A thesis submitted for the degree of Master of Science in the

% University of Glasgow

An investigation of acceleration waves

! in a perfectly conducting magnetohydrodynamic €luid

By

Abdullah A. abdullah

The University of Glasgow

November, 1986




ProQuest Number: 13834208

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 13834208

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346






Preface

This dissertatio; is submitted to the University of Glasgow,
in accordance with the requirements for the degree of Master of
Science in Mathematics.

- The work presented here has been cérried out undex the
supervision of Dr. Kenneth A..Lindsay. I would like to express
here my deepest gratitude to him for his guidance, constant
interest and encouragement throughout the period of this research.

| In addition, I wish to thank profeséor R. W. ogden for
providing me with every possible help in the department. I shouala
also like to thank the Saudi goverment for financial support.
Fina}ly I am very grateful to my wife for her patience and

encouragement .,




Introduction

Chapter One

Chapter Two

Chapter Three

Chapter four

Chapter Five

Chapter Six

References

Contents

9 s s as e s e

R B RN RN A R )

Pt e s e T E TSRS

LR NN IS B B NN R )

L A L R B N A )

L R A R I I Y )

LR R N A N U

LRI IS IR BN BN B A}

.

9 a8 s 0 e e s

LR R I S S N B

s e TR e e

LR I NN N A R )

L S SRR B R )

s e st e e s

LRI A NN NN B R )

L A R A R A A )

.

.

CRCRC R Y

"o e e

s 8800

LRI B

906880

"8 s 000

Page

10

18

24

29

42

52




_l_

Introduction

Recently there has been interest in the mechanics of
a perfectly conducting magnetohydrodynamic fluid due to their
possible relevance to the behaviour of neutron stars. Roberts [1]
has investigated the séability of a particular equilibrium
configuration in a complex maghetic material such as
a superconductor whose internal energy depends on the mean
magnetic induction B in an arbitréry way. The relevance of this
criterion to the configuration of a neutron star is discussed by
Robefts [1] and by Muzikar & Pethick {2]. Straughan [3] developed
the same criterion from a consideration of accelerafion waves in

this particular class of fluids.

In this context an acceleration wave is a propagating surface
L acréss which the primitive quantities density p, vélocity Vv and
magnetic induction B are continuous, but their space and time
derivatives are potentially discontinuous} Straughan showed that
the propagation velocities, ﬁ, of such acceleration waves satisfy a
gixth order polynomial which unexpectedly factorizes into a product
of a quadratic and a quartic polynomial. Previous experience of
acceleration Qaves eg. Lindsay & Straughan [4], [5] and Truesdell
[6] would suggest that mechanical, thermal and magnetic'waves
might interact with each other, whereas this result of Straughan
would indicate that perhapes in this material there are two
distinct types of discontinuities present. Straughan showed that
the stability criterion of Roberts was just the condition that the

quartic polynomial have real, positive wave speeds.

The aim of this dissertation is firstly to explore the

significance of this factorization and thereafter to derive




amplitude equations for the development of the resulting

discontinuities.

Elcrat [9] investigated the propagation of acceleration waves
for the perfect classical fluid mecdel in the case where the fluid
. ahead of the wavefront was moving but he did not consider any
special flows. The acceleration wave analysis for this model is
more subtle than that of the perfect fluid. Although the
discontinuities in [6],[é] are themselves vectors, for perfect
fluids it often transpires that these discontinuities are in the
direction of the normal, n, to [ so that, in effect, they act just
like scalar discontinuities in the sense that we need only
inyestigate the behaviour of n.[;] and n.[é]. However in this case
no such simplification materialises. It transpires that the
quadrafic polynomial gives rise to an Alfven wave in which density,
the first derivatives of density, velocity and normal acceleration
are continuous across L but the derivatives of the magnetic field
are discontinuous across L. Specifically the discontinuity in [é]
is parallel to B x n ., The quartic polynomial gives rise to a fast

and slow wave and corresponds to the situation in which all

primitive quantities have discontinuous derivatives.

In the case of the quartic polynomial the amplitude equation
is of Bernoulli type and has a closed form solution. In the Alfven
wave situation, the corresponding amplitude equation is linear.
Special attention is directed to the particular constitutive model
in which n = constant and the amplitude equations are formulated
for discontinuities propagating into a region at rest and at
congtant density. The solutions obtained in this case have the same

form as the main praoblem, but are algebraically simpler.




In particular it is clear that under reasonable physical conditions

the coefficient of c? is negative in the quartic polynomial case.

The problem of.discussing the evolutionary behaviour of the
amplitude of an acceleration wave requires the location of the
singular surface to be determiﬁed for all times greater than the
initial one. It is‘only when that is known that the amplitude
equation can be studied with a view to determining'the behaviour
of the amplitude over the surface of the acceleration wave at any
pa;ticular location and time. In order to obtain the required
surface we use a " ray " method developed by Courant & Hilbert [7]
and further developed by Varley & Cumberbatch [8], Elcrét [e1,

Seymour & Mortell [10], Whitham [11] and Wright {12].

Solutions are obtained for several initial profiles. Since the
theory ailows for variations in amplitude over the singular surface
this generally results in the amplitude being a solution to a
partial rather than an ordinary differential ecquation. However, the
important feature of the ray method is that along the ray
trajectopies, the partial differential equation describing
amplitude is essentially of ordinary type. in which the initial
condition is dependent on surface variables. This introduces the
possibility of the amplitude of finite sections of the wavefront

becoming infinite in a finite time.

Initial surfaces which are plane, cylindrical and spherical
are examined when the fluid velocity ahead of the wavefront is zero
and the maénetic induction is either a constant or has a known

value.



Chapter One

Electromagnetic Congtitutive Laws.

The evolution of electromagnetic effects in a stationary

material is governed by the Maxwell equations

V.D=p , (1.1)

V.B=o0 , (1.2)

YyxE+ B -0 , (1.3)
at

vxH-P=g (1.4)
at

where D is the electric displacement, p is the free charge density,
B is the magnetic induction, E is the electric field intensity,
H is the magnetic field intensity and J is the current density. In

addition B, H, D and E are further connected by the constitutive

relations,
pl=~v.P , (1.5)
D =¢6E+P , (1.8)
B =H+M (1.7)

where p' is the polarization charge density, <, is the permittivity
of free space, P is the polarization vector and M is the
magnetization, When the material moves with non—relativistic
velocity V, to first order in Vv, the local electric field E' is

given by
E'=E+VxB (1.8)

and if we make the further constitutive assumption of an Ohmic

material i.e. J is proportional to the local electric field




intensity E', then

J = o(E + V x B) (1.9)
where ¢ is known as the conductivity. In a perfectly conducting
material non-zero local electric fields initiate infinite currents
and so for a perfectly conducting medium if J is to be finite then
E, V and B must sat?sfy

E=-VXxXB. (1.10)

Maxwell's third equation (1.3)_and the field equation for
a perfect conductor (1.10) can be used to compute the convected
derivative of B in the following way :
By = °L 4 Bi,r Vr

at
- 8ijk Bx,§ + Bi,r Vr

]

€ijk (®xmn Ym Bn),5 + Bi,r Vr

i

(Bim_ Bjn -— Bin Sjm)(Vm Bn’j + Vm,j Bn) + Bi'r Vru

By

Vi By, + Vi,§ By ~ V§ Bi,§ — V4,5 Bi + Vp B, r.(1.11)

.
“a

Since B is solenoidal, equation (1.11) becomes

By = Vj,5 By — V5,5 By . (1.12)

Stress Tensoxr

We wish to find the general form of the symmetric stress
tensor oj45 when it is a function of p, By and Hj and so with this
end, we construct the form invariant scalar

P = ay bj i3 (o, Bj, Hy) . (1.13)

We use a method which relies on ideas of Capelli [13] and

which appears.in Weyl [14].

Theorem

Suppose & is a function of the vectors ul, ... ,u™ and is form

invariant under the group of orthogonal transformations then




a complete table of invariants of the orthogonal group consists of
(I) All scalar prodqucts ul . vl 1<¢i,jsm,

(II) All nxn detexrminants formed from any subset of the m vectors.
The invariants of type I are even and there arem (m + 1) / 2
distinct invariants whereas invariants of type II are odd and there
are (ﬂ) independent forms.

In our cése n = 3 and so the version of the forementioned theorem
appropriate to these circumstances is

Theorem

In three dimensional vector space, a complete table of typical
basic invariants of the orthogonal group consists of
(i) All possible scalar products u . v {(even invariants)
(il) All possible vector triple products u , (v x w) (odd

invariants),

According to this theorem we may state that ¢ is a function of
the list of variables
aj aj, aj bi, a3 Bj, aj Hy, by by, by By, by Hy, Bj By, By Hj,
(1.14)
Hi Hji., eijk ai bj Bk, ejik ai bj By, ejjkx ai Bj Bx, @35k by Bj Hye .
Let us denote the invariants,
P, Bi By, By Hi, Hi Hy Dy the notation [ .
Since ¢ is linear in a, b then ajaj, bibj can be dropped from list
(1.14) and hence
@ = aj by ®1(L) + aj B ®2(by By, by Hy, L, eijk Pi By Hk)
+ aj Hy ®3(bj By, by Hy, L, eijyx Pi By Hk)
+ by By ®4(L, ejjk @i By Hx) + by Hy ®5(L, ejjk a4 By Hk)
t+ ejjk aji bj Bk ¥6(L) + ejjk aj Py Hx ¥7(fp)

+ @ijk ai By Hx ®g(L, ejjx Py By Hk) . (1.15)




A ¢ = aj by ®1(L) + ag By by By ®21(L) + ag Bj by Hy ¢22(L)
+ aj Bj eyrs bj By Hg ®23(L) + a4 Hy bj Bj ®31(L)
+ aj Hj by Hy $32(L) + aj H ejrg Py Br Hg ®33(L)
+ by By @irg aj By Hg ®4(L) + by Hy eirg a3 By Hg o5(L)
+ aj by eijx Bk ®6(L) + eijk ai by Hx ¢7(L)

+ eijrk i Br Uk e€4gt by Bg Hy @g(L) . (1.16)

- a3 by [oi4 — ®1(L) 8ij — By By ®21(L) — Bj Hy ®22(L)
- Bj eyrs Br Hg ®33(L) — Hj By ®33(L) - Hy Hy ¢32(L)
- Hi &9rg Br Hg ®33(L) - eirs By Hg By ¢4(L)
—€irg Br Hg Hy ®5(L) — eijk Bk ®e(L) — eijx Bx ¢7(L)

0 . (1‘17)

— €irk ©jst Br Hx Bg Hy ®g(L)]
Since aj and by are arbitrary vectors then it follows that
033 = &) 854 + By By ®31 + Bj Hy &35 + Bj eqrg By Hg @23
+ Hy Bj 31 + H; Hy @32 + Hj eyrg By Hg ®33
+ €jrg Br Hy By ¢4 + €iyg By Hg Hy &5 + €55k By %6
+ ejjx Hk ¥7 + eirk ©jst Br Hx Bg Hy %g (1.18)
where the ¢'s are functions of [ only. If we now define
Cq{ = @5pg By Hg, then the symmetry of ¢ requires that
0 =035 — 031 = (B Hy — By Hj (%22 — ¥31)
+ (Bi €y — By Ci)(®23 — ®3) + (Hj Cj ~ Hy Ci @33 — ¥5)
+ 2 ejjk Bk ¥ + 2 ejjk Bx ¥7 . (1.19)
In view of the fact that C = B X H then Hj C§ = By C4 = 0 and thus

on contracting (1.19) with H; and By we obtain respectively the

identities
(H . B Hy - By H>)(¥3p ~ ®31) + C§ [H . B (¥33 — 23)
+ HZ (®33 — ¢5) + 2 9] = O
(1.20)
(B . HBj — Hj B2)(®33 — ®31) — Cj [B? (¢33 — ¢4)

+ B, H(®33 — %5) — 2 P7] =0 .,




However since C is perpendicular to B and H then it is immediately

obvious from (1.20) that

(1) Cp2 — @31 = 0 (1.21)

(ii) H . B (d3 - $3) + H2 (P33 — ¢5) + 2 og

o . (1.22)

(iii) B . H (¥5 — ®33) + B2 (&4 — @p3) + 2 &7 = 0 . (1.23)

Equation (1.18) can now be simplified to
0iy = @1 64 + By By ®p1 + (Bj Hy + Hj By) &35 + By Cj 33
+ Hy Hy ¢3é + Hj C§ ¢33 + C5 By ¢4 + C4 Hy ¥5
+ ejjk Bk %6 + ejjk Hx &7 + Ci Cy ¢g . (1.24)
After further algebra and the int;oduction of results (1.22) and
(1.23) into (1.24) the stress tensor assumes here the canonical

- form
O3y = ¥ By4 + ®2 By By + @3 Hy Hy + ®4 C4 Cy

+ &5 (Bj Hy + By Hy) + &5 (Bj C5 + By Cj)

+ @7 (Hj Ci + Hy Cy) (1.25)
where ¢; , 1 € 1 € 7 , are arbitrary functions of [ which are
related to the ccefficients in the previous analysis but are not

necessarily identical to them.

Special Case

In the_important constitutive model in which the magnetisation
M is parallel to H we have the constitutive relation B = yH i.e., B
and H are parallel.
In this case
(1) |B| = p [H|
(2) C=BxH=0.
Thus equationiél.ZS) becomes

oij = @1 sij + @ By Bj + _},E ®3 By Bj + 2 %5 B4 Bj (1L.26)
L n




and the general form for the stress tensor in this case is
03y = ®1 &i5 + @2 By By (1.27)
where ¢; and ¢, are functions of p, B and have been defined from

(1.26) in the obvious way.
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Chapter Two

The Mathematics of Singular Surfaces ’

Congider a regular surface I(t) which is the common boundary
of two regions R* and R™ in any real Bpace. Let &(x,t) be
a ténsor~valued function which is continuous in the interiors of
Rt and R~ and which approches definite limit values ¢t and ¢~ as x
approches a point Xg on E(t) while remaining within Rt and R
respectively. wﬁen ¢ is continuous across the surface these two
values are identical. Otherwise there will be a jump across L(t)
‘at a surface point Xy given by
[¢] = ot — &~ . (2.1)
The quantity [¢] is clearly a function of position and time t. When
[¢] # 0, the surface [(t) is said to be singular with respect to ¢.
In subsequent work, we often encounter [AB] where A and B
can themselves be discontinuous. Elementary algebra verifies tha;
(as] = at (8] + Bt [A] - [A] [B] . (2.2)
This form is particularly useful because At and Bt are determinea
from the region into which the discontinuity is propagating and
thus they are known gquantities.
The theoxy of singular surfaces can be constructed

from Radamard's lemma.

Hadamard's lemma

Let a tensor—valued function ¢ bhe defined and continuously
differentiable in regions R* and R~ which are separated by
a smooth surface f and let ¢ and ¢, j tend to finite limits
(o*, (¢,1)") and (¢~, (¢,i)7) as L is approched on paths interior

to Rt ana R~ respectively. If x = x(8) is a smooth curve on [ and
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¢t and ¢~ are differentiable along this path, then

ast ax;y
Z=(e, )t 2, (2.3)
ds das
dae™ — axy
—_—= (0, L ) (2.4)
ds ds

In other words, the theorem of totél differentiation holds true

for the limiting values as [ is approched from one side only.

The motion of surfaces

Consider a family of surfaces given by
x = x(t,e%) (2.5)
where 6% are any surface coordinates. This equation gives ghe
location in IR® of the surface point 6% at time t and thus it
degcribes the motion of a surféce. Specifically % may not be
material coordinates.
The velocity u of the surface point e¥% ig defined by

a =X (2.6)

gt | * = constant.
If % is eliminated from (2.5), we can obtain a relation of the

form
f(x,t) =0 {(2.7)

and on differentiation of (2.7) with respect to time at fixed e,

_a_f-i-u.Vf"—-'O . (2.8)
at

Now n = VE£/|VEf| and so we may finally deduce that

u.n=-2%,ver . (2.9)
at

This relation effectively tells us that at any point X and time t,
the normal velocity of the surface up = u . n is independent of the

choice of surface coordinates.
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Suppose we consider two parameteriéations
x = x(eB,t) , x=xv%t) (2.10)
such that points of constant P always move normal to [

x5

at

i.e. nj = up . (2.11)

eb

Clearly the coordinate representations of anad v& are related by

v& = v¥%eP,t) and so

f_ xi(v“,t)i = f_ xi(v¥(eB, t), t) = up nj (2.12)
el ¢

at at e
. 9xj axy av<®
- + = Up Dj . (2.13)
ot |ef av* at |ef
- o . - . TavX
Now define u*, the coordinate drift velocity, to be __ and thus
at of
we obtain the result
axy s
—— t+ UK, = Up 04 . {2.14)

at
Suppose F = F(v%,t) is defined on E where v& = v¥ef,t). We may

compute the displacement derivative of P with respect to time, at
fixed 67 i.e. in a direction which is always normal to L in the

following way :

- 8P a
— L F(Va(eﬁ,t),t)L
st|eP at B
ST
at at
aF
= +u®F,y . (2.15)
at

Now suppose that y(x,t) is a function defined on R3 and define
WvE, t) = Y(x(v¥,t),t) then the displacement derivative of ¢ at

fixed 6B is defined by

EE = fg + v,4i ifi (2.16)
st |ef ot |x at |eB

and if we use (2.11) then (2.16) becomes
8 a
_E = _E + ¥, 4 Uup nj . (2.17)
st |eP ot |x
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(see Truesdell & Toupin {15]).

Some formulae from the theory of surfaces

Here we list some results concerning surfaces embeded in
three-dimensional Euclidean space. Let X be a set of coordinates
desqribing ®3 thenyany surface [ C r3 may be parameterised in the
form x = x(u%,t) where o takes values 1 and 2. Since ds? = dxj dxy

then on T

as? = xi,4 Xi,p AQu* auf | (2.18)

We define agp = Xj,q Xi,n S0 that on [

ds? = agg Au® auf .| (2.19)
The quantities ag3 are the components of a symmet;ic cqvariant
tensor called the metric tensor. For the surface [ we must

introduce another symmetric covariant tensor bgp by the relations

X, o8 = Dk bPag
(2.20)

ng,p =~ bp% 2, o

where , denotes covariant derivative with respect to oY,
Equations (2.20) are often called the Gauss—Weingarten relations
and the symmetric tensor byg is the cufvature tensor for the
surface [. If n is a unit normal to [ then we may alsc prove that
a%B Xi,x ¥, = 8ij — Di Dy ) (2.21)
(8ee Eringen & Suhubi [16]) . In order to find the displacement
derivative of the unit normal to the surface weAfirst differentiate
equation (2.11) with réspect to Xy obtaining

ox a
Up,x = i, iy nj (Xi,x) - (2.22)
at at

Since nj and Xj, 4 are perpendicular then

an; 3
i, X et = = 0§ (X, &) (2.23)
at at




\
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and consequently equation (2.22) becomes

9X4 ony
Up, o = Ni, & e — ¥i, & s (2.24)
at at

If we multiply both sides of equation (2.24) by a%h x5,8 and use

equations (2.20) and (2.21), we obtain

any K3
a® x4,3 Un,a = (ni Ny - 813) —--8; - a%® by X5,p Xi,y — -
(2.25)
Since nj &nj/8t = 0 then equation (2.25) becomes
- a%B xs: s u =95 _ u” x4 (2.26)
3.8 Yn,x T ;E— byﬁ 3.8 ¢

where we have used the fact that b, is symmetric. In view of the
Gauss-Weingarten relation (2.20) and the definition of the

displacement derivative, we may easily deduce that

8n4
2 ==-a% x5 pup,g - (2.27)
&t

This equation relates the displacement derivative of the unit

normal of the surface to the propagation velocity up.

Geometrical conditions of compatibility

Suppose that ¢*, &=, (¢ ;)" and (¢, ;) are functions of

surface coordinates in (2.3) and (2.4), then

@, o

@, = @, Ki,x - (2.29)

'
From (2.28) and (2.29), we find that

(], = [¥,i] %5, » . (2.30)
If both sides of (2.30) are contracted with a%P X4, » then using
(2.21), we f£ind that

a% x4y, [®),a = (8ij — i ny) [®,i] (2.31)

and thus we have obtained the first order compatibility condition.
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Thus equation (2.31) becomes
[¢,51 = [0y @,5] nj + a% x5, [¢],« - (2.32)
If ¢ is continuous across the surface L, equation (2.32)

reduces to
(¢,51 = [®,r nz]l ny . (2.33)

If we now replace ¢ by ¢,i in equation (2.32), then it is clear

that
[¢,i5]1 = [nr @,ri]1 05 + a%P [¢,3],4 X5,8 « (2.34)

Further from (2.34) we may conclude that
(ny @,35]1 = [np ng @, ril 0y + a*® 03 (@3], X3,p (2.35)
and thus
[#,i3] = [by ng ®,rs] 0y ny + a%F ny ny [,7),« X1,
+a® [¢,5),a X5,p8 - (2.36)
In view of (2,32), [¢.ij] c¢an finally be simplified to the form
[¢,331 = a®f (a¥® byy [¢1,5 + [Nk ¢,x1,a)(N5 Xi,p + D3 X5,p)
~ a® ab x;,5 x5,5 (Ink ®,x] boy = [¢],ay)
+ {or ng ¢,rs] nj ny . _ (2.37)
This is the second-order compatibility conditions. (see Truesdell &
Toupin [15]) . |
In particular if ¢ is continuous across the surface then
equation {2.37) reduces to
[®,ij] = [by ng ®,rg] N3 n§j - [Nk ®,x] X§,« Xi,p D™

+ a®® [¢ x nxl,« (D§ X4i,3 + Ni X§,8) . (2.38)

Kinematical conditions of compatibility

Tet us now evaluate [®], where & is the.convected derivative of ¢

given by

-3
¢=_+ ¢ 5Vy . {2.39)

at




e T

...16_
When we use equation (2.17), equation (2.39) becomes

e=22-upnye,5+e,5vy . (2.40)

8t
If we take the jump of equation (2.40), we obtain
: 8
[®1 = _[¢] = (up nj — V5) [®,5] . (2.41)
&t
In particular when ¢ is continuous across [, then using result

{(2.33) equation (2.41) becones

[¢] =~ U [nr ¢'r] : (2.42)

where
U= up - Vj ny . (2.43)

e - ——

Now we wish to evaluate [¢], [®,5]. From equation (2.41)

[e1 = 2] - (up ng - V3) [%,5] (2.44)
8t .
where

o
‘P’j = (.t ?,x vk),j
at

!

a
—(¢,5) + & 9k Vk + ¢,x Vk,3
at

®,9 + ¢,x V,§ - (2.45)

Also, from equation (2.17)

-

(9,31 = 2 [@,91 - (up n - Vi) [@,9x] - (2.46)
st

In particular if ¢ is continuous across £, then using results

(2.38) and (2.43) equation (2.46) becomes

L]

[¢,5]1 = - U nj [ny ng ®,rs] - a®P x5,3 Ng Vg,a [Pr @,r]

— a® x4,3 (U [ng ¢,£1),« + 0§ Ling @, ¢] (2.47)
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where

K=+ v (g - (2.48)
8t

If we take the jump of equation (2.45) and use equation (2.47), we
obtain
[;,j] =-U ny [ny ng ®,ral - a® x4, 3 ng Vg, [nr @,rl
- a% x5 (U [0y ¢,r]),a + 0§ LInp @, + [¢,x Vk,51
(2.49)

wWhen (2,49) is taken into (2.44) and (2.42) is used, we £ind that

e

[®] = - L(U [ny ®,x]) = U L[ny &,r] - (up n5 - V5) [®,x Vk,5]
+ U2 [np ng ¢, pgl — ng V¢ Vg, [0y ¢, 7] . (2.50)

Define
F=U [nr ng ®,rg] = Llnp @, ] . (2.51)

Thus (2.50) becomes

L1

(¢] = = (U [ng ¢,¢]) + UF = (up nj = V5) [®,x Vk,5l
- ns Vo‘ VS,G [nr q’,r] . (2.52)
When [ny ng ¢ ygl is eliminated from (2.47), we obtain

[¢,51 = - 2% xq,3 (U [ng @,7]),« ~ a* x4, Ng Vg, [Ny ¢,r]

- ny F . (2.53)
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Chapter Three

Propagation of mechanical and electromagnetic acceleration waves

The basic equations for a single phase perfectly conducting
magnetohydrodynamic £luid are

p+pVi,i=0, (3.1)
By = Vi, By — V5,5 Bi (3.2)
pVy=p £5 + 0oki,x . (3.3)

In these equations, a superposed dot denotes material time
differentiation and ,j denotes partial differentiation with
respect to Xq. Also p is the mass density at time t, Vi is the
velocity field, £fj is the specific externally applied body force,
By is the magnetic induction and oy is the stress tensor. Suppose
that the internal energy function w* is a function of p and Bj.

From Roberts [1] oxi. Hi{ and p are given by

Oki = - (P + H . B) 6ki + Hg By , (3.4)
a *x

B =po ¥, (3.5)
9By
. ap™

p' =p2 %Y (3.6)
ap

where H is the magnetic field and p' is pressure.
If ¢ = w*(p,Bi) then it is easily shown that ¢ = (p,B) where

B = y{(Bi Bi). Thus from (3.5),

Hi = n By (3.7)
where
n=2r % (3.8)
B 0B
pefine Pp=p + nBZ, (3.9)

A Ogi = — P Bgj + n Bg By . (3.10)
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Equation (3.3) becomes

80y 80%1
pVi=p g+ 0K g CTKL gy o (3.11)
ap B4
where
2% = _ p, B3k + np By By
ap (3.12)
%9%i = - PB_ gy 531 + ™ By By B + n (Bi 64k + Bx 8i9)
j Pik i ®j Sk jk K ©ij
984 B B

Suppose the perfect fluid occupies a region A of Euclidean
ppace for all time. Equations (3.1)-(3.11) are all then assumed to
hold on A X (— o,m). Furtherf we suppose that p, V4, Bf and £ are
continuous functions of x,t on A x (- ow,®) and that there is
a surface [ X (— mw,o), such that for each (x,t) € £ X (— w,m) &
unit normal; n, to [ is defined at x, and the speed of [ at (x,t)
is up in the direction of n. The quantities 1.751, Vi,js I;i, Bi, 5, ';‘:,
p,1i are assumed to be continuous functions of x,t on (A - L) X
(— o, ®) but may have jump discontinuities across L. Such
&iscontinuities are called acceleration waves.

| From Hadamardfs lemma and the assumed differentiability of p,

VvV and B, it follows that (see Truesdell & Toupin {15] and Eringen &

Suhubi [16]),

{Bi,y1 =ainy , (3.13)
{p,51 = Db ny ' (3.14)
[Vi,41 = ¢1 ny ’ {(3.15)
where
aj = [n§ By, 51 (3.16)
b = {05 p,5] ;o (3.17)
ci = I[ny V4,51 . (3.18)
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For later convenience we note that the vectors aj and ¢j can be

rewritten in terms of normal and tangential components using the

decompogition
aj = ap nj + a% %3, «
{(3.19)
€i =cp nj + * x4,
where
2n = aj nj
a¥% = ac‘B aj Xj_,ﬁ
{(3.20)
Cn = Cj Nj
e* = a%B ¢; x5,
Since B is solenoidal then from equation (3.13)
0 =[Bj,i] = a3 ng (3.21)
ie. an=0. (3.22)

Hence for an acceleration wave, the magnetic discontinuity is
always transverse.
on taking the jump of equations (3.1), (3.2) and (3.11) over [,

Pl + p [Vy,51 =0 , (3.23)

[Bil = [Vi,3] By - [V4,51 Bi (3.24)

p Vil — [p,x] 201 _ %% (g 1 =0 . (3.25)
op BBj

From chapter two we have already shown that

[Bil=-Ua; ., (3.26)
[;] =-Ub ’ (3.27)
[61] =-Ucy . (3.28)

when we take (3.13)-(3.15) into (3.23)-(3.25) using (3.26),(3.27)
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- and (3.28), we obtain

-Ub+pep=0 (3.29)

“‘Uai=Ci Bn"Cn Bi I3 (3.30)

—pUey - TKipm - 2% g =0, (3.31)
op @By

Iet us initially observe that (3.30) indicates that ap = 0 i.e. it
is consistent with the fact that Aiv B = 0,

By elimination of cj from equations (3.29),(3.30) and (3.31), it
can be shown that,

ay (Bn 9oxi ng — p U2 §54) + b (Bp g 991 4 g2 Bi) = 0 . (3.32)
aBj ap

When equation (3.32) is contracted with ny and By we obtain

respectively

h(uz—pp+npnn2)+n(_’1'isn2-f§)=o (2.33)
R B

b (U2 B2 - P, By? + np B2 By?)

|
(@]

+n(an2+‘_nBanB—pU2—E§Bn2)— (3.34)

- where
Q= aj By . (3.385)
Equations (3.33) and (3.34) are required to have b and Q non—zero

and so

U2 - Py + mp By? "B g2 - B

B B =0

U? B2 - Py Bp? + np BZ By? nBp2 + ng By2 B — p U2 - IB B2
B

(2.36)
From (3.36) we £ind a fast wave and a slow wave whose speeds are

determined by the guartic
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P
pU* + U2 [(p mp = M) By? - (p Pp + “B B)2)]
| B

+ an [PP (n + E Blz) - Tp (n an + EE Blz)]'= Q.
B

(3.37)
‘This is the same equation derived by Straughan (3], who showed that
the condition necessary for the wavespeeds to be positive is just
the stability condition of Roberts [1]. We shall assume that (3.37)
vields two real wavespeeds.

Case (1)

U satisfies equation (3.36)

In this case we find a fast wave and a slow wave whose speeds
are determined by the quartic equation (3.37). Here all the
primitive quantities have discontinuous derivatives. Also b and Q
are linearly related.

Case (2)

U does not satisfy equation (3.36)

In this case
(1) b =0, i.e. first derivatives of density are continuous
across the surface L.
(ii) 1 =0, i.e, a is normal to the plane containing n and B.
(iil) ¢ = 0, i.e. the normal acceleration components are
continuous across [.

The corresponding discontinuity equations are

Bpci+Uaj=0 , (3.39)
- pPUci - aj nkacki=0 . (3.40)

3Bj
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From (3.39) and (3.40), we obtain

w2 = " Bp2 . (3.41)
P

This result was also obtained by Straughan [3] and determines the

velocity of Alfven waves.




- 24 -

Chapter Four

Ray Equations

Suppose that the initial position of the acceleration

wavefront is
xi = x;(0,6%) (4.1)

where 6™ are any acceptable pair of surface coordinates. We want
to determine the location at time t of £, where [ is a wavefront
advancing with a known normal speed up and initially starting on
the surface (4.1).

Theorem

The motion of any point Xxj(t,®%) on the singular surface is

a solution of the ordinary differential equations

e (4.2)
dat any
dny au
L= (n{ nj - Bij) n (4.3)
at 9%y
satisfying the initial conditions
i = %i(0,8%) , nj = nj(0,6%) (4.4)

where nji(t,6%) is the normal to the singular surface at xi(t,6%)
and nj(0,6%) is the normal to the initial surface at x;(0,6%)
(see Varley & Cumberbatch [8]).

Proof

To establish equations (4.2) and (4.3) let y(x,t) be any
continuous function whose first order partial derivatives are
continuous and such that

wx,t) =0 (4.5)
is the acceleration wavefront under consideration and ay/dt # O
in some ﬁeighbcurhood of ¢y = 0, Suppose that n(x,t) is the unit

normal to the surface Y(x,t) = congtant, in its direction of
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propagation, and up is its speed.

If we differentiate equation (4.5) with respect to time, we obtain

oy . BV 9%y _
at  axy ot

o . (4.6)

From equation (2.11), it follows that at fixed 8%,

fﬂ’_+i"‘_unni=o ’ (4.7)
at ax4

thus
Ve + IVl ug = 0 (4.8)

i.e. up = = W / IVWI . (4.9)
Now nj = ¥, 1 / IVl and if we use equation (4.9), this become
i PP, ) ' (2.10)

Now suppose that

Y = Y(x,t) = constant (4.11)
where t = t(x), then if we differentiate (4.11) with respect to'
time we obtailn

vit+tw =0, (4.12)

x5

Thus on using (4.12), equation (4.10) yields

noo Bt » (2.13)

Let us suppose that up = up(n, X, t) has the property that for any

scalar C
C up = up(C n, x,t) (4.14)

i.e. u is homogenous of degree one in n., In particular if C = un"l

then

n

1=un(—, % t) . | (4.15)

Un
After differentiating (4.15) with respect to xj and using result

(4.13),
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& .n_j)

+ 2% 0 %n_ 4 (4.16)
6(21) oxXj Xy up 9t

Un

From (4.13)
2 - -
o<t _ a (n-_]) = a nl) .

(8.17)

—

a Xiaxj a ¥ Up a xj Un
Thus along any curve X = X(s8) given by

axy = dup (4.18)
ds n;
)

Unp

we ¢can show from (4.16)-(4.18) that

a  n; au n; au
{2y = (P 217Ny (4.19)

along such a curve t = t(s) varies so that

at _ et dxj _ni dup _ , : (4.20)

ds 9xi ds un a(ni)

Un

In terms of up(n, x, t) equationé (4.18) and (4.20) imply that

at any
which is the first of the redquired equations .
Further from (4.19)
a n4 du ni au
Up (D) =-(_ "+ 2™ (4.22)
at up 89Xy up 9t
and hence it follows that
dny = Ni (dun _ Bun) _ dup . (4.23)

at  u, 4t at ox;

However, n is a unit vector and so from (4.23) we may conclude that

duh - au“ + up nj BUn (4‘24)
at at Xy

From which we may eventually deduce the second of our required

equations, namely
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aup

— ={(ng ny — Bij) (4.25)

d le

Ray Equations For up = Vp + U(X,Bp)

Here we suppose that up = Vi nj + U(xX,B{ nj). In order to

make up homeogeneous of degree one as is required by the above

theorem, we rewrite up in the form

Un

Bi nj

Y{nr nr)

= Vi nj + U(X, W{ny ng) . (4.26)

When equation (4.26) for up is differentiated with respect to nj,

we procduce

aup

vi + ot 2ni

) +

any 2 y(nr ny)

ey 29 B3y nj
+ Y(ny ny) (' *

aBn ani V( nr nr)

)

Vj_+Uni+aU[ Bi

Bn  V(ny ny) (¥(nr ny))3

Bp nj

]

Vi'*'Uni"‘?—(l—[Bi‘Bnni] .
a8

However Bj = Bp nj = BY xi'a and so the first ray equation in this

case finally becomes

Xi

=Vi+Ung + %0 px Xi,x -« (4.27)

3B

Differentiation along rays

For any function &(x,t)

when the value

d¢

dat
of

de
at

_ 9, 8 axy (4.28)

et axy at
Xj is substituted in (4.28), we obtain
ae au
= e +¢ 5 (Vi+Un;+ - B® Xj,a) . (4.29)
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If we introduce the definition
8
L($) = B4 v %, (4.30)
&t
then equation (4.29) becomes

au
d_" = L(¢) + _ B* ¢ 4 (4.31)

at 8By,

Ray equations for Alfven waves

In this case U2 = 7' B2 and hence the ray equations become
o

Xy = %4n - Vi + ¥(n/p) By (4.32)

ang
ni = (n.i nj —- 61:") Ny (Vr + 'f(ﬂ/P) Br)’j . (4‘;33)

Also if ¢ is any function defined along the ray then we may show

that :
% = Le) + H(n/p) BX 0, . (4.34)
dt
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Chapter Five

The amplitude equations

In this chapter we derive the amplitude egquations of the
electromagnetic acceleration wave, When equations (3.1), (3.2) and
(3.11) are differentiated materially with respect to time, we

obtain

-
(1] hd

p+pVi,i+pVig=0 ' (5.1)

- .
se »

Bi = Vi,4 By + Vi,5 By — V5,5 By — V5,5 Bi ’ (5.2)

rvr——— -

b ea-._' 32 -
PVi+pVi—-pE~pf-"Klgy pypl 7K

ap ap2
© 8%ayy  doxi o _ d%axi
- px By b — KL gy - 7KL popyx
8Bjap aBj apaBj
a2
- 7% B, Bjxk=0 . : (5.3)

If we take jumps of equations (5.1), (5.2) and (5.3)'then we

produce

»
ww -

el + [p Vy,il + p [Vi,5]1 =0 ' (5.4)

» .
.a -

[Bil = [Vi,§ Bj) + By [Vi,41 - By [V4,5]1 — [V4,5 Bil (5.5)

.
L - - - -

. — 2 R
p Vil + [p Vil - £5 [p] - 2% [p 1 - [p,x p] I OKd

ap ap2
R . a%oys
- [p,x Bjl - [Bj,x] - [P Bj,xl
8Bjap 9By 8paBy
L ‘
- % [BrBykl=0 . (5.6)

B4 0By
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From chapter two we have already shown that

[Bi] = - L(U aj) + UF; + U aj cp - U cx (Bi,x)" (5.7)
[B;,j] == Fi Dy -~ a&b (U ai),p ¥j,a — 31 0k (Vi,3)0* + (5.8)
[6] =UE - I(Ub) + Ub oy - U cg (p,a)t (5.9)
[;f;] =-Eng - bng (Vg,x)* - a*® (Ub), g 2,0 .+ (5.10)
[;r.i] =USjy -IUgi) +Uecpecs -Ucg (Vi,g)t ,  (5.11)
[V;,j] = -85 nj - a%f (U ci),p ¥j,a — i B (Vg, 30t . (5.12)

With the ald of these expressions, the jump equations (5.4),

(5.5) and (5.6) become

UE-pSp+ X=0 (5.13)
UFi+BpS{i—5SyByi+Y¥=0 (5.14)
PUSE+E K4 pym 2Kz =0 (5.15)
ap aBj
where

X=-LUDb) +2Ubcy ~Ucg (p,a) -~ pcj ng (Vg, 1)
- 2U0b (Vi) - pa®*P (Uei),p ®i,a (5.16)
Yi = - L(U aj) + 2 ¢ U aj — By ¢§ ng (Vg,§)t - U cg (B1,s)t

+ U aj (vi,j)+ -2 U aj (vj,j)+ + ¢n Bj (Vi,j)+

- By a®® (U ¢3),8 %5, + BR (U ci),3 +» (5.17)
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3 25y
Zi = - p L(U ¢4) + a%B (u b),p Xk, 89%i U b? nk f_ffi

ap ap2

62 ey a -
~2UDay ng ki 0B (U 25),8 Xk, « ok,
apaBj aBj

1 aay 3 a2y
- U b (By,50% 2K 4 g ay (B, k)t 27K
9By oB4@By

20us 2
— U ay aj nk i y+ubp (By,x)t o Tkt
8B4 0By ApIB

1 aay 4 82 820y i
- (p,k)+ ¢ Ub Txi _ UDb Oxi _ U ag Ukl)
P ap ap? oB49p

2 o - 2o -
a“ox o“oy
+ (Vb,s)+ (pbng ~ %1 4+ bng By 1+pUC
ap? 9B49p

20w+ 920w+
+ aj ng By XL 4+ ay ng Ty - pucg (Ve
8B4 0By apaBy

a0k 8%ox
+ b ng 251 (vg yy*t - b g Bg (vy,8)F ki

ap 8Bj9p
+ 9%%i + 9%0xy
+ ajy Ny (Vr x) 2= - aj nx Bg (Vr,g)" = .
2By 3B59By
(5.18)

Equations (5.13), (5.14) and (5.15) are three differential
equations to be solved for the six unknown quantities b, aj and
Cij. To do this, however, we first need to remove the terms
involving E, F{ and Si. It can be shown with the aid of (3.12) that

E (U2 + ng Bp? - Pp) By + B Pp B xj, o + Fi (n Bp® - p U?)

Pn Bi_q; PBy = oy (5.19)
B B

+ Fp Bp n By + By & (ng

where
Qi =Bp %23 —pUYy +UXBj (5.20)

s
i

Fi Bi . (5.21)
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Case (1)

Here U gatisfies equation (3.36).

Define
¢ =02 -Pp+ np B2 (5.22)
£=pu2 ~nB2 - Fs B2 , (5.23)
B
- 1 2
v=__(ng Bp* - Pp) . (5.24)
B

From (3.37) it is clear that
Le+nryB2=0. (5.25)

When equation (5.19) is contracted with nj and Bj we obtain

respectively
1
CE+p0" =" [Qn+ Fp(p U2 -2 nBy?)] , (5.26)
By
2 * Cn 5.2 o B® 2 2y
EPPBL—EQ=_,_,BJ_ + Q B(x'f'Fn__(‘an—pU)-

Bp Bp

(5.27)
If we eliminate 0¥ from (5.26) and (5.27) and use equation (5.25),
we find that

- By (U2 + np Bp?)[Qn ~ Fp (2 n Bp? — p U2)]

+ ¢ By [QX¥ By + Bp F (N Bp? — n B2 — p U2)] = 0. (5.28)
This equation describes the amplitude of the acceleration wave.

It is clear that the. amplitude equation contains ﬁ, aj and c3
and their derivatives. However we can eliminate both aj and cj to
obtain a partial differential equation for b alone as follows :-
(i) From equation (3.29) we see that ¢, = Ub/p.

(ii) Since ap = 0, equation (2.30) and (3.31) have form

U ag + By Cg = By L0 . (5.29)
e
pUCPxi g+ ngafxyp %1 = - pUcpng - b g KL,
B4 ap

(5.30)
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When equation (5.30) is multiplied by a%” xj, ; we obtain

A0k i A0y 4
pUCcE + Nk af a%¥ Xi,B Xi,y 9%i = - b np a<y i,y ki .
aBj ap

(5.31)
However,

ng af a% x5, Xi,y oKk = By aP By B* 1B 4 n By a%  (5.32)
9B4 B
3

thus equation (5,31) becomes

a Y
o U c* + By af B B M8 4y Bp a% = — b ng a® %y, oKL

B ap
(5.33)

Now (5.29) and (5.33) fepresent four equations in the four unknowns
¢y, ©2, a3 and az. Thus if the determinant of equations (5.29) and
(5.33) is non—zero then we must solve these equations for a;, ay,

¢1 and ¢z in texrms of b. The required determinant is

U 0 Bp 0
0 u 0 By,
By + Bp Byl B g, Bl B, /B p U 0
B B
By By B2 B n Bp + Bp B2 B o pU
B R (5.34)

and after further algebra, this determinant has wvalue

(p U2 - n Bp2)(p U2 -n B2 - "B 52 5, BX) (5.35)
' B

We require expression (5.35) to be non-zero. Since we are dealing
with case (1) in which p v - n an # 0 then we require to show

that

2
v2 =B (4B B,?) (5.36)
fel B

cannot be a solution of eguation (3.37). Suppose the contrary then
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2 g,2

Bp? B

DL M8 M8 52 B2 + (p mp + M) an—P‘?p‘P—EBLZ]
B p B B

+ an B_Lz B(P;PT))

pB 8(p,B)

=0

2 2 2 2
. Bg? B;2 g2 B2 B2 P
- n” Bi” ¢ D "L + ng Bn? (pn)p — P Bp M — ng By2 B
B p B B

+ Pp (pn)B ~ (PN)p PB] =

an B_|_2

< 1 [ng B2 + B (pn)pling By2 ~ Pgl = 0
p B2
Bre B2
& - 7L [ng B2+ B (mm)pl2=o0 (5.37)
e B2

I

where we have used the fact that ng Bp? - Pg = - [ng B;? + B (pn)p]
We may show that we cannot find n(p,B) such that p*, p*p are always
non-negative and for which ng 312 + B (pn)p 0 and hence we may
conclude that determinant (5.34) is non—-singular.

We can determine the form of the amplitude equation (5.28),

but instead we shall determine the coefficients of L(b), b,g, b2,

b b, b (Vg,s)*, b (Vr, )", b (p,x)" and b.

Coefficient of L(b) in amplitude equation is

- 2 U2 By BLZP_P(£+pc) . (5.38)

Coefficient of b, g in amplitude.equation is

P
— B2 (U2 + ng By?) U BP P {f_(UZ-np Bn?) + n Bp? ~ p U?
£ Py

~ ™8 5,2 8,21+ £ UB, B8P [2 p U2 By - 2 n By - n By B2
B £

- T8 gy B+ B (€ (02 - np Be2) - o UZ)]. (5.39)
B Bn P,
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After a long calculation it can be shown that

Coeff1c1ents of b B = au BB . (5.40)

Coefficents of L(b) 9B

If we use equation (4.31), then the amplitude equation has form

db
— + 81 (Vg,8)t D+ Arg (Vr,a) b+ a3 b®b + A (p,x) D
at

+ A5 b+ 25 b2=0 (5.41)

wherxe

K Ay = [(¢ Bp B® xj,« = B2 nj (U2 + np By?)] [2 U2 By

2oy 200 2o
- p By KL gy By 2K - o By ony B xg, o R 20KE
ap? 3pIB £ 2p3By

——puzsnr(z'pPP)Bi+PP“i}—zpuzf'_EBO‘xi,a

P Bp ¢ £ £
a2
~ B mk Bp B xj,q SR O 0KL 3, (5.42)
£ 0Bj9Bp

P
K Byg = [¢ Bp BX Xj,o - B1? nj (U2 + np Bp?)] [pv2 BX 2 x5 g Bir
£

820y 4 Pp 8%0ki
+ U2 Bg 8iy + By Nk Bg © XL 4 By ng Bg BY xj,q 2P O OK1

8p3By £ 0By9By

803 - P P N
"Bnnr_si*'PBnUz{({ pp)Bs"’ps}sir
ap P Bp ¢ £
Pp 80gi
— Bp np B x5 « P 2781y - [B)2 (U2 + T Bn?)
€ 984
,r (2 n Bp? —p U2) + ¢ By? (n Bp? - n B2
!
P
— p U%)] (B® xg,q Ny -£) ' (5.43)
£ )

P, 30%i
K A3 = (By ny BB xpc g U2 ZTki) (842 ny (U2 + Np Bp?)
€ 9By

— £ Bp B% x5 4l ' (5.44)
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U By 90%i
K Bk = [¢ By BX X3 o - B)2 n; (U2 + ny By2)] [0 2%i
P op

- 200
+ U3 By (&£ - PP B + TP TRy _ g By B X§, o Pp 9%0gi

P ¢ Bp ¢ ¢ 9paBy
2
~ U By 2 %Ki , (5.45)
. apz

P, Ny
K Bs = [¢ By B x5 g - Bj2 nj (U2 + np By2)] [p By L[UZ {(CP
£

+ L7 PP0) miyy - By 2%y o (U PR BY) g xg,, 20K

P & Bp ¢ 3B
] i P 62 _
- By a%B U g X%, ki _ Bp BY Xr, o (Bj,k)+ Pp Oki
ap £ 0B43By
i -pP PNy
+ T umy (B3,x)% %%i 4 puss (uz {5~ P Fp) B; TPMy 4
aBj P Bp ¢ £

2 - U P
~ U By (By,10" 27K~ 5o (U PP % x; o) + U B3 L(U)
9p3By £

— p U3 (By,g)" {('£ ~ P Be) Bg + i 7811
P Bp £ £

+ [B;2 (U2 + np Bp®)(2 n B2 — p U2) + ¢ By? (n Bp?

-n B2 - pU2)] [Ung (By g) (£ 7P Fp) g+ Bp sy
P Bn ¢ £

2 - .
- Py e+ ng, g0 (ET PR g PR DY
U p P Bn £ ¢

+ 0 a8 2 (£ TP PP) gy o B xy g nng) 2P,
u P Bp € €

(5.46)

2200«
K Bg = [£ By BY x; o - B2 nj (U2 + mp By2)] [U By ng qzl
ap

£ 8pIB P £

20Kk i P
+2 UBpnk B %9, o0 O 0KL = 2 y3 By 4+ 2 U B xy, o P

Po? 220y

+ U Bn Nk BX Xr,q Bﬂ xj'ﬁ
€2 9B43By

(5.47)
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and where

K = - 2 U2 By B4? Ppo (¢+p2) . (5.48)
£

Thus the solution of the amplitude equation (5.41) has form

b= bg exp(- fob « at)
1 + bo fob Bg exp(- foS « ds) dt

(5.49)

where
x = Ay (Vé,s)+ + Arg (Vr,s)+ + A3 ba®* + A (P,k)+ + Ag

Case (2)

Here we are considering the situation of Alfven waves in which

case

Thus in this case equation (5.19) becomes

+ oF Bi (EE an - EE) + EE o B i, = Qi (5.50)
B B B

When equation (5.50) is contracted with n4y, we obtain
Qn = (E ¢ + p 0F + n Fy Bp2) Bp. (5.51)

If ¢ is now eliminated between equations (5.50) and (5.51) then

Qi = On Ef + (E Pp + o EE) B Xj,«x (5.52)
B

from which we can readily deduce that

Qa=QﬁB,33a
Blz

(5.53)

i.e. 0% and BY are parallel. This equation describes the amplitude

of the Alfven wave.

wWhen (5.16), (5.17) and (5.18) is taken into (5.20), we obtain
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a -

Qi = p Bp L(U ci) - p U L(3;) - By a%P 3¢ « (U a4), ki
aB4
3

32 .
- p U2 cg (Bi,s)t + By Uay 2 KL (ay ng - (By,x)H)
dBs 98B
] Y

020vs
+ pUBP (Ucy),g+ (p,x) [U2 By cx — By U ag 2 _°Ki)
apaBj

F Y- 32 .
- (Vs,8)" [By aj ng By Z%Ki 4 p By g aj ki
éB49By 9paBy

+pBaUci+2pU2aj]l+ (V,x)" [P U By ok 6ir
~ Bn aj ny 2K 4+ B, ay nsBka_z_‘_TE}_+puzaksir].
@B 9B40Br
(5.54)
It is clear that the amplitude equation (5f53) contains ai-
and ¢j and their derivatives. However ¢; can be elimipated to
obtain a partial differential equation for a, alone. Thus the

amplitude equation has form

alal _vu lal U By Bx lal Bjit
at By By 2 B n By

-~ + ~
+ 0 B (8l mp (Px)7 4 1l (y sy (2 +B Mg+

2 n B 2 m
12l By Bk g (Ve00t = O (5.55)
2 BN
where
a = lal ¥(n U By / p)
and

lal = a By .
Thus the solution of the amplitude equation (5.55) has form

lal = l;ol exp( Jot « at) (5.56)

where the form of a is obvious from (5.55) .
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Special Case 1 = constant

In this event we can see from (3.8) that ¢ must have form

2
W=T)B + £(p) . (5.57)

2 p
If equation (5.57) is differentiated with respect to p, we obtain

B2 .
Vo= - o _n+£(p) . (5.58)
2 p?

From equations (3.6), (3.9) and (5.58) we find that

2
p="5" 4 £y p2 . (5.59)

2

Thus
Pp = (p% £p)p » (5.60)

which is a function of p only and
PR = n B . {5.61)
We shall consider the situation in which the fluid ahead of the

wavefront is at rest and at constant dengity.

Case(l)

Here U satisfies the quartic equation (3.37) which in this
case has form
pU‘*—UZ(pPp+nBZ)+npan2=o (5.62)
and the amplitude equation has form

4 L xc+pc2=o0 (5.63)

dt

where :
u U2 ~- 1 By2 2pU02 (U2 - P

2 pu* - n Py BR? ot - n Py By?
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2 2 .. _ ) a
o = __E;__ L(U Bp) - L(Bji) U= (p U nj — 7 By Bj) + B% U o
2 U Bp 2 By (p U - n Py BL2) 2 By,

3 2 . . 2 . -
+ (Bi,j)+U (p U9 nj —n By Bj) (p U nj — n By By)
: (p U2 — n By?) (P‘U4 - nPp Bp?)

_ B% (p 0% + n By By2) (92 (p U2 - m By?)

. ],
4 U By (p uZ - n an) fol Ut - n Pp Bn?

p U? (p UZ - n By2) ( u? B
2 By (p U* — n Py Bn?) p U2 - n By

), «

2 (p U2 - 1 By?) (p U* - n By By?)

In the expression for g we have already observed that

p U2 - nBg? _ u2 B2 >0 .
p U - nppBy2 Ut B2 + By? (U2 - py)2
Further,
2 p U2 (U2 - pp) _ 2 p U2 B2 N
p U% — n py B2 n% B2 B 2 + (p U2 — n BR?)2

and since we would anticipate that Up 18 also positive, then we
expect 8 to be negative for any real material.
The solution of the amplitude equation (5.63) will be

Co exp(-— Jot « dt)
1+ cg Job B exp(— foS « ds) at

c = (5.64)

(1) If cg < 0, then since g < 0
1+ cp Job B exp(— fo° « ds) dt
is always positive and hence ¢ is never infinite. In fact c
is always negative. Aiso Co < 0 implies that b < 0 , i.e. p
is decreasing which means that we are moving from a low
pressure region to a region pf constant pressure.
(ii) If cg > 0, then 1 + cg Jot B exp(— §o® « ds) dt may or may

not be zero depending perhapes on the size of ¢g
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. case(2)

Here we are considering the Alfven wave situation in which

case
b=a=20 ’ pU2=an2.

The amplitude equation in this case has form

acu lal) _ ¥(n/p)

dat B2

and the solution will be

U lal = Uy lagl exn(fot Y™P) o; 1o espg nr np Bs Bg (Bi, ).
B
(5.66)
Suppose that A = n x B, then (5.65) becomes
U lal = Uy lagl exp(fot ‘_’_‘_"’i’zi’. A; Ay (By, ) . (5.67)
By

IfEB= £(p) (~Y, X, 0) and n = (n3, np, 0), then A3 = Az = 0 and
U lal = Ug lagl (5.68)

which means that the jump in acceleration is constant.
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Chapter Six

Examples

Propagation of a wavefront into a region at rest and at constant

density.
Here the ray equations has the form

au

Xij =Unj + B X3,
9B
(6.1)
- au
nj = (nj nj - &§53)
6Kj~

where
U = U(B,Bn) -

Firstly we discuss the propagation of a wavefront into a region of
constant magnetic field. We may take B = (B,0,0) without loss of
generality. From (6.1)z we may deduce that nj = constant on a ray
and thus By is also constant on the ray. Further au/aBp, and

B™ xi, & = Bi — Bp nj are constants. Thus the ray equation (6.1);
may be integrated to obtain

fg; (Bi - Bp nj)} t + x5(0,86%). (6.2)

25

Xj = {Unj +

Specifically, if U is homogeneous of degree one in By then
By, @U/dB, = U and therefore the surface described by (6.2) assumes

the simplified form

xi = 9 B:t+ x4(0,6%) . ' (6.3)
L 1 A

9By

The Alfven situation is a special case of (6.2) where U is linear

in By and 8U/8Bp = v(n/P).
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(a) Propagation of a plane wave with normal direction n

flere we guppose that the initial profile' is a plane wave with
equation X . n = o then from (6.2) we have
X.n=a+uUt,. : (6.4)
i.e. the final surface is a plane wave parallel to the original

surface and propagating with speed U(B,Bp)-

(b) Propagation of a cylindrical wave

In this section we suppose that the initial wavefront is the
surface of the cylinder
x(0,8%) = (Rcos®,Rsine,Z) .
The unit normal to this cylinder is n(0,6%) = (cose,sine,0) and
thus the location of the singular surface at time t is readily seen

from (6.2) to be

X = (U - Bp ai) t (coseo,sine,0) + ou t (B,0,0)
aBq 9Bp
+ (Rcoso,Rsine,Z) . (6.5)

Equation (6.5) has component form given by

x=(U—anE_)tcose+tBit_’__+Rcose '
9Bp 3Bp
au . -

¥ = (U - By ) t sine + R sine R (6.6)
B

z=2 .,
In order to find the cartesian eguation of the singular surface at
time t ¥ 0, it is necessary to eliminate © from (6.6) bearing in

mind that Bp = B cose .,
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{c) Propagation of a spherical wave

Here we suppose that the initial wavefront is the surface of
the sphere
%(0,6%) = (R sine cosd,R sine® sind,R cose). (6.7)
The unit normal to this sphere is
n = (sine cosd,sine sin¢,cose)

and thus the location of the singular surface at time t can be

shown to be
au . . .
X = (U - B ) t (sin® cosd,sine sing,cose)
9Bp,
au - . .
+ t (B,0,0) + (R s8in® cos¢,R sine sind,R coso).
dBp
(6.8)
In component form
X = (U - B ES_) t sin® cos¢ + 22_ t B+ R 2in® cosd ,
9B . 9Bn
8u . . . -
¥=(U~-Bn ) t sin® =in¢ + R sind sind ’ (6.9)
@Bn
z2= (U _ Bp EE;) t cose® + R cose
Bn

where B, = B sine cosd .

Alfven wave propagation

Here the ray equation has the form described by (6.3) where U

is linear in Bp and 8U/9Bp = v(n/p) .

Propagation of a cylindrical and spherical wave

For the cylindrical initial surface we have

x = ¥(n/p) Bt + R cose ,

It

Y R sine M (6.10)

z =2 .
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If 6 is partially eliminated between‘(s.lo)ltz then

(x - B t ¥(1/p))> + y% = R? (6.11)
and in the special case in which n = constant then we have a
cylinder radius R, centre (B t v(n/p).,0). |

Similarly for the initial spherical profile (6.7) we may show that

X = ¥y(n/p) B t + R 8ine cosd ’
Y = R s8ind® sind . (6.12)
Z = R cos® ,

If & is partially eliminated between (6.12)3,2 then
(X — ¥(n/p) B t)2 +y2 + 22 = RZ , (6.13)
and in the special case in which n = constant then we have a sphere

radius R, centre (B t v(n/p),0,0).

Cylindrical magnetic fields

I,et us assume that the magnetic field has form
B = £(p) (-¥,X,0) , p=/(x*+y?) (6.14)

which, we observe in passing, satisfies div B = O,

If we define g(p) Y{n/p), then equation (6.1); becomes

-

x; = g(p) Bi . (6.15)
In component form

;C =-hp) Yy ’

S:'=h(P) X : (6.16)

z =0

where h(p) = £(p) g(p).

From (6.16)1,2 we find that

. -

XX+yy=0 (6.17)




which impliesg that

X% 4+ y2 = p2 = pg2 (6.18)
i.e. p = po(0) . {(6.19)
Alsc
f~c_3_) = sec2(9) P®_ Y _¥XE_.q sec?(0) (6.20)
at x at x x?
and so
é =nh . (6.21)

From equation (6.19) and (6.21) we may deduce that

X

po(©) cos(® + h(pg(e)) t)
(6.22)

1}

Y = po(€) 8in(® + h(pg(e)) t) .
In figures 1 and 2, the locus (6.22) is sketched when £(p) = 1 and _
for initial profiles .

(1) Pp = 2 cose ' (2) po=2 + cose .
In figures 3 and 4, we sketch (6.22) when f(p) = 1/p2 and the

initial profiles are

H

(3) ey - Bece ’ n/2 < © < 3r/2 ’

(4) po = cose + sin® + Y[(cose + sine)2 + 14] .

A conservation property of Alfven waves

Suppose that n = constant , B = (Byg, By, 0). If A is the

closed area bounded by a wavefront then

Area = J X ay dae . (6.23)

If (6.23) is differentiated with respect to t, then we obtain

S_ (Area )= J (x ay + x dY)de . (6.24)
gA

at de de
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On using (6.15) equation (6.24) becomes

d—(i’wea)=f gBXEZ+dee . (6.25)

at oA de de

After further algebra and the use of Green's theorm, we obtain

9 (area) =g ” %Bx 1 By ax ay (6.26)
dt A X oy

and since B is solenoidal equation (6.26) becomes

E.. (Area) = 0 (6.27)
dt

i.e. The area enclosed by the Alfven wave is conserved although the

shape may vary.
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