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Abstract i

Abstract

We study a class of optimisation problems called minimazimal and maziminimal optimi-
sation problems. Such a problem I may be obtained from an optimisation problem II,
called the source optimisation problem, by defining a partial order < on the set of feasible
solutions F(z) for a given instance z of II. If the objective of II is to maximise (respec-
tively minimise) the measure over F(z), then the objective of Il" is to minimise (maximise)
the measure over all elements of F(z) that are maximal (minimal) with respect to <*.
Many optimisation problems occurring in the literature are minimaximal or maximinimal
optimisation problems.

In this thesis, we present the first unifying framework for formulating minimaximal and
maximinimal optimisation problems, based on this partial order concept. To accompany
this framework, we define a variety of partial orders, an important example being the
partial order of set inclusion. By considering various source optimisation problems from
the literature, and partial orders from our collection, we use our framework to obtain a
range of minimaximal and maximinimal optimisation problems. We study these individual
examples mainly from the point of view of algorithmic complexity.

The series of examples begins with the source optimisation problem CHROMATIC NUM-
BER, whose objective is to minimise the number of colours over all proper colourings of a
given graph. A related problem is ACHROMATIC NUMBER, in which we seek to maximise
the number of colours over all proper colourings of a given graph G such that each pair of
distinct colours occurs at the endpoints of some edge of G. We show that ACHROMATIC
NUMBER is a maximinimal counterpart of CHROMATIC NUMBER, by defining a partition-
related partial order on the set of all proper colourings of . A natural refinement of
this partial order gives rise to an additional maximinimal optimisation problem concerned
with graph colouring, which we call B-CHROMATIC NUMBER. The objective of this problem
is to maximise the number of colours over all proper colourings of G such that for each
colour i, there is a distinguished vertex of colour i that is adjacent to a vertex of every
colour j # i. Whilst the ACHROMATIC NUMBER problem has been studied for over thirty
years, the B-CHROMATIC NUMBER problem is new. We show that the decision version
of B-CHROMATIC NUMBER is NP-complete in arbitrary graphs, and also bipartite graphs.
However, we prove that B-CHROMATIC NUMBER is solvable in polynomial time for trees,
in contrast with ACHROMATIC NUMBER.

Many other examples of minimaximal and maximinimal optimisation problems relat-
ing to graph parameters have already been studied in the literature. We focus on graph-
theoretic minimaximal and maximinimal optimisation problems that may be obtained
from source optimisation problems using the partial order of set inclusion. In particu-
lar, we investigate source optimisation problems and their minimaximal or maximinimal
counterparts relating to vertex, edge and total covers, and independent sets, matchings
and total matchings in a graph. Each of the twelve optimisation problems implied by the
previous sentence has been studied in some form in the literature. We review existing
complexity results and obtain a number of new results, namely NP-completeness proofs
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for the decision versions of MAXIMUM MINIMAL TOTAL COVER in planar graphs, MINIMUM
MAXIMAL TOTAL MATCHING in bipartite and chordal graphs, and MINIMUM INDEPENDENT
DOMINATING SET (or MINIMUM MAXIMAL INDEPENDENT SET) in planar cubic graphs.

We also study source optimisation problems and their minimaximal or maximinimal
counterparts relating to strong stable sets, cliques, dominating sets, total dominating sets,
edge dominating sets and irredundant sets in a graph. Again, we survey existing algorith-
mic results, if any, for the twelve implicit optimisation problems, and obtain several new
results, namely NP-completeness proofs for the decision versions of MINIMUM MAXIMAL
STRONG STABLE SET in planar graphs of maximum degree 3, MINIMUM MAXIMAL CLIQUE
in general graphs, and MINIMUM TOTAL DOMINATING SET in planar cubic graphs.

For a graph G = (V, FE), a refinement of the notion of an independent set that is
maximal with respect to the partial order of set inclusion has been considered in the
literature. An independent set S C V' is k-mazimal (k > 1) if the removal of any r — 1
vertices from S, together with the addition of any r vertices from V\S (for any r < k),
results in a non-independent set. We consider minimaximal optimisation problems related
to finding minimum cardinality k-maximal independent sets in a graph. We focus mainly
on the case k = 2, and prove that the decision version of the problem of determining the
minimum size of a 2-maximal independent set is NP-complete, even for planar graphs of
maximum degree 3. However, for trees, we give a linear-time algorithm.

Many integer-valued graph parameters have fractional counterparts in the literature.
We define the concept of fractional graph optimisation problems, relating to fractional
graph parameters, and show how minimaximal and maximinimal versions may be defined,
using a partial order on functions. We formulate several examples of such problems using
the framework, and by considering appropriate linear programming constructions, we show
that the optimal measure (the solution to the evaluation version of the minimaximal or
maximinimal fractional graph optimisation problem concerned) is computable, has rational
values, and is attained by some function of compact representation which satisfies the
feasibility constraint for the minimaximal or maximinimal fractional graph optimisation
problem concerned. These three issues have implications for the algorithmic behaviour of
a minimaximal or maximinimal fractional graph optimisation problem. We also survey
complexity results relating to the source fractional graph optimisation problems and their
minimaximal or maximinimal counterparts that we define.

Minimaximal and maximinimal optimisation problems that relate to areas other than
the domain of graph theory are also studied in this thesis. By considering source op-
timisation problems belonging to the Garey and Johnson [Computers and Intractability,
Freeman, 1979] problem categories of Network Design, Sets and Partitions, Data Storage,
Compression and Representation, Mathematical Programming, and Logic, and by impos-
ing various partial orders, we formulate a range of natural minimaximal and maximinimal
optimisation problems. These interesting individual examples, most of which are new,
are minimaximal or maximinimal versions of the following problems (Garey and Johnson
problem numbers in brackets): LONGEST PATH (ND29), 3D-MATCHING (SP1), MINIMUM
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TEST SET (SP6), BIN PACKING (SR1), KNAPSACK (MP9), MmaXximMuM 2-saT (LO5), ONE-
IN-THREE 3SAT (LO4), LONGEST COMMON SUBSEQUENCE (SR10), SHORTEST COMMON
SUPERSEQUENCE (SRS8), LONGEST COMMON SUBSTRING (SR10) and SHORTEST COMMON
SUPERSTRING (SR9). We survey complexity results for the source optimisation problem
IT in each case, and also those, if any, for the minimaximal or maximinimal counterpart(s)
of II. We obtain new NP-completeness results for minimaximal or maximinimal versions
of the first seven problems in the above list, and construct a polynomial-time algorithm
for a minimaximal counterpart of LONGEST COMMON SUBSTRING.

We also consider the computational complexity of minimaximal and maximinimal op-
timisation problems from a more general viewpoint. We present conditions under which a
Turing reduction from an optimisation problem, Il;, to another, I1,, is also a Turing reduc-
tion from IT} to II%, where II} is a minimaximal or maximinimal version of II; (i = 1,2).
We call Turing reductions satisfying these additional constraints MM-reductions. Some ex-
amples of MM-reductions are given, involving several partial orders, and involving source
optimisation problems from a variety of domains.

Additionally, we discuss the question of how, in general, we may test a feasible solution
of an optimisation problem II for maximality or minimality, and how we may find feasible
solutions that are maximal or minimal, with respect to a partial order defined on the
feasible solutions of Il for a given instance. In particular, we examine this question when
IT is BIN PACKING and when Il is CHROMATIC NUMBER.

We show that, for a natural partition-related partial order <* defined on the feasible
solutions for a given instance z of BIN PACKING, the problem of testing a feasible solution
for <”"-minimality is NP-hard, but perhaps surprisingly, the problem of finding a feasible
solution that is <”-minimal is polynomial time solvable.

In the case of CHROMATIC NUMBER, we consider two families of partition-related partial
orders defined on the set of all proper colourings of a given graph G'. We investigate the
problems of testing a proper colouring for minimality, and finding proper graph colourings
that are minimal, with respect to these partial orders. We also consider the complexity of
the associated maximinimal optimisation problems in each case. Our algorithmic results
for testing and finding show where the thresholds between polynomial-time solvability and
NP-hardness lie, within the hierarchy of problems corresponding to the two partial order
families. These developments imply possible local search strategies for approximating the
chromatic number in certain graph classes.

Finally, we revisit the general framework for minimaximal and maximinimal optimisa-
tion problems, considering an alternative definition in which the partial order is defined on
the set of all possible (not necessarily feasible) solutions. We show that in some, but not
all, cases, the revised definition gives rise to the same maximal and minimal solutions as
would be obtained by defining the partial order concerned on the feasible solutions. These
observations yield a greater insight into the structure of minimaximal and maximinimal
optimisation problems.

Thesis supervisor: Dr. Rob Irving, Senior Lecturer in Computing Science.
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Chapter 1

Introduction and background

1.1 Introduction

Optimisation problems have a well-defined structure: a set of instances T of the problem,
and, given an instance z € 7, a set of feasible solutions F(z), some notion of the measure
m(z,s) of a feasible solution s, and a goal, to maximise or minimise. The objective of
an optimisation problem II is to find! a feasible solution ¢ whose measure is maximum or
minimum (according to the goal) over that of all feasible solutions. Such a feasible solution
t is said to be a globally optimal feasible solution, and t is said to have globally optimal
measure. An optimisation problem whose goal is to maximise (respectively minimise) is
referred to as a mazimisation (minimisation) problem.

This thesis is concerned with a class of optimisation problems called minimazimal and
maziminimal optimisation problems. Before we introduce this class in Section 1.3, we

define some concepts and review literature relating to optimisation problems in general.

1.2 Review of concepts relating to optimisation problems in

general

1.2.1 Optimisation problems: three versions in one

In Section 1.1, we defined the search version of an optimisation problem. An example of
such a problem is cLIQUE, whose objective is to find, given a graph G = (V, F) (a typical
instance), a subset V' of V such that every pair of vertices in V' is an edge in G (i.e. V’
is feasible), where the cardinality of V' (the measure in this case) is maximum over all
such sets. An optimisation problem has two other versions, which we now define.

The objective of the evaluation version of an optimisation problem is to compute the
globally optimal measure, rather than to find a globally optimal feasible solution.

'We have described here the constructive or search version of TI. There are two other versions of an
optimisation problem, namely the evaluation and decision versions, which will be described in Section
1.2.1.
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In the decision version of a maximisation (respectively minimisation) problem TII, we
ask whether there is a feasible solution whose measure is at least K (at most K), for a
given instance and some given positive integer K.

The relationship between the search, evaluation and decision versions of an optimisa-
tion problem is discused by Ausiello et al. [10, Section 1.1] and Bovet and Crescenzi [24,
Section 6.3].

1.2.2 NP-completeness and NP-hardness

The design of efficient algorithms to solve optimisation problems will always be necessary,
even as computers become faster [92, pp.7-8]. In particular, the design of polynomial-time
algorithms (i.e. algorithms whose running time is polynomial in the size of their input) is
of paramount importance. The symbol P is used to denote the class of decision problems
(i.e. problems whose solution is a ‘yes’ or ‘no” answer) that are polynomial-time solvable®.
For some optimisation problems, no polynomial-time algorithm has been found. cLIQUE
(defined in Section 1.2.1) is an example of an optimisation problem in this category.

This situation prompted Cook [55] to introduce, in his paper entitled The Complexity
of Theorem Proving Procedures (1971), the class NP of decision problems that can be
solved in polynomial time using a nondeterministic algorithm. Cook then demonstrated
that a particular problem in NP (known as SATISFIABILITY, problem LO1 of [92]) has the
property that every other problem in NP can be polynomially reduced to it?. This means
that if SATISFIABILITY can be solved in polynomial time then so can any problem in NP,
and if any problem II in NP is intractable (i.e. there exists no polynomial-time algorithm
to solve IT) then SATISFIABILITY is also intractable.

Following Cook’s result, Karp [140] gave, in his paper Reducibility Among Combina-
torial Problems (1972), examples of many other combinatorial problems in NP that have
exactly the same property as SATISFIABILITY mentioned above. Thus the class of NP-
complete decision problems was born, having the property that if any one of them can be
solved in polynomial time, then they all can, and if any one of them is intractable, then
they all are. In general, to show that a decision problem I1" is NP-complete, one needs to
show that (i) Il NP, and (ii) there is some NP-complete decision problem II that may be
polynomially reduced to IT". A decision problem satisfying only condition (ii) is NP-hard,
in that it is just as hard as the NP-complete problems, and cannot be solved in polynomial
time unless P=NP.

The decision version of CLIQUE is just one NP-complete problem appearing in Karp’s
paper. The list of known NP-complete decision problems quickly grew and these problems
were gathered together in the classical work of Garey and Johnson in 1979: Computers
and Intractability [92]. The field is ever-changing, with new NP-complete problems being
discovered regularly. To cope with the need for researchers to keep up to date with

the status of open problems, Johnson began a (usually) quarterly column in December

?In this thesis, we abuse notation and also use II €P to indicate that the search version II of an

optimisation problem is polynomial-time solvable.
*Discovered independently by Levin [153] in 1973.
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1981, appearing in the Journal of Algorithms, called The NP-Completeness Column: An
Ongoing Guide®.

Many NP-complete problems are decision versions of NP optimisation problems [24,
p.112]. Informally, an NP optimisation problem IT is an optimisation problem such that
the set of instances 7 is recognisable in deterministic polynomial time, the set of feasible
solutions F(z) for a given instance z € 7 is recognisable in deterministic polynomial time,
the measure function is computable in polynomial time, and there exists some polynomial
p such that, for any instance z and for any feasible solution y € F(z), |y| < p(|z|) (where
|y| and |z| denote the sizes of y and z respectively under a reasonable encoding scheme for
IT). NPO denotes the class of NP optimisation problems. An NP optimisation problem IT
has the property that the decision version of IT is in NP [24, Lemma 6.1].

In order to prove that the search version II’ of an optimisation problem is hard to solve,
it is sometimes more convenient to consider a Turing reduction from a search problem I1
to II" (as in Chapter 8, for example), rather than to formulate a polynomial reduction
from an NP-hard decision problem Il to the decision version of II'. Informally, a search
problem II consists of a set Z of instances, and for each instance z € Z, a set F(z) of
feasible solutions for . An algorithm is said to solve a search problem II if, given any
instance z € 7, the algorithm returns some y € F(z) if F(z) # @, or ‘no’ if F(z) = @.
For example, the search version of an optimisation problem, introduced in Section 1.1,
can be viewed as a special case of a search problem. A Turing reduction from a search
problem II to a search problem II’ is a polynomial-time algorithm for solving II, using
one or more calls to a polynomial-time hypothetical subroutine S for solving I1’. If there
is a Turing reduction from a search problem II to a search problem II', we say that II is
Turing-reducible to 1', denoted Ila7Il'. Any decision problem may be formulated as a
search problem (see Garey and Johnson [92, p.110] for further details), and hence we may
make the following definition. If IT is an NP-complete problem (IT is a decision problem
formulated as a search problem) and II" is a search problem, where ITav7I1’, then I is said
to be NP-hard. As in the above definition of NP-hardness for decision problems, I’ is
NP-hard implies that TI' cannot be solved by a polynomial-time algorithm unless P=NP.
Finally, if II is an NP-hard search problem, and II' is a search problem, where [Ia,Il,
then IT” is NP-hard [92, p.113].

See Garey and Johnson [92] for definitions of complexity-theoretic terminology used in
this thesis but not defined.

1.2.3 Approximation of NP optimisation problems

Many believe that demonstrating NP-completeness for the decision version of an opti-
misation problem II is tantamount to proving that II is intractable. This situation has
motivated researchers to concentrate their efforts instead on finding a polynomial-time
algorithm that will give a solution close (given some definition of closeness) to optimal,
for all instances z of II.

It appears that this column terminated in 1992, awaiting the second edition of Computers and In-
tractability, not as yet published.



Introduction and background 4

We now formalise this notion of ‘closeness’ as follows. Given an NPO problem II, an
algorithm A is an approximation algorithm for I1 if, for any given instance z of I, A returns
a feasible solution A(z). If we denote by APPROX 4(z) the measure of the approximate
solution A(z) and OPT(z) the measure of the optimal solution then the performance ratio

of A with respect to z, for Il a maximisation (respectively minimisation) problem, is:

_ OPT(x) _ APPROXA(z)
Ral®) = TppRrox. ) <R"‘(‘”)_ OPT () )

Given a constant ¢ > 1, we say that A is a c-approzimation algorithm for 11, if, for any
instance z, the performance ratio of A with respect to z satisfies R4(2) < ¢. If an NPO
problem II admits a c-approximation algorithm, we say that Il is approzimable within c.

We define the performance guarantee of A to be
R, =inf{c > 1:1I is approximable within c}.

Given an arbitrary function ¢ : N — [1,00), we say that A is an £(n)-approzimation
algorithm for II, if, for any instance z, the performance ratio of A with respect to z
satisfies R4(z) < (|z|). If an NPO problem II admits an e(n)-approximation algorithm,
we say that IT is approzimable within £(n).

There are a variety of classes for NPO problems that depend on their approximability
properties. Given an NPO problem II, IT belongs to the class APX if there is some constant
€ > 1 such that IT has a polynomial-time e-approximation algorithm. II belongs to the
class PTAS if there is an algorithm A such that, for any instance z of Il and any real
number £ > 1, A produces a feasible solution in time polynomial in |z|, and A satisfies
R.(z) <e. Such an algorithm is called a polynomial-time approzimation scheme (ptas).
IT belongs to the class FPTAS if there is a ptas for I whose time complexity is bounded
by a polynomial in the length of the input and 1/(¢ — 1). Such an algorithm is called a
fully polynomial-time approzimation scheme (fptas). We also have the class PO of NPO
problems that can be solved in polynomial time. Finally, it is worth mentioning the
problems in NPO\APX: they have no e-approximation algorithm, for any ¢ > 1, unless
P=NP. Clearly

PO C FPTAS C PTAS C APX C NPO

and all of these inclusions are strict if and only if P#NP (see Bovet and Crescenzi [24] for
further details). Ausiello et al. [10] give examples of NPO problems in each of the above
classes.

A major issue in the theory of approximation of NPO problems whose decision ver-
sions are NP-complete is that, although all NP-complete problems may be polynomially
reduced to one another, two problems in NPO may have quite different properties of ap-
proximability. For example, the NPO problems CHROMATIC NUMBER and CLIQUE (whose
decision versions are problems GT4 and GT19 of [92] respectively) are not approximable
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i 1_ 1_
within n77¢ and n2"°

the given graph), unless P=NP [14, 201], whilst the NPO problem BIN PACKING (whose
decision version is problem SR1 of [92]) is approximable within 2 [195]. As a result of
this apparent lack of uniformity regarding the approximability of NP-complete problems,

respectively®, for any ¢ > 0 (where n is the number of vertices in

much research has been directed towards constructing reductions between NPO problems
that do preserve approximability.

Ausiello et al. [11], and Paz and Moran [181], were among the first to define reductions
from one NPO problem to another that preserve approximability. Following the work of
Orponen and Mannila [176], Crescenzi and Panconesi [60] defined P-reductions and F-
reductions and used them to formulate notions of completeness in the classes APX and
PTAS. An APX-complete problem Il has the property that IT is in APX, and ITis in PTAS
implies that APX=PTAS. Similarly a PTAS-complete problem II has the property that II
is in PTAS, and II is in FPTAS implies that PTAS=FPTAS. Since the equality of APX
and PTAS, or of PTAS and FPTAS, would imply that P=NP, proving that a problem is
complete for either of the classes APX or PTAS is convincing evidence that it cannot be
approximated by a stronger form of polynomial approximation.

Papadimitriou and Yannakakis [180] define the class MAX-NP and its subclass MAX-
SNP and use L-reductions to formulate a notion of MAX-SNP-completeness. A MAX-
SNP-complete problem II has the property that:

1. ITis in APX.
2. IT'is in PTAS implies MAX-SNP=PTAS.

Arora et al. [8] prove that a MAX-SNP-complete problem does not have a ptas unless
P=NP.

More detailed surveys concerning the theory of approximiation algorithms have been
carried out by Bruschi et al. [29] and by by Ausiello et al. [10]. In addition, Crescenzi and
Kann [59] maintain a list containing NPO problems together with their current approx-
imability status.

1.2.4 Strong NP-completeness

In Section 1.2.3 we described how approximation algorithms can provide a method of
coping with NPO problems whose decision versions are NP-complete. However, for some
NPO problems II, we can find an exact algorithm for II, called a pseudo-polynomial-time
algorithm. A pseudo-polynomial-time algorithm for an NPO problem II will, for any
instance z of I, solve II in time polynomial in |z| and max(z) (where max(z) denotes the
value of the largest number occurring in ). An NPO problem is pseudo-polynomial if it
admits a pseudo-polynomial-time algorithm. For example, it is well-known [56, Exercise

5These two lower bounds are examples of non-approximability results that follow from the PCP theorem
[9, 8] (see [138, 7] for two commentaries on the PCP theorem and its consequences). The PCP revolution
has led to an outpouring of non-approximability results similar to the two mentioned for CHROMATIC
NUMBER and CLIQUE. Hence it is likely that the non-approximability results of [14, 201] for these two
problems (under the assumption P#NP) will be superseded.
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17.2-2] that the NPO problem KNAPSACK (whose decision version is problem MP9 of [92])
is solvable in pseudo-polynomial time using a dynamic programming algorithm.

However there are some NPO problems for which the existence of a pseudo-polynomial-
time algorithm is unlikely. Given a decision version Il of an NPO problem and a polynomial
p, I1, denotes the problem obtained by restricting II to only those instances z for which
max(z) < p(|z|). A decision version II of an NPO problem is NP-hard in the strong sense
if there is some polynomial p (over the integers) such that IT, is NP-hard. If, in addition,
IT NP, then 1T is NP-complete in the strong sense or strongly NP-complete. A strongly NP-
complete problem has the property that it cannot be solved by a pseudo-polynomial-time
algorithm unless P=NP. Garey and Johnson [91] give examples of strongly NP-complete
problems, two being BIN PACKING (whose decision version is problem SP1 of [92]) and
3-PARTITION (problem SP15 of [92]).

In order to show that a decision version I of an NPO problem is NP-hard in the strong
sense, one might exhibit a specific polynomial p such that II, is NP-hard. Alternatively,
the same result can be shown to hold by constructing a pseudo-polynomial transformation
(see [91] for further details) from a known strongly NP-hard problem IT’ to II.

There is also a relationship between strongly NP-complete problems and one of the
approximation classes of Section 1.2.3. Let IT be an NPO problem and suppose that, given
an instance z of 11, the globally optimal measure of Il is bounded by a polynomial in both
|z| and max(z). Suppose further that the decision version of II is strongly NP-complete.
Then Il cannot be in FPTAS unless P=NP [91].

1.3 Minimaximal and maximinimal optimisation problems

In this section, we introduce the class of optimisation problems that we study in this thesis.
Recall from Section 1.1 the informal definition of an optimisation problem. A minimaximal
or maximinimal optimisation problem I’ may be obtained from an optimisation problem
I1, called the source optimisation problem, by defining a partial order <” on the set
of feasible solutions F(z) for a given instance z of II. Minimaximal and maximinimal
optimisation problems are of interest as they have a well-defined structure, in terms of
this partial order concept. The instances of I’ are those of II. A feasible solution of II’
is a member of F(z) that is locally optimal® with respect to <”. TLocal optimality of a
feasible solution s € F(z) is a local property based on the position of s within a partial
order hierarchy, rather than the position of s within a measure hierarchy (as per global
optimality). The measure function for an instance of II" is the restriction of that of II to
the feasible solutions of TI". If the objective of Il is to maximise (respectively minimise)
the measure over F(z), then the objective of I’ is to minimise (maximise) the measure
over all elements of F(z) that are maximal (minimal) with respect to <.

8Given a partial order <* defined on the feasible solutions for a given instance z of an optimisation
problem TI, a feasible solution y is <-mazimal, or mazimal with respect to <*, if there is no feasible
solution y’ such that y <* y’. Similarly y is <"-minimal, or minimal with respect to <%, if there is no
feasible solution y’ such that y’ <* y. If the goal of TT is to maximise (respectively minimise), then a
feasible solution y is <"-optimal, or locally optimal with respect to <7, if y is <*-maximal (<”-minimal).
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For example, consider the source optimisation problem MAXIMUM MATCHING. This
problem takes a graph G = (V, F) as an instance. The feasible solutions of G are the
matchings in G (a subset E’' of F is a matching if no two edges of E’ are adjacent in
(), the measure of a feasible solution is its cardinality, and the goal is to maximise. By
considering the partial order of set inclusion, we define (as in the previous paragraph)
the MINIMUM MAXIMAL MATCHING problem (whose decision version is problem GT10 of
[92]). This problem is thus a minimaximal optimisation problem whose objective is to
find, given a graph G, a minimum cardinality maximal matching for GG, where a matching
M is maximal if no proper superset of M is also a matching for G.

1.3.1 Minimaximal and maximinimal optimisation problems in the lit-
erature

There appears to be no previous study of minimaximal and maximinimal optimisation
problems in general. However, the concept of minimaximal and maziminimal graph pa-
rameters has received attention. Informally, a minimaximal (respectively maximinimal)
graph parameter is the minimum (maximum) cardinality over some set of graph-related
structures that are maximal (minimal) with respect to some partial order. More formally,
a minimaximal (respectively maximinimal) graph parameter may be defined as the so-
lution to the evaluation version of a suitably defined minimaximal (maximinimal) graph
optimisation problem. For example, the minimum maximal matching parameter” 37 (G)
is the solution to the evaluation version of MINIMUM MAXIMAL MATCHING, for a given
graph G.

Some examples of minimaximal and maximinimal graph parameters are studied by
Harary [107], who refers to them as minimum mazimal and mazimum minimal invariants.
Harary states that for most minimum graph parameters there is a ‘maximum minimal’
graph parameter, and similarly for maximum graph parameters. However, he does not
mention explicitly the concept of a partial order defined on the feasible solutions of the
implicit optimisation problems. Rather, he stipulates that the definition of a maximum
(respectively minimum) parameter should be altered, in order to accommodate the min-
imaximal (maximinimal) version. In particular, the modified feasible solutions are the
maximal or minimal elements (with respect to some implicit partial order, usually set
inclusion) of the usual feasible solutions. This has the drawback that a parameter such as
the maximum matching parameter now assumes a less familiar definition as the ‘maximum
maximal matching’ parameter. Also, the range of problems studied is restricted to those
relating to graph theory. The paper by Hare et al. [111] follows a similar approach.

In addition to [107, 111], there exist references in which the general concept of mini-
maximal and maximinimal graph parameters is mentioned in passing. Peters et al. [183]
endorse the technique that Harary discusses, before considering minimaximal and maxi-
minimal graph parameters related to vertex and edge connectivity®. Majumdar [163] con-

"See the footnote on Page 56 for a discussion of our notation for certain graph parameters in this thesis.
8 These parameters are defined in Section 5.5.
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structs a framework for covering and packing parameters of graphs in terms of neighbour-
hood hypergraphs, and discusses how this framework might accommodate minimaximal
and maximinimal graph parameters. McRae [165] introduces a general construction yield-
ing NP-completeness results for graph parameters when restricted to the classes of bipar-
tite and chordal graphs. She demonstrates the applicability of her construction by giving
many examples, which include several minimaximal and maximinimal graph parameters,
some of which had not been previously studied. Jacobson and Peters [131] demonstrate
the existence of a graph parameter ¥ whose implicit optimisation problem is NP-hard in
a certain graph class, yet v has a maximinimal counterpart I' that is polynomial-time
solvable in the same graph class of graphs. This leads them to ask the question of why it
can be difficult to determine the maximum (respectively minimum) value of a parameter,
vet relatively ‘easy’ to solve the corresponding minimum maximal (maximum minimal)
problem, and in which other cases this occurs. (We shall return to this question in Section

9.6.)

There are a significant number of references relating to the study of particular minimax-
imal and maximinimal optimisation problems. For example, MAXIMUM MINIMAL DOMI-
NATING SET [39], MINIMUM MAXIMAL INDEPENDENT SET [104] and MINIMUM MAXIMAL
MATCHING [92, problem GT10] are just a few minimaximal or maximinimal optimisation
problems that have received attention (we define these problems in Chapter 4). However,
the majority of minimaximal and maximinimal optimisation problems in the literature are
related to graph theory, and the dominant partial order is that of set inclusion. There are
few examples in the literature of minimaximal or maximinimal optimisation problems not
pertaining to graph theory. However the SHORTEST MAXIMAL COMMON SUBSEQUENCE
and LONGEST MINIMAL COMMON SUPERSEQUENCE problems of Fraser et al. [81] are two
such examples. (These problems are defined in Section 7.5.) In addition, there are few
examples in the literature of minimaximal or maximinimal optimisation problems defined
in terms of a partial order besides that of set inclusion. However we show in Section 3.2
that ACHROMATIC NUMBER (whose decision version is problem GT5 of [92]) is in fact a
maximinimal optimisation problem, if a suitable partial order is defined on the set of all
proper colourings for a graph. In addition, McRae [165] studies the MINIMUM 2-MAXIMAL
INDEPENDENT SET and MINIMUM 2-MAXIMAL MATCHING problems, which are minimaxi-
mal optimisation problems defined in terms of the partial order of (1, 2)-replacement (this
partial order is defined in Section 2.4, and the minimaximal optimisation problems men-
tioned are defined in Section 5.3).

1.3.2 Terminology for minimaximal and maximinimal optimisation prob-
lems

The words ‘minimaximal’ and ‘maximinimal’ abbreviate ‘minimum maximal’ and ‘maxi-
mum minimal’ respectively. This terminology is used by Peters et al. [183] and we adopt
this nomenclature when referring to minimaximal and maximinimal concepts in general.
However, in order to be consistent with the literature, we refer to particular minimaximal
and maximinimal optimisation problems (such as MINIMUM MAXIMAL MATCHING) without
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using this abbreviation. Unfortunately, further abbreviation of the words ‘minimaximal’
and ‘maximinimal’ to terms such as ‘minimax’ and ‘maximin’ respectively, would be un-
desirable. This is because minimaz optimisation problems already exist in the literature
(see, for example [66]). These problems, distinct from the class of problems that we study
in this thesis, involve minimising the maximum value, or maximising the minimum value,

over some set of structures.

The words ‘minimal’ and ‘maximal’, which we use to denote local optimality, have often
been used to denote global optimality: for example, Liu [156, p.287] refers to maximum
cardinality matchings as ‘maximal’ matchings. However, the distinction in the terminology
was recognised prior to Liu’s book, an example being the paper of Norman and Rabin [174],
in which minimum and minimal covers are referred to in the sense used here, and similarly

for maximum and maximal matchings.

Some minimaximal and maximinimal graph parameters are referred to in the literature
as ‘lower’ and ‘upper’ parameters respectively. Here, the words ‘lower’ and ‘upper’ refer to
the measure hierarchy rather than the partial order hierarchy. For example, the minimum
mazimal irredundance and mazimum minimal domination numbers are referred to as the
lower irredundance and upper domination numbers respectively [54]. However, perhaps
unfortunately, some minimum and maximum graph parameters are also referred to in this
way. For example, the mazimum irredundance and minimum domination numbers are
referred to as the upper irredundance and lower domination numbers respectively [54].
This terminology therefore removes the distinction between ‘minimum’ and ‘minimum
maximal’, and between ‘maximum’ and ‘maximum minimal’, in the name of a graph
parameter. We therefore use the full terms in this thesis. Sometimes, however, even this is
not sufficient. It is clear that the definition of a minimaximal or maximinimal optimisation
problem is dependent on the choice of partial order associated with the problem. For many
minimaximal and maximinimal optimisation problems, the inherent partial order is evident
from the source optimisation problem definition. However, this is not always the case. For
example, by defining two partial orders on the set of all feasible solutions to the CHROMATIC
NUMBER problem, as in Chapter 3, we obtain two maximinimal optimisation problems that
are quite distinct. Thus in some cases, to avoid confusion, it is necessary to include the
partial order name in the name of the minimaximal or maximinimal optimisation problem,
or to use some other terminological device to distinguish such problems.

1.3.3 Framework for minimaximal and maximinimal optimisation prob-
lems

We introduce, in Chapter 2, a framework for defining minimaximal and maximinimal
optimisation problems, based on this unifying concept of a partial order defined on the
feasible solutions of a source optimisation problem, for a given instance. The framework
does not involve changing the definition of the source optimisation problem, and the
minimaximal and maximinimal optimisation problems that may be defined using it are
not restricted to graph theory. To accompany this framework, we introduce, in Section 2.4,
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a wide range of partial orders (including the partial orders of set inclusion and partition
merge that are implicit in Harary’s paper [107]) that may be used in order to formulate
minimaximal and maximinimal optimisation problems. Every optimisation problem that
we have encountered in the literature that is essentially a ‘minimum maximal’ or ‘maximum
minimal” problem (with respect to some implicit partial order) may be defined using our
framework. In addition, many interesting new examples may be formulated.

We define a variety of source optimisation problems, and using the partial orders in our
collection, we formulate many examples of minimaximal and maximinimal optimisation
problems in Chapters 3-7. We study these problems from the point of view of algorithmic
complexity. In the next section, we define concepts and survey literature relating to subject
areas of the source optimisation problems that appear in these chapters.

1.4 A tour of source optimisation problems

1.4.1 Optimisation problems in graph theory

Many of the optimisation problems that we consider in this thesis relate to graph theory.
A general introduction to the subject is provided by Berge [15, 17] and Harary [106], for
example. These are three classical texts; a more recent work is [35]. Additionally, Gibbons
[96] and Golumbic [99] provide an algorithmic emphasis. Standard graph-theoretic termi-
nology used in the following but not defined may be found in Harary [106]. All graphs in
this thesis are understood to be finite, undirected graphs with no loops and no multiple
edges. Notation for graph parameters follows that of Harary [106] and Haynes et al. [115]
unless otherwise indicated.

Graph colouring is an important area of graph theory. Given a graph G = (V, F),
we call a partition of V' a colouring of V. A set of vertices V' C V is independent if
no two vertices of V' are adjacent in G. A proper colouring is a partition of V into
independent sets, or colours. If G has a proper colouring of k colours, then G is said to
be k-colourable. The chromatic number, y(G), is the minimum number of colours over
all proper colourings of G. The CHROMATIC NUMBER problem is the problem of finding a
proper colouring of a given graph G using x(G) colours. Jensen and Toft [132] review the
field of graph colouring in their first chapter, before going on to discuss over two hundred
open problems relating to graph colouring.

In Chapter 3, we define partial orders on the set of all proper colourings of a graph,
thereby obtaining two maximinimal graph colouring optimisation problems. The partial
order of partition merge (defined in Section 2.4) gives rise to the ACHROMATIC NUMBER
problem (whose decision version is problem GT5 of [92]). This is the problem of finding
a proper colouring of a given graph G using the maximum number of colours such that
every pair of colours occurs at the endpoints of some edge of . A natural refinement
of partition merge is the partial order of partition redistribution (also defined in Section
2.4), giving rise to the B-CHROMATIC NUMBER problem. This is the problem of finding
a proper colouring of a given graph G using the maximum number of colours such that,
for each colour i, there is a distinguished vertex of colour ¢ that is adjacent to a vertex
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of every colour j # i. Whilst ACHROMATIC NUMBER has been studied for over thirty
years, B-CHROMATIC NUMBER is new. We show that the decision version of B-CHROMATIC
NUMBER is NP-complete in arbitrary graphs and also bipartite graphs. However, we prove
that B-CHROMATIC NUMBER is solvable is polynomial-time for trees, in contrast with
ACHROMATIC NUMBER.

Two other important notions in graph theory are those of covering and independence
[106, Chapter 10][157]. Let G = (V, F) be a graph. A vertex v is defined to cover itself,
all edges incident on v and all vertices adjacent to v. An edge {u,v} is said to cover
itself, vertices w and v, and all edges incident on u or v. Two elements of V U F are
independent if neither covers the other. A wvertex cover is a subset S of V that covers
E, a dominating set is a subset S of V that covers V, an edge cover is a subset S of F
that covers V (assuming that G has no isolated vertices) and an edge dominating set is a
subset S of I/ that covers E. A subset ' of V U F that covers all vertices and edges of &
is said to be a total cover for G. An independent set is a subset S of V whose elements
are pairwise independent, and a matching is a subset S of F whose elements are pairwise
independent. A subset M of V U FE whose elements are pairwise independent is said to be
a total matching for G.

In Chapter 4, we consider graph theoretic source optimisation problems and their min-
imaximal and maximinimal counterparts, defined using the partial order of set inclusion.
Such problems associated with vertex, edge and total covers, and independent sets, match-
ings and total matchings in graphs are considered in Section 4.2. We survey complexity
results for these optimisation problems and obtain a number of new results. We prove
NP-completeness for the decision versions of the problems of finding a maximum minimal
total cover in planar graphs, finding a minimum maximal total matching in bipartite and
chordal graphs, and finding a minimum maximal independent set in planar cubic’ graphs.
In addition, we demonstrate that the computational complexities of the problems of find-
ing a maximum minimal vertex cover, a maximum minimal edge cover and a maximum
total matching are identical to those of the problems of finding a minimum maximal inde-
pendent set, a minimum dominating set and a minimum edge dominating set respectively,

over all graph classes.

Various other graph-theoretic notions are related to covering and independence. For
a graph G = (V, F) and vertex v € V, define the open neighbourhood of v to be N(v) =
{we V:{v,w} € E}, and define the closed neighbourhood of v to be N[v] = N(v)U{v}.
For aset S C V, the open neighbourhood of S is the set N(S) = U,csN(v) and the closed
neighbourhood of S is the set N[S] = U,esN[v]. Thus, a dominating set is a subset S of
V such that N[S] = V. Domination in graphs was first studied by Ore [175] and since
then, the field has grown swiftly. Following a volume of Discrete Mathematics devoted
to the topic of domination [122], two books on the subject have recently been published
(114, 115)].

The topic of irredundance in graphs has also received much attention. A set of vertices

9A graph is cubic if every vertex has degree 3.
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S in a graph G = (V, F) is irredundant if, for every vertex v in S, N[v]\N[S\{v}] # @.
Cockayne, Hedetniemi and Miller [49] began the study of irredundance, and literature
concerning this concept is surveyed by Hedetniemi et al. [123].

In addition, a strong stable set is a subset S of V such that |[N[v]N S| < 1 for all
v € V. Thus, S is a strong stable set implies that 5 is an independent set. A clique is a
subset S of V such that every pair of vertices in 5 is an edge in G. A total dominating
set is a subset S of V such that N(5) = V.

In Section 4.3, we consider source optimisation problems and their minimaximal and
maximinimal counterparts (defined using the partial order of set inclusion) relating to
strong stable sets, cliques, domination, total domination, edge domination and irredun-
dance. We survey complexity results for these optimisation problems and obtain several
new results. We prove NP-completeness for the decision version of the problems of finding
a minimum maximal strong stable set in planar graphs of maximum degree 3, finding a
minimum maximal clique in general graphs, and finding a minimum total dominating set

in planar cubic graphs.

In Chapter 5, we study minimaximal and maximinimal graph optimisation problems
defined in terms of the partial order of (k—1, k)-replacement (k > 1). (This partial order is
defined formally in Section 2.4.) We apply this partial order to the set of all independent
sets F(G), for a given graph G = (V, E). An independent set that is maximal with
respect to the partial order of (k — 1, k)-replacement is said to be k-mazimal. Informally,
an independent set .S C V' is k-mazimal (k > 1) if the removal of any r — 1 vertices from
S, together with the addition of any r vertices from V\S (for any r < k), results in a non-
independent set. The concept of k-maximal independent sets in graphs was introduced by
Bollobds et al. [22], and is a refinement of the notion of a maximal (with respect to the
partial order of set inclusion) independent set. We formulate minimaximal optimisation
problems whose objective is to find the minimum cardinality k-maximal independent set
in a graph. Restricting attention to the case k = 2, we prove that the decision problem
related to finding a minimum 2-maximal independent set in graph is NP-complete, even for
planar graphs of maximum degree 3. In the case of trees, we give a linear time algorithm
for computing the cardinality of a minimum 2-maximal independent set.

1.4.2 Fractional graph optimisation problems

Over the last twenty years or so, graph theorists have begun to generalise integer-valued
graph parameters to their real-valued counterparts, leading to the concept of fractional
graph parameters. For example, given a graph G = (V, F), let v(G) denote the minimum
domination number of G, i.e., the smallest cardinality of a dominating set of G. This
parameter has a real-valued generalization, called the minimum fractional domination
number of G, denoted v;(G). We may define v;( () as follows. A function f: V — [0, 1]
is said to be dominating for G if, for every v € V, f(N[v]) > 1, where f(5) =3, cs f(v),
for S C V. The value f(V) is said to be the weight of f. We then define

¢(G) = min{f(V) : f is a dominating function for G'}.
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Note that, although arbitrary real-valued weights in the range [0, 1] may be assigned to
the vertices of (7, the value v;(G) is always rational (this follows from the fact that v ()
can be expressed as the solution of a linear program — see for example [198]). Thus the
parameter v, is referred to as a fractional parameter. It is clear that many other fractional
graph parameters may be formulated in this way. Recently, a research monograph [194] has
been published on the subject, and Chapter 3 of [114] is devoted to fractional domination
and related fractional graph parameters.

We may recover the definitions of integer-valued graph parameters from their fractional
variants. For instance, the above definition of 7, may be altered, in order to recover the
definition of v, by insisting that ran(f) C {0, 1} for any dominating function f.

In Chapter 6, we define the concept of fractional graph optimisation problems. Solv-
ing a fractional graph optimisation problem involves computing the value of an implicit
fractional graph parameter. We demonstrate why our usual definition of an optimisa-
tion problem is not sufficient to define fractional graph optimisation problems. Using an
alternative definition, we show how an appropriate framework for minimaximal and max-
iminimal fractional graph optimisation problems may be defined, using the partial order
on functions (defined in Section 6.2). We formulate several examples of such problems
using the revised framework, and show that the globally optimal measure (the solution to
the evaluation version of the minimaximal or maximinimal fractional graph optimisation
problem concerned) is computable, has rational values, and is attained by some function
of compact representation which satisfies the feasibility constraint for the minimaximal
or maximinimal fractional graph optimisation problem concerned. We also survey algo-
rithmic results relating to the source fractional graph optimisation problems and their
minimaximal or maximinimal counterparts that we define. The optimisation problems
that we study in Chapter 6 are concerned with domination, total domination, packing,

irredundance and vertex and edge covering and independence in graphs.

1.4.3 Optimisation problems concerning strings

Some of the optimisation problems that we consider in this thesis are concerned with
strings, and we take this opportunity to introduce some concepts to be used in the following
chapters. Gusfield [103], Crochemore and Rytter [61] and Stephen [202] are three recent
books concerned with the subject of string algorithms.

Given a set ¥ of symbols (an alphabet), a string over ¥ is a function s: X — ¥
where X = @, X = Z*, or X = {1,2,...,n}, for some n € Z*. ¥* denotes the set of all
strings, finite or infinite in length, composed of characters from . The definitions in the
remainder of this section apply to finite strings only. The length of s, denoted |s|, is | X].
Let s: X — ¥ and s’ : Y — X be two strings. We say that s is a subsequence of s,
denoted s < ¢’ if X = @, or there is a strictly increasing function f : X — VY such that
s(z) = s'(f(z)) forall z € X. If s < ¢, and in addition, X # @ implies that f(X) is an
interval, then s is a substring of s, denoted s L s’'. If s € s’ and s # s, then we say that
s is a proper subsequence of s'; denoted s < s’. Similarly, if s < s' and s # s, then we
say that s is a proper substring of s', denoted s < s’. Also, s is a (proper) supersequence
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of s" if and only if s’ is a (proper) subsequence of s, and s is a (proper) superstring of s’
if and only if s’ is a (proper) substring of s.

Given a set S of strings, and a string s, we say that s is a common subsequence of
S, denoted s <€ 5, if s € t for every t € 5. The definitions of common supersequence ,
common substring and common superstring , denoted S < s, s < S and 5 <K s respectively,
are analagous.

In Chapter 7, we define minimaximal and maximinimal counterparts of the source op-
timisation problems concerned with finding a longest common subsequence and a shortest
common supersequence of a set S of k strings. Here, a string s < 5 is maximal if there
does not exist a string ¢ such that s < ¢t and t < 55 the definition of minimality is
analagous. We also define minimaximal and maximinimal counterparts of the source opti-
misation problems related to finding a longest common substring and a shortest common
superstring of a set S of k strings. Here, a string s <€ .5 is maximal if there does not
exist a string ¢ such that s € t and t <& 95 the definition of minimality is analagous. We
survey complexity results for each of the problems mentioned in this paragraph, and give
a polynomial-time algorithm for finding a shortest maximal common substring of a set .S
of k strings.

1.4.4 Some other optimisation problems

In this section we introduce several additional optimisation problems that have received
attention in the literature. These problems belong to the Garey and Johnson [92] subject
categories of Network Design, Sets and Partitions, Data Storage, Mathematical Program-
ming, and Logic.

The objective of the LONGEST PATH problem is to find, given a graph G = (V, F) with
length I(e) € Z* for each e € F, and distinguished vertices s, ¢ in V, a simple path in G
(i.e. a path that visits each vertex at most once) from s to ¢ of maximum length.

The aim of the MAXIMUM 3D-MATCHING problem is to find, given three disjoint sets
W, X, Y, each of size ¢, and a subset M C W x X x Y, a maximum matching for M, i.e.
a subset M’ of M of largest size such that no two elements of M’ agree in any co-ordinate.

For the MINIMUM TEST SET problem, an instance is a collection C of subsets of a finite
set 5. We seek a minimum test set for .9, i.e. a subset ¢’ of C' of minimum size such that,
for each pair of distinct elements u, v € S, there is some ¢ € C” such that [{u,v}Nec|=1.

In the BIN PACKING problem, we are given a finite set U of items, each with an
associated positive integer (the size), and a positive integer (bin capacity). The objective
is to construct a bin packing of U, i.e. to partition U into sets, or bins, where the total
size of items in each bin does not exceed the bin capacity, such that the number of bins
used is minimum over that of every bin packing of U.

For the KNAPSACK problem, we are given a finite set U of items, each with two asso-
ciated positive integers (the weight and value), and a positive integer (knapsack capacity).
The objective is to find a subset U’ of U such that the total weight of items in U’ does not
exceed the knapsack capacity (i.e. to construct a knapsack packing), and the total value
of items in the knapsack packing is maximum over that of every knapsack packing for U.
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The SATISFIABILITY decision problem (problem LO1 of [92]) takes a set U of variables
and a collection C' of clauses over U (see Section 7.7 for precise definitions of logic-related
terminology used in this section but not defined) and asks whether there is a satisfying
truth assignment for C'. SATISFIABILITY has a range of variants which may be expressed
as optimisation problems, two of which now follow.

The objective of MAXIMUM ONE-IN-THREE 3SAT is to find, given a set U of variables
and a collection ' of clauses over U such that each clause in ' has size three, a truth
assignment that simultaneously satisfies exactly one literal from each clause in C’, for
some (' C (', and no literals from every clause in C'\C’, where " is as large as possible.

The aim of MAXIMUM 2-SAT is to find, given a set U of variables and a collection
C' of clauses over U such that each clause in C has size two, a truth assignment that
simultaneously satisfies as many clauses of ' as possible.

The decision version of each of the above optimisation problems is NP-complete: see
problems ND29, SP1, SP6, SR1, MP9, LO3 and L.O5 of [92] respectively. In Chapter
7, we define minimaximal or maximinimal counterparts of each of the above problems,
using appropriate partial orders from our collection, and prove that the minimaximal or
maximinimal optimisation problem concerned is NP-complete.

This chapter continues with a review of issues regarding the approximation of NP-
hard optimisation problems using local search in Section 1.5. Local optimality of feasible
solutions is an important theme in this thesis. In Section 1.6, we preview two chapters in
this thesis that are closely connected with local search.

1.5 Complexity of local search: literature review

1.5.1 Background and definitions

The NP-completeness of the decision version of an optimisation problem II naturally leads
to the question of the approximability properties of II. One of the most tried and tested
methods of obtaining approximate solutions to hard optimisation problems is called local
search, described by Papadimitriou and Steiglitz [179, Chapter 19]. Let IT be an optimi-
sation problem, and for a given instance z of II, let F(2) be the feasible solutions, and let
m(z,-) denote the measure function. Let OPT be max or min according to the goal of TI.
A neighbourhood function for the instance z of II is a map

N, : F(z) — P(F(2))

which assigns a neighbourhood of feasible solutions to any feasible solution s € F(z).
Given a feasible solution ¢, the following subroutine improve returns a neighbour of better
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measure (a local improvement of t), or ‘none’ if no such neighbour exists:

any'® s € N,(t) such that m(z,s) > m(z,t),if s exists,
where OPT = max
improve(t) = ¢ any s € N,(t) such that m(z,s) < m(z,t),if s exists,
where OPT = min
‘none’, otherwise.

The standard local search algorithm begins with an arbitrary feasible solution s, and
repeatedly calls the subroutine improve, to find successive neighbours of better measure,
until ‘none’ is returned. The feasible solution ¢ obtained by the standard local search
algorithm is called a locally optimal solution. Since the set of feasible solutions of II for
a given instance is always finite, the standard local search algorithm is guaranteed to
terminate.

Clearly, the local optimum output by the standard local search algorithm depends on
the neighbourhood structure imposed. A more complicated neighbourhood structure may
yield a higher quality of locally optimal solutions, but the standard local search algorithm
may consequently take longer to converge. Hence there must be a trade-off between these
two issues when defining the neighbourhood function.

1.5.2 Local search and the Travelling Salesman Problem

One NP-hard optimisation problem, to which the technique of local search has been applied
to yield approximate solutions, is the symmetric TRAVELLING SALESMAN PROBLEM (TSP)
(whose decision version is problem ND22 of [92]), which may be defined as follows.

We are given a set C' = {1,2,...,n} of cities, such that, for each i,j € C (i # j),
there is an associated positive integer d(i,j) (a distance) between i and j. (Note that in
the symmetric case, d(i,j) = d(j, i) for every such pair.) The objective is to construct a
travelling salesman tour of C' of minimum cost, i.e. to find a permutation = of 1,2,...n
such that

S (i), w(i-+ 1))+ d(r(m), 7(1)

is minimum over all tours of C'.

Several neighbourhood structures have been imposed on the feasible solutions for a
given instance of TSP. In the k-opt neighbourhood (k > 2) [154], two tours are neighbours
if and only if they differ in at most k edges. A more complicated structure, known as
the A-change or Lin-Kernighan neighbourhood has been formulated [155]. Unfortunately,
any local search algorithm for Tsp, having polynomial time complexity per iteration, can
generate solutions arbitrarily far from the optimum, unless P=NP [178]. However, despite
this, local search heuristics for TSP perform quite well in practice. In particular, the 3-

%The quality of the local optimum obtained by the improve procedure may be enhanced by imposing
some strategy for choosing a neighbour of better measure, in the case that there is more than one such
neighbour; such a strategy is known as a pivoting rule. In the case of the standard local search algorithm,
the choice is nondeterministic.



Introduction and background 17

opt neighbourhood outperforms 2-opt, but the Lin-Kernighan neighbourhood has been
described as the ‘champion’ of local search heuristics. See [135] for further details.

1.5.3 Local search can be provably successful

Despite the empirical success of the technique of local search for generating approximate
solutions to TSP, the result of Papadimitriou and Steiglitz [178] rules out the existence of
any non-trivial analytical performance guarantee for a polynomial-time local search ap-
proximation algorithm for Tsp. However, there are several NP-hard optimisation problems
to which the technique of local search has been applied successfully, so as to yield, in some
cases, the best known performance guarantee for any approximation algorithm currently
known for that problem.

One example is MINIMUM DEGREE SPANNING TREE (whose decision version is problem
ND1 of [92]), where the objective is to find, given a graph G, a spanning tree for G,
whose maximum degree is minimum over that of all spanning trees for G. Let A* denote
the maximum degree of a globally optimal spanning tree for this problem. Fiirer and
Raghavachari [86] show that local search techniques yield an approximation strategy that
computes a spanning tree for G with maximum degree either A* or A* + 1. Their result
also carries over to the MINIMUM DEGREE STEINER TREE problem, in which one specifies
a required set of vertices, D, and asks for the maximum degree, over that of all trees which
span at least the set D, to be minimised.

Another example is the MAXIMUM LEAF SPANNING TREE problem (whose decision
version is problem ND2 of [92]), where the objective is to find, given a graph G, a spanning
tree T for (¢ that has the maximum number of leaves (i.e. vertices whose degree in T is
1) over all spanning trees for G. Lu and Ravi [158] define two neighbourhoods on the set
of all spanning trees for a graph, and show that locally optimal solutions with respect to
these neighbourhoods give rise to spanning trees with at worst one fifth and one third!!
of the globally optimal number of leaves, respectively.

Finally, Halldérsson [105] uses local search techniques to obtain the current best per-
formance guarantees for approximating the MAXIMUM INDEPENDENT SET problem (whose
decision version is problem GT20 of [92]) in k-claw-free graphs and in graphs whose max-
imum degree is some fixed constant B.

1.5.4 PLS-completeness

For many optimisation problems, the range of values that the measure function can take
is bounded by a polynomial in the input, as for example in the MAXIMUM LEAF SPANNING
TREE problem described above. Hence, the standard local search algorithm is bound to
terminate in a polynomial number of steps (assuming polynomial time complexity per

""The local search algorithm yielding a performance guarantee of 3 has O(n7) time complexity. Lu and
Ravi [159] demonstrate an alternative approach which yields a faster (almost linear-time) algorithm with
the same performance guarantee. More recently, Solis-Oba [199] obtained a 2-approximation algorithm for
the problem.



Introduction and background 18

iteration). However, for other optimisation problems, such as TSP, the range of values
that the measure function can take is exponential.

Hence a central issue is to determine, given an instance z of an optimisation problem II,
whether we can find a locally optimal solution for I with respect to N, in polynomial time.
To formalise this question of finding locally optimal solutions, Johnson et al. [136] define
the class PLS (polynomial local search) of search problems. The components of a search
problem II in PLS consist of a set of instances 7, and, given an instance z € 7, a set of
feasible solutions F(z), a measure function which assigns a natural number to any element
of F(z), a goal (either max or min), and a neighbourhood function N, : F(z) — P(F(z)).
Furthermore, a problem in PLS satisies the following properties:

1. We can produce an initial feasible solution in polynomial time.
2. We can compute the measure of a feasible solution in polynomial time.

3. Given a feasible solution s, we can, in polynomial time, test whether s is locally
optimal, or else find a neighbour of better measure (i.e. the subroutine improve(s)
runs in polynomial time).

Given an instance z € 7, the objective of Il is to find a locally optimal solution with
respect to V.

Johnson et al. [136] define PLS-reductions as follows. Let I, [T, be two search problems
in PLS. For i = 1,2, let Z, be the set of instances of II,, and for z € Z;, let F;(z) be the
feasible solutions for the instance z of II,, and let N, , be the neighbourhood function for
IT;. TI; is PLS-reducible to 1l, if there exist two polynomial-time computable functions
f, g such that:

1. f :Il —>Iz.
2. Forany z € Z4, g(-, 2) : Fo(f(2)) — Fi(z).

3. Forany z € Z,, if s € F,(f(z)) is locally optimal with respect to N, ), then g(s, z)
is locally optimal with respect to N, ,.

The pair (f, ¢) is said to be a PLS-reduction from II; to Il,. A problem IT in PLS is PLS-
complete if every problem in PLS is PLS-reducible to II. Thus a PLS-complete problem
IT has the property that if a local optimum can be found in polynomial time for Il then
local optima can be found in polynomial time for all problems in PLS.

Lueker [160] shows that we may construct instances of the travelling salesman problem,
with the 2-opt neighbourhood, such that, by choosing a certain series of improvements,
convergence of the initial solution to a local optimum takes an exponential number of
steps. Also, Johnson et al. [136] exhibit a problem IT in PLS whose standard local search
algorithm problem (i.e., given an instance z of I, find the solution that would be output by
the standard local search algorithm) is NP-hard. In each case, the standard local search
algorithm is unlikely to yield an efficient method of finding a locally optimal solution for
the PLS problem concerned. However, this does not imply that the PLS problem in each
case is NP-hard, since the PLS problem asks for any locally optimal solution. Indeed,
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if there were such a problem, then NP=co-NP'? would hold [136], a situation that is
considered to be unlikely.

Johnson et al. [136] show that Py C PLS C NPg, where P5 and NPy are the search
problem analogues of P and NP, respectively. Given the comments in the previous para-
graph, it is unlikely that PLS=NPgs. Also, if PLS=Pg, then any polynomial-time algorithm
for a PLS-complete problem would give another proof that LINEAR PROGRAMMING (whose
decision version is problem OPENY of [92]) is in P, since LINEAR PROGRAMMING with the
Simplex neighbourhood is in PLS [136]. It is possible that the class PLS lies properly
between the classes Pg and NPg.

Papadimitriou [177] shows that Tsp under the Lin-Kernighan neighbourhood, is PLS-
complete. Also, Krentel [149] shows that there is a finite (large) & > 3 such that Tsp
under the k-opt neighbourhood is PLS-complete. It is open as to whether TSP under the
2-opt neighbourhood is PLS-complete, though Fischer and Torenvliet [79] provide strong
evidence that this is the case.

Yannakakis [211, 212] provides a more detailed survey of complexity issues relating to

local search.

1.6 Local search-related issues in this thesis

1.6.1 Minimaximal and maximinimal reductions

In the previous section, we defined the PLS reduction of Johnson et al. [136] — a reduction
that preserves the local optimality of feasible solutions in a certain sense. This reduction
is relevant to our study of the complexity of minimaximal and maximinimal optimisation
problems. For, the notion of local optimality with respect to a neighbourhood relation
is closely related to the concept of local optimality with respect to a partial order, when
both of these structures are defined on the feasible solutions of an optimisation problem
for a given instance (this relationship is discussed in further detail in Section 2.5).

In Chapter 8, we present conditions under which a Turing reduction from an optimi-
sation problem, II;, to another, II,, is also a Turing reduction from II} to I}, where II’
is a minimaximal or maximinimal version of Il; (i = 1,2). Turing reductions satisfying
these additional constraints are called MM-reductions, standing for minimazimal / maz-
iminimal reductions. The definition of an MM-reduction bears similarities to that of the
PLS reduction, in that there is a local optimality-preserving condition to be satisfied.

Several examples of MM-reductions are given in Chapter 8.

1.6.2 Testing a feasible solution for local optimality, and finding locally
optimal feasible solutions

Formulation of the notion of completeness in the class PLS revolves around the fact that,

for some optimisation problems and neighbourhood structures, testing a feasible solution

12 A decision problem II is in co-NP if and only if the complement of II, TI¢, is in NP. II€ is a decision
problem which has a ‘yes’ answer if and only if Tl has a ‘no’ answer, for a given instance.
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for local optimality is easy, but finding a locally optimal feasible solution is hard.

In Sections 9.2-9.4, we consider the questions of how we may test a feasible solution
for local optimality, and how we may find a locally optimal feasible solution, with respect
to a partial order defined on the feasible solutions of an optimisation problem for a given
instance. We show that when the partial order of partition redistribution (defined in
Section 2.4) is imposed on the feasible solutions of BIN PACKING for a given instance z,
the resulting problem of testing a feasible solution for minimality is NP-hard, whereas the
problem of finding a minimal feasible solution is polynomial-time solvable.

In the case of CHROMATIC NUMBER, we consider two families of partial orders defined
on the set of all proper colourings of a given graph . We investigate the problems of
testing a proper colouring for minimality, and finding proper graph colourings that are
minimal, with respect to these partial orders. We also consider the complexity of the
associated maximinimal optimisation problems in each case. Our algorithmic results for
testing and finding show where the thresholds between polynomial-time solvability and
NP-hardness lie, within the hierarchy of problems corresponding to the two partial order
families. In particular, we show that there is a partial order that may be defined on the
set of all proper colourings of a graph, such that both the problems of testing a proper
colouring for minimality, and finding a minimal proper colouring are NP-hard.

1.7 Other general issues connected with minimaximal and
maximinimal optimisation problems

In Section 9.5, we consider an alternative definition of our framework, showing that in some
cases, a partial order defined on the set of all possible (not necessarily feasible) solutions
of an optimisation problem gives rise to the same maximal and minimal solutions as would
be obtained from defining the partial order concerned on the feasible solutions. We show
that this holds for most, but not all, of the optimisation problems defined in this thesis.

Finally, in Section 9.6, we present some general conclusions and directions for further
study relating to minimaximal and maximinimal optimisation problems.



Chapter 2

Framework for minimaximal and
maximinimal optimisation
problems

2.1 Introduction

In this chapter we present a framework for minimaximal and maximinimal optimisation
problems, based on the concept of a partial order defined on the feasible solutions F(z), for
a given instance z of a source optimisation problem TI. We begin with several definitions
relating to optimisation problems in Section 2.2. In Section 2.3 we define some general
concepts concerned with partial orders, leading to the definition of our framework for
minimaximal and maximinimal optimisation problems. To accompany this framework,
we present a range of partial orders in Section 2.4, which feature in the definition of
minimaximal and maximinimal optimisation problems in the following chapters. Finally,
in Section 2.5, we discuss the relationships between the concept of a partial order within
the context of our framework for minimaximal and maximinimal optimisation problems,
and the concept of a neighbourhood relation within the context of local search.

2.2 Formal definition of an optimisation problem

In this section we present several definitions relating to optimisation problems. We begin
with a formal definition of an optimisation problem, which is adapted from Bovet and
Crescenzi [24, Section 6.1].

Definition 2.2.1 ([24]) An optimisation problem 11 is a tuple (Z,U, =, m,0PT), such that:
1. 7 is a set of words that encode instances of the problem.

2. U is a function that maps an instance z € Z into a non-empty finite set of words

that encode the universal set of possible solutions of x.

21
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3. 7is a predicate such that, for any instance z € 7 and any possible solution y € U(z),
w(z,y) if and only if y is a feasible solution (we assume that at least one feasible
solution of z exists). We denote the feasible solutions of a given instance z € Z by
F(z), thus

Flz)={y eU(z) :m(z,y)}.

4. m is a function, called the objective or measure function, that associates with any
instance z € 7 and with any y € F(z) a natural number m(z, y) that denotes the

measure of y.
5. opT € {max, min}. W

Note that we have chosen to define an optimisation problem as a tuple (Z,U, 7, m,0PT)
rather than in the form (Z, F, m, oPT). The former definition allows us to consider partial
orders defined on U(z), rather than on F(z). It will be our usual practice to define a
partial order on the set F(z) (as in Definition 2.3.5), though the implications of defining
partial orders on U (z) are discussed in Chapter 9. Also, the measure function is defined on
F(z), rather than on U (z). Usually, it is simple to extend the definition of m to the wider
class U(z), but for consistency with the definition in [24], we choose to define m on F(z)
— this definition proves to be practicable for our study of minimaximal and maximinimal
optimisation problems in this thesis.

Having defined the components of an optimisation problem II = (Z,U,x, m,0PT)
according to Definition 2.2.1, we henceforth refer to F(z), for a given instance z, without
explicitly defining the set, since its definition may be obtained from those of #(z) and =,
and Part 3 of Definition 2.2.1.

The next definition introduces three further concepts which follow from Definition
2.2.1.

Definition 2.2.2 Let I1 = (Z,U,r, m,0PT) be an optimisation problem and suppose
¢ € Z. The range of values that the measure function can take is denoted by m(z, F(z)),
i.e.,

m(z, F(x)) ={m(z,y) : y € F(z)}.
The globally optimal measure, denoted by m*(z), is

m*(z) = opT m(z, F(z))
and the set of globally optimal solutions, denoted by F*(z), is
F(e) ={y € F(e):m(z,y) = m*(2)}. W

Where there is no ambiguity, the globally optimal measure function m* will simply be
referred to as the optimal measure function.

An optimisation problem has three versions, as is indicated by the following definition.

Definition 2.2.3 Let Il = (Z,U, 7, m,0PT) be an optimisation problem.
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e The objective of the search version of 11, Il,, is to find, given an instance z € 7, a
globally optimal solution, i.e., a member of F*(z).

e The objective of the evaluation version of 11, 11, is to find, given an instance z € 7,
the optimal measure, i.e., to compute m*(z).

e The objective of the decision version of 11, 11,, is to determine, given an instance
z € T and an integer K € Z7*, whether there exists some y € F(z) such that
m(z,y) > K (if opT = max) or m(z,y) < K (if opT = min). R

Throughout this thesis (apart from in Chapter 6), the default version of an optimisation
problem II is the search version of II, and we thus reason about this version of an optimi-
sation problem II without subscript. When we give the name of the search version of an
optimisation problem II, the name of the decision version of II is obtained by appending
the word ‘DECISION’.

We now define a class NPO of optimisation problems, which has implications for the
decision versions of optimisation problems.

Definition 2.2.4 ([24]) Let Il = (Z,U, 7, m,0PT) be an optimisation problem. IT belongs
to the class NPO of NP optimisation problems if the following conditions hold:

1. The set 7 is recognisable in polynomial time.

2. A polynomial p exists such that, for any z € 7 and y € U(z), |y| < p(|z]).
3. The set {(z,y) : 2 € Z ANy € U(z)} is recognisable in polynomial time.

4. The predicate 7 is decidable in polynomial time.

5. For any z € 7 and y € F(z), m(z,y) is computable in polynomial time. W

Given an optimisation problem I, TT eNPO implies that TT; éNP [24, Lemma 6.1].

2.3 Formal definition of minimaximal and maximinimal op-
timisation problems

Before presenting our framework for minimaximal and maximinimal optimisation prob-
lems, we begin with some concepts relating to partial orders.

Definition 2.3.1 A strict partial order < defined on a set X is a subset of X x X such
that

1.V e Xeo(z,2)¢<.
2.Vz,y,z€ Xo((2,y) €< A(y,2) €<) = (2,2)e< . 1
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Henceforth we use the infix notation for partial orders, so that, for z,2’ € X, 2 < 2’
stands for (2, 2’) €<. All partial orders in this thesis are strict, so we use ‘partial order’
to stand for ‘strict partial order’.

The course of our study of minimaximal and maximinimal optimisation problems in-
volves obtaining one or more minimaximal or maximinimal optimisation problems from a
source optimisation problem II by introducing one or more partial orders defined on the
set of all feasible solutions F(z), for a given instance z of II. Since the definition of such
a partial order will in general depend on the given instance z of II, we use the superscript
z with the partial order symbols to be used in the following chapters. Several concepts

relating to partial orders are now defined.

Definition 2.8.2 Let I1 = (Z,U, 7, m,0PT) be an optimisation problem. For z € Z,
suppose that <7 is a partial order defined on the set F(z) and let ¢, u, v’ € F(z). Then

e tis maximal with respect to <", or <"-mazimal, if At' € F(x) et <" 1.
e tis minimal with respect to <*, or <"-minimal, if At € F(z) et <" 1.
e tis <"-optimal if either

— OPT = max and ? is <"-maximal or

— OPT = min and ¢ is <”-minimal.

e u is a <"-predecessor of u' if u <" u'.

e u’ is a <%-successor of u if and only if u is a <*-predecessor of u’.

e u is an immediate <" -predecessor of u’ if
u<"u'N Bve F(z)ou<"v=<"u.

o ' is an immediate <" -successor of u if and only if u is an immediate <"-predecessor
of v'. Nl

We now give a property that <* must satisfy in order to be considered as a suitable partial
order in this thesis.

Definition 2.3.3 Let Il = (Z,U,x, m,0PT) be an optimisation problem and for z € Z,
let <* be a partial order defined on F(z). Then <" satisfies Partial Order Measure
Monotonicity (POMM) with respect to II if

Vy,y e F(z)oy <"y = m(z,y) < m(z,y’). B

Without POMM, a <”-optimal solution would have essentially no significance insofar as
measure is concerned. Furthermore, it is intuitively clear that a feasible solution y that
is globally optimal should also be locally optimal in the sense that, if y is maximum
(respectively minimum) with respect to m(z,-), then y should also be maximal (minimal)
with respect to <”. The following proposition indicates that the POMM criterion achieves
this.
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Proposition 2.3.4 Let Il = (Z,U, 7, m,0PT) be an optimisation problem. For an in-
stance x € T, let <* be a partial order satisfying the POMM criterion in Definition 2.3.3,
and let y € F*(z). Then y is <" -optimal.

Proof: Assume OPT = max; the case OPT = min is similar. Suppose y is not <"-maximal.
Then there exists some y’ € F(z) such that y < y’. Hence the POMM criterion implies
that m(z,y) < m(z,y’), contradicting the fact that m(z, y) = m*(z). Hence y is indeed
a <"-maximal element of F(z). B

We now show how to obtain a minimaximal or maximinimal optimisation problem II’ from
a source optimisation problem II using a suitably defined partial order. The following def-
inition forms the basis of our framework for minimaximal and maximinimal optimisation

problems.

Definition 2.3.5 Let Il = (Z,U,r, m,0PT) be an optimisation problem, called the source
optimisation problem, and for z € Z, suppose that <” is a partial order defined on F(z)
satisfying POMM with respect to 1. Then we may define an optimisation problem TI' =
(7', U', 7", m' opT’), where:

o 7' =1.
o U'=U.
o 7' & Ao, where, for z € 7/ and y € F(z), o(z,y) if and only if y is <”-optimal.

For z € 7', we denote the feasible solutions of z by F’(z), where
Fia) = {y eU(z) : 72, ).

o For z € 7' and y € F'(z), m'(z,y) = m(z, y).

, min , if OPT=max
OPT = . .
max, if OPT=min.

If opT=max then II' is a minimaximal optimisation problem, and if oPT—min then II’ is
a maziminimal optimisation problem. 1f, in addition, the set {(z,y) :2 € T ANy € F'(2)}
is recognisable in deterministic polynomial time, then Il is in NPO. R

Some minimaximal and maximinimal optimisation problems are not known to be in NPO
even when the source optimisation problem is. For example, when the partial order of
partition redistribution (to be defined in the following section) is defined on the feasible
solutions of the source problem BIN PACKING (whose decision version is [92, problem SR1],
and in NP), the decision version of the maximinimal optimisation problem obtained using
Definition 2.3.5 is not known to be in NP (see Theorem 9.3.2). However, all minimaximal
and maximinimal optimisation problems in this thesis (apart from those of Chapter 6,
where an alternative framework is given for such problems) are obtained from source
optimisation problems in the class NPO, using an appropriate partial order. Nevertheless,
for full generality, we do not stipulate that the source optimisation in Definition 2.3.5 must

be in NPO.
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Since every partial order is a relation, it is clear that all minimaximal and maximinimal
optimisation problems defined in this thesis could be obtained from a modified Definition
2.3.5, in which a general relation satisfying POMM is defined on the feasible solutions for
a given instance of an optimisation problem. However, every optimisation problem that
we have encountered in the literature that is essentially a ‘minimum maximal’ or ‘maxi-
mum minimal’ problem (apart from fractional problems of this type, which are modelled
using a separate framework, defined in Chapter 6) may be defined using the framework of
Definition 2.3.5 as it stands. Thus, we opt for the partial order-based approach, in view
of the increased mathematical structure. Indeed, we shall, from time to time, utilise the
transitivity property of a partial order when reasoning about the relationships between
feasible solutions.

Our final remark following Definition 2.3.5 concerns the partial order <. In our
framework for minimaximal and maximinimal optimisation problems, <7 is defined on
F(z). In Chapter 9, we discuss the effect of defining <* on U(z).

2.4 Overview of some partial orders for minimaximal and
maximinimal optimisation problems

In this section we introduce several generic partial orders, to be defined on the feasible so-
lutions of source optimisation problems, in order to obtain minimaximal and maximinimal
optimisation problems, using the framework of Definition 2.3.5. In the following chapters,
it is easy to verify that each of the following partial orders satisfies POMM with respect
to the particular optimisation problem to which the partial order is applied.

The first two partial orders correspond to optimisation problems whose feasible solu-
tions are subsets of some fixed set associated with the instance.

Definition 2.4.1 Let I1 = (Z,U, =, m,0PT) be an optimisation problem. For any z € Z,
suppose that there is some set 57, associated with z, such that 2 (z) is a set of subsets of
S*. Define

CT={(5,9") € F(z) x F(z): S8 c S"}.

Then C” is the partial order of set inclusion. B

Definition 2.4.2 Let I = (Z,U, 7, m,0PT) be an optimisation problem as in Definition
2.4.1. For k > 1 and for z € Z, define

JACS A JA|<k-1
Ci=< (5,9 € F(z) x F(z): IBCS"\S" A |B|=|A4|+1
§" = (S\A)U B

By taking C7= (C})* (the transitive closure of relation C}), we obtain a partial order that
we call (k—1,k)-replacement. B

Intuitively, for & > 1 and two members S’, 5" of F(z), S" C7 S” if S” can be obtained
from S” by removing a set A of r — 1 (where r < k) elements from S’ and adding a set B
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of r elements from S”\S’. The partial order admits the useful property that, for k > 2,
Cj is a refinement of Cj_,. This is demonstrated by the next result, which follows by
observing that, for two members S, S” of F(z), 5" Cj_, 5" implies 5" C} S”.

Proposition 2.4.3 Let Il = (Z,U, 7, m,0PT) be an optimisation problem as in Definition
2.4.1. Then, for k > 2 and x € T, C}_, is contained in Cj.

Corollary 2.4.4 Let 11 = (Z,U, 7, m,0PT) be an optimisation problem as in Definition
2.4.1. Then, for k > 2, for x € T and for y € F(z), y is Ci-optimal implies that y is

Ci_q-optimal.

The partial orders of set inclusion and (0, 1)-replacement are closely related. Let I =
(Z,U, 7, m,0PT) be an optimisation problem as in Definition 2.4.1, and suppose z € 7.
For any s,t € F(z), is clear that s C7 ¢ implies s C” t. However, the converse is also true
when a certain condition is satisfied, given by the following definition. The terminology
follows that of Dunbar et al. [68].

Definition 2.4.5 Let Il = (Z,U, 7, m,0PT) be an optimisation problem as in Definition
2.4.1. Property = is hereditary if, for any = € Z, whenever s € U(z), t € F(z) and s C {,
then s € F(z). Property = is super-hereditary if, for any z € Z, whenever s € F(z),
teU(z)and s C t, then t € F(z). B

Given an optimisation problem I1 = (Z,U, 7, m, OPT), we say that Il is hereditary or super-
hereditary if 7 is hereditary or super-hereditary, respectively. Each of the optimisation
problems considered in Chapter 4 (where we consider the partial order of set inclusion, de-
fined on the feasible solutions of a source graph optimisation problem for a given instance)
is either hereditary or super-hereditary. However in Section 5.2, we give an example of an
optimisation problem that is neither hereditary nor super-hereditary.

The partial orders of set inclusion and (0, 1)-replacement are equal when the hereditary
or super-hereditary property is satisfied. This is demonstrated by the following result.

Proposition 2.4.6 Let Il = (Z,U,r, m,0PT) be an optimisation problem as in Definition
2.4.1. In addition, let © be hereditary or super-hereditary. Then, for any © € T and
s,t € F(z), s C" t implies s C7 t.

Proof: Let s C” t, where t\s = {r, ry,...,r,} for some n > 1. Define s, = s and, for
1 <i < n, define

s = sU{r, o, 1)

Then, for 1 < i < n,
s=8Cs_1Cs Cs,=1.

Thus an easy induction establishes that s; € F(z), for 1 < i < n, using either the
hereditary or super-hereditrary property throughout. Therefore s,_y C7 s, (1 < i < n),
which implies that s C7 ¢ as required. B

This section proceeds with some further partial order definitions. The following two partial
orders correspond to optimisation problems whose feasible solutions are strings over some
fixed alphabet associated with the instance.
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Definition 2.4.7 Let I = (Z,U,r, m,0PT) be an optimisation problem. For any z € Z,
suppose that there is an alphabet 37 associated with z, such that (z) is a finite set of
strings, each composed of symbols of 7. Define

<T={(s",8") € F(z) x F(z): s < s"}.
Then «” is the subsequence partial order. B

Definition 2.4.8 Let Il = (Z,U, 7, m,0PT) be an optimisation problem as in Definition
2.4.7. For z € Z, define

' =A{(s",s")y e F(z) x F(z) : s' & "}
Then <" is the substring partial order. B

The following two partial orders correspond to optimisation problems whose feasible solu-

tions are partitions of some fixed set associated with the instance.

Definition 2.4.9 Let I1 = (Z,U, =, m,0PT) be an optimisation problem. For any z € Z,
suppose that there is some set S”, associated with z, such that I/(z) is a set of partitions

of S%. Define

P ={s1,8,...,8} A
Co=(P,Q) € F(z) x F(z): Q={s],s5,..., 54} A
Vi<i<t—les, =3s!

By taking <= (C?)*, we obtain a partial order that we call partition merge. B

Intuitively, we have that, for two partitions P, and P, of S, P; C7 P, if Py can be obtained
from P, by merging two of the constituent sets of Ps.

Definition 2.4.10 Let IT = (Z,U, 7, m,0PT) be an optimisation problem as in Definition
2.4.9. For z € Z, define

P={s1,89,...,8} A
Co=q (P, Q)€ F(z) X F(z): Q={s{, 55,814} A
Vi<i<tes! Cs

By taking <i= (C})*, we obtain a partial order that we call partition redistribution. B

Intuitively, we have that, for two partitions P, and P, of S, P, Cj P, if P, can be
obtained from P, by taking a constituent set of P, and partitioning its members amongst
the remaining sets of P,. Suppose that Py = {s,5,,...,s:} and P, = {s{,s/,...,5/,,} such
that, without loss of generality, s/ C s, for 1 < ¢ < t. We say that P, is a redistribution
of Ps, and that s/ , has been redisiributed among the sets s{, sj,...,s;. Note that <7 is
a refinement of <7. This is demonstrated by the next result, which follows by observing
that, for two partitions P; and P, of F(z), P, C% Py implies Py C§ Ps.
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Proposition 2.4.11 Let Il = (Z,U, 7, m,0PT) be an optimisation problem as in Defini-
tion 2.4.9. For x € I, <7 is contained in <j.

Corollary 2.4.12 Let 11 = (Z,U,w, m,0PT) be an optimisation problem as in Definition
2.4.9. Forx € T and for y € F(z), y is <}-optimal implies that y is <%-optimal.

The two families of partial orders given by Definitions 2.4.13 and 2.4.16 generalise Defini-
tions 2.4.9 and 2.4.10 respectively.

Definition 2.4.13 Let I1 = (Z,U, 7, m,0PT) be an optimisation problem as in Definition
2.4.9. For k > 2, and for z € Z, define

P ={s1,89,...,8} A

Q:{Sivséw"vséﬁ-l} A

d2 < r<ke
Vi<i<t4+1l—res, =s!

Cox=4 (P, Q)€ F(x) x F(x):

By taking <7 ,= (C7 )", we obtain a partial order that we call partition (k — 1, k)-merge.
|

Intuitively, for two partitions P, and Py in F(z), Py Cox P2 if Py can be obtained from
Py by merging the elements of r sets in P, (2 < r < k) into r — 1 new sets, whilst the
other sets in P, retain their original elements. Note that if £ = 2 then we obtain the
partial order of partition merge. Also, for & > 3, <7, is a refinement of <7 , ;. This is
demonstrated by the next result, which follows by observing that, for two partitions Py, P,
of F(x), P, C} ,_, P, implies P, C}, ; Ps.

Proposition 2.4.14 Let 11 = (Z,U, 7, m,0PT) be an optimisation problem as in Defini-
tion 2.4.9. Then, for k > 3 and for x € T, <7 ,_, is contained in <7 ; .

Corollary 2.4.15 Let Il = (Z,U, 7, m,0PT) be an optimisation problem as in Definition
2.4.9. Then, for k > 3, for v € T and for y € F(x), y is <, ,-optimal implies that y is
< k_1-optimal.

Definition 2.4.16 Let I1 = (Z,U, 7, m,0PT) be an optimisation problem as in Definition
2.4.9. For k > 1 and for z € Z, define

P:{317327"'73t}/\

z Q={s/,s5,...,8 A
Coi=14 (P, Q) € F(z) x Fz): 21 <{T1< 2. 1)

Vi<i<t4+1l—res/ Cs

By taking <3 ,= (C7 )", we obtain a partial order that we call partition k-redistribution.
|

Intuitively, for two partitions P; and P, in U(z), Py Cox Po if P; can be obtained from
Py by distributing the elements of r sets in Py (1 < r < k) amongst the remaining sets in
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P, plus r — 1 new sets. Note that if £ = 1 then we obtain the partial order of partition
redistribution. Also, for & > 2, <}, is a refinement of <7, ;. This is demonstrated
by the next result, which follows by observing that, for two partitions P, Py of F(z),
Py}, Poimplies Py Cf , Ps.

Proposition 2.4.17 Let 11 = (Z,U, 7, m,0PT) be an optimisation problem as in Defini-
tion 2.4.9. Then, for k > 2 and for x € T, <3 ;_, is contained in <7, .

Corollary 2.4.18 Let I1 = (Z,U, 7, m,0PT) be an optimisation problem as in Definition
2.4.9. Then, for k > 2, for x € T and for y € F(z), y is <3 ,-optimal implies that y is

<% x_1-optimal.

The next result shows that <7, is a refinement of <7 ;, and follows by observing that, for
two partitions Py and P, of F(z), Py T}, P> implies P, Cj , Ps.

Proposition 2.4.19 Let Il = (Z,U, 7, m,0PT) be an optimisation problem as in Defini-
tion 2.4.9. For k > 2 and for x € T, <7 is contained in <3 ;.

Corollary 2.4.20 Let 11 = (Z,U,w, m,0PT) be an optimisation problem as in Definition
2.4.9. For k > 2, for x € T and for y € F(x), y is < ,-optimal implies that y is

<G x-optimal.

One further partial order that we study is concerned with functions. We introduce the
partial order on functionsin Chapter 6, as the partial order will be defined on the feasible
solutions of a fractional graph optimisation problem, also to be defined in that chapter.
Finally, the partial order on truth assignments, associated with logic-related optimi-
sation problems, is defined in Section 7.7.1, as its definition uses additional terminology

that we introduce in that section.

2.5 Relationships between neighbourhood relations and par-
tial orders

In this section, we consider the correspondence between the notion of a partial order within
the context of the framework of Definition 2.3.5, and the notion of a neighbourhood relation
within the context of the framework of PLS. We show that, despite a relationship between
local optimality with respect to a neighbourhood relation and maximality or minimality
with respect to a partial order satisfying POMM, the two mathematical structures are
distinct entities, reflecting the differing objectives of the frameworks of PLS and Definition

2.3.5 on which the structures are based.

Intuitively, the term ‘neighbourhood relation’ conjures up an image of the feasible
solutions as points in space, in which a pair of feasible solutions are related to each other
as neighbours if and only if they are at most distance d apart (as described by Yannakakis
[211]). This intuition, along with the dictionary meaning of the word ‘neighbour’, implies
reciprocity, in that s is a neighbour of ¢ implies ¢ is a neighbour of s. However, such
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symmetry is not a requirement of the classical definition of the neighbourhood relation
for a local search problem (see for example [179, p.7]). Nevertheless, most neighbourhood
relations that occur in the literature are indeed symmetric.

Considering specific examples, the k-opt neighbourhood for Tsp [179, Section 19.2],
the swap neighbourhood for the so-called GRAPH PARTITIONING problem [179, Section
19.5] and the bit-flipping neighbourhood for the so-called FLIP problem [136] are instances
of symmetric neighbourhood structures for local search problems that have played a key
role in the study of the class PLS [149, 193, 136]. By constrast, the Lin-Kernighan neigh-
bourhood for Tsp [155] and the Kernighan-Lin neighbourhood for GRAPH-PARTITIONING
[142] are examples of local search problems incorporating non-symmetric neighbourhood
relations. These two neighbourhood relations have the common property that, for two
feasible solutions s and ¢, s is a neighbour of ¢ implies that s has better measure than .
Thus non-symmetry is immediate. In fact, every local search problem we have found in
the literature, incorporating a neighbourhood relation that is non-symmetric, satisfies the
property that a neighbour of a feasible solution s is a local improvement of s.

Thus, for local search problems incorporating such non-symmetric neighbourhoods,
we may view the neighbourhood structure as a relation satisfying POMM. By taking the
transitive closure of this relation, we may reason about local optimality with respect to a
partial order satisfying POMM. However, the same is also possible for local search problems
incorporating symmetric neighbourhoods, if we consider only local improvements. The
remarks of this paragraph are formalised by the following theorem.

Theorem 2.5.1 Let Il = (Z,U, 7, m,0PT) be an optimisation problem, and for an in-
stance x of 11, suppose that N, is a neighbourhood relation defined on the feasible solutions
F(z). Then we may construct a partial order <%, defined on F(z), satisfying POMM,
such that, given any t € F(z), t is locally optimal with respect to N, if and only if t is
<"-optimal.

Proof: If opT = min, then consider the relation
Cr= {(5,1) € F(a) x F(a) : s € Na(t) Amla, 5) < m(z,1)}

Denote by <” the transitive closure of C”. Clearly, <* is a partial order satisfying POMM.
Suppose that ¢ € F(z) is locally optimal with respect to N,, but there is some s € F(z)
such that s <" t. Then there is some n > 2 and s, € F(z) (1 < i < n) such that

s=85 C s C*...C" 5,1 C" s, = 1.

In particular, s,_; € N,(¢) and m(z,s,_1) < m(z,t), contradicting the local optimality
of t. Conversely, it is clear that a <”-minimal element of F(z) is locally optimal with
respect to V.

Similarly, if oPT = max, then consider the relation

Cf={(s,1) € F(2) x F(z) : t € No(s) Am(z,s) < m(z, 1)}

Again, denote by <7 the transitive closure of C”. As in the case OPT = min, it may
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be verified that <” is a partial order satisfying POMM, and that a feasible solution s is
locally optimal with respect to N, if and only if s is <*-maximal. B

On the other hand, given an optimisation problem II with a partial order <%, satisfying
POMM with respect to 11, defined on the feasible solutions of II for a given instance z, we
may construct a symmetric neighbourhood relation N, with the property that a feasible
solution y is <"-optimal if and only if y is locally optimal with respect to N,. This is
demonstrated formally by the following result.

Theorem 2.5.2 Let 11 = (Z,U, 7, m,0PT) be an optimisation problem, and for an in-
stance x of 11, suppose that <” is a partial order defined on F(z), satisfying POMM. Then
we may define a symmetric neighbourhood relation N, such that, given any t € F(z), t is
<"-optimal if and only if t is locally optimal with respect to N,.

Proof: We construct a neighbourhood relation as follows. For any t € F(z), define

N.(t) = {s € F(z):sisan immediate <"-predecessor of ¢} U

{u € F(z): uis an immediate <”-successor of ¢}.

Clearly, this neighbourhood relation is symmetric. Suppose firstly that oPT = min, some
t € F(z)is <"-minimal, and there is some s € N,(t) such that m(z,s) < m(z,t). Then
s <* t, by POMM. This contradiction to the <*-minimality of ¢ implies that ¢ is locally
optimal with respect to N,. Conversely, suppose that ¢ is locally optimal with respect
to N,, and t is not <*-minimal. Then ¢ has an immediate <”-predecessor, say s. Thus
s € N,(t), and by POMM, s contradicts the local optimality of . Hence ¢ is <*-minimal.

Similarly, if oPT = max and t € F(z), then ¢ is <*-maximal if and only if ¢ is locally
optimal with respect to N,. B

Thus, it would appear that there is a correspondence between local optimality with respect
to the neighbourhood relation framework of the class PLS, and local optimality with
respect to the partial order framework of Definition 2.3.5. However, it is important to
draw distinctions between the two mathematical structures.

A neighbourhood relation is not, in general, a partial order: transitivity is not satisfied
for any of the neighbourhoods discussed above. Moreover, a symmetric neighbourhood
relation does not satisfy POMM. Recall that, in the framework of Definition 2.3.5, the
relation defined on the feasible solutions of an optimisation problem must be a partial
order satisfying POMM. Reasons for opting for a partial order within our framework were
discussed in the remarks following Definition 2.3.5. We also discussed why a partial order
should satisfy POMM in the remarks following Definition 2.3.3.

On the other hand, a strict partial order satisfying POMM is not symmetric, and thus
we could not define a neighbourhood relation such as k-opt using such a structure without
changing the notion of k-opt to one in which only local improvements are allowed (as is
done by Theorem 2.5.1). This, in our opinion, would diminish the elegance of the definition
of a such a neighbourhood relation, and would also undermine the inherent structure of
the neighbourhood concept in such a case.



Chapter 3

Maximinimal graph colouring
problems

3.1 Introduction

In this chapter we consider two maximinimal graph colouring optimisation problems that
may be obtained from the source CHROMATIC NUMBER problem, defined as follows:

Source problem: CHROMATIC NUMBER=(Z,U, 7, m,OPT), where
e 7={G=(V,FE): G is agraph}
e U(G)={P: P is apartition of V}, for G €T

e 7(G,P)<= VS € PeSisindependent in G, for G € Z and P € U(G)

m(G, P)=|P|, for G €7 and P € F(G)
® OPT = min.

We now present some terminology relating to the CHROMATIC NUMBER problem. The
chromatic number, x(G), of a graph G is m*(G). A k-colouring of G is an element P of
U(G) such that |P| = k. A proper k-colouring of G is an element P of F((G) such that
m(G, P) = k. We say that a graph G is k-colourable if G has a proper k-colouring. For
a graph G = (V, F) and vertex v € V, the colour, ¢(v), assigned to v in any colouring
{Vi, Vo,..., Vi } is the unique 7 such that 1 < i < k and v € V,. The CHROMATIC NUMBER
problem has been extensively studied with regard to algorithmic complexity. CHROMATIC
NUMBER DECISION is NP-complete [92, problem GT4], even for K = 3 and planar graphs
of maximum degree 4 [93], though polynomial-time solvable for chordal graphs [95]. The
complexity of this problem for many other graph classes is surveyed by Johnson [134].

By considering CHROMATIC NUMBER, together with the partial orders of partition
merge and partition redistribution, we obtain from Definition 2.3.5 two maximinimal graph
colouring optimisation problems, called MAXIMUM < ,-MINIMAL CHROMATIC NUMBER and
MAXIMUM =,-MINIMAL CHROMATIC NUMBER respectively. In Section 3.2, we show that
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the first problem has in fact been studied previously and is called ACHROMATIC NUMBER
in the literature. In Sections 3.3-3.6, the second problem is considered. This problem,
which we call B-CHROMATIC NUMBER, is new. We study the computational complexity
of B-CHROMATIC NUMBER in arbitrary graphs, bipartite graphs and trees. We obtain
NP-completeness results for B-CHROMATIC NUMBER DECISION in general graphs and bi-
partite graphs in Sections 3.4 and 3.5 respectively. B-CHROMATIC NUMBER is shown to be
polynomial-time solvable for trees in Section 3.6.

3.2 Defining the achromatic number

In the previous section, the chromatic number of a graph G was defined to be the minimum
number of colours over all proper colourings of G. A related parameter is the achromatic
number, ¥(G), of a graph G, which involves maximising the number of colours over all
proper colourings, rather than minimising. Garey and Johnson [92] define (&) to be the
maximum k for which G has a proper colouring {Vy, Vs, ..., Vi} that also satisfies the
following property:

V1<i<j<keV,UV;isnotindependent. (3.1)

A proper colouring for a graph G satisfying Property 3.1 above is called a complete or
achromatic colouring.

The parameter ©(G) was first studied by Harary et al. [110], who define a homomor-
phism from a graph G to a graph H as a map ® from V(G) onto V(H) such that u,v
are adjacent in G implies that u®, v® are adjacent in H. A homomorphism & is said to
be complete of order n if G® is isomorphic to K,. Harary et al. then show that y(G) is
the smallest order of a complete homomorphism of G. They define the parameter (&)
to be the maximum order of all complete homomorphisms of . The parameter ¢ (G) was
named the achromatic number of G’ by Harary and Hedetniemi [109].

The ACHROMATIC NUMBER problem (whose decision version is problem GT5 of [92])
is to find, given a graph G, an achromatic colouring for G of ¥(G) colours.

We now show how to obtain the definition of ACHROMATIC NUMBER in terms of a partial
order defined on the set of all proper colourings for a graph G. Let (Z,U,x, m,0PT) be
defined as for the CHROMATIC NUMBER problem in Section 3.1. Consider the partial order
<9 of partition merge, defined on F(G). Recall that < is the transitive closure of the
relation C¢. Intuitively, for two colourings ¢, cs € F(G), ¢; CY ¢y if and only if (in order
to produce colouring ¢;) every vertex belonging to one of the colours i in ¢, is recoloured
by one particular colour j chosen from the other colours, while every other vertex retains
its original colour. If V,; and V; denote the vertices coloured 7 and j in ¢,, then for this
recolouring to be possible, it is clear that V; U V; must be independent in . Thus it is
follows that ¢ € F(G) is <¢-minimal if and only if Property 3.1 holds. This justifies the
following alternative definition of ¥ (G):

(@) = max{|c|: ¢ € F(G) is <¢-minimal}.
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We may utilise Definition 2.3.5 to give us the formal definition of the MAXIMUM <,-
MINTMAT, CHROMATIC NUMBER, or ACHROMATIC NUMBER, problem in terms of <¢. Thus
ACHROMATIC NUMBER is an optimisation problem in the literature that, perhaps surpris-
ingly, turns out to be a maximinimal optimisation problem within our framework.

The computational complexity of ACHROMATIC NUMBER has been studied for a number
of graph classes. ACHROMATIC NUMBER DECISION is shown to be NP-complete by Yan-
nakakis and Gavril [213], even for the complements of bipartite graphs. The problem is
also shown to remain NP-complete for bipartite graphs [75] and connected graphs that are
simultaneously a cograph and an interval graph [21]. ACHROMATIC NUMBER DECISION has
recently been shown to remain NP-complete for trees [30]. Chaudhary and Vishwanathan
[37] obtain the first polynomial-time o(n) approximation algorithm for ACHROMATIC NUM-
BER.

3.3 Defining the b-chromatic number

We now consider the partial order of partition redistribution, <J, which is a natural
refinement of partition merge, defined on F(G), for a graph G (where (Z,U,x, m,0PT)
are defined as for the CHROMATIC NUMBER problem in Section 3.1). Recall that <’ is
the transitive closure of the relation C. In Section 3.2, we described that intuitively, for
two colourings ¢y, ¢y € F(G), ¢; CY ¢, if and only if (in order to produce colouring ¢;)
every vertex belonging to one of the colours i in ¢, is recoloured by one particular colour j
chosen from the other colours, while every other vertex retains its original colour. In fact
it would be more flexible to allow the recolouring process to pick some colour i of ¢ and
redistribute the vertices of colour i among the other colours of ¢, in order to produce ¢;.
This is exactly the intuition behind ¢; Cf ¢s.

We have that a proper colouring { Vi, Vs, ..., V. } is <-minimal if and only if it is not
possible to redistribute the vertices of a colour i (1 < i < k) amongst the other colours
1,2,...,i— 1,14+ 1,...,k in order to obtain a proper colouring. Since the vertices of
colour ¢ are independent, the choice of new colour given to one vertex of colour ¢ has no
bearing on the choice of new colour given to any other vertex of colour i, when making
this redistribution. This observation gives rise to the following result, which provides a

convenient criterion for a proper colouring to be <{-minimal.

Proposition 3.3.1 A proper colouring {Vy, Va, ..., Vi.} for a graph G = (V,E) is <{-
minimal if and only if

Vi<i<kedu e V,eVi<j#i<kedw € V,e{v,w}e€kl. (3.2)

Intuitively, a proper k-colouring is <f'-minimal if and only if each colour i contains at
least one vertex v; that is adjacent to a vertex of every colour j (1 < j # i < k). We
call such a vertex v; a b-chromatic vertex for colour i. We call a proper k-colouring
that satisfies Property 3.2 a b-chromatic k-colouring. 1t follows from Proposition 3.3.1
that testing a proper colouring for <¢-minimality is polynomial-time solvable, and that
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G H

Figure 3.1: Examples to show that I'(G) need not be an upper bound for ¢(G), or vice
versa.

an iteration of the implicit algorithm for testing gives a polynomial-time procedure for
finding a <{-minimal colouring.

We can now make the following definition:

Definition 3.3.2 The b-chromatic number, o(G), of a graph G = (V, F) is defined by
¢(G) = max{|c|: ¢ € F(G) is <5 -minimal}.

The MAXIMUM <p~MINIMAL CHROMATIC NUMBER, or B-CHROMATIC NUMBER problem is
derived from CHROMATIC NUMBER and the partial order <{, using Definition 2.3.5. B

Therefore, the b-chromatic number parameter for a graph G is the maximum number
of colours for which G has a proper colouring such that every colour contains a vertex
adjacent to a vertex of every other colour. This parameter does not appear to have been
studied previously in the literature.

Hughes and MacGillivray [127] give an interpretation of the achromatic number pa-
rameter ¥((G) as being the largest number of colours in a proper colouring of G, “which
does not obviously use unnecessary colours”. The definition of the b-chromatic number
parameter ¢(() therefore incorporates a partial order <{’ that substantially strengthens
this notion of not ‘wasting’ colours.

The parameter ¢(G) superficially resembles the Grundy number'; T'(G), of G. The
Grundy number (first named and studied by Christen and Selkow [40]) is the maximum
number of colours k£ for which G has a Grundy k-colouring. A Grundy k-colouring of G
is a proper colouring of G using colours 0,1,..., k — 1 such that every vertex coloured i,
for each 0 < i < k, is adjacent to at least one vertex coloured j, for each 0 < j < i. In
general it is not the case that the Grundy number is an upper bound for the b-chromatic
number, or vice versa, as is demonstrated in Figure 3.1: here I'(G) = 4 while p(G) = 5,
and I'(H) = 3 while ¢(H) = 2. Thus in general I'(G) and ¢(G) are distinct parameters,
for a given graph G.

!To be consistent with the literature, we must denote by I" both the Grundy number and the mazimum
minimal domination number (defined in Section 4.3.3) in this thesis. However, all references to the Grundy
number are confined to this chapter, and in Chapter 4 onwards, all instances of I" denote the maximum
minimal domination number.
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The partial order <{' is a refinement of <¢ in that a proper colouring that is <{-
minimal is also <¢-minimal. Thus ¢(G) < ¥(G). An immediate lower bound for ¢(G) is
X(G), since any proper colouring of G using x(G') colours must be b-chromatic. However
¢(G') may be arbitrarily far away from x(G'): consider the graph G shown in Figure 3.2(a),
that is the complete bipartite graph K, , minus a perfect matching. Letting c(u;) =
c(v;) =i for 1 < i < n gives a b-chromatic n-colouring. As each vertex has degree n — 1,
¢(G) = n, whereas x(G) = 2.

Harary et al. [110] show (as a consequence of their Homomorphism Interpolation The-
orem) that an arbitrary graph G = (V, F) has achromatic colourings of any size between
X(G) and ¥(G). Thus, in the terminology of Harary [107], ¢ is an interpolating invariant,
i.e. for any graph G, the set

S ={k € Z* : G has an achromatic colouring of size k}

is convez, that is, every n between min(S) and max(S) belongs to S. It turns out that
¢ is not an interpolating invariant. This may be seen by considering the graph G of
Figure 3.2(a) with n = 4, illustrated in Figure 3.2(b). We saw previously that G has b-
chromatic 2 and 4-colourings, but there is no 3-colouring of G that is b-chromatic, which
may be seen as follows. Suppose that G does have a b-chromatic 3-colouring, and without
loss of generality suppose that c¢(u;) = 1 and ¢(vy) = 2. Suppose, again without loss of
generality, that u, is a b-chromatic vertex for colour 3. Then ¢(v;) = 1 which in turn
forces ¢(uz) = ¢(uy) = 3 and ¢(vs) = ¢(v3) = 2. Neither u; nor v, is b-chromatic, so we
have a contradiction.

In the remainder of this chapter we study ¢((G) from the point of view of algorithmic

complexity.

3.4 The b-chromatic number in general graphs

In this section we prove that determining ¢(G') for an arbitrary graph G is hard. Firstly,
we derive a useful upper bound for ¢(G). It is clear that, for a graph G to have a b-
chromatic colouring of k colours, G must contain at least k vertices, each of degree at
least £ — 1. The following definition leads to a closely related, but stronger observation.

Vi

V2

& & &

&
<

b

Figure 3.2: Example to show that ¢(G) can be arbitrarily far from y(G).
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Figure 3.3: Example to show that ¢((G') can be arbitrarily far from m(G).

Definition 3.4.1 For a graph G = (V, F), suppose that the vertices of GG are ordered
Uy, U, ..., ¥, such that d(v) > d(v) > ... > d(v,). Then the m-degree, m(G), of G is
defined

m(G) =max{l <i<n:d(v;) >i—1}.1

It turns out that m((G) is an upper bound for ¢(G).
Lemma 3.4.2 For any graph G, ¢(G) < m(G).

Proof: The definition of the m-degree implies that there is some set of m((G) vertices of
G, each with degree > m(G) — 1, while the other |V| — m((G) vertices of G each have
degree < m(G) — 1. If ¢(G) > m((G) then in any b-chromatic colouring of size ¢(G),
there is at least one colour ¢ whose vertices all have degree < m((G') — 1. For, if not, then
there are at least ¢(G) > m(G) vertices of degree > m(G) — 1, a contradiction. Hence
all vertices of colour ¢ have degree < () — 1, and none of these can be b-chromatic, a

contradiction. B

This upper bound is tight: the graph G of Figure 3.2(b) satisfies m(G) = 4, and we have
already seen that G has a b-chromatic 4-colouring. On the other hand, ¢(G) may be
arbitrarily far from m(G), as the example of Figure 3.3 shows. For the complete bipartite
graph G = K, , illustrated, m(G) = n + 1, whereas ¢(G) = 2, which may be seen as
follows. We suppose that G has a b-chromatic colouring of size > 3 and without loss of
generality suppose that ¢(u;) = 1, ¢(v;) = 2 and v, is a b-chromatic vertex for colour 3.
Then we have a contradiction, for v, cannot be adjacent to a vertex of colour 2.

We now prove that B-CHROMATIC NUMBER DECISION is NP-complete. The proof
involves a transformation from the NP-complete problem EXACT COVER BY 3-SETS [92,
problem SP2], which may be defined as follows:

Name: EXACT COVER BY 3-SETS (X3C).

Instance: Set A = {ay, as, ..., a,} of elements, where n = 3¢ for some ¢, and a
collection C' = {¢y, ¢a, ..., ¢y} of subsets of A (clauses), where |¢;| = 3 for each
i (1<i<m).

Question: Does C' contain an exact cover for A, i.e. is there a set €’ (C" C (')
of pairwise disjoint sets whose union is A?

Theorem 3.4.3 B-CHROMATIC NUMBER DECISION is NP-complete.
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Figure 3.4: Graph G derived from an instance of X3c.

Proof: B-CHROMATIC NUMBER DECISION is certainly in NP, for, given a proper colouring
of the vertices we may use the criterion of Proposition 3.3.1 to verify that the colouring
is b-chromatic, in polynomial time. To prove NP-hardness, we give a transformation
from the x3c problem, as defined above. We suppose that A = {ay, as,...,a,} (where
n = 3q for some ¢), and C = {¢1,¢a,...,¢p} (where ¢; C A and |¢;| = 3, for each i)
is some arbitrary instance of this problem. The X3¢ problem can easily be transformed
to a restricted version of the problem, in which the instance satisfies the following two
properties:

1. U CZ‘:A

1<i<m

2. A+ 0.

We construct an instance of B-CHROMATIC NUMBER DECISION as follows. Let

V=t Uy 0y W ooy Wiy By ooy Ty Yy e e oy YU s

and let F contain the elements

{u;, v} for1<i < n,

{v, w;} for1<i<m,

{wj,w;} forl1<i<j<m,
{wj,z;} for1<i<m,1<j<n,

{z;, z;} for1<i<j<mn,
{#z,y;}  for1<i<n1<j<me aq € ¢,
{yiy;} forl<i<j<meeNe #0.

The resulting graph G = (V, F) is shown in Figure 3.4. We now find m((G) in order to
obtain an upper bound for ¢(G). It may be easily verified that:

o d(u;)=1for1 <i<n.

e d(v)=m+ n.

w;)) =m—+nforl <i<m.

d(
d(
d(
d(

z;) > m+nfor 1 <i<n (by Assumption 1 above).
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e d(y;) <3+ (m—1) < m+ n (since n > 3 by Assumption 2 above).

Therefore m + n + 1 vertices of G have degree at least m + n and all other vertices of G
have degree less than m + n. Hence m(G) = m+ n+ 1 and by Lemma 3.4.2 we have that
©(G) < m+ n+ 1. The claim is that G has a b-chromatic colouring of size m 4+ n + 1 if
and only if C' has an exact cover for A.

For, suppose that C has an exact cover ¢;,, ¢;,, ..., ¢; for A, where r < m. We assign
m 4+ n + 1 colours to the vertices of G as follows:

o c(u;)=c(z;)=iforl<i<n,

o c(v)=m+n+1,

o c(w)=n+iforl<i<m,

o c(y,)=m+n+1forl<j<rand

e colour the remaining y; (i.e. vertices {1, Yo, .-, Ym F\{¥is Yins - - -, ¥i, }) by colours
n+1,n+2,...,n+ m — r respectively.

It remains to show that this colouring is b-chromatic. Certainly the colouring is proper,
for the exact cover property gives us that ¢; N ¢;, = @ for 1 < j < k < r, so that
{Yi;, i} € E. Also, m — r < m + 1, so that no y; such that ¢; is not in the exact cover
has colour m + n + 1. We now check that Property 3.2 holds. Take each colour j in turn:

o If j = m+ n+ 1 then v is a b-chromatic vertex for colour j.
o If n+1<j <n+mthen w,_, is a b-chromatic vertex for colour j.

o If 1 <j < n then z; is adjacent to colours 1,...,7 — 1,7+ 1,...,n+ m, plus colour
m + n + 1 by the exact cover property of ¢;,, ¢, ..., ¢, , sois a b-chromatic vertex
for colour j.

Therefore this colouring is b-chromatic and has size m + n + 1.

Conversely suppose that G has a b-chromatic colouring of size m + n + 1. Without
loss of generality we may assume that ¢(z;) = i for 1 < i < n and ¢(w;) = n+ i for
1 <7 < m. There is only one remaining vertex of degree at least m + n, namely v, so the
b-chromatic property forces ¢(v) = m+n+ 1, and also uy, us, . .., u, must be coloured by
some permutation of the colours {1,2,...,n}. Foreach i (1 < i < n), 2; is the b-chromatic
vertex for colour i and hence is adjacent to some y; such that ¢(y;) = m + n+ 1. Thus
there is a subcollection ¢, , ¢;,, ..., ¢; for some r (r < m) such that, for each j (1 < j < n),
a; € ¢, for some k (1 < k < r). Moreover, the v, , y.,, ..., y; are all coloured m + n+ 1
so that {y;,, 9, } € £ for 1 <j <k < r. Hence ¢;, N ¢;, = @ so that ¢;, ¢;,, ..., ¢; forms
an exact cover for A. i
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3.5 The b-chromatic number in bipartite graphs

In the previous section, the B-CHROMATIC NUMBER DECISION problem is shown to be NP-
complete for arbitary graphs. In fact, the following restricted version of B-CHROMATIC
NUMBER DECISION is shown to be NP-complete:

Name: RESTRICTED B-CHROMATIC NUMBER DECISION.

Instance: Graph G' = (V, E) and integer K € Z*, where K = m(G), G is
connected and G has exactly K vertices of degree > K — 1.

Question: Does G have a b-chromatic K-colouring?

Here we use RESTRICTED B-CHROMATIC NUMBER DECISION to show that the following
problem is NP-complete:

Name: BIPARTITE B-CHROMATIC NUMBER DECISION.
Instance: Bipartite graph G = (V, F) and integer K € Z™.
Question: Does G have a b-chromatic colouring of & > K colours?

Theorem 3.5.1 BIPARTITE B-CHROMATIC NUMBER DECISION is NP-complete.

Proof: Let G = (V, E) and K € Z* be an instance of RESTRICTED B-CHROMATIC NUMBER
DECISION, where K = m((), G is connected, and G has exactly K vertices of degree > K —
1, which we call the b-chromatic G-vertices. Let m = m(G) and let V = {vj, va,...,0,}
be ordered such that the b-chromatic G-vertices for G are vy, v, ..., v, and suppose that

E={e,e5...,€.}.

We construct an instance G’ = (V', E’) and K’ € Z% of BIPARTITE B-CHROMATIC
NUMBER DECISION as follows. We begin with V! = VU{z, 2, ..., 2.} for some new ver-
tices z,. Corresponding to every edge e, (1 < k < ¢), where e, = {v;, v;} for some i,j (1 <
i < j < n),add new vertices ay, by, cx, dy and w], ] for 1 < r < m+2g—3. Add the edges
{Uiv ak}7 {bk7 Uj}v {Uj7 Ck}7 {dk7 Ui}v {Uiv Ck}7 {Ujv ak} and {ak7 wl:}v {wl:7 bk}7 {Ck7 'rl:}v {'f;:, dk}v
for 1 <r < m+2¢—3,to E'. Corresponding to a b-chromatic G-vertex v; (1 < i < m),
add the edges {v;,z.} (1 < r < 2q) to F’. Finally, set K’ = m + 2q. Let S denote the
set S ={1,2,...,m+2¢g}. An example component, corresponding to a typical edge of G
which is incident to a b-chromatic G-vertex, is shown in Figure 3.5. It may be verified
that G’ is bipartite.

We firstly show that m(G’) = K’. Denote the degree of a vertex v in G by d(v), and
the degree of a vertex v in G’ by d’(v). Then for each 7 such that 1 < i < m,

d'(v;)

3d(v;) + 2¢q
3(m—1)+2¢q
K’ — 1.

vV v
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Figure 3.5: Typical edge component in the constructed instance G’ of BIPARTITE B-
CHROMATIC NUMBER DECISION. The edge component shown corresponds to the edge
e = {v;,v;} of G, and here v, is a b-chromatic G-vertex.

For each i such that m +1 < i < n,

d'(v;) = 3d(v)

< 3(m-1) (since v; is not a b-chromatic G-vertex)
< m-+2n-3 (since m < n)

< m+2(¢g+1)—3 (since G is connected)

= K' -1

For any k (1 < k < q), d'(ay) = d'(¢;) = K' — 1, d'(by) = d'(dy) = K’ — 2, and
d'(w]) =d'(zf) =2 for 1 <r < m+2¢q— 3. Finally, d'(z,) = m for 1 < r < 2¢. Hence
there are exactly K’ vertices in G’ of degree > K’ — 1, whilst all other vertices of G’ have
degree < K’ — 1. Thus m(G’) = K’. We call the K’ vertices in G’ with degree > K’ —1
the b-chromatic G'-vertices.

The claim is that & has a b-chromatic K-colouring if and only if G’ has a b-chromatic
K’-colouring. Denoting the colour of a vertex v in G by ¢(v) and the colour of a vertex
vin G’ by ¢/(v), we suppose firstly that G has a b-chromatic K-colouring with colours
{1,2,...,m}. Assign a colouring to G’ as follows:

e Set ¢'(v;) = ¢(v;) for 1 < i < n.

e Set /(z)=m+ifor1<i<2q.
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e Set /(ay) =m+2k —1and ¢/(¢;) =m+2k for 1 <k <gq.

e Set /(by) = ¢(v;) and ¢'(dy) = ¢(v;), for each k (1 < k < q), where e, = {v;, v;},

for some 4,7 (1 <i<j<n).
e Foreach k (1 <k < ¢), assign colours in G’ to the w/, 2] (1 < r < m+2qg—3) such
that

{e'(wh), ¢'(wg), ..., (w77} = S\{e(v), e(v)), m+ 2k — 1}
and
{Cl(xli)v Cl(xlf)v R Cl(xl;n-l_zq_?))} = S\{C(Ui)v C(Uj)v m+ Qk}v
where e, = {v;, v;}, for some 7,7 (1 <i < j <n).

It then follows that this colouring for G’ is a b-chromatic K’-colouring.

Conversely, suppose that G’ has a b-chromatic K’-colouring. Without loss of generality
we may suppose that the b-chromatic G’-vertices are coloured such that ¢/(v;) = i for
1<i<m,c(a)=m+2k—1and /(¢;) = m—+ 2k for 1 <k <gq.

Now let k£ (1 < k < g¢) be given and suppose that e, = {v;, v;} for some i and j
(1 <i < j < n). Vertex ay is the b-chromatic G’-vertex for colour m + 2k — 1, and
d'(ay) = m +2q — 1. Hence ¢'(v;) # ¢/(v;), and

{e'(wp), €'(wp), ..., (w7} = S\{e'(va), (), m + 2k — 1},

which implies that ¢/(b;) = ¢/(v;) or ¢/(by) = m + 2k — 1.
Similarly, vertex ¢ is the b-chromatic G’-vertex for colour m + 2k, and d’(¢;) =
m + 2¢g — 1. Hence

{c' (), ' (ai), o, (a0} = S\{€'(w), €/ (1), m + 2k},

which implies that ¢/(dy) = ¢/(v;) or ¢/(dy) = m + 2k.
As each z (1 < i < 2¢q) is adjacent in G’ to every b-chromatic G-vertex, it follows
that

{c'(#n),c(n),...;c ()} S{m+1,m+2,...,m+2q¢}.

Hence, for each v; (1 < i < m) there are m — 1 vertices f, , for 1 < r < m — 1, for some
ki o (1 < ki, <q), adjacent in G’ to v;, such that each f;,  is either by,  or d, , and

{(fe)s € Fiin)seeos (o) =41,..yi— 1,0+ 1,...,m}.

Consider such a vertex fi, , forany iand r (1 <i<m, 1 <r<m-—1). If f, = by,
then e, = {v;, v;} for some j (1 < j < i), where by,  is adjacent in G’ to v,. In this case
(by,,) = c'(v;). If fi,, = dy, ., then e, = {v;,v;} for some j (i < j < n), where dy,  is
adjacent in G’ to v;. In this case c(dy, ) = (v)).

Hence, if we let ¢(v;) = ¢'(v;) for every i (1 < i < n) such that ¢/(v;) < m, then we
obtain a partial proper colouring of G such that every b-chromatic G-vertex, coloured
(for 1 <7 < m), is adjacent in G to a vertex coloured j, for each j (1 < j # i < m). For
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Figure 3.6: Example pivoted tree.

every i (1 < i < n)such that ¢/(v;) > m, v; is not a b-chromatic G-vertex, so d(v;) < m—1.
Hence we may set ¢(v;) equal to any colour chosen from the set {1,2,..., m} that has not
already been assigned to a neighbour (in G) of v;, and we have achieved a b-chromatic

colouring for GG of K colours. B

3.6 The b-chromatic number in trees

In contrast with the NP-hardness of ACHROMATIC NUMBER for trees [30], we show in
this section that the b-chromatic number is polynomial-time computable for trees. In
fact, apart from a very special class of exceptions, recognisable in polynomial time, the
b-chromatic number of a tree T is equal to the upper bound m = m(T).

Let us call a vertex v of T such that d(v) > m — 1 a dense vertex of T'. Our methods
of finding b-chromatic colourings for trees hinge on colouring firstly vertices adjacent to
those in a set V' = {wv, v9,...,0v,} of dense vertices of T. For trees with more than m
dense vertices, we shall demonstrate how V' is to be chosen. We aim to establish a partial
b-chromatic m-colouring of T, i.e., a partial proper colouring of T using m colours such
that each v; (1 <7 < m) has colour 7 and is adjacent to vertices of m — 1 distinct colours.
This approach is applicable for all trees except those satisfying the following criteria.

Definition 3.6.1 A tree T'= (V, F) is pivoted if T has exactly m dense vertices, and T
contains a distinguished vertex v such that:

1. v is not dense.

2. Each dense vertex is adjacent either to v or to a dense vertex adjacent to v.

3. Any dense vertex adjacent to v and to another dense vertex has degree m — 1.
We call such a vertex v a pivot of T. I

An example of a pivoted tree T is shown in Figure 3.6. Here m(7T) =4 and T is pivoted
at v. We now establish two properties of pivoted trees.

Proposition 3.6.2 Let T'= (V, E) be a pivoted tree, and let v be a pivot of T. Then

1. There are at least two dense vertices of T adjacent to v.
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2. There is a dense vertex u of T adjacent to v such that v is adjacent to some dense

vertex w of T.

Proof of (1): Suppose not. Let u be the sole dense vertex adjacent to v. Then, as T
contains m dense vertices, u is adjacent to m — 1 dense vertices of T by Property 2 of
Definition 3.6.1. Thus d(u) > m, contradicting Property 3 of Definition 3.6.1.

Proof of (2): Suppose not. Then v is adjacent to every dense vertex of T' by Property 2
of Definition 3.6.1. Since there are m dense vertices, d(v) > m, contradicting Property 1
of Definition 3.6.1. &

A pivot is unique if it exists, which we now show.
Proposition 3.6.3 Let T = (V, F) be a pivoted tree. Then T contains a unique pivot v.

Proof: Suppose not. Then T has two pivots v; and vy. By Part 2 of Proposition 3.6.2, let
u be a dense vertex adjacent to v; such that w is a dense vertex adjacent to u. By Part 1
of Proposition 3.6.2, let v’ # u be a dense vertex adjacent to v;. Then it is straightforward
to verify that v, cannot be a non-dense vertex in T at distance at most two from each of

u, v’ and w, a contradiction to the defining properties of v,. B

The following result demonstrates that pivoted trees may be recognised easily.

Proposition 3.6.4 Given a tree T = (V, E), we may test for T being pivoted in linear
time.

Proof: Tet V' be the set of dense vertices of T. For T to be pivoted, we must have
|V'| = m. Consider the subtrees Ty, T, ..., T, in the connected components of the
subgraph 7" of T induced by V’. Let d'(v) denote the T’-degree of a vertex v € V'. If
T is pivoted, then for each i (1 < i < r), exactly one of the following three disjoint cases

holds:
1. T} is an isolated vertex wu,.
2. T, is a K, with vertices u,; and v;.
3. T, contains a unique vertex u; such that d’(u;) > 1.

Let u;, v; be defined according to Cases 1,2,3 above (v, is undefined in cases 1,3). Consider
T, and T, (if T is pivoted then r > 2 by Part 1 of Proposition 3.6.2). If T is pivoted
then there exist vertices wy; € V(Ty), wo € V(T5) and a vertex v € V\ V', adjacent in T
to both w;, and w., where w; can be u;, or v; if v; exists (i = 1,2). (Such a v is unique if
it exists). Finally, T is pivoted if and only if v satisfies Properties 2 and 3 of Definition

3.6.1. It is clear that each of these verifications may be carried out in O(n) time. B

Returning to the example pivoted tree T of Figure 3.6, in which m(7T) = 4, it is straightfor-
ward to verify that T does not have a b-chromatic 4-colouring, but T has a b-chromatic 3-
colouring. The following theorem establishes the b-chromatic number of arbitrary pivoted
trees. In addition, the proof of the result shows how to construct a maximum b-chromatic

colouring of pivoted trees in polynomial time.
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Theorem 3.6.5 If T'= (V, FE) is a tree that is pivoted then o(T) = m(T) — 1.

Proof: Denote by v the pivot of T. Let V = {uv, vs,...,v,} be ordered so that V' =
{v1, v9,...,0,} is the set of dense vertices, vy, v4,...,v, (for some p < m) are the dense
vertices adjacent to v, and vy, vs,..., v, (for some ¢ < p) are the dense vertices adjacent
to v each having at least one dense vertex as a neighbour. Then p > 2 by Part 1 of
Proposition 3.6.2 and ¢ > 1 by Part 2 of Proposition 3.6.2.

Firstly we show that ¢(T) < m(T). For, suppose that there is a b-chromatic colouring

c of T, using m colours, where, without loss of generality, c¢(v;) = ¢ (1 < i < m). As

d(v;) = m —1for 1 < j < g, none of vy, v9,...,v, can be adjacent to more than one
vertex of any one colour. Between them, vy, vs,...,v, are adjacent to dense vertices
Vpt1s Vptas - - 5 Up. Now v cannot have colour j for 1 < j < p, nor colour j for p4+1 < j <

m, or else some v, (1 < k < ¢) is adjacent to two vertices of that colour. Hence there is

no available colour for v, a contradiction.

To establish equality, we construct a b-chromatic colouring ¢ of T using m — 1 colours.
As p > 2 and g > 1, the dense vertices vy, v, are adjacent to v and for some r (p+ 1 <
r < m), there is a dense vertex v, adjacent to v;. Set c(v;) = i for 2 < i < m, let
c(v) = r and assign ¢(v;) = 2. All other vertices of V are as yet uncoloured. We now
show how to extend this partial colouring into a b-chromatic (m — 1)-colouring of T,
namely a proper (m — 1)-colouring of V| using colours 2,3, ..., m, such that every vertex
in V'\{v} is adjacent to vertices of m — 2 distinct colours, as follows. For 2 < i < m, let
R, ={2,3,...,m}\{i} (the required colours for surrounding v;), let

Ci={c(v): 1 <j<nAv; € N(v;) Avjis coloured }
(the existing colours around v;) and define
Ui={v;:m+1<j<nAv € N(v;) Av; is uncoloured }

(the uncoloured vertices adjacent to v;). By construction, v, is not adjacent to two vertices

of the same colour. Hence
|Cil + Uil = d(v;)) >m —1>m—2=]R,|.

Hence, as C; C R,, it follows that |U;| > |R,\ C;|. Thus if R\C; = {r{,...,r.} (for some
n; > 0) then we may pick some {u],...,u)} C U; and set c(u;) = rji for 1 < j < n,.
This process does not assign the same colour to any two adjacent vertices, since no two
adjacent non-dense vertices are both adjacent to dense vertices. Nor does it assign more
than one colour to any one vertex, since no two dense vertices have a common non-dense
neighbour (except for v, which is already coloured).

For m+1 < i < n, suppose that v; is uncoloured. As d(v;) < m — 1, not all of colours
2,3,...,m appear on neighbours of v;. Hence there is some colour available for v,. It
follows that the constructed colouring is a b-chromatic (m — 1)-colouring of 7. R
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Figure 3.7: Example tree T with m(T) = ¢(T) = 5.

We now show how to construct a b-chromatic colouring of an arbitrary non-pivoted
tree, using m = m(T) colours. For trees with more than m dense vertices, we need to
be aware of a possible complication. For example, consider the tree T in Figure 3.7. T
satisfies m(7T)=>5, but there are six dense vertices: a, b, ¢, d, e, f. It may be verified that
no b-chromatic 5-colouring of T exists in which a, b, ¢, d, e are the b-chromatic vertices.
However, a b-chromatic 5-colouring of T does exist, which may be achieved by taking
either a,b,c, e, for a,c,d, e, f to be the b-chromatic vertices.

Hence, as the example of Figure 3.7 shows, a judicious choice of dense vertices may
be required in order to achieve a partial b-chromatic m-colouring. In order to assist in
making this selection, we formulate the following definition, which is closely related to the
concept of a tree being pivoted.

Definition 3.6.6 Let 7' = (V, E) be a tree, and let V’ be the set of dense vertices of
T. Suppose that V" is a subset of V'’ of cardinality m. Then V” encircles some vertex

ve V\V"if:
1. Each vertex in V" is adjacent either to v or to some vertex in V"' adjacent to v.
2. Any vertex in V" adjacent to v and to another vertex in V" has degree m — 1.
We refer to v as an encircled vertex with respect to V. i
We now give an additional definition that incorporates this concept of encirclement.

Definition 3.6.7 Let T'= (V, E) be a tree, and let V' be the set of dense vertices of 7.
Suppose that V" is a subset of V' of cardinality m. Then V” is a good set with respect
to T if:

(a) V" does not encircle any vertex in V\ V".

(b) Any vertex u € V\V” such that d(u) > m is adjacent to some v € V" with
dlv)y=m-1. 1
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In the example of Figure 3.7, the set {a, b, ¢, d, e} encircles vertex v. However, either of
{a,b,c,e,f} or {a,c,d, e, f} is a good set with respect to T. In general, our aim is to
build up a b-chromatic m-colouring by choosing a good set with respect to the given tree
T. The following lemma describes how we make this choice, and also shows that such a

choice is always possible in non-pivoted trees.

Lemma 3.6.8 Let T = (V, FE) be a tree that is not pivoted. Then we may construct a
good set for T.

Proof: Let V' be the set of dense vertices of T. By the definition of m(7T), we may
choose a subset V" of V', with |V”| = m, so that every vertex in V\ V" has degree less
than m. Let V = {uv, vs,...,v,} be ordered so that V" = {v;,vs,...,v,}. Suppose
that V" encircles some vertex v € V\V” (for if not, we set W = V" and we are done,
since W satisfies Properties (a) and (b) of Definition 3.6.7). Without loss of generality,
suppose that vy, vs,...,v, (for some p < m) are the members of V" adjacent to v, and
vy, Vs, ..., Uy (for some ¢ < p) are the members of V" adjacent to v, each having at least
one other member of V" as a neighbour. Now p > 2, for otherwise d(v;) > m as each of
Vg, ..., Uy 18 adjacent to v; by Property 1 of Definition 3.6.6, contradicting Property 2 of
Definition 3.6.6. Also ¢ > 1, for otherwise p = m by Property 1 of Definition 3.6.6, so
d(v) > m, a contradiction to the choice of V”. Thus there is a vertex v, € V", for some

r (p+1<r < m), adjacent to v;. We consider two cases.

Case (i): v is dense. Then d(v) = m —1 by the choice of V”. Let W = (V"\{v})U{v}.
Also by the choice of V", the only vertex not in W that can have degree at least m
is v5. But v, is adjacent to v € W, and d(v) = m — 1, so that W satisfies Property
(b) of Definition 3.6.7. W also satisfies Property (a) of Definition 3.6.7. For no vertex
w € V\(W U{w.}), adjacent to v;, for some j (p +1 < j < m), may be encircled by W,
since v is at distance 3 from w. Also, no vertex w € V\ W, adjacent to v;, for some j
(1 <j < p), may be encircled by W, since there is some v, € V" (1 < k < p), adjacent
to v, at distance 3 from w (as p > 2). Finally, no vertex w of V\ W, adjacent to v, may

be encircled by W, since v, is at distance 3 from w.

Case (ii): v is not dense. If |V'| = m then T is pivoted at vertex v, a contradiction.
Hence |V’| > m, so there is some u € V'\V”. Let W = (V"\{v}) U{u}. Now suppose
that W encircles some vertex z. At most one vertex not in W lies on the path between
any pair of non-adjacent vertices in W, namely z. But v; € W and v € W lie on the path
between v, € W and v, € W. This contradiction implies that W satisfies Property (a)
of Definition 3.6.7. Also, W satisfies Property (b) of Definition 3.6.7, since d(v) < m — 1
and d(v;) = m — 1, and therefore every vertex outside W has degree less than m. l

The following theorem establishes the b-chromatic number of trees that are not pivoted. In
addition, the proof of the result shows how to construct a maximum b-chromatic colouring

of non-pivoted trees in polynomial time.

Theorem 3.6.9 If T'= (V, FE) is a tree that is not pivoted, then ¢(T) = m(T).
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Proof: As T is not pivoted then, by Lemma 3.6.8, we may choose a good set W of the
dense vertices of T. Henceforth we assume that the vertices of T are ordered vy, v, ..., v,
so that W = {vy, va, ..., v,,}. We refer to the vertices in W as the b-chromatic candidates
of T. Initially, we let ¢(v;) = i for 1 < i < mj; each vertex v;, for m+ 1 < i < n, is as yet

uncoloured.

A partial b-chromatic m-colouring of T could easily be established if each pair of
distinct b-chromatic candidates were at distance at least 4. We deal with the general case,
where some pairs are separated by a distance of at most 3, as follows. Let T’ be the
subgraph of T induced by W and the vertices on paths of length at most 3 between any
pair of distinct b-chromatic candidates. Let T, Ts,..., T, be the connected components
of the forest T".

Recall that, for any v € V, d(v) is the degree of v in T. For any v € V(T’), we define
d’(v) to be the degree of v in T’. Suppose we can establish a partial b-chromatic subtree
colouring for each T, (1 < j < r), that is a proper colouring of T}, such that if v; € V;
(for some i where 1 < i < m),

e d(v;) = m — 1 implies that all vertices adjacent to v; in T} have distinct colours.

e d(v;) > m — 1 implies that at most two vertices adjacent to v; in T} have the same
colour.

Then we may obtain a partial b-chromatic m-colouring of T, and hence a full proper
b-chromatic m-colouring of 7. For, suppose that v; (1 < i < m) is any b-chromatic
candidate. Let R, ={1,2,...,m}\{i} (the required colours for surrounding v;), let

Ci={ec(v):1<j<nAv; € N(v;) Avjis coloured }
(the existing colours around v;) and define
Ui={v;:m+1<j<nAv € N(v;) Av; is uncoloured }

(the uncoloured vertices adjacent to v;). By definition of the partial b-chromatic subtree
colouring, U; C VA V(T"). If d(v;) = m — 1 then by construction, all vertices adjacent to

v; in T have distinct colours. Hence
|Cz| —|— |Uz| = d(’l)l') =m-1= |Rz|

If d(v;) > m — 1 then by construction, v; is adjacent in 7; to at most two vertices of the

same colour. Hence

|Cz|+ |Uz| 2 d(’l)l') -1 2 m-—1= |Rz|
Hence in both cases, |U;| > |R,\Cj|, as C; C R; and C; N U; = @. Thus if R,\C; =

{r{,...,r},} (for some n; > 0) then we may pick some {u;,..., u, } C U; and set c(u) = r;
for 1 < j < n;. This colouring is proper, for each ujl is adjacent to v;, but ujl g v(T'),
so that uj is at distance at least 3 from any b-chromatic candidate v, (r # 7). Also, the
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colouring process does not assign more than one colour to any one vertex, since no two
b-chromatic candidates have a common neighbour in U, for any i, since U; C V\V(T").

For m+41 < i < n, suppose that v; is uncoloured. If d(v;) > m, then by construction of
W, v; is adjacent to some b-chromatic candidate of degree m — 1, and hence v; has already
received a colour. Thus d(v;) < m, and not all of colours 1,2, ..., m appear on neighbours
of v;. Hence there is some colour available for v;. It follows that the constructed colouring

is a b-chromatic m-colouring of T.

Therefore it remains to establish a partial b-chromatic subtree colouring of each Tj.
The colouring process is in two stages, and identical for each subtree, so we assume
that a fixed j (1 < j < r) is given. Suppose that V, contains b-chromatic candidates

Vj 15 Vj 25«5 V) p; fOT sOMe n; > 0.

Stage 1 (for each k =1,2,...,n; in turn). Let S be the set of uncoloured vertices adja-
cent to v; ; in T}. If S = & then no vertices are coloured at this step. Now suppose that
S = {w}. If there is some path of length 2 in T} from w to a b-chromatic candidate u then
we set c(w) = c(u). Otherwise (if S = {w}) no vertices are coloured at this step. Finally
suppose that S = {wy, ws, ..., w,} for some s > 1. For each i (1 < i < s), w; is on a path
of < 3 edges in T} from v;; to some other b-chromatic candidate: let ¢; be the colour of
one such b-chromatic candidate. Set c¢(w;) = ¢;; for 1 <i < s—1 and ¢(w,) = ¢;.

Stage 2 (for each uncoloured vertex u in T;). Vertex u was not coloured by Stage 1
because every vertex adjacent to u in 7 is a b-chromatic candidate (if there was a non
b-chromatic candidate adjacent to w then w would have been coloured when Stage 1
considered some b-chromatic candidate adjacent to u). Also, for any v € N(u)\V(71}),
v g V(T"). Let N'(u) denote the vertices adjacent to u in T”. It is clear that, for any
v € N'(u) and w € N'(v)\{u}, w is coloured. For if not, both u and w would have been
coloured cyclically when Stage 1 considered the b-chromatic vertex v, a contradiction.

Hence define

S =11,2,...,m}\ U {e(v)}| U U {c(w): w € N'(v)\{u} }

vEN'(u) vEN'(u) A d(’l)) =m—1
Choose ¢(u) to be an arbitrary member of S (we show later that S is always nonempty).

We prove that the algorithm produces a partial b-chromatic subtree colouring. It may
be verified that Stage 1 yields a partial colouring of T such that no vertex is adjacent to a
vertex of the same colour and that no b-chromatic candidate is adjacent to more than one
vertex of a certain colour. Clearly if every set S’ constructed by Stage 2 is nonempty then
we would terminate with the desired colouring. For, at most one vertex adjacent to any
b-chromatic candidate is coloured by Stage 2 (or else Stage 1 would have coloured these
vertices). Hence, by definition of S, any b-chromatic candidate of degree more than m — 1
is adjacent in T” to at most two vertices of the same colour, and all vertices adjacent in
T’ to any b-chromatic candidate of degree exactly m — 1 have distinct colours.

Hence suppose that there is some step of Stage 2 where the constructed set S for
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some uncoloured vertex u is empty. Then u is adjacent in T” to b-chromatic candidates
Visy Vigy - - -, U;, (for some i, and k), such that (without loss of generality), d(v;,) = m — 1
for 1 < r <[ (for some [ > 0) and

U {c(w)}u(u {c(w)zweN'(M\{u}}) —{1.2...m}.  (33)

1<r<k 1<r<i

Considering the cardinalities of the sets on both sides of Equation 3.3 gives
d'(vi))+d'(vi,)) + ...+ d'(v,))+ (k—=1) > m. (3.4)

For each r (1 < r < k), there are at least d’(v;) — 1 paths, not passing through u,
leading from v, to a b-chromatic candidate, by definition of 7. But there are only m — &

b-chromatic candidates remaining. Hence
d'(vi))+d'(vi,)+ ...+ d'(vy,) —k <m— k. (3.5)
Combining Inequalities 3.4 and 3.5 gives
d'(vi,,)+d'(vi) ...+ d'(v,) <k-1L (3.6)

But d’(v;,) > 1 for all r such that 1 < r < k. Hence, from Inequality 3.6 we deduce that
d'(v;,) = 1 for all r such that [+ 1 < r < k. Substituting into Inequality 3.5 and again
combining Inequalities 3.4 and 3.5 gives

d'(v,)) +d'(vi,)) + ...+ d'(vy)) + (k= 1) = m. (3.7)

Let p(v;,) (1 < r < [) denote the number of paths, not passing through u, leading from
v, to distinct b-chromatic candidates. Since p(v;,) + p(v,) + ...+ p(v;,) < m — k, and
p(v,) > d'(v;,) — 1 for each r (1 < r <), we can deduce (from Equation 3.7) that

p(vi) +p(v,) + ..o+ plv,) = d'(vy) + d'(vi,) + ...+ d'(v;,) = L.

But p(v;,) > d’(v;,) — 1 and hence p(v;) = d'(v;,) — 1, for each r (1 < r < ). Hence, for
each 1 < r <[, there are exactly d’(v;, )—1 distinct paths, of length p7, not passing through
u, each leading from v, to another b-chromatic candidate, where 1 < s < d(v; ) — 1 and
1 < pI < 3, by definition of F;. As already discussed, it is impossible that two or more
vertices adjacent to a v; will be coloured by Stage 2. Also, no vertex adjacent to a v; and
distinct from u was coloured by Stage 1 (or else u would also have been coloured cyclically
by Stage 1). Thus p] =1 for each r (1 < r <) and s (1 < s < d(v;,) —1). Therefore u
is encircled by W, contradicting the choice of W.
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3.7 Conclusion and further study relating to the b-chromatic
number

In this chapter we have defined two partial orders on the set of all proper colourings for a
graph, giving rise to the ACHROMATIC NUMBER and B-CHROMATIC NUMBER problems. The
polynomial-time solvability result for B-CHROMATIC NUMBER in trees may be contrasted
with the NP-completeness of ACHROMATIC NUMBER DECISION in trees. Thus CHROMATIC
NUMBER is an example of optimisation problem such that two partial orders, namely <¢
and <;', defined on F((), admit maximinimal problems of differing complexity, for a
particular restriction on the instance G.

The complexity of ACHROMATIC NUMBER has been studied for a number of graph
classes, though there is much scope for further study of the complexity of B-CHROMATIC
NUMBER when restricted to certain classes of graph. For example, the complexity of B-
CHROMATIC NUMBER is open for planar graphs, although we conjecture this problem to
be NP-complete also.

Attempts were made to find an approximation algorithm for B-CHROMATIC NUMBER
with a constant performance guarantee by trying to relate ¢(G') to m(G). Although the
example of Figure 3.3 ruled out hopes of this method succeeding, the existence of such an

approximation algorithm is open.



Chapter 4

Minimaximal and maximinimal
graph problems based on the
partial order of set inclusion

4.1 Introduction

In this chapter we consider minimaximal and maximinimal graph optimisation problems
whose definitions incorporate the partial order of set inclusion. We study these problems
from the point of view of algorithmic complexity. The chapter is arranged as follows: in
Section 4.2 we consider twelve covering and independence graph problems, of which six
are minimaximal or maximinimal optimisation problems, whilst in Section 4.3 we examine
twelve strong stability, clique, domination and irredundance graph problems, of which six
are minimaximal or maximinimal optimisation problems.

The twelve covering and independence graph problems are grouped together because
of a framework suggested by four of these parameters: the total covering and total match-
ing parameters. Total coverings and total matchings of graphs (defined in Section 4.2)
are an important concept as they fuse together the notions of vertex and edge covering,
yet they have not been extensively studied, relative to the concepts of vertex and edge
covering and independence. We briefly survey the non-algorithmic work to date on total
coverings and total matchings of graphs, and present the framework, due to Nordhaus
[172], that can be obtained from the four associated graph parameters. We study the
algorithmic complexity of the twelve optimisation problems related to the parameters in
this framework, over several classes of graphs. The classes that we consider include, in
each case, four extensively studied classes of graphs, namely planar, bipartite and chordal®
graphs, and trees®. Definitions of other graph classes mentioned here but not defined may

YA graph G is chordalif every cycle in G of length four or more contains a chord, i.e. an edge connecting
two non-adjacent points on the cycle

?Many NP-complete graph problems become polynomial-time solvable when restricted to trees. In
addition, many graph problems that are solvable in polynomial time for trees are also solvable in polynomial
time for graphs of bounded treewidth (i.e., partial k-trees) [6, 5, 204].

53
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be found in [99] and [134]. Henceforth we refer to ‘the complexity of o’ when we mean
‘the complexity of the decision problem related to graph parameter o’. We survey briefly
known results for graph classes that include at least the four mentioned above, and obtain

new NP-completeness results for the following parameters:
e Maximum minimal total cover in planar graphs.
e Minimum maximal total matching in bipartite and chordal graphs.
e Minimum independent dominating set in planar cubic graphs.

In addition, we demonstrate that the complexities of the maximum minimal edge cover,
maximum minimal vertex cover and maximum total matching parameters are identical to
the complexities of the minimum dominating set, minimum independent dominating set
and minimum edge dominating set parameters respectively, over all graph classes. These

results do not appear to have been noted explicitly in the literature previously.

The remaining twelve graph parameters studied algorithmically in this chapter are
connected with strong stability, cliques, domination and irredundance, and are considered
in Section 4.3. We survey their algorithmic complexity for several graph classes including,
again, planar, bipartite and chordal graphs, and trees. We obtain new NP-completeness

results for the following parameters:
e Minimum maximal strong stable set in planar graphs of maximum degree 3.
e Minimum maximal clique in general graphs.
e Minimum total dominating set in planar cubic graphs.

As mentioned above, all of the minimaximal and maximinimal optimisation problems
studied in this chapter are formulated using the partial order of set inclusion, defined
on the feasible solutions for a given instance of a source optimisation problem. Thus all
occurrences of the words ‘maximal’ and ‘minimal’ in this chapter refer to maximality and
minimality with respect to the partial order of set inclusion. It may be verified that, for
each source optimisation problem in this chapter, the set of feasible solutions for a given
instance is either hereditary or super-hereditary. Thus, by Proposition 2.4.6, each concept
of maximality or minimality with respect to the partial order of set inclusion is equivalent
to maximality or minimality with respect to the partial order of (0, 1)-replacement. How-
ever, in the literature, definitions of maximality or minimality for classical graph-theoretic
concepts, such as vertex covers or independent sets, are usually formulated in terms of the
partial order of set inclusion (see Berge [17, p.10], for example). Thus, to be consistent
with these definitions, we choose the partial order of set inclusion.

For each source optimisation problem, we have Z = {G = (V,F) : G is a graph},
and for G € Z, m(G,y) = |y| for each y € F(G). Thus each source problem is defined
completely by supplying the definitions of U, 7 and oPT. When defining U, we assume
that G € Z is given, and when defining 7, we assume that G € 7 and some S € U(G)
have been given.
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4.2 Minimaximal and maximinimal covering and indepen-
dence graph problems

4.2.1 Introduction

In graph theory, the notion of covering vertices or edges of graphs by other vertices or
edges has been extensively studied. For instance, covering vertices by other vertices leads
to parameters concerned with vertex domination [115]. When edges are to be covered by
vertices we obtain parameters connected with the classical vertex covering problem [106,
p.94]. Covering vertices by edges, i.e. finding edge covers, is considered by Norman and
Rabin [174]. Finally, when edges are to cover other edges, we obtain parameters associated
with edge domination (introduced by Mitchell and Hedetniemi [168]). Independent sets
of vertices [106, p.95] correspond to the case where vertices are chosen so as not to cover
one another, and matchings [157] of a graph correspond to the similar restriction involving

edges.

It is natural to extend this notion of covering by vertices and edges. Nordhaus [172],
and also Alavi et al. [2], define the elements of a graph G = (V, F) to be the set V U E.
A vertex v is defined to cover itself, all edges incident on v and all vertices adjacent to
v. An edge {u, v} is said to cover itself, vertices v and v, and all edges incident on u or
v. Two elements of V U F are independent if neither covers the other. Thus, a vertex
cover is a subset S of V that covers F, a dominating set is a subset S of V that covers
V' (in this chapter, the term dominating set will only apply to a set of vertices), an edge
dominating set is a subset S of F that covers F, and an edge cover is a subset S of F that
covers V (assuming that G has no isolated vertices). A subset C' of V U FE that covers
all elements of G is said to be a total cover for G. Also, an independent set is a subset 5
of V whose elements are pairwise independent (in this chapter, the term independent set
will only apply to a set of vertices), and a matching is a subset S of F whose elements
are pairwise independent (in this chapter, the term matching will only apply to a set of
edges). A subset M of V U FE whose elements are pairwise independent is said to be a
total matching for G.

Suppose that P is some collection of sets. Denote by P* the maximal elements of P,
i.e. S € P*if and only if S € P and no proper superset of S is a member of P. Similarly,
denote by P~ the minimal elements of P, i.e. S € P~ if and only if S € P and no proper
subset of S is a member of P. Let

C(G)={CC VUE:(Cis atotal cover for G}

and

M(G)={M C VUE : M is a total matching for G}.
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Nordhaus [172] and also Alavi et al. [2] define the following parameters®:

as(G) =min{|C|: C € C™(G)}, of (G) = max{|C|: C € C”(G)},
By (G) =min{|M|: M € M¥Y(G)}, B2(G)=max{|M|: M € M*(G)}.

4.2.2 Survey of non-algorithmic total covering and total matching re-
sults

Some upper and lower bounds involving each of these parameters separately are derived
by Gupta [102], Nordhaus [172], Alavi et al. [2], Meir [166], Kulli et al. [150], Zhang et al.
[215], Alavi et al. [4] and Gimbel and Vestergaard [98]. In particular, it is known [2] that

ay(G) < B3 (G) < Bo(G) < a3 (G).

Peled and Sun [182] derive exact values for these parameters in threshold graphs. Also,
Alavi et al. [4] consider properties of those connected graphs on n vertices having a,(G) =
[2]. Bounds for as(G)+ fB5(G) are considered by Alavi et al. [2], Erd6s and Meir [72] and
Meir [166]. In addition, some Nordhaus-Gaddum [173] type results have been obtained,
involving each of a, and 35 [72, 166], and involving 55 [98]. Finally, Topp and Vestergaard
[208] characterise those graphs in which every maximal total matching is maximum, and
Topp [206] studies those graphs having a unique maximum total matching. The survey
by Hedetniemi et al. [117] describes the inequalities involving the total covering and total
matching parameters in more detail.

The terminology for total covers and total matchings does not seem to be universally
agreed upon in the literature. Nordhaus [172] and Alavi et al. [2], who introduced these
concepts, define a subset C' of V U E to be a total cover if C' covers G and (' is minimal.
Similarly, they define C' to be a total matching if the elements of C' are pairwise indepen-
dent and ' is maximal. However, several authors [4, 98, 208] have defined total covers
and total matchings without the minimality or maximality requirement, respectively, as
is done here. This can be advantageous, for example, when reasoning about a subset '
of V U FE whose elements are pairwise independent, but (' is not maximal. Following
the terminology of Nordhaus [172], such a set is not a total matching. Referring to '
as an independent set or a matching coincides with the usual notion of an independent
set or matching when applied to sets containing vertices or edges only, respectively. Thus
we choose to follow the terminology of [4, 98, 208]. We note in passing that total cov-
ers (as defined here) are referred to as mized dominating sets by Hedetniemi et al. [117],

3The notation of the covering and independence parameters studied in this thesis follows that of Harary
[106] and Alavi et al. [2]. The convention these authors follow is that the o and 3 symbols refer respectively
to covering and independence properties that are to be satisfied. The subscript of the parameter symbol is
0, 1, 2 according to whether the elements of the set U( G) (as will be defined in the following sections, for each
optimisation problem associated with the parameter concerned) are vertices, edges, or both, respectively.
A superscript of ‘+’ in the case of an « parameter refers to the ‘maximum minimal’ objective, and a
superscript of ‘—’ in the case of a 8 parameter refers to the ‘minimum maximal’ objective. When this
superscript is missing from an « symbol, the objective is to minimise, and the objective is to maximise in
the case that a 8 symbol is without superscript.
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entire dominating sets by Kulli et al. [150] and total dominating sets by Gimbel et al.
[97]. The latter definition is quite distinct from the more widely accepted notion of a total
dominating set, due to Cockayne et al. [41] (see Section 4.3.4).

4.2.3 More covering and independence parameters

Nordhaus [172] shows how we may use C and M to derive some existing graph parameters.
Define
Co(GY={C €C(G): CCV} and Ci(G)={C€C(G): CCF}

and similarly define
Mo(GYy={M e M(G): M C V} and M(G)={M € M(G): M C F}.
Then we obtain, as in [172],

ag(G) =min{|C|: C €Ci (G} - Ig, of(G)=max{|C|: C €C;(G)} - I,
By (G) =min{|M|: M € MF(G)},  Bo(G) = max{|M|: M € M7 (G)},

where ag and af are the minimum and maximum over all minimal vertex covers of
respectively, and (5 and 3, are the minimum and maximum over all maximal independent
sets of G respectively, and I5; denotes the number of isolated vertices of G. Similarly we
obtain*

a1 (G) =min{|C|: C € C (G)}, af (G) = max{|C]: C € C] (&)},
A7 (G) = min{|[M]: M € MI(G)}, Bi(G) =max{|[M|: M € M (G)},

where «; and «f are the minimum and maximum over all minimal edge covers of
respectively, and 37 and [3; are the minimum and maximum over all maximal matchings
of G respectively. Thus definitions relating to the total covering and total matching
parameters s, af, 35,3, can be restricted, in order to obtain the eight covering and
independence parameters o, af, 37, 3; for i = 0, 1. This implies a possible framework for
twelve covering and independence parameters of graphs.

Nordhaus [172] investigates relations between the parameters as, af, 35, B2 and «;, o,

B, 3; for i = 0,1, and obtains the inequalities

for : = 0,1, and

B2(G) = max{fo(G), 51(G)} and By (G) = max{fy (&), By (G)}-

Let v(G) and I'(G) denote respectively the minimum and maximum over all minimal
dominating sets of a graph G. For a graph G = (V, E), let T(G) denote the total graph

*In the case of @1 and ozl", we assume that G has no isolated vertices, for the concept of edge covering
is undefined for graphs with isolated vertices.
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of G — this is the graph with vertex set V U F, and two vertices are adjacent in T(()
if and only if the corresponding elements are adjacent or incident as vertices or edges
of G. Tt is clear that as(G) = v(T(G)), o (G) = T(T(Q)), 85 (G) = B; (T(G)) and
52(G) = Bo( T(G)).

In the following sections, we consider the computational complexity of the graph op-
timisation problems related to each of the twelve covering and independence parameters
introduced above. The total covering and total matching parameters are discussed in Sec-
tions 4.2.4 and 4.2.5 respectively, as their definition gives rise to the framework for the
remaining parameters. Then, in Sections 4.2.6, 4.2.7 and 4.2.8, we consider the vertex
covering and independence parameters, the edge covering parameters, and the matching
parameters, respectively. Finally, we present some concluding remarks in Section 4.2.9.

4.2.4 Total covering

The source MINIMUM TOTAL COVER problem has components (Z,U, 7, m, 0PT), such that:
e U(G)=P(VUE)
e 7(G,S) < Sis a total cover for
e OPT = min.

The maximinimal problem name is MAXIMUM MINIMAL TOTAL COVER.

Majumdar [163, p.52] shows that a, is NP-complete for general graphs, using a trans-
formation from 3-sAT [92, problem 1.O2], and gives a linear-time algorithm for trees.
Hedetniemi et al. [117] show that «, remains NP-complete for bipartite and chordal graphs.

Investigating the computational complexity of af is given as an open problem by
Hedetniemi et al. [117]. We show that MAXIMUM MINIMAL TOTAL COVER DECISION is
NP-complete for planar graphs. The proof involves a transformation from a restricted
version of the EXACT COVER BY 3-SETS (X3C) problem, defined in Section 3.4. The
restriction of X3¢ known as PLANAR EXACT COVER BY 3-SETS (PX3C) demands that the
graph G = (V, F), associated with an instance (A, C') of X3¢, with vertex set V=AU C
and edge set F' = {(a,c):a € c € C},is planar. px3c is NP-complete [69].

Theorem 4.2.1 MAXIMUM MINIMAL TOTAL COVER DECISION is NP-complete, even for
planar graphs.

Proof. Clearly MAXIMUM MINIMAL TOTAL COVER DECISION is in NP. For, given a graph
G, an integer K € Z* and a set S of at least K elements, it is straightforward to verify in

polynomial time that S is a minimal total cover of G.

To show NP-hardness, we give a transformation from Px3c, defined above. Given an
arbitrary instance of PX3c, we construct a planar graph G, with the property that there
exists an exact cover for the pX3c instance if and only if there exists a minimal total cover
of G with at least K elements, for a particular K € Z™.
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Figure 4.1: Part of the graph G constructed as an instance of MAXIMUM MINTMATL TOTAL
COVER DECISION, showing typical subset and element components.

Suppose that a set of elements A = {a;, as, a3, ..., a3,} and a collection of clauses
C ={cy,c9,¢3,...,¢n} (for some ¢, m € Z7) is an arbitrary instance of Px3c. Suppose
further that, for each j (1 < j < m), ¢; = {a;,_,, a,_,, a;,;}, Where iy, iy, i, ..., i3, is

some sequence of integers such that

{2.17 2.27 2.37 ey ng} = {17 .27 37 .. .73q}.

Construct an instance — graph G = (V, F) and positive integer K — of MAXIMUM MINIMAL
TOTAL COVER DECISION as follows:

o Subset vertices: For each j (1 < j < m) create a subset vertex s;.

e Communication edges: For each j (1 < j < m), add three communication edges,

{Sj7 ti3j—2}7 {3j7 tisj—1}7 {3j7 tizj}7 where Cj = {aisj——27 Qygiys aisj}'

e FElement components: For each ¢ (1 < i < 3q), create an element vertezx t;. Form a
clique among three vertices u;, v;, w;, and join u; to t;. Create N (where N is to be
defined) leaf vertices z, and join each 2] to t;, for 1 < r < N.

o Target value: Set K = m+ (3N + 8)q.

Denote by S; the following elements in the ith element component:

Si =t {tiy wi by wiy { g, vi )y v {oi, wiy wy, {wiy ug )

Apart from the leaf vertices and their incident edges, GG has a total of 12¢+ m vertices and
12¢g+3m edges. Set N to be the sum of these totals, i.e. N = 24¢+44m. The construction
is partly illustrated in Figure 4.1. Clearly, this construction is polynomial with respect to
the size of the PX3c¢ instance, and preserves the planarity of the graph constructed from
this instance. First we show that if the pX3¢ instance has an exact cover, then G has a
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minimal total cover S, with |S| = K. From an exact cover C" for the PX3c instance, we
construct a set S as follows. For each j (1 <j < m):

o If ¢; € C’, add to S the three edges {s;, ;. .}, {s;, t;,,_, } and {s;, t;,,}.
o If ¢; & C’, add to S the vertex s;.
For each i (1 < i< 3¢):
e Add to S the vertices v;, w;.
e Add to S the vertices 2] for 1 < r < N.

Now S'is a total cover, for, clearly the leaf vertices cover themselves, their incident edges
and t;, for 1 < i < 3¢. Also s; is covered either by itself or by an incident edge, for each j
(1 <j <m). As " is an exact cover, then for each i (1 < i < 3¢), all edges incident on
t; are covered by some communication edge of S. Finally, all other vertices and edges in
each element component are clearly covered.

S is minimal, for it is clear that each of the leaf vertices are are covered by no other
element of S. Also S\{v;} does not cover the edge {u,, v}, and S\{w,} does not cover
the edge {u,;, w;}, for any ¢ (1 < i < 3¢). If s; € S for any j (1 < j < m), then no
communication edge of S is incident on s;, so that S\{s;} does not cover s;. Finally, if
a communication edge {s;,t;} is in S, for any i and j (1 < i < 3¢,1 < j < m), then
S\{{sj,t;}} does not cover {t,, u;}, since C” is an exact cover.

By construction of 9, all 3¢ of the element vertices are covered by exactly one commu-
nication edge. As ("’ is an exact cover, these edges cover exactly ¢ subset vertices. There
are then m — ¢ = |C\ (| subset vertices in S. Each element component contributes N + 2
vertices and no edges. Thus

[S| = 3¢+ (m—q)+3q(N +2)
= K

as required.

Conversely, suppose that G has a minimal total cover S such that |S| > K. We
show that the PXx3c instance has an exact cover €. From all minimal total covers for
G with cardinality at least K, choose S to be such a set that has the fewest number of
communication edges. We now establish a number of facts about the elements that 5
contains.

1. S does not contain t;, for any i (1 < i < 3¢). For, suppose #; € S for some i
(1 <4 < 3¢). Then by minimality z/ ¢ S for 1 < r < N and {t;,2]} ¢ S for
1 < r < N. Thus, an upper bound for 5 in this case must be:

S| < N+(@B¢—1)N
< K

which is a contradiction.
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2. There are 3gN elements in S such that each element is either a leaf vertex or is an
edge incident on a leaf vertex. Furthermore, these elements cover each of the vertices
t;, for 1 < i < 3¢q. This observation follows from Fact 1.

3. 1SN S| =2, forany i (1 < i < 3q). For,let 1 < i < 3¢ be given. From Fact 1,
t; ¢ S. Suppose {t;,u;} € S. If S\{{t;, w;}} does not cover some edge {s;,1,}, for
some j (1 < j < m) then S does not cover s, since t; ¢ S, forany k (1 <k <3¢),a
contradiction. Thus S\{{#;, u;}} covers all communication edges of &, but does not
cover some element of S;. It follows that exactly one more element of .9; is in 5. In
the case that {t;, u;} € S, it may easily be verified that exactly two elements of S;
belong to §.

4. S does not contain an edge {s;, t,} together with vertex s;, for anyi and j (1 < i < 3¢
and 1 < j < m). For, suppose S did. Since, by Fact 2, each of ¢ t
covered by a leaf vertex or an edge incident on a leaf vertex, then S\{s;} also covers

i3j—21 ti3j—17 i3j 18

G, contradicting the minimality of 5.

5. 5 does not contain more than one communication edge incident on a vertex t;, for
any i (1 <i<3q). For, suppose S did — let {s,,#;} and {s;,t;} be two such edges,
for some j,k (1 < j# k < m)and i (1 <i<3q). Then by Fact 4, s, ¢ S, and
by minimality, no edge incident on s; other than {s;, ¢} is in S. Since, by Fact 2,
each of t;,, ., t;,, is already covered by a leaf vertex or an edge incident on a
leaf vertex, then 5" = (S\{{sk, #:}}) U {sx} is a minimal total cover of G, with one
fewer communication edge, and satisfies |S’| = |9, contradicting the choice of S.

13k—17 Yiak

Let there be [ communication edges in §. Then Fact 5 implies that these [ edges are
incident on exactly [ of the element vertices, so that [ < 3¢. Suppose that S contains r
subset vertices. Now suppose that the [ communication edges in S are incident on a total
of s subset vertices. Then 3s > [ and by Fact 4, these s subset vertices are all distinct
from the r subset vertices defined above. Thus r+ s < m. But r4 s = m, or else some s;
(1 <j < 'm) is not covered, since t; ¢ 9, for any i (1 < i < 3¢q), by Fact 1. Finally, Facts
2 and 3 imply that S contains N 4 2 elements from each of the 3¢ element components.
Hence, having accounted for all the elements in 5,

S| = r+14+3¢(N+2)
= m+1l—-s4+3¢(N+2) (since r+s=m). (4.1)

Assume firstly that s < ¢. Then by Equation 4.1,

[S] < m+4+2s4+3¢(N+2) (since 3s>1)
< K (since s < q)
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which is a contradiction. Thus s > ¢. Now assume for a contradiction that [ < 3¢. Then
by Equation 4.1,

|S] < m+4+3¢—s+3¢(N+2) (sincel< 3q)
< K (since s > q)

which is also a contradiction. Hence [ = 3¢. Finally, assume for a contradiction that
s > ¢. Then by Equation 4.1,

S| = m+4+3¢—s+3¢(N+2) (sincel=3gq)
< K (since s > q)

which gives a contradiction. Hence s = ¢ and r = m — ¢, so that exactly ¢ of the subset
vertices are covered by communication edges. Also, each of the 3¢ element vertices is
covered by exactly one edge. Thus, for exactly ¢ of the the subset vertices s; (1 < j < m),
we have {s;, 1 } €5, for 0 < r < 2;let € contain the ¢ corresponding ¢; triples.

135 —2+4r

Since the m — ¢ other subset vertices cover themselves, then C” is an exact cover. Bl

As pointed out in Section 4.2.3, a3 (G) = T(T(@G)) for a graph (. Yannakakis and Gavril
[213] show that a connected graph is a tree if and only if its total graph is chordal. Jacobson
and Peters [131] show that ' = 3, for chordal graphs. Hence, as 3, is polynomial-time
solvable for this class of graphs [95], the same is true for ', so that a3 is polynomial-time
solvable for trees. In addition, the remarks of this paragraph also imply that ad = /3, for
trees.

4.2.5 Total matching

The components (Z,U, w, m,0PT) of the source MAXIMUM TOTAL MATCHING problem are
defined as follows:

o U(G)=P(VUE)
e 7((G,S) < Sis a total matching in ¢
e OPT = max.
The minimaximal problem name is MINIMUM MAXIMAL TOTAL MATCHING.

The total matching parameter 3, is related to 7 : Gupta [102] shows that §2(G) +
B1 (G) = n for any graph G = (V, F), where n = |V|. Therefore we have the following
result, which does not seem to have been explicitly noted in the literature previously.

Theorem 4.2.2 The complexities of 3, and 37 are identical, for any graph class.

It is interesting to consider how we may construct a maximum total matching from a
minimum maximal matching, and vice versa. Since Gupta’s result is stated without proof,
we provide, for completeness, one possible method. We use the following result, whose
proof is straightforward, and is omitted.
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Proposition 4.2.3 Let G = (V, FE) be a graph and let M C V U E be a total matching.
Then M is a maximal total matching if and only if M is a total cover.

Proposition 4.2.4 Let G = (V,FE) be a graph, where n = |V|. Then if M C F is

a mazimal matching for G, where m = |M|, we may find a mazimal total matching
M’ C VUFE for G, where |M'| = n — m, in polynomial time. Conversely, if M C VU FE
is a maximum total matching for G, where m = |M|, we may find a mazimal matching

M’ C E for G, where |M’| = n — m, in polynomial time.

Proof: Suppose that M C F is a maximal matching for G, where m = |M|. Then M
covers 2m vertices of V, so that there is a set V' of vertices not covered by M, where
|[V/|=n—2m. Set M' = M U V'. Then M’ is a total matching, since by maximality of
M, no pair of vertices in V' are adjacent in G. Also M’ is maximal by Proposition 4.2.3,
since M’ is a total cover of G. Finally |M'| = m+ (n —2m) = n — m.

Conversely, suppose that M C V U F is a maximum total matching for G, so that
|M| = 32(G). We may construct a set M’ C VUFE, where [M”| = |M|, such that M" is a
total matching for G and for every edge {u, v} of F, some edge of M” is incident on u, or
incident on v, or {u,v} € M”. For, suppose there is an edge {u, v} such that no edge of
M is incident on u or v. Then as M is maximal, M covers the edge {u, v}, by Proposition
4.2.3. Thus, without loss of generality u € M. Hence we may replace u with {u, v} in
M. Repeating this procedure with every such edge gives rise to M", which is clearly a
total matching, and must be maximal, since |M”| = 5(G). Now let M’ = M” N E. Then
M’ C F is a matching and is maximal, since no two vertices that are not covered by M’
are adjacent in G, by construction of M”. Let |M’| = n — m, for some m > 0. Then M’
covers 2n — 2m vertices of (. Thus there are 2m — n elements (all vertices) in M\ M’,
since M" is a total cover of G. Thus |[M|=|M"|=(n—m)+ (2m —n)=m. &

Corollary 4.2.5 There is a polynomial time algorithm to transform a minimum maximal

matching into a maximum total matching, and vice versa.

In order to resolve the complexity of 35, we make the following definition. Given an
arbitrary graph G = (V, FE), where V = {v, vq,...,0v,}, construct the pendant graph
G' = (V', E') of G by adding two new vertices u; and w, to V, for each i (1 < i < n),
and two new edges {u;, v;} and {w;, v;} to F, for each i (1 <i < n).

Theorem 4.2.6 (Gimbel and Vestergaard [98]) Given a graph G = (V, E), where
n=|Vl,

By (G') = 2n = Bo(G)
where G’ = (V' E') is the pendant graph of G.

By Theorem 4.2.6 and the complexity of 3, (discussed in Section 4.2.6), we deduce that
5 is NP-complete for an arbitrary graph. In fact, as #y remains NP-complete for planar
cubic graphs (see Section 4.2.6), we may deduce that 55 remains NP-complete for planar

graphs of maximum degree 5.
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We also note that it is possible to use the transformation of Hedetniemi et al. [117],
showing NP-completeness for a5 in bipartite and chordal graphs, in order to obtain NP-
completeness for 45 in the same two classes of graphs.

Theorem 4.2.7 MINIMUM MAXIMAL TOTAL MATCHING DECISION is NP-complete for bi-
partite and chordal graphs.

Proof: Clearly, the problem is in NP for both graph classes. To show NP-hardness, we
focus on the transformation of Hedetniemi et al. [117], showing NP-completeness for o,
in bipartite or chordal graphs. The reduction begins from the NP-complete problem X3¢,
defined in Section 3.4. A bipartite/chordal graph G is constructed, and an integer K is
defined, with the property that the X3¢ instance has an exact cover if and only if G has
a total cover of size at most K.

Corresponding to an exact cover for the X3¢ instance, the total cover constructed by
Hedetniemi et al. [117] is in fact a total matching, and hence a maximal total matching
by Proposition 4.2.3. Conversely, if G has a maximal total matching M of size at most
K, then M is a total cover for G by Proposition 4.2.3, and the corresponding argument
of Hedetniemi et al. [117] shows that the X3c instance has an exact cover.

Thus the same reduction may be used to prove NP-completeness for 35 in bipartite
or chordal graphs. B

As pointed out in Section 4.2.3, 85 (G) = 55 (T(G)) for a graph . Majumdar [163, p.26]
shows that a connected graph is a tree if and only if its total graph is strongly chordal®.
Farber [74] shows that 35 is polynomial-time solvable for strongly chordal graphs. Hence
(5 is polynomial-time solvable for trees.

4.2.6 Vertex covering and vertex independence

We firstly define the MINIMUM VERTEX COVER and MAXIMUM INDEPENDENT SET problems
(whose decision versions are problems GT1 and GT20 respectively in [92]).

Source problem: MINIMUM VERTEX COVER=(Z,U, 7, m,OPT), where
o U(G)=P(V)
o 7(G, V') < V'is a vertex cover for F
e OPT = min.
Maziminimal problem name: MAXIMUM MINIMAL VERTEX COVER.
Source problem: MAXIMUM INDEPENDENT SET=(Z,U, 7, m,OPT), where
o U(G)=P(V)

e 7(G, V') < V' is an independent set in G

5A graph G is strongly chordal if G is chordal and every cycle of length at least six has an ‘odd’ chord,
i.e., a chord joining two vertices that are separated by an odd number of edges in the cycle.
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® OPT = max.
Minimaximal problem name: MINIMUM MAXIMAL INDEPENDENT SET.

The complexities of ag and [, for any class of graphs are identical, as is indicated by the

following proposition, whose proof is trivial.

Proposition 4.2.8 Given a graph G = (V, E) and a set V' C V, V' is a vertex cover
for G if and only if V\V' is an independent set for G. R

From Proposition 4.2.8, we deduce the classical result of Gallai [87], namely that for a
graph G with n vertices, ag(G) + Bo(G) = n. The parameter 3, is NP-complete, even
for planar cubic graphs. This fact may be deduced from separate results due to Garey
et al. [93], Garey and Johnson [89], and Maier and Storer [162]. On the other hand,
Bo is polynomial-time solvable for bipartite graphs (by matching — see Harary [106], for
example), chordal graphs [95] and trees [62]. Many other classes of graphs for which 3,
remains NP-complete and for which 3, is polynomial-time solvable are discussed in [92,
problem GT20] and [134].

Similarly the complexities of af and 3; are identical, as the following result shows.

Again the proof is simple, and is omitted.

Lemma 4.2.9 Given a graph G = (V,E) and a set V' C V, V' is a minimal vertex
cover for G if and only if V\V' is a maximal independent set for G.

From Lemma 4.2.9 we may deduce another Gallai type identity, that for a graph G with
n vertices, af (G) + 5 (G) = n, as observed by McFall and Nowakowski [164]. Tn fact the
complexities of af and 35 are related to that of i, the minimum independent dominating
set parameter. A set of vertices S’ is an independent dominating set for a graph G if §
is both an independent set and a dominating set for . Independent dominating sets are

related to maximal independent sets, as the following lemma demonstrates.

Lemma 4.2.10 (Berge [17, Thm.2, p.309]) Given a graph G = (V, F) and a subset
V' of V, V' is a maximal independent set if and only if V' is an independent dominating

set.

Thus Lemma 4.2.10 implies that i(G) = ;5 (G) for any graph . Lemmas 4.2.9 and 4.2.10
together give the following result.

Theorem 4.2.11 o}, 35,1 each have the same complexity, over every graph class.

The parameter i is NP-complete for bipartite graphs [57, 129] and dually chordal graphs
[25], though polynomial-time algorithms have been constructed for chordal graphs [73],
interval and circular-arc graphs [34], permutation graphs [76, 27], cocomparability graphs
[147], asteroidal triple-free graphs [28], k-polygon graphs (for fixed k) [71], series-parallel
graphs [184, 101], partial k-trees (for fixed k) [204] and trees [20].

The complexity of i for planar graphs does not seem to be mentioned explicitly in the
literature. However, the transformation of Corneil and Perl [57], showing NP-completeness
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Figure 4.2: A typical edge component from the constructed instance of MINIMUM INDE-
PENDENT DOMINATING SET DECISION.

for 7 in bipartite graphs, begins from MINIMUM DOMINATING SET DECISION (which is the
decision problem associated with v, taking a graph G and integer K € Z™* as input, and
asking whether v(G) < K) in general graphs and preserves planarity. By transforming
from the NP-complete restriction of MINIMUM DOMINATING SET DECISION to planar cubic
graphs [144], we obtain NP-completeness for i in planar bipartite graphs, where all vertices
in one part have degree at most 3, and all vertices in the other part have degree at most
2. An alteration to the transformation of Corneil and Perl gives NP-completeness for i
in planar cubic graphs. To aid exposition, we present the proof in its entirety. (In what
follows, we refer to the MINIMUM INDEPENDENT DOMINATING SET DECISION problem,
which takes a graph G and integer K € Z" as input and asks whether i(G) < K.)

Theorem 4.2.12 MINIMUM INDEPENDENT DOMINATING SET DECISION is NP-complete,
even for planar cubic graphs.

Proof: Clearly MINIMUM INDEPENDENT DOMINATING SET DECISION is in NP. For, given
a graph (7, an integer K € Z* and a set S of at most K vertices, it is straightforward to
verify in polynomial time that S is an independent dominating set of G.

To show NP-hardness, we give a transformation from the NP-complete MINIMUM DOM-
INATING SET DECISION problem for planar cubic graphs, as discussed above. Hence let
G = (V,F) (a planar cubic graph) and K (a positive integer) be an instance of MIN-
IMUM DOMINATING SET DECISION. Assume that |E| = m. We construct an instance
G' = (V', E') (planar cubic graph) and K’ (positive integer) of MINIMUM INDEPENDENT
DOMINATING SET DECISION. Corresponding to every edge e = {u, v} of F, construct an
edge component of G’ as follows: replace the edge e by a path on five vertices, namely
u,al, be,al, v, connected in that order. Create an additional vertex, c¢., adjacent to
a’, b.,a?. It may be verified that G’ is planar and cubic. An example edge component is
shown in Figure 4.2. Denote by V. the vertices in the edge component corresponding to
edge e, i.e.

u v
V. =Au,a’,al,b.,c.,v}.

Denote by X, the internal vertices in this edge component, i.e.

X = {ag, al, be, Ce}'
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Set K/ = K + m. We claim that G has a dominating set of cardinality at most K if and
only if G’ has an independent dominating set of cardinality at most K’.

For, suppose that D is a dominating set for G, where |D| =k < K. We construct an
independent dominating set D’ for G’. Initially, let D’ contain the vertices of D. For any
edge e = {u, v} of G, we add vertices to D’, according to four cases:

1. u g D,v ¢ D. Add the vertex b, to D’.
2. u € D,v ¢ D. Add the vertex a? to D’.
3. ug D,v e D. Add the vertex a! to D'".
4. u € D,v e D. Add the vertex b, to D’.
It may be verified that D’ is an independent dominating set for G’, and |D’| = k+m < K.

Conversely, suppose that D’ is an independent dominating set for G’ of size at most
K’. We construct a set D” as follows. Initially let D” = D’. For any edge ¢ = {u, v} of
G, consider the elements of Q). = V. N D’. By domination, |Q.| > 1, and if |@Q.| = 1, then
Q. ={b.} or Q. ={c.}. By independence, |Q.| < 3, and if |Q.| = 3, then Q. = {u, b., v}
or Q. ={u,c.,v}. If |Q.] = 2, then either |Q. N X.| =1, or Q. = {a’,a’}. In the latter
case, replace a! by v in D”.

It may be verified that D” is a dominating set for G’, and |D”| < |D’|. Now let
D = D"n V. We claim that D is a dominating set for G. For, suppose that u € V\D.
Then u ¢ D", so by the domination property of D”, there is some e = {u,v} € F such
that a” € D”. By construction of D”, |[D” N X.| = 1. Hence, a? ¢ D", but as a! must
be dominated by D", the only outcome is v € D”. Hence v € D as required. Finally,
ID|=|D"|—m<|D|-m< K -m=K.1

4.2.7 Edge covering

In this section, we consider only graphs with no isolated vertices, since the concept of edge
covering is undefined for graphs with isolated vertices.
The source MINIMUM EDGE COVER problem has components (Z,U, 7, m, OPT), where:

o U(G)=P(F)
e 7(G, L) < E'is an edge cover for V
e OPT = min.
The maximinimal problem name is MAXIMUM MINIMAL EDGE COVER.

Norman and Rabin [174] demonstrate that there is a polynomial time algorithm to
transform a maximum matching to a minimum edge cover, and vice versa. Hence the
complexity of «; is identical to that of 3,. The proof of this result also demonstrates that
a further Gallai type identity holds, i.e. for a graph G with n vertices, oy (G)+ 51 (G) = n.
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The parameter o (), the cardinality of a maximum minimal edge cover, seems to have

received relatively little attention in the literature. However, the parameter is considered
by Hedetniemi [119], who shows that af (G) = £(G) for a non-trivial connected graph G,
where £((G) denotes the maximum number of pendant edges among all spanning forests for
G. (Given a spanning forest F for G, {u, v} € F is a pendant edge for F if the degree of
u or vin F is one.) Nieminen [171] shows that, for a non-trivial connected graph G with
n vertices,

(@) +e(G)=n (4.2)

and hence v(G) + of (G) = n. Tt is clear that these results extend to arbitrary graphs
with no isolated vertices. Hence we obtain the following theorem.

Theorem 4.2.13 For graphs with no isolated vertices, the complexity of af is identical
to that of .

The complexity of v for several graph classes is surveyed in Section 4.3.3.

It is also of interest to consider how we may construct a maximum minimal edge cover
from a minimum dominating set, and vice versa. For a given graph ¢ and a spanning
forest I of G, let e(F') denote the number of pendant edges of F. A spanning forest F' of
G such that e(F) = () is called a mazimum spanning forest of . Nieminen’s proof of
Equation 4.2 involves constructing in polynomial time a maximum spanning forest F'(D)
from a minimum dominating set D, where e(F (D)) = |V| — |D|. Hedetniemi’s proof of
af (G) = £(@) involves constructing in polynomial time a maximum minimal edge cover
from a maximum spanning forest. Together, these two constructions give a polynomial-
time procedure for transforming a minimum dominating set into a maximum minimal edge
cover. For the converse, we make the following observation about minimal edge covers (the

proof is straightforward, and is omitted):

Proposition 4.2.14 Let G be a graph with no isolated vertices and let S C VUFE. Then
S is a minimal edge cover if and only if S is a spanning forest for G that satisfies the
following two properties:

1. SCFE.

2. Fvery edge of S is a pendant edge.

Thus a minimal edge cover of G is a spanning forest S such that each connected component

of S is a non-trivial star (i.e. is a K, , for some r > 1).

Given a graph G = (V, F) with no isolated vertices, and a maximum minimal edge cover
S of G, we construct a set of vertices P C V as follows. For each edge e € S, we know
that e is a pendant edge, so that at least one endpoint vertex u of e has degree one in
S5 add u to P. Thus P contains exactly one vertex corresponding to every edge of S, so
that |P| = |S|. Let D = V\P. Then |D| = v(G), and it may be verified that D is a
dominating set for G, by Proposition 4.2.14. Thus, we have the following result.

Theorem 4.2.15 There is a polynomial time algorithm to construct a mazximum minimal
edge cover from a minimum dominating set and vice versa, for arbitrary graphs with no
isolated vertices.
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4.2.8 Matching

The source MAXIMUM MATCHING problem has components (Z,U, =, m,OPT), such that:
o U(G)=P(F)
e 7(G, L) < E'is a matching in ¢
® OPT = max.

The minimaximal problem name is MINIMUM MAXIMAL MATCHING (whose decision version
is problem GT10 of [92]).

Computation of () is the well-known problem of finding a maximum matching of
a graph. The famous algorithm due to Edmonds [70] is described in detail by Lovasz and
Plummer [157], for example. The parameter 57, the cardinality of a minimum maximal
matching, is in fact equal to 4/, the cardinality of a minimum edge dominating set, as
we now show. Two propositions follow, the proof of the first of which is trivial. Both
propositions involve the concept of an independent edge dominating set, which is a set of
edges that is both a matching and an edge dominating set.

Proposition 4.2.16 Given a graph G = (V,FE) and a set E' C E, E' is a mazimal
matching for G if and only if E' is an independent edge dominating set for G.

Proposition 4.2.17 (Yannakakis and Gavril [213]) Given a graph G = (V, F) and
an edge dominating set F' for G, we may construct, in polynomial time, an independent
edge dominating set E” for G, with |E"| < |E'|.

Proof: Suppose that E’ is edge dominating with adjacent edges {u,v} and {v,w}. If
FE'\{{v,w}} is edge dominating then we may delete {v, w} from F’. Otherwise there is
some z such that {w, 2} is dominated only by {v, w}, so we may replace {v, w} by {w, 2}
in E’. In either case, the resultant set is edge dominating with one fewer pair of adjacent
edges. We may continue this process until we obtain an independent edge dominating set
E”, which is a maximal matching by Proposition 4.2.16, and it is clear that |E”| < |E’|. B

From Propositions 4.2.16 and 4.2.17, it follows that 57 (G) = +/(G) for any graph G,
which implies that the complexities of 57 and 4’ are identical. The complexity of 4’ for
several graph classes is surveyed in Section 4.3.5.

Propositions 4.2.16 and 4.2.17 also indicate how we may construct a minimum maximal
matching from a minimum edge dominating set in polynomial time. The converse is trivial,

since any minimum maximal matching is, of course, a minimum edge dominating set.

4.2.9 Conclusion and further study relating to the twelve covering and
independence parameters

Relatively speaking, the parameters as, ad, 35, 35 have not been extensively studied, de-
spite their very natural definitions. In particular, there is scope for investigating whether
Gallai type identities hold [87]. A survey of such results involving the parameters a;, a,
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B, By for i = 0,1 appears in [48]. As mentioned in Section 4.2.2, bounds for as(G)+ (&)
have been investigated [2, 72, 166], and the identity £2(G) + 57 (G) = n holds [102], but
it is open as to whether bounds exist involving a3 (G) + 35 (G) that improve on those
obtained by simply considering the sum of known upper and lower bounds for af and 35
separately.

Similarly, the existence of Nordhaus-Gaddum [173] type inequalities are of interest.
Such results have been obtained for the parameters 3, and 3, [36], 55 [51, 42, 45, 113], v
and v’ (see [108] for a survey). As reported in Section 4.2.2, Nordhaus-Gaddum inequalities
involving -, 3, and (37 have been obtained [72, 166, 98], but there is still scope for
investigating such bounds involving the other parameters treated in this paper.

Regarding the algorithmic complexity of these parameters, one perhaps significant
open problem is the complexity of ;7 for chordal graphs — that this problem is open is
noted by Horton and Kilakos [126].

The NP-completeness results for the parameters considered here imply that their prop-
erties of approximability are of interest. Results have been obtained for the parameters
ag, Bo, By and are surveyed in [59]. Regarding the approximability of 37, any maximal
matching is a 2-approximation to f7 [145]. Proposition 4.2.17 implies that we may con-
struct, in polynomial time, a maximal matching FE” from an edge dominating set F’, such
that |E”| < |FE’|. Thus, since 7 = 4/, and MINIMUM EDGE DOMINATING SET admits a
ptas for planar graphs [12], then MINIMUM MAXIMAL MATCHING also admits a ptas for
planar graphs. Also, 87 is APX-complete, even for graphs of maximum degree 3 [216].
However it appears that the approximability of the parameters af, af, as, af, 37, 35 is

open.

4.3 Minimaximal and maximinimal strong stability, clique,
domination and irredundance graph problems

In this section we investigate twelve parameters concerned with strong stability, cliques,
domination, total domination, edge domination, and irredundance, in Sections 4.3.1, 4.3.2,
4.3.3, 4.3.4, 4.3.5 and 4.3.6, respectively.

4.3.1 Strong stability

The components (Z,U, r, m,OPT) of the source MAXIMUM STRONG STABLE SET problem
are:

o U(G)=P(V)
o (G, V') < V'is a strong stable set for G, i.e., Vv € Ve |N[v]Nn V| < 1.
e OPT = max.

The minimaximal problem name is MINIMUM MAXIMAL STRONG STABLE SET.

Following the notation of Domke et al. [63], let 5,(G) and [ss(G) denote respectively
the minimum and maximum over all maximal strong stable sets of a given graph G.
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The concept of a strong stable set was first defined by Hochbaum and Shmoys [124].
Meir and Moon [167] define a set of vertices S of a graph G = (V, E) to be a 2-packing
if d(u,v) > 2 for each pair of distinct vertices u, v € S. The following proposition, whose
proof is straightforward, demonstrates the equivalence of these two concepts.

Proposition 4.3.1 Let G = (V, E) be a graph and let S C V. Then S is a strong stable
set if and only if S is a 2-packing.

Let p(G) denote the maximum cardinality of a 2-packing of G (also denoted P»(G) by Meir
and Moon [167]); this notation follows Haynes et al. [115, p.348]. It follows by Proposition
4.3.1 that fss(G) = p(G).

In general, the parameter Ss5 is NP-complete [124]. Also, Chang and Nemhauser [33]
show that f(ss is NP-complete for bipartite and chordal graphs. The NP-completeness
result for bipartite graphs involves a transformation from the MAXIMUM INDEPENDENT
SET DECISION problem for general graphs, and preserves planarity. By considering the
NP-complete restriction of 5, to planar cubic graphs (see Section 4.2.6), we may use
the same transformation to obtain NP-completeness for 555 in planar bipartite graphs of
maximum degree 3, as observed by Horton and Kilakos [126]. However, for a tree T, Meir
and Moon [167] show that p(T) = ~(T'), and hence fss is polynomial-time solvable for
trees (see Section 4.3.3). Also f(ss is polynomial-time solvable for dually chordal graphs
[25].

The minimum maximal strong stability number, 55, has been studied by McRae [165],
who shows that ¢ is NP-complete for bipartite and chordal graphs. We now resolve the
complexity of this parameter in planar graphs.

Theorem 4.3.2 MINIMUM MAXIMAL STRONG STABLE SET DECISION is NP-complete,
even for planar graphs of mazimum degree 3.

Proof: Clearly MINIMUM MAXIMAL STRONG STABLE SET DECISION is in NP. For, given a
graph G, an integer K € Z* and a set S of at most K vertices, it is straightforward to

verify in polynomial time that .5 is a maximal strong stable set of G.

To show NP-hardness, we give a transformation from the MINIMUM VERTEX COVER
DECISION problem for planar cubic graphs. That this problem remains NP-complete for
planar cubic graphs is discussed in Section 4.2.6. Hence let G = (V| F) (a planar cubic
graph) and K (a positive integer) be an instance of MINIMUM VERTEX COVER DECISION.
Assume that |E| = m. We construct an instance G’ = (V’, E’) (planar graph of max-
imum degree 3) and K’ (positive integer) of MINIMUM MAXIMAL STRONG STABLE SET
DECISION. Corresponding to every edge e = {u,v} € F, construct an edge component
of G’, comprising nine vertices, of which two are u, v, and the other seven are new, as
follows:

e Vertices u,v,a?,a?l, b, b?, c?, c?,d..

o Edges
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Figure 4.3: A typical edge component from the constructed instance of MINIMUM MAXIMAL
STRONG STABLE SET DECISION.

- {u7 a:}v{aevvv}v
- {agvb:}v{bgvbev}v{bevv aev}7
- {a:,c:},{c:,de},{de,ce”},{ce”, aev}'

It is clear that the graph G” constructed is planar of maximum degree 3. A typical edge
component of G’ is illustrated in Figure 4.3. Denote by V. the internal vertices in the
edge component corresponding to the edge e = {u, v} of G, i.e.

Ve=Aal al, b2, 0, ¢\ e, de}

Set K’ = K + m. We now show that G has a vertex cover of cardinality at most K if and
only if G’ has a maximal strong stable set with cardinality at most K.

For, suppose that €' is a vertex cover for G, where |C| < K. We construct a set S
as follows. Initially let S = (. For each edge e = {u, v}, at least one of u, v is in C. If
u € C and v ¢ C, then we add ¢! to S. Similarly, if v ¢ €' and v € C, then we add ¢!
to S. In the case that v € €' and v € C, then we add d. to S.

It is straightforward to verify that S is a strong stable set. In addition, .5 is maximal.
For, let e = {u, v} be given. It is clear that, in each of the three cases u € C,v ¢ C and
u¢g C,ove Cand u € C,v e C, each member of V. \S is at distance at most two from
some member of §. Now suppose that u € V\S. Pick any v € V such that e = {u, v} € F.
Then u € V\C implies that v € C. By construction of S, we have ¢ € S. As u is at
distance two from ¢¥, then S is maximal. Moreover, |S| = |C|4+ m < K +m = K’, as
required.

Conversely, suppose that S is a maximal strong stable set for G’, where | S| < K’. Let
e = {u,v} € E be given. It is straightforward to observe that in each of the three cases
ueSvegSandug S, ve Sand u€e S veS, wehave |[SN V.| > 1. Moreover, it may
verified that in the case u ¢ S and v ¢ S, we have |SN V.| > 2. Define

X={ecF:e={u,v}AugSAv ¢S5}



Minimaximal & maximinimal graph problems based on the set inclusion partial order 73

Let 2 = | X|. Then, apart from the vertices in SNV, .S contains at least two vertices from

z edge components of (' and at least one vertex from (m — z) edge components of G’.
Thus

S| > |[SNV|+2z+ (m—=z)
= |SNV|+m+=z (4.3)
Define a set S as follows. Initially let S’ = S. For each e = {u,v} € X, there is some
vertex w € V,NS. Replace w by uin S’. Now let C'= 5"NV. Clearly, C' is a vertex cover
for G. Finally, |C| < |SN V|4 z, so that, by Inequality 4.3, |C| < [S|-m < K'—m =K
as required. W

4.3.2 Clique

The source MAXIMUM CLIQUE problem (whose decision version is problem GT19 of [92])
has components (Z,U,w, m,OPT), such that:

e U(G)=P(V)
e 7(G, V)<= V'isaclique in G,ie,Vo,we V' e{v,u} e F
e OPT = max.

The minimaximal problem name is MINIMUM MAXIMAL CLIQUE.

Let w™ (&) and w( () denote respectively the minimum and maximum over all maximal
cliques of a given graph G.

The complexity of the maximum clique number, w, is as for F; on the complementary
graph, as is shown by the following proposition, whose proof is trivial.

Proposition 4.3.3 Given a graph G = (V, E) and a set V' C V, V' is a clique for G if
and only if V' is an independent set for G°.

Therefore, as 3, is NP-complete for planar graphs, w is NP-complete, even for the comple-
ments of planar graphs. However, w is polynomial-time solvable for chordal graphs [95].
Determining the value of w in bipartite or planar graphs is trivial, since w(G) < 2 for a
bipartite graph G, and w((G) < 4 for a planar graph G.

Maximal cliques in a graph correspond to maximal independent sets in the comple-
mentary graph, as is shown by the following result, whose proof is also simple, and is
omitted.

Lemma 4.3.4 Given a graph G = (V,FE) and a set V' C V, V' is a mazimal clique for
G if and only if V' is a mazximal independent set for G©.

Lemma 4.3.4 leads on to the following result, which relates the complexity of the minimum
maximal clique number, w™, to a parameter that we have already defined.
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Theorem 4.3.5 The complexity of w™ is identical to the complexity of By on the com-
plementary graph.

Therefore, as 3; is NP-complete for planar or bipartite graphs, w™ is NP-complete, even
for the complements of planar or bipartite graphs. As is the case for w, determining the

value of w™ in bipartite or planar graphs is trivial.

4.3.3 Domination

The source MINIMUM DOMINATING SET problem (whose decision version is GT2 of [92])
has components (Z,U,w, m,OPT), such that:

e U(G)=P(V)
e 7((G, V') < V'is a dominating set for V ie. N[V']=V
e OPT = min.

The maximinimal problem name is MAXIMUM MINIMAL DOMINATING SET or UPPER DOM-
INATION.

Let () and I'(G) denote respectively the minimum and maximum over all minimal

dominating sets of a given graph G.

The domination number, v, remains NP-complete for planar cubic graphs [90, 144],
bipartite graphs [19] and undirected path graphs (a subclass of chordal graphs) [23], though
v is polynomial-time solvable for strongly chordal graphs [74] and trees [46]. Polynomial-
time algorithms and NP-completeness results for 4 have been obtained for many other
classes of graphs. Chapter 8 of [114] and Chapter 12 of [115] contain two recent algorithmic
surveys of v in various graph classes. See also [92, problem GT?2] and [133, 134, 58].

The maximum minimal domination number, I'; is NP-complete for arbitrary graphs
[39]. Fellows et al. [77] report that the parameter remains NP-complete for planar graphs.
However, for a chordal graph G, Jacobson and Peters [131] show that I'(G) = 5,(G), and
(o is polynomial-time solvable for chordal graphs [95]. Similarly, for a bipartite graph
G, Cockayne et al. [44] show that I'(G)) = §o(G), and 3, is polynomial-time solvable for
bipartite graphs [106]. Thus, for a tree T', I'(T') = Bo(T). A linear time algorithm to find
Bo(T) is given by Daykin and Ng [62].

4.3.4 Total domination

The components (Z,U, x, m,0PT) of the source MINIMUM TOTAL DOMINATING SET prob-

lem are defined as follows:
o U(G)=P(V)
o 7(G, V') < V'is a total dominating set for V, ie.,, N(V')= V.

e OPT = min.
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The maximinimal problem name is MAXIMUM MINIMAL TOTAL DOMINATING SET or UPPER
TOTATL DOMINATION.

Let v;(G) and I';(G') denote respectively the minimum and maximum over all minimal
total dominating sets of a given graph G.

The total domination number, v, was first defined and studied by Cockayne et al. [41].
The parameter remains NP-complete for bipartite graphs [185], undirected path graphs
(a subclass of chordal graphs) [152], split graphs (also a subclass of chordal graphs) [151],
2-CUBs [58] and circle graphs [141], though polynomial-time solvable for strongly chordal
graphs [31], interval and circular-arc graphs [34], permutation graphs [26, 58], cocompara-
bility graphs [147], asteroidal triple-free graphs [146], series-parallel graphs [184], partial
k-trees (for fixed k) [204] and trees [152]. Polynomial-time algorithms to compute 7, in
dually chordal graphs, distance hereditary graphs, and k-polygon graphs (for fixed k) fol-
low from [148] and the polynomial-time algorithms to compute v in the same graph classes
(see Chapter 8 of [114] for further details).

The complexity of 7, in planar graphs does not seem to have been discussed in the
literature. We show that NP-completeness holds for planar graphs of maximum degree 3.

Theorem 4.3.6 MINIMUM TOTAL DOMINATING SET DECISION is NP-complete, even for
planar graphs of maximum degree 3.

Proof: Clearly MINIMUM TOTAL DOMINATING SET DECISION is in NP. For, given a graph
G, an integer K € Z* and a set S of at most K vertices, it is straightforward to verify in
polynomial time that S is a total dominating set.

To show NP-hardness, we give a transformation from the MINIMUM DOMINATING SET
DECISION problem for planar cubic graphs. That this problem remains NP-complete for
planar cubic graphs is shown by Kikuno et al. [144]. Hence let G = (V, E) (a planar
cubic graph) and K (a positive integer) be an instance of MINIMUM DOMINATING SET
DECISION. Assume that |E| = m. We construct an instance G’ = (V', E’) (planar graph
of maximum degree 3) and K’ (positive integer) of MINIMUM TOTAL DOMINATING SET
DECISION. Corresponding to every edge e = {u, v} of F, construct an edge component of

v

G as follows: replace the edge e by a path on seven vertices, namely u, a’, ¢”, o

d.,c? al, v,
connected in that order. Create two additional vertices b) and b; join b! to a! and c?,
and join b! to a! and ¢?. It may be verified that G’ is planar and of maximum degree 3.
An example edge component is shown in Figure 4.4. Denote by V. the internal vertices
in the edge component corresponding to edge e of G, i.e.

u u u v v v
Ve=Aal, b2 ¢ d.,cl, bl al}.

e el Ve

Denote by X, the following vertices in V:

Xe=A{bl el d.,c?,bl}.

e’ e
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Figure 4.4: A typical edge component from the constructed instance of MINIMUM TOTAL
DOMINATING SET DECISION.

Define X = |J, .z Xc. Set K/ = K + 3m. We claim that G has a dominating set of

e€ R €
cardinality at most K if and only if G’ has a total dominating set of cardinality at most

K'.

For, suppose that D is a dominating set for G, where |D| = k < K. We construct a
total dominating set D’ for G'. Initially, let D’ contain the vertices of D. For any edge
e = {u, v} of G, we add vertices to D’, according to four cases:

1. u¢g D,v ¢ D. Add vertices ¢¥,d., ¢! to D'".

2. u € D,v ¢ D. Add vertices a, ¢!, a! to D'.

e e

3. ug D,v e D. Add vertices a, ¢, a? to D'.

e’ Te? Ve

4. u € D,v e D. Add vertices a”, c*, a? to D'.

e’ 7er e

It may be verified that D’ is a total dominating set for G’, and |D'| = k 4+ 3m < K.

Conversely, suppose that G’ has a total dominating set of size at most K’. Choose D’
to be such a set which minimises |D'N X|. Let e be any edge of F and define Q. = V.ND'.
It may be verified that |Q.| > 3; now suppose that |Q.| > 3. Then |D’ N X.| > 2. Define
a set D" as follows:

D" = (D'\Q.)U{u,a’,c’,al}.

e’ Vel

Then it is straightforward to check that D” is a total dominating set for G’, |D”| < |D’| <
K’,;and |[D”" N X,.| =1. Thus |D” N X| < |D’ N X|, contradicting the choice of D’. Hence
|Qe| = 3.

Now let D = D’'N V. We claim that D is a dominating set for . For, suppose that
u € V\D. Then u ¢ D', so by the domination property of D', there is some e = {u,v} € F
such that a? € D’. By the total domination property of D', either b € D’ or ¢! € D'.
But | Q.| = 3, so that |Q. N {d., c?,b?, al}| = 1. Since b! and ¢? must be dominated by
this single vertex, the total domination property forces a? € D" and v € D’. Hence v € D,
so that D is a dominating set for G. Finally, |D|=|D'|-3m < K'—=3m =K.

The construction of Theorem 4.3.6 can be extended in order to show that v, remains

NP-complete for planar cubic graphs.

Theorem 4.3.7 MINIMUM TOTAL DOMINATING SET DECISION is NP-complete for planar
cubic graphs.
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Figure 4.5: A typical degree two attachment from the constructed instance of MINIMUM
TOTAL DOMINATING SET DECISION.

By considering the construction of Theorem 4.3.6, it may be verified that MINIMUM TOTAL
DOMINATING SET DECISION is NP-complete for planar graphs, where each vertex has
degree two or three. To show that NP-completeness also holds for planar cubic graphs, we
give a reduction from this problem. Hence let G = (V, F) (a planar graph, where each
vertex has degree two or three) and K (a positive integer) be an instance of MINIMUM
TOTAL DOMINATING SET DECISION. Assume that V = {v;,vs,...,0v,}. Let D, be the
set of vertices in G of degree two, and let ny = |Dy|. We construct an instance G’ =
(V', E") (planar cubic graph) and K’ (positive integer) of MINIMUM TOTAL DOMINATING
SET DECISION as follows. Corresponding to every v; € Dy, contruct a degree two attachment

as follows:
o Vertices p/, ¢/, 1], s, t],u; (j = 1,2).
i Edges {Uz’7 ui}7 {ui7 pg}v {pgv (]3}7 {pgv Szj}v {qgv rij}v {rijv Szj}v {(]37 tzj}v {rijv tzj}v {Szjv tzj}
(j=1,2).

It is clear that the graph G’ constructed is planar and cubic. A typical degree two

attachment of G is illustrated in Figure 4.5. The construction bears similarities to one

used by Kikuno et al. [144], proving NP-completeness for 4 in planar cubic graphs. For

v; € Dy, denote by V; the following vertices in the corresponding degree two attachment:
Vi = {piv (szv rijv Szjv tz] ] = 17 2}

Set K’ = K +4n,. We now show that G has a total dominating set of cardinality at most
K if and only if G has a total dominating set of cardinality at most K’.



Minimaximal & maximinimal graph problems based on the set inclusion partial order 78

For, suppose that D is a total dominating set for G, where |D| < K. Let

D' =Du{p!, s}, pl s’ v, € Dy}.

7

Then it may be verified that D’ is a total dominating set for G’ and |D'| = |D| + 4n, <
K + 4n, = K’ as required.

Conversely, suppose that D’ is a total dominating set for G, where |D’| < K’. Suppose
that v; € D, for some i (1 < i < n). Then |D'N V;| > 4. For, some vertex w; satisfies

w; € D'N {¢/,r], s/}, in order to dominate (j = 1,2). Furthermore, some additional

vertex z; satisfies z; € D' N {pl, ¢, v, s t}, in order to dominate w; (j = 1,2). Define

X = {’UZ‘GDzi’UZ‘GD//\UZ‘GD/}
Y = {’UZ‘GDzi’UZ‘GD//\UZ'Q/D/}
7 = (V\D)nD'.

Let 2 = |X|, y = |Y] and z = |Z|. Then

|D'| > 6z+5y+4(ny—z—y)+z
= 4dmy+2r+y+ =z
= |[D'NnV|4+4n,+z (4.4)

Define a set D" as follows. Initially let D" = D’. Corresponding to each v; € X, replace
u; in D" by some v; adjacent in G to v;. Now let D = D" n V. Clearly, D is a total
dominating set for G. Finally, |D| < |D’ N V| + 2, so that, by Inequality 4.4, |D| <
|D'| —4ny < K' — 4ny = K as required. B

The maximum minimal total domination number, T';, is studied by Fricke et al. [83],
who show that the parameter is NP-complete for bipartite graphs, though they give a
linear-time algorithm for trees.

4.3.5 Edge domination

The components (Z,U, w, m,0PT) of the source MINIMUM EDGE DOMINATING SET problem
are defined as follows:

o U(G)=P(F)
e 7(G,E') & E'is an edge dominating set for F
e OPT = min.
The maximinimal problem name is MAXIMUM MINIMAL EDGE DOMINATING SET.

Let 4'(G) and I"(G) denote respectively the minimum and maximum over all minimal
edge dominating sets of a given graph G.
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The minimum edge domination parameter, v/, was first studied by Mitchell and Hedet-
niemi [168]. The parameter remains NP-complete for planar or bipartite graphs of max-
imum degree 3 [213], planar bipartite graphs, their subdivision, line and total graphs®,
perfect claw-free graphs, planar cubic graphs and iterated total graphs [126]. The prob-
lem of computing 4’ is polynomial-time solvable for bipartite permutation graphs and
cotriangulated graphs [200], trees [168, 213], k-outerplanar graphs [12] and a number of
other classes of graphs including claw-free chordal graphs [126].

It would appear that the only complexity result for the maximum minimal edge dom-
ination parameter, [, is an NP-completeness result for bipartite graphs, due to McRae

[165].

4.3.6 Irredundance

The components (Z,U, x, m,0PT) of the source MAXIMUM IRREDUNDANT SET or UPPER
IRREDUNDANCE problem are defined as follows:

o U(G)=P(V)
o 7(G, V') < V’'isirredundant in G, i.e. Vv € V' e N[v]\N[V'\{v}] # @
® OPT = max.

The minimaximal problem name is MINIMUM MAXIMAL IRREDUNDANT SET or LOWER
IRREDUNDANCE.

Let ir(G) and IR( () denote respectively the minimum and maximum over all maximal

irredundant sets of a given graph G.

The concept of irredundance was introduced by Cockayne et al. [49]. The maximum
(or upper) irredundance number, IR, is NP-complete for arbitrary graphs [77]. Fellows
et al. [77] also report that IR is NP-complete for planar graphs. However, for a chordal
graph G, Jacobson and Peters [131] show that IR(G) = (,(G), and 3, is polynomial-time
solvable for chordal graphs [95]. Similarly, for a bipartite graph G, Cockayne et al. [44]
show that TR(G) = (y(G), and [, is polynomial-time solvable for bipartite graphs [106].
Thus, for a tree T, IR(T) = (o(T). A linear time algorithm to find §,(7') is given by
Daykin and Ng [62].

The minimum maximal (or lower) irredundance number, ir, is NP-complete for bipar-
tite graphs [185] and chordal graphs [151], though solvable in linear time for trees [18].

SGiven a graph G = (V, E), the line graph of G, L(G), has vertex set E, and two vertices of I{G)
are adjacent in L(@) if and only if the corresponding edges are adjacent in G. To form the subdivision
graph of G, S(G), we subdivide each edge {v, w} of G, i.e. we add vertices u, ,, and edges {v, u, .} and
{uy,w, w} for each {v, w} € E. The total graph of G, T(G) has vertex set V U E, and two vertices of T(G)
are adjacent if and only if they are incident or adjacent as vertices or edges of G.
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The following inequality chain involving six parameters studied in Sections 4.2.6, 4.3.3
and 4.3.6, has received much attention:

ir(G) < (@) < i(G) < Bo(G) < T(G) < IR(G).

The inequality chain was first observed by Cockayne et al. [49]; further details may be
found in [115, Section 3.5].

4.3.7 Conclusion and further study regarding minimaximal and maxi-
minimal optimisation problems in this section

In this section we have studied complexity results relating to parameters concerned with
strong stability, cliques, domination, total domination, edge domination and irredundance.
As discussed in Section 4.2.9, the complexity of 4’ is open for chordal graphs. Also, no
reference was found for the complexity of w™ in chordal graphs.



Chapter 5

Minimaximal and maximinimal
graph problems based on the
partial order of

(k — 1, k)-replacement

5.1 Introduction

In this chapter we consider a number of examples of minimaximal and maximinimal graph
optimisation problems that may be derived from a source optimisation problem II using
the partial order of (k — 1, k)-replacement, C ¢, defined on F (), the feasible solutions of
I1, for a given graph G. An element of F((G) that is Cf’-maximal or C§’-minimal will be
referred to as k-maximal or k-minimal, respectively. The minimaximal and maximinimal
optimisation problems that we formulate in this chapter have been studied previously in
the literature in some form.

We begin in Section 5.2 by considering the case k = 1, and take II to be the source
MAXIMUM NEARLY PERFECT SET and MINIMUM NEARLY PERFECT SET problems. We
discuss the computational complexity of these problems, together with their respective
minimaximal or maximinimal counterparts, namely MINIMUM 1-MAXIMAL NEARLY PER-
FECT SET and MAXIMUM 1-MINIMAL NEARLY PERFECT SET.

In Section 5.3, we consider the case £ > 1, and take Il to be the source MAXIMUM
INDEPENDENT SET problem. We place particular emphasis on the case k£ = 2, focusing on
the resulting MINIMUM 2-MAXIMAL INDEPENDENT SET problem. We study the algorithmic
complexity of this problem in trees and planar graphs.

As this chapter concludes our study of minimaximal and maximinimal graph optimisa-
tion problems in this thesis, we summarise in Section 5.4, in table format, the algorithmic
results that we have obtained and surveyed for the parameters in Chapters 3, 4 and 5,
over arbitrary, planar, bipartite and chordal graphs, and trees.

There are many other minimaximal and maximinimal graph optimisation problems
that can be obtained by applying a partial order satisfying POMM to the feasible solu-
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tions of problems of this type. Some of these minimaximal and maximinimal problems
have been introduced in the literature, though none has been studied in detail with re-
gard to computational complexity. In Section 5.5, we list some further minimaximal and
maximinimal graph optimisation problems that might deserve attention.

5.2 1-maximal and 1-minimal nearly perfect sets

Let G = (V,F) be a graph, and let S C V. S is a nearly perfect set of G if, for every
v e V\S, [N(wv)NnS| <1, i.e. every vertex outside S is adjacent to at most one vertex
of S. Nearly perfect sets were first studied by Dunbar et al. [68]. We may define two
optimisation problems relating to this concept as follows:

Source problem: MAXIMUM (MINIMUM ) NEARLY PERFECT SET=(Z,U,w, m,OPT), where
e I={G=(V,FE): G is agraph}

e U(G)=P(V),for GeT

(G, V') < V'is a nearly perfect set of G, for G € 7T and V' € U(G)

m(G, V') =|V'|,for G € T and V' € F(G)
e OPT = max(min).

Both MAXIMUM NEARLY PERFECT SET and MINIMUM NEARLY PERFECT SET are trivially
in P, since both V and @ are nearly perfect sets of (. Similarly, C“-maximal nearly
perfect sets and C“-minimal nearly perfect sets are not particularly interesting concepts,
since these also correspond to V and @, respectively. However, it is a consequence of
the fact that nearly perfect-ness is not a hereditary or super-hereditary property that
we can define a meaningful concept of local optimality, using the partial order of (0, 1)-
replacement. It is straightforward to see that the property of nearly perfect-ness is neither
hereditary nor super-hereditary. Consider the triangle K3, with vertices u, v, w. The
inclusions {u} C {u,v} C {u,v,w} hold, and {u}, {u, v, w} are nearly perfect sets, but
{u, v} is not.

In fact, both 1-maximal and 1-minimal nearly perfect sets are interesting notions.
Using the partial order C{, defined on F((), the set of all nearly perfect sets for a graph
G, we obtain the MINIMUM 1-MAXIMAL NEARLY PERFECT SET and MAXIMUM 1-MINIMAL
NEARLY PERFECT SET problems, using the framework of Definition 2.3.5. Dunbar et al.
[68] denote by n,(G) and N,(G) the cardinality of a minimum 1-maximal and maximum
I-minimal nearly perfect set, respectively. They show that n, is NP-complete in bipartite
and chordal graphs, though solvable in linear time for trees, whereas the parameter N, is
linear-time computable for all graphs.
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5.3 k-maximal independent sets (k> 1)

5.3.1 Introduction

Independent sets in graphs have been extensively studied. The principal algorithmic focus
has been the investigation of how we may efficiently determine maximum independent
sets in a graph. The computational complexity of the problem of computing 5o(G), the
cardinality of a maximum independent set in a graph G has been studied extensively, for
a variety of classes of graphs (see Section 4.2.6).

Independent sets that are maximal with respect to the partial order of set inclusion
have also been of interest. For instance, the problem of counting the number of maximal
independent sets in a graph has been shown to be #P-complete [210]. Also, a graph
is well-covered if every maximal independent set is maximum — results in this area are
surveyed by Plummer [186]. A much-studied parameter is 5 (G), the cardinality of a
minimum maximal independent set in . The parameter 35 is also referred to as the
minimum independent domination parameter i. Independent domination was first studied
by Cockayne and Hedetniemi [47], and has also been the focus of much algorithmic activity
(see Section 4.2.6).

For a graph G, we saw in Section 4.2.6 that the definition of 35 (G) can be obtained
by defining the partial order C“ (the partial order of set inclusion) on F((), the set of all
independent sets in (7, and by considering the minimum over all C“-maximal elements of
F(G). However, it is of interest to consider other partial orders that may be defined on
F(G), and the corresponding minimaximal optimisation problems that result from their
definition.

In Section 5.3 we define the partial order C on F(G), for k > 1, and consider the
k-maximal members of F (), for a given graph G = (V, F). Recall that an independent
set S is k-maximal if, for all subsets A of S (where |A| < k — 1), and all subsets B of
VAS (where |B| = |A] 4+ 1), (5\A4) U B is non-independent. The parameter 37 ,(G)"
will denote the minimum over all k-maximal independent sets of G. The concept of
k-maximal independence in graphs was introduced by Bollobds et al. [22], and several
non-algorithmic results concerning 37 ,, for & > 1, have been obtained [169, 50]. The
related concept of k-minimal domination was also introduced by Bollobas et al. [22], and
further details may be found in [170, 52, 53]. Halld6rsson’s approximation algorithms
for MAXIMUM INDEPENDENT SET in various graph classes [105] involve constructing k-
maximal independent sets. Nevertheless, k-maximal independent sets are interesting in
their own right.

Investigating the computational complexity of 3y, for k& > 1 was given as an open
problem by Cockayne et al. [50]. However, the parameter 35, has been studied by McRae
[165], from an algorithmic point of view. She shows that the decision problem related to

"Mynhardt [169] and Cockayne et al. [50] refer to By as Br. However, for k = 1, this choice coincides
with the maximum matching parameter (see Harary [106], for example), and for k& = 2, this choice coincides
with the maximum total matching parameter of Alavi et al. [2]. Tn our notation, the subscript ‘0’ of
By, refers to vertex independence (as in Harary [106]), the subscript ‘k’ refers to k-maximality, and the

superscript ‘-’ refers to the minimum cardinality requirement.
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determining (5, is NP-complete for bipartite graphs and line graphs of bipartite graphs.
In this section we give a linear algorithm for computing the minimum 2-maximal indepen-
dence number of a tree. The algorithm is based on that of Beyer et al. [20] for computing
By (T). We also demonstrate that the decision problem related to computing g, is NP-
complete for planar graphs of maximum degree 3.

The remainder of Section 5.3 is organised as follows. In Section 5.3.2, we define several
notions related to k-maximal independence. In Section 5.3.3 we give the main theorem,
on which the algorithm is based, and in Section 5.3.4, we present the algorithm itself. The
NP-completeness result for planar graphs is given in Section 5.3.5. Finally, in Section 5.3.6,
we discuss some possible directions for further study, based on a hierarchy of k-maximal

independence parameters.

5.3.2 Definitions related to k-maximal independence

Recall from Section 4.2.6 the definitions of the components (Z,U, =, m, oPT) for the MAX-
IMUM INDEPENDENT SET problem. For k& > 1, consider the partial order of (k — 1,k)-
replacement, C, defined on F((G), the set of all independent sets of a graph G. The re-
sulting minimaximal optimisation problem is called MINIMUM k-MAXIMAL INDEPENDENT

sET. We may now formally define the parameters j3;,, as follows:
By (G) = min{|S]: § € F(G) A S is k-maximal}.

Since independence is a hereditary property, a I-maximal member of F () is maximal by
Proposition 2.4.6. Thus 35, = ;. By Proposition 2.4.3, 37, _,(G) < 8;,(G) for a graph
G and k > 2. Also, 35, (G) > k for 1 < k < Bo(G) [169].

For the remainder of this section, and in Sections 5.3.3-5.3.5, we are concerned with
the case k = 2. We have already noted that 5 (G) < f5,(G). A simple example of where
strict inequality can occur is provided by Ps: 5 (Ps) = 1, whereas 35 ,(Ps) = 2.

The following definitions relating to graphs may be used to obtain a convenient criterion
for an independent set to be 2-maximal. Let G = (V, F)) be a graph. For a set of vertices
S C V and a vertex v € V, the private S-neighbours of v are those vertices in the set
N[v\N[S\{v}]. We say that S admits an augmenting Ps in G if there exist vertices w,
and y of V such that w € S, z,y € 9, {z,y} ¢ F and z,y are private S-neighbours of
w. It turns out that a maximal independent set S' is 2-maximal if and only if S does not
admit an augmenting P; in G, as the following result, due to McRae [165], demonstrates.

We include her proof for completeness.

Lemma 5.3.1 (McRae [165]) Let G = (V, F) be a graph. A mazimal independent set
of vertices S C V is 2-mazimal if and only if S does not admit an augmenting Ps in G.

Proof: Suppose S C V is a maximal independent set. If there exist vertices w,z and y
of V such that w € S, z,y € 9, {z,y} € F and z, y are private S-neighbours of w, then
it is clear that S is not 2-maximal. Conversely suppose that S is not 2-maximal. Then
there exist vertices w,z and y of V such that w € 5, z,y ¢ S and (S\{w}) U{z,y}
is independent. As S is maximal independent, S\{w} dominates V\N[w]. Thus z,y €
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N{(w), and z, y were private S-neighbours of w. Clearly also {z,y} ¢ E. i

The result of Lemma 5.3.1 is utilised by our algorithm to find the cardinality of a minimum

2-maximal independent set of a tree.

5.3.3 The main theorem for trees

Before presenting the main result, we make some further definitions relating to trees. Our
algorithm is adapted from the one used by Beyer et al. [20] to calculate i(7) for a tree
T, and hence we use similar notation.

Given a rooted tree T and a vertex v of T, define T, to be the subtree of T with root
v. For a vertex v of T and a set of vertices S C V(T'), v is said to be bad with respect to
S if vis a leaf node of T and v € S, or, v is a non-leaf node of T, v € S and no child of v
is in 9. As a result of Lemma 5.3.1, the following necessary condition for an independent
set S of a tree T to be 2-maximal can easily be verified.

Lemma 5.3.2 Let T be a rooted tree and let S C V(T) be independent. Then S is
2-mazimal implies that every v in S has at most one bad child with respect to S. 1

In view of this observation, we define the following five functions:

INBC7(v): The smallest number of vertices in a 2-maximal independent set S C V(7))
for T, which includes v and is such that v has one bad child with respect to

S.

INN7(v):  The smallest number of vertices in a 2-maximal independent set S C V(T,)
for T, which includes v and is such that v has no bad children with respect

to S.

OUTCr(v) : The smallest number of vertices in a 2-maximal independent set S C V(T,)
for T, which does not include v but is such that either

1. v has more than one child in S or

2. v has exactly one child w in 5, and w has no bad children with respect

to 9.

OUTO7(v) : The smallest number of vertices in a maximal independent set S C V(T,)
for T, which does not include v but is such that v has exactly one child w
in .S, w has one bad child z with respect to 5, and S admits exactly one

augmenting P; in T, (namely the P5 involving vertices v, w, z).

OUTN7(v): The smallest number of vertices in an independent set S C V(T,) for T,
such that S dominates V(7T,)\{v}, S does not admit an augmenting P5 in
T,, and v is bad with respect to S.

Intuitively, for OUTOr(v) and OUTNr(v), v must be a non-root node, in order to be
dominated by its parent in T.
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One or more of these functions may be undefined for some v € V(T). In particular,
if v is a leaf node of T, then INBCr(v), OUTCr(v) and OUTO7(v) are all undefined.
These cases are dealt with in Section 5.3.4.

The algorithm for finding the minimum 2-maximal independence number of a rooted
tree T utilises the observation that, if .S is a 2-maximal independent set of T, then for
each vertex v € S, v has at most one bad child by Lemma 5.3.2, and also .5 does not admit
an augmenting Ps in T involving the the parent of v, v itself, and a child of v (assuming
that such vertices exist). The dynamic programming approach is based on the following
theorem, which demonstrates relationships between the above five functions for adjacent
vertices in a tree, and which also proves the correctness of the algorithm.

Theorem 5.3.3 Let T" = (V', ') be a tree rooted at some vertex u, and let T" =
(V', E") be another tree rooted at some vertex v. Let T = (V, E) be the tree rooted at u,
with vertices V.= V'U V" and edges F = E' U E” U {{u,v}}. Then

INBCT/(U) + OUTCTH(U),
1. INBC7(u) = min ¢ INBCr/(u) + OUTO71(v),
INNT/(U) + OUTNTH(U)

2. INN7z(u) = INN7/(u) + min{ QUTCru(v), OUTOru(v)}

OUTCTI(U) + OUTCTH ’U),
OUTNTI(U) ‘I‘ I]\/v]\/vTu('U)7
. OUTCT/(U) —|— INBCTII(’U),
. T =
g OU CT(U) S OUTCT/(U) + I]\/v]\/vTu(’U)7
OUTOT/(U) + INBCTII(’U),
(u)

OUTOT/ u) + INNT//(’U)

4. OUTO7(u) = min{ OUTO7:(u)+ OUTCru(v), }

OUTNT/(U) + INBCT//(U)
5. OUTNT(U) = OUTNT/(U) + OUTCTH(U).

Proof: For Cases 1-3, let S be a minimum 2-maximal independent set for T and define
S'=8NV(T") and §” = 5N V(T"”). We consider each of Cases 1-5 separately:

(1). Suppose that S contains u, and u has one bad child w with respect to S in 7. Then
either (i) w € 57, or (ii) w is v.

In (i), |S'| = INBCr/(u). Also, v has at least one child in 5. The existence of u implies
that if v has only one child z in .5, then 2z is allowed to have a bad child with respect to
S” in T”. Thus |S”| = min{ OQUTCr:(v), OUTOrn(v)}.

In (ii), v has no bad child with respect to 5" in 7", so |S’| = INN7/(u). Also, v has
no children in 9, so |S”| = OUTN7(v).

(2). Suppose that S contains u, and u has no bad children with respect to S in 7.
Then u has no bad children with respect to S” in T’. Hence |S'| = INNp/(u). Also, v
has at least one child in S. As in (1), the existence of u implies that if v has only one
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child w in 5, then w is allowed to have a bad child with respect to 5" in T”. Thus
|S//| = min{OUTCTu(U), OUTOTH(’U)}.

(3). Suppose that S does not contain u, but is such that either u has more than one child
in S, or u has exactly one child w in S and w has no bad children with respect to S in
T. We consider the cases (i) u has a child in S’ or (i) v € S, or (iii) both (i) and (ii).

In (i), u cannot have a sole child w in S’ such that w has a bad child with respect to
S’ since v € S. Thus || = OUTCr.(u). Also, v must have at least one child in 9, or else
S U{v} is independent, a contradiction. If v has only one child 2 which has a bad child
with respect to S”; then S is not 2-maximal, since u € S. Hence |S”| = OUTCru(v).

In (ii), [S"| = OUTN7/(u). Also, v cannot have a bad child with respect to S” in T",
for then S would not be 2-maximal, as no child of u is in S’. Hence |S”| = INN7.(v).

In (iii), the existence of a child of u in 5" means that v is permitted to have a bad child
with respect to S” in T”. Hence |S”| = min{INBC7.(v), INN7:(v)}. Also, the existence
of v € S means that it is permissible for u to have a sole child z in S’ such that z has a

bad child with respect to S”. Hence |S'| = min{ QUTCr:(u), OUTO7:(u)}.

(4). Let S be a minimum maximal independent set for 7" such that S does not include
u, but exactly one child w of u is in S, w has one bad child z with respect to S, and
S admits exactly one augmenting P; in T (namely the P involving the vertices u, w, z).
Let ’=5N V(T') and S” = 5N V(T"). Then either (i) w € S or (ii) w is v.

In (i), |S"| = OUTO7:(u). Also, v must have a child in S, or else SU{v} is independent,
a contradiction. If v has only one child y which has a bad child z with respect to S, then
S admits an augmenting Ps in T involving vertices v, y, z, since u € S, a contradiction.
Hence [S”| = OUTCrn(v).

In (ii), [S'| = OUTN7/(u). Also, |S”| = INBC7u(v).

(5). Let S be a minimum independent set for 7" such that S dominates V(7T)\{u}, S does
not admit an augmenting P; in 7', and u is bad with respect to S. Let 5" = Sn V(T")
and " = S5SnNV(T").

Then |S’| = OUTN7.(u). Also, v must have a child in S, or else S does not dominate
v, a contradiction. If v has only one child w which has a bad child with respect to 5", then
S admits an augmenting Psin T, since u ¢ S, a contradiction. Hence |S”| = OQUTCru(v).
|

5.3.4 Linear algorithm for trees

The class of rooted trees may be constructed recursively from copies of the singleton
vertex K, together with the rule of composition indicated in the statement of Theorem
5.3.3 (that is, take a tree T", rooted at some vertex u, and another tree 7", rooted at
some vertex v, and let T be the tree with root u, constructed from T’ and T” by joining
u and v by an edge). Hence, by providing suitable initialisations for the singleton subtrees
of a given tree T rooted at some vertex u, we may build up T from the singleton subtrees,
using this rule of composition successively at each stage, together with Theorem 5.3.3, to

obtain the values of the five functions at vertices of T.
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The values OUTO7(u) and OUTN7(u) must be disregarded, since a set that satisfies
the defining properties for either of the functions OUTOr or OUTNp must be covered
from above in T in order to be 2-maximal. Since this is impossible in the case of the root
vertex, we have:

ﬁaQ(T) = min{INBCr(u), INN7z(u), OUTCr(u)}.

Thus it remains to supply appropriate initialisations for the singleton subtrees of T. For
a singleton tree T, consisting only of some vertex v, it is clear that INNz(v) = 1 and
OUTNr(v) = 0. However, as mentioned in the previous section, the values of the other
three functions INBCr(v), OUTO7(v) and QUTCr(v) are undefined. They are therefore
given value N +1 (where N = |V(T)|), which is large enough not to affect the remainder
of the procedure in computing f5,(7T). For a vertex v of an arbitrary tree T it follows
by Theorem 5.3.3 that there is no set satisfying the defining property of Sz (v) if and only
if S7(v) > N + 1, where S is one of the five classes defined above.

The pseudocode of our algorithm to find 37 ,(7T) for a tree T is shown in Figure 5.1.
We assume that an arbitrary vertex is chosen to be the root of T. Also, we suppose
that the vertices are ordered 1,2,..., N such that vertex 1 is the root, and the remaining
vertices are numbered breadth-first from the root. It follows from Theorem 5.3.3 and the
discussion in this section that this algorithm is correct.

It may be verified that the algorithm in Figure 5.1 requires O(N) time for execution.
The initialisation is clearly O(N), and the main loop is also O(N), since the values of the
five functions may be computed in a constant number of steps, for each iteration. It is
also clear that O(N) space is required.

In order to construct a minimum 2-maximal independent set of a tree T, it is necessary
to store extra information during the main loop of the algorithm in Figure 5.1. This extra
information is then used in a final pass over the vertices in the order 1,2,..., N, during
which a minimum 2-maximal independent set is constructed. This is a standard procedure
for problems of this type, taking O(N) time and space — further details may be found in
[18].

5.3.5 2-maximality in planar graphs

In this section we prove that 3, is NP-complete, even for planar graphs of maximum
degree 3.

Theorem 5.3.4 MINIMUM 2-MAXIMAL INDEPENDENT SET DECISION is NP-complete, even
for planar graphs of maximum degree 3.

Proof: Clearly MINIMUM 2-MAXIMAL INDEPENDENT SET DECISION is in NP. For, given a
graph G, an integer K € Z™* and a set S of at most K elements, it is straightforward to
verify in polynomial time that .5 is independent and 2-maximal in G.

To show NP-hardness, we give a transformation from the MAXIMUM INDEPENDENT
SET DECISION problem for planar cubic graphs. That this problem remains NP-complete
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procedure tree-min-2-maz-ind-number (value parent : array [2..N] of [1..N])

(result 35, : N) =
Il

{ Given a tree T with vertices 1,2,..., N, calculate 35 ,(7T). T is rooted at vertex 1,}
{ and the vertices are numbered breadth-first from the root. T is represented by a }
{ parent array, i.e., i = parent[j] if and only if i is the parent of j in T. }

var i,j : Z™T;
INBCr,INN7, OUTC7, OUTN7, OUTO7 : array [1..N] of N
=1

while j < N do {Initialisation }
INBC7[j]:== N +1;  {Indicates value undefined in this case}
INN7[j] = 1;

OUTCr[j]:= N+ 1; {Indicates value undefined in this case}
OUTO7[j]:= N +1; {Indicates value undefined in this case}

OUTN7[j] := 0;
=it
od;
Ji=N;
while j > 2 do {Propagate values towards root}
i := parent[j];
INBCr[i]+ OUTC[j],
INBCy[i] := min { INBCy[i]+ OUTO:[]], %;
INN7[i]+ OUTN[j]
INNz[i] :== INN7[i] + min{OUTC7[j], OUTO7[j]};
OUTCrli]+ OUTCr[j],
OUTN[i] + INN.[f],
) ) oOUTCy[i]+ INBC7[j],
OUTCr[i] := min OUTCTH + INN,[j 57] ;
OUTO7[i] + INBC7[j],
OUTO7[i] + INN7[j]
. . OUTO[i] + OUTCr[j],
OUTO7[i] :== min OUTNy[i] + INBCoj] };
OUTN[i] := OUTNy[i] + OUTC[j];
ji=7—-1
od;

B35 := min{INBC[1], INN;[1], OUTC[1]}
Il

Figure 5.1: Algorithm to find the minimum 2-maximal independence number of a tree.
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for planar cubic graphs is discussed in Section 4.2.6. Hence let G = (V, F)) (a planar cubic
graph) and K (a positive integer) be an instance of MAXIMUM INDEPENDENT SET DECI-
STON. Assume that V = {v, vs,...,v,}. We construct an instance G’ = (V’, E’) (planar
graph of maximum degree 3) and K’ (positive integer) of MINIMUM 2-MAXIMAL INDEPEN-
DENT SET DECISION. Corresponding to every vertex v; € V (1 < i < n), construct a

vertex component C; of G’ as follows:
e Vertices Pis 4y T4y 'rijv yzjv Zz'jv for 1 S ] S 4.

o Edges

{z} 21} and {2/, 277"}, for 1 < j < 3.
— {yl ) and {y/,y/*'} for 1< j <3.
{2, 21} and {2/, 2/ ™'}, for 1 < j < 3.

- {'rzgv pi}7 {y?v (Zi}v {Zigv Ti}'
- {pm (Zi}v {Pu 72‘}7 {f]u Tz}-

We denote by V; the vertices in C;. To each of the vertices z!, y! and z! in G’, we attach

one of the three edges incident on v; in . There is obviously a degree of freedom involved
in making such attachments; however the actual choice of assignment does not affect the
planarity of G, nor the remainder of the proof, as we shall see. One possible procedure
for assigning edges to these vertices is now given.

Let S; = {s},s7, s’} start out as a set of three integers, for each i (1 < i < n), such
that s} < s? < s? and {v;,v,;} € F for each j (1 < j < 3). Define the neat free vertex of
component r (1 <r < n) to be zrif |9, = 3, y! if |S,] = 2, or 2z} if |S,| = 1. For each S,
in turn, for ¢ = 1 to n, perform the following:

o If S; = {a, b, c}, connect z!, y! and 2! to the next free vertices of components a, b
and ¢ respectively. Delete ¢ from S, .5, and S..

o If S; = {b, c}, connect y; and z! to the next free vertices of components b and ¢
respectively. Delete ¢ from S, and 5.

e If S; = {c}, connect z! to the next free vertex of component ¢. Delete i from S,.
e If S, = {}, do nothing at this step.

It is clear that the graph G’ constructed is planar of maximum degree 3. A typical vertex
component of G’ is illustrated in Figure 5.2. Set K/ = 7n — K. We now show that G has
an independent set of cardinality at least K if and only if G’ has a 2-maximal independent

set D with cardinality at most K’.

For, suppose that I is an independent set for G, where |[I| = £ > K. We construct a

I 23 %o

set S as follows. For each i (1 < i < n),if v; € I, add the vertices z}, 22 y}, y2, 2}, 2

S. If v; € I, add the vertices p;, 22, 2, y2, ylt, 22, 2! to S.

S is independent in G’, for if {s/,t'} € E’, for any i,j (1 < i # j < n), where s is
z,y or z, and tis z,y or z, then {v;,,v;} € E. As [ is independent in G then without
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Figure 5.2: A typical vertex component from the constructed instance of MINIMUM 2-
MAXIMAL INDEPENDENT SET DECISION.

loss of generality v; € I, so that none of z!,y! or z! is in S. Also, S is 2-maximal in
G’ for S is certainly maximal, and moreover, .S does not admit an augmenting P; in G’.
For, if v; € T (1 < i < n) then any Ps in G’ that augments s; or s? (where s is 2,y or
z) must include at least one of the vertices s2, s}, neither of which is available. Tf v; & T
(1 <4 < n) then similarly any P; in G’ that augments s? or s} (where s is 2,y or z) must
include at least one of the vertices s!, s?, neither of which is available. Tn addition, any P

in G’ that augments p; must include z?, which is not available. Finally,

S| = 6k+7(n—k)
< "Tn—K
= K’

as required.

Conversely suppose that S is a 2-maximal independent set for G’, where |S| < K’.
For a given i (1 < i < n), we consider the elements of S N V,. By the maximality of 5,
we see that the vertices s2, s} must be dominated by vertices of V; (where s is z,y or 2).
Since S is 2-maximal, we have that s} € S if and only if s? € S, where s is 2, y or z. Also,
the maximality of S implies that s? € S if and only if s} € S, where s is z,y or z. Thus
SN V| >6.

It may be verified that |S N V| =6 if and only if SN V; = W;, where

1 .3 .1 .3 _1 .3
Wi =A{a, 27, 90,97, 2, 4 -
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Moreover, if SN V; # W, then by the comments in the preceding paragraph, it is straight-
forward to check that |SN V;| = 7. Define

II{’UZ‘GVZSOVZ‘:WZ'}.

We firstly claim that I is independent in G. For, if {v;,v;} € F for some i,j (1 <i<j <
n), then {s/,t/} € E', where s is z,y or z and t is z,y or 2. If v; € I then z/,y/, 2/ € 5.
But S is independent in G, so that tj1 ¢ S. Thus by construction of I, v; € I as required.
Now let k& = |I| and suppose for a contradiction that k¥ < K. Then

S| = 6k+7(n—Fk)
> Tn—K
- K

which is a contradiction. Hence k > K as required. l

5.3.6 Conclusions and further study relating to f-maximal independence

The complexity results for 35, in trees and planar graphs presented here leave open the
algorithmic complexity of 35, in other classes of graphs, for example chordal graphs.

It is also interesting to consider the partial orders C{ for k > 2, and the corresponding
parameters [, for k > 2. We have already seen that, for k = 1,2, the decision problem
related to finding f3; , is NP-complete in bipartite and planar graphs, but polynomial-time
solvable for trees, and we conjecture that this is the case for each fixed k& > 2.

As a variation on the above hierarchy of parameters, consider the following. For
a graph G and integer k < SBo(G) — 1, let 35 5 o, () denote the smallest order of a
(B0(G) — k)-maximal independent set of . Now 3o(G) —k < By 5_,(G) < Bo(G) [169],
so that ;5 o) (G) = Bo(G) in the case k = 0. Thus finding ;5 ) (G) is polynomial-
time solvable for G a bipartite graph [106]. However, for general k, we conjecture that
the associated decision problem is NP-complete for bipartite graphs.

We may also consider the parameters 37, for line graphs L(() of general graphs G,
for k > 1. The analagous parameter to 3y, in line graphs is 3, , the minimum k-mazimal
matching parameter. Thus 37, (G) = 5, (L(G)). For k = 1,2, the decision problem
related to finding 3, in bipartite graphs is NP-complete [213, 165], and we conjecture
that this is the case for each fixed k£ > 2. As above, we may consider, for a graph G and
integer k < 1(G) — 1, the parameter ﬁ;ﬂl(c)_k(G). As before, ﬁ;ﬂl(c)(G) = [1(G), so
finding ﬁ;ﬂl(c)(G) is polynomial-time solvable for arbitrary graphs [70]. But for general
k, we conjecture that the related decision problem is again NP-complete.

5.4 Summary of complexity results for graph parameters
considered in this thesis

Table 5.1 summarises the complexity results for the decision problems associated with
each of the parameters discussed in Chapters 3, 4 and 5. In a table entry, ‘N’ denotes
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NP-completeness, ‘P’ denotes polynomial-time solvability and ‘T’ denotes the fact that the
problem becomes trivially solvable in polynomial time when restricted to the particular
graph class. References are indicated, where appropriate. The symbol ‘77 denotes the fact
that either NP-completeness follows by restriction from another result in the same table
row, or polynomial-time solvability follows by noting polynomial-time solvability from a
class of graphs that contain the class in question. An asterisk indicates that the result is
new and the proof is presented here for the first time, and a question mark indicates that
the corresponding problem is open. When more than one reference is given within square
brackets, the relevant complexity result is obtained from separate results to be found in
each of the references concerned, with the most important one listed first. The classes
of graphs dealt with in the table are of course far from exhaustive, but extending our
attention beyond planar, bipartite and chordal graphs and trees would give rise to many
additional open problems. A reminder of each of the parameter names, together with a
page number where the parameter concerned is defined, is given in Table 5.2.

A number of table entries require further explanation. These are the complexity results
corresponding to the parameters 37 ,, @y, ", n, and ir in planar graphs. The first reference
indicated in the table entry for each of these parameters in the class of planar graphs
contains a transformation which may be used to show NP-completeness for the parameter
concerned in bipartite graphs. In each case, the transformation begins from X3¢, defined
in Section 3.4. However, by considering a restricted version of X3¢, we may obtain NP-
completeness for these parameters in planar bipartite graphs.

The restriction of X3¢ known as PLANAR EXACT COVER BY 3-SETS (PX3C) demands
that the graph G = (V, F)), associated with an instance (A, ') of x3c, with vertexset V =
AU C and edge set E'={(a,c):a € ¢ € C},is planar. px3c is NP-complete [69], even if
each element occurs in either two or three clauses. In the case of each of the parameters
B9, a0, I, ny, ir, the transformations contained in [165, 117, 165, 68, 165] respectively,
showing NP-completeness for the parameter concerned in bipartite graphs, preserves the
planarity of this graph G. Moreover, in each case apart from I, the maximum degree of
the graph constructed is 4, if we consider the case that each element occurs in either two
or three clauses. Thus, by considering the same transformation in each case, but from
PX3C (where each element occurs in two or three clauses) rather than from X3¢, we obtain
the following result.

Theorem 5.4.1 Fach of 31 5, a9, 0y, ir is NP-complete for planar bipartite graphs of mazx-
imum degree 4. Also, I'" is NP-complete for planar bipartite graphs.

Note that this observation also applies to many other transformations contained in McRae’s
PhD thesis [165]. Thus one may obtain a number of NP-completeness results for graph
parameters in planar bipartite graphs. However, a drawback of using this method is that
the maximum degree of the graph constructed in each case is at least 4. In order to
prove NP-completeness for planar graphs of maximum degree 3, one has to resort to other
methods. In Table 5.1, the references shown for an NP-completeness result for a given
graph parameter in planar graphs corresponds to the reference containing the lowest de-
gree complexity result that we are aware of. Furthermore, our NP-completeness results for
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B s Bo.2s vt and B5g in planar graphs show NP-completeness for planar graphs of maximum
degree 3 (see Theorems 4.2.12, 5.3.4, 4.3.6 and 4.3.2 respectively).

5.5 Further minimaximal and maximinimal graph optimi-
sation problems

There are many other minimaximal and maximinimal graph optimisation problems that
can be studied, in addition to those that we have investigated in Chapters 3, 4 and 5.
Here we catalogue some of those problems that have been introduced in the literature, but
have not been studied extensively with regard to algorithmic complexity.

The obvious analogue of edge domination for irredundance is edge irredundance. The
maximum edge irredundance and minimum maximal edge irredundance parameters (de-
noted IR’ and ir’ respectively) are both shown to be NP-complete for bipartite graphs in
[165]. In addition, there are variants of the irredundance parameters ir and IR, according
to the criterion that a set of vertices ¥V’ must satisfy — these are summarised in Table 5.3.
Some complexity results for ooir, oir, coir, OOIR, OIR, COIR are obtained, and others are
surveyed, by McRae [165].

One could also study analogues of I' for other forms of domination, for example con-
nected domination [121], perfect domination [214] and private domination [116] to name
only a few variants of the original domination problem. Each of these forms of domination
is defined in Table 5.4. There is no distinct maximinimal version for the efficient domi-
nation problem [13] (a set of vertices D is an efficient dominating set if, for every v € V|
|N[v]N D] = 1), for, if a given graph G has an efficient dominating set .S (and the problem
of deciding whether this is the case is NP-complete), then |S| = vy(G) [13].

Two, perhaps interesting, maximinimal parameters that do not appear to have been
studied with respect to algorithmic complexity are the mazimum minimal vertex connec-
tivity number kT and the mazimum minimal edge connectivity number kF. The partial
order here is that of set inclusion. The vertex and edge connectivity numbers of a graph
G, Ky, k1 respectively?, are the minimum sizes of a separating set for G containing only
vertices and edges respectively. A separating set for G is a subset of V(G)U E(G) whose
removal from G results in a disconnected graph or a single vertex. Both kg and x;
are polynomial-time solvable for arbitrary graphs by Menger’s theorem (see for example
Harary [106, Chapter 5]). The parameters 3 and x{ were introduced by Alavi et al. [3],
and are also studied by Peters et al. [183]. Both of these parameters are conjectured to
be NP-complete in general by Hedetniemi [120].

One might also consider the neighbourhood numbers ng, n and line neighbourhood
numbers nj, n;t, studied by Sampathkumar and Neeralagi [190, 191] and Kale and Desh-
pande [137]. These have received some initial attention [32] from an algorithmic point of

2These parameters have also been denoted s and A respectively, in the literature.



Minimaximal & maximinimal graph problems based on (k — 1, k) replacement

95

‘ Graph class = ‘ Arbitrary ‘ Planar ‘ Bipartite ‘ Chordal ‘ Tree
‘ Parameter |} ‘
o as for 3,
af as for
By N [ N[ N[ _Pr3_ [ PRO
G N | N | N3] ? PC)
Bo N(7) N[93] P[106] P[95] P[62]
o as for 3,
af as for v
BT as for 4/
Bia N(7) N[165, 69] N[165] ? ?
5 IOl | PO P P P
B3 N(7) N(*) N[165] N[165] ?
Bss N[124]) | N[33, 126] N[33] N[33] P[167, 46]
Qs N[163] N[117, 69] N[117] N[117] P[163]
af N(7) N(*) ? ? P[131, 95]
By N(7) N[98] N[117, *] | N[117, *] P[74]
Ba as for 7
5 N(7) N[92] N[19] N[23] P[46]
r N[39] N[77] P[44, 106] | P[131, 95] | P[44, 62]
~! N(7) N[213] N[213] ? P[168]
I N(7) N[165, 69] N[165] ? ?
i N(7) N(*) N[185] N[152] P[152]
T, N(#) ? NI[83] ? P[83]
n, N(7) N[68, 69] N[68] N[68] P[68]
N, Ples] | P(D) P P() P()
i N(7) N[165, 69] N[185] N[151] P[18]
IR N[77] N[77] P[44, 106] | P[131, 95] | P[44, 62]
w” N(*) P(T) P(T) ? P(T)
w N[92] P(T) P(T) P[95] P(T)
Y N[40] | Np3 | P | _PO5 | P
b Npi3] | NG| NIl | N | NBO]
; NG ? NG ? P(Y)

Table 5.1: Complexity results for graph parameters considered in Chapters 3, 4 and 5,

restricted to certain graph classes.
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‘ Graph Parameter | Name ‘ Page ‘
Qg minimum vertex covering number 57
af maximum minimal vertex covering number 57

By or minimum maximal independence number or
i minimum independent domination number 57
Bo.o minimum 2-maximal independence number 84
Do maximum independence number 57
oy minimum edge covering number 57
af maximum minimal edge covering number 57
By minimum maximal matching number 57
Bia minimum 2-maximal matching number 92
Ioh maximum matching number 57
Bss minimum maximal strong stable set number 70
Bss maximum strong stable set number 70
s minimum total covering number 56
af maximum minimal total covering number 56
By minimum maximal total matching number 56
B maximum total matching number 56
5 minimum domination number 74
r maximum minimal (upper) domination number 74
5! minimum edge domination number 78
I maximum minimal (upper) edge domination number | 78
i minimum total domination number 75
T, maximum minimal total domination number 75
n, minimum 1l-maximal nearly perfect set number 82
N, maximum l-minimal nearly perfect set number 82
ir minimum maximal (lower) irredundance number 79
IR maximum (upper) irredundance number 79
w” minimum maximal clique number 73
w maximum clique number 73
b% chromatic number 33
W achromatic number 34
%) b-chromatic number 36

Table 5.2: Graph parameters considered in Chapters 3, 4 and 5: for each parameter, a
short description, together with a page number where the parameter is defined, is given.
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Criterion Concept Minimaximal | Maximum

parameter parameter
Vve V' eN(w\N(V'\{v}) # 2 | open-open irredundance ooir OOIR
Vve Ve Nw)\N[V'\{v}]# @ | open irredundance oir OIR
Vve V' e N[y\N(V'\{v}) # @ | closed-open irredundance | coir COIR
Vve V' e N[v\N[V\{v}]# @ | irredundance ir IR

Table 5.3: Summary of variations of irredundance, and associated parameters.

‘ Name

‘ Extra criterion for dominating set D to satisfy ‘

Connected domination

Subgraph induced by D is connected

Perfect domination

Vvoe V\De|N(v)NnD|=1

Private domination

Vv € D e v has a private D-neighbour

Table 5.4: Summary of variations of domination.

view. The neighbourhood numbers ng, nf are respectively the minimum and maximum
over all minimal (with respect to set inclusion) neighbourhood sets. A set S of vertices
of a graph G is a neighbourhood set for G if G = U,cs(N[v]). The line neighbourhood

+

numbers n/, ny" are respectively the minimum and maximum over all minimal (with re-
spect to set inclusion) line neighbourhood sets. A set T of edges of a graph G is a line
neighbourhood set for G if G = Uy wier(N(v) U N(w)).



Chapter 6

Minimaximal and maximinimal
fractional graph optimisation
problems

6.1 Introduction

This chapter is concerned with minimazimal and maximinimal fractional graph optimisa-
tion problems. In Section 6.2, we begin by defining a fractional graph optimisation problem,
showing why Definition 2.2.1 must be adapted in order to define such problems. Solving a
fractional graph optimisation problem involves computing the value of a fractional graph
parameter (see Section 1.4.2 for a brief introduction to fractional graph parameters). By
defining a partial order, called the partial order on functions, we give a framework for
minimaximal and maximinimal fractional graph optimisation problems, following on from
the definition of a fractional graph optimisation problem.

In Section 6.3, we define, in terms of our definition of a fractional graph optimisation
problem, optimisation problems associated with a series of fractional graph parameters
that have appeared in the literature. These parameters are connected with domination,
packing, irredundance and vertex and edge covering and independence in graphs. We also
give a brief literature survey of concepts relating to these fractional graph parameters.

In Section 6.4, we consider several examples of minimaximal and maximinimal frac-
tional graph optimisation problems, again associated with the same graph-theoretic con-
cepts that were detailed in the previous paragraph. A number of fractional graph param-
eters that involve maximality or minimality criteria have appeared in the literature. We
show that, in each case, the maximality or minimality condition is equivalent to maxi-
mality or minimality with respect to the partial order on functions. Thus, our framework
for minimaximal and maximinimal fractional graph optimisation problems may be used in
order to define optimisation problems associated with such fractional graph parameters.
We also show that, for each minimaximal and maximinimal fractional graph optimisation
problem in Section 6.4, the optimal measure function is computable and has rational val-
ues. We investigate, in each case, the question of whether the optimal measure may be

98
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attained by some function of compact representation which satisfies the feasibility criteria
for the minimaximal or maximinimal fractional graph optimisation problem concerned.
The three issues mentioned in the two previous sentences have important implications
for the algorithmic complexity of minimaximal and maximinimal fractional graph optimi-
sation problems. For each minimaximal and maximinimal fractional graph optimisation
problem studied in this chapter, we review complexity results in the literature.

Finally, we present some closing remarks to this chapter in Section 6.5.

6.2 Framework for minimaximal and maximinimal fractional
graph optimisation problems

Recall from Section 4.3.3 the definition of the integer-valued graph parameter v(G), the
minimum domination number of a graph G. The value of this parameter is equal to m* (G,
when IT = (Z,U, 7, m,0pPT) is defined for the MINIMUM DOMINATING SET problem, as in
Section 4.3.3. In Section 1.4.2, we discussed a fractional version of v, namely v;(G)", the
minimum fractional domination number of a graph . However it is not possible to define
v¢(G') as the optimal measure function of some optimisation problem, for a given graph
G, in terms of our current definition of an optimisation problem (Definition 2.2.1). This

is because:

1. For any instance z, I{(z) must be finite. Yet the set of all dominating functions for

a given graph is not, in general, of a finite size.

2. For any instance z and any y € U(z), m(z,y) must be a natural number. Yet the

weight of a dominating function will not, in general, be integral.

3. For any instance z, the optimal measure is defined to be the value
m*(z) = opT{m(z,y) : y € F(z)}.

When F(z) is finite, it is clear that m*(z) exists. Also, if m is a computable function,
then so is m*. However, when F(z) is not finite, as is the case when F(z) is the set
of all dominating functions for example, it is no longer clear that m*(z) exists?, or

that m* is computable, even if m is.

In this section, we aim to show that our framework for minimaximal and maximinimal
optimisation problems extends to such optimisation problems related to fractional graph
parameters. However, in order to demonstrate this, it follows from the remarks above that
we must provide an alternative definition of an optimisation problem from Definition 2.2.1
in order to model fractional graph optimisation problems. Such a definition is now given.

'The ‘f’ in v (G) refers to the fractional property, and is not connected with any particular dominating
function f that may be defined. This applies to all fractional graph parameters introduced in this chapter,
and also to the partial order —<f, to be defined.

2In fact it is possible to prove that, for a given graph G, the set of weights of all dominating functions
for G does have a minimum value, which is attained by some dominating function f* (see Section 6.3).
However, this is not the case for mazimal irredundant functions, for example (see Section 6.4.4).



Minimaximal and maximinimal fractional graph optimisation problems 100

Definition 6.2.1 A fractional graph optimisation problem, 11, is a tuple (Z,U, 7, OPT),
such that:

1. ZTC {G: G is a graph}.

2. U is a function that maps a graph G = (V, F)) € Z into a non-empty set of functions
that encode the universal set of possible solutions of G, such that:

(a) f € U(G) implies that dom(f) C V U E.
(b) f,9 € U(G) implies that dom(f) = dom(g).
(¢) f €U(G) implies that ran(f) C R.

3. 7 is a predicate such that, for any instance G € 7 and any possible solution f € U(G),
(G, f) if and only if f is a feasible solution (we assume that at least one feasible
solution of G exists). We denote the feasible solutions of a given instance G € 7 by
F(G), thus

F(G)=A{f €eU(G) : = (G, f)}.

4. opT € {inf,sup}. W

The definition of a fractional graph optimisation problem differs from Definition 2.2.1 in
that the measure function m is not a member of the defining tuple in Definition 6.2.1. This
is due to the fact that, given a fractional graph optimisation problem, IT = (Z,U, 7, OPT),
a graph G € 7, and a function f € F(G), the measure of f always has the real-number
value
m(G = 3 1)
sedom(f)

Of course, for a given fractional graph optimisation problem defined in terms of Definition
6.2.1, the value m*(G) may be —oo or oo for a particular graph G. For full generality, this
situation must be permitted, so that Definition 6.2.1 may cope with functions with un-
bounded range defined on a graph. However, fractional graph problems involving functions
over unbounded ranges have received comparatively little attention in the literature. (See
Section 2.4 in Chapter 2 of [114] for an introduction to dominating functions of a graph
with range R,Q and Z.) In this chapter, we restrict attention to the more extensively
studied case where U () satisfies

2. (d) U ran(f) is a bounded subset of R.

feu(a)

Henceforth we therefore assume that a fractional graph optimisation problem satisfies the
criteria in Definition 6.2.1 plus 2(d) above.
Note that, as G is finite and U ran(f) is a bounded subset of R, then m(G, F(G))

feF(G)
is a bounded subset of R. Hence m*(() exists, by the completeness axiom. Thus, the

evaluation version of 11, I, is well-defined according to Definition 2.2.3. Similarly, we may
define the decision version of 11, 11, as in Definition 2.2.3. However, instead of adding a



Minimaximal and maximinimal fractional graph optimisation problems 101

positive integer to the instance of II, we add an arbitrary real number r» € R, in order to
give I1,. If ran(m*) C Q then r € Q.

The search version of 11, I1,, may not always be well-defined according to Definition
2.2.3. This is because, given G' € Z, it may not be possible to find some f € F(G) such that
m(G,f) = m*(G). An example of such an optimisation problem is MINIMUM MAXIMAL
FRACTIONAL IRREDUNDANCE (see Section 6.4.4). We now give a definition which provides
terminology for a necessary and sufficient condition for the search version of a fractional
graph optimisation problem to be well-defined.

Definition 6.2.2 Let 1T = (I,U, 7, 0PT) be a fractional graph optimisation problem. TI
is compact if, for every G € I, there is some f € F((G) such that m(G, f) = m*(G) (i.e.,
the optimal measure is attained by some feasible function). W

In this chapter, the default version of a fractional graph optimisation problem II is II,,
provided II is compact, or 11, otherwise.

One might prove that a fractional graph optimisation problem is compact using the
theory of compact metric and topological spaces [203] (hence the terminology compact
optimisation problem), as follows. Suppose that 11 = (Z,U,7,0PT) is a fractional graph
optimisation problem, let G € Z and let f € F(G). Define D = dom(f), n = |D| and

R= U ran(f). Consider the space M = R”, together with a suitable metric defined
JEF(G)
on M. The map

d:R"xR" — R

defined by

d(x,y) = max |2 — yil

where x = {z1,...,2,},y = {y1,--.,yn} € R", is one possible choice (it may easily be
verifed that (M, d) is a metric space). Now suppose that each function f € F(G) (recall
that f : D — R) is represented by an n-tuple in M; denote by C the set of all such
n-tuples. Clearly C is bounded (as R is). It is sufficient to prove that C' is closed. In
order to prove this, we might consider a sequence of points, (x,) € C' (for r > 1), which
converges to some x € M, and show that x € C'. Thus C, as a closed, bounded subspace
of R™, is compact [203, Theorem 5.7.1]. Now consider the map w : C' — R (where R has
the usual metric) defined by

n
w(xy,y ..., 2,) = in.
1=1

As w is a sum of projections, each of which is continuous [203, Proposition 3.5.3], then w
is itself continuous [203, Exercise 2.6.14]. Hence w is bounded on €' [203, Corollary 5.5.3].
In addition, w attains its bounds on €' [203, Corollary 5.5.4]. Since w(zy,...,z,) is the
weight of the function represented by (z1,...,z,) € R", then II is compact.

The above method is utilised by Cheston et al. [39] to prove that the optimisation
problem related to the fractional version of the maximum minimal domination number
is compact. However, it is often easier to show that an optimisation problem is compact
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by considering appropriate linear programming constructions (see Theorem 6.4.4, for ex-
ample) — such a method also establishes the computablity of m*, demonstrates that m*
has rational values, and proves that m* has a compact representation. This latter term
corresponds to the property that there exists a polynomial p such that, for any graph G,
there exists a function f € F(G) such that m(G, f) = m*(G), f has rational values, and
the length of the representation of f is bounded by p(|G|). The notion of m* having a
compact representation clearly subsumes the concept of Il being compact.

Given a fractional graph optimisation I1 = (Z,U,r,0pPT), the computability of m*,
the rationality of m*, and m* having a compact representation are three attributes of 11
that are important when reasoning about the behaviour of Il from an algorithmic point of
view. However, in order to be consistent with Definition 2.2.1, we have not included these
attributes as standard properties of a fractional graph optimisation problem in Definition
6.2.1. We have not found an example in the literature of a fractional graph optimisation
problem, associated with a fractional graph parameter, that does not have a computable
m* function, or has an m* function taking non-rational values, However, as mentioned
previously, MINIMUM MAXIMAL FRACTIONAL IRREDUNDANCE is an example of a non-
compact fractional graph optimisation problem (see Section 6.4.4).

Our framework for minimaximal and maximinimal fractional graph optimisation prob-
lems follows naturally from Definition 6.2.1 in a manner similar to Definition 2.3.5. Before
presenting this, we make the following definition, which introduces the partial order that
is incorporated in the definitions of the minimaximal and maximinimal fractional graph

optimisation problems in this chapter.

Definition 6.2.3 Let Il = (Z,U, 7, 0PT) be a fractional graph optimisation problem. Let
G € 7, and for any f € U(G), let D = dom(f). Define

<7 ={U ) e F(G)x F(G) o f' # " AV e € Def'(z) < ["(x)}.
Then <fG is the partial order on functions. i

For any fractional graph optimisation problem 11 = (Z,U,w,0pPT), it is clear that <fG
satisfies POMM with respect to II, for any G € Z. The definition of a minimaximal or
maximinimal fractional graph optimisation problem is now given.

Definition 6.2.4 Let I1 = (Z,U,7,0PT) be a fractional graph optimisation problem,
called the source fractional graph optimisation problem. Then we may define a fractional
graph optimisation problem 11" = (Z',U’, 7', oPT’), where:

o' =17
o U =U

o(G,f) < fis <7-minimal,if opT=inf, or
o 7' & w Ao, where ¢ o(G,f) < fis <fG—maXimal,if OPT=sup,
for any G € 7' and f € F(G).
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For G € 7, we denote the feasible solutions of G by F'(G), where

F(G) ={f e (G) :7'(G,[)}

opT’ sup, if opT=inf
o =
inf , if oPT=sup.

If opT=sup, then II' is a minimazximal fractional graph optimisation problem, and if

opT=inf, then II' is a maziminimal fractional graph optimisation problem. B

As in Definition 6.2.1, the measure function is not a member of the defining tuple for a
minimaximal or maximinimal fractional graph optimisation problem. In the context of
the above definition, the measure of a function f € F'(G), for some G € 7', is always the
weight of f.

6.3 Definitions and literature relating to fractional graph
parameters

In this section, we define a series of fractional graph optimisation problems in terms of
Definition 6.2.1. The problems that we consider relate to fractional graph parameters that
have been studied in the literature. Attention seems to have focused mainly on fractional
graph parameters concerning domination, packing, irredundance, and vertex and edge
covering and independence. We consider fractional graph optimisation problems relating
to each of these concepts.

Minimaximal and maximinimal versions of these fractional graph parameters have also
appeared in the literature. We consider optimisation problems relating to these parameters
in Section 6.4. In this section, we consider the maximum and minimum parameters, giving
a brief literature survey.

We begin with some definitions. Define H(v) to be the set of all edges of G incident
on v, i.e.,

H(v)={{v,w} e F:we N(v)}.
A real-valued function f: V — [0, 1] is:
1. dominating if Vv € V e f(N[v]) > 1.
2. total dominatingif Vv € V e f(N(v)) > 1.
3. packingif Vv € Ve f(N[v]) < 1.
4. irredundantif Vo € Ve f(v) >0=3u € N[v]e f(N[u]) = 1.
5. vertex covering if V{u,v} € F e f(u) + f(v) > 1.
6. vertex independent if V{u,v} € E o f(u) + f(v) < 1.

7. independent dominating if f is both vertex independent and dominating.
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A real-valued function f: F — [0, 1] is:
8. edge coveringif Vv e Ve f(H(v))> 1.
9. edge independent (matching)if Vv € Ve f(H(v)) < 1.

It appears that the domination number was the first graph parameter to be generalised into
a fractional version. Farber [74] introduced the concept when investigating conditions un-
der which linear programming formulations of the domination problem have (0,1) integral
solutions. However, fractional domination was first defined and studied by Hedetniemi
et al. [118]. The concept of fractional independent domination is considered by Slater
[198], whilst fractional irredundance was introduced by Domke et al. [64]. Fractional
packing, and also fractional vertex and edge covering and independence were introduced
independently by Domke et al. [64] and Grinstead and Slater [100].

By considering Definition 6.2.1, we may define a fractional graph optimisation problem,
I1, for each of Concepts 1-9, as follows. In each case, T = {G : G is a graph}. For each of
Concepts 1-7 above, we have U(G) = {f : V — [0,1]}, for G = (V, FE) € Z. For both
of Concepts 8 and 9 above, we have U(G) ={f : F — [0, 1]}, for G = (V,FE) € Z. The
predicate 7 for each fractional graph parameter is given by the corresponding condition
indicated in 1-9 above. Finally, for Concepts 1, 2, 5, 7 and 8, we have opT = inf, and for
Concepts 3, 4, 6, and 9, we have OPT = sup.

We refer to the fractional graph optimisation problems corresponding to Concepts 1-
9 as MINIMUM FRACTIONAL DOMINATION, MINIMUM FRACTIONAL TOTAL DOMINATION,
MAXIMUM FRACTIONAL PACKING, MAXIMUM FRACTIONAL TRREDUNDANCE, MINIMUM
FRACTIONAL VERTEX COVER, MAXIMUM FRACTIONAL VERTEX INDEPENDENCE, MINI-
MUM FRACTIONAL INDEPENDENT DOMINATION, MINIMUM FRACTIONAL EDGE COVER and
MAXIMUM FRACTIONAL MATCHING respectively.

For each of the fractional graph optimisation problems relating to Concepts 1-9, except
for Concept 4 (irredundance), the optimal measure m*((G) may be viewed as the solution
of a linear program, for a given arbitrary graph G. These results follow from the linear
programs defined by Slater [198], when the constraints z; € {0, 1} in his formulations are
relaxed to the constraints 0 < z; < 1. Thus, in each case, it is immediate that m* is
computable, has rational values and has a compact representation.

In the case of irredundance, Fricke [82] has shown that

m*(G) =sup{f(V) : f is an irredundant function for G} = IR(G)

for any graph G = (V, F), which is a remarkable result. Thus, m* is computable, has
integral values and has a compact representation.

Let v, Yes, prs IRp 00 5, Bo gy g, @1 g, P15 be the symbols® denoting the optimal mea-
sure function m* when considering the fractional graph optimisation problems relating to
Concepts 1-9, respectively. By the comments above, the complexity of IR; is identical to

?The maximum weight over all packing functions of a graph @, here denoted pt(G), is also denoted

P¢(G) by Domke et al. [64].
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that of IR (reviewed in Section 4.3.6), and each of the other parameters may be computed
in polynomial time: Khachiyan [143] was the first to prove that LINEAR PROGRAMMING
is polynomial-time solvable; Karmarkar [139] provides an alternative (faster) algorithm.

In fact, the linear programs corresponding to the parameters v; and p; are dual [94,
Section 2.9], so that v;(G) = p;(G) for any graph G, as observed by Domke et al. [64].
The same is true for the parameters aq s and f3; ;, and also in the case of the parameters
oy 5 and [, as observed by Slater [198]. Hence, ag ;(G) = 1 4(G) for any graph G, and
oy f(G) = Pos(G) for any graph G with no isolated vertices.

Recall from Sections 4.2.6 and 4.2.7 that, for a graph G = (V, E), where n = | V],
ag(G)+ Po(G) = n, and for a graph G = (V, E) with no isolated vertices, where n = | V|,
a1 (G) + p1(G) = n. Fractional versions of these Gallai type identities appear in [100].
Thus, for a graph G = (V, F) where n = | V],

o, p (G) + Bo s (G) = n
and for a graph G = (V, F) with no isolated vertices, where n = | V],

al,f(G) + ﬁ1,f(G) =n.

A final interesting result concerns fractional matching and states that, for any graph
G = (V, E), there exists a matching function ¢ : E' — [0, 1], such that ¢(F) = 3, ;(G),
and ran(g) C {0,1,1} [94, p.85][187].

199

6.4 Minimaximal and maximinimal fractional graph opti-
misation problems

In the previous section, we formulated fractional graph optimisation problems relating
to minimum domination, minimum total and independent domination, minimum vertex
and edge covering, maximum packing, maximum irredundance and maximum vertex and
edge independence, using Definition 6.2.1. In this section, we introduce minimaximal
and maximinimal fractional graph optimisation problems relating to these concepts, using
Definition 6.2.4.

Fach minimaximal or maximinimal fractional graph optimisation problem that we
study in this section relates to a minimaximal or maximinimal fractional graph parameter
that has been defined in the literature. This literature definition incorporates some notion
of maximality or minimality with respect to a property P, such that the characteristic
function of a maximal (respectively minimal) P-set is a maximal (respectively minimal)
P-function. For example, the characteristic function of a maximal irredundant set is a
maximal irredundant function [84, Lemma 1].

For some of the minimaximal and maximinimal fractional parameters defined in the
literature, this notion of maximality or minimality is formulated using the partial order
on functions (for example, maximal irredundant functions fall into this category [84]). For
other minimaximal and maximinimal fractional parameters defined in the literature, this
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concept of maximality or minimality is given as a property not in terms of the partial order
on functions (for example, Domke et al. [64] define a packing function ¢ : V. — [0, 1]
of a graph G = (V, F) to be maximal if, for every v € V with g(v) < 1 there is some
u € N[v]such that g(N[u]) = 1). For the minimaximal and maximinimal fractional graph
parameters in the second category, we show in this section that each of these notions of
maximality or minimality is equivalent to maximality or minimality with respect to the
partial order on functions. Therefore, the framework of Definition 6.2.4 may be used to
define minimaximal and maximinimal fractional graph optimisation problems relating to
minimaximal and maximinimal fractional graph parameters in both categories.

We study minimaximal and maximinimal fractional graph optimisation problems relat-
ing to domination, total domination, packing, irredundance, and vertex and edge covering
and independence separately, in the remainder of this section. In addition to defining the
problem II using Definition 6.2.4, we show that the optimal measure function m* is com-
putable and takes rational values in each case, and that m* has a compact representation
in each case apart from irredundance. In addition, we review complexity results relating
to II.

6.4.1 Minimal dominating functions

Minimal dominating functions are studied by Cheston et al. [39], who obtain the following

result.

Proposition 6.4.1 (Cheston et al. [39]) Let G = (V, E) be a graph and let f : V —
[0, 1] be a dominating function. Then f is <§-minimal if and only if

Voe Vef(v)>0=3uc N[v]ef(N[u])=1. (6.1)

Let MAXIMUM MINIMAL FRACTIONAL DOMINATION be the maximinimal version of MIN-
IMUM FRACTIONAL DOMINATION, formulated using Definition 6.2.4. Denote by I'; the
optimal measure function m* for MAXIMUM MINIMAL FRACTIONAL DOMINATION. Che-
ston et al. [39] show, using appropriate linear programming constructions, that I'; is com-
putable and has rational values. Also, using the theory of metric and topological spaces
(as discussed on Page 101), they show that MAXIMUM MINIMAL FRACTIONAL DOMINATION
is compact. This result, together with the linear programming constructions, yields the
outcome that m* has a compact representation.

The decision version of MAXIMUM MINIMAL FRACTIONAL DOMINATION is NP-complete
for arbitrary graphs [39]. If G is a strongly perfect graph, then T'y(G) = 3,(G) = T'(G) =
IR(G) [38]. The class of strongly perfect graphs includes trees, bipartite graphs and
chordal graphs, over each of which f; is polynomial-time solvable (see Section 4.2.6).

6.4.2 Minimal total dominating functions

Minimal total dominating functions are considered by Fricke et al. [83], who prove the

following result.
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Proposition 6.4.2 (Fricke et al. [83]) Let G = (V, FE) be a graph and let f : V —
[0, 1] be a total dominating function. Then f is <fG-minimal if and only if

Voe Vef(v)>0=3uec N(v)ef(N(u))=1. (6.2)

Let MAXIMUM MINIMAL FRACTIONAL TOTAL DOMINATION be the maximinimal version of
MINIMUM FRACTIONAL TOTAL DOMINATION, formulated using Definition 6.2.4. Denote by
I'; ; the optimal measure function m* for MAXIMUM MINIMAL FRACTIONAL TOTAL DOMI-
NATION. Fricke et al. [83] show, also using appropriate linear programming constructions,
that I'; ; is computable, has rational values and has a compact representation.

The decision version of MAXIMUM MINIMAL FRACTIONAL TOTAL DOMINATION is NP-
complete, even for bipartite graphs [83]. Fricke et al. [83] prove that, for a tree T, T'; ;(T) =
['.(T). I'; is polynomial-time solvable for trees (see Section 4.3.4).

6.4.3 Maximal packing functions

The concept of maximal packing functions was introduced by Domke et al. [64]. Cockayne
et al. [43] give a simpler criterion for a packing function to be maximal, and prove its
equivalence to <;-maximality.

Proposition 6.4.3 (Cockayne et al. [43]) Let G = (V,F) be a graph and let [ :
V — [0, 1] be a packing function. Then f is <fG-maximal if and only if

Voe Vedue N[v]ef(Nu]) =1. (6.3)

Let MINIMUM MAXIMAL FRACTIONAL PACKING be the minimaximal version of MAXIMUM
FRACTIONAL PACKING, formulated using Definition 6.2.4. Denote by p; the optimal mea-
sure function m* for MINIMUM MAXIMAL FRACTIONAL PACKING. We prove that p; is
computable, takes rational values and has a compact representation. The method of proof
is similar to that employed by Fricke et al. [83] for MAXIMUM MINIMAL FRACTIONAL
TOTAL DOMINATION.

Theorem 6.4.4 The parameter p; is computable, has rational values and has a compact
representation.

Proof: Let (Z,U,r,0pPT) be defined for MAXIMUM FRACTIONAL PACKING, and denote by
(T’ U', 7', oPT’) the components of MINIMUM MAXIMAL FRACTIONAL PACKING, formulated
using Definition 6.2.4. Suppose that G = (V, E) € T is given, so that F () denotes the
set of all packing functions for G, and F'(G) denotes the set of all maximal packing
functions for G. Assume that V = {v,...,v,}. Define

C={SCV:N[S]=V}
and, for some S € C, define

Fo(G)={f € F(G): 5 C{u e V: [(N[u]) = 1}}.
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We firstly show that F'(G) = | | F4(G). For, let S € C and suppose that f € FL(G).
sec
For any v € V, v € N[S] by definition of C. Hence there is some u € N[v] such that

F(N[u]) = 1. Thus f € F'(G) by Proposition 6.4.3.
On the other hand, if f € F'(G), then define

Sy =H{ue V:f(Nu])=1}

Let v € V. By maximality of f, v € N[S;]. Hence N[S;] = V, so that S; € C. Thus
[ € Fs (G).
For any S’ € C, consider the following linear program:

n

minimise Z z; subject to (6.4)
1=1
o oz=1, wvnes (1<i<n) (6.5)
Vi€ N[vi]
Yooz <1, neV\S (1<i<n) (6.6)
Vi€ N[vi]
0<a <1, (1<i<n) (6.7)

It is straightforward to verify that z,..., z, satisfies Constraints 6.5-6.7 if and only if
f € FL(G), where f: V — [0,1] and f(v;) = 2; (1 < i < n).

Hence FL(G) # @ if and only if the linear program defined by S and Constraints
6.4-6.7 has a solution. Moreover, if FL(G) # @, then min{f(V) : f € FL(G)} exists and

may be computed in polynomial time. But F'(G) = U Fi(G), and C is finite. Hence
sec

pr(G) = min{min{f (V) : f € FL(G)} : S € CANFL(G) # D}.

Thus MINIMUM MAXIMAL FRACTIONAL PACKING is compact. Also p; is computable, and
must be rational, since each individual linear programming problem involves only rational
constraints. Finally, p; has a compact representation, since each individual problem is
bounded by a polynomial in |G|, and linear programming is polynomial-time solvable.

Corollary 6.4.5 MINIMUM MAXIMAL FRACTIONAL PACKING DECISION is in NP.

The following inequalities, in part due to Domke et al. [64], relate p; to some other graph
parameters:

pr(G) < pa(G) < p(G) < pp(G) = 7 (G) <7(G) ST(G) < Ty(G)

for an arbitrary graph G, where the parameters p,, p are the integer-valued versions of
Py, py respectively, i.e. the minimum and maximum over all maximal 2-packings of G, or
equivalently, the minimum and maximum over all maximal strong stable sets of G (see
Section 4.3.1).

We know of no algorithmic results concerning py.
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6.4.4 Maximal irredundant functions

Maximal irredundant functions were introduced by Domke et al. [64], and are also studied
by Fricke et al. [84]. There is no straightforward criterion for an irredundant function
to be maximal, in contrast to the functions studied in the previous sections. Indeed, the
definition of maximality for an irredundant function is stated in terms of <fG—maXimality.
However, it turns out that an irredundant function can be tested for maximality in poly-
nomial time: Fricke et al. [84] present an algorithm for performing this task.

Let MINIMUM MAXIMAL FRACTIONAL TRREDUNDANCE be the minimaximal version of
MAXIMUM FRACTIONAL IRREDUNDANCE, formulated using Definition 6.2.4. In contrast to
the minimaximal and maximinimal fractional graph optimisation problems of the previous
sections, MINIMUM MAXIMAL FRACTIONAL IRREDUNDANCE is not compact: Fricke et al.
[84] demonstrate the existence of a graph G which has maximal irredundant functions
with weight arbitrarily close to some fixed ¢, but G' has no maximal irredundant function
of weight ¢. Denote by ir; the optimal measure function m* for MINIMUM MAXIMAL
FRACTIONAL IRREDUNDANCE. Despite the non-compactness of this optimisation problem,
Fricke et al. show that ir; is computable and has rational values.

We know of no algorithmic results for the parameter ir;. However, Fricke et al. [84]
state that it is likely (though not known at the time of writing) that MINIMUM MAXIMAL
FRACTIONAL TRREDUNDANCE DECISION is in NP.

6.4.5 Minimal vertex covering functions

The concept of a minimal vertex covering function was introduced by Domke et al. [64].
It would appear that their criterion for a vertex covering function to be minimal fails to
take account of isolated vertices. Here, we present a slightly modified version, and prove

that our criterion is equivalent to <fG—minimality.

Proposition 6.4.6 Let G = (V, F) be a graph and let f : V — [0, 1] be a vertex covering
function. Then f is <fG-minimal if and only if

Voe Vef(v)>0=3uec N(v)ef(u)+ f(v)=1. (6.8)

Proof: Let f be non—<fc’y—nr1ininr1al7 and suppose for a contradiction that f satisfies Criterion
6.8. As fis non—<fc’v—nr1ininr1al7 there exists some f’ # f such that f’ is a vertex covering
function and f'(w) < f(w) for every w € V. As f’ # f there is some v € V such that
0 < f'(v) < f(v). Then, since f(v) > 0, there is some u € N (v) such that f(u)+f(v) = 1.
Hence f'(u) + f'(v) < f(u) + f(v) = 1, contradicting the fact that f’ is a vertex covering
function.

Conversely let f be <fG—minimal and suppose for a contradiction that f does not satisfy
Criterion 6.8. Let v € V satisfy f(v) > 0. Clearly v is not an isolated vertex, or else the
function f': V — [0, 1] defined by

) - { Jlw), w o

0, w="v
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satisfies f'(w) < f(w), for all w € V| f'(v) < f(v), and f’ is a vertex covering function,
contradicting the <fG—minimality of f.

As f does not satisfy Criterion 6.8, then f(u) 4+ f(v) > 1, for all u € N(v), since f is
a vertex covering function. Define

e =min{f(u)+ f(v) —1:u € N(v)}.
Then ¢ > 0. For any u € N(v),
f)=e > flv) = (f(u) +f(v) = 1)

= 1)
> 0.

Hence we may define a function f': V — [0, 1] as follows:

fww:{fw» w# o

fw)—¢e, w=no.

Then f'(w) < f(w) for all w € V, and f'(v) < f(v). If u, w are distinct vertices of V,
neither equal to v, where {u, w} € F, then clearly f’(u) + f'(w) > 1 holds. Now suppose
that u € N(v). Then

f(u) + f'(v) Ju)+f(v) —¢
Jw)+f(v) = (F(u) +f(v) = 1)

1.

vV

Hence f’ is a vertex covering function, contradicting the <fG—minimality of f. I

Let MAXIMUM MINIMAL FRACTIONAL VERTEX COVER be the maximinimal version of MIN-
IMUM FRACTIONAL VERTEX COVER, formulated using Definition 6.2.4. Denote by a;f the
optimal measure function m* for MAXIMUM MINIMAL FRACTIONAL VERTEX COVER. We
prove that a;f is computable, takes rational values and has a compact representation.

Theorem 6.4.7 The parameter a;f is computable, has rational values and has a compact

representation.

Proof: Let (Z,U,r,0PT) be defined for MINIMUM FRACTIONAL VERTEX COVER, and denote
by (Z',U’, 7', 0PT’) the components of MAXIMUM MINIMAL FRACTIONAL VERTEX COVER,
formulated using Definition 6.2.4. Suppose that G = (V, F) € T is given, so that F ()
denotes the set of all vertex covering functions for G, and F'((G) denotes the set of all
minimal vertex covering functions for . Assume that V = {v,,...,v,}, and denote by I
the set of isolated vertices of (G. For a set of edges S C FE, let V(.5) denote the vertices of
S, ie., V(S)={v,w: {v,w} € S}. Define

C={SCE:N[V(S)]=V\I}
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and, for some S € C, define

e S SC{{v,w} e E: f(v)+ f(w) = 1}A
MG)‘{“HG)‘ VAV(S) C {ve V:f(v) =0} }

We firstly show that 7/(G) = | ] F4(G). For, let S € C and suppose that f € F4(G).
sec
For any v € V| suppose that f(v) > 0. Then v € V(5), so that f(u) 4+ f(v) = 1 for some

u € N(v). Hence f € F'(G) by Proposition 6.4.6.
On the other hand, if f € F'(G), then define

Sr = {{v,w} € B: f(v) +f(w) = 1}.

Let u € V\I. As u is not isolated, there is some v € N[u]such that f(v) > 0, by the vertex
covering property. By minimality, there is some w € N(v) such that f(v) + f(w) = 1.
Hence {v,w} € S, v € V(S;) and u € N[V(S})]. Clearly also N[V (S;)] € V\I. Hence
N[V (5;)] = V\I, so that S; € C. Finally, f € ]:/Sf(G). For, if v € V satisfies f(v) > 0,
then v € V(S;) by minimality of f.

For any S’ € C, consider the following linear program:

n

maximise » _ z; subject to (6.9)
B 0<z<1, wneV(s) (<i<n) (6.10)

=0, v, e VA\V(S) (1<i<n) (6.11)

ri+az=1, {v,yu}esS (1<i<j<n) (6.12)

4z >1, {v,yu}e EF\S (1<i<j<n) (6.13)

It is straightforward to verify that z,..., z, satisfies Constraints 6.10-6.13 if and only if
[ € FL(G), where f: V — [0, 1] and f(v;) = z; (1 < i < n).

Hence FL(G) # @ if and only if the linear program defined by S and Constraints
6.9-6.13 has a solution. Moreover, if F{(G) # @, then max{f(V) : f € F4(G)} exists and

may be computed in polynomial time. But F'(G) = U Fi(G), and C is finite. Hence
sec

of ((G) = max{max{f(V) : f € F5(G)}: 5 € CANF(G) # @}

Thus MAXIMUM MINIMAL FRACTIONAL VERTEX COVER is compact. Also aoff is com-
putable, and must be rational, since each individual linear programming problem involves
only rational constraints. Finally, a;f has a compact representation, since each individual
problem is bounded by a polynomial in |G|, and linear programming is polynomial-time

solvable. B
Corollary 6.4.8 MAXIMUM MINIMAL FRACTIONAL VERTEX COVER DECISION is in NP.

Note that in the proof of Theorem 6.4.7, the constraint that S € C if and only if N[V (5)] =
V\I is not required in order to prove that a member of F.(() is a minimal vertex covering
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function. However, the contraint reduces the number of linear programs to be formulated.
We know of no results regarding the computational complexity of a;f.

6.4.6 Maximal vertex independent functions

As in the case of minimal vertex covering functions, Domke et al. [64] introduce maximal
vertex independent functions. However, again their definition overlooks isolated vertices.
The criterion we state here is therefore slightly different from that of Domke et al. The
proof that our criterion is equivalent to <f—maximality is similar to that of Proposition
6.4.6.

Proposition 6.4.9 Let G = (V,FE) be a graph and let f : V. — [0,1] be a vertex
independent function. Then f is <fG-maximal if and only if

Voe Vef(v)<l=3uec N(v)ef(u)+ f(v)=1. (6.14)

Proof: Let f be non—<fG—nq:cw(inq:cLl7 and suppose for a contradiction that f satisfies Criterion
6.14. As [ is non—<fG—nq:cw(inq:cLl7 there exists some f’ # f such that f’ is a vertex independent
function and f'(w) > f(w) for every w € V. As f’ £ f there is some v € V such that
f(v) < f'(v) < 1. Then, since f(v) < 1, there is some u € N(v) such that f(u)+f(v) = 1.
Hence f'(u)+f'(v) > f(u)+f(v) = 1, contradicting the fact that f’ is a vertex independent
function.

Conversely let f be <fG—maXimal and suppose for a contradiction that f does not satisfy
Criterion 6.14. Let v € V satisfy f(v) < 1. Clearly v is not an isolated vertex, or else the
function f': V. — [0, 1] defined by

|

satisfies f/'(w) > f(w), forall w € V, f'(v) > f(v), and f’ is a vertex independent function,
contradicting the <f—maximality of f.

As f does not satisfy Criterion 6.14, then f(u) + f(v) < 1, for all u € N(v), since f is
a vertex independent function. Define

f(w), w#wv
1

, w="v

e =min{l — f(u) + f(v) : u € N(v)}.
Then ¢ > 0. For any u € N(v),

F0) 42 < f(0)+ (= F(u) = £(v)
— 1)
< 1.

Hence we may define a function f': V — [0, 1] as follows:

R A wF v
(]

(w)y+e, w=no.
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Then f'(w) > f(w) for all w € V and f'(v) > f(v). If u, w are distinct vertices of V,
neither equal to v, where {u, w} € F, then clearly f’(u) + f'(w) < 1 holds. Now suppose
that u € N(v). Then

J'(w) +1'(v)

Il
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—~~~
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~
—~~~
<
S
_|_
™
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. —~~~
=
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—~~~
<
S
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Hence f’ is a vertex independent function, contradicting the <f—maximality of f. I

Let MINIMUM MAXIMAL FRACTIONAL VERTEX INDEPENDENCE be the minimaximal version
of MAXIMUM FRACTIONAL VERTEX INDEPENDENCE, formulated using Definition 6.2.4.
Denote by 3, the optimal measure function m* for MINIMUM MAXIMAL FRACTIONAL
VERTEX INDEPENDENCE. Domke et al. [64] prove that of ((G) 4+ G5 ,(G) = n, for any
graph G = (V, F), where n = |V|. The proof demonstrates how to obtain a maximal
vertex independent function of minimum weight from a minimal vertex covering function
of maximum weight, and vice versa. Hence, by Theorem 6.4.7, we obtain the following
result.

Theorem 6.4.10 The parameter [3; ; is computable, has rational values and has a com-

pact representation.

Furthermore, the computational complexity of g ; is identical to that of a;f.

Despite the nice structure afforded by the Gallai type correspondence between a;f
and f3; ;, the definition of Domke et al. for maximal vertex independent functions does not
seem to meet with universal approval. Fricke et al. [84] claim that any maximal vertex
independent function ought to be a minimal dominating function. However this is not
the case with the definition of Domke et al. To see this, consider the graph G = K3 with
vertices z, y, z. It is clear that the function defined by f(z) = f(y) = f(z) = % is a maximal
vertex independent function. Although f is dominating, f is not minimal dominating; we
may decrease the values f(z), f(y) and f(z) to %, to obtain a function that dominates the
graph. There does not, as yet, appear to be a definition of a maximal vertex independent

function that meets the criterion of Fricke et al. [84].

6.4.7 Minimal fractional edge covering

Domke et al. [64] mention in passing the concept of minimal edge covering functions,
but do not define a criterion for minimality. We present a criterion here, and prove its
equivalence to <f—minimality. In what follows, we assume that G contains no isolated
vertices, since the concept of fractional edge covering is undefined for a graph with isolated
vertices.

Proposition 6.4.11 Let G = (V,FE) be a graph with no isolated vertices, and let f :
E — [0,1] be an edge covering function. Then f is <fG-minimal if and only if

V{u,v} € Fof({u,v})>0= f(H(u)) =1V f(H(v)) = 1. (6.15)
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Proof: Let f be non—<fC’V—nr1ininr1:<Ll7 and suppose for a contradiction that f satisfies Criterion
6.15. As [ is non—<fC’V—nr1ininr1:<Ll7 there exists some f’ # f such that f’ is an edge covering
function and f’(e) < f(e) for every e € E. As f’ # f there is some ¢, € F such that
0 < f'(ey) < f(eg). Then, since f(ey) > 0, without loss of generality f(H (up)) = 1, where
€9 = {ug, vo}. Hence f'(H(ug)) < f(H(ug)) = 1, contradicting the fact that f’ is an edge
covering function.

Conversely let f be <fG—minimal and suppose for a contradiction that f does not satisfy
Criterion 6.15. Then there is some ey = {ug, v} € E such that f(ey) > 0, f(H(u)) > 1
and f(H(vy)) > 1, since f is an edge covering function. Define

e = min{f (co), S(H (1)) — 1, [(H () - 1}.

Then £ > 0. Hence we may define a function f': F — [0, 1] as follows:

f/(e):{f(e)7 6#60

fle)—e, e=e.

Clearly f’(e)) > 0 ase < f(eo). Also, f'(e) < f(e) for all e € F and f'(ey) < f(e). If w is
any vertex of V not equal to ug or vy then clearly f'(H(w)) > 1 still holds. Now suppose
without loss of generality that w is ug or vy. Then

J'(H (w))
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Hence f’ is an edge covering function, contradicting the <fG—minimality of f. I

Let MAXIMUM MINIMAL FRACTIONAL EDGE COVER be the maximinimal version of MIN-
IMUM FRACTIONAL EDGE COVER, formulated using Definition 6.2.4. Denote by oej’f the
optimal measure function m* for MAXIMUM MINIMAL FRACTIONAL EDGE COVER. We

prove that oeff is computable, takes rational values and has a compact representation.

Theorem 6.4.12 The parameter oeff is computable, has rational values and has a com-

pact representation.

Proof: Let (Z,U,7,0PT) be defined for MINIMUM FRACTIONAL EDGE COVER, and denote
by (Z',U', 7', 0PT’) the components of MAXIMUM MINIMAL FRACTIONAL EDGE COVER,
formulated using Definition 6.2.4. Suppose that G = (V, F) € T is given, so that F ()
denotes the set of all edge covering functions for G, and F'((G) denotes the set of all min-
imal edge covering functions for G. Assume that V = {v;,...;v,} and E = {ey,..., e, }.
Define

C={SCV:N[S =V}
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and, for some S € C, define

o C{{uvyeEiue V\SAvE V\S}C{e€ F:f(e) =0}A
fs(G>—{f€f(G>' SC{veV:f(H(v) =1} }

We firstly show that 7/(G) = | ] F4(G). For, let S € C and suppose that f € F4(G).
sec
For any {u,v} € E, suppose that f({u,v}) > 0. Then without loss of generality, u € S,

so that f(H(u)) = 1. Hence f € F'(G) by Proposition 6.4.11.
On the other hand, if f € F'(G), then define

Sy ={ve V:f(H(v)) =1}

Let v € V. As v is not isolated, there is some w € N(v) such that f({v,w}) > 0, by the
edge covering property. By minimality, f(H(v)) = 1 or f(H(w)) = 1. Hence v € S; or
w € Sf, so that v € N[S¢]. Thus N[S;] = V, so that Sy € C. Finally, f € F§ (G). For, if
e = {u,v} € E satisfies f(e) > 0, then u € Sy or v € S; by minimality of f.

For any S’ € C, consider the following linear program:

maximisez z; subject to (6.16)
1=1
€ = {u7 U}
0< <1, for some u,v € V, (1<i<m) (6.17)
where u € Sorv e S
€ = {u7 U}
=0, for some u, v € V, (1<i<m) (6.18)
where u € V\S and v € V\S
Soog=1, v, €S (1<i<n) (6.19)
e; € H(v;)
Soog>1, v; € V\S (1<i<n) (6.20)
e; € H(v;)

It is straightforward to verify that x,..., z,, satisfies Constraints 6.17-6.20 if and only if
[ € FL(G), where f: E — [0,1] and f(e;) = 2z; (1 < i < m).

Hence FL(G) # @ if and only if the linear program defined by S and Constraints
6.16-6.20 has a solution. Moreover, if F5(G) # @, then max{f(V) : f € FL(G)} exists

and may be computed in polynomial time. But F'(G) = U Fi(G), and C is finite. Hence
sec

of ,(G) = max{max{f(F) : f € F5(G)}: 5 € CANFi(G) # @}

Thus MAXIMUM MINIMAL FRACTIONAL EDGE COVER is compact. Also oeff is computable,
and must be rational, since each individual linear programming problem involves only
rational constraints. Finally, oeff has a compact representation, since each individual
problem is bounded by a polynomial in |G|, and linear programming is polynomial-time
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solvable. B
Corollary 6.4.13 MAXIMUM MINIMAL FRACTIONAL EDGE COVER DECISION is in NP.

As for Theorem 6.4.7, note that in the proof of Theorem 6.4.12, the constraint that S € C
if and only if N[S] = V is not required in order to prove that a member of F4(G) is a
minimal edge covering function. However, the constraint similarly reduces the number of
linear programs to be formulated.

The following inequalities relate oef s to some other graph parameters:

B4 (G) < By (G) < Bo(G) < Pog(G) = anf(G) < n(G) < of (G) < af 4(G)

for an arbitrary graph G. We know of no results regarding the computational complexity
of oeff. However, recall from Section 4.2.7, that for a graph G = (V, F)) without isolated
vertices, where n = | V|, we have v(G) + af (G) = n. Also, Slater [196] shows that

(G +BE(G) =n (6.21)

which implies that af (G) = pF(G), where 37 (G) denotes the maximum weight over
all enclaveless functions with range {0,1}. In general, a function f : V — [0,1] is
enclaveless if f(N[v]) < |[N(v)| for every v € V. Let 3}, denote the maximum weight
over all enclaveless functions. Slater [198] shows that 5} ,(G) may be formulated as a
linear program with rational constraints. Hence ﬁj'f is polynomial-time computable and
takes rational values. Thus, if it were to follow that 37, (G) = af ;(G), then the parameter
oeff would also be polynomial-time solvable. Some evidence for this may be obtained from
the fact that the fractional version of Equation 6.21 holds, i.e., Slater [197] has shown that

11(G) + BL(G) = n.

6.4.8 Maximal edge independent functions

Domke et al. [64] mention in passing the concept of maximal edge independent functions,
but do not define a criterion for maximality. We present a criterion here, and prove its
equivalence to <fG—maXimality.

Proposition 6.4.14 Let G = (V,FE) be a graph and let f : E — [0,1] be an edge
independent function. Then f is <fG-ma:vimal if and only if

V{u,v} € Fef(H(u))=1V f(H(v)) =1. (6.22)

Proof: Let f be non—<fc’y—nrlaxinr1al7 and suppose for a contradiction that f satisfies Criterion
6.22. As [ is non—<fc’v—nrlaxinr1al7 there exists some f’ # f such that f’ is an edge independent
function and f’(e) > f(e) for every e € E. As f' # f there is some ¢, € F such that
1> f'(e9) > f(eo). Without loss of generality, f(H (ug)) = 1, where eg = {ug, vy}. Hence
f'(H(ug)) > f(H(up)) = 1, contradicting the fact that f’ is an edge independent function.

Conversely let f be <fG—maXimal and suppose for a contradiction that f does not
satisfy Criterion 6.22. Then there is some ey = {ug, vo} € F such that f(H (u)) < 1 and
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f(H(wv)) < 1, since f is an edge independent function. Define

e=1—min{f(H(u)), f(H(w))}.
Then ¢ > 0 and

fleo) +2 < min{f(H (o)), f(H(v))}+¢
= 1.

Hence we may define a function f': F — [0, 1] as follows:

’ _ f(e)7 67&60
Je) _{ fle)+e, e=e.

Then f'(e) > f(e) for all e € E and f'(ey) > f(eg). If w is any vertex of V not equal to
uy or vy then clearly f'(H(w)) < 1 still holds. Now suppose that w is us or v,. Then

J'(H (w)) f(H(w))+¢
J(H(w)) +1 = J(H(w))

1.

IN

Hence f’ is an edge independent function, contradicting the <f—maximality of f. I

Let MINIMUM MAXIMAL FRACTIONAL MATCHING be the minimaximal version of MAXIMUM
FRACTIONAL MATCHING, formulated using Definition 6.2.4. Denote by 3, the optimal
measure function m* for MINIMUM MAXIMAL FRACTIONAL MATCHING. We prove that 37,
is computable, takes rational values and has a compact representation.

Theorem 6.4.15 The parameter [3; ; is computable, has rational values and has a com-

pact representation.

Proof: Let (Z,U,n,0pPT) be defined for MAXIMUM FRACTIONAL MATCHING, and denote
by (Z',U', 7', 0PT’) the components of MINIMUM MAXIMAL FRACTIONAL MATCHING, for-
mulated using Definition 6.2.4. Suppose that G = (V, F) € T is given, so that F(G)
denotes the set of all matching functions for G, and F'( () denotes the set of all maximal
matching functions for G. Assume that V = {v,,...,v,} and F = {ey,..., e,}. Define

C={5CV:Sis avertex cover for '}
and, for some S € C, define
Fo(G)={f € F(G): S C{ve V:f(H(v))=1}}

We firstly show that 7/(G) = | ] F4(G). For, let S € C and suppose that f € FL(G). For
sec
any {v,w} € F, without loss of generality v € S, by definition of C. Hence f(H(v)) =1

so that f € F/(G) by Proposition 6.4.14.



Minimaximal and maximinimal fractional graph optimisation problems 118

On the other hand, if f € F'(G), then define
Sy ={ve V:f(H(v)) =1}

Let e = {v,w} € E. By maximality, f(H(v)) =1 or f(H(w)) = 1. Hence S; is a vertex
cover for Fi.e., Sy € C. Thus f € Fg (G).

For any S’ € C, consider the following linear program:

minimiseri subject to (6.23)
1=1
0<2 <1, (I1<i<m) (6.24
> z=1, vneS (1<i<n) (6.25)
e; € H(v;)
Yo g <l neV\S (1<i<n) (6.26)
e; € H(v;)

It is straightforward to verify that zy,..., z,, satisfies Constraints 6.24-6.26 if and only if
[ € FL(G), where f : E— [0,1] and f(e;) = 2; (1 < i < m).

Hence FL(G) # @ if and only if the linear program defined by S and Constraints
6.23-6.26 has a solution. Moreover, if FL(G) # @, then min{f(V) : f € FL(G)} exists

and may be computed in polynomial time. But F'(G) = U Fi(G), and C is finite. Hence
sec

Br(G) = min{min{f(F): f € Fi(G)}: S eCANFLUG) # T}

Thus MINIMUM MAXIMAL FRACTIONAL MATCHING is compact. Also 37 is computable,
and must be rational, since each individual linear programming problem involves only
rational constraints. Finally, 37, has a compact representation, since each individual
problem is bounded by a polynomial in |G|, and linear programming is polynomial-time
solvable. H

Corollary 6.4.16 MINIMUM MAXIMAL FRACTIONAL MATCHING DECISION is in NP.

The following inequalities relate 3, ; to some other graph parameters of this chapter:
Bri(G) < BT(G) < Bi(G) < Bis(G) = a0 (G) < ao(G) < af (G) < ag 1 (G)
for an arbitrary graph G.
We know of no results regarding the computational complexity of ;.
6.5 Concluding remarks

In this chapter, we have studied fractional graph optimisation problems relating to the
fractional graph parameters v¢, v¢s, pr, IRs, ooy, Boy, i, a1y and 3 s, Recall from
Section 1.4.2 that for each of the integer-valued parameters ¢, where ¢ is v, v;, p, IR,
ag, fo, i, ay or [y, the parameter ¢(G) for a given graph G = (V, F) may be expressed
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as the maximum or minimum weight over all functions f : D — {0, 1}, each satisfying
some property 7, where D C V U E. The definition of ¢;(() may then be obtained by
considering the maximum or minimum weight over all functions f : D — [0, 1] satisfying
7. However, it is also possible to generalise the definition of ¢ in an integer-valued sense:
we may consider functions f : D — VY, each satisfying some predicate 7y (where 7y
is related to = and depends on V), where Y is some finite subset of Z. Some particular
cases of Y have received attention from an algorithmic point of view:

e k-domination [65]. Here Y = {0,1,...,k} for some k > 1. A function f: V — V
is k-dominating if, for every v € V| f(N[v]) > k, for a given graph G = (V, E).
Similarly, k-packing and k-irredundant functions may be defined. Domke et al. [65]
give a criterion, similar to (6.1), for a k-dominating function to be minimal:

Voe Vef(v)>0=3uc N[v]ef(N[u]) =k (6.27)

It may be verified that Criterion 6.27 is equivalent to <fG—minimality. In addition, a
criterion similar to (6.3) for the maximality of a k-packing function is given, which is
equivalent to <fG—maXimality. The maximality of a k-irredundant function is given
in terms of <fG—maXimality.

e Minus domination [67]. Here Y = {—1,0,1}. A function f : V — Y is minus
dominating if, for every v € V| f(N[v]) > 1, for a given graph G = (V, F)). Dunbar
et al. [67] give a criterion for a minus dominating function to be minimal:

Voe Vef(v)>0=3Juec N[v]ef(N[u]) =1. (6.28)

It may be verified that Criterion 6.28 is equivalent to <fG—minimality.

e Signed domination [112]. Here Y = {—1,1}. A function f : V — Y is signed
dominating if, for every v € V, f(N[v]) > 1, for a given graph G = (V, F'). Hattingh
et al. [112] give a criterion for a signed dominating function to be minimal:

Voe Vef(v)=1=3uec N[v]ef(N[u]) € {1,2}. (6.29)

It may be verified that Criterion 6.29 is equivalent to <fG—minimality.

Thus, the partial order on functions may be used, together with the framework of Defini-
tion 2.3.5 (where the measure is now an integer rather than a natural number), in order to
define the minimaximal and maximinimal optimisation problems suggested by the above
list.

As is evident from the review of individual minimaximal and maximinimal fractional
graph optimisation problems in Section 6.4, algorithmic results for these problems are
scarce. Indeed, the transformation used to show NP-completeness for the decision version
of MAXIMUM MINIMAL FRACTIONAL DOMINATION in arbitrary graphs [39] is quite sophis-
ticated. Even the task of finding a graph G for which T'y(G) > I'(G) [39] is somewhat less
than straightforward. Hence there are many open questions regarding the computational
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complexity of minimaximal and maximinimal fractional graph optimisation problems that
we have defined in this chapter, and others that may be obtained using the framework of
Definition 6.2.4.

However, for a given graph G, the technique of formulating a series of linear programs
P (for each S € C, for some collection C) for a fractional graph parameter & (G) (as
used in Theorem 6.4.15, for example), can yield a variety of useful results. As well as
establishing that the parameter & is computable, takes rational values and has a compact
representation, we may use certain properties of the constraint matrix Ag in each Ps to
obtain complexity results, as in [83]. A (0, 1) matrix A is balanced [16] if A contains no
submatrix that is the (edge-vertex) incidence matrix of an odd cycle. Equivalently, A is
balanced if A contains no square submatrix of odd order whose rows and columns each
sum to exactly two. Fulkerson et al. [85], prove that, for a balanced (0, 1) matrix A, the
extreme points of the polyhedra defined by

P(A)={x€eR": Ax>1Ax >0} (6.30)

and

QA)={xeR": Ax<1Ax >0} (6.31)

have (0,1) coordinates. By demonstrating that the linear program defined by Pg takes the
form of (6.30) or (6.31) above, the theory establishes that the parameter &; is optimised
by some function f with range {0, 1}, and hence & = ¢ (where ¢ is the integer (0,1) form
of &), under the conditions that the constraint matrix A is balanced. See [83] for further
details.

A similar theory exists for constraint matrices that are totally unimodular. A matrix
A is totally unimodular [94, p.67] if every square submatrix of A has determinant —1,0 or
1*. Hoffman and Kruskal [125] prove that if a (0,1) matrix A is totally unimodular then
the extreme points of the polyhedron defined by

R(A)={xeR": Ax <1Ax>0} (6.32)

have integral coordinates. Hence, if A is a nonsingular (0,1) matrix, then A is totally
unimodular implies that the extreme points of R(A) have (0, 1) co-ordinates. Thus, as in
the case of balanced matrices, by demonstrating that the linear program defined by Pg
takes the form of (6.32), the theory establishes that the parameter &; is optimised by some
function f with range {0,1}, and hence & = £ (where £ is the integer (0,1) form of &),
under the conditions that the constraint matrix Ag is nonsingular and totally unimodular.

4A totally unimodular matrix is balanced, though the converse is not true.



Chapter 7

Minimaximal and maximinimal
non graph-theoretic optimisation
problems

7.1 Introduction

In this chapter, we study several minimaximal and maximinimal optimisation problems
that relate to areas other than graph theory, according to the source optimisation problem
classification of Garey and Johnson [92]. Following their subject categorisation, we study
selected problems relating to Network Design, Sets and Partitions, Data Storage, Com-
pression and Representation, Mathematical Programming, and Logic, in Sections 7.2, 7.3,
7.4,7.5,7.6 and 7.7 respectively. More specifically, we formulate minimaximal or maximin-
imal versions of the following problems (Garey and Johnson problem numbers in brackets):
LONGEST PATH (ND29), 3D-MATCHING (SP1), MINIMUM TEST SET (SP6), BIN PACKING
(SR1), kNaPsACK (MP9), MAXIMUM 2-SAT (LO5), ONE-IN-THREE 3SAT (LO4), LONGEST
COMMON SUBSEQUENCE (SR10), SHORTEST COMMON SUPERSEQUENCE (SR8), LONGEST
COMMON SUBSTRING (SR10) and SHORTEST COMMON SUPERSTRING (SR9). All mini-
maximal and maximinimal optimisation problems that we study in this chapter are new
problems, with the exception of the minimaximal and maximinimal versions of LONGEST
COMMON SUBSEQUENCE and SHORTEST COMMON SUPERSEQUENCE respectively.

As always, each minimaximal or maximinimal optimisation problem considered is ob-
tained from a source optimisation problem II via a partial order defined on the feasible
solutions F(z) for a given instance z of II, satisfying POMM with respect to II. The for-
mat of our treatment of the problems in this chapter is as follows. For each source problem
IT=(Z,U,r,m,oprT), we define the components Z,U, x, m,opT. When defining ¢, 7 and
m, we assume that z € 7 has been given, and when defining 7 and m, we also assume that
y € U(z) and y € F(z) have been given, respectively. We then survey complexity results
relating to the source problem. The relevant partial order that will be used to define the
minimaximal or maximinimal optimisation problem is then stated. After giving the name
of the minimaximal or maximinimal optimisation problem II’, we survey existing results,
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if any, regarding the complexity of II', or else present a new complexity result for II'. The
new results are NP-completeness proofs for minimaximal or maximinimal versions of the
first seven problems in the above list, and a polynomial-time algorithm for a minimaximal
version of LONGEST COMMON SUBSTRING.

The complexities of the optimisation problems that we consider in this chapter are

summarised in Section 7.8.

7.2 Network design

In the following two sections, we consider two variants of a source optimisation problem
concerned with finding maximum length paths in a weighted graph. The first version
specifies the endpoint vertices for the path in the input, whilst the second version does

not involve such a restriction.

7.2.1 Longest path between two specified vertices

Source problem: LONGEST PATH=(Z,U, 7, m,OPT), where

G is a graph A

T = = AN 1) :
¢ {<G (V. E), L, s,1) s,tevsz—>Z+}

o U(z) =U!_ seq,{vi, vs,..., 0.}, where V = {v;,v9,...,0,}

o m(z,(vyvi,...0v,)) < Hir,doy-. o, ip}| =T As=v, ANt =1, A
Vi<j<r—1le{wv,v, }€EF

o m(z,(v,v,...0,)) = Z};l l({vz‘ﬂ Uz‘j+1})
® OPT = max.
An element y € U(z) such that 7(z, y) holds is called a simple path in G.

Complezity of source problem: LONGEST PATH DECISION is NP-complete, even if [(e) = 1,
for every e € F [92, problem ND29].

Partial order: substring

Minimaximal problem name: SHORTEST < -MAXIMAIL PATH.

Complexity of minimazimal problem: Given any instance z of LONGEST PATH, we have
that € * = @. For, if p € F(z) is a simple path with endpoint vertices s and ¢, then
it is clear that p cannot be extended at either end to give rise to a simple path ¢ with
endpoint vertices s and ¢. Thus any simple path between s and ¢ is < *-maximal, which
implies that the shortest < “-maximal simple path between s and ¢ may be found using
Dijkstra’s algorithm, for instance (see, for example Aho et al. [1, p.207]). Hence SHORTEST
< -MAXIMAL PATH is polynomial-time solvable.
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Partial order: subsequence
Minimaximal problem name: SHORTEST <-MAXIMAL PATH.

Complexity of minimazimal problem: The complexity of SHORTEST «-MAXIMAL PATH is
resolved by the following theorem. The proof involves a transformation from the NP-
complete problem HAMILTONIAN PATH BETWEEN TWO VERTICES [92, problem GT39],
which may be defined as follows:

Name: HAMILTONIAN PATH BETWEEN TWO VERTICES.

Instance: Graph G = (V, F) and distinguished vertices s,t € V.

Question: Does G contain a Hamiltonian path (i.e., a simple path that includes
all the vertices of V') with endpoint vertices s and ¢?

Theorem 7.2.1 SHORTEST <-MAXIMAL PATH DECISION is NP-complete, even if l(e) =
1, for every e € F.

Proof: SHORTEST <-MAXIMAL PATH DECISION is in NP. For, a simple path p = (2 ...1)
from s to ¢ in G is <-maximal if and only if there is no simple path in G from z; to ;44
(1 <j < k—1) not passing through {z;,2;,1} and not passing through z; (1 < i < k).
Since testing for the existence of such a path for each j (1 < j < k — 1) may clearly be
accomplished in polynomial time, membership of the problem in NP follows.

To show NP-hardness, we give a transformation from HAMILTONIAN PATH BETWEEN
TWO VERTICES, defined above. Suppose we have an instance of HAMILTONIAN PATH BE-
TWEEN TWO VERTICES: graph G = (V| F) and distinguished vertices s, € V, where
V =A{v,v9,...,0,} and F = {ey, es,...,€,}. Without loss of generality, suppose that
s = v, and t = v,. We construct an instance x of SHORTEST <-MAXIMAL PATH DECISION
as follows. Let

Vi = VUu{u}U{w,:1<r<m}
U{plg/:2<i<n—1A1<j<2n}

for new vertices u,w, (1 <r<m), pl,¢/ (2<i<n—-1,1<j<2n)and let

F = {{v,w},{w,v}:1<i<ji<nAl<r<mAe ={v,uv}}

U {{t,u}}
U{{pl, o™ {d, gty 2<i<n—1A1<j<2n—1}

2

U {{tvpz‘l}v {u7 (Zz‘l}v {pz‘znv Ui}v {(Zz‘znv Ui} 12 S i S n-— 1}'

Let G’ be the graph G’ = (V’, E’). Define a measure function [ : F/ — Z* by l(e) = 1,
for every e € E'. We claim that G has a Hamiltonian path between s and ¢ if and only if
G’ has a «”-maximal simple path between s and u, of length at most 2n — 1.

For, suppose that G has a Hamiltonian path (v, v, ...v; ), where [{ij, ds, ..., i, }| = n,
{vi,,vi,,,} € Eforeach r (1 <r <n-1), v, = v =sand v, = v, =1t Letj
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(1 <r < n—1) be asequence of integers such that {v; ,v, ., } = €. Define a simple path
pin G’, where

b= <Swj1 Uiz w]é Uiz wjfs ctt Uin—1 wjn—l tu>

Then p is a simple path from s to v in G’ of length 2n — 1. Suppose that p is not <”-
maximal. Then there is some simple path ¢ from s to u in G’ such that p <* ¢. Hence
there is some vertex v € V’ such that (v) < ¢ but (v) < p as p, g are simple paths. Then
v = wy, for some k (1 < k < m),orv:pfforsome i,j(2<i<n-11<j<2n)or
v =g forsomei,j(2<i<n—1,1<j<2n).

Suppose firstly that v = wy, for some k (1 < k < m). Then k # j,. for any r
(1 < r < n-—1). As p visits every vertex of V, then e, = {v;,,v;,} for some a,b
(1 <a<b<n). Now {v,, wy}, {wx, v} are the only edges incident to wy in G’. As wy is
not an endvertex of ¢, and (v;,v;,) € p < ¢, then (v, wv;,) < ¢. But this is impossible,
since

(vi, w05, vi,,,) L q

follows from p < ¢, and ¢ must visit v;, at most once (recall that k = j,).

Now suppose that v = p’ for some i, (2<i<n-1,1<j<2n). As p visits every
vertex of V| then i = i, for some r (2 < r < n —1). Also, since the degree of plin G is
two, and p! is not an endvertex of ¢, then either (v, p?") € q or (p?"v;,) L ¢. But it is
impossible for either of these two cases to hold, since

<Uz‘,_1wj,_1 Ui, Wy, Uz‘,+1> <Lq

follows from p < ¢, and ¢ must visit v; at most once. The case v = ¢! is similar.
Hence p is indeed <”-maximal, as required.

Conversely, suppose that G’ has a <”-maximal simple path p = (2125...2) from s
to u, where k < 2n. Then {z,, 2,41} € F' foreach r (1 <r <k—-1), 2y = v = s and
7, = u. Also, <pf> < pforany i,j (2<i<n-—1,1<j<2n), for otherwise <pf> <p
for each j (1 < j < 2n), and then p would be too long. Similarly (¢/) </ p for any i,j
2<i<n—-1,1<j<2n).

Thus z,_; = v, = t. We claim that p visits every vertex of V. For, suppose not. Then
there is some v; € V (2 < i < n — 1) such that (v;) < p. Define a simple path ¢, where
q = (82923 .. .ap_otp}pl ... PP ;¢ " 2" g ).

Then p <* ¢, contradicting the <*-maximality of p. Hence p does indeed visit every ver-
tex of V, so that k = 2n, and 25,41 € V foreach r (0 < r < n—1). Thus (sz325 . .. 29, _31)
is a Hamiltonian Path from s to ¢t in G.

Thus LONGEST PATH is an example of an optimisation problem that admits two minimaxi-
mal optimisation problems of contrasting algorithmic complexity, when two partial orders,
namely <€ and <, are defined on the feasible solutions. However this example is perhaps
not as significant as CHROMATIC NUMBER for trees, with the partial orders <, and <, (see
Section 3.6), since the partial order < * is empty, for any instance z of LONGEST PATH.



Minimaximal and maximinimal non graph-theoretic optimisation problems 125

7.2.2 Unconstrained longest path

We now consider an alternative version of the LONGEST PATH problem of the previous
section. Define UNCONSTRAINED LONGEST PATH to be the optimisation problem with
components similar to those of LONGEST PATH, except that an instance no longer contains
distinguished vertices s, t, and now we seek the longest simple path over all pairs of vertices
in the graph. It is straightforward to see that UNCONSTRAINED LONGEST PATH DECISION is
NP-complete. This follows by considering the NP-complete problem HAMILTONIAN PATH
[92, problem GT39], which may be defined as follows:

Name: HAMILTONTIAN PATH.
Instance: Graph G = (V, E).

Question: Does G contain a Hamiltonian path?

Given a graph G = (V, F), where n = | V], as an instance of HAMILTONTAN PATH, we
may define a measure function [ : E — Z* by I(e) = 1 for all e € E. Then G has a
Hamiltonian path if and only if G' has a simple path of length at least n — 1.

Now consider the substring partial order defined on the feasible solutions of UNCON-
STRAINED LONGEST PATH. We resolve the complexity of the associated UNCONSTRAINED
SHORTEST < -MAXIMAL PATH problem.

Theorem 7.2.2 UNCONSTRAINED SHORTEST < -MAXIMAL PATH DECISION s NP-com-
plete, even if l(e) = 1, for every e € F.

Proof: Clearly UNCONSTRAINED SHORTEST < -MAXIMAL PATH DECISION is in NP. For,
given a simple path p of a graph G = (V, F), it is straightforward to verify in polynomial
time that p ++ (v) and (v) + p is not a simple path in G for any v € V.

To show NP-hardness, we give a transformation from HAMILTONIAN PATH BETWEEN
TWO VERTICES, defined on Page 123. Suppose we have an instance of HAMILTONIAN
PATH BETWEEN TWO VERTICES: graph G = (V| F), where V = {v;,v9,...,0,}, and
distinguished vertices s,t € V. Without loss of generality, suppose that s = v and
t = v,. We construct an instance of £ UNCONSTRAINED SHORTEST < -MAXIMAL PATH
DECISION as follows. Let

V' = VU{vnH,u}U{pf:'Zgign—|—1,1§j§n—|—2}
for new vertices v,yq, u,p! (2<i<n4+1,1<j<n+2). Let

El = kU {{UTHUn-l—l}v{vn-l—hu}}u{{vhu} 12 S i S n}
U{{v,p/}:2<i<n+1}
U{{pl,plT"}:2<i<n+1,1<j<n+1}

and define G’ to be the graph G’ = (V’, F’). Define a measure function [ : E' — Z™ by
l(e) =1, for every e € E'. We claim that G has a Hamiltonian path between s and ¢ if
and only if G’ has a < "-maximal simple path, of length at most n 4+ 1.
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For, suppose that G has a Hamiltonian path (v, v, ...v; ), where [{i}, ds, ..., i, }| = n,
{vi,,v;,,,} € Eforeach r (1 <r<n-1), v, =v =sand v, =v, =1t Then it may be
verified that (sv,v,, ...v;,_ tv,y1u) is a & “-maximal simple path for G’, of length n+ 1.

Conversely, suppose that G’ has a < *-maximal simple path p = (2125 ...25), where
k< n+2. Then {2, 2,4} € E' for each r (1 <r <k —1). By <€ “-maximality, p has
two endpoints from the set

{s,ufU{p!*t?:2<i<n+1}.

But if p has endpoint p]** for some i (2 < i < n + 1), then <pf> < p for each j
(1 <j <n+2)and hence p is too long. Thus, without loss of generality, 2; = v; = s and
2, = u. Now p visits each vertex v; (2 < i < n+ 1), for suppose not. Then there is some

v; (2 <i<mn+1)such that (v;) < p. Define a simple path ¢, where
q = (STaT3 . .. Tp_1UV;).

Then p € ¢, contradicting the < *-maximality of p. Thus p indeed visits each vertex
v; (2 < i< n+1),sothat k = n+ 2. In particular, p visits v,,,. But the only edges
incident to v,4q in G" are {p) 1, Vut1}, {t, Vaq1} and {v,41, u}. Now (p).,) <« p. Thus,
as u is an endpoint vertex of p, then (tv,,,u) < p, which implies that z;_, = v,41. Thus
(sx923 ... 25_3t) is a Hamiltonian path for G between s and ¢. B

It may be verified that the above transformation can also be used to show that UNCON-
STRAINED SHORTEST <-MAXIMAL PATH DECISION is NP-complete, where this problem
incorporates the subsequence partial order. (The proof that the problem is in NP is
similar to the argument for SHORTEST <-MAXIMAL PATH DECISION.)

7.3 Sets and partitions

7.3.1 3D-matching

Let W, X, Y be pairwise disjoint sets, each of size ¢, and let M be a subset of W x X x V.
A 3D-matching for M is a subset M’ of M, such that no two elements of M’ agree in any
coordinate. In this section, we consider a source optimisation problem concerned with
finding maximum cardinality 3D-matchings of M.

Source problem: MAXIMUM 3D-MATCHING=(Z,U, ®, m,OPT), where

o 7 — {<W,X, Y, g, M) W, X, Y are pairwise disjoint, }

each of size g, and M C W x X x Y

o (2, M') & M’ is a 3D-matching for M

m(z, M') = [M'|
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® OPT = max.

Complexity of source problem: MAXIMUM 3D-MATCHING DECISION is NP-complete, for if
we restrict the target value to satisfy K = ¢ then we obtain [92, problem SP1].

Partial order: set inclusion
Minimaximal problem name: MINIMUM MAXIMAL 3D-MATCHING.

Complezxity of minimazimal problem: The complexity of MINIMUM MAXIMAL 3D-MATCH-
ING DECISION is resolved by the following theorem.

Theorem 7.3.1 MINIMUM MAXIMAL 3D-MATCHING DECISION is NP-complete.

Proof: Clearly MINIMUM MAXIMAL 3D-MATCHING DECISION is in NP. For, given K € Z*
and a set S of at most K vertices, it is straightforward to verify in polynomial time that

S is a maximal 3D-matching.

To show NP-hardness, we give a transformation from MINIMUM MAXIMAL MATCHING
DECISION for bipartite graphs with no isolated vertices [92, problem GT10]. Hence let
G = (V,FE) (bipartite graph with no isolated vertices) and K (positive integer) be an
instance of MINIMUM MAXIMAL MATCHING DECISION. Suppose that F = {e;, €s,...,€,},
and G has bipartition V = V; U Vs, where n; = |Vi| and ny, = |V5|. As G has no
isolated vertices, then m > max{ny, n,}. We construct an instance of MINIMUM MAXIMAL
3D-MATCHING DECISION as follows. Let

W= ViU{w,woy ..., wp_p},

X =Voud{a, 29, ...,2,_,} and

Y = {y17y27"'7ym}7

where the w;, z; and y,; are new vertex names. Then |W| = |X|=|Y]. Set
M = {(Ulv Vs, yi) v €E ViAmE VoAe = {017 Uz}}.

The transformation is clearly polynomial, and we claim that G has a maximal matching
of size at most K if and only if M has a maximal 3D-matching of size at most K.
For, suppose that M has a maximal 3D-matching M’, where |M'| < K. Set

F'={{v, 0} v € ViAvy € Vo A (01, 09, y;) € M' for some y; (1 < i< m)}.
Then E’is a maximal matching for G, and |E'| = | M’|.
Conversely, suppose that G has a maximal matching F’, where |E’'| < K. Set
M = {(vi,v9,y;) s 01 € Vi Avy € Vo Advy, 05} = ¢, forsome i (1 <7< m)}.

Then M’ is a maximal 3D-matching for M, and |M’| = |E'|]. R
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7.3.2 Test set

Let C be a collection of subsets of a finite set S. A test set for S is a subset C’ of C
such that, for every pair of distinct elements u,v € 9, there is some ¢ € C’ such that
[{u,v}Ne| = 1. In this section, we consider a source optimisation problem whose objective
is to find a minimum cardinality test set for S.

Source problem: MINIMUM TEST SET=(Z,U,n, m,OPT), where
e 7={(5,C): C CP(9)}
o U(z) =P(C)
o (z,C") < (s a test set for
o m(z, ") = |C]
e OPT = min.

Complezity of source problem: MINIMUM TEST SET DECISION is NP-complete [92, problem
SP6].

Partial order: set inclusion

Maziminimal problem name: MAXIMUM MINIMAL TEST SET.

Complezxity of maximinimal problem: In order to resolve the complexity of MAXIMUM
MINIMAL TEST SET, we introduce a further optimisation problem.

Let G = (V, FE) be a graph. A restricted edge total dominating set of G is a subset E’
of F such that, for every e € F, there is some ¢’ € F’ such that e and ¢’ are adjacent as
edges in (¢, and in addition, E’ covers at least | V| — 1 vertices of V. A minimal restricted
edge total dominating set E' of G is a restricted edge total dominating set of ' such that
no proper subset of F’ is a restricted edge total dominating set of . We now define the
MAXIMUM MINIMAL RESTRICTED EDGE TOTAL DOMINATING SET DECISION (MMRETDSD)
problem.

Name: MMRETDSD.
Instance: Graph G, positive integer K.
Question: Does G have a minimal restricted edge total dominating set .S, with |.S| > K?

It turns out that restricted edge total dominating sets are related to test sets.

Proposition 7.3.2 Let G = (V, E) be a graph and put S = V and C = E. Then a
restricted edge total dominating set for G is a test set for S, and vice versa.

Proof: Suppose that G has a restricted edge total dominating set F’. Let u, v be two
distinct members of S = V. If {u, v} € F then thereis some ¢ € E’ such that |[{u, v}Ne| =
1, as E' is edge total dominating. If {u,v} ¢ F then there is some ¢ € E’ such that
[{u,v}Nec|=1,since E' covers at least | V| — 1 vertices of V. Hence C’' = E’ is a test set

for S.
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Conversely suppose that C” is a test set for S. Let {u,v} € F. Then there is some
¢ € (" such that |[{u,v} Ne| = 1, so that £/ = C” is an edge total dominating set for
G. Now suppose that E’' does not cover at least | V| — 1 vertices of V. Let u, v be two
distinct vertices not covered by E’. Then |{u, v} N e¢| =0 for all ¢ € E’, contradicting the
fact that €’ is a test set for S. Thus F’ is a restricted edge total dominating set for G'. B

The following corollary of the above theorem is then easily established.

Corollary 7.3.3 Let G = (V, F) be a graph and put S = V and C = E. Then a minimal
restricted edge total dominating set for G is a minimal test set for S, and vice versa.

It is clear that a graph G has a restricted edge total dominating set if and only if &
contains at most one isolated vertex. We use this observation when proving the following
result, which resolves the complexity of MMRETDSD.

Theorem 7.3.4 MMRETDSD is NP-complete.

Proof. Clearly MMRETDSD is in NP. For, given a graph G, an integer K € Z™, and a set
S of at least K elements, it is straightforward to verify in polynomial time that .S is an
edge total dominating set, covering all but possibly one of the vertices of G.

To show NP-hardness, we give a transformation from X3¢, defined in Section 3.4.
Given an arbitrary instance of X3¢, we construct a graph G, with the property that there
exists an exact cover for the x3c instance if and only if there exists a minimal restricted
edge total dominating set of G with at least K edges, for a particular K € Z*.

Suppose that a set of elements A = {a;, as, a3, ..., a3,} and a collection of clauses
C = {ey,09,¢3,...,¢,) (for some ¢ and m) is an arbitrary instance of x3c. Suppose
further that, for each j (1 < j < m), ¢; = {ai,_,, a,,_,, a;,;}, Where iy, iy, i, ..., i3, is

some sequence of integers, such that
{2.17 2.27 2.37 ey ng} = {17 27 37 .. .73q}.
Construct an instance — graph G = (V, F) and positive integer K — of MMRETDSD as

follows:

e FElement vertices: For each element a; in the X3¢ instance (1 < i < 3q), create a

path on two vertices, namely z; and ;.

e Subset components: For each subset ¢; in the x3c instance (1 < j < m), create a
path on four vertices, namely ¢;, u;, v;, w;, connected in that order.

e Communication edges: For each j (1 < j < m), join w; to Tiyi oy Tig,_, and z;, ..

o Isolated vertex: Add a single isolated vertex z.
o Tuarget value: Set K = 3m + 5q.

Denote by S; the edges in the jth subset component, i.e.

Sy =t wib, {w, v}, {v, wil}-
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Figure 7.1: Part of the graph G constructed as an instance of MMRETDSD, showing a
typical subset component.

The construction is partly illustrated in Figure 7.1. Clearly, this construction is polynomial
with respect to the size of the X3¢ instance. First we show that if the X3¢ instance has an
exact cover, then G has a minimal restricted edge total dominating set S, with |S| = K.
From an exact cover C’ for the X3c instance, we construct a set S as follows. For each j
(1<) < m):

e Add to S the edges {t;, u;} and {u,, v;} from each subset component path.
o If ¢; € ', add to S the three edges {wj, z;,,_,}, {w;, z;,,_, } and {w;, z;,;}.
o If ¢; ¢ C’, add to S the edge {v;, w;}.

For each i (1 <7 < 3¢), add to S the edge {z;, y;}.

Clearly S covers every vertex of G except z. It may also be verified that S is an edge
total dominating set, and hence a restricted edge total dominating set. Further, it may
be verified that S is minimal with respect to this property, and that

S| = 2m+3q+ (m—q)+ 3¢
= K

as required.

Conversely, suppose that G has a minimal restricted edge total dominating set .5 of
size at least K. We show that the X3¢ instance has an exact cover. From all minimal
restricted edge total dominating sets for ¢ with cardinality at least K, choose S to be
such a set that has the fewest number of communication edges.

Since z is isolated, S does not cover z. Thus S covers every other vertex of G. Hence
{z;,y;} € S foreach i (1 < i < 3¢q) to cover y;, and {t;,u;} € S for each j (1 <j < m) to
cover t;. Also, {u;, v;} € S for each j (1 < j < m) to dominate {¢;, u;}. Furthermore, the
following facts may be established:
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1. If w; (1 <j < m) is incident to some communication edge of S, then |S N .S;| = 2.
For, {z;,y;} € S for each i (1 < i < 3q), so each communication edge is dominated
by one such edge {z;,y,}. Hence, by minimality, {v;, w;} € S.

2. If w; (1 < j < m) is incident to no communication edge of S, then |S N S;| = 3.
For, {v;, w;} € S, in order to cover w;.

3. Fach z; (1 < i < 3gq) is incident to at least one communication edge of S, in order
to dominate {z;, y;}.

4. Fach z; (1 < i < 3q) is incident to at most one communication edge of S. For,
suppose not. Then {w;,z;} € S and {wy, 2;} € S for some j, k (1 < j < k < m).
By Fact 1, {vg, wi} € S. We claim that {wy,z;} is the only communication edge
of S incident to wy. For, suppose not. Then {wy, 2} € S for some [ (1 <1 #i <
3¢). Since {wy, 2} is dominated by {z;, y;}, and {w;, z;} is dominated by {z;,y,},
then S\{{wy, z;}} is a restricted edge total dominating set for G, contradicting the
minimality of 5. Thus the claim is established. Set

5" = (S\{{we, :33) U {{ve, wi}}

Then it may be verified that 5 is a minimal restricted edge total dominating set for
G with |S’| = | S| and one fewer communication edge, contradicting the choice of S.
Thus z; is indeed incident to at most one communication edge of 5.

Let there be [ communication edges in 5. Then Fact 3 implies that [ > 3¢, and Fact 4
implies that [ < 3¢, so that [ = 3¢g. Now suppose that the communication edges of 5
are incident to a total of s vertices of the form w;. Then s > ¢. By Facts 1 and 2, §
contains exactly (m — s) edges of the form {v;, w;}. Finally, S contains all 3¢ edges of the
form {z;,y;} (1 < i <3¢) and all 2m edges of the form {¢;, u;} and {u;, v;} (1 <j < m).
Hence, having accounted for all the elements in 5,

S| = 3¢+3¢+(m—s)+2m
= 3m+6q—s. (7.1)

Suppose that s > ¢. Then by Equation 7.1, |S| < K, a contradiction. Thus s = ¢.
Hence there are 3¢ communication edges, incident to exactly ¢ vertices of the form w,
(1 <j < m). Thus the set

{¢;:1<j<m A wis incident to three communication edges of 5}

is an exact cover for A. H

Corollary 7.3.5 MAXIMUM MINIMAL TEST SET DECISION is NP-complete, even if |c| = 2,
for all c € C'.

Proof: Clearly that MAXIMUM MINIMAL TEST SET DECISION is in NP. NP-hardness follows
from the NP-completenes of MMRETDSD and Corollary 7.3.3. It is clear that, in the implicit
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constructed instance of MAXIMUM MINIMAL TEST SET DECISION, all ¢ € ( satisfy |¢| = 2.
|

7.4 Data Storage

7.4.1 Bin packing

In this section, we consider two maximinimal versions of a source optimisation problem
related to the well-known BIN PACKING problem [92, problem SR1] (defined informally in
Section 1.4.4).

Source problem: MINIMUM BIN PACKING= (Z,U,, m,OPT), where
e 7={{(U,s,B):|Ul <0 A s:U—Z* AN BeEZ"}
e U(z) ={P: Pis a partition of U}

o 7(z,P)=VSePe> s(u)y<B

ugS

e m(z, P)=|P|
e OPT = min.

Given an instance 2 of MINIMUM BIN PACKING, we call an element P of F(z) a bin packing
for the instance z.

Complezxity of source problem: MINIMUM BIN PACKING DECISION is NP-complete, for this
problem is equivalent to problem SP1 of [92].

Partial order: partition merge
Maziminimal problem name: MAXIMUM < ,-MINIMAL BIN PACKING.

Given an instance 2 of MINIMUM BIN PACKING, intuitively a bin packing P is <%-minimal
if it is not possible to merge the contents of any two bins of P into a single bin, without

exceeding the bin capacity.

Complezity of maximinimal problem: The complexity of MAXIMUM < ,-MINIMAL BIN PACK-
ING DECISION is resolved by the following theorem. The proof involves a transformation
from the NP-complete problem 3-PARTITION [92, problem SP15], which may be defined as
follows:

Name: 3-PARTITION.

Instance: Positive integers n, .5 and collection of 3n elements, each element «;

with associated size s(q;) € Z*, such that 5/4 < s(a;) < 5/2 (1 <i < 3n) and
3n

Z s(a;) = nS.
1=1
Question: Whether there is a 3-partition of the «;, i.e., a permutation
3
i1, 09, ..y i3, of 1,2,...,3n such that Zs(
k=1

Uigi_yyy,) = S foreach j (1 <j < n).
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Theorem 7.4.1 MAXIMUM MINIMAL < ,-BIN PACKING is NP-complete.

Proof: MAXIMUM = ,-MINIMAL BIN PACKING DECISION is in NP, for, given a partition
P ={U,Us,..., Uy} of a set U, we may verify, in polynomial time, that P is a bin
packing, and that no pair of sets in P can be merged without exceeding the bin capacity.

To show NP-hardness, we give a transformation from 3-PARTITION, defined on Page
132. Suppose we have an instance of 3-PARTITION: elements ay, as, ..., a3, for some n,

3n
each with associated size s(a;) € Z*, such that S/4 < s(a;) < S/2 and Zs(ai) = nS,
i=1

for some 5. Clearly, we lose no generality by assuming that n > 3. We ‘construct the
following instance z of MAXIMUM =,-MINIMAL BIN PACKING DECISION: objects U =
{ug, ugy ..., uz,} where s(u;) = s(a;) (1 < i < 3n), bin capacity B = 25 — 1 and target
number of bins K = n. The transformation is clearly polynomial, and the claim is there is
a 3-partition of the a; if and only if there is a <%-minimal packing of U into k > K bins.

For, suppose that there is some permutation i, is,...,43, of 1,2,...,3n such that
Z (@i, ;_yy,,) = S foreach j (1 <j < n). We construct a packing into n bins as follows.

k=1

Into each bin B; (1 < j < n) we place Qir;_yyy,r for b =1,2,3. Each bin has objects of
total size S, and hence no bin is overfilled. Clearly no pair of bins may be merged, so that
the constructed packing is <7-minimal.

Conversely suppose that there is a <Z-minimal packing of U into bins By, B, ..., By
for some k£ > K. If k£ > n then at least two bins are filled to total weight < S and hence
may be merged, a contradiction. Thus £ = n. The claim is that each bin is filled to total
weight exactly 5. For suppose not. Then there is some bin B; (1 < k < n) such that B,
has total weight < 5. Without loss of generality suppose that j = 1. Let w; denote the
total size of objects in B; in this packing. We claim that there is some bin By (2 < k < n)
such that w, + wy < B. For suppose not. Then for each £ (2 < k < n),

w +w, > 28 (7.2)
and hence

w, > 25— w
> 5. (7.3)

Thus the total weight of objects packed is equal to

n n
E w;, = w4+ ws+ E w;
1=1

1=3

vV

25 + Z w; By Inequality 7.2
i=3

> 254 (7_1 —2)S By Inequality 7.3, and since n > 3
nS
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which is a contradiction. Thus there is some bin By (k > 1) that may be merged with B;.
This contradiction shows that w;, = 5 (1 < ¢ < n). Let 4,4,..., i3, be a permutation of
1,2,...,3n such that {u,;,  , u;, ., %, .} € By for 0 <r < n—1. Then

{{ai3r+17 [P ai3r+3} :0 S r S n— 1}
is a 3-partition of the a,. l

Note that 3-PARTITION is strongly NP-complete [92, problem SP15], and the transfor-
mation given in Theorem 7.4.1 is pseudo-polynomial. Hence MAXIMUM < ,-MINIMAL BIN
PACKING is strongly NP-complete.

Partial order: partition redistribution
Maziminimal problem name: MAXIMUM <,-MINIMAL BIN PACKING.

Given an instance z of MINIMUM BIN PACKING, intuitively a bin packing P is <j-minimal
if it is not possible to redistribute the contents of a bin of P amongst the remaining bins,

without exceeding the bin capacity.

Complezity of maximinimal problem: The complexity of MAXIMUM <-MINIMAL BIN PACK-
ING DECISION is resolved by the following theorem.

Theorem 7.4.2 MAXIMUM —<;-MINIMAL BIN PACKING DECISION is NP-hard.

Proof: We give a transformation from 3-PARTITION, defined on Page 132. Suppose we
have an instance of 3-PARTITION: elements «a, as, . . ., az, for some n, each with associated

3n
size s(a;) € Z*, such that S/4 < s(a;) < §/2 and Y s(a;) = nS, for some S. Clearly,
i=1

we lose no generality by assuming that n > 2. We construct the following instance z of
MAXIMUM <;,-MINIMAL BIN PACKING DECISION: bin capacity B = 4nS, target number of
bins K = n 4+ 1, and elements of the following type:

e ‘small” elements wy, ws, . .., ws,, where s(w;) = s(a;), for 1 < i < 3n.
e ‘2z’ element, where s(z) = 2nS — S.

e ‘y’ elements ¥, Yo, ..., Yn, where s(y;) = 2nS + 1.

e ‘2z’ element, where s(z) = S.

The claim is that there a <7-minimal packing of the elements into £ > K bins if and only
if there is a 3-partition of the a;.

For, suppose that there is some permutation i, is,...,143, of 1,2,...,3n such that
3

Zs(aiau—1>+k) = S for each j (1 < j < n). We construct a packing into n + 1 bins as
k=1
follows. Into each bin By, for 1 < j < n, we place y; and a;,,_, ., for k =1,2,3. Into bin

B, we place z and z.
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This packing clearly overfills no bin. Also, the packing is <j-minimal, which may
be seen as follows. No bin B; (1 < j < n) can be redistributed among the other bins,
for no bin By (1 < k # j < n+ 1) has room for y; in particular. Also, B,,; cannot be
redistributed among the other bins, for no bin By (1 < k < n) has room for z in particular.

Conversely suppose that there is a <7-minimal packing of the objects into k > K
bins. Clearly each of the elements yi, 9, ..., y, must be in different bins. The remaining
elements to be packed have weight totalling 3nS, and hence £ = n 4+ 1. Without loss of
generality we may assume that y; is packed in bin B; for 1 < j < n. The remainder of the

proof is split into cases, according to where z and z have been packed.

Case 1: © € B;,z € B; (1 <1i,j <n). Then i # j. But then

s(y;) +s(2)+ Z s(w,) + Z s(wy) < (2nS+4+1)4+ S5+ nS

wy € Bj wr€ By

< B

so that B,., can be merged with B;, a contradiction. Hence this case cannot occur.

Case 2: v € B; (1<i<n),z€ B,yi. Then for any j (1 <j # i < n), we have that

s(y) +s()+ X s(w)+ Yo s(w) < (2nS+1)+ S5+ nS
w, € Bj wr€ Brya

< B

so that B, can be merged with B;, a contradiction. Hence this case cannot occur.

Case 3: © € B,y1,2 € B; (1 < i< n). Then suppose, without loss of generality, that i = 1.
The claim is each of the bins By, Bs, ..., B,y has ‘small’ elements of weight totalling > S.

For, suppose that some B; does not. We consider two subcases.

Subcase 3a: 2 < j < n. Then

s(@)+s(y)+ DY s(w) < (2nS—5)+(2nS+1)+ (5 1)

= B.
Also, we have

s(y)+s(x)+ D s(w)+ Y s(w) < (2nS+1)+ S5+ nS
wy€ By Wy € Brg1

< B

so that bin B,y can be redistributed over bins B; and Bj;, a contradiction.

Subcase 3b: j = n+ 1. Then

s(z)+s(yp)+ >, s(w,) < 2nS—9)+2nS+1)+(5-1)

wr€ By
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= B.
Also, we have, for any 2 < k < n,

s(yr) +s(2) + Z s(w,) + Z s(wy) < (2nS4+1)4+ S5+ nS

wr€ By wy € By,

< B.

Hence bin B; can be redistributed over bins By and B, i, a contradiction.

Thus each bin B; (2 < j < n+1) must have ‘small” elements of weight totalling exactly
S. Let iy, s, ..., i3, be a permutation of 1,2,...,3n such that {w,,  ,w, ., w;, .} € B
for 0 < r <n-—1. Then

{{ai3r+17 Qg o ai3r+3} :0 § r § n— 1}
is a 3-partition of the a;.

Case 4: © € B,11,2 € B,y1. Then for each j (1 < j < n), B, must have ‘small’ elements
of weight totalling > . For, if not, then there is some bin B; (1 < j < n) such that

s(@)+s(y)+ DY s(w) < (2nS—5)+(2nS+1)+ (5 1)

= B.
For any other bin By (1 < k # j < n) we have

sy) +s(2)+ D s(w)+ Y s(w) < (2nS+1)+ S +nS
wy € By Wy € Brg1

< B.

Hence bin B, can be redistributed over bins B; and By, a contradiction. Thus each bin
B; (1 <j < n) must have ‘small’” elements of weight totalling exactly S. Let i, is, ..., i3,
be a permutation of 1,2,...,3n such that {w;, ., wi, ., i, } € By for 0 <r <n—1.
Then

{{ai3r+17 [P ai3r+3} :0 § r § n— 1}

is a 3-partition of the a,. B

Note that MAXIMUM <,-MINIMAL BIN PACKING DECISION is not known to be in NP (see
Theorem 9.3.2). Also, the transformation given in Theorem 7.4.2 is pseudo-polynomial.
Hence, since 3-PARTITION is strongly NP-complete [92, problem SP15], then MAXIMUM
<,-MINIMAL BIN PACKING is strongly NP-complete.
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7.5 Compression and Representation

In this section, we consider source optimisation problems concerned with finding longest
and shortest length common subsequences, supersequences, substrings and superstrings of
a given set of strings.

7.5.1 Common subsequence

Source problem: LONGEST COMMON SUBSEQUENCE (Lcs) = (Z,U,w, m,OPT), where
e 7={(5,2):]5] <0 A Vse Sese X"}
o U(z) ={t e X" : |t]| < min{|s|: s € S}}!
o (2, t) &t S
o m(z,t) = |t
e OPT = max.

Complezity of source problem: 1.cS DECISION is NP-complete, even for [X| = 2 [161]. For
|S| = 2, a variety of polynomial-time algorithms have been proposed for Lcs, and are
surveyed by Fraser [80, p.10]. Polynomial-time algorithms also exist for the case that |5]
is fixed, with |S| > 2, and are also surveyed by Fraser [80, p.11]. For example, Irving and
Fraser [130] provide a polynomial-time algorithm for the case | S| = 3, extendible to any
fixed |S| > 2.

Partial order: subsequence

Minimazimal problem name: SHORTEST MAXIMAL COMMON SUBSEQUENCE (SMCS)

Complezity of minimazimal problem: Fraser, Irving and Middendorf [81] show that smcs
DECISION is NP-complete in general. For |S| = 2, the same authors show smcs to be

polynomial-time solvable, and remark that this result is extendible to any fixed |S| > 2.

7.5.2 Common supersequence

Source problem: SHORTEST COMMON SUPERSEQUENCE (scs)= (Z,U, r, m,0PT), where
e I ={(9,5):|59 <00 A VseSesec X}
e U)={tex |1 < {ls|: s € S}
o T(z,l) &5 Lt

e m(z,t) = |t

'"We cannot simply set U (x) = ©* here, since then U () would not be finite, a criterion of Definition 2.2.1.
The same comment applies in the case of the SHORTEST COMMON SUPERSEQUENCE, LONGEST COMMON
SUBSTRING and SHORTEST COMMON SUPERSTRING problems.
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e OPT = min.

Complexity of source problem: scs DECISION is NP-complete [161], even for |¥| = 2 [188].
Timkovskii [205] considers the (m, n)-scs problem, which is the original scs problem with
given constraints m and n on the input, where

m = max{|s|: s € 5} (7.4)

and

n = max{|O0.| : ¢ € &}, (7.5)

where O, is the orbit of c,i.e. the total number of occurrences of ¢ among the strings of 5.
(2,2)-scs is found to be polynomial-time solvable, while the decision versions of (2,3)-scs
and (3,2)-scs are reported NP-complete. Garey and Johnson [92, p.228] assert that scs
is polynomial-time solvable for m = 2; however Timkovskii’s result for (2,3)-scs disproves
this.

For |S| = 2 the scs and r.cs problems are dual. However, for | S| > 2 (fixed) there is
no obvious duality between the two problems. Even so, polynomial-time algorithms still
exist in this case. Fraser [80, p.14] surveys existing such algorithms and presents two new
ones [80, Chapter 3].

Partial order: subsequence

Maziminimal problem name: LONGEST MINIMAL COMMON SUPERSEQUENCE (LMCS).

Complezity of maziminimal problem: Fraser, Irving and Middendorf [81] show that LMmcs
DECISION is NP-complete. The same authors also demonstrate that LMcs is polynomial-
time solvable for the case |S| = 2, and also that this result holds for any fixed |S| > 2. In
the case m = 2 (where m is defined by Equation 7.4), a linear-time algorithm is given for
LMCS.

Thus the SHORTEST COMMON SUPERSEQUENCE and LONGEST MINIMAL COMMON SU-
PERSEQUENCE problems, each when restricted to the case when all input strings are of
length two, form an example of an NP-hard source optimisation problem II, together with
a polynomial-time solvable maximinimal optimisation problem derived from II using a
partial order.

7.5.3 Common substring

Source problem: LONGEST COMMON SUBSTRING (LCSt) = (Z,U, r, m,0PT), where

e 7={(5,2):]|5] <0 A VseSese ¥}

U(z) ={t € T : |t] < min{|s|: s € S}}

ez, t) &t&S

m(xv t) = |t|
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® OPT = max.

Complexity of source problem: 1.CSt is polynomial-time solvable. Given a set S containing
k strings, where n denotes the total length of all strings in S, Gusfield [103, §7.6] describes
an O(kn) method to generate a longest common substring of S using suffix trees. (Gusfield
describes the suffix tree data structure in Chapter 5 of [103].) However, an even more
sophisticated approach, also using suffix trees, yields an O(n) algorithm to solve the
problem [103, §9.7].

Partial order: substring

Minimazimal problem name: SHORTEST MAXIMAL COMMON SUBSTRING (SMCSt).

Complexity of minimazimal problem: As in the case of LCSt, the SMCSt problem is
polynomial-time solvable using suffix trees. Before demonstrating this, we establish some
definitions relating to suffix trees (the terminology follows that of Gusfield [103, §5.2]).

Let T be a suffix tree for a string s. The label of a path from the root of T to a node
v is the concatenation, in order, of the substrings labelling the edges of that path. The
path label of a node v is the label of the path from the root of T to v. For any node v,
the string depth of v is the number of characters in the path label of v.

Theorem 7.5.1 Let S be a set of k strings over an alphabet 3., and let n denote the total
length of all strings in S. Then we may find a shortest maximal common substring of S

in O(|X|kn) time.

Proof: Let s; (1 < i < k) be the strings in S. To each string s; (1 < i < k), we append
a unique termination symbol «; not occurring in X5 let s/ be the resultant string. Denote
by s the concatenation of the strings s/ (1 < i < k). Now suppose that z is a suffix of s,
beginning at position i of s. This position of s corresponds to a unique string s; for some
J (1 <j<k). Wecall j the string identifier for suffix z. Define the suffiz predecessor of
z in s to be the (i — 1)th character of s if i > 1, or ag (a symbol not occuring in ¥) if
i=1.

We build the suffix tree T for the string s, storing two pieces of information at each
leaf node. Recall that each leaf node v of T corresponds to a unique suffix 2 of s. Store
the string identifier for suffix z, together with the suffix predecessor of z in s, at v. (For
the purposes of this algorithm, it is not necessary to store at v the suffiz number of z in s,
i.e., the position of s at which z begins.) Denote by i(v) the string identifier of the suffix
x represented by v, and denote by p(v) the suffix predecessor of the suffix 2 represented
by v in s. Two more pieces of information will be stored at each node of T, and these will
be described later. It is clear that the construction of this paragraph may be carried out
in O(n) time, which is the time required to build a suffix tree [209].

For a node v of T, let T, denote the subtree of T" with root v. Let C(v) denote the
number of distinct string identifiers that appear at the leaves of T,. Define a matching
node of T to be an internal node v of T such that C'(v) = k. It follows that a string p
is a common substring of S if and only if p is, or is a prefix of, the path label of some
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matching node v of T. Thus a string p is a maximal common substring of S implies that
p is the path label of some matching node v of T. Computing C'(v) for each node v may
be carried out in O(kn) time overall [103, §7.6.1].

We now consider R-tight matching nodes. Such a node v is a matching node such that
no child of v in T is a matching node.

Claim. Let v be a matching node of T and let p be the path label of v. Then v is an
R-tight matching node if and only if p + (o) L 9, for each o € 3.

Proof of claim: Suppose that v is an R-tight matching node and ¢ = p + (o) < S, for
some 0 € ¥. Then ¢ < s; for each j (1 < j < k), which implies that there are k suffixes
z; (1 <j < k) of s such that, for each j (1 < j < k), 2; has string identifier j, and ¢ is
a prefix of z;. Thus, by definition of 7', there is a matching node w in T, where w is a
child of v (w has path label r, such that either ¢ = r, or ¢ is a prefix of r). Thus v has a
child that is a matching node, a contradiction.

Conversely, suppose that p + (o) & S for each 0 € ¥, and v is not an R-tight match-
ing node. Then v has a child w that is a matching node; let ¢ be the path label of w.
Then by definition of T, there is some o € 3 such that p +H (o) is a prefix of ¢ (possibly
p +H () = q). Thus we reach a contradiction, since ¢ <€ S implies that p H (o) < S.

It is clear that the R-tight matching nodes may be determined by a straightforward
traversal of T', in O(n) time, once the C'(v) values have been computed.

By the above claim, the path label of an R-tight matching node is a common substring
of S that cannot be extended to the right to give another common substring of S. Next,
we show how to locate common substrings that cannot be extended to the left, in addition

to being non-extendable to the right.

For any node v of T, for any o € ¥ and for any j (1 <j < k), let D,(0,j) have value
true if T, has a leaf node with suffix predecessor o and string identifier j; D, (o, ) = false
otherwise. Define an LR-tight matching node v to be an R-tight matching node v such
that, for all ¢ € X,

k
/\ D,(o,j) = false.
=1

Claim. Let v be an R-tight matching node of T and let p be the path label of v. Then
v is an LR-tight matching node if and only if (o) + p L 9, for each ¢ € .

Proof of claim: Suppose that v is an LR-tight matching node and ¢ = (o) + p & 9, for
some o € ¥.. Then ¢ & s; for each j (1 < j < k), which implies that there are k suffixes z;
(1 <j < k) of ssuch that, for each j (1 < j < k), pis a prefix of z;, 2; has string identifier
J, and o is the suffix predecessor of z; in s. Thus, by construction of 7', we have that T,
has a leaf node with suffix predecessor ¢ and string identifier j, for each j (1 < j < k).
Hence D, (o, j) = true for each j (1 < j < k), a contradiction.

Conversely, suppose that (o) +H p & S for each ¢ € ¥, and v is not an LR-tight
matching node. Then there is some ¢ € ¥ such that T, has a leaf node with suffix
predecessor ¢ and string identifier j for each j (1 < j < k). Hence ¢ = (o) + p satisfies
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q < sj, for each j (1 < j < k), so that ¢ £ 5, a contradiction.

By the above claim, a string p is a maximal common substring of .5 if and only if p
is the path label of an LR-tight matching node v of T. A straightforward traversal of
T will determine the R-tight matching nodes that are also LR-tight matching nodes, in
O(kn) time, once the D, matrices have been computed. Thus it remains to establish the
D, matrices, for each node v in T. In order to do this, we use the i(v) and p(v) values,
stored at leaf nodes v.

The D, matrices may be computed as follows. If v is a leaf node, then for any o € X
and for any j (1 <j <k),

true, if p(v) =0 and i(v)=j

D,(o,j) = {

false, otherwise.
If v is an internal node, then for any o € ¥ and for any j (1 < j < k),
D,(0,j) = \/{Dw(a,j) :w is a child of v}.

It is clear that the computation of the D, matrices, for every node v of T, requires
O(|X]kn) time in total.

Once the LR-tight matching nodes have been located, a final traversal of the tree
will establish an LR-tight matching node v of smallest string depth, in O(n) time. By
construction, the path label p of v corresponds to a shortest maximal common substring
of S. Thus the overall time complexity of this algorithm is O(|X|kn). B
7.5.4 Common superstring
Source problem: SHORTEST COMMON SUPERSTRING (SCSt)= (Z,U, 7, m,0PT), where

e 7T={(9,5):]|5] <00 A Vs€ESesec ¥}

o U(z)={te X |t| <3 {|s| : s € S}}

o T(z,t) &S L

e m(z,t) = |t

e OPT = min.

Complezity of source problem: The decision problem of SCSt is NP-complete [88], even
for |X| = 2. When all strings in .S have length at most two, SCSt is solvable in linear time
[88].

Partial order: substring

Maziminimal problem name: LONGEST MINIMAL COMMON SUPERSTRING.

Complezxity of maziminimal problem: The complexity of LONGEST MINIMAL COMMON
SUPERSTRING is open.
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7.6 Mathematical Programming

7.6.1 Knapsack

The following source optimisation problem is based on the well-known KNAPSACK problem
[92, problem MP9] (defined informally in Section 1.4.4).

Source problem: MAXIMUM KNAPSACK= (Z,U,n, m,OPT), where
o T={{w,...;wp, 015,00, WYy:n, WeZT AVI<i<new,v € Z"}
o U(z) =P{1,2,...,n})

° 7T($,S)<:>Z’wl‘§ W

i€s
e m(z,5) = Z v,
i€s

e OPT = max.

Complezity of source problem: MAXIMUM KNAPSACK DECISION is NP-complete [92, prob-
lem MP9].

Partial order: set inclusion
Minimazximal problem name: MINIMUM MAXIMAL KNAPSACK.

Intuitively, a knapsack packing is maximal if we cannot put any more objects into the
knapsack without exceeding the capacity. Whereas the objective in MAXIMUM KNAPSACK
is to maximise the total value of the objects selected, the objective in MINIMUM MAXIMAL
KNAPSACK is to minimise the total value of the selected objects, such that this maximality
criterion is satisfied. Burglary is usually cited as an application of MAXIMUM KNAPSACK;
one might envisage spring-cleaning as being an application of MINIMUM MAXIMAL KNAP-
SACK!

Complexity of minimazimal problem: The complexity of MINIMUM MAXIMAL KNAPSACK
DECISION is resolved by the following theorem. The proof involves a transformation from
the NP-complete problem SUBSET suMm [92, problem SP13], which may be defined as fol-
lows:

Name: SUBSET SUM.

Instance: Collection of n elements, each with weight a; € Z* (1 < i < n), and

target value B € Z™.

Question: Is there a subset S of {1,2,...,n} such that Z a; = B?

1€S

Theorem 7.6.1 MINIMUM MAXIMAL KNAPSACK DECISION is NP-complete.

Proof: 1t is clear that MINIMUM MAXIMAL KNAPSACK DECISION is in NP. To show NP-
hardness, we give a transformation from SUBSET sUM, as defined above. Suppose we
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have an instance of SUBSET SUM: a collection of n elements, each with weight a, € Z™*
(1 <i < n), and target value B. Construct the following instance of MINIMUM MAXIMAL
KNAPSACK DECISION: weight bound W = B, value bound V = n, and n 4+ 1 objects,
where w; = a; for 1 < i < n, v, =1forl1 <i < n,and w41 =1, v,4y = n+ 1. The
transformation is clearly polynomial, and we claim that there is some subset of the «,
which sums to B if and only if there is a maximal knapsack packing of total value at most

V.

For, suppose that there is a maximal knapsack packing of total value at most V. Then
there exists some S C {1,2,...,n+ 1} such that

Zwi§W:B and ZvigT/:n.

i€S 1€S

The value inequality implies that S C {1,2,..., n}. If strict inequality holds in the weights
inequality, then SU{n+ 1} is a feasible packing, contradicting the maximality of S. Hence
equality holds in the weights inequality, which implies that Z a; = B, and the SUBSET
ies
SUM instance has a solution.
Conversely, suppose that the SUBSET SUM instance has a solution. Then there exists
some S C {1,2,...,n} such that

wi=> a,=B=W. (7.6)

1€S 1€S

Moreover, Z v; < n = V. Finally, by Equation 7.6, the knapsack is full, so the packing
ies

is maximal, as required. B

Note that it is open as to whether MINIMUM MAXIMAL KNAPSACK is solvable in pseudo-

polynomial time, or strong NP-completeness holds for the decision problem.

7.7 Logic

7.7.1 Definitions relating to logic problems

Before introducing our source optimisation problems concerning logic, we present some
related definitions.

Given a set U of variables, a literal o over U is either a variable u or its negation w,
where v € U. A clause is a set of literals over U, representing the logical disjunction of
these literals. A well-formed formula (w.f.) is a set of clauses, representing the logical
conjunction of these clauses.

Negation extends to a literal o as follows. If ¢ = u for some u € U, then @ denotes 7.
If ¢ = @ for some u € U, then @ denotes u.

Letting F', T respectively stand for the Boolean truth values false, true, a truth assign-
ment for U is a function f : U — {F, T}. The truth assignment f extends to literals,
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clauses and well-formed formulae as follows:

e Given a variable u € U, the literal o = u satisfies f(o) = T if and only if f(u) = T,
and the literal ¢ = W satisfies f(o) = T if and only if f(u) = F.

e Given a clause C; = {0,04,...0,.}, f(C;) = T if and only if f(o,) = T for some j
(1<j<r).

e Given a w.f. C = {Cy,Cy,...,Cyn}, f(C) = Tif and only if f(C;) = T for each i
(1<i<m).

A variable, literal or clause X is said to be true, or satisfied, under f if f(X)= T, and X
is false, or not satisfied, under f if f(X) = F. A w.f. C over a set of variables U is said
to be satisfiable if there exists a truth assignment f such that f(C) = T.

Given a set of variables U, aw.f. ¢ ={C}, (s, ..., C,} over U and a truth assignment
f:U— {F, T}, we denote by C; the clauses of C satisfied by f, i.e.,

Cr={Ci e C:f(C;)=T}.
Given a clause C; of C, we denote by U(C;) the variables in (}, i.e.,
U(C)=AuelU:ueC;vue C}.
This definition extends to a set of clauses €', where C" C C, as follows:

vy = J u(c).

cCiecC’

Thoughout this section, we assume that U(C) = U, for any w.f. C over a set of variables
U, i.e., every variable in U occurs in some clause of C.

Given a pair z = (U, C), representing a set of variables U and a w.f. C over U, let
F(z) denote the set of all truth assignments for /. We may define a partial order? <7 on
F(z), called the partial order on truth assignments, as follows:

<= {(ﬂg) € Fla) x F(2):Cr ¢ Co Mir(ey) Eg|U(Cf>}'

Thus, for two truth assignments f, g, we have f <7 g if ¢ satisfies all of the clauses of
satisfied by f, plus at least one more, and f, g agree on U(C;), the variables belonging
to the clauses of (' satisfied by f. To motivate this definition, observe that a partial
order <7 ,, of similar definition to <7, but not requiring the two functions f, g to agree
on U(Cy), preserves much less ‘local” information. For, it is possible that f and ¢ could
agree on none of the variables of U, and yet C; C C,. As a simple example, consider
the clauses {z,y},{z}, for three variables z,y, z, and the truth assignment f given by
fz) =T,f(y) = F,f(z) = F. Then f <7, g, where the truth assignment g is given by

2The subscript t in <7 refers to truth assignment here.
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g(z) = F,g9(y) = T,g(2) = T. Clearly C; C C,, but f, g differ on each of z, y, z. For an
example of where we use the property that f <7 ¢ implies that f, g agree on U(C;), see
Theorem 8.3.1.

A convenient criterion for a truth assignment to be maximal with respect to <7 is given
by the following proposition. In the remainder of this section on logic, a truth assignment

[ is said to be mazimal if f is <7-maximal.

Proposition 7.7.1 Let z = (U, C), where U is a set of variables and C' is a w.f. over
U, let F(z) denote the set of all truth assignments for U, and let f € F(z). Then f is
mazimal if and only if U(Cy) = U.

Proof: If f is non-maximal, then clearly U(C;) C U. Conversely, suppose that U(C;) # U.
Pick any v € U\U(C;). Then v is a variable appearing in a clause C; not satisfied by f,
and not appearing in any clause satisfied by f. Thus, changing the value of f(v) is bound
to satisfy at least one more clause, whilst not affecting the satisfaction of the clauses in
C;. More formally, define the truth assignment ¢ as follows: for each u € U,

f(u), uwe U\{v}
gluy=< T, (u=v)ANf(u)y=F
F, (u=v)Af(u)=T.

Then f, g agree on the values of the variables in C;. In addition, f(C;) = F, whereas

g(C;) = T. Hence f <7 g, so that f is non-maximal. B

Thus a truth assignment f is maximal if and only if every variable in U appears in some

clause satisfied by f.

In each of the remaining sections, we define a source logic-related optimisation prob-
lem II and obtain a minimaximal optimisation problem II’; using the partial order on
truth assignments. The problem II’ is then studied from the point of view of algorithmic

complexity.

7.7.2 2-satisfiability

In this section, we consider a source optimisation problem?® in which the objective is to
find a truth assignment that simultaneously satisfies the maximum number of clauses of

a given w.f., given that each clause has size two.
Source problem: MAXIMUM 2SAT=(Z,U, 7, m, OPT), where

o 7={(U,C): Cisawdf. over Uand |Ci| =2, forall C; € C}

?There seem to be inconsistencies in the literature regarding terminology for logic-related problems.
For example, 3SAT as defined by Garey and Johnson [92, problem 1.O2] involves clauses of size 3. However,
3SATISFIABILITY as defined by Aho et al. [1, p.384] involves clauses of size at most 3. Since the distinction
will be of importance to us in this section, and in future sections, we refer to the latter problem as AT
MOST 3SAT. These remarks also apply to MAXIMUM 2SAT and ONE-IN-THREE 3SAT (problems LO4 and LO5
of [92] respectively).
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o U(G) =A{f:fis atruth assignment for U}
o 7((U,C),[f) & true

o m((U, C) 1) = 10|

® OPT = max.

Complexity of source problem: MAXIMUM 2SAT DECISION is NP-complete, even if each
variable occurs in at most three clauses [189].

Partial order on truth assignments

Minimazximal problem name: MINIMUM MAXIMAL 2SAT.

Complexity of minimazimal problem: The complexity of MINIMUM MAXIMAL 2SAT is re-
solved by the following theorem. The proof involves a transformation from the problem
3SAT, which is defined as follows:

Name: 3SAT.

Instance: Set U of variables and a set C of clauses over U, where |C;| = 3, for
all C; € C.

Question: Is there a truth assignment f such that f(C) = T7

The problem AT MOST 3SAT, which is similar to 3sAT, but distinct in that each clause
in the input has size at most 3, is shown to be NP-complete by Karp [140]. A simple
transformation from AT MOST 3SAT, involving the addition of new variables and clauses
corresponding to any clause of size one or two, gives NP-completeness for 3saT. See, for
example, Papadimitriou and Steiglitz [179, p.359].

Theorem 7.7.2 MINIMUM MAXIMAL 2SAT DECISION is NP-complete.

Proof: By Proposition 7.7.1, MINIMUM MAXIMAL 2SAT DECISION is in NP. To show NP-
hardness, we give a transformation from 3sAT, defined above. Suppose that U (a set of
variables) and C = {C}, (s, ..., C,,} (a set of clauses), where |C;] = 3 (1 < i < m), is
an instance of 3sAT. Assume that C; = {a;, b;, ¢;} (1 < i < m). Construct the following
instance of MINIMUM MAXIMAL 2SAT DECISION. Let U’ = UU{d;,e;, fi : 1 < i < m} be
a set of variables, where the d;, e; and f; are new variable names (1 < i < m), and let C”
be a set of 10m clauses, where

m {a_“ di}v{b_iv di}v{c_iv di}v
Cl = U {divei}v{dive_i}v{jiv ei}v{jive_i}v
= AL @ s bt S e
Set K = 6m, and denote by C/ the set of ten clauses of C” involving literals with subscript

i (1 <i<m). We claim that there is a truth assignment satisfying €' if and only if there
exists a maximal truth assignment satisfying at most K clauses of €’ simultaneously.

For, let f be a truth assignment such that f(C') = T. Then, for each i (1 < i < m),
[ satisfies at least one literal from C;. Define a truth assignment g on U’ by setting
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F, for every i

g(u) = f(u), for all uw € U, and by setting ¢(d;) = g(e;) = g(fi) =
(1 <7 < m). By the symmetry of the construction of €, for each i (1 < i < m), we may

consider the following cases:
Log(a;) = F,g(b) = F,g(c;) =T.
2. g(a;) = F,g(b)) = T,g(c;) = T.
3. g(a;) =T, g(b)=T,g(c;) =T.

In each case, it may be verified that ¢ satisfies exactly six clauses from each €7, and each of
the variables a;, b;, ¢, d;, e;, f; appears in at least one of these clauses. Hence U'(C}) = U’,
so that ¢ is maximal by Proposition 7.7.1. Also, ¢ satisfies exactly K clauses of C’

simultaneously.

Conversely, suppose that g is a maximal truth assignment satisfying at most K clauses
of C” simultaneously. Suppose that i (1 < i < m) is given. If g satisfies one of cases 1,2,3
above, then it may be verified that in each case, g satisfies at least six clauses from C/. By
symmetry, the only additional case we need consider is that ¢g(a;) = ¢g(b;) = g(¢;) = F.
In this case, g must satisfy nine clauses from C/, i.e.; ¢(f;) = T, or else ¢ is not maximal.
Since this would satisfy too many clauses simultaneously, we conclude that this case cannot
occur. Thus, we may define a truth assignment f on U by setting f(u) = g(u), for all
u € U. Since g satisfies at least one of a;, b;, ¢; for each i (1 < i < m), then f(C)= T as
required. W

7.7.3 One-in-three satisfiability

In this section, we consider a source optimisation problem based on the following decision

problem:

Name: ONE-IN-AT-MOST-THREE SAT.

Instance: Set U of variables and a set C of clauses over U, such that, for each
C; € C,|C;| <3 and C; contains no negated variable of U.

Question: Is there a truth assignment f such that f satisfies exactly one variable
from each C; € (7

In the context of ONE-IN-AT-MOST-THREE SAT, variables and literals mean one and the
same thing, since no clause contains a negated variable. Thus, for the remainder of this
section, we use the term ‘variable’ when ‘literal’ may otherwise have been used.

Schaefer [192] studies a problem that is similar to ONE-IN-AT-MOST-THREE SAT, but
is distinct in that a clause is a multiset in his definition, so that a variable can occur
more than once within a clause, where each clause has size three. In the context of
Schaefer’s definition, multiple occurrences of a variable within a clause are significant,
when considering satisfaction by a truth assignment. However, it turns out that the
problem under his definition is reducible to the problem within our logical framework,

which may be seen as follows.
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Lemma 7.7.3 ONE-IN-AT-MOST-THREE SAT under Schaefer’s definition [192] is reducible
to ONE-IN-AT-MOST-THREE SAT under our definition.

Proof: Suppose that U (a set of variables) and C = {C}, (s, ..., C,} (a set of clauses
over U) is an instance of ONE-IN-AT-MOST-THREE SAT under Schaefer’s definition, where
a clause of (' is a multiset of size three, containing no negated variable of U. We construct
a set " of clauses (where a clause of C” is a set of members of U’, of size at most three)
as follows.

We may assume that no variable u € U occurs three times in any clause of (', for then
the given instance (U, ') has a ‘no’ answer. Corresponding to any clause C; € C which
contains two occurrences of some variable u, and one occurrence of some variable v, we
add the two clauses C |, C}, to €', where | = {u,v} and (], = {v}. Corresponding to
any clause C; which has no multiple occurrences of any variable, we let C! = ;; and add
C! to C". Our constructed instance of ONE-IN-AT-MOST-THREE SAT therefore consists of
the variables U/ = U, and the clauses (.

Now a truth assignment f satisfies exactly one variable occurrence from every clause
in C if and only if f satisfies exactly one variable from every clause in C’. For, suppose
that f satisfies exactly one variable occurrence from each clause in C. Let i (1 < i < m)
be given. If C; contains no multiple occurrences of any variable, then clearly f satisfies
exactly one variable from 7. Now suppose that some variable u appears twice in C;, and
some variable v appears once in C;. Then f(u) = F and f(v) = T. Hence f satisfies
exactly one variable from each of 7, C},. Thus f satisfies exactly one variable from
every clause in (.

Conversely, suppose that f satisfies exactly one variable from each clause in C’. Let i
(1 <7 < m) be given. If C; contains no multiple occurrences of any variable, then clearly
[ satisfies exactly one variable occurrence from ;. Now suppose that some variable u
appears twice in C;, and some variable v appears once in (;. As f satisfies exactly one
variable from Cj,, then f(v) = T, which implies that f(u) = F, since f satisfies exactly
one variable from 7. Thus f satisfies exactly one variable occurrence from C;. B

Results from [192], together with Lemma 7.7.3, prove the NP-completeness of ONE-IN-AT-
MOST-THREE SAT. Now consider a restricted version of this problem, called ONE-IN-THREE
3SAT, in which each clause has size exactly three. It turns out that the restricted problem
is also NP-complete, as the following lemma demonstrates. This result will be utilised later
in this section, when we consider the complexity of a minimaximal optimisation problem,

to be defined.
Lemma 7.7.4 ONE-IN-THREE 3SAT is NP-complete.

Proof: Clearly, ONE-IN-THREE 3SAT is in NP. To show NP-hardness, we give a simple
transformation from ONE-IN-AT-MOST-THREE SAT. Suppose that U (a set of variables)
and C = {Cy, Cy, ..., Cp} (a set of clauses), where |C;| < 3 and C; contains no negated
variable of U (1 < i < m), is an instance of ONE-IN-AT-MOST-THREE SAT. We construct a
set of clauses (' as follows. Corresponding to any clause C; of size one, where C; = {a,},
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we add the three clauses of C] to (", where

Ci = {Hai, pis @i}, {ai, piy ri}s { i qi, i} -

Corresponding to any clause C; of size two, where C; = {a;, b;}, we add the three clauses

of C! to C", where
Cz/ = {{an b;, sz‘}v {an b;, yi}7 {xn Yis Zi}}'

In both cases, the p,, ¢;, ri, 2;, y;, 2; are new variable names. Finally, for any clause C; of
size three, where C; = {a;, b;, ¢;}, we add C; to C" (let C/ contain the clause C; in this
case). Our constructed instance of ONE-IN-THREE 3SAT therefore consists of U’, which
contains the variables in U plus the new variable names introduced, and the clauses C".

There is a truth assignment f defined on U, satisfying exactly one variable from every
clause in C, if and only if there is a truth assignment ¢ defined on U’, satisfying exactly
one variable from every clause in C’. For, suppose that f satisfies exactly one variable from
each clause in C'. We construct a truth assignment ¢ defined on U’. Let g(u) = f(u) for all
u € U. Set g(p;) = 9(q;) = g(r;) = F for all i such that |C;| = 1. Set g(2;) = g(y;) = F
and g(z) = T for all i such that |C;| = 2. Now let i (1 < i < m) be given. It may be
verified that in each of the three cases |C;| = 1,2, 3, ¢ satisfies exactly one variable from
each clause in €. Hence ¢ satisfies exactly one variable from every clause in C".

Conversely, suppose that ¢ satisfies exactly one variable from each clause in C’. We
construct a truth assignment f defined on U, by letting f(u) = g(u) for all v € U. Now
let i (1 < i < m) be given. Suppose that C; = {q;} for some a;, and that g(a;) = F.
Then {a;, p;, ¢;} € C’ implies that, either (i) g(p;) = T and g(¢;) = F, or (ii) g(p;) = F
and ¢g(¢;) = T. In case (i), {a;, q;,r;} € C’ implies that ¢g(r;) = T. But we reach a
contradiction, since {a;, p;, r;} € C’. In case (ii), {a;, p;, i} € C” implies that g(r;) = T.
But we again reach a contradiction, since {a,, ¢;, ;} € C’. Thus f(a;) = T. Now suppose
that C; = {a;, b;} for some a;, b;, and g(a;) = ¢g(b;) = F. Then {a;, b;,2;} € C” implies
that g(z;) = T, and {a;, b;,y;} € C” implies that g(y;) = T. But again we reach a
contradiction, since {z;,y;, 2} € C’. Hence exactly one of f(a;) = T,f(b;) = T holds.
Finally, if C; = {a,, b;, ¢;} for some a;, b;, ¢;, then clearly f satisfies exactly one variable
from C;. Hence [ satisfies exactly one variable from every clause in C. B

We now consider a source optimisation problem II that is based on the decision problem
ONE-IN-THREE 3SAT. Both II, and the minimaximal optimisation problem derived from
IT using the partial order on truth assignments, feature in the proof of Theorem 8.3.1.

Given a set of variables U and a set of m clauses C over U, consider the problem
of maximising k, such that there exists a truth assignment f which simultaneously sat-
isfies exactly one variable from £ clauses of C'. Given such a truth assignment f, there
are a variety of possibilities for specifying how many variables f should satisfy from the
remaining m — k clauses of C'. We choose to demand that f should satisfy none of the
variables from the remaining m — k clauses. This resolution is reflected in the following
source optimisation problem definition.

Source problem: MAXIMUM ONE-IN-THREE 3SAT=(Z,U, r, m,OPT), where
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Cis a w.f. over U, |C;| = 3, and C; contains
no negated variable of U, for all C; € C

I:{(U,C):

U(G) = {f : [ is a truth assignment for U}

(U, C) ) eV eColfve G f(o)=T} <1

m((U, C),f) = |yl

® OPT = max.

Complexity of source problem: MAXIMUM ONE-IN-THREE 3SAT DECISION is NP-complete,
for if we restrict the target value to satisfy K = |C|, then we obtain ONE-IN-THREE 3SAT.

Partial order on truth assignments
Minimaximal problem name: MINIMUM MAXIMAL ONE-IN-THREE 3SAT.

Complexity of minimazimal problem: The complexity of MINIMUM MAXIMAL ONE-IN-
THREE 3SAT is resolved by the following theorem.

Theorem 7.7.5 MINIMUM MAXIMAL ONE-IN-THREE 3SAT DECISION is NP-complete.

Proof: By Proposition 7.7.1, MINIMUM MAXIMAL ONE-IN-THREE 3SAT DECISION is in NP.
To show NP-hardness, we give a transformation from ONE-IN-THREE 3SAT, defined above.
Suppose that U (a set of variables) and C' = {C}, (s, ..., C,,} (a set of clauses), where
C; = {a;, b, ¢;} and C; contains no negated variable of U (1 < i < m), is an arbitrary
instance of ONE-IN-THREE 3SAT. Construct the following instance of MINIMUM MAXIMAL
ONE-IN-THREE 3SAT DECISION. Let U’/ = UUA{d,d>,...,d,} be a set of variables, where
the d; are new variable names (1 < i < m), and let C’ be a set of 3m clauses, where

' = U{{au bi,di}, {a;, c;,d;},{bi, ciy d}}
1=1

Set K = 2m, and denote by C! the set of three clauses of C” involving literals with
subscript ¢ (1 < i < m). Clearly |C/| = 3 and C contains no negated variable of U’
(1 <i < m). We claim that there is a truth assignment satisfying exactly one literal from
each clause of (' if and only if there exists a maximal truth assignment simultaneously
satisfying exactly one literal from k clauses of (", and no literals from the other 3m — k
clauses of C’, where k < K.

For, let f be a truth assignment such that f satisfies exactly one literal from every
clause of C. Then for each i (1 < i < m), exactly one of the cases f(a;) = T, f(b;)) = T,
f(c;) = T holds. Define a truth assignment g on U’ by setting ¢g(u) = f(u), forall u € U,
and by setting ¢g(d;) = F, for every ¢ (1 < i < m). Then it may be verified that for each
i (1 <i<m), gsatisfies exactly two clauses from each C/, and each one of the variables
a;, b;, c;, d; appears in at least one of these clauses. Hence U’(C;) = U’, so that g is
maximal by Proposition 7.7.1. Also, ¢ satisfies one literal from exactly K = 2m clauses
of €’ and no literals from the remaining 3m — K = m clauses.
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Conversely, suppose that ¢ is a maximal truth assignment satisfying exactly one literal
from k clauses of C”, and no literals from the other 3m — k clauses of C’, where k£ < K.
Suppose that i (1 <7 < m) is given. Clearly, at most one of g(a;) = T, g(b;) = T, g(c;) =
T holds, or else two literals from some clause are true. Moreover, if exactly one of these
cases does hold, then ¢ satisfies at least two clauses from ;. The only additional case
we need consider is that g(a;) = ¢(b;) = g(¢;) = F. In this case, g must satisfy all three
clauses from C/, i.e., g(d;) = T, or else g is not maximal. Since this would satisfy too
many clauses simultaneously, we conclude that this case cannot occur. Thus, we may
define a truth assignment f on U by setting f(u) = g(u), for all w € U. Then g satisfies
exactly one of a;, b;, ¢;, for each 7 (1 <7 < m), as required. R

7.8 Summary of complexity results for non graph-theoretic
optimisation problems considered in this chapter

Table 7.1 summarises the complexity results of the optimisation problems considered in
this chapter. In a table entry, entry, ‘N’ denotes NP-completeness for the decision version
of the relevant optimisation problem (NP-hardness in the case of MAXIMUM ~<;,-MINIMAL
BIN PACKING), and ‘P’ denotes polynomial-time solvabilty for the optimisation problem.
Appropriate references are indicated. An asterisk indicates that the result is new and
the proof is presented here for the first time, and a question mark indicates that the

corresponding problem is open.

The results presented in this chapter demonstrate that many interesting examples of
minimaximal and maximinimal non graph-theoretic optimisation problems may be formu-
lated using the framework of Definition 2.3.5. In addition to the open problems indicated
by Table 7.1, there remains much scope for the further study of non graph-theoretic min-
imaximal and maximinimal optimisation problems, formulated from non graph-theoretic
source optimisation problems and partial orders not considered in this chapter.

Some general conclusions, which refer to certain problems studied in this chapter, are

drawn in Section 9.6.
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Source Partial | Minimaximal/
problem order maximinimal
Source problem name complexity problem
complexity

LONGEST PATH N[92] < P(*)
LONGEST PATH N[92] < N(*)
UNCONSTRAINED LONGEST PATH N[92] < N(*)
UNCONSTRAINED LONGEST PATH N[92] < N(*)
MAXIMUM 3D-MATCHING N[92] C N(*)
MINIMUM TEST SET N[92] C N(*)
MINIMUM BIN PACKING N[92] ~<a N(*)
MINIMUM BIN PACKING N[92] < N(*)
LONGEST COMMON SUBSEQUENCE N[92] < N[81]
LONGEST COMMON SUBSEQUENCE (|X| = 2) N[161] < ?
SHORTEST COMMON SUPERSEQUENCE N[92] < N[81]
SHORTEST COMMON SUPERSEQUENCE (|X| = 2) N[188] < ?
SHORTEST COMMON SUPERSEQUENCE (m = 2) N[205] < P[81]
LONGEST COMMON SUBSTRING P[103, §7.6] | < P(*)
SHORTEST COMMON SUPERSTRING N[92] < ?
MAXIMUM KNAPSACK N[92] C N(*)
MAXIMUM 2SAT N[93] < N(*)
MAXIMUM ONE-IN-THREE 3SAT N[192, ()] | <. N(*)

Table 7.1: Summary of complexity results for non graph-theoretic optimisation problems

considered in this chapter.



Chapter 8

Minimaximal and maximinimal
reductions

8.1 Introduction

This chapter is concerned with a restricted form of Turing reduction relating to optimi-
sation problems. Given a source optimisation problem II, the reduction yields complexity
results for both II and minimaximal or maximinimal optimisation problems that may be
derived from II using appropriate partial orders.

A fundamental concept for reasoning about Turing reduction from an optimisation
problem, Iy, = (Z,,U;, 71, my, OPTy), to another, [y = (Z5,Us, 7o, ma, OPT5), is the notion
of a hypothetical subroutine S that solves Il,, given an instance 2’ € Z,. The reduction
uses a polynomial number of calls to .9, in order to solve a given instance z of II;. Thus if
S is a polynomial-time algorithm, then there is a polynomial-time algorithm to solve II;.
As a consequence, II; is NP-hard implies that II, is NP-hard, and II, is in P implies that
II; is in P.

In this chapter, we consider a restricted form of Turing reduction that uses only one
call to this hypothetical subroutine S. Given an instance z of II;, suppose that f(z) is
an instance of Ily, and S(f(z)) returns y € F5(f(2)), a globally optimal solution to Tls.
Suppose further that g(f(z),-) is a function (whose domain will be defined fully in due
course) that maps y to a globally optimal solution to Ty, i.e., g(f(2),y) € F;(z). Then if
f, g can be computed in polynomial time, they constitute a Turing reduction from II; to
115.

Placing extra constraints on f and ¢ allows us to construct a reduction that is relevant
to our study of minimaximal and maximinimal optimisation problems. For i = 1,2, let
<i" be a partial order defined on the feasible solutions F,(z;) for a given instance z; of
IT,. Let II” be the minimaximal or maximinimal optimisation problem obtained from
IT; and <;, using Definition 2.3.5. Suppose that, in addition to satisfying the properties
of the previous paragraph, the function g maps a <£(I)—optimal feasible solution of II,
to a <7-optimal feasible solution for a given instance z of Il;. Suppose further that ¢
preserves the measures of these feasible solutions in such a way that a globally optimal

153
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solution of TT;, maps to a globally optimal solution of 11/, i.e., y € (F3)*(f(2)) implies that
g(f(z),y) € (F))*(z). Then f, g constitutes a Turing reduction from II} to II5.

We call a polynomial reduction satisying the properties in the two previous paragraphs
an MM-reduction (to be defined formally in due course), standing for minimazimal /
maziminimal reduction.

For example, the transformation described in Section 4.2.6, from MINIMUM VERTEX
COVER DECISION to MAXIMUM INDEPENDENT SET DECISION gives rise to an MM-red-
uction. This transformation is based on the result of Proposition 4.2.8, namely that, given
a graph G = (V,F) and a subset V' of V, V' is a vertex cover for G if and only if
VAV’ is an independent set for G'. When we consider the partial orders of set inclusion,
defined on the feasible solutions of both problems, it is a consequence of Lemma 4.2.9 that
this transformation also constitutes a Turing reduction from MAXIMUM MINIMAL VERTEX
COVER to MINIMUM MAXIMAL INDEPENDENT SET!. For this result states that, given a
graph G = (V, F) and a subset V' of V| V' is a minimal vertex cover for G if and only
if VAV’ is a mazimal independent set for G’.

This chapter is devoted to the study of MM-reductions and is organised as follows. In
Section 8.2, we define formally an MM-reduction, and prove that the reduction does what
is required. In Section 8.3, we provide further examples of MM-reductions, some of which
correspond to polynomial reductions that have already appeared in the literature. Finally,
in Section 8.4, we present some closing remarks.

8.2 Definitions and general results for MM-reductions

In this section, we define formally an MM-reduction, and present some results that are
consequences of this definition. Recall that a minimaximal or maximinimal optimisation
problem is derived from a source optimisation problem II, using a partial order <* defined
on the feasible solutions of II, given an instance z of II. Thus, the MM-reduction will
be defined as a transformation from one pair, (IIy, <;), to another pair, (Il5, <), where
I1;,<i" are as defined in the previous sentence (i = 1,2 and z; is an instance of II;).
As in the case of PLS-reductions [136], the MM-reduction is concerned with preserving
the local optimality of feasible solutions. However, in order to be a Turing reduction
from a source optimisation problem, II;, to another, Il5, and a Turing reduction from a
minimaximal or maximinimal version of II; to a minimaximal or maximinimal version of
I1,, it is clear that an MM-reduction has to preserve more structure than that maintained
by a PLS-reduction.

Definition 8.2.1 Let I, = (Z,,U,, 71, m,0PTy) and [ly = (Zy,Us, Ta, My,0PTy) be two
optimisation problems. Suppose that, for i = 1,2, and for any z; € 7;, <" is a partial order
defined on F;(z;), satisfying POMM with respect to II,. Let Il} = (Z},U], =}, mj, OPT})

LOf course, the implicit reduction also gives rise to a Turing reduction from MAXIMUM INDEPENDENT
SET to MINIMUM VERTEX COVER, and from MINIMUM MAXIMAL INDEPENDENT SET to MAXIMUM MINIMAL
VERTEX COVER, so that both pairs of problems are NP-equivalent.
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and 11, = (Z4, U}, =4, mb, oPTS,) be the minimaximal or maximinimal optimisation problems
obtained from Iy, <, and from IIy, <5 respectively, using Definition 2.3.5. Then (ITy, <;)
is MM-reducible to (I1,, <), written (ITy, <1)aams (Ils, <5), if there exist two functions f, g
such that:

1. For any z € Z,, f(2) € Z, is computable in polynomial time.

2. For any z € Z; and for any y € F»(f(z)), g(f(2),y) € Fi(z) is computable in
polynomial time.

3. For any z € 7, and for any y € 7 (f(x)),
y € Fi(f(z)) = g(f(x),y) € F(x).
4. For any z € Z, and for any y € Fo(f(z)),
y € (F)"(f(2)) = g(f(2),y) € (F))"(2).

The pair of functions (f, g) is said to be an MM-reduction from (TI;, <) to (15, <5). W

Properties 1, 2 and 3 of Definition 8.2.1 imply that (f, ¢g) constitutes a restricted form of
Turing reduction from II; to Il,, as is demonstrated by the next result.

Theorem 8.2.2 Let 11, = (Z,,U;, 71, m1,0PTy) and 11y = (Zy,Us, 75, M, 0PTy) be two op-
timisation problems. Suppose that, for i = 1,2, and for any x; € T,, <} is a partial order
defined on F;(z;), satisfying POMM with respect to I1;. Suppose that (I1y, <)oy (T12, <5).
Then I, apI15.

Proof: Let (f, g) be an MM-reduction from (Il;, <) to (Il, <3), and let 2 be an instance
of T1;. Suppose that, for any instance z’ of Il,, S(2’) is a hypothetical subroutine that
finds some y’' € F;(z') in polynomial time. Consider the instance f(z) of Il,, and let
y € F5(f(z)) be the feasible solution returned by S(f(z)). Then g(f(z),y) € Fy(z).

Since ¢g(f(z),y) has been computed in polynomial time, the result follows. B

Corollary 8.2.3 Let 11,1l and <, <, be defined as in Theorem 8.2.2, and suppose that
(Iy, <1)anmr (s, <o) Then

1. 11y is NP-hard implies that 11, is NP-hard.
2. 11y is in P implies that 11, is in P.

Properties 1, 2 and 4 of Definition 8.2.1 also imply that (f, ¢) constitutes a restricted form

of Turing reduction from II} to IT7,, as we now show.

Theorem 8.2.4 Let 11, = (Z,, U, 71, m,0PTy) and 11y = (Zs,Us, 7o, ma,0PT) be two
optimisation problems. Suppose that, for i = 1,2, and for any z; € T;, <7* is a partial order
defined on F;(z;), satisfying POMM with respect to 11,. Let 11} = (Z7, U], ], m;, OPT})
and 1, = (I}, U}, 7, mi, OPT,) be the minimazimal or maziminimal optimisation problems
obtained from 11y, <1, and from 11y, <, respectively, using Definition 2.53.5. Suppose that
(T, <1)anms(Tla, <o), Then I arllL,.
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Proof: Let (f, g) be an MM-reduction from (Il;, <) to (Il, <3), and let 2 be an instance
of IT}. Suppose that, for any instance z’ of Il}, S(2’) is a hypothetical subroutine that
finds some y’ € (F3)*(2’) in polynomial time. Consider the instance f(z) of I}, and let
y € (F)*(f(z)) be the feasible solution returned by S(f(z)). Then g(f(z),y) € (F|)*(z).

Since ¢g(f(z),y) has been computed in polynomial time, the result follows. B

Corollary 8.2.5 Let 11,115, <1, <5 and I, 11}, be defined as in Theorem 8.2.4, and sup-
pose that (I1y, <1)ayms (o, <2). Then

1. Il is NP-hard implies that 11}, is NP-hard.
2. 115 is in P implies that 11} is in P.

Note that we do not attempt to introduce a new complexity class, based on a notion
of MM-completeness. The objective of Definition 8.2.1 is to define sufficient conditions
under which a Turing reduction provides us with an extra complexity result. As well as
formulating a new reduction that is an MM-reduction, we have found several reductions
in the literature that are MM-reductions; doubtless there are many more. Some examples
of MM-reductions are given in the following section.

8.3 Examples of MM-reductions

In the following subsections, we give a number of examples of MM reductions from one
(optimisation problem, partial order) pair to another. The MM-reductions that we present
are summarised in Figure 8.1. If the pair (II;, <;) is the parent of the pair (Il5, <) in the
tree shown, then an MM-reduction is given from (II;, <;) to (II,, <5) here. Throughout
the section, we find it convenient to use the abbreviations MAX CLIQUE, MAX IND SET and
MIN VERTEX COVER for the problems MAXIMUM CLIQUE, MAXIMUM INDEPENDENT SET
and MINIMUM VERTEX COVER, respectively. When reasoning about the local optimality
of a feasible solution, the partial order concerned should be clear from the context, since
the pairs (II;, <;) and (II5, <,) involved in the MM-reduction will be defined. Thus, in
the forthcoming sections, the terms ‘maximal’ and ‘minimal’ may not always be prefixed

with a partial order symbol.

8.3.1 One-in-three 3SAT to clique

In this section, we formulate a reduction from MAXIMUM ONE-IN-THREE 3SAT to MAX
CLIQUE. The components of the former problem were defined in Section 7.7.3, and those
of the latter problem were defined in Section 4.3.2.

Theorem 8.3.1 (MAXIMUM ONE-IN-THREE 3SAT,<;)a s (MAX CLIQUE, C).

Proof: Suppose that U (a set of variables) and C' = {C}, Cs, ..., C,} (a set of clauses
over U), where |C;| = 3 and C; contains no negated variable of U (1 < i < m), is an
instance z of MAXIMUM ONE-IN-THREE 3SAT. Due to the restriction on the instance, the
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<MAXIMUM ONE-IN-THREE 3SAT, {t>

MAX CLIQUE, C>

A

MAX IND SET, C> MAXIMUM SET PACKING, C >
LCS <<> MIN VERTEX COVER, C>
<MINIMUM SET COVER, C> < MINIMUM HITTING SET, C>

Figure 8.1: Tree structure, showing MM-reductions presented in this chapter.

word ‘variable’ is used when the term ‘literal” would otherwise be used, for the remainder

of the proof. Consider the following reduction:

(U, CYy— G, where G = (V,FE)
V=A{(u,i):ue UAN1<i<mAueC}
(u,i) e VA(v,j) e VAI#E]A
E=q{(u,1),(v,5)}: (u#vV
Vi<r<me{u,v}Z C,)
g(G,): 8" — &, where &(u) =T, (u,i) € S for some i (1 <i<m)
&(u) = F, otherwise
where 5 D 5" and S is a maximal clique in G.

Define also the following function:

h((U, C),-) - &= {(u,i) € V2 §(u) = T}
To show that (f, ¢) is an MM-reduction, we prove the following:

1. If £ is a truth assignment, satisfying exactly one variable from k clauses of €| and
satisfying no variables from the remaining m — k clauses of C, then A((U, C'),€) is
a clique in G of size k.

2. If §"is a clique in G of size ¥/, then ¢( G, S’) is a truth assignment, satisfying exactly
one variable from k clauses of (', and satisfying no variables from the remaining m—#%
clauses of C', where k > k’.
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3. If £ is a maximal truth assignment, satisfying exactly one variable from k clauses
of (', and satisfying no variables from the remaining m — k clauses of (', then

h((U, C),£) is a maximal clique in G of size k.

4. 1If S is a maximal clique in G of size k, then ¢(G,S) is a maximal truth assignment,
satisfying exactly one variable from k clauses of (', and satisfying no variables from
the remaining m — k clauses of C'.

Proof of (1): Suppose that £ is a truth assignment, satisfying exactly one variable from k
clauses of ') and satisfying no variables from the remaining m — k clauses of C'. Define

S={(u,i)e V:&u)=T}.

If (u,7) and (v,j) are distinct members of S, then i # j, so that [S| = k, by definition of
&. Now suppose that v # v and {u, v} C C, for some r (1 < r < m). Then £ satisfies two
variables of C,, a contradiction. Thus 5 is a clique in G.

Proof of (3): Suppose that £ is a maximal truth assignment, satisfying exactly one variable
from k clauses of € and satisfying no variables from the remaining m — k clauses of C'.
As in the proof of (1) above, we form a clique S of size k. Suppose that S is not maximal.
Then there is some (v,j) € V\S such that SU{(v,j)}is a clique. Thus &(v) = F. Also
£(C;) = F, for otherwise {(w) = T for some w € C;\{v}. Hence (w,j) € S, which
contradicts the clique property of SU{(v,j)}. Now let (u,i) € S. Then i # j. Also u # v
as {(u) = T and £(v) = F. Thus as SU {(v,j)} is a clique then v ¢ ;. Define a truth
assignment & as follows:

§(w) =&(w), we U\{v}

(w)y=T, w = v.
Thus & agrees with £ on the variables of C¢, since v ¢ C}, for any C; € C¢. Also, £ satisfies
exactly one variable from each clause in Cg, and no variables from each clause in C\Cy.
Since the inclusion C; U {C;} C Cg holds, £ <7 &, which contradicts the maximality of &.

Thus S is maximal.

Proof of (2): Suppose that S’ is a clique in G, where |S| = &’. Form S, a maximal clique
in G, where S D 5’, by possibly adding more vertices to S’. Let k = |S|; clearly k > &’.
The remainder of the proof of this case is covered by the proof of (4) below.

Proof of (4): Suppose that S is a maximal clique in G, where |S| = k. If (u,7) and (v,j)
are distinct members of S, then i # j. Let (u,i) € S, and let v € C;\{u}. Then (v,j) ¢ S
for any j (1 < j < m), for otherwise {(u, i), (v,7)} € F as {u,v} C C}, contradicting the
clique property of 5.

Now suppose that there is some [ (1 <[ < m) such that (w,l) € V\S for all w € C.
Suppose further that there is some (v,l) € V\S such that (v,j) € S for some j (1 <j <
m). Given any (u,i) € S, if u # v then {u,v} ¢ C, for all r (1 < r < m), for otherwise
{(u,i),(v,j)} ¢ E, contradicting the clique property of S. Thus S U {(v,[)} is a clique,
contradicting the maximality of S. Hence no such (v, ) exists.
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Thus if we define
U'={uelU:(ui)e S forsomei (1 <i<m)}
then we obtain a truth assignment £ by setting

Ewy=T, wel’
Ew)y=F, weU\U.

Moreover, £ satisfies exactly one variable from k clauses of ', and £ satisfies no variables
from the remaining m — k clauses. Now suppose that £ is not maximal. Then there is
some truth assignment ¢’ such that & <7 &. Let C; (1 < j < m) be a clause such that
&(C;) = F and ¢(C;) = T. Then there is some variable v € C; such that £(v) = F and
&(v) = T. Hence (v,j) € S. Now let (u,i) € S. Clearly i # j, since {(C;) = T and
&(C;) = F; clearly also u # v, since &(u) = T and {(v) = F. Also, for any r (1 < r < m)
such that u € O}, then C, € C;. As £’ agrees with £ on the variables of C¢, then v ¢ (.
Thus SU{(v,j)} is a clique, contradicting the maximality of S. Hence £ is maximal.
8.3.2 Clique to independent set

In this section, we consider a reduction from MAX CLIQUE to MAX IND SET. The compo-
nents of the latter problem were defined in Section 4.2.6.

Theorem 8.3.2 (MAX CLIQUE, C)avy (MAX IND SET, C).

Proof: Let G = (V, E) be an instance of MAX CLIQUE. Define the following reduction:

f:G— G°
g(G,): V= V.

The result follows from Proposition 4.3.3 and Lemma 4.3.4. B

8.3.3 Clique to set packing

In this section, we consider a reduction from MAX CLIQUE to MAXIMUM SET PACKING
(whose decision version is problem SP3 of [92]). The latter problem is defined as follows.

Source problem: MAXIMUM SET PACKING= (Z,U,r, m,0PT), where
e 7 ={C: Cis afinite collection of finite sets}

o U(C)=P(C)

(C,C") & " is a set packing, i.e.,VC;,,C; € C'o(i#j)= C;NC, =0

m(C, ") =[]
® OPT = maxX.

Minimaximal problem name: MINIMUM MAXIMAL SET PACKING.
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Theorem 8.3.3 (MAX CLIQUE, C)a (MAXIMUM SET PACKING, C).

Proof: Let G = (V, F) be an instance of MAX CLIQUE, where V = {v, v3,...,v,}. Define
the following reduction (due to Karp [140]):

f:G— C, where C={C,C,...;C,}

Ci = {Hvi, v} {vi, v} € B} (1 <i < n)
9(07 ) : {Ci17 Ci27 ey Cik} — {’Ul‘l7 Vg e ey Uik}~

To see that this reduction preserves feasibility and measure, suppose that {v;, v,,..., v, }
is a clique in &, and {v,,v,} € C; N, for some p,q (1 < p < ¢ < k) and r,s
(1 < r < s < n). Then without loss of generality {v,,v,} € C; implies that r = iy,
and {v,,v,} € C; implies that s = i,. Thus {v;,v;,} ¢ F, a contradiction. Hence
{C,, Ciyy ..., Ci} is a set packing.

Conversely, suppose that {C;,, C,, ..., C;, } is aset packing and let p, ¢ (1 < p < ¢ < k)
be given. Suppose {v;,v;,} € E. Then {v;,,v,} € C; N C;, a contradiction. Thus

{0, Vipy ..., v, } is a clique in G.

By the definitions of f and g, it is easy to see that the reduction also preserves the
maximality of feasible solutions. Thus (f, g) satisfies Properties 1-4 of Definition 8.2.1,
and is therefore an MM-reduction. B

Corollary 8.3.4 MAXIMUM SET PACKING DECISION and MINIMUM MAXIMAL SET PACK-
ING DECISION are NP-complete, even if |C;| = 3, for all C; € C.

Proof: Both problems are clearly in NP. From Section 4.2.6, we know that both 5, and
By are NP-complete for cubic graphs. Thus, from Section 4.3.2, we deduce that both w
and w™ remain NP-complete for graphs that are regular of degree n — 3 (where n = |V|).
Thus, by setting this restriction on the instance of MAX CLIQUE in Theorem 8.3.3 above,
we obtain the stated result. B

8.3.4 Independent set to LCS

In this section, we consider a reduction from MAX IND SET to LcS. The components of
the latter problem were defined in Section 7.5.1.

Theorem 8.3.5 (MAX IND SET, C)ayns (LCS, ).

Proof: Let G = (V, F) be an instance of MAX IND SET, where V = {v;, v,...,v,} and F =
{€1,€,...,e,}. The following reduction is due to Fraser et al. [81] (the transformation is
similar to one defined by Maier [161], from MIN VERTEX COVER to LCS):

f:G— (9,5, where S ={s0,8,...,5n}
So = (V1vg...0,)
S = (V1o Uy Upg1 v oo VgV oo Vg1 Vg1 -+ - Up )y
where €, = {v,,v,} (1 <i<m,1<p<qg<n)
Y=V
g((S, ), ) s (v vy o vy = {0, Uiy U )
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To demonstrate that this reduction preserves feasibility and measure, suppose that I =
{v;,, Uiy, - .-, v, } 18 an independent set in G. Assume, without loss of generality, that
iy < iy < ...< ig. Now consider the string s = (v, v, ...v;,). Clearly s < s5. Now let i
(1 <i < m) be given, and suppose that e; = {v,,v,}, for some p,¢ (1 < p < ¢ < n). If
v, ¢ I and v, ¢ I, then s is a subsequence of both halves of s;. If v, € I then v, & I by
independence, so that s is a subsequence of the second half of s,. Similarly, if v, € I then
v, € I, so that s is a subsequence of the first half of s;,. Thus s < 5.

Conversely, suppose that s = (v;,v;, ... v;,) is a common subsequence of S. As s < s,
then i < iy < ... < i;. Consider the set I = {v;, vi,,..., v, }. Now let i (1 < i < m) be
given, and suppose that e; = {v,, v,}, forsome p,¢ (1 <p<qg<n). Ifv,€land v, €1
then v,v, € s. But v,v, < s;, so that s <« s,, a contradiction. Thus at most one of v,, v,

is in I, which implies that [ is independent.

The reduction also preserves maximality, which may be seen as follows. Suppose
that I = {v;,,v,,...,v,} is a maximal independent set in . Assume, without loss of
generality, that i < iy < ... < i, and let s = (v; v;,...v,). By the first half of the
feasibility argument (using [), s < 5. Suppose that s is not maximal; then there is some
s” such that s < §” < 5. As s” < sg, there is some j (1 < j < n) such that (v;) < s” but
(v;) & s. Thus v; ¢ I. In addition, there is some string s, such that s < ¢/ < s” < 5,
where exactly one of the following cases holds:

1. s" = (v, v, ... 0;).

2. 8" = (v, .0, 00, ... v,) forsome r (1 <4 <k —1).

3. 8" = (v, v, ... 0,0)).

By the second half of the feasibility argument (using s’ from the relevant case above),
I'U{wv;} is an independent set, which contradicts the maximality of I. Thus s is maximal.

Conversely, suppose that s = (v;,v;,...v;) is a maximal common subsequence of S.
As s € s, then iy < iy < ... < i,. By the second half of the feasibility argument (using
s), I = {v;,,v,,...,v;,} is independent. Suppose that I is not maximal; then there is
some j (1 < j < n) such that I U {v;} is independent. As j # i, for any p (1 < p < k),
exactly one of the following three cases holds:

1. j < iy. Let 8" = (vjv;,v;, ... 0;,).
2. 4, < j <ipyq forsome r (1 <7 <k —1). Let s' = (v;, ...0v, 00, , ...0;,).
3. J > i Let 8" = (v, v;,...0,0)).

Then s < s’. By the first half of the feasibility argument (using I U {v;}), s’ < S, which
contradicts the maximality of s. Thus I is maximal.

Thus (f, g) satisfies Properties 1-4 of Definition 8.2.1, and is therefore an MM-reduction.
|
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8.3.5 Independent set to vertex cover

In this section, we consider a reduction from MAX IND SET to MIN VERTEX COVER. The
components of the latter problem were defined in Section 4.2.6.

Theorem 8.3.6 (MAX IND SET, C)a (MIN VERTEX COVER, C).

Proof: Tet G = (V,FE) be an instance of MAX IND SET, where n = |V|. Define the
following reduction:

f:G— G
g(G,-): V= VAV

The result follows from Proposition 4.2.8 and Lemma 4.2.9. B

8.3.6 Vertex cover to set cover

In this section, we consider a reduction from MIN VERTEX COVER to MINIMUM SET COVER
(whose decision version is problem SP5 of [92], referred to there as MINIMUM COVER). The
latter problem is defined as follows.

Source problem: MINIMUM SET COVER= (Z,U, 7, m,OPT), where
« T={(5,C): C CE(S)}
o U((S,C))=P(C)

7((S,C), ") < (" is a set cover for 9, i.e.,Vs€ Sed(C, € C"esc

m(<57 C>7 C/) = |C/|
e OPT = min.
Maziminimal problem name: MAXIMUM MINIMAL SET COVER.
Theorem 8.3.7 (MIN VERTEX COVER, C)a (MINIMUM SET COVER, C).

Proof: Let G = (V, F) be an instance of MIN VERTEX COVER, where V = {v;, vq, ..., v,}.
Define the following reduction (due to Karp [140]):

f:G—(S,C), where S=F

C=1{Cy, Cor..., C)

Ci={vi, v} {vi, v} € B} (1 <i < n)
g((S,CY, ) {C i, Copy oo, Ciy = {0iy, vigy ooy v -

To see that this reduction preserves feasibility and measure, suppose that {v;, v,,..., v, }
is a vertex cover in (7. Let e € E be given, where e = {v,, v,} for some p, ¢ (1 < p, ¢ < n).
Then without loss of generality, p = i, for some r (1 < r < k). Thus e € (;, so that
{C,, Ciyy ..., Ci} is a set cover for F.

Conversely, suppose that {C;,, C,,,..., C;,} is a set cover for E. Let e € F be given,
where e = {v,, v,} for some p,¢ (1 < p,q < n). Then e € C; for some r (1 < r < k).
Without loss of generality, p = i,, so that {v;,, v,,,..., v, } is a vertex cover for G.
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By the definitions of f and g, it is easy to see that the reduction also preserves the
minimality of feasible solutions. Thus (f, ¢) satisfies Properties 1-4 of Definition 8.2.1,
and is therefore an MM-reduction. B

Corollary 8.3.8 MINIMUM SET COVER DECISION and MAXIMUM MINIMAL SET COVER
DECISION are NP-complete, even if |C;| = 3, for all C; € C.

Proof: From Section 4.2.6, we know that both a and o are NP-complete for cubic graphs.
Thus, by setting this restriction on the instance of MIN VERTEX COVER in Theorem 8.3.7
above, we obtain the stated result. W

8.3.7 Vertex cover to hitting set

In this section, we consider a reduction from MIN VERTEX COVER to MINIMUM HITTING
SET (whose decision version is problem SP8 of [92]). The latter problem is defined as
follows.

Source problem: MINIMUM HITTING SET= (Z,U, 7, m,OPT), where
e 7T ={(5,C): C CP(9)}
o U((S, C)) =P(5)
e 7((5,(C),5") < 5 is a hitting set for C,1.e.,VC, € CeS'NC;, # D
o m((5,C),5) =15
e OPT = min.
Maziminimal problem name: MAXIMUM MINIMAL HITTING SET.
Theorem 8.3.9 (MIN VERTEX COVER, C)a (MINIMUM HITTING SET, C).

Proof: Let G = (V, F) be an instance of MIN VERTEX COVER, where V = {v, va,...,0,}
and F = {ey, es,...,€,}. Define the following reduction (due to Garey and Johnson [92,
p.64]):
f:G—(S,C), where S=1V
C={C,0Cy...,CL}
Ci=AHvy,v,: €, ={v,,v,}} (1 <i < m)
g((S,C),): VI V.

This reduction preserves feasibility, for it is clear that, given a set of vertices V' C V, V’
is a vertex cover for F if and only if V' is a hitting set for C'. By the definitions of f and
g, it is easy to see that the reduction also preserves the minimality of feasible solutions,
and in addition, the measure of feasible solutions. Thus (f, g) satisfies Properties 1-4 of
Definition 8.2.1, and is therefore an MM-reduction. B

Corollary 8.3.10 MINIMUM HITTING SET DECISION and MAXIMUM MINIMAL HITTING
SET DECISION are NP-complete, even if |C;| = 2, for all C; € C.
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8.4 Concluding remarks relating to MM-reductions

The range of MM-reductions presented in Section 8.3 is obviously far from exhaustive.
However, by building up a tree of MM-reductions (shown in Figure 8.1) in the spirit of
the one developed by Karp [140] for polynomial reductions, we have at least formulated
a variety of MM-reductions pertaining to optimisation problems from several Garey and
Johnson subject categories, and involving several partial orders. The MM-reduction from
(MAXIMUM ONE-IN-THREE 3SAT,<;) to (MAX CLIQUE, C) is a new reduction, whereas the
other MM-reductions have been constructed from polynomial reductions appearing in the
literature. A perhaps desirable addition to Figure 8.1 would be an MM-reduction to the
pair (CHROMATIC NUMBER, <), where <“ is a suitable partial order defined on the proper
colourings of G, such as partition merge or partition redistribution, given an instance G
of CHROMATIC NUMBER.

For many of the MM-reductions defined in Section 8.3, showing that the reduction
satisfies Properties 3 and 4 of Definition 8.2.1 is immediate, since ¢ is essentially an
identity function on feasible solutions. This is the case for the MM-reductions given by
Theorems 8.3.2, 8.3.3, 8.3.7 and 8.3.9. In the case of the MM-reduction of Theorem 8.3.6,
showing that Properties 3 and 4 of Definition 8.2.1 are satisfied is also a simple matter,
using the notion of complement-related families of sets [196], which may be defined as

follows.

Definition 8.4.1 ([196]) Let X be some set, and let F,(X), F2(X) be two families of
subsets of X. Then F;(X) and F5(X) are complement-related if, whenever S C X, we
have that S € Fi(X) if and only if X\S € Fo(X).

In the context of the MM-reduction of Theorem 8.3.6, X is the set of vertices V of a
graph G = (V, E), F;(V) is the set of all vertex covers of G, and F5( V) is the set of all
independent sets of G. Thus in this example, 7, (V) and F5(V) are complement-related,
which demonstrates that Property 3 of Definition 8.2.1 holds for the MM-reduction of
Theorem 8.3.6. The following result indicates that complement-related sets have further

implications for our study of MM-reductions.

Proposition 8.4.2 ([196]) Let X be some set, and let F(X), Fo(X) be two families of
subsets of X. For i = 1,2, let F;*(X) be the set of mazimal (with respect to the partial
order of set inclusion) elements of F;(X), and let F (X) be the set of minimal (with
respect to the partial order of set inclusion) elements of F;(X). Suppose that F,(X) and
Fy(X) are complement-related. Then so are F(X) and Fy (X), and so are F; (X) and
FH(X).

Thus, in the context of the same example, F; (V) and F; (V) are complement-related,
which demonstrates that Property 4 of Definition 8.2.1 holds for the MM-reduction of
Theorem 8.3.6.

In general, suppose that Il;,Il, are two optimisation problems with the same set of
instances 7, and for a given instance z € 7, suppose that the feasible solutions of II;
and TIl,, namely Fi(z) and Fy(z) respectively, are complement-related. Let f be the
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identity function on Z, and let ¢ map a feasible solution of Fs(z) to its complement in
z, for any € Z. Then (f, g) constitutes an MM-reduction from (Il;, C) to (Il,, C), by
Proposition 8.4.2. Tt ought to be possible to find many other polynomial reductions that
are MM-reductions by considering pairs of optimisation problems whose feasible solutions
are complement-related families of sets.



Chapter 9

Further issues relating to
minimaximal and maximinimal
optimisation problems

9.1 Introduction

In the foregoing chapters, our study of minimaximal and maximinimal optimisation prob-
lems has focused mainly on the algorithmic complexity of various source optimisation
problems, together with their minimaximal or maximinimal counterparts. In this chap-
ter we investigate further general issues that arise from the study of minimaximal and

maximinimal optimisation problems.

In Sections 9.2-9.4, we examine the problem of testing a feasible solution of a given
optimisation problem II for local optimality, and finding a locally optimal feasible solution
of T, with respect to a partial order defined on the feasible solutions for a given instance
of II. In particular, we focus on the testing and finding problems where Il is BIN PACKING
and CHROMATIC NUMBER, together with certain partial orders.

Recall that a minimaximal or maximinimal optimisation problem may be obtained
from a source optimisation problem II by defining a partial order on F(z), the set of
feasible solutions for a given instance 2 of TI. In Section 9.5, we consider the effect of
defining our partial orders on U(z), the universal set of possible solutions, rather than on
F(z), for a given instance z of II. We show that there is a class of partial orders and
optimisation problems for which we may define the partial order < on U(z), with the
result that the <"-optimal solutions are the same as those obtained by defining <” on
F(z). We also discuss why the framework of Definition 2.3.5 nevertheless demands that
<" should be defined on F(z), rather than on #/(z), in general.

Finally, in Section 9.6, we present some conclusions and open problems relating to

minimaximal and maximinimal optimisation problems in general.

166
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9.2 Testing feasible solutions for local optimality, and find-
ing locally optimal feasible solutions

Any polynomial-time algorithm that solves a minimaximal (respectively maximinimal)
optimisation problem must involve finding, in polynomial time, a solution that is maximal
(respectively minimal) with respect to the partial order concerned. Similarly, any proof
that a minimaximal (respectively maximinimal) problem is in NP must involve verifying,
in polynomial time, that a given feasible solution is maximal (respectively minimal). Thus
the issues of testing a feasible solution for maximality or minimality, and finding maximal
or minimal feasible solutions, are of paramount importance in our study of the complexity
of minimaximal and maximinimal optimisation problems.

For most of the optimisation problems Il and partial orders <” that we have studied
in this thesis, the problem of testing a feasible solution of Il for <"-optimality is a simple
procedure, based on a polynomial-time checkable criterion. For example, in the case of
MINIMUM MAXIMAL CLIQUE (defined in Section 4.3.2), given a graph G and a clique S in
G, we test for the existence of a vertex v € V\S adjacent to every w in S. If such a v
exists, then S'U {v} is a clique, and if no such v exists, then S is C“-maximal.

Suppose that IT and <” are as above, and there is a polynomial-time procedure for
testing a feasible solution of Il for <”-optimality. (In this chapter, we assume that such a
testing algorithm returns ‘yes’ if the feasible solution is <”-optimal, or if not, provides a
feasible <”-predecessor or <”-successor as appropriate.) Suppose further that the range
of values that the measure function of II can take is bounded by a polynomial in |z|, for a
given instance z of II. Then it follows by POMM that a series of iterations of the implicit
algorithm for testing a feasible solution for <”-optimality constitutes a polynomial-time
procedure for finding a <”-optimal solution. [Note that, in the case of weighted optimisa-
tion problems, the ‘measure’ function to consider for the purposes of this paragraph is the
number of elements that a feasible solution contains, rather than the total weight/total
measure or total value of a feasible solution. For example, in the case of LONGEST PATH
and UNCONSTRAINED LONGEST PATH (defined in Sections 7.2.1 and 7.2.2 respectively),
the ‘measure’ function to be considered here is the number of edges in the path, rather
than the total length of a given path in the graph that satisfies the constraints. Similarly,
in the case of MAXIMUM KNAPSACK (defined in Section 7.6.1), the ‘measure’ function to
be considered here is the number of elements in the knapsack packing, rather than the

sum of the values of the elements in a knapsack packing'.]

It is not always the case that the problem of testing a feasible solution of II for <”-
optimality is polynomial-time solvable. Recall from Section 2.4 the definitions of the partial

'In the case of TRAVELLING SALESMAN (defined in Section 1.5.2), we may define (using Theorem 2.5.1)
a partial order < on the feasible solutions of this problem, for a given instance z, based on the 2-opt
neighbourhood (defined in Section 1.5.2). Testing a travelling salesman tour for <”-optimality may be
achieved in polynomial time by considering pairs of edges in the tour. However, no measure function for
TRAVELLING SALESMAN is known that satisfies POMM with respect to <, and whose range of values is
bounded by a polynomial in |z|. Not surprisingly, TRAVELLING SALESMAN under the 2-opt neighbourhood
is conjectured to be PLS-complete (discussed in Section 1.5.4).
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orders of partition merge and partition redistribution, denoted <7 and <7 respectively.
In Section 9.3, we show that, for a given instance z of MINIMUM BIN PACKING (defined
in Section 7.4.1) and a given bin packing P of the objects of z, the problem of testing
P for <j-minimality is NP-hard. However, we show that the problem of finding a <}-
minimal bin packing is polynomial-time solvable. We also show that the problems of
testing a bin packing for <Z-minimality and of finding a <%-minimal bin packing are both
polynomial-time solvable.

In Section 9.4, we consider the partial orders <7, (k > 2) and <, (k > 1) (these
partial orders are defined in Section 2.4), defined on the set of all proper colourings of
a given graph . We investigate the problems of testing proper graph colourings for
minimality, and of finding minimal proper graph colourings, with respect to these partial
orders. For completeness, we also consider the complexity of the associated maximinimal
optimisation problems in each case. Our algorithmic results for testing and finding show
where the thresholds between polynomial-time solvability and NP-hardness lie, within the
hierarchy of problems corresponding to the two partial order families. In particular, we
show that the partial order <fk (where k£ > 4 and =z is ‘a’ or ‘0’) satisfies the property that
both the problems of testing a proper graph colouring for <fk—minimality and of finding
a <fk—minimal proper graph colouring are NP-hard, for a given graph G.

Note that in Sections 9.3 and 9.4, an NP-hardness result for the problem of testing
a given feasible solution s of II for <”-optimality will be demonstrated by proving NP-

completeness for the complement of the decision problem ‘is s <*-optimal?’.

9.3 Testing a bin packing for minimality, and finding mini-
mal bin packings

Consider <7 the partial order of partition merge, and <7, the partial order of partition
redistribution, defined on the source MINTIMUM BIN PACKING problem (whose components
were defined in Section 7.4.1), for a given instance z. Testing a bin packing P for <Z-
minimality can be achieved in polynomial time. For, we need only consider each pair of
bins #,j in P, and check that the two bins cannot be merged without overfilling the bin
capacity. If this is the case, then P is <7-minimal; otherwise we may merge two bins 4, j,
in order to construct a bin packing P’ for which P’ <7 P.

On the other hand, the problem of testing a given bin packing for <i-minimality is
NP-hard, as we show in this section. We also show that the problem of finding a <3-
minimal bin packing is polynomial-time solvable — this is perhaps an unexpected result,
given the NP-hardness result for the testing problem. The problem of finding a <%-minimal
bin packing is also polynomial-time solvable. This follows either from the algorithm for
finding a <j-minimal bin packing, together with the fact that a <j-minimal bin packing is
<7-minimal, or follows by an iteration of the implicit algorithm for testing a bin packing
for <7-minimality, as described in the previous paragraph.

We now define two decision problems that will be used in order to prove the NP-

hardness result for the problem of testing a bin packing for <7-minimality.
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Name: <,-MINIMAL BIN PACKING TEST.

Instance z: Finite set U, each u € U with associated size s(u) € Z™, integer B € Z™
and bin packing P of U into k bins Uy, Us,..., U, for some k € Z™*, such that
Vi<i<ke > s(u)<B.

u€ U;
Question: Whether P is <7-minimal.

Name: RESTRICTED MINIMUM BIN PACKING DECISION.

Instance: Finite set U, each u € U with associated size s(u) € Z* and integers
B,K € Z7 such that »_ s(u) > 2B.

uelU
Question: Whether there is a partition Uy, Us,..., U, of U for k < K such that

nggk.Zs(u)gB.

u€ U;

Let <,-MINIMAL BIN PACKING TEST® denote the complement of the problem <,-MINIMAL
BIN PACKING TEST. We firstly resolve the complexity of the RESTRICTED MINIMUM BIN
PACKING DECISION problem.

Lemma 9.3.1 RESTRICTED MINIMUM BIN PACKING DECISION is NP-complete.

Proof: Clearly, RESTRICTED MINIMUM BIN PACKING DECISION is in NP. To show NP-
hardness, we give a transformation from MINIMUM BIN PACKING DECISION (defined in
Section 7.4.1). Suppose we have an instance of MINIMUM BIN PACKING DECISION: objects

ay, ao, ..., a,, each with size s(a;) € Z*, bin capacity B € Z* and target number of
bins K € Z*. Construct the following instance of RESTRICTED MINIMUM BIN PACKING
DECISION: objects ay, as, ..., a, ., bin capacity B’ € Z* and target number of bins K’ €
Z*, where

s(al) = s(a;), 1<i<n,

s(a}) = B, i=n+1,n+2,

B’ = B and

K’ = K+2.

n+2

Then Zs(aé) > 2B’. Clearly, for any k& < K, objects aj, as,...,a, have a packing

1=1
into bins Uy, U, ..., Uy if and only if objects aj, a3, ..., a; , have a packing into bins

U, Uy ...y Ugyo (where k+2 < K’). I

We now prove that testing a bin packing for <7-minimality is NP-hard, for a given bin

packing instance z.
Theorem 9.3.2 <,-MINIMAL BIN PACKING TESTC is NP-complete.

Proof: <,-MINIMAL BIN PACKING TESTC is in NP, for, given a bin packing and a re-
distribution of one bin in this packing amongst the remaining bins, we may verify, in
polynomial time, that the resulting packing is legal. To show NP-hardness we give a
transformation from RESTRICTED MINIMUM BIN PACKING DECISION. Suppose we have an
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Figure 9.1: Bin packing arrangement in the constructed instance of <,-MINIMAL BIN
PACKING TESTC.

instance of RESTRICTED MINIMUM BIN PACKING DECISION: bin capacity B € Z7, tar-
get number of bins K € Z* and objects ay, as, ..., a,, each with size s(a;) € Z*, such

n
that Z s(a;) > 2B. Contruct an instance of <;-MINIMAL BIN PACKING TEST as follows:
i=1

object_s ay, ay, ..., ah g, bin capacity B’ € ZF, where
B’ = ans(ai),
s(al) = ;:(;i), 1 <7< n,
s(al) = B'—B, n+1<i<n+K.
We also construct a packing of ay, as, ..., a;  ; into K41 bins U], U, ..., Ui, as follows:
e Into bin U] insert aj, al, ..., a).

e Into bin U] insert a;,,_;, for 2 <7 < K + 1.

This bin packing is illustrated in Figure 9.1. Clearly, bin U] is full, whilst bin U] has
space B left, for 2 < i < K 4+ 1. The claim is that a;, as, ..., a, has a packing into k
bins Uy, Us, ..., U, of capacity B, for some k£ < K, if and only if one of the bins U

can be redistributed amongst the other K bins Uj,..., U/_y, U/ ,..., Uy, for some i
(I1<i<K+1).

For, a packing of a1, as, ..., a, into Uy, Us, ..., Uy, for some k < K, corresponds to a

redistribution of U{ amongst k of the remaining K bins Uy, Us, ..., Up_;.

Conversely, if one of the bins U/ can be redistributed then we must have ¢ = 1. For
B’ — B > B by assumption, so that no U/, for ¢ > 1, may be redistributed amongst the
other K bins. The redistribution of U] among Uj, Uy, ..., Uy, corresponds to a packing
of ay, as,...,a, into at most K bins of capacity B. i

Perhaps surprisingly, it turns out that, for an arbitrary bin packing instance z, the problem
of finding a <7-minimal bin packing is polynomial-time solvable. In order to demonstrate
this, we define the following search problem:

Name: <,-MINIMAL BIN PACKING SEARCH.
Instance z: Finite set U, each u € U with associated size s(u) € Z* and integer B € Z™.
Output: A <7-minimal bin packing.
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. ap
u, U, U, U,

Figure 9.2: Bin packing arrangement produced by AFD after iteration p.

Theorem 9.3.3 <,-MINIMAL BIN PACKING SEARCH is polynomial-time solvable.

Proof: Let ay, as, . . ., a,, each with size s(a;) € Z* (1 < i < n),and B € Z* (bin capacity)
be an instance z of <,-MINIMAL BIN PACKING SEARCH. Suppose, without loss of generality,
that the objects have indices such that s(a;) > s(as) > ... > s(a,). Consider the following
algorithm, which we call Any Fit Decreasing (AFD). During iteration i (1 < i < n),
suppose that objects ay, as, ..., a;_; have been packed into bins Uy, Us, ..., U, (for some
r > 0). The algorithm places @, into any bin U; (1 < i < r) into which the object will
fit (without exceeding the capacity B), or, if no such bin is available, places a; into a new
bin U,y,. We claim that AFD produces a <j-minimal bin packing.

For, suppose not. Then there is some element a, (1 < p < n) such that, directly after
a, has been packed by AFD, the resulting bin packing arrangement is non-<j-minimal.
Choose p to be the smallest such integer. Let U; be a bin that can be redistributed among
the remaining bins after a, is packed.

At iteration p of AFD, suppose that object a, is placed into some bin U;. We claim

that this bin is new. For, suppose not. Then U, was nonempty before iteration p, so that

U; can be redistributed among remaining bins after iteration p of AFD

= U, can be redistributed among remaining bins before iteration p of AFD.

Since this implication holds even if ¢ = k, then we contradict the choice of p.

Now, k # i, for if U, (containing only a,) can be redistributed among the remaining
bins, then the new bin U, would not have been used by AFD. Hence 1 < ¢ < k. Similarly,
not all of the contents of bin U, are placed in bin U, in the redistribution of U, or else
a, would have been placed in bin U; by AFD. Hence there is some ¢ (1 < ¢ < p) such
that a, is placed in a bin U; (1 < j # i < k) in the redistribution of U,. The bin packing
construction at this stage is shown in Figure 9.2.

But ¢ < p implies that s(a,) > s(a,). Hence

a, can be placed in Uj in the redistribution of U,

= a, can be placed in U; in the original packing.

Thus, AFD would have placed a, into bin U; and not bin Uy. This contradiction shows
that AFD does indeed give a <7-minimal packing. B
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As an addendum to Theorem 9.3.3, we consider the First Fit Decreasing (FFD) and Best
Fit Decreasing (BFD) algorithms [92, p.126].

As with AFD, both algorithms initially reindex the n given objects into nonincreasing
order of size, and consider each object in turn, in indicial order (lowest first). During
iteration i (1 < i < n), suppose that objects ay, as,...,a;_; have been packed into bins
Ui, Uy, ..., U, (for some r > 0). FFD places q; into the lowest indexed bin U; (1 <i < r)
into which the object will fit (without exceeding the capacity B), or, if no such bin is
available, places @, into a new bin U,,;. BFD places a, into the bin U; (1 < i < r) which
has current contents closest to, but not exceeding, B — s(a;) (choosing the lowest indexed
bin in the case of ties), or, if no such bin is available, places a; into a new bin U, ;.

Since FFD and BFD are special cases of AFD, they may be used as polynomial-time
algorithms to solve <,-MINIMAL BIN PACKING SEARCH, by Theorem 9.3.3.

For a simple example of where none of AFD, BFD or FFD produces a mazimum <3-
minimal bin packing, consider the packing of four elements, a;, as, a3, a4, of size 1, and
four elements, by, by, b3, by, of size 2, into bins of capacity 4. FEach algorithm will pack
by, by into bin 1, b3, by into bin 2, and ay, as, a3, a4 into bin 3. The maximum <j-minimal
packing places a;, b; into bin 7, for 1 < ¢ < 4.

The result of Theorem 9.3.3 might lead one to consider whether there exists a source
optimisation problem II, together with a partial order <* defined on the feasible solutions
for a given instance z of II, such that the problem of finding a <”-optimal solution is
NP-hard. In fact, the answer to this question is in the affirmative, and an example may
be found by considering the source optimisation problem CHROMATIC NUMBER, and the
partial order <§k (where k > 4 and zis ‘a’ or ‘b’), for a given graph G, as is demonstrated
in the next section.

9.4 Testing a proper colouring for minimality, and finding
minimal proper colourings

9.4.1 Introduction

Consider <¢, (for k > 2), the partial order of partition (k — 1, k)-merge, and <7, (for
k > 1), the partial order of partition k-redistribution (given by Definitions 2.4.13 and
2.4.16 respectively), defined on the feasible solutions of CHROMATIC NUMBER (defined in
Section 3.1) for a given graph G. In this section, we study three algorithmic problems
corresponding to proper graph colourings that are minimal with respect to a given partial
order from one of the two families <, ; (k > 2) and <, ; (k > 1). These problems relate
to the complexity of testing a proper colouring for minimality, the complexity of finding a
minimal proper colouring, and the complexity of mazimising the number of colours over
all minimal proper colourings.

We show that, for each of the two partial order families, there is a threshold lying
across the hierarchy of testing problems corresponding to each member of the relevant
partial order family, below which the problems are polynomial-time solvable, and above
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which the problems are NP-hard. There is a similar threshold in the case of the finding
problems. Consideration of proper colourings that are minimal with respect to both of
the finest partial orders (from each of the two partial order families) such that both of
the associated finding problems are polynomial-time solvable, may yield a worthwhile
local search strategy for approximating the chromatic number in certain graph classes.
In addition to studying the testing and finding problems, we prove complexity results for
maximisation problems relating to proper graph colourings that are minimal with respect
to partial orders from each of the two partial order families.

We organise the forthcoming sections as follows. In Section 9.4.2, we prove some
general results concerning <¢,-minimal (k > 2) and <{’,-minimal (k > 1) proper graph
colourings. Sections 9.4.2-9.4.9 concentrate on individual members of each family, and the
three corresponding algorithmic questions mentioned above. Finally, in Section 9.4.10, we
summarise the complexity results appearing in this section, and present some concluding
remarks.

9.4.2 (a,k)-minimal (k > 2) and (b, k)-minimal (kK > 1) proper graph
colourings

Let F(G) denote the set of all proper colourings of a given graph G. Recall from Definition
2.4.13 that, intuitively, for two proper colourings ¢; and ¢, in F(G), ¢ Eg{k ¢y if ¢) can
be obtained from ¢, by recolouring the vertices of r colours of ¢, (2 < r < k) by r—1 new
colours, whilst every other vertex retains its original colour.

Similarly, recall from Definition 2.4.16 that, intuitively, for two proper colourings ¢
and ¢y in F(G), ¢ Eé’jk ¢y if ¢; can be obtained from ¢, by distributing the vertices of
r colours in ¢; (1 < r < k) amongst the remaining colours in ¢y plus r — 1 new colours,
whilst every other vertex retains its original colour.

A proper colouring of G that is <7 -minimal will be called (a, k)-minimal (where
k > 2), and a proper colouring of G that is <j’,-minimal will be called (b, k)-minimal
(where & > 1). Every graph has at least one proper colouring that is minimal with respect
to the partial orders defined above, as we now show.

Proposition 9.4.1 Let G be a graph, and let k > 2. Then G has an (a, k)-minimal
proper colouring, and G has a (b, k — 1)-minimal proper colouring.

Proof: G has a proper colouring using x(G) colours. This colouring must be both (a, k)-
minimal and (b, k — 1)-minimal. W

The following proposition and its corollaries establish limits on the orders of proper colour-
ings that are (a, k)-minimal and (b, k)-minimal (k > 2).

Proposition 9.4.2 Let G be a graph, let k > 1, and suppose that G is k-colourable.
Then G does not have an (a, l)-minimal proper colouring of more than k colours, for any

> k4+1.

Proof: Suppose G does have an (a,l)-minimal proper colouring of more than & colours.
Pick any k + 1 colours in such an (a,!)-minimal proper colouring of G, and consider the
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subgraph G’ of GG induced by the vertices belonging to these k£ + 1 colours. Then G is
k-colourable, as G is, contradicting the (a, /)-minimality of the colouring of G. R

Corollary 9.4.3 Let G be a graph, let k > 1, and suppose that G is k-colourable. Then G
does not have a (b, l)-minimal proper colouring of more than k colours, for any 1 > k+1.

Proof: The result follows from Corollary 2.4.20 and Proposition 9.4.2. B

Corollary 9.4.4 Let G be a graph. Then G does not have an (a,l)-minimal proper
colouring of more than x colours, for any 1l > x + 1, where x = x(G).

Corollary 9.4.5 Let G be a graph. Then G does not have a (b, l)-minimal proper colour-
ing of more than x colours, for any | > x + 1, where x = x(G).

For each partial order belonging to one of the families of Definitions 2.4.13 and 2.4.16, we
study three associated algorithmic problems. The problems are concerned with testing a
proper colouring for minimality, finding a minimal proper colouring, and maximising the
number of colours over all minimal proper colourings, with respect to the partial order
concerned. We now define these problems. In the following, assume that ‘2z’ is ‘a’ or ‘b’,
and that k > 1 is given (k> 2if ‘27 is ‘a’).

Name: (z,k)-MINIMAL GRAPH COLOURING TEST.
Instance: Graph G = (V, F) and a proper colouring ¢ of G.
Question: Is ¢ (z, k)-minimal?

Name: (z,k)-MINIMAL GRAPH COLOURING SEARCH.
Instance: Graph G = (V, E).
Output: (z,k)-minimal proper graph colouring of GZ.

Name: MAXIMUM (z, k)-MINIMAL CHROMATIC NUMBER.
Instance: Graph G = (V, E).

QOutput: Maximum (z, k)-minimal proper colouring of G.

Clearly, the problems MAXIMUM (a, 2)-MINIMAL CHROMATIC NUMBER and MAXIMUM (b, 1)-
MINIMAL CHROMATIC NUMBER correspond to ACHROMATIC NUMBER (defined in Section
3.2) and B-CHROMATIC NUMBER (defined in Section 3.3), respectively. In the following
sections, we consider the three problems defined above, corresponding to the members
<5p (k>2)and <, (k> 1) of the two partial order families.

9.4.3 (a,2)-minimal graph colourings

Recall from Section 3.2 that a proper colouring ¢ of a graph G is (a,2)-minimal if and
only ¢ is achromatic, i.e., ¢ satisfies Property 3.1 on Page 34. Testing a proper colouring
c of G for achromaticity is clearly possible in polynomial time. One need only check, for
each distinct pair of colours 7, j of ¢, that there is an edge of G that has colours ¢ and j at

2CGuaranteed to exist by Proposition 9.4.1.
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its endpoints. If this is the case, then ¢ is (a,2)-minimal; otherwise every vertex of colour
i may be recoloured by colour j in order to construct a proper colouring ¢’ such that
¢ <¢, . Tt follows that an iteration of this implicit algorithm for testing constitutes a
polynomial-time procedure for finding an (a, 2)-minimal proper colouring. The complexity
of ACHROMATIC NUMBER for various graph classes is discussed in Section 3.2.

9.4.4 (a,3)-minimal graph colourings

Testing a proper graph colouring for (@, 3)-minimality may be accomplished in polynomial
time. For, we consider triples of distinct colours i, j, k£ and check that the subgraph induced
by these three colours contains an odd cycle (i.e., is non-bipartite). If this is the case, then
c is (a,3)-minimal; otherwise the subgraph of G induced by three colours i, 7, k may be
recoloured by two new colours r, s, in order to construct a proper colouring ¢’ such that
c <§3 c. The implicit algorithm for testing clearly gives a polynomial-time strategy for
finding an (a,3)-minimal colouring. By Proposition 9.4.2, a bipartite graph cannot have
an (a,3)-minimal colouring of three or more colours. For general graphs, the complexity
of MAXIMUM (a,3)-MINIMAL CHROMATIC NUMBER is open, and we conjecture that the
decision problem is NP-complete.

9.4.5 (a,k)-minimal graph colourings (k£ > 4)

Firstly, we consider the problem of testing a given proper colouring for (a, k)-minimality
(k > 4). We begin by defining a decision problem, and also a series of decision problems,
for each fixed £ > 3, and show each to be NP-complete.

Name: PLANAR GRAPH 3-COLOURABILITY.

Instance: Planar graph G = (V, F).

Question: Is G 3-colourable?

Complexity: NP-complete [92, problem GT4].

Name: GRAPH (k,k + 1)-COLOURABILITY.

Instance: Graph G = (V, F) and a proper (k + 1)-colouring of G.
Question: Is G k-colourable?

Lemma 9.4.6 For any fixed k > 3, GRAPH (k,k + 1)-COLOURABILITY is NP-complete.

Proof: Let k > 3 be fixed. Clearly, GRAPH (k,k + 1)-COLOURABILITY is in NP. To show
NP-hardness, we give a transformation from PLANAR GRAPH 3-COLOURABILITY, defined
above; suppose that G = (V, F) is an instance of this problem. Extend G to a graph G’ as
follows: form a clique on k£ — 3 new vertices 2, 5, ..., 2_3, and join each v € V to each z;
(1 <i<k). As G is planar, a proper 4-colouring of G may be constructed in polynomial
time [132, p.34]. This colouring ¢ may be extended to a proper (k + 1)-colouring ¢’ of G’
by setting ¢/(v) = ¢(v) for v € V and /() =4+ i for 1 <i < k—3. Clearly, G is
3-colourable if and only if G’ is k-colourable. R

For k > 3, let GRAPH (k,k + 1)-COLOURABILITY® denote the complement of the problem
GRAPH (k, k+1)-COLOURABILITY. The following result demonstrates that testing a proper
graph colouring for (a, k)-minimality is NP-hard, for each fixed k > 4.
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Theorem 9.4.7 For any fized k > 3, (a,k + 1)-MINIMAL GRAPH COLOURING TEST is NP-
hard.

Proof: Let G = (V, F) (a graph) and ¢ (a proper (k+1)-colouring of () be an instance of
GRAPH (k, k +1)-COLOURABILITY . If ¢ is (a, k + 1)-minimal, then ( is not k-colourable,
by Proposition 9.4.2. Conversely, if G is not k-colourable, then clearly ¢ is (a,k + 1)-
minimal. B

We now turn to the problem of finding an (a, k)-minimal colouring. We begin by defining
a search problem, in order to show that finding an (a, k)-minimal proper colouring in a
graph G is hard, where k > 4.

Name: GRAPH 3-COLOURING SEARCH.

Instance: Graph G = (V, E).

Output: Proper 3-colouring for G, if one exists, or “no”, otherwise.
Complezity: NP-hard (as PLANAR GRAPH 3-COLOURABILITY is).

Theorem 9.4.8 For any fixed k > 4, (a,k)-MINIMAL, GRAPH COLOURING SEARCH is NP-
hard.

Proof: Let k > 4 be fixed. We give a Turing reduction from GRAPH 3-COLOURING SEARCH;
let G = (V,F) be any instance of this problem. Suppose that S(H) is a hypothetical
subroutine that, in polynomial time, finds an (a, £)-minimal colouring for a graph H. Call
S on the given graph G. If S returns an (a, k)-minimal colouring of G with < 3 colours,
then we have our desired output to GRAPH 3-COLOURING SEARCH (a proper 3-colouring for
(). Otherwise, we have a “no” answer to GRAPH 3-COLOURING SEARCH, by Proposition
9.4.2. 11

Finally, we note that MAXIMUM (a, k)-MINIMAL CHROMATIC NUMBER is NP-hard, for each
fixed k& > 4.

Theorem 9.4.9 For any fized k > 3, MAXIMUM (a, k + 1)-MINIMAL CHROMATIC NUMBER
DECISION is NP-hard.

Proof: Let G = (V, E) (a graph) and ¢ (a proper (k + 1)-colouring of () be an instance
of GRAPH (k,k + 1)-COLOURABILITY®, and set T = k + 1 (the target number of colours
for MAXIMUM (a, k + 1)-MINIMAL CHROMATIC NUMBER DECISION). Suppose that G is not
k-colourable. Then ¢ is (a, k+ 1)-minimal. Conversely, suppose that G has an (a, k+ 1)-
minimal proper colouring of > T colours. Then G is not k-colourable, by Proposition
9.4.2. 11

9.4.6 (b,1)-minimal graph colourings

Recall from Section 3.3 that a proper colouring ¢ of a graph G is (b, 1)-minimal if and
only ¢ is b-chromatic, i.e., ¢ satisfies Property 3.2 on Page 35. Testing a proper colouring
c of G for b-chromaticity is clearly possible in polynomial time. One need only check, for
each colour 7 of ¢, that there is a vertex v; in G, coloured i, and adjacent to a vertex
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of colour j, for each j # i. If this is the case, then ¢ is (b, 1)-minimal; otherwise every
vertex of colour i may be recoloured by some colour j # i, in order to construct a proper
colouring ¢’ such that ¢’ <, ¢. Tt follows that an iteration of this implicit algorithm
for testing constitutes a polynomial-time procedure for finding an (b, 1)-minimal proper
colouring. The complexity of B-CHROMATIC NUMBER for various graph classes is studied
in Sections 3.4-3.6.

9.4.7 (b,2)-minimal graph colourings

As mentioned in the previous section, there exists a convenient criterion to check whether
a given proper colouring of a graph G is < -minimal. However, a similar situation is
unlikely to exist in the case of the partial order <§2, since the problem of testing a proper
graph colouring for (b, 2)-minimality is NP-hard, as we now demonstrate. The result holds
even for bipartite graphs. The transformation begins from the following problem, which

concerns precolouring extensions in graphs.

Name: PRECOLOURING EXTENSION.

Instance: Graph G = (V,F), subset S C V, integer t € Z* and function ' : § —
{1,2,...,t}.

Question: Can we extend the precolouring f’ to a proper t-colouring f of G, i.e., is there
a proper colouring f : V. — {1,2,...,t} of G such that f(u) = f'(u) for every u € S?

PRECOLOURING EXTENSION is NP-complete, even for bipartite graphs [128]. Let (b,2)-
MINIMAL GRAPH COLOURING TEST® denote the complement of the problem (b, 2)-MINTMAL
GRAPH COLOURING TEST. The following result demonstrates that (b,2)-MINIMAL GRAPH
COLOURING TEST is NP-hard, even for bipartite graphs.

Theorem 9.4.10 (b,2)-MINIMAL GRAPH COLOURING TEST® is NP-complete, even for bi-
partite graphs.

Proof: Clearly, (b,2)-MINIMAL GRAPH COLOURING TEST® is in NP. To show NP-hardness,
we give a reduction from PRECOLOURING EXTENSION for bipartite graphs; let G = (V, F)
(bipartite graph), S C V, ¢t € Z* and f' : S — {1,2,...,t} be an instance of this
problem. It is clear that we lose no generality by assuming that f’ is a partial proper
colouring of . We construct an instance of (b,2)-MINIMAL, GRAPH COLOURING TEST.
Define a graph G’ = (V’, E’), where initially V/ = V and E’ = E. Assume that V =
{ug, sy ..., u,}. Add the following vertices and edges to G':

e Foreach i,j (1 <i <t 1<i<j<t+2),add new vertices a, ;, b
the edge {ai,j7 bi,j}~

i.j» together with

e Foreach i,j,k (1 <i<t,1<i<j<t+2,1<k<t),add new vertices pﬁj,qﬁj,
together with the edges {q; ;, pﬁj}7 {b, j, qﬁj}.
e For each i (1 < i< n), add a new vertex v;, together with the edge {u;, v;}.

e Foreach i (1 <i<n),if u; €5, then for each j (1 <j <t —1), add a new vertex
z7, together with the edge {u;, z7}.
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e For each i,j (1 <i < n,1<j<t),add anew vertex y!, together with the edge
{Ui7 yzj}

It may be verified that G’ is bipartite. Now define a proper (¢ 4 2)-colouring ¢ of G’ as
follows:

e Foreach i,j (1<i<t,1<i<j<t+2)setc(a;;)=1andsetc(b ;) =j.

e Foreachi,j (1<i<t,1<i<j<t+2),colour the pﬁj vertices (1 < k < t) such
that

{e(pip) el velpi )y ={1,2, ...t + 21\ {7, j}.
e Foreach i,j,k (1 <i<t,1<i<j<t+4+2,1<k<t),set c(qﬁj):c(pﬁj),

e For each i (1 < i < n) such that u; € S, colour the 2! vertices (1<j<t—1)such
that

{e(a)),e(ad), .o e(@ ™ = {12, N\ ()}
e Foreach i,j (1<i<n,1<j<t),setec(y!)=j.

e To complete the definition of ¢, we assign colours to the u; and v; vertices (1 < i < n)
from the set {t 4+ 1, ¢+ 2}, using the bipartite property of G’.

The claim is that f’ can be extended to a proper t-colouring f of G if and only if ¢ is a

non-(b, 2)-minimal colouring of G’.

For, suppose that there is a proper t-colouring f of G, such that f(u) = f'(u), for all
u € 5. We define a proper (¢ + 1)-colouring ¢’ of G’, as follows.

e For each i (1 < i < n),set ¢/(u;) = f(u,;) and set ¢/(v;) =t + 3.

e Foreach i,j (1 < i< t,1<i<j<t+2),if e(b,;) € {t+1,t+ 2}, then set
Cl(bi,j) = t—|—3

e Foreach i,j,k (1 <i<t,1<i<j<t+2 1<k< t),ifc(pﬁj)e{t—l—l,t—l—Q},
then set ¢/(pf;) =t 4 3.

o Foreach i,j,k (1<i<t,1<i<j<t4+21<k<1t),ifc(q,) e {t+1,t+2},
then set ¢/(¢f ;) = c(a; ;).

For every other vertex u € V', set ¢/(u) = c(u). It may be verified that ¢’ is a proper
colouring of ', since f is an extension of f’ in G, and since no vertex among the a; ;
(1 <i<t1<i<j<t+2) hascolour from the set {t + 1,¢+ 2} in the colouring c.
Finally, as colouring ¢’ has been obtained from colouring ¢ by redistributing the vertices
of colours ¢t + 1,¢ + 2 among the remaining colours, plus one new colour, namely ¢ + 3,
then ¢ is non-(b, 2)-minimal.

Conversely, suppose that the proper colouring ¢ of G’ is non-(b,2)-minimal. Then
there is a proper colouring ¢’ of G’, obtained from ¢ by redistributing the vertices of
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two colours, i,j, among the remaining colours, plus one new colour, ¢ + 3, say, whilst
each of the other vertices retains its original colour in the colouring ¢. The claim is that
{i,j} = {t+1,t+2}. For, suppose not. Without loss of generality i < j, sothat 1 < i < ¢.
As ¢(a; j) = i and ¢(b,; ;) = j, then the two vertices q, ;, b, ; in particular are reassigned
colours in the colouring ¢’. But both a, ; and b, ; are adjacent in the colouring ¢ to vertices
of colours {1,2,...,t+2}\{7,j}. Hence ¢'(a; ;) = ¢'(b; ;) = t + 3, a contradiction, since
{a; j, b; j} € E'. Thus the claim is established.

For any i (1 < i < n), ¢(v;) € {t+ 1,t+ 2}, so v; is reassigned a colour in the
colouring ¢’. But v; is adjacent in the colouring ¢ to vertices of colours {1,2,..., ¢}, which
implies that ¢/(v;) = ¢t 4+ 3. Similarly, for any i (1 < i < n), e¢(u;) € {t + 1,1+ 2}, so
u; is reassigned a colour in the colouring ¢’. But {u;,v;} € E’, so that ¢/(w;) < t. If
u; € S, then w; is adjacent in the colouring ¢ to vertices of colours {1,2, ..., t}\{f"(u;)}.
Hence ¢'(u;) = f'(u;), which implies that the function f : V. — {1,2,...,t}, defined by
f(u) = ¢'(u) for all u € V, is an extension of f’, and a proper ¢-colouring of G. B

Clearly, the graph G’ constructed in Theorem 9.4.10 is disconnected. However, it is
straightforward to verify that the result holds for connected graphs, by making appro-
priate connections between the qﬁj vertices and a y” vertex, for example, in the above
construction.

The complexity of the problem of finding a (b, 2)-minimal colouring is open. However,
it is quite possible that the problem is polynomial-time solvable, despite the NP-hardness
of (b,2)-MINIMAL GRAPH COLOURING TEST, as is the case for the problems of testing a
bin packing for <7-minimality, and finding a <j-minimal bin packing (see Section 9.3).

Similarly, the complexity of MAXIMUM (b,2)-MINIMAL CHROMATIC NUMBER is open —
we conjecture that this problem is NP-hard.

9.4.8 (b,3)-minimal graph colourings

The construction of Theorem 9.4.10 may be extended in order to show that (&, 3)-MINIMAL
GRAPH COLOURING TEST is NP-hard. This is demonstrated by the following result. Let
(b,3)-MINIMAL GRAPH COLOURING TEST denote the complement of the problem (b,3)-
MINIMAT, GRAPH COLOURING TEST. We now show that (b, 3)-MINIMAT, GRAPH COLOURING
TEST is NP-hard.

Theorem 9.4.11 (b,3)-MINIMAL GRAPH COLOURING TEST is NP-complete.

Proof: Clearly, (b,3)-MINIMAL GRAPH COLOURING TEST® is in NP. To show NP-hardness,
we give a reduction from PRECOLOURING EXTENSION for bipartite graphs, defined in the
previous section; let G = (V, E) (bipartite graph), S C V, ¢t € Z* and f' : § —
{1,2,...,t} be an instance of this problem. It is clear that we lose no generality by
assuming that f’ is a partial proper colouring of . We construct an instance of (b,3)-
MINIMAL GRAPH COLOURING TEST®. Define a graph G’ = (V', E’), where initially V' =
V and E' = E. Assume that V = {uy, s, ..., u,}. Add the following vertices and edges
to G':



Further issues relating to minimaximal and maximinimal optimisation problems 180

Foreach i,j,k (1 < i < t1 <i<j<t421<i<j<k<t+3),add
new vertices @, ;. b;j k. €5, together with the edges {a;; x, b x}s {bijxs Cijrt

and {ai,j,k7 Ci,j,k}~

Foreach i,7,k, (1 <i<t,1<i<j<t4+2,1<i<j<k<t4+3,1<1<1),add
new vertices pf,j,lw qf,jﬁ’ Tz‘l,j,m together with the edges {q; ; 4, pf’]}k}7 {bi ; x, qf,j,k} and
{Ci,j,kv ril,j,k}'

For each i (1 < i < n), add new vertices v;, w;, together with the edges {u;, v;},
{v;, w;} and {u;, w;}.

For each i (1 < i < n),if u; € 9, then for each j (1 <j <t —1), add a new vertex
2!, together with the edge {u;, z/}.

For each i,j (1 <i<n,1<j<t),add new vertices y’, 2/, together with the edges
{Ui7 yzj} and {wi7 Zz]}

Now define a proper (¢ + 3)-colouring ¢ of G’ as follows:

Foreach i, j,k (1 <i<t,1<i<j<t+21<i<j<k<1t+3)setc(a;x) =i,
set ¢(b; jx) = j and set ¢(¢; ;1) = k.

For each i,j,k (1 <i<t,1<i<j<t4+2,1<i<j<k<t43),colour the p
vertices (1 <1 < t) such that

{C(pil,j,k)v C(piz,j,k)v ceey C(pit,j,k)} ={1,2,...,t+3}1\{7,7, k}.

For each 4,7, k,1 (1 <

1

I<t1<i<j<t+21<i<j<hk<t+31<1<1),set
z‘,j,k):c(‘]f,j,k): (zl

K-

For each i (1 < i < n) such that u; € 9, colour the z! vertices (1<j<t—1)such
that

e(r

{e(@)y (@), o@D} = {12, i\ (w) }
For each i,5 (1 <i<n,1<j<t),setc(yl)=c())=]j.
For each i (1 < i< n),set c(w;) =1+ 3.

To complete the definition of ¢, we assign colours to the u; and v; vertices (1 < i < n)
from the set {¢ + 1,¢ + 2}, since the subgraph of G’ induced by the u;, v, vertices
(1 <7< n)is bipartite.

The claim is that f’ can be extended to a proper t-colouring f of G if and only if ¢ is a

non-(b, 3)-minimal colouring of G’.

For, suppose that there is a proper t-colouring f of G, such that f(u) = f'(u), for all

u € 5. We define a proper (¢ + 2)-colouring ¢’ of G’, as follows.

For each i (1 < i< n),set ¢/(u;) = f(w), set ¢/(v;) =t +4 and set /(w;) =t + 5.
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e Foreach i,j, bk (1 < i < t1 <i<j<t+2,1<i<j<k<t+4+3),if
C(bi,j,k) c {t—|— 1, t—|— 2}, then set C/(bi,j,k) = t—|—4

e Foreach i,j,k (1 < i< t1<i<j<t4+21<i<j<hk<t43),if
ceijr) € {t+1,t+2,t+ 3}, then set ¢(c; ;) =t +5.

e Foreach i,j,k,l (1 <i<t,1<i<j<t+2,1<i<j<k<t4+31<1<1),if
c(pf;x) €{t+ 1,142,143}, then set ¢/(p! ;) =1+4.

e Foreach i,j,k, 1 (1 <i<t1<i<j<t+2,1<i<j<k<t4+31<I1<1),if
c(qil’j’k) € {t+1,t+2,t+ 3}, then set Cl(‘]f,j,k) =1t4+5.

e Foreach i,j, k(1 <i<t1<i<j<t+2,1<i<j<k<t+4+31<I1<1),if
c(rl; ) e{t+1,1+2,1+3}, then set ¢'(r} ) =1 +4.

For every other vertex u € V', set ¢/(u) = c(u). It may be verified that ¢’ is a proper
colouring of G', since f is an extension of f’ in G, and since no vertex among the a, ; x
1 <i<tl1<i<j<t4+2,1<1i<j<k<t+3)has colour from the set
{t +1,t+ 2,1+ 3} in the colouring ¢. Finally, as colouring ¢’ has been obtained from
colouring ¢ by redistributing the vertices of colours t +1,¢+ 2,143 among the remaining

colours, plus two new colours, namely ¢ 4+ 4, ¢+ 5, then ¢ is non-(b, 3)-minimal.

Conversely, suppose that the proper colouring ¢ of G’ is non-(b,3)-minimal. Then
there is a proper colouring ¢’ of G’, obtained from ¢ by redistributing the vertices of three
colours, i, j, k, among the remaining colours, plus two new colours, t +4, t + 5, say, whilst
each of the other vertices retains its original colour in the colouring ¢. The claim is that
{i,j,k} = {t+ 1,t+ 2,¢ + 3}. For, suppose not. Without loss of generality i < j < k,
so that 1 < i <t. As ¢(a, ;) = i, c(b; ;) = j and ¢(¢; ;) = k, then the three vertices
; ; iy bi j ks i ;5 in particular are reassigned colours in the colouring ¢’. But each of a, ; ,
b, ;s and ¢; ; x is adjacent in the colouring ¢ to vertices of colours {1,2,..., t4+3}\{i,7, k}.
Hence, without loss of generality, ¢/(a; ; x) =t +4 and ¢'(b; ; ;) = t + 5. But then there
is no available colour for ¢, ;; in the colouring ¢’, a contradiction. Thus the claim is
established.

For any i (1 < i < n), c(w;) = t+ 3, so w; is reassigned a colour in the colouring
. But w; is adjacent in the colouring ¢ to vertices of colours {1,2,...,t}, which implies
that ¢'(w;) > t + 4. Similarly, for any 7 (1 < i < n), ¢(v;) € {t + 1,1+ 2}, so v; is
reassigned a colour in the colouring ¢’. But v; is adjacent in the colouring ¢ to vertices
of colours {1,2,...,t}, which implies that {¢'(v;), ¢'(w;)} = {t +4,t + 5}. Finally, for
any i (1 <i < n), e(u;) € {t +1,t+ 2}, so v, is reassigned a colour in the colouring ¢'.
But {u;,v;} € F’ and {w;, w;} € F’, so that ¢/(u;) < t. If u; € S, then u,; is adjacent in
the colouring ¢ to vertices of colours {1,2,...,t}\{f’(w;)}. Hence ¢'(u;) = f'(w;), which
implies that the function f: V — {1,2,...,t}, defined by f(u) = ¢/(u) for all u € V, is
an extension of f’, and a proper t-colouring of G. B

The extension of the construction of Theorem 9.4.10 may be generalised beyond that
of Theorem 9.4.11 in order to show NP-hardness for (b, k)-MINIMAL GRAPH COLOURING
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TEST, for each & > 4. However, a simpler transformation exists in the case k£ > 4, which
will be discussed in the following section.

As for the (b,2)-minimal case, the complexity of (b,3)-MINIMAL GRAPH COLOURING
SEARCH is open, as is the complexity of MAXIMUM (b, 3)-MINIMAL CHROMATIC NUMBER
in general graphs, though we conjecture that the latter problem is NP-hard. However,
by Proposition 9.4.3, a bipartite graph cannot have a (b, 3)-minimal colouring of three or
more colours.

9.4.9 (b, k)-minimal graph colourings (£ > 4)

It is a straightforward matter to adapt the proofs of Theorems 9.4.7, 9.4.8 and 9.4.9, in
order to show that each of the problems of testing a proper colouring for (b, k)-minimality,
finding a (b, k) minimal colouring and maximising the number of colours over all (b, k)-
minimal colourings are NP-hard, for any fixed £ > 4. For, we simply replace instances of
‘by Proposition 9.4.2” with ‘by Corollary 9.4.3” in the relevant proofs. We thus have:

Theorem 9.4.12 For any fixed k > 4, (b, k)-MINIMAL GRAPH COLOURING TEST is NP-
hard.

Theorem 9.4.13 For any fized k > 4, (b,k)-MINIMAL GRAPH COLOURING SEARCH is
NP-hard.

Theorem 9.4.14 For any fized k > 4, MAXIMUM (b, k)-MINIMAL CHROMATIC NUMBER is
NP-hard.

9.4.10 Conclusion and open problems relating to («, k)-minimal (k > 2)
and (b, k)-minimal (k > 1) proper graph colourings

Table 9.1 contains a summary of the algorithmic results relating to (a, k)-minimal (k > 2)
and (b, k)-minimal (k > 1) graph colourings that appear in this section. The complexities
of the corresponding testing, finding and maximisation problems are indicated in columns
2,3 and 4-6 respectively. Columns 4,5 and 6 indicate the complexity of the maximisation
problem in arbitrary graphs, bipartite graphs and trees, respectively. In a table entry,
‘P’ denotes polynomial-time solvablity for the problem concerned, ‘NPC’ denotes NP-
completeness, ‘co-NPC’ denotes co-NP-completeness, and ‘NPH’ denotes NP-hardness. A
question mark indicates that the corresponding problem is open.

One is led to ask whether the consideration of proper colourings that are minimal
with respect to suitably chosen partial orders from the two partial order families might
yield a worthwhile strategy for approximating the chromatic number in certain graph
classes. The above table shows that the threshold between polynomial-time solvability
and NP-completeness for the testing and finding problems corresponding to (a, k)-minimal
colourings occurs between k& = 3 and k = 4. Similarly, the threshold for the testing
problems corresponding to (b, k)-minimality occurs between & = 1 and k = 2, while the
finding threshold occurs somewhere between & = 1 and k = 4. Thus <75 and <j7, are
the finest partial orders within each of the two partial order families for which the finding
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Criterion Complexity of testing | Complexity of finding Complexity of maximum
for minimality for minimality a minimal colouring minimal problem
Arbitrary | Bipartite | Tree
(a,2) P P NPC NPC NPC
(a,3) P P ? P P
(a,k) (k> 4) | coNPC NPH NPH | P P
(b,1) P P NPC NPC P
(b,2) coNPC 7 7 7 7
(b,3) co-NPC ? ? P P
(b, %) (k= 4) | coNPC NPH NPH | P P

Table 9.1: Summary of algorithmic results appearing in Section 9.4.

problem is known to be polynomial-time solvable. It is possible that a local search strategy
based on finding proper colourings that are both (a,3)-minimal and (b, 1)-minimal might
yield improved approximability results for the chromatic number in certain graph classes.
Indeed, any such results could be further enhanced if it turns out that the problems of
finding a (b,2)-minimal colouring (or indeed a (b,3)-minimal colouring) are polynomial-

time solvable.

9.5 Partial orders defined on /(z)

Recall from Definition 2.3.5 that a minimaximal or maximinimal optimisation problem
may be obtained from a source optimisation problem II using a partial order <*, defined
on the set of all feasible solutions F(z) for a given instance z of II, and satisfying POMM
with respect to . Suppose that we define <* on U(z), the set of all possible solutions
for a given instance z of TI, rather than on F(z). It is interesting to consider how the
<"-optimal solutions relate to those that would be obtained by defining < on F(z), for
a given instance z of II. For <” defined on U(z), the definitions of <”-maximality and
<”-minimality given by Definition 2.3.2 still apply. That is, an element s € F(z) is <"-
maximal if there is no t € F(z) such that s <” ¢, and an element ¢ € F(z) is <"-minimal
if there is no s € F(z) such that s <* t. However, the process by which we test for these
conditions holding may not be immediately obvious.

For example, consider the CHROMATIC NUMBER problem (defined in Section 3.1), with
<, the partial order of partition redistribution, defined on F((), the set of all proper
colourings of G, for a given graph (. We test a proper colouring ¢ for <¢-minimality by
ensuring that Property 3.2 on Page 35 holds. This shows that there exists no ¢ € F((G)
such that ¢’ CY c. Immediately we deduce that ¢ is <{-minimal, for if there is some
¢ € F(G) such that ¢’ <§ ¢, then there is some chain

d=cCfeCy . ..Cfea 1 Cfen=c (9.1)
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1
2 3
1 1
G G
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2 3 1 2 3
G G
<o 2 3 Ao
3 1 4 5
4 1

Figure 9.3: Example colourings related by the redefined partial order < .

for some n > 2, such that ¢; € F(G) for 2 < i < n— 1. Thus in particular ¢,_, € F(G),
a contradiction.

However if C{’, and consequently <, is now defined on U(G), the set of all colourings
of G, then it does not follow in general that ¢; € F(G) (2 <i < n—1)in (9.1) above. In
fact, it is simple to find two proper colourings ¢, ¢z € F(G), where ¢; <{ ¢3, such that
there is a colouring ¢y € U(G)\F(G) with ¢; Cf ¢ Cf ¢3. Such an example is shown in
Figure 9.3. However there is a proper colouring ¢, such that ¢; Cf ¢5 T} es; this situation
is again illustrated in Figure 9.3. Thus, when carrying out two or more redistributions
in order to derive a feasible < -predecessor ¢’ of a feasible element ¢, it is possible that
the intermediate colourings in the redistribution series are infeasible. Hence the question
arises as to how we may test for <{'-minimality in this case.

Later in this section, we show, as in the example of Figure 9.3, that given ¢, ¢’ € F(G)
with ¢’ <§ ¢ (< is still assumed to be defined on U(G)), we can always find a series of
elements ¢; for 2 < ¢ < n — 1 such that

/ G G G G
cC = Eb Cy Eb ...Eb Cp_1 Eb c, = C

for some n > 2, where ¢; € F(G) for 2 < i < n — 1. In fact, we demonstrate that this
applies not only to B-CHROMATIC NUMBER, but a whole class of minimaximal and maxi-
minimal optimisation problems whose inherent partial order satisfies a certain additional
property. This class includes many of the minimaximal and maximinimal optimisation
problems studied in this thesis. Essentially, the minimaximal or maximinimal optimisa-
tion problem concerned has the same behaviour as that which would result by defining

the inherent partial order on U(z), for a given instance z. Thus our observations yield a
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greater insight into the structure of minimaximal and maximinimal optimisation problems.

The remainder of Section 9.5 is organised as follows. In Section 9.5.1, we prove a result
of the form discussed in the previous paragraph for a source optimisation problem II that
is <-hereditary or <-super-hereditary, where <” is a partial order defined on U(z), for a
given instance z of II. The concepts of <-hereditary and <-super-hereditary optimisation
problem are generalisations of the notions of hereditary and super-hereditary optimisation
problems (given by Definition 2.4.5) respectively, for arbitrary partial orders, including
the partial order of set inclusion. In Section 9.5.2, we do likewise for a source optimisation
problem II that is partition-hereditary or partition-super-hereditary — conditions involving
the partial orders of partition merge and partition redistribution. We finish by discussing,
in Section 9.5.3, why it does not follow for all optimisation problems in general that the
partial order should be defined on U(z).

For the remainder of this Section 9.5, all partial orders are now assumed to be defined
on U(z), rather than on F(z), for a given instance z of an optimisation problem.

9.5.1 <-hereditary and <-super-hereditary optimisation problems

We begin this section by presenting a definition concerning feasibility predicates of op-
timisation problem that are hereditary or super-hereditary with respect to some partial
order <. As mentioned above, this definition generalises Definition 2.4.5.

Definition 9.5.1 Let Il = (Z,U, 7, m,0PT) be an optimisation problem, and for z € Z,
let <” be a partial order defined on U (z), satisfying POMM with respect to II. Property =
is <-hereditary if, for any z € 7, whenever s € U(z), t € F(z) and s <7 t, then s € F(z).
Property 7 is <-super-hereditary if, for any = € Z, whenever s € F(z), t € U(z) and
s <" t, then t € F(z). B

Given an optimisation problem Il = (Z,U, 7, m,0PT) and a partial order <”, defined on
U(z) and satisfying POMM with respect to I, for a given instance z of I, we say that IT is
<-hereditary or <-super-hereditary if 7 is <-hereditary or <-super-hereditary, respectively.
Although we invoke Definition 9.5.1 mainly with the partial order of set inclusion, we also
demonstrate that the definition applies to certain optimisation problems together with the
subsequence and substring partial orders, and the partial order on truth assignments. (A
corresponding definition for partial orders on partitions is given in the next section.)

We now consider the source optimisation problems II in this thesis for which we have
derived minimaximal or maximinimal optimisation problems using an appropriate partial
order <” defined on the feasible solutions for a given instance z of I1. We give a series of
results that indicate, in each case, whether Il is <-hereditary or <-super-hereditary.

Starting with Chapter 3, CHROMATIC NUMBER, with partial orders <, and <, is
discussed in Section 9.5.2. We now consider the source optimisation problems and partial
orders studied in Chapter 4.

Proposition 9.5.2 The following source optimisation problems from Chapter | are C-
hereditary:
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o MAXIMUM TOTAL MATCHING o MAXIMUM INDEPENDENT SET
o MAXIMUM MATCHING o MAXIMUM STRONG STABLE SET
o MAXIMUM CLIQUE o MAXIMUM IRREDUNDANT SET

The following source optimisation problems from Chapter | are C-super-hereditary:

o MINIMUM TOTAL COVER o MINIMUM VERTEX COVER
e MINIMUM EDGE COVER o MINIMUM DOMINATING SET
e MINIMUM TOTAL DOMINATING SET o MINIMUM EDGE DOMINATING SET

We now consider the source optimisation problems discussed in Chapter 5. As discussed
in Section 5.2, both MINIMUM NEARLY PERFECT SET and MAXIMUM NEARLY PERFECT
SET are neither C-hereditary nor C-super-hereditary. Regarding Section 5.3, we give
an example in Section 9.5.3 to show that MAXIMUM INDEPENDENT SET is neither Co-
hereditary nor C,-super-hereditary. Consideration of the source optimisation problems
and partial orders discussed in Chapter 7 gives the following result.

Proposition 9.5.3 The following source optimisation problems from Chapter 7 are <-
hereditary, where < is the undernoted partial order:

e LONGEST PATH, < ® UNCONSTRAINED LONGEST PATH, <
® MAXIMUM 3D-MATCHING, C ® ILCS, K&

o LOSt, & ® MAXIMUM KNAPSACK, C

® MAXIMUM 2SAT, < ® MAXIMUM ONE-IN-THREE 3SAT, <

The following source optimisation problems from Chapter 7 are <-super-hereditary, where
< 1is the undernoted partial order:

e LONGEST PATH, <€ & MINIMUM TEST SET, C
® 5CS, K e SCSt, &
® MAXIMUM 2SAT, <

It may be verified that both LONGEST PATH and UNCONSTRAINED LONGEST PATH are
neither <-hereditary nor <-super-hereditary. The MINIMUM BIN PACKING problem with
partial orders <, and < is discussed in Section 9.5.2. The following result indicates the

source optimisation problems from Chapter 8 that are C-hereditary or C-super-hereditary.

Proposition 9.5.4 MAXIMUM SET PACKING is C-hereditary. MINIMUM SET COVER and
MINIMUM HITTING SET are both C-super-hereditary.

We now present the main result of this section. We demonstrate how to test for <7-
optimality in the case of a source optimisation problem Il = (Z,U,x, m,0PT), given a
partial order <, defined on U(z), for a given instance z of II, where 7 is <-hereditary or
<-super-hereditary.

Theorem 9.5.5 Let 11 = (Z,U,x, m,0PT) be an optimisation problem, and for z € T,
suppose that <* is a partial order defined on U(z) satisfying POMM. Then:
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1. If opT = min, and ¢ € F(z) is such that no immediate <"-predecessor of ¢ is in
F(z), and 7w is <-hereditary or <-super-hereditary, then c is <"-minimal.

2. IfopT = max, and ¢ € F(z) is such that no immediate <" -successor of c is in F(z),
and 7 is <-hereditary or <-super-hereditary, then ¢ is <*-mazximal.

Proof: We prove (1); the proof of (2) is similar. Suppose that ¢ is not <”-minimal. Then
there exists some ¢’ € F(z) such that ¢/ <* ¢. By hypothesis, ¢’ is not an immediate
<"-predecessor of ¢, so there exists some ¢; € U(z), for 1 < i < n, where n > 3, such that

= <" <" ... <", 1 <", =c

and ¢; is an immediate <”-predecessor of ¢;1; (1 < i < n —1). But then ¢; € F(x)
(2 <i<mn-—1), using either the <-hereditary or <-super-hereditary property of 7, since
¢y € F(z) and ¢, € F(z). In particular, ¢,_; € F(z), a contradiction. Thus ¢ is <"-
minimal. B

A consequence of Theorem 9.5.5 is that the <”-optimal solutions are identical to those
that result from defining <* on F(z), for a given instance z, when the <-hereditary or
<-super-hereditary property is satisfied by the optimisation problem in question. This
holds for any Il and < chosen from the source optimisation problems and partial orders
listed in Propositions 9.5.2, 9.5.3 and 9.5.4.

9.5.2 Partition-hereditary and partition-super-hereditary optimisation
problems

In this section, we prove similar results to that of Theorem 9.5.5, for a source optimisation
problem I = (Z,U,x, m,0PT) and a partial order <”, where <” is the partial order of
partition merge or partition redistribution, defined on the set Z(z), for an instance z of
I1. We begin by defining a property for 7, similar to the concept of hereditary-ness, or
super-hereditary-ness, when <7 is a partial order on partitions.

Definition 9.5.6 Let I1 = (Z,U,x, m,0PT) be an optimisation problem. For any z € Z,
suppose that there is some set S”, associated with z, such that I/ (z) is a set of partitions
of S”. Suppose further that 7 admits a secondary predicate =, which satisfies the following

property:
V{U,, Us,..., Up} €eU(z) @ (m(Uy, Usy..., Up) & (V1 <i< kerm (U,))).
Predicate 7 is partition-hereditary if, for any = € 7,
VPelU(z)eVU €€ Peo((r,(U) N U CU)=r,(U")).
Predicate 7 is partition-super-hereditary if, for any = € Z,

VPelU(z)eVU e Pe((r,(U) NUCU)=nr,(U")). N
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Suppose that IT = (Z,U, 7, m, OPT) is an optimisation problem. We say that IT is partition-
hereditary or partition-super-hereditary if 7 is partition-hereditary or partition-super-
hereditary, respectively.

Consideration of source optimisation problems in this thesis to which we have applied
a partial order on partitions gives rise to the following proposition.

Proposition 9.5.7 CHROMATIC NUMBER and MINIMUM BIN PACKING (defined in Sections
3.1 and 7.4.1 respectively) are both partition-hereditrary.

We now present the first main result of this section. Suppose that I1 = (Z,U, 7, m,OPT) is a
partition-hereditary or partition-super-hereditary optimisation problem. Suppose further
that <7, the partial order of partition merge, is defined on U(z), for a given instance z of
IT. The following result shows how to test a feasible solution for <%-optimality.

Theorem 9.5.8 Let Il = (Z,U,r, m,0PT) be an optimisation problem, and for x € T, let
<%, the partial order of partition merge, be defined U(z), satisfying POMM with respect
to II.

1. Suppose that P € F(z) is such that there is no P’ € F(z) with P’ C% P. Suppose
further that m is partition-hereditary. Then P is <% -minimal.

2. Suppose that P € F(z) is such that there is no P’ € F(z) with P C7 P’. Suppose
further that © is partition-super-hereditary. Then P is <%-mazimal.

Proof: We prove (1); the proof of (2) is similar. Suppose that there is some P’ € F(z)
such that P’ <% P. Then there exists some P; € U(z) (1 < i < n) such that

P=pPC.PC....C P,_,C.P,=P.

a

By hypothesis, P,_; ¢ F(z),so n > 3. As P,_, ¢ F(z), then there is some U,_; € P,_;
such that 7,(U,_,) does not hold, where 7 is the secondary predicate of 7. But P, <Z
P,_1, so there is some U; € P; such that U,_; C U,. Thus, by the partition-hereditary
property, 7, (U;) does not hold, so that P, ¢ F(z), a contradiction. Thus P is <%Z-minimal.

A consequence of Theorem 9.5.8 is that the <7-optimal solutions are identical to those
that result from defining <% on F(z), for a given instance z, when the partition-hereditary
or partition-super-hereditary property is satisfied by the optimisation problem in question.

The second main result is similar to that of Theorem 9.5.8. Suppose that 11 =
(Z,U, 7, m,OPT) is a partition-hereditary or partition-super-hereditary optimisation prob-
lem. Suppose further that <7, the partial order of partition redistribution, is defined on
U(z), for a given instance z of II. The following result shows how to test a feasible solution
for <7-optimality.

Theorem 9.5.9 Let Il = (Z,U,r, m,0PT) be an optimisation problem. For any x € T,
suppose that there is some set S”, associated with x, such that U(z) is a set of partitions
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of S*. For z € I, let <}, the partial order of partition redistribution, be defined U(zx),
satisfying POMM with respect to 1.

1. Suppose that P € F(z) is such that there is no P’ € F(z) with P’ C°} P. Suppose
further that © is partition-hereditary. Then P is <7-minimal.

2. Suppose that P € F(z) is such that there is no P’ € F(x) with P Ci P’. Suppose
further that m is partition-super-hereditary. Then P is <} -mazimal.

Proof of (1): Suppose that there is some P’ € F(z) such that P’ <7 P. Then there exists
some P; € U(z) (0 < i< n—1)such that

P=°PCc;PC;...C; P,_oC} P,_, = P.
By hypothesis, P,_» & F(z), so n > 3. We prove that there exists a chain
P =PyC; PlCy...CL P,_,Cy P,_,=P

such that P/ € F(z) for 0 < i < n—1. Then, in particular, P,_, € F(z), a contradiction.
For, suppose that

P = {va Vziv---v Vkiv Vki+17 Vki+27---7 Vki-l—i}

for 0 < i < n-—1andsome k € Z*, such that ngSI (I1<j<k+4+iand0<i<n-—1),
and Vj"’l CV/(1<j<k+4iand0<i<n-2). For0<i<n—2, P,C} P implies
that P; has been obtained from P;,; by redistributing V,jj_'il_l_l over Vit Vit .., V,j_l":ll
Also, an easy induction establishes that Vj”_1 C V]O for1 <j<k.
Define
Pi={W/, Wy, .., W, Wi, Wi, W)

for 0 <i < n—1, where:

Wji - ij‘ forl1<j<kandi=0,n—-1
Wji = I/I/ji"'lU(V]QﬂVk”_l__ﬁl_l) forl<j<kand1<i<n-—2
Wji = an_l fork+1<j<k+iand1<i<n-—1.

We firstly show that P/ € U(z) for 0 < i < n — 1. We require to prove that, for each i
(0 < i< n-—1), Plis a partition of S*. Clearly P, = P, € U(z) and P,_, = P,_, € U(z).
We argue by induction that Ufi’f_l_in”_l_i = 57 for 0 < i < n—2. Clearly the base
case 7 = 0 holds. Assume the result is true for some r < n — 2; we show that it holds for
r+1 also. Let s=n—1—r; then 2 <s<n—1. We have

(Ufi-{z—1—(r+1) I/an—l—(r-l—l)) _ (Uk+5—1 I/Vjs_l)

j=1
= (U (wru (v o))
= (Uam)u (Ui vy v

U (Ui wr)
(U= (v vi))



Further issues relating to minimaximal and maximinimal optimisation problems 190

= (W) u(Uzs vy u (s 0 (U vy)
= (U, W) u (U vt u Vi (since Py € U(z))
(U)o ( Ju v

J=k+1 7y
_ k+s s
= (Uzwy)
k4+n—1—r n—1—r
= (Uzrmrwe)

= S7 (by induction hypothesis)

and hence the inductive step holds. Thus P/ € U(z) (1 < i< n—2).
Now Wj"’l C sz‘ for1 <j < k+iand 1 <7 < n—2 Hence P/ Cj P/, for
1 <i<n—2. Toshow that P, Ci P|, we argue by induction that, for 1 <7 <n—2 and
1<j<k
n—1—1 __ n—1 0 k+n—1 n—1
W= Vo (VP (U v )

Clearly the base case i = 1 holds. Assume the result is true for some r < n — 2; we show
that it holds for » 4+ 1 also. Let s = n — 1 — r; then 2 < s < n — 2. We have
n—1—(r+1) __ s—1
W, =W
_ s 0 n—1
o I/VJ U (VJ N Vk+5)
n—1-—r 0 n—1
= WU (Vinvigl)
_ n—1 0 k+n—1 n—1 0 n—1
- Vj U (‘/] N (Uj:kﬁ—n—r‘/j )) U (‘/] N Vk-l—n—(r-l—l))
(by induction hypothesis)

_ an—1 U (VJO a (Uk-l—n—l an—1))

j=k+n—(r+1)

and hence the inductive step holds. Thus, for 1 <i<n—-2and 1 <j <k,

W= vt (Vo (U )
Hence, for 1 <i<n—-2and 1 <j <k, W/ C (Vvp-tu V7). As | 2o Vifor1 <j <k,
then Wj CViforl1<j<kand1<i<n—2 Inparticular W' C VP (1<j < k), s0
that P, Cy P!.

Finally, we claim that P, € F(z) for each i (0 <i < n—1). For, P = Pj € F(z) and
P=P, _,€F(z). For1<i<n-—2and 1<j <k, W;’g Vjo. But P = P, € F(z), so
that 7,(V}") holds, which implies that ﬂs(Wj) holds, by the partition-hereditary property,
where 7, is the secondary predicate of 7. For 1 < i < n-—2and k+1<j < k+ 1,
W) = V"' But P = P,_; € F(z), so that 7, (V""") holds, which implies that 7 (W)
holds. Hence P € F(z) for 1 <i<n—2.

This completes the proof that P}, P[,..., P/ _, satisfy the required conditions.

Proof of (2): Suppose that there is some P’ € F(z) such that P <} P’. Then there exists
some P; € U(z) (0 < i< n—1)such that

P=PC;PC;...Cy P,oC} P,y =P
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By hypothesis, P; ¢ F(z), so n > 3. As in the proof of (1), we prove that there exists a
chain
P=P,Cy; P/C}...Cy P,_,C, P,_, =P

such that P/ € F(z) for 0 < i < n — 1. Then, in particular, P] € F(z), a contradiction.
For, suppose that

P ={V, Vi .. V], V,j+1, V,j+2,..., V,j+l.}

for 0 <i < n—1and some k € Z*, where the V are as in the proof of (1) (1 < j < k+1).
Define
Pi={Wi Wy, Wy, Wists Wigas - Wkl-l—i}

for 0 < i < n— 1, where the W/ are as in the proof of (1) (1 < j < k4 i). Using the
first induction of the previous proof, we similarly show that P/ € U(z) for 0 < i < n— 1.
It similarly follows that P; Cj P;,, for 1 < i < n —2. Using the second induction of the
previous proof, we similarly show that,for 1 <i<n—-2and 1<j <k,

W= vertu (v (Ui )
As in the proof of (1), it then follows that P; C; P;.

Finally, we claim that P] € F(z) for each i (0 < i < n —1). For, P = P} € F(z)
and P/ = P,_, € F(z). For1 < i <n-2and 1 < j <k, Vj”_1 C W]Z But
P’ = P,y € F(z), so that 7,(V"~") holds, which implies that 7 (W) holds, by the
partition-super-hereditary property. For 1 <i<n—2and k+1<j < k+1, sz‘ = Vj”_l.
Again, P' = P,_; € F(z), so that =, (V""") holds, which implies that 7,(W}) holds.
Hence P/ € F(z)for 1 <i<n-—2.

This completes the proof that P}, P|,..., P/_, satisfy the required conditions. W

A consequence of Theorem 9.5.9 is that the <j-optimal solutions are identical to those
that result from defining <7 on F(z), for a given instance z, when the partition-hereditary
or partition-super-hereditary property is satisfied by the optimisation problem in question.

9.5.3 Why we cannot always define the partial order on U(z)

The results of Sections 9.5.1 and 9.5.2 have demonstrated that, for most of the optimisation
problems and partial orders considered in this thesis, defining the partial order on U(z)
produces a minimaximal or maximinimal optimisation problem with essentially the same
behaviour as that which would result from defining the partial order on F(z). However
this is not always the case, and in this section we demonstrate this by giving two examples.

The first example concerns the source MINIMUM NEARLY PERFECT SET problem (whose
components are defined in Section 5.2), together with the partial order C¥, for a given
graph G. Consider the graph G = K3, with vertices u, v, w, as an instance of this problem.
By defining C on (), we can find vertex sets V, Vs, Vs, with |V,| = r for 1 < r < 3,
such that V; Cf V, Cf Va. For example, we can choose V; = {u}, Vo = {u,v} and
Vs = {u,v,w}. Now Vi, V3 € F(G) but Vo ¢ F(G). However there is no V, € F(G)
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Vi \Z: Vs
Figure 9.4: Example vertex sets related by the redefined partial order CS'.

such that V, CF V, CF V. Thus Vi is C{-maximal when C is defined on F(G), but
not C{-maximal if C{7 is defined on U(G).

A second example is the source optimisation problem MAXIMUM INDEPENDENT SET
(whose components are defined in Section 4.2.6), together with the partial order C$, for
a given graph . By defining C$ on U(G), we can find vertex sets Vi, Vs, V3, with
[V, =7r+1 (1 <r<3),such that V; C Vo CF Vi. These sets are illustrated in Figure
9.4. It is clear that Vi, V53 € F(G) but V5 & F(G). However there is no VJ € F(G) such
that V, Cf V, CS Vi. Thus V) is CY-maximal when C§ is defined on F(G), but not
C$¥-maximal if C$ is defined on U(G).

Both of these examples provide optimisation problems and corresponding partial or-
ders such that no result of the type proved in Sections 9.5.1 and 9.5.2 holds. This fact
does not in itself prevent us from defining the partial order <* on U(z) in each case. How-
ever, as we have seen, the <”-optimal solutions produced are different to those that are
generated by defining <” on F(G). As a result, the behaviour of the associated minimax-
imal or maximinimal optimisation problem is inconsistent with that of the corresponding
literature definition. This is not a desirable situation, and thus, in the general framework
for minimaximal and maximinimal optimisation problems suggested by Definition 2.3.5,
the partial order involved is to be defined on the feasible solutions, for a given instance.

9.6 Conclusions and open problems relating to minimaxi-
mal and maximinimal optimisation problems in general

Throughout this thesis, we have studied a number of examples of minimaximal and maxi-
minimal optimisation problems from the point of view of algorithmic complexity. In doing
so, we have presented an assortment of polynomial-time algorithms and NP-completeness
results relating to these problems, though NP-completeness results feature in the main.
It is reasonable to conclude from the examples in this thesis that the NP-hardness of a
source optimisation problem IT almost certainly implies the NP-hardness of a minimaximal
or maximinimal optimisation I1’ derived from II using a partial order. In fact, we have only
found four examples of NP-hard source optimisation problems that admit polynomial-time
solvable minimaximal or maximinimal versions. These are as follows:

1. MINIMUM DOMINATING SET and MAXIMUM MINIMAL DOMINATING SET in blpartlte
graphs (see Section 4.3.3).
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2. MINIMUM DOMINATING SET and MAXIMUM MINIMAL DOMINATING SET in chordal
graphs (see Section 4.3.3).

3. LONGEST PATH and SHORTEST < -MAXIMAL PATH (see Section 7.2.1).

4. SHORTEST COMMON SUPERSEQUENCE and LONGEST MINIMAL COMMON SUPERSE-
QUENCE when all inputs strings have length two (see Section 7.5.2).

Jacobson and Peters [131] were aware of Examples 1 and 2 above, and asked: in which
other cases can we have a graph parameter ¢ whose value is hard to compute, together
with a minimaximal or maximinimal counterpart of ¢ whose value is polynomial-time
computable? Whilst we have not found any answers to this question, Examples 3 and
4 show that the more general concept of NP-hard source optimisation problems that
admit polynomial-time solvable minimaximal or maximinimal versions prevails outwith
the domain of graph theory. (Example 3 is perhaps not as significant as Example 4, since
the partial order < * is empty, when defined on the feasible solutions for a given instance
2 of LONGEST PATH.)

There are substantially more examples in this thesis of polynomial-time solvable source
optimisation problems II, together with an NP-hard minimaximal or maximinimal version
derived from II using an appropriate partial order. These are as follows:

e CHROMATIC NUMBER and ACHROMATIC NUMBER in trees and bipartite graphs (see
Sections 3.1 and 3.2).

e CHROMATIC NUMBER and B-CHROMATIC NUMBER in bipartite graphs (see Section
3.5).

e MINIMUM VERTEX COVER and MAXIMUM MINIMAL VERTEX COVER (or equivalently,
MAXIMUM INDEPENDENT SET and MINIMUM INDEPENDENT DOMINATING SET) in
bipartite graphs (see Section 4.2.6).

e MINIMUM EDGE COVER and MAXIMUM MINIMAL EDGE COVER in arbitrary graphs
(see Section 4.2.7).

e MAXIMUM MATCHING and MINIMUM MAXIMAL MATCHING in arbitrary graphs (see
Section 4.2.8).

e MAXIMUM IRREDUNDANT SET and MINIMUM MAXIMAL IRREDUNDANT SET in bipar—
tite and chordal graphs (see Section 4.3.6).

e MAXIMUM NEARLY PERFECT SET and MINIMUM 1-MAXIMAL NEARLY PERFECT SET
in arbitrary graphs (see Section 5.2).

e MAXIMUM INDEPENDENT SET and MINIMUM 2-MAXIMAL INDEPENDENT SET in bi-
partite graphs (see Section 5.3.1).

e MAXIMUM MATCHING and MINIMUM 2-MAXIMAL MATCHING in arbitrary graphs (see
Section 5.3.6).
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It is likely that there are many other examples of polynomial-time solvable source optimi-
sation problems that admit NP-hard minimaximal or maximinimal versions.

In addition to investigating the computational complexity of minimaximal and maxi-
minimal optimisation problems, there are other issues relating to these questions that are
worthy of further investigation.

For example, the question of the approximability of NP-hard minimaximal and maxi-
minimal optimisation problems is of interest. At present, no features of minimaximal and
maximinimal optimisation problems have been isolated that allow us to distinguish the
question of their approximability from the question of the approximability of optimisation
problems in general. However, it is possible that their structure does indeed allow this,
and that an approximability-preserving reduction similar in spirit to the MM-reduction
may be defined for these problems.

Another direction of research is to investigate instances z of a source optimisation
problem II for which all <”-optimal solutions have the same measure, where <7 is a
partial order defined on the feasible solutions of II. Graphs G for which all C“-maximal
independent sets are the same size are called well-covered graphs, and have received much
attention (see Plummer [186] for a survey). Similarly, well-dominated, well-irredundant
and totally equimatchable graphs have received attention [78, 207, 208]. These are graphs
G for which all C“-minimal dominating sets, all C“-maximal irredundant sets, and all
C % maximal total matchings are the same size, respectively. By restricting attention to
such instances z of II, we have that a minimaximal or maximinimal version of Il derived
using <7 is the same optimisation problem as II.

Furthermore, given an optimisation problem II and a partial order <* defined on the
feasible solutions for a given instance z of II, the question of whether there are efficient
methods for counting and enumerating <”-optimal solutions is of interest. For example,
the problem of counting the number of maximal cliques in a graph is #P-complete [210]
and therefore cannot be solved in polynomial time unless P=NP. However, the problem of
enumerating all maximal cliques in a graph G'is P-enumerable [210] and hence all maximal
cliques can be listed in time p(n) N, where N is the number of maximal cliques in G and
p(n) is some polynomial in n, the size of G.

Finally, given an optimisation problem II and a partial order <* defined on the feasible
solutions for a given instance z of I, there is the question of testing whether two feasible
solutions are related by <7. Clearly, this problem is trivial if <* is the partial order of
set inclusion. However, the question becomes more interesting if, for instance, we con-
sider partition-related optimisation problems, together with the partial order of partition

redistribution.

9.7 Afterword

The study of minimaximal and maximinimal optimisation problems was motivated by
the fact that both polynomial-time solvable source optimisation problems and NP-hard
source optimisation problems can admit NP-hard minimaximal or maximinimal versions.
However, as we indicated in the previous section, there are example pairs (IT, <) (where IT
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is a source optimisation problem and < is a partial order) in all four possible categories for
the polynomial-time solvability or NP-hardness of IT and the minimaximal/maximinimal
version of Il formulated using <.

Perhaps there are complexity classes that are dependent on the relationships between
the algorithmic complexity of a source optimisation problem Il and a minimaximal or
maximinimal version of II. A notion of completeness in such a class may involve a reduction
such as the MM-reduction of Chapter 8. However, any general ‘explanation’ of why some
pairs (I1, <) behave differently from others seems improbable. It is likely that the question
‘why does a source optimisation problem admit a hard minimaximal or maximinimal
version?’ is as difficult to answer as the question ‘why is an optimisation problem hard to

solve?’.



Glossary of symbols

Some frequently used symbols and abbreviations appearing in this thesis are listed in this
glossary, together with a brief explanation of their meaning, and a page number where the
symbol is first defined (if applicable).

Symbols relating to optimisation problems

Symbol Brief explanation of symbol Page
T Optimisation problem 11 = (Z,U,x, m, OPT) 21
7 Instances of I1 21
|z| Size of € T -
maz(z) Largest number occurring in z € 7 -
U(z) Possible solutions of 11 for z € 7 21
F(z) Feasible solutions of Il for z € 7 22
m(z,y) Feasibility predicate for TI, where z € 7, y € U(z) 21
m(z,y) Measure function for Il, where z € Z, y € F(x) 22
OPT Goal of 11, either max or min 22
m(z, F(z)) Range of values that m takes for I, where z € 7 22
m*(z) Globally optimal measure function for II, where z € 7 =~ 22
F*(z) Globally optimal solutions for II, where z € 7 22
N, (s) Neighbourhood relation for II, where z € 7, s € F(z) 15
POMM Partial order measure monotonicity 24
I1, Search version of II 23
II. Evaluation version of II 23
I, Decision version of 11 23
NPO Class of NP Optimisation problems 23
PLS Class of Polynomial Local Search problems 18
R4(2) Performance ratio of A with respect to z 4
ptas Polynomial-time approximation scheme 4
I, arlIl, IT; is Turing-reducible to 11, 3
(T, <1 )aams (Mo, <o) Pair (ITy, <;) is MM-reducible to pair (I15, <) 155

196
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Symbols relating to partial orders
Symbol Brief explanation of symbol Page
<* Partial order defined on F(z), satisfying POMM w.r.t. TI, where z € 7 23
() Transitive closure of relation C* -
c* Partial order of set inclusion 26
Ci= ()" Partial order of (k — 1, k)-replacement 26
<” Subsequence partial order 28
<7 Substring partial order 28
<r=(C%)* Partial order of partition merge 28
<i=(C§)* Partial order of partition redistribution 28
<= (T ) Partial order of partition (k — 1, k)-merge (k > 2) 29
<3 = (Ci ) Partial order of partition k-redistribution (k> 1) 29
<7 Partial order on functions 102
<3 Partial order on truth assignments 144

Symbols relating to graph theory

Symbol Brief explanation of symbol Page
G¢ Complementary graph of G -
L(G) Line graph of G 79
T(G) Total graph of G 57
V(G) Vertices of G = (V, FE), e, V -
E(G) Edges of G = (V,FE), ie., F -
K, Complete graph with n vertices -
P, Path with n vertices -
d(v) Degree of a vertex v in & -
(S) Subgraph of G induced by S C V -
d(u,v) Distance (number of edges) separating u,v € Vin G  —
N(v) Open neighbourhood of vertex v € V 11
N[v] Closed neighbourhood of vertex v € V 11
N(S) Open neighbourhood of vertices S C V 11
N[S] Closed neighbourhood of vertices S C V 11
H(v) Set of all edges of  incident on v € V 103
c(v) Colour of a vertex v € V in some colouring of G -
m(G) m-degree of graph G 38
P2 (G) Minimum maximal 2-packing number of & 108
p(G) or Py(G) Maximum 2-packing number of G 108
pr(G) Minimum maximal fractional packing number of & 107
pi(G) Maximum fractional packing number of G 104

For other graph parameter symbols used in this thesis, see Table 5.2 on Page 96. Graph

parameter symbols with subscript ‘f’ (apart from p; and p;) appearing in this thesis denote

fractional versions of the graph parameters of Table 5.2, and are defined in Chapter 6.
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Symbols relating to strings

Symbol Brief explanation of symbol Page
X Alphabet -
(81...55) String with symbol s; € ¥ at ith position (1 < i < r) -
| Length of string s 13
s+t String s concatenated with string ¢ -
¥* Set of all strings composed of symbols of 33 13
s Lt String s is a subsequence of string ¢ 13
s Lt String s is a substring of string ¢ 13
st String s is a proper subsequence of string ¢ 13
s Lt String s is a proper substring of string ¢ 13

s 5 (9 < 's) String s is a common sub(super)sequence of set of strings 5 14
s 5 (9L s) String s is a common sub(super)string of set of strings .S 14
seq, S Set of all strings of length r composed of symbols from 5 -

Symbols relating to logic

Symbol Brief explanation of symbol Page

false, true  Boolean truth values (sometimes abbreviated F, T') -

A Logical conjunction operator -
\% Logical disjunction operator -
& Logical equivalence operator -
= Logical implication operator -
U Set of variables -
o Literal 143
T Negation of literal o 143
Cy Set of clauses from C satisfied by truth assigment f 144
U(G) Set of variables in clause C; 144
Uc”) Set of variables in collection of clauses C’ 144
Miscellaneous symbols
Symbol Brief explanation of symbol Page
0] Empty set -
P(9) Power set of 9, i.e., set of all subsets of 5 -
Z Set of all integers -
N Set of all natural numbers (non-negative integers) -
Y/ Set of all positive integers -
Q Set of all rational numbers -
R Set of all real numbers -
[a..b] {neZ:a<n< b}, fora,beZ,a<b -
Pt Maximal elements of collection P 55

P~ Minimal elements of collection P 55
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