared by reactive magnetron sputtering in the stainless-steel vacuum 

chamber using a Zn target and O2 plasma. The Zn target was sputtered in a capacitive coupled dc glow 

discharge plasma (grounded substrate holder at temperature 400°C, constant potential of +400 V on 

the target, DC current of 0.13 A) of a reactive mixture of argon (purity 99.99%, flow rate 2.0 sccm) 

and oxygen (purity 99.95%, flow rate 0,5 sccm) under pressure of 1 Pa [16]. 

The ZnO nanorods grew on nucleated fused silica glass substrates by hydrothermal process in an 

oil bath containing a flask with ZnO nutrient solution that contained a mixture of two equimolar 

aqueous solutions of 25 mM zinc nitrate hexahydrate (Zn(NO3)2.6H2O) and hexamethylenetetramine 

(C6H12N4). The resulting solution was preliminary stirred at 60°C for 1 h and then filtered using a 

polytetrafluoroethylene (PTFE) filter with a pore size of 0.45 µm. Finally, the samples was carefully 

washed in deionized water and purged in nitrogen. During the ZnO nanostructural growth, the 

substrates were mounted upside-down on a flat bottom quartz tube with an optical fiber placed inside 

the tube. The UV LED light source operating at power 1 W and the wavelength 365 nm was  turned on 

to perform the UV-assisted growth.   The average height of ZnO nanorods was 1250 nm and the 

diameter 200 nm. 

The plasma hydrogenation was done in the stainless-steel vacuum chamber at room temperature 

using 9 W rf discharge at 13.56 MHz, hydrogen flow 50 sccm and pressure 70 Pa. Prior the plasma 

hydrogenation, the vacuum chamber had been evacuated down to the pressure  vacuum 10-7 Pa. 

2.2.  Photoluminescence spectroscopy 

The steady state photoluminescence spectra (PL)  of the highly scattering thin films were measured in 

the 360660 nm spectral range using the f/4 double gratings monochromator  SPEX equipped with  

two 1200 grooves/mm gratings blazed at 500 nm. The photoexcitation was provided by the 1 mW 

LEDs at the wavelength 340 nm and optically filtered by narrow band pass optical filter featuring 90% 

transmission and OD 6 blocking outside of the 20 nm passband. The sample holder was positioned by 

two perpendicularly oriented translation stages manually driven by adjuster screws for precision 

motion. The emitted light was collected and focused onto the 1 mm wide monochromator input slit by 

two 90° off-axis mirrors coated by UV enhanced aluminum. The signal was detected by the multi-

dynode multi-alkali red sensitive photomultiplier (Photonis XP2203B) cooled to -12°C as the dc anode 

current from 1 pA up to 1 µA, coaxial cables  and the electrometer Keithley 6517. The dark anode 

current at 1000 V was 2 pA and the noise 0.5 pA.  The voltage was provided by the electrometer via 

coaxial cables.  The PL spectra were measured at room temperature and calibrated on the spectral 

efficiency of the spectroflouorometer [17]. 

2.3.  Photothermal deflection spectroscopy 

The photothermal deflection spectroscopy (PDS) measures directly the optical absorption of thin films 

with sensitivity of four orders of magnitude [18]. The PDS spectrophotometer used the 150 W Xe 

lamp as a light source and the monochromator equipped with three gratings blazed at 300, 750, 

1250 nm operating in a broad spectral range from ultraviolet to infrared region 250−1700 nm. The 

measured sample was immersed in transparent liquid with the probe laser beam passing parallel to the 

sample surface. The sample was illuminated by the monochromatic light. The heat absorbed in the 

sample deflected the probe laser beam detected by the position detector. Since the amplitude of the 

probe beam deflection was proportional to the optical absorption, the optical absorptance was 

measured by normalizing the signal on the deflection of the black sample. 
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Figure 1. Optical absorptance spectra of ZnO nanocolumns before (0 min) and 

after plasma hydrogenation (60 min) 

3.  Results and discussion 

Figure 1 shows the optical absorptance spectra of ZnO nanocolumns measured by the photothemal 

deflection before and after plasma hydrogenation. The optical absorption edge related to the ZnO band 

gap appears at wavelengths below 380 nm in both samples, The region of the free carrier absorptance 

appears in the near infrared region [19]. The infrared optical absorptance increased after hydrogen 

plasma treatment whereas the optical absorption edge has not been effected by plasma hydrogenation. 

Figure 2 shows the photoluminescence emission spectra (PL) of the as grown and plasma 

hydrogenated fused silica glass substrate coated by the very thin nanocrystalline ZnO thin film by 

reactive magnetron sputtering.  Since at 680 nm would appear the second harmonic of the excitation 

wavelength 340 nm, the emission spectra were measured only at wavelengths below 660 nm. On the 

other hand, the emission spectra were not measured at wavelengths below 360 nm because of the 

scattered excitation light.  Figure 2 shows that the PL signal of the substrate is very low in the visible 

region above 400 nm being comparable with the background noise level. The signal increases in UV 

below 400 nm probably due to the scattered excitation light. However, there is a detectable weak 

emission peak at 378 nm that has been related to  the indirect annihilation of intrinsic excitons with the 

simultaneous emission of one LO phonon [20]. Moreover, the emission related to deep defect states is 

visible in dark room by eye as a weak yellow luminescence in the spectral range 550650 nm [21]. 

Figure 3 shows the enhanced photoluminescence emission spectra of the plasma hydrogenated ZnO 

nanocolumns compared to the as grown samples before the plasma hydrogenation.  The strong 

emission peak appears centered at 378 nm. The broad defect related emission band in the spectral 

range 550650 nm is reduced. The exciton-related emission increased by two orders of magnitude 

after plasma hydrogenation while the defect related emission band significantly decreased. The 

optimal plasma hydrogenation has been found to be about 30 min. 
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Figure 2. Photoluminescence spectra of the nucleated substrate before 

(0 min) and after plasma hydrogenation (60 min). The PL spectra of 

ZnO nanocolumns before the plasma hydrogenation (NCs 0 min) has 

been added for comparison and they are also shown in figure 3. 

 

 

 

 
Figure 3. The enhanced photoluminescence emission spectra of the 

plasma hydrogenated ZnO nanocolumns compared to the as grown 

samples before the plasma hydrogenation.   

 

 



Development of Materials Science in Research and Education (DMSRE28)

IOP Conf. Series: Materials Science and Engineering465 (2019) 012008

IOP Publishing

doi:10.1088/1757-899X/465/1/012008

5

 

 

 

 

 

 

 

 

Figure 4 compares the optical absorptance and photoluminescence spectra of the hydrogenated 

ZnO nanocolumns (UV enhanced growth, 60 min plasma hydrogenation). The horizontal axis has 

been recalculated to energy expressed in eV. Since the photoluminescence measurements has been 

done with constant spectral resolution  2 nm, the photoluminescence spectra expressed as a function of 

the energy needs to be normalized by multiplying with factor E-2, where E is energy in eV [22].  This 

correction in conjunction with the conversion to line shape provides the properly treated emission data 

for quantitative analysis. Figure 4 shows that the photoluminescence peak has maximum at 3.3 eV just 

below the optical absorption edge. 

 

 
Figure 4. Comparison of the optical absorptance (A) and 

photoluminescence (PL) spectra of the hydrogenated ZnO 

nanocolumns (UV enhanced growth, 60 min plasma hydrogenation). 

4.  Conclusion 

The optical absorption and photoluminescence emission spectra of thin films of the ZnO nanocolumns 

were measured using optical methods optimized for optically scattering samples. These methods 

include photothermal deflection spectroscopy and the photoluminescence spectroscopy measured 

using the double grating spectrofluorometer with very low background scattered light.  The main 

advantages of our methods are the precise sample positioning of thin films, the high sensitivity and 

very low influence of the scattered light. This is very important for the highly scattering samples such 

as nanostructured thin films. We have observed that the exciton related emission band of ZnO 

nanocolumns centered at the wavelength 378 nm increased significantly after the hydrogen plasma 

treatment, whereas the defect related emission band at wavelengths 550650 nm significantly 

decreased. These effects correlate with the increase of the infrared absorption. The optimal plasma 

hydrogenation has been found to be about 30 min. 
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