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Abstract

Mathematical and computer-based models providéotinedation of most methods of
engineering design. They are recognised as beipgcedly important in the
development of integrated dynamic systems, suciecagrol-configured” aircraft or

in complex robotics applications. These models lguavolve combinations of
linear or nonlinear ordinary differential equatioos difference equations, partial
differential equations and algebraic equationsdme cases models may be based on
differential algebraic equations. Dynamic modele also important in many other
fields of research, including physiology where thighly integrated nature of
biological control systems is starting to be maréyfunderstood.

Although many models may be developed using phlysatgemical, or biological
principles in the initial stages, the use of expemtation is important for checking
the significance of underlying assumptions or sifig@itions and also for estimating
appropriate sets of parameters. This experimematoach to modelling is also of
central importance in establishing the suitabildy,otherwise, of a given model for
an intended application — the so-called “modeldation” problem.

System identification, which is the broad term useddescribe the processes of
experimental modelling, is generally consideredbéoa mature field and classical
methods of identification involve linear discretex¢ models within a stochastic
framework. The aspects of the research describedhig thesis that relate to
applications of identification, parameter estimat@nd optimisation techniques for
model development and model validation mainly irreohonlinear continuous time
models Experimentally-based models of this kindehlaeen used very successfully in
the course of the research described in this thesisin two areas of physiological
research and in a number of different engineeripglications. In terms of
optimisation problems, the design, experimentalngirand performance evaluation
of nonlinear control systems has much in commorh \ite use of optimisation
techniques within the model development process iand therefore helpful to
consider these two areas together.

The work described in the thesis is strongly agpions oriented. Many similarities
have been found in applying modelling and contechhiques to problems arising in
fields that appear very different. For example, teas of neurophysiology,
respiratory gas exchange processes, electro-optisos systems, helicopter flight-
control, hydro-electric power generation and swefabip or underwater vehicles
appear to have little in common. However, closaneixation shows that they have
many similarities in terms of the types of problehat are presented, both in
modelling and in system design. In addition to medr behaviour; most models of
these systems involve significant uncertaintieseguire important simplifications if

the model is to be used in a real-time applicasioch as automatic control.

One recurring theme, that is important both inrntedelling work described and for
control applications, is the additional insightttikan be gained through the dual use
of time-domain and frequency-domain information.eOaxample of this is the
importance of coherence information in establishithg existence of linear or



nonlinear relationships between variables and hlis proved to be valuable in the
experimental investigation of neuromuscular systemnd in the identification of
helicopter models from flight test data. Frequedoyrain techniques have also
proved useful for the reduction of high-order mudput multi-output models.

Another important theme that has appeared bothirwitie modelling applications
and in research on nonlinear control system desigthods, relates to the problems
of optimisation in cases where the associated respsurface has many local optima.
Finding the global optimum in practical applicasopresents major difficulties and
much emphasis has been placed on evolutionary uetbd optimisation (both
genetic algorithms and genetic programming) in f@liog usable methods for
optimisation in design and in complex nonlinear elbdg applications that do not
involve real-time problems.

Another topic, considered both in the context aftegn modelling and control, is
parameter sensitivity analysis and it has been dothmat insight gained from
sensitivity information can be of value not onlythe development of system models
(e.g. through investigation of model robustness #a design of appropriate test
inputs), but also in feedback system design arcbiiroller tuning. A technique has
been developed based on sensitivity analysis Bosémi-automatic tuning of cascade
and feedback controllers for multi-input multi-outgeedback control systems. This
tuning technique has been applied successfullgwteral problems.

Inverse systems also receive significant attenitiothe thesis. These systems have
provided a basis for theoretical research in therobsystems field over the past two
decades and some significant applications have bemorted, despite the inherent
difficulties in the mathematical methods needed ttoe nonlinear case. Inverse
simulation methods, developed initially by othess dise in handling-qualities studies
for fixed-wing aircraft and helicopters, are shownthe thesis to provide some
important potential benefits in control applicasotompared with classical methods
of inversion. New developments in terms of methodglare presented in terms of a
novel sensitivity based approach to inverse sinanahat has advantages in terms of
numerical accuracy and a new search-based options&chnique based on the
Nelder-Mead algorithm that can handle inverse samh problems involving hard
nonlinearities. Engineering applications of invesgaulation are presented, some of
which involve helicopter flight control applicatisrwhile others are concerned with
feed-forward controllers for ship steering systerfibe methods of search-based
optimisation show some important advantages ovewemtional gradient-based
methods, especially in cases where saturation #ret nonlinearities are significant.

The final discussion section takes the form ofiacat evaluation of results obtained

using the chosen methods of system identificatiparameter estimation and

optimisation for the modelling and control applioas considered. Areas of success
are highlighted and situations are identified whareently available techniques have
important limitations. The benefits of an interalinary and applications-oriented

approach to problems of modelling and control dse discussed and the value in
terms of cross-fertilisation of ideas resultingnfranvolvement in a wide range of

applications is emphasised. Areas for further neseare discussed.
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Preface

This thesis is concerned with methods of systenmmtifieation, optimisation and

inverse simulation applied to problems of nonlinegstem modelling and also the
application of optimisation and inverse simulationethods to problems of
engineering systems analysis and design. Optiroisatchniques are of central
importance to much of the work described, whiclstr®ngly applications oriented
and involves a range of problems from engineermd@hysiology.

The thesis involves a selection of papers publishestly in peer-reviewed journals,
together with a few in refereed conference procegdiThe papers submitted within
the hard-copy version of the thesis are accompabyed review, organised in nine
sections, which explains the relationship betwdwndifferent published studies and
attempts to place the whole work in perspective.

The first section of the review relates mainly tssues of motivation and
methodology. Discussion of practical applicatiofghe techniques are presented in
subsequent sections and a final discussion selitiks together some of the most
significant issues that are believed to arise framark involving these different
application areas. Suggestions of topics for futesearch are an important part of
that final discussion section.

The forty-one original contributions, which formetltentral part of the hard-copy
version of this thesis, are indicated within thet bf original publications using bold
type to distinguish them from other (supportingplzations. When mentioned in the
text, these included publications are again shosingubold type (e.gsubmitted
paper [2]). These publications have been chosen to proaifemework of detailed
information to support statements and claims madhirwthe review. The other
papers included in the list of original contributso (shown, for example, as
supporting paper, [4] provide additional detailed evidence or descrfheher
practical applications.

The amount of information included in each sectérthe review depends upon the
extent to which individual topics are covered i tlelevant submitted papers. In
cases where important information on background,thauwology, results or
applications appears only in the supporting pubbcs there is more detail in the
corresponding section of the review. Thus the l@faletail in different sections of
the review is not entirely uniform and it is impemt that all sections of the review be
read together with the relevant submitted papers.
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1. Introduction

1.1 Integrated Systems and their Significance in Engeering and
Physiology

Mathematical and computer-based models providéotinedation of most methods of
engineering design and are of fundamental impoeteancmany different areas of
science. One important factor that influences mefean modelling is the steady
increase in complexity of the models required fewrand existing applications. For
example, one common factor in the investigatiompleysiological systems and the
analysis and design of modern engineering systertigeifact that in both these fields
there has been a rapid growth, in recent yeamyirunderstanding of the importance
of integrated systems and of the benefits of systeegration within design.

It has for long been understood that physiologggdtems are highly integrated
dynamic systems and involve complex interactionsciwvhresult from millions of
years of evolution. However, the significance ofghblogical system integration in
terms of system modelling and the complexitiestofsological control mechanisms
has only been fully appreciated during the past tatury as attempts have been
made to apply quantitative methods of investigatmhiological systems. In this case
clever experimental design can be applied, to sertent, to reduce the level of
coupling and interaction within the system. Thisenfinvolves attempting to open
feedback loops or isolate subsystems by cuttingaoking communication channels.

The widespread introduction of embedded systemsadhner forms of computer-
based control in recent years, in many differeatarof engineering, has led to a very
rapid increase in the complexity of man-made systéon many applications. For
example, digital “fly-by-wire” control systems amdw commonplace, both in civil
and military aircraft and this inevitably leadsritew levels of complexity in terms of
interactions, not only within the on-board systeshghe aircraft but also between the
pilot and the vehicle and between different velsicovel features, such as “carefree
manoeuvring”, assist aircrew in avoiding potetyidlazardous situations and thus
help to improve safety margins in civil aircrafttpunevitably, this is done at the cost
of additional complexity and an increase in theeleof integration. This, in turn,
introduces further complexities in terms of desigince full design integration
requires design teams that are organised so thiaital and economic factors may
be traded. This, in turn, allows the overall pariance to be more fully optimised
and design cycle times to be reduced.

Current trends in aeronautical engineering make védry probable that
multidisciplinary issues involving the elastic afne, the flight control system, the
propulsive control system and physiological “biodgmc” factors involving the pilot
will combine in future to an extent not previousiycountered in aircraft design. For
example, low frequency modes of structural vibratare likely to need an active
structural mode control system that is fully ineggd with the primary flight control
system as the bandwidths of these two systemsilaly ko overlap significantly.
Similar situations where “control-configured” satuts involving system integration
and multidisciplinary design issues are becomingreasingly important can be
identified in other application areas, such as ticbo



1.2 System Modelling Issues for Integrated Systems

It is clear that with integrated design the systéinas have to be brought together do
not exist in hardware terms when initial designisieas are being made. This
contrasts with traditional approaches to contragdteyn design where procedures
normally involve the development of a controller &é“plant” which already exists,
or a plant that has been designed in detail paaontrol issues being considered. In
such a traditional approach direct comparisons éetwthe plant model and the
system are often possible. In contrast, within iegrated approach to design,
control is no longer a second stage in the desigogss and the design of the control
systems cannot be separated from other stages ajvitrall design. Although this
requires a new approach it need not, however, pedasuperable difficulties
because it is normal to start the design procesarfantegrated system using some
form of highly simplified conceptual model that gnincludes features that are
considered as essential. This initial model isndexl only to provide a basis for the
evaluation of major design options and for makinglipminary design decisions. As
soon as more detailed and tested models becomlaladeaihey are used in place of
this conceptual description.

Within multidisciplinary design teams the concutretonsideration of critical
constraints is central to this integrated desigocess and this implies a need for
models of the highest possible quality for eaclyestaf the development. There is
also a need for software tools for dynamic modglland simulation that can be
integrated with other design software. Currentlgikble tools do not appear to be
able to handle adequately all the necessary tegbital areas and, inevitably, some
initial models may prove to be inappropriate fagithntended application.

As an illustration, methods of computational flulynamics and finite element
modelling are widely used in many areas of engingeWhen such tools are used
for the modelling of elements within a larger systewvolving a number of sub-
systems it may be essential to derive reduced-addscriptions to help avoid the
effects of major computational overheads when sobets are being combined to
provide a more integrated description of the larggstem. This model reduction
process, inevitably, introduces approximations amdplifications which must be
introduced with caution.

Advanced computational tools of this kind, sucliimise element techniques, are also
being used increasingly for physiological modellingxamples of this include
investigations of the cardiovascular system andnpuakry airways. In this case the
need for reduced models arises because of thetabéyidifficulties that arise if the
computational timescale for a model is orders ofjmitade greater than the timescale
convenient for the analysis and decision-makinggsees of the investigator. In the
case of engineering design processes it is equafprtant that sub-system models
should be capable of running in timescales thatves# matched to the thought
processes of human designers. At each stage objacp whether it involves
engineering design or open-ended scientific ingasitin, it is important that any
models being applied are appropriate for the irgenapplication. Models are never
unique.



The availability of appropriate mathematical andhpater-based models is of clearly
of central importance, both for the analysis ofsérp systems and for the design of
entirely new systems. More than ten years ago tKe Qffice of Science and
Technology Report by the Technology Foresight Paioel the Defence and
Aerospace Sector (Anonymous, 1995) included arsetéthat:

..... Improved modelling of physical and manufactgriprocesses will improve our
ability to predict the behaviour, costs and risksfuture systems, and dramatically
reduce the development timescale”

That government report also states:

“.....While it is essential that modelling and sintida is supported by validation
trials, improvements will reduce the need for gosthnd time-consuming
developmental testing”

Thus, while creating an expectation that improveodelling methods can assist
significantly in the development of future systerting report is also emphasising the
importance of model validation but is stating clear belief that improved modelling
techniques can reduce the time required for the paluct or process to clear the
final testing or commissioning stage.

Although full system models are never availabléhatearliest stages of design (or at
the start of a biological system investigation)hds to be recognised that some
information may exist about sub-systems and thatessub-model descriptions may
be available from previous investigations of a famkind or from an available
library of documented model components. In mangsasluable data may also exist
from earlier trials and experiments and, in theecat engineering systems, from
hardware-in-the-loop simulations studies or fronmoussioning tests of existing
systems of a similar kind.

1.3 Questions of Model Quality

In general, the quality of a model has a direclugrice on the quality of the final
solution, whatever the application. For applicasianvolving automatic control, the
models are usually dynamic in form, involving comddions of linear or nonlinear
ordinary or partial differential equations and &lgec equations or may be based on
differential algebraic equations. Dynamic modelkjol can also be in discrete form
based on difference equation descriptions, areiaiportant in many other fields of
research, including physiology.

Although many models may be developed using phlysat@emical, or biological
principles in the initial stages, the use of expemtation is important for checking
the significance of underlying assumptions or sifigaitions and also for estimating
appropriate sets of parameters. This experimematoach to modelling is also of
central importance in establishing the suitabildy,otherwise, of a given model for
an intended application (the so-called “model \atiwh” problem) and forms an
important part of the work presented in this the3ise approaches discussed are
highly relevant both to engineering system modektment and to the modelling
of physiological systems.



System identification, which is the broad term useddescribe the processes of
experimental modelling, is generally consideredoéoa mature field and classical
methods of identification involve linear discrete¢ models within a stochastic
framework. The aspects of the research describt#ushesis that relate to the use of
identification, parameter estimation and optimmattechniques are concerned with
model development generally and the applicatioashat concerned exclusively with
control. They involve, mainly, nonlinear continueurse models and are also
concerned with other areas of engineering systesigueand with physiological
system modelling. Objectives from within these eliéint application areas include
hypothesis testing, the development of inferentilasurement methods and also
real-time simulator development.

In some forms of continuous-time system modelsphgsical interpretation of the
model structure and parameters can be made moeet dran for other possible
model structures, with important benefits in terafsinterpretation. Together with
issues involving experimental design and the chofdest signals for the estimation
of parameters, the choice of model structure catribaite in an important way to the
overall robustness of models that are establishgmramentally. This aspect of
modelling and related issues of structural andrmpatar sensitivity and identifiability
receive attention within a number of the applicattudies. The process of extracting
data from system and sub-system tests for mod&ldement and refinement is not a
trivial task and the whole iterative process of elepment in the presence of
uncertainties raises many important issues and asm@s the fact that there are no
generally accepted approaches to the problem othwadidation.

Techniques of inverse simulation, which are mob#ged on optimisation methods,
are well-established in specialised fields such aaxraft handling qualities
investigations but, until very recently, were altnosknown in other modelling and
control application areas. However, these methadsppear to offer an interesting
alternative to other approaches to model inversespecially in the nonlinear case,
and have been the subject of a number of develognrenerms of methodology and
several applications studies that are includechenthesis. The possible benefits of
using inverse simulation methods for the designcombined feed-forward and
feedback control systems for cases where actuaturasion and other hard
nonlinearities are present, has also receivedqodati attention.

1.4 Optimisation Issues

In terms of optimisation problems, the design, expental tuning and performance
evaluation of complex closed-loop control systems imuch in common with the use
of optimisation techniques within the model deveh@nmt process and it is therefore
helpful to consider these two areas together withm thesis. Although gradient-
based methods remain important, the complexity ahynpractical problems of

modelling and control means that it is impossiblestablish a global optimum using
gradient methods alone. Techniques such as simdudatteealing, genetic algorithms
and genetic programming provide important benefithin the system modelling and

control system design areas and are applied tor@auof different problems. The

importance of these global optimisation tools ikely to become even more
significant as very large integrated systems becmmee commonplace.



Another topic, considered both in the context aftegn modelling and control and
closely related to optimisation, is parameter dentsi analysis, which was the

subject of much research in Eastern Europe in 8694 and 1970s but has been
rather neglected elsewhere. It has been founditisagght gained from parameter
sensitivity information can be of value not onlythe development and refinement of
system models (e.g. through investigation of maoélustness and the design of
appropriate test inputs), but also in feedbackesysiesign and in controller tuning.

1.5 Overview

This thesis presents results of almost forty ye&rgork involving research in system
modelling, optimisation, system identification, ®m simulation and control. The
research is strongly applications oriented and lires investigations which have
physiological objectives as well as much work whi@ks within the more
conventional areas of engineering applicationslokahg this introductory section,
the presentation and discussion of the materiahe submitted papers has been
organised under the main headings shown below:

a) Optimisation, System Identification and Parametsir&ation
in the Development of Dynamic Models.

b) Inverse Simulation for System Modelling.

C) Issues of Quality and the External Validation oh@gnic Models

d) Optimisation Methods in Nonlinear System Modellargd Nonlinear
Control System Design Applications

e) Inverse Simulation for Control System Design Apglions

f) Sensitivity Function based Optimisation for CorigpiTuning

0) Other Related Work involving System Modelling anoh@ol Applications

The final discussion section of this review takies torm of a critical evaluation of
results obtained using the chosen methods of systemtification, parameter
estimation and optimisation for the various systeodelling and control applications
considered. Areas for further research are disdussgpecially in the context of
integrated systems.



2. Optimisation, System Identification and Paramete
Estimation in the Development of Dynamic Models

It has already been emphasised in the introduttianmodels need to be appropriate
for their intended purpose. It is also clear thatdels of a given system are never
unique. Model development is an iterative proces®lving repeated attempts at
formulation, testing and re-testing. The form ofdebadopted at a particular stage in
a project must therefore take account of the objest the amount of detalil
appropriate in the model at that stage of the wamkl the uncertainties in the
information available about the real system. In sasituations, particularly when
modelling existing systems or sub-systems, thengwa be a need for experimental
investigations before any form of highly detailaghqgtitative model is developed.

2.1 Optimisation Techniques in System Modelling

System identification and parameter estimation rigples involve the use of
observations and measured response information &oreal dynamic system to
develop mathematical and computer-based modelsdpegsent the characteristics of
that system. The model has a general form whiclolu®s a number of ordinary
differential or difference equations and an asdediaet of parameters which have to
be estimated. In general, the structure (as deflimedhe number of differential
equations and the form of any associated algelemtionships) also involves
uncertainties and the most appropriate structwahfmay have to be established
from measured response data.

The most widely used approach is based on leasaresguminimisation of the
difference (error) between the model response hednieasured system response.
The process of deciding on the most appropriatectsire for the model usually
involves background knowledge and physical undedstey of the system under
investigation, as well as examination of the awddaesponse data. Once an initial
model structure has been established and unceéetaint that chosen structure have
been critically assessed, the parameters of theehwash be adjusted in an iterative
fashion using a specified optimisation cost functidhe iterative processes of
parameter adjustment continue until the responsélseomodel match those of the
real system to some pre-defined level based upbresaf the chosen optimisation
criterion.

Dynamic models used in practical engineering appbas are usually nonlinear in
the parameters. In such cases a nonlinear optiomsapproach must be applied for
determining the most appropriate set of paramdterensure that model responses
match experimental data. Many nonlinear optimisatechniques and methods for
iterative solution of nonlinear equations have beeveloped and general information
about the relevant algorithms may be found in sssistich as Press et al. (1986) and
Nelles (2001).

Nonlinear optimisation and the iterative solutiori wonlinear equations are
challenging processes due to the potential preseineege numbers of local maxima
and minima. Therefore, it is possible that mang sélocally “optimal” parameters



may be determined from experimental test data anel must be taken to find the set
that corresponds to the global optimum solutionsoAlbecause more than one
possible solution can exist, in contrast to thequai solutions typical of linear
optimisation methods, nonlinear optimisation tegoes are iterative in nature. As a
result, nonlinear optimisation methods usually cdanbe considered for on-line
applications.

One very important factor in nonlinear optimisatian the choice of the initial
parameter set. Although a random or arbitraryahisiet of parameters may lead to
convergence to an optimum, the selection of a fealdla set of initial parameters on
the basis of prior knowledge can increase the speednvergence considerably.

Nonlinear optimisation methods can also be classifisLocal and Global methods
(Nelles, 2001). Although they converge to localimgt, local methods often converge
to points that are close to the initial paramegty garticularly with methods in which
search directions are obtained from first and séawder derivative information.
Such algorithms thus tend to become stuck at d meamum or maximum and an
extremum in another part of the parameter spacebmayeglected. Global nonlinear
optimisation methods can overcome this type oialiffy and rely on the inclusion of
random components that help the algorithm to auzwedoming trapped at local
optima. Well known global optimisation techniqueslude simulated annealing
(SA), described in Kirkpatrick, Gelatt and VecchB83) and in van Laarhoven and
Aarts (1987), andevolutionary algorithms such as thgenetic algorithm (GA),
details of which may be found in Holland (1975) a@Galdberg (1989). The
techniques of simulated annealing and evolutiomarpputing are reviewed in more
detail in Section 5 of the thesis.

It is important to note, however, that global noeth involve some form of search of
the whole of the parameter space and computationatheads are therefore
significant, with relatively slow rates of convenge. Using local methods, it is also
possible to obtain a more global optimum using ailtrstart” approach. In this,
several local optimisations are carried out witffedent initial parameter sets. The
best of these solutions is then taken as the “glaodution. A further possibility is to
use global and local methods together, with gldbahniques locating the region
around suitable local optima and a local optimgsatnethod then being used to find
a better final estimate.

Local optimisation approaches that employ gradigiormation are widely used. The
simplest gradient-based method is Bteepest Desceapproach. This method does
not require second-order derivatives of the losxtion, but is known to converge
slowly. Newton’'s methodnvolves use of the inverse of the Hessian matng a
depends on second-order derivatives, which magdnotre significant computational
overheads. Newton’s method is also computatiordggiypanding because it involves
matrix inversion. Use of the&uasi-Newton methodeduces the computational
complexity by replacing the inverse Hessian by gpreximation.

The Newton and Quasi-Newton methods have good cgemee properties on the
basis of the number of iterations but for large bpgms such methods are
computationally demandingConjugate-Gradientmethods, such as thiEletcher-
Reeveslgorithm, provide an alternative approach to legdimisation that can be



less computationally demanding. Instead of using tHessian matrix or an
approximation to the Hessian, conjugate-gradierihous involve an approach where
an estimate of the search direction is computedendgirectly. Conjugate gradient
methods typically require more iterations than tQeasi-Newton and Newton
methods to converge to an optimum. However, dubdm computational simplicity,
the overall speed of these algorithms is better.

Nonlinear least squares methods are preferredafgescin which the loss function is
of the sum-of-squares type. Two well-used nonlineast-squares methods are the
Gauss-Newtormethod and théevenberg-Marquandimethod. As discussed in the
text by Soderstrom and Stoica (1989) the Gauss-dievalgorithm is closely
associated with the general and modified form$efNewton-Raphsoalgorithm for
solution of numerical search problems. The Newtapii&on algorithm provides the
basis of two of the traditional approaches to isgesimulation methods, which are
discussed in Sections 3 and 6 of the thesis.

The text by Raol, Girija and Singh (2004) providesery useful review of least

squares methods in the context of system modellgygtem identification and

parameter estimation. This treatment of optimisatimethods establishes links
between the properties of classical gradient-basptimisation techniques and
methods used in the modelling of dynamic systemesh @s theGeneralised Least

Squaresand Nonlinear Least Squaremethods. This, in turn, leads to detailed
discussion of thé&quation Errorand Output Error methods that are applied in the
helicopter system identification applications déssal in Section 2.5.1.

The simplest general-purpose nonlinear local ogtton techniques are termed
Direct Searchmethods and make use only of loss function vaiudkeir search for
local optima. Such methods include tBemplex SearchHooke-and-Jeeveand
Nelder-Meadmethods. These methods are typically rather slosotoverge and are
often only used if the derivatives of the loss timt are not available or can be
estimated only at considerable computational cbke Nelder-Mead approach is
applied extensively in Section 3 in the contextaof improved method of inverse
simulation for modelling and control applications.

The optimisation of the structure of a model casodbe regarded as a form of
optimisation of the complexity of the model singaddel complexity” relates to the
number of separate equations and thus adjustatdenpters present. Also, with more
parameters, a model increases in flexibility sitfoe number of possible forms of
behaviour that could be exhibited by the modeleases. A model that is too simple
will not capture the behaviour of the system antl give poor predictions. Also, if
the amount of data available for parameter estonagind subsequent testing of the
model is inadequate a relatively complex model peyorm badly.

Thus, the complexity of a model must always be appate for the intended task.
Optimising the complexity of a model is closelyki@d to the question of model
validation (Section 4) where the performance ofiery model is assessed. An
important feature of the model validation processhiat the model performance is
assessed using a “test” dataset that is not the santhe “training” dataset used in
estimating the structure and parameters of thatemothe importance of this
approach is that, in this way, tgeneralisationability of the identified model may be



assessed in a critical fashion. Generalisatiorhés rhodel capability in terms of
accurate prediction of the system output when piteslewith forms of input that were
not used in the development of the model.

The termsunder-fitting or over-fitting may be used in discussion of models that
perform poorly. If the test data are estimated paatid the model appears to be too
simple, the situation is generally described a®lwing under-fitting. For a case in
which a relatively complex model is used and tlaeing appears to be satisfactory,
but the generalisation is poor, the situation imesl over-fitting. The model
parameters may be biased by noise within the ds¢a dor identification, or the
model has been “trained” correctly but the integtionh between data points is poor.

2.2 System Identification and Parameter Estimation
2.2.1 Issues of identifiability

The precision of any parameter estimate is expdeissgerms of its variance and this
is a function both of the experiment and of thenestion technique used. Often the
objective is to obtain unique and reliable estimabé all of the parameters of a
model. It is important to investigate whether ort tiois is possible for a given
structure of model and a given form of experimdittis involves investigation of
identifiability and it is important to establish whether or noteptial identifiability
problems exist before selecting an identificatioetimod and considering issues such
as experimental design.

Global or structural unidentifiabilityis a situation in which a model has an excess of
parameters so that some specific parameters cdmeestimated uniquely for any
possible input stimulus and design of experimetruciural identifiability is only a
minimal necessary condition for obtaining uniqueneates of model parameters. As
the name suggests it depends on the structureeointtdel and not on numerical
values of parameters or on the design of the ifiestion experiment. Structural
unidentifiability arises when a model has too mpayameters to allow all of them to
be found for any possible input stimulus.

Pathological or numerical unidentifiability is a term that describes a structurally
identifiable model that is being used with expemtaé data that is inappropriate for
the intended application. This may be becauseédhgth of the available record is
short in comparison with the dominant time consamt the period of oscillatory
components of the response. It can also arisesifrihasured response data are very
heavily corrupted by noise.

Bellman andAstrém were among the first (Bellman &strom, 1970) to formulate
and discuss the problems of structural identifigbilThey presented their findings in
the context of biological compartmental models the results are applicable to a
wide range of other identification problems. Théywed that classical transfer
function theory could be used as a basis for thiestigation of identifiability. If each
coefficient of the transfer function matrix is egpsed as a combination of the
unknown parameters, a set of nonlinear equatiortefimed. Bellman and Astrom
showed that the model is identifiable in a globahse if these equations have a
unique solution.



Numerical (or “pathological”) unidentifiability, osituations approaching this, arise
when a model is found to be structurally identifeabut cannot give valid results for
a given set of experimental data. This may be r@sat of inaccurate measurements,
noise or poor experimental design. Beck and Arr{@fi77) have shown that model
parameters can be estimated only if the parametesits/ity coefficients for the
output variable with respect to each parametelimearly independent over the range
of observations. In simple cases, problems of nigaleunidentifiability may be
deduced from the time histories of the sensiticibgfficients. The problem can also
be investigated more systematically by examining sknsitivity matrixX and the
closely associated parameter information makix= X'X. This type of analysis
allows more complex interdependencies to be ingawtd. Pathological
unidentifiability is linked to linear dependence thfe columns ofX and this is
reflected in the determinant of matik or in the condition number of the matrix (the
ratio of the largest eigenvalue M to the smallest eigenvalue ). If the condition
number is large, or if the determinant is smak, tlonfidence region for the estimates
is large and the parameter estimates are theretneell defined.

The matrix M ~* is also important in terms of tests for numeridahtiafibility. This
matrix, the inverse of the parameter informatiortrmais known as the dispersion
matrix and is commonly denoted By The determinant dD can be shown to be a
useful indicator of numerical unidentifiability.

Correlations between pairs of parameters can bestigated using the parameter
correlation matrixP (Beck & Arnold, 1977). This matrix is commonly defd in
terms of its elements:

-1

Pij = (2.1)

-1 -1

m; My
where p; is the element d? in rowi and columrj and m; ! is the element oM ™

in row i and columrj. The matrixP has diagonal elements which are unity and all the
off-diagonal elements lie between -1 and 1. Coodgiclose to unidentifiability are
indicated if the modulus of one or more of the ditigonal terms is close to unity,
with a value of 0.95 being regarded as a limitiatue (Beck & Arnold, 1977). Small
values of the off-diagonal elements Pfindicate that the parameters are essentially
decoupled.

2.2.2 Design of experiments and the selection oktenput signals

In the design of appropriate test signals for sysidentification and parameter
estimation it is essential to have a quantitatigsi® upon which test signals can be
compared. It is also customary to assume thatshmator is efficient (Silvey, 1975)
and that these aspects can be investigated indepiynof the estimator. In the work
presented here, test signal design involves theligaantities such as the parameter
information matrix and the dispersion matrix, bothwhich have theoretical origins
in the Cramer-Rao bound. Through the Cramer-Randbdie variance of parameter
estimates may be related to elements of the digpensatrixD, which is defined as
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the inverseM™ of the parameter information matrM. Since the elements of the
parameter information matrix depend on the paramsgasitivity matrixX, which
can be found from measurements, the element® afan be derived from the
measured responses. In general terms, inputs gavidgpersion matrix with small
elements are to be preferred over inputs produldrge values in these elements.
This has led to test input design algorithms thatinmse some appropriate function
of the dispersion matrix or of the parameter infation matrix.

The parameter information matrit provides the basis for a number of measures of
the quality of an experiment using relationshipsolvlare of the general form

J=1f(M) (2.2)

wheref is an appropriate scalar function. One widely usetkrion for experiment
design is the so-called D-optimal criterion (Federd972) which involves the
dispersion matrix and has the form

Jy =detM ™) (2.3)

Use of this criterion results in a test signal whiputs equal emphasis on the
estimation of all of the parameters. In cases wlaesrbset of parameters is more
important, use of a truncated D-optimal desigrecion of the form

Jpe = detM; ) (2.4)

has been advocated (Hunter, Hill & Henson (1968here M;; is a sub-matrix of the

full information matrix and refers only to theparameters of interest. Use of the
truncated D-optimal criterion developed by (Hunted & Henson, 1969) involves
calculations based on the elements of the sengitivatrix X which themselves are
dependent on the values of model parameters. mbans that it is possible to use
the criterion only to investigate and compare défe forms of experiment and test
signal designs in a general fashion. Use of therooh to generate an experiment
which is optimal for a particular subject is notspibble because exact parameter
values are not knowa priori.

2.2.3 ldentification issues for point process andybrid systems

Hybrid systems involving continuous-time signalsd avariables described on a
discrete-event basis are now seen as being of demakile practical importance in
many different fields. Such systems arise in neoayswlogy and in the 1970s
Professor Jay Rosenberg of the Institute of Phygioht the University of Glasgow
recognised that work by Professor D.R. Brillingeértlee University of California,
Berkeley, on the statistical analysis of point gsses was of potential importance for
the experimental investigation of elements of tlgigheral nervous system. The
short duration of the nerve impulse (in comparisath the time interval between
impulses) and the wide range of observable disehpagterns forms the basis for
considering a sequence of nerve impulses (a spaie)tas a realisation of a point
process.
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Professor Rosenberg’s interest in the system iietion approach led to the
establishment of an interdisciplinary research grand close collaboration with him
and his colleagues over a long period of time. Tin®lved a series of four jointly-

supervised research students and several resessidtaats at different times. The
work was concerned with the application of systatantification ideas to point

process systems in neurophysiology and to more mgtuations involving a

combination of continuous signals and point proegs$his work led to a number of
joint publications.

It is possible to approach the identification ofinboprocess systems and hybrid
systems by converting point processes into coneealicontinuous data and then
applying traditional time-domain or frequency-domaientification methods. This
formed a successful initial step, as reported iragldine et al., 1977 submitted
paper, [1]) and in (Rosenberg, Murray-Smith & Rigas, 19&2bmitted paper, [2).
However, more direct methods, working with poinbgeass data, have potential
advantages, especially in the nonlinear case. Diefis of stochastic point process
measures such as mean intensity, auto-intensitgtiuns, cross-intensity functions
established by Brillinger and others (e.g. (Brgjem, 1972), (Brillinger, 1975a),
(Brillinger, 1975b), (Brillinger, 1978) and (Britiger, Bryant & Segundo, 1976))
allow spectral interpretation of the point procease, with spectra defined in terms of
the Fourier transforms of the auto- and cross-camee densities. Thus the cross-
spectrum between two point processes can be detistdnates of the auto-spectrum
and cross-spectrum can be obtained using methstisdiggested by Bartlett (1963).

The spectrum of a Poisson process may be showa ¢oristant and this suggests that
the Poisson process can have a similar role inidéetification of point-process
systems as the Gaussian white-noise signal in deatification of continuous
systems. The links between ordinary time series @mdt-processes have been the
subject of detailed discussion in (Brillinger, 1978As is shown in our 1982 paper
(Rosenberg, Murray-Smith & Rigas, 198Zubmitted paper, [2), it is possible to
define a quantity that is a transfer function fopant-process system. This form of
linear point process description is discussed &urbly us (Halliday, Murray-Smith &
Rosenberg, 1992 -submitted paper, [3), where it is pointed out that the
implementation of spectral estimation is of ceningbortance in the identification of
a point process system. Also it is shown in thisgoahat it is possible to determine
of the degree of linear correlation between injud autput point processes through
determination of theoherenceThis quantity is estimated using an expressioithvh
involves calculation of the auto-spectra of thenalg and the cross-spectrum between
them. It is shown to be analogous to the expredsionoherence commonly applied
for continuous systems and signals.

In the case of systems involving a mix of continsi@ignals and point-processes it
was found that Jenkins (1963) had suggested a ohdtrodetermining the cross-
periodogram between a continuous signal and a pwidtess and this allows the
cross-spectrum to be found directly. This, in twaiows estimation of the coherence
in the hybrid case. The application of this appho&z the experimental study of
muscle spindle receptors is discussed further icti®@e 2.4 and in (Rosenberg,
Murray-Smith & Rigas, 1982 submitted paper, [2)), (Halliday, Murray-Smith &

Rosenberg, 1992 submitted paper, [3) and also in (Murray-Smith & Rosenberg,
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1983-supporting paper, [4]. Other neurophysiological applications are désttiin
(Davey et al., 1986 supporting paper, [5), in (Conway et al., 1990 supporting
paper, [6]) and in (Amjad et al., 1989). The development wbttial software on
methods of analysis for point-process signals, tinmcludes a simulation program
involving a simple nonlinear neural encoder modetescribed in (Murray-Smith et
al., 1995 -supporting paper, [7). It is believed that the methods developed f@s th
work on the peripheral nervous system have broaticapility to other physiological
systems involving point-processes or a combinatibcontinuous signals and point-
processes. It is probable that there are also pat@ntial applications in other fields.

2.2.4 Local model networks

Artificial neural networks (ANNs) have attracted chuattention for modelling

applications, both in terms of the conventional tidalyer perceptron (MLP) and the
radial basis function type network (RBF). Neithgpd of description can provide
much insight about the physical form of the undadysystem and do not allow prior
knowledge to be incorporated easily into the idematiion process. However ANNs
do provide an approach that can be extended tw @loetwork of local models to be
defined which can provide useful physical intergtiehs in some situations.

The reasoning behind the introduction of multipledal networks is to be able to

split a complex and inherently nonlinear modellprgblem into a number of smaller

and simpler tasks. Each of the resulting sub-probles then handled on a local basis
by a simpler sub-model. In this way the operatipgce of the system is effectively

partitioned into a number of local regions or “regs” and the global model is

constructed through an appropriately weighted coatimn of the outputs from each

of the local models.

Several different multiple modelling approachesehaeen applied to the nonlinear
system identification problem. For example, fuzagit has been used to partition the
operating space using a set of rules and membefshgtions derived using prior

knowledge (and especially qualitative knowledgepudbthe corresponding real

system. The so-called TS modelling approach, intted by Takagi and Sugeno
(1985), is one important example of this type ofdeldnvolving a set of local models

based on expert qualitative knowledge.

Prior qualitative knowledge seldom provides enoumgbrmation for the development

of a successful model. The use of empirical datssisally essential and a combined
approach of this kind is often describechasro-fuzzynodelling. The most important

point is that, in comparison with neural networkthoels, fuzzy networks are easier
to interpret. More details of this approach carfdaend in the work of Jang and Sun
(1993) and Pfeiffer and Isermann (1994).

Another approach to the problem of defining a nplgtimodel network involves the
operating regiméased type of methods developed in the work cddsén and Foss
(e.q., (1993)). This and other related work ledhe Local Model Network (LMN)

architecture is discussed in detail in the PhD EhasRoderick Murray-Smith (1994)
and examined further in the edited volume by R. fslyySmith and T.A. Johansen
(1997), which includes a review of the relationshiptween LMNs and other
approaches including RBF networks, Takagi-Sugerzayfunodels and probabilistic
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methods involving hierarchical mixtures of expeftee e.g., (Jordan & Jacobs,
1994)).

The LMN can be interpreted as an extension or gdisation of the normalised form
of RBF network. Instead of employing simple weigihtsthe output layer, more
complex weighting is used through the introductibhocal models which are usually
dynamic in form. In principle, the local models miagve any form, but local linear
models are often used as these are easier to irapteand interpret than more
general nonlinear descriptions. An advantage of #pproach is that each local
model, if carefully chosen using prior knowledgan cover a significant part of the
operating space. Each local linear model is usuaByablished for a specific
equilibrium operating condition. An LMN network ofpecified accuracy can
therefore usually be constructed using a smallenb®r of basis functions than the
equivalent RBF network, thus giving better compotal efficiency. The
interpretation of results and analysis of the gt of the overall model is also
usually more straightforward. Engineers are geheexiperienced in the use of linear
models, and most engineering systems are desigmexgpération near to equilibrium
conditions for much of the time. This means tha¢dir methods can be applied in the
identification of the local models and the factttbh@® models are usually identified
for conditions close to equilibrium suggest thag #xperimental testing of the real
system is likely to be relatively straightforward.

A local model network involving/ local models may be described by an equation of
the form:

M
y=2.0@fW) (2.5)
i=1

where y is the output prediction, thg, (¢ factors are scalar functions of the
scheduling vectog and f, (¢ ) represents the outputs of the local models foutinp
vector ¢ . The functions p, (¢ )are termedvalidity functionsand are equivalent in

some respects to the basis functions of an RBF artktvand are similar to
membership functions of a fuzzy network.

A validity function transforms its input to a valbetween 0 and 1. It has a smooth
form with, a maximum at the middle of the rangerowiich it applies and the set of
M validity functions forms a partition of unity. Thativation of a validity function
decreases with increasing distance of its inpunftbe point at which the maximum
occurs. Although there are many possible functi@msh as normalised Gaussian
bells) that could be used as validity functionse @ammon choice is a set of third-
order B splines which are composed of quadratignmohials. A set of B-splines can
be defined recursively (de Boor, 1978) and althotlgy are, by definition, one-
dimensional functions they can be extended to cavewltidimensional space (see
e.g., (Kavli, 1993)). The use of functions suctBasplines ensures a localised region
of activity for each local model and smooth intdghon between neighbouring
models (Gollee, 1998).
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The scheduling vectg(t) must be chosen with care. It must represent tindirrear

properties of the underlying system since its fiom;tessentially, is to define the
operating point so that the appropriate local m®d=ln be applied at each time
instant. It can be related either to the outputhef system or to the input or some
combination of input and output (Gollee, 1998).

The training process within an LMN involves two g#a. Firstly, the number,
position and shape of the validity functions mu& éstablished and this is,
effectively, the identification of the model strust. Then parameters of the local
models need to be found, usually through the agiptio of least squares methods.
These parameters can either be optimised globallgaally. In theglobal learning
approach the parameters for all the local modets @ptimised simultaneously
whereas in thdocal learning approach the parameters of each local model are
optimised separately. Following successful idecuifiion of the validity functions and
estimation of parameters of the local model netwth& overall model can be
constructed from the local models through a prooéskslending”.

The LMN architecture is suitable for nonlinear dyna systems where there is prior
knowledge of the real system and empirical data beagollected through tests. The
use of local linear models is especially approprifdr systems where prolonged
periods of operation occur near steady-state apgrpbints where experimental data
can be collected in the necessary quantities. Hewdtvhas been shown by (Shorten
et al., 1999) that this reliance on local lineardgls may compromise the validity of
the LMN architecture when the off-equilibrium dyniasof the underlying system
are considered. Each local model only providesullseformation about the system
behaviour in a small region of the operating spéeeing transients taking the LMN
between operating points the model is unlikely tovle an accurate representation.
This may not be a serious issue when the operatng and the scheduling vector
change slowly. However, in situations involvingdarrapid transients the model may
be forced far from any operating points about whiahlocal models were identified,
resulting in poor predictions of the system output.

This problem of off-equilibrium dynamics may be ox@me by including local
models placed in off-equilibrium regions, but &ttéxperimental data is likely to be
available for such regions. As discussed in (Shor¢ al., 1999), non-unique
parameterisations of the model behaviour may resuduch cases. Also, the model
structure for identified off-equilibrium models mag significantly different from the
structure of the local models at equilibrium poimspaper by (Solak et al., 2003)
shows how the incorporation of derivative inforroatican allow potentially seamless
fusion of models and points to some useful areafufther research.

A paper by (Leith & Leithead, 1999) provides a Istlg different analytical
framework involving linearisedvelocity-baseddescriptions for relating global
dynamic behaviour to local models. Further invedtans by (McLoone, Irwin &
McLoone, 2001) have shown that it is possible tostact a velocity-based LMN
from experimental test data. However, the steadtiegperformance of the model is
less accurate and since the velocity-based framevemquires the derivative of the
input there may be additional problems of measurémeise if rate sensors are not
available. Section 5 includes some discussion lufcity-based models for nonlinear
control.
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The practical use of LMN concepts in modelling &dions is described in Section
2.4.2 in connection with the modelling of muscleddoy (Gray et al, 1996b —
supporting paper, [8] for an application involving a simple laboratopyocess
system involving two coupled tanks of liquid. Thaster study demonstrates that an
an inherently nonlinear system a number of modeth warameters estimated at
steady-state operating points can, in some cadeas} describe very effectively the
behaviour of the system over the whole operatimgeasince transients do not take
the state of the system too far from the equilioriconditions for the local models.

2.3 Applications Involving Pulmonary Gas Exchange iad
Respiratory System Models

Although there are many published models that desaspects of pulmonary gas
exchange processes, most early models were bassdanty state assumptions. Since
the 1970s the more widespread use of dynamic mbdsksd on differential equations
or difference equations has provided a link betwdesoretical modelling and
experimentation through the use of system ideatiidé methods. Dynamic models
also allow full use to be made of techniques ofegxpental design to enhance the
information content of experiments and make fullee of transient response data.

2.3.1 A dynamic model of pulmonary gas exchange presses

The cyclic nature of ventilation has been incorpedtan several lumped parameter
dynamic models including one developed by (Pachl.etl974 —supporting paper,
[9]). This model and later refinements of it (e.g. (MyrSmith & Pack, 1977 —
supporting paper, [10] and (Bache, Gray & Murray-Smith, 1981 submitted
paper, [11]) were intended to be applied to simulation of tegstem for
experimental situations involving tests of shontadion. The model is compartmental
in nature and consisted of a constant volume dpadescompartment, representing
the conducting airways, a single homogeneous avemmpartment and a single
compartment representing the tissues, as showigurd=2.2. In the simplest form of
the model, which is still being applied in a numbéapplications areas, gas transfer
between the tissues and the alveolar compartmeepigsented as a direct transfer
process, without circulatory time delays. The venblood volume is thus assumed to
form part of the tissue compartment volume while #rterial blood volume is
lumped into the alveolar compartment volume. kndhse of carbon dioxide there is
a metabolic input of gas into the tissue compartm&riull description of the model
and the underlying assumptions may be found in {Ba&ray & Murray-Smith,
1981 —submitted paper, [11).

Within the dead space and alveolar compartmentsi®imodel the respiratory cycle
can be viewed as involving three stages. The §itage is transfer of gas to the
alveolar compartment that was in the dead spad¢keaend of the previous breath
cycle. This is followed by inspiration of the gasxtare being used as input (e.g.,
atmospheric air). Thus stage (2) begins when them® of the inspired mixture is
greater than the volume of the dead space compairtr®tage (3) of the cycle
involves expiration.

The behaviour of this model can be described byaia @f ordinary differential
equations, one for the alveolar compartment andamghe tissue compartment. For
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the case of carbon dioxide, use of a linearisetesgmtation of the dissociation curve
for carbon dioxide allows these equations to bdteniin standard state equation
form. For inert gases the structure of the modsinslar but slightly less complex as
there is no metabolic input term. The state egoatiescribing the alveolar

compartment has a structure which changes withsthge of the breath cycle, as
determined by a binary switching factor which hatue one for stages (1) and (2)
and zero for stage (3) . Details of the relevaniagigns may be found in (Bache,
Gray & Murray-Smith, 1981 submitted paper, [11).

The volume of the alveolar compartment changesndutine breath cycle and the
value at any time instant is determined by integnabf the instantaneous gas flow
rate, measured at the mouth, with respect to tifrtee variables of particular
importance for this model structure and the intendeplications are the partial
pressure of carbon dioxide in the alveoR(t), which may be regarded as a system
output variable, together with the partial pressoiréhe relevant gas in the inspired
mixture,P, (t), and the measured gas flow rate at the modih,. The latter two
variables are both quantities involved in the gysieput.

External validation of this model was based on erpents which involved
subjecting the model to an input that was identioahat used experimentally. The
lung is particularly well suited to the use of sachapproach since the input, which is
the inspired gas flow measured at the mouth, cambéasured continuously. The
output of the model can be taken as the gas comtiem measured at the mouth for
the part of the breath cycle during expiration whgas from the alveolar
compartment has completely filled the dead-spacepastment volume. Over that
section of the breath cycle this corresponds, apmrately to P, (t) if allowance is

made for the transport delay in the dead space.vEnélatory flow V(t )may be

measured at the mouth using pneumo-tachographe \gh# concentrations may be
measured on a sampled basis during inspiration expiration by means of a
respiratory mass spectrometer. Delays need to tbeduced through digital signal
processing to ensure synchronisation of the signals

The performance of this model structure and thavatgnt structures when other
gases were used as test inputs was tested extgn¥ileen a relatively insoluble gas
such as argon is breathed the main parameter #mabe adjusted is lung volume.
With a suitable value for this quantity excellegreement was found between the
model output and that of the real system both évrog of argon “wash-in” and argon
“wash-out”. For carbon dioxide, a number of quaeditthat are assumed to be
constant parameters of the model have to be estthmt tuned in some way (lung
volume, cardiac output, initial partial pressuretloé tissue compartment, metabolic
production, tissue volume and the slope of the ighygical dissociation curve for
carbon dioxide). A similar situation arises for tb&se of the equations describing
oxygen exchange. In the case of hyperventilatioogehresults were found to agree
with measurements for the case of the partial pressf carbon dioxide in the
alveolar compartment. It was also found that hypemation caused an increase in
the amplitude of oscillations of carbon dioxidet@rpressure in that compartment
which paralleled the measured increase of slopehef alveolar portion of the
measured expired records. This was of physiologictdrest and led to further
simulation studies to investigate hypotheses rejatio the ventilation-perfusion
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concept and the mechanisms involved in producingréerial-alveolar gradient for
carbon dioxide. These simulations were also foumdoé of value for teaching
purposes (Murray-Smith, 1990aupporting paper, [12)]

Inspired and Expired Gas Mixture
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Figure 2.2: Schematic diagram of pulmonary gas axgh model for carbon dioxide.

2.3.2 System identification and parameter estimatiofor the gas-exchange model

Interest in the use of system identification andhpeeter estimation techniques with
dynamic models of pulmonary gas exchange procdsagdocused mainly on the
development of techniques for non-invasive estiomatiof cardio-pulmonary

guantities such as the lung volume, cardiac ougput metabolic production. The
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compartmental model outlined above provided a bfsisa major programme of
computational and experimental research duringl®&s based in the Centre for
Respiratory Investigation at Glasgow Royal Infirsnéas outlined in (Murray-Smith
& Pack, 1977 supporting paper, [10]and described in more detail in (Bache, Gray
& Murray-Smith, 1981 —submitted paper, [11)). This research was aimed at
clinical applications of an identification-basedpepach of this kind. The main
objective was the development of a reliable infeeérmeasurement technique for
estimation of the blood flow through the lungs (eéhmay be regarded as the cardiac
output in normal subjects). This quantity has clhimportance and was, at that time
at least, difficult to measure in a routine fashilgrmore conventional methods.

Estimation of parameters of the gas exchange nfoatel experimental data involved
the introduction of an autoregressive moving avenagise model and the application
of a modified form of the maximum likelihood methotiAstrém and Bohlin (1966)
as described in (Bache, Gray & Murray-Smith, 19&Libmitted paper, [11)

In terms of global identifiability it was found thia was possible to obtain a set of six
relationships which allowed specific combinatiorigparameters of the model to be
related to nine coefficients in the transformed amun and to the effective
ventilation, which is a measured quantity. Frompawion of these relationships
between parameters it was shown that if the carligput, lung volume, metabolic
production, tissue volume and the initial valueshaf partial pressures in the alveolar
and tissue compartments are all to be estimatedttteeremaining two parameters of
the model (which describe the dissociation cuorec&rbon dioxide) must be known.

Although analysis of global identifiability did natdicate any potential problems for
the estimation of parameters of the homogeneous huodel, results of preliminary
parameter estimation work using a modified fornthaf maximum likelihood method
of Astrom and Bohlin strongly suggested potential diffies in terms of
pathological unidentifiability. The experiments aived step function test inputs
implemented in such a way that the subject hade40rgls of air breathing followed
by a sudden switch to a mixture containing 7% carb@mxide for a further 80
seconds. Following the approach outlined in Sectib®.1, the indications of
pathological unidentifiability are clearly evideinom the large values of certain off-
diagonal elements within the parameter correlat@trix. For a typical data set we
have:

o) [1.000
YA 0.371 1.000
M 0.584 0.840 1.000

(2.6)
Vic 0581 0.841 00999 1.000
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Q Vo M Vg PiO) PO
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In (2.6) the parameter¥, and V;- are the volumes of the alveolar and tissue
compartments respectively, whil, (0) and P (0) are the initial values of partial
pressures of carbon dioxide in the alveolar compamt and tissue compartment
respectively. The paramet®d is the metabolic production rate of carbon dioxide
the tissue compartment) ar@ is the parameter representing the total blood flow
through the lungs (the cardiac output).

There are important limitations in terms of theigesof identification experiments
for this system due to the maximum permissible llewd concentration of carbon

dioxide in the inspired mixtureR ) and constraints in terms of the period of time

over which the model may be considered a validesgmtation of the gas exchanging
properties of the system. A further practical diffty that affected experimental

design was associated with the fact that variatmfnhe inspired gas concentration
could be achieved only using manual operation sifrgple three-way tap. A decision

was made that the form of signal should be resttitd square waveforms with equal
intervals of air and 5-7% carbon dioxide breathivgr a total period not exceeding
ten minutes. In this case the problem of experialediesign became one of
determining the optimum frequency for switchingnfrone gas mixture to the other.

Through computer simulation it was possible to stigate the optimum frequencies
for switching of the test input gas mixture for iegtion of the main model

parameters,Q, V,(0), V;c and M. Results indicated that a relatively short
switching period is appropriate for estimation be tparameteV,(0) whereas a
much longer period is better in the caseMf and V;. In the case of the cardiac

output paramete®, which was of particular interest in the study afid=ed in

(Bache, Gray & Murray-Smith, 1981submitted paper, [11]) the curve has a clear

extremum within the range considered, at aboutitcking period of 24 breaths. Use
of the D-optimal test signal design criterion, whis applied when it is important

that all the parameters of a model be taken intmwaut, gave results showing an
extremum closer to the middle of the range of dvitg periods considered, at about
55 breaths. The best design of experiment for esiiim of the complete set of model
parameters is therefore not the same as the bsgidir estimation of particular

parameters, such as the cardiac output.

Although optimal design of experiments for indivadusubjects is not possible
because of model parameter uncertainties, semgitnwestigations have shown that
the optimum switching periods are relatively inséves to parametric variations
within the normal physiological range for conditsotihat apply during testing.

A standard form of test signal was derived on tlasid of the results of the
simulation-based studies outlined above. Thisdegtal involved alternating periods
of air and a mixture containing 5-7% carbon dioxvdéh a switching period of two
minutes and an overall test duration of ten minufEse results of experiments
involving this form of input signal showed signdigt improvements in terms of
identifiability. A typical set of results for theapameter correlation matriR are
shown below in (2.6a) and it is clear that theeeray off-diagonal terms of magnitude
approaching the limiting value of 0.95 (as discdsse Section 2.2.1). The
interactions between estimated parameters havebdarsreduced significantly.
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Clearly the use of the square wave test signalimdites problems of pathological
unidentifiability that were encountered when usiing simple step function for of test
input.

o) [ 1.000

A - 043 1.000

M 0.036 0.067 1.000 (2.63)
Vrc - 020 0420 -002 1.000 '
PA®) 0021 -015 -001 -002 1.000

Pre© |- 054 0200 -020 -001 -031 1.000

Q Va M Vic  Pa(0) Prc(0)

Direct examination of the form of the residualsutesg from the application of this
approach showed that these are approximately vahidethis finding was supported
by the form found for the auto-covariance of realdu Parameter values found in
tests on four subjects using the approach outlhrexe@, which is presented in more
detail in (Bache, Gray & Murray-Smith, 1981sabmitted paper, [11) and (Bache
& Murray-Smith, 1983 —supporting paper, [13] were within the physiological
range expected for these subjects and showed aptabte level of repeatability.
Encouraging results were obtained from comparathneasurements using a more
conventional, but invasive, method for estimatiagdtac output.

Unfortunately this technique for estimation of aardulmonary quantities did not
lead directly to the development of new methodsréatine investigation of clinical
problems. This was mainly due to the relativelyhhigost, at the time of this
development, of the computing equipment required #re additional cost of the
specialist measuring equipment needed, such asragsg mass spectrometers.
However, the use of system identification and pa&temestimation methods in the
context of the cardiopulmonary system receivedhturtattention from a number of
other research groups (e.g., (Brovko, O. et al81)P The dynamic form of the gas
exchange model has also been used in further cksear problems of respiratory
control (Greer, Jordan & Murray-Smith, 1982sdpporting paper, [14)] in the
development of teaching software for students gfsjlogy and medicine (Murray-
Smith, 1990a -supporting paper, [12] and, very recently, exercise physiology
(Thamrin & Murray-Smith, 2007 supporting paper, [15]

Following the publication of papers describing &mdions of the dynamic gas
exchange model outlined above, further work wasiezhrout and a second model,
also of lumped parameter form, was developed towallvarious forms of
maldistribution of ventilation and perfusion to ¢@nsidered. These included features
such as an alveolar dead space or a circulatomytsimyvestigations of identifiability
for this inhomogeneous model for inert gases shothead neither the degree of a
circulatory shunt nor the cardiac output could Istingated independently from
measurements at the mouth (Bache & Murray-SmitB319supporting paper, [13}
However, the analysis did show that these quastitteuld be decoupled if
measurements could be made of the gas partialyveessarterial blood. Continuous
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measurements of that type were, however, beyond cdyeabilities of mass
spectrometry at the time when the work was cardgatl and this aspect was not
considered further.

It has been noted (Murray-Smith, 1982 supporting paper, [16] that, in the
identification of physiological systems, we areeoftdealing with very limited data.
Also, uniform sampling may not always be possilite €xample, in measurements
involving samples of blood). Although not encourtkiin the work involving the
application of system identification methods to gashange models, problems of
sampling strategy and test signal design can bg sewere in other types of
physiological application (e.g. in the investigatiof humoral systems). The research
reported in (Bache, Gray & Murray-Smith, 198 ubmitted paper, [11), with the
emphasis on issues of identifiability and test algesign, represents an important
contribution to the practical application of systadentification and parameter
estimation methods to physiological systems.

2.4 Applications Involving Neurophysiological Modes.

Neurophysiology provides a few very interesting rapkes of situations where
modelling and simulation methods have had a siggnifi role in providing a formal
basis for quantitative descriptions of real systeans in guiding the design and
execution of experiments (e.g. the work of Hodgkind Huxley (1952) on the basic
processes of nerve conduction and more recent lmpRrochazka and his colleagues
(e.g., (Prochazka, 1996); (Prochazka, Gillard & st 1997); (Prochazka,
Gritsenko & Yakovenko, 2002)) on neuromuscular caintHowever, most areas of
neurophysiology appear to have been influenced Vidtg by the techniques of
experimental modelling.

2.4.1 Modelling of muscle spindle receptors

One area of neurophysiology where some very siamfi progress has been made in
terms of quantitative experimental investigatiomaiives the muscle spindle, which is
believed to be an important element within the aswscular control system.
Although control theory has provided a frameworkdescriptions of the function of
the muscle spindle, and experimental techniqguesh sag frequency response
measurement have been applied, it is clear thkg &f the recent progress in muscle
spindle physiology can be attributed to modellimgl @imulation. It is believed that
this may be due in part to a failure to bring tbgetexperimental and modelling
approaches and adopt a truly integrated approadhetanvestigation of this very
complex physiological system (Murray-Smith & Rosertjy 1983 supporting paper,

[4])

Muscle spindles are receptors which respond priyntrilength changes imposed on
the muscles in which they are embedded. Each musabdved with posture or the
control of movement contains a number of theseptecs, which lie in parallel with
the load-bearing fibres. Muscle spindles consisa afumber of specialised muscle
fibres (the intrafusal fibres) which lie in pardieith each other. The intrafusal fibres
are of different types (bag fibres and chain fibraad these are known to have
different mechanical properties. Inputs to the nruspindle are through two types of
fusimotor axon. Neural activity in these fusimogéomons is known to alter the
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response of the intrafusal fibres to length chan@egputs from the muscle spindle,
which are transmitted back to the spinal cord threugh two different types of axon
(the primary (la) and secondary (ll) afferent ayonbdleasures of neural activity in
these axons provide muscle spindle model outputs.

One of the inherent difficulties is the fact thaetmuscle spindle is a multi-input,
multi-output system of considerable complexity whidgnvolves an unusual
combination of continuous and discrete variablegdivity in the axons leading to and
from the intrafusal fibres takes the form of seqesnof identically shaped pulses
(action potentials), with the information contetfittioe signals being coded through
the instantaneous frequency of these pulse tramsfusimotor axons from the spinal
cord are of two types, termed static gamma axpjarfd dynamic gamma axong)(
Activity in these fusimotor axons alters the resgof the la and Il axons to imposed
length changes. These fusimotor signals thus feraihputs to the muscle spindle,
along with the length change variable which isiedtinput variable.

One continuing problem that has an important bgawoim the possible role of muscle

spindles within the neuromuscular control systemceons the responsiveness of the
la and Il axons to muscle length changes in theguree of fusimotor inputs. Several

possible mechanisms have been suggested, inclutiagges in the mechanical

properties of the intrafusal fibres following fusitor stimulation.

Attempts to model the muscle spindle have involived distinct approaches. In one
case available knowledge about the mechanical prepeof the different types of
intrafusal fibre and the processes that lead t@#meration of action potentials in the
la and Il afferent axons has been used to prodetaleld theoretical models (e.g. the
publications of (Angers & Delisle, 1971) and (Rudjo 1972) which provide
interesting illustrations of early developmentstlws kind). On the other hand, for
many years experimentalists have been applyingiteabs from linear system theory
to obtain transfer function descriptions from expental test data (e.g., (Poppele &
Bowman, 1970); (Hasan & Houk, 1975)).

In the work described in the papers included irs thiesis two distinctly different
approaches have been investigated in an attemgppty system identification and
parameter estimation techniques to the combinedciem@nd muscle spindle system
to throw light on the problems of muscle spindlendaour. The first approach
considered used classical identification techniquedetermine a transfer function
between mechanical inputs, such as length chamy@®a to the muscle, and neural
outputs from the la and Il axons represented byvatgnt continuous signals based
on instantaneous frequency measures. The intesfsitisimotor stimulation was also
represented, through use of the instantaneousdneguneasure. The second type of
approach put more emphasis on the multi-input rowitput nature of the muscle
spindle and involved fewer implicit assumptions athibve role of the muscle spindle
within the neuromuscular control system. It invalvéhe application of system
identification methods to point processes so thseful information could be
extracted from tests involving random test sigragplied to both the continuous and
discrete inputs.

One example of the first type of approach is thekviay (Maclaine, McWilliam et al.,
1977 -submitted paper, [1]), where experimentally- derived linear models,
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identified by the maximum-likelihood approach A$trom and Bohlin (1966), were
used to investigate interactions between the fusimand mechanical inputs to the
muscle spindle. The results obtained by this idieation method provided a basis
for further analysis and interpretation in termstleé mechanical properties of the
intrafusal fibres (Maclaine, McWilliam et al., 1978ubmitted paper, [1).

The second method of approach required some preimitheoretical work before
the developments by Brillinger's group at the Umsiy of California, Berkeley, on
the identification of point-process systems coule &pplied to the results of
neurophysiological experiments. This allowed s@gatstimation procedures, based
upon the finite Fourier transform and the smootpedodogram, to be used for the
identification of linear point-process models tescibe the relationship between a
fusimotor input to a muscle spindle and the la dnhdesponses. Results were
expressed in terms of estimated gain, phase argte@ate as a function of frequency
(Murray-Smith, Rosenberg et al., 1985 supporting paper, [17] A range of
frequencies can be found over which values of cater are above an approximate
95% confidence interval under the assumption thatwo processes are independent.
This may be taken as the range of frequencies whéerh the linear model may be
assumed valid. Estimates for the 95% confidenavats for the gain and phase can
also be found and, over the range of frequencieswtuch the linear model is
assumed valid, the confidence intervals for the gaid phase are found to broaden as
the coherence falls.

Applications of these point-process models includeestigation of phenomena
involving “driving” in which the application of a guiodic spike train stimulus,
through the fusimotor inputs, produces an affersgnke train which has a pulse
frequency directly related to the input train. §phenomenon was also the topic of
an earlier investigation using other methods oflyama (Dutia, Murray-Smith et al.,
1977 —supporting paper, [18] The range of pulse frequencies over which ore-to
one driving occurs in simple nonlinear muscle sl@ndodels has been investigated
through simulations and the model parameters wdiifgtt the ability of the model to
exhibit driving have been found. Adjustment of #ngsmrameters has allowed the
nonlinear simulation model to provide one-to-on@idg over a frequency range that
is very similar to that found in experiments (Hadly, Murray-Smith & Rosenberg,
1992 —submitted paper, [3) (Murray-Smith, Rosenberg et al., 198%upporting
paper, [17).

2.4.2 Modelling of active skeletal muscle

The modelling of muscle has traditionally been iedrout on the basis of
physiological understanding of the processes of cieusontraction, either at a
microscopic or at a macroscopic level. Although tlesulting models have the
advantage that they involve parameters that hawysi@lbgical significance these
approaches lead to models that are complex and watignally expensive. In most
cases they also fail to account fully for some welbwn nonlinear characteristics of
muscle that are observed in experiments. For ex@ammplscle characteristics vary
significantly with stimulation frequency and, altigh models of this type have been
developed that allow variation of motoneurone uptelse interval (e.g. (Murray-
Smith, 1994 supporting paper, [19), the force developed by active muscle depends
in a dynamic fashion on the history of the stimolafrequency. The nonlinear
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summation of contractions for stimulation pulsesoiwing very short inter-pulse

intervals presents a challenge in terms of modgllithe phrase “catch-like effect” is
used to describe a particular phenomenon thatssrebd when a doublet or triplet of
pulses with very short inter pulse intervals islsgup

Donaldsonet al. (1995) successfully used a radial basis functi@twark for
modelling isometric contraction of muscle stimuthigsing pulse trains of varying
frequency. This type of approach was used agaiGdlee and Hunt (1997) using
second order linear models to describe local desens of muscle. Second-order
linear local models were blended together usingranfof scheduler which could
select the models closest to a given operatingt @oid interpolate between models.
The blended structure then forms a time varyingietson of the muscle. The model
developed by Gollee and Hunt (1997) was, howevsritdd to muscle having a
majority of fast motor units and was not applicaleother types of muscle.

The work of (Gollee, Murray-Smith and Jarvis, 2001submitted paper, [20)
represents an attempt to extend and generalisedhe of Gollee and Hunt (1997).
The approach used involved dividing the complek taismodelling active skeletal
muscle into smaller and simpler sub-tasks. Eadhade sub-tasks could then provide
the basis of a sub-model, valid locally, and a dahex provided a way of establishing
the relevance of the different sub-models for therent operating condition and
weighted the contributions of those sub-models @liogly. The complete model was
formed of the sum of all the weighted local models.

The local models which form the sub-models withia system model can be of any
linear or nonlinear form and may be based @&npriori knowledge of the
corresponding real system. In the case of the rausoldelling work local linear sub-
models were applied. Linear models of second ong®e used, with an added pure
time delay. The scheduling variable was based measurement of the instantaneous
stimulation frequency and this was found to workllweth both fast and slow
muscle.

The experimental procedure involved system idemifon. Tests were used for the
estimation of parameters of the local model netwasr# for each model this involved
30 data sets. The remaining test data sets (im@lat least 30 sets) were then used
for validation purposes. The procedure for idecdifion involved starting with a
single linear model and steadily increasing the lmemmof units in the network.
Although the error on the training data sets tenedecrease with the number of
LMN units the error for the test data sets was btorise once the optimum model
size had been reached. The structure with the sstaldlue of test error was chosen
as the optimal structure.

Results from these experiments showed that, for fasscle, six local models

corresponded to the optimum while, for slow musfiles sub-models were adequate.
With both types of muscle an excellent match cdaddachieved and the “catch-like”
effect was accurately represented. Although iecgnised that local model network
methods have important limitations and that conchsdrawn from the behaviour of
a local identified model must be treated with aamitiit is clear from this study that
the approach does provide a potentially useful owetlor the experimentally-based
modelling of electrically stimulated skeletal muwsahder isometric conditions. This
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work on identification of muscle through the usdaufal model networks formed part
of a broader study concerned with the use of etedly stimulated skeletal muscle
for cardiac assist situations (Jarvis, Gollee et1896 —supporting paper, [21]
Further work is necessary in order to be able testigate the possible benefits of the
local model network approach for the modelling dkelstal muscle for other
experimental conditions.

2.5 Applications in Helicopter Flight Mechanics Mocklling

The application of system identification and partaneestimation techniques to
problems of helicopter flight mechanics modellingdacontrol is of considerable
practical importance, especially for flight testliggation of predictive models
developed on the basis of physical laws and priesipHowever, helicopters and
other forms of rotorcraft present a number of peaid in terms of system
identification. In the identification of linearisedulti-input multi-output models of
the dynamics of the complete vehicle it is nornoabé faced with test records that are
short in relation to the dominant dynamic charasties of the system. Nevertheless,
these models involve many parameters and a widgerahfrequencies, in addition to
high levels of noise. This is a combination of ¢astthat is generally considered
undesirable for the successful application of sysidentification and parameter
estimation methods.

From the viewpoint of the helicopter industry thenbfits of helicopter system
identification relate to the potential to reduce #&imount of flight testing that has to
be carried out in the context of certification oéw designs and to achieve
improvements in agility and handling qualities tngb fine tuning of flight control
systems. The costly and time-consuming flight bgsprogrammes for new helicopter
designs, while being concerned principally withtifieation issues, are also aimed at
improving the confidence in underlying physicallgsed models used in design and
in reducing the level of uncertainties in these aiedEstimation of parameters from
flight tests is increasingly seen as an importart pf such testing and is especially
relevant in the context of important aerodynamabity and control parameters

Another factor, which provided a further stimulosthose engaged in the application
of system identification methods to helicopters atiter forms of rotorcraft in the
late 1980s and 1990s, related to the implementatioactive control technology
concepts in rotorcraft. Essentially, this is thelly-wire approach that had, by then,
already been accepted in fixed-wing aircraft. Timpriovements in performance and
operational capabilities expected from the intraducof active-control technology
could only be achieved through the availabilityagturate and proven mathematical
models (Murray-Smith, 1995supporting paper, [22] The publication in 1989 and
in 1994, in the USA, of revised handling qualitiesquirements for military
helicopters (Anonymous, 1994) provided a stimuluglight control system design
and created new interest in the potential and aclimitations of multivariable
control system analysis and design methods. Enldgmedormance requirements and
developments in materials and rotor technology Hadeto major improvements in
vehicle characteristics which mean that much endchiperformance is possible and
traditional loop-by-loop design methods are no Emadequate. Multivariable control
system design techniques, which more fully exglgétinherently multivariable
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structure of these vehicles, have been applied muraber of investigations (e.qg.,
(Manness & Murray-Smith, 1992 supporting paper, [23] (Gribble, Manness &
Murray-Smith, 1994 -supporting paper, [24)] (Gribble & Murray-Smith, 1990 —
supporting paper, [25] (Hughes, Manness & Murray-Smith, 1990supporting
paper, [26]), (Manness, Gribble & Murray-Smith, 1990supporting paper, [27).
However, ensuring an appropriate level of accutacthe multi-input multi-output
models used for active control system design is @omchallenge. Models are
required that perform adequately over a definedyeaof frequencies and over a
specific range of manoeuvre amplitudes.Improved eteodndoubtedly offer direct
benefits in terms of performance. For example, {ighdwidth model-following
flight control systems based on accurate mathealatitodels may incorporate
improved feed-forward control pathways and allowpioved agility and some
reduction of high feedback gain values that woulteovise have to be introduced to
compensate for model deficiencies.

System identification methods are also becomingeesingly important in the
context of validation of ground-based simulators ffiotorcraft of all types. Such
simulators require highly accurate mathematical @df they are to be useful for
pilot training (see, for example, (Hamel, 1994)).

2.5.1 Identification methods for rotorcraft applications

Prior to the 1990s most published accounts of apfdins of system identification
techniques to helicopters and other types of roafiranvolved time-domain methods
of identification. Another approach, which is beke to have advantages, involves
the use of frequency-domain methods. In this cheenteasured response data are
transformed first into the frequency domain usingagpropriate implementation of
the Fast Fourier Transformation. This allows attento be focused on a particular
part of the frequency range and data lying outdlte range of interest can be
discarded or given less emphasis. This means thatthe identification of six-
degrees-of-freedom rigid body models, the rotorreleg of freedom, which involve
higher frequencies can be excluded. Conversely, ttier identification of rotor
dynamics, the exclusion of lower frequencies iniragvthe rigid-body response can
be advantageous. This procedure allows, in a sarfeem of model reduction within
the identification process (Padfield, Thorne ef 84887 —supporting paper, [28]
Details of a frequency-domain approach to helicopystem identification developed
during the period 1984-1988 may be found in a pdyeBlack and Murray-Smith
(Black & Murray-Smith, 1989 -submitted paper, [29). This approach was one of a
number of methods of helicopter system identifaratisuccessfully used by the
NATO-supported AGARD Flight Mechanics Panel Worki@goup WG18 in the
preparation of the AGARD Advisory Report 280 (Anamyus, 1991) on Rotorcraft
System Identification. Frequency-domain methodsshaecome increasingly widely
used in the years since publication of that AGARIpart, especially with the now
widely available CIFER software developed by Dr KMaischler and his colleagues
at the US Army Aeroflightdynamics Directorate (Thser & Remple, 2006).

In the system identification approach developedBbgck and Murray-Smith, the

selection of the model structure and the estimatibparameters involved a three-
stage approach. This is based on initial use afjuiacy-domain equation error
techniques, followed by further refinements of resties through the use of output-
error techniques and then a final time-domain ougjpror procedure. Work was
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carried out using single records for a number ofufianeously recorded variables
and also combinations of records. The analysisoailsnations of records involved
the application of a technique for multiple-run ntlécation which retains the
individuality of separate runs and avoids someheffroblems resulting from simple
concatenation of files (Leith, Bradley & Murray-Shmi 1993 —submitted paper,
[30]). This multiple-cost approach involves the introton of an additional
summation loop involving the individual cost furmets for each of the separate data
sets. This gives, fa¥ data sets, a combined cost function

N
JroTaL = Z Jj (2.7)

i=1

Analysis has also shown that, for appropriate doys, estimates of multiple-run
parameter values and their standard deviations lmagbtained from the individual
results obtained from the runs that form the baéithe multiple-run identification.

This means that conventional single-run system tifiestion techniques and
software can be used without alteration for mudtipbst identification. The paper
includes an illustrative example, with excellensui¢s, involving the application of
the multiple-cost identification approach to flighata from a Puma helicopter.

The individual cost functions used in the frequedoynain output-error stage of the
three-stage identification procedure describedhm paper by Black and Murray-

Smith (1989) are based on use of the maximum-hkeld approach and involved

summation over a specified range of frequencieteature of this approach to state-
space system identification is the use of pseuddrobinputs and some parameters
were fixed during the identification process. Whitheach iterative cycle the error-

covariance matrix estimate is updated using prediotodel outputs. Minimisation of

the cost function involved use of a quasi-Newtorthoe together with an optimal

linear search algorithm. In this output-error agmtg convergence is necessary in
both the model parameter values and in diagonaheiés of the error-covariance

matrix. The frequency-domain output-error idenéifion process is followed by a

time-domain output-error identification stage irder to estimate zero offsets and
initial states which require information not incedlin the frequency-domain data.

Although it may be stated, without question, thattem identification and parameter
estimation techniques are potentially very impdrtam the context of helicopter
development and flight testing, it has to be acagphat the benefit of these tools has
not yet been fully realised. Many of the difficeli are associated with issues of
robustness and these have been classified undeoltbeing headings (Murray-
Smith, 1991c supporting paper [31)}

1. robustness and reliability af priori information,
2. robustness of the identified model structure,
3. robustness of estimated parameters,

4. robustness of the resulting overall model.

In the context of these robustness issues the grepeof different estimators are
likely to be less important than questions of idedility, the quality of measured
system response data and experimental design (MB8math, 1991c -supporting
paper, [31), (Leith & Murray-Smith, 1989 submitted paper, [32), (Leith, 1994).
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2.5.2 Test inputs for helicopter system identificabn and parameter estimation

Test inputs commonly used for helicopter systemmtifieation include doublet
signals, other forms of multi-step signals suchthas so-called “3-2-1-1" pseudo-
stochastic signal (Plaetschke & Schulz, 1979, Kalel979) and frequency-sweep
signals. The coherence function has been foundet@ lvaluable measure of the
degree to which a given type of signal providesskaitory excitation in helicopter
system identification (Tischler, 1987). This quantprovides a measure of the
fraction of the output auto-spectrum which may loanted for by a linear
relationship with the input auto-spectrum. In teal case the coherence is unity over
the complete frequency range of interest. Valuesobierency smaller than one may
be associated with nonlinearity in the system urtést, process noise (such as
turbulence in the case of aircraft applications)agk of input signal power and thus
response power (Bendat & Pearsol, 1980), (Bendaeé&sol, 2000).

Designs of test signals for practical system idmatiion of a helicopter or any other
air vehicle are inevitably based on a mathematiwadle! of that vehicle. Because of
uncertainties within that model they are unlikely be optimal. Indeed, if
uncertainties were not present there would be red rfer system identification
testing. This means that it is important to chaasé some appropriate flight data
from the vehicle in question as a first step towaexperimental design. This is
essentially the same procedure as was applieceidekielopment of improved forms
of test signal for investigation of the pulmonagasgxchange model in Section 2.3.

As with the work on test input design for physiot@j systems, it is essential to have
a quantitative basis upon which test signals cawcdmpared. In the work outlined
here this involved the use of quantities such aspirameter information matrix and
the dispersion matrix, both of which have theosdtiorigins in the Cramer-Rao
bound (Plaetschke & Shulz, 1979). This has lecestd input design algorithms that
minimise some appropriate function of the dispersimatrix or of the parameter
information matrix, as outlined in Section 2.2sltould be noted, however, that care
must be taken when applying such an approach dilne tiact that, unless an efficient
estimator is used, the approach may be invalid taedresulting designs cannot be
relied upon. Inputs designed using measures bas#tealispersion matrix are useful
in cases where long test records are available wanere maximum-likelihood
estimators are being applied since such estimaterasymptotically efficient.

2.5.3 Experimental design for linearised six-degreeof-freedom helicopter
models

In cases where the purpose of the identificatiorcaacerned with validation of
linearised flight mechanics models, the inputs dratbeing used for testing must be
consistent with the modelling assumptions. This msethat input design methods
must take account of any input constraints that magt. In addition, it is important
to obtain long test records since parameter estsgnisien have time to converge and
efficient (i.e. minimum variance) estimation is pie, thus allowing use of
dispersion matrix criteria in the design process.

The broad aim of research by (Leith & Murray-SmitB89— submitted paper, [32)
was to design a test input which would give longt teecords while providing
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providing a dispersion matrix that is reasonabipad”. Avoiding resonances in the
system is an important requirement since an irfpaittéxcites these resonances would
produce a response that would rapidly become neadiand this might require the
flight experiment to be prematurely aborted. Inpghsuld also be such that there is
no steady state component in the signal. For masescof practical importance a
constant component in the test input will producgeady-state constant component
in the response and this tends to shift the opeyatondition of the aircraft. If the
operating point is significantly different from theperating point used for
linearisation of the theoretical model the paramestimates obtained experimentally
will be inconsistent with that model, thus makihg whole procedure invalid.

The paper by (Leith & Murray-Smith, 1989 submitted paper, [32) presents a
method of autospectrum design that:

a) ensures that resonances are avoided, to gigerdest records.

b) avoids exciting frequencies around the resorgrioggive robustness

c) excites the remaining frequencies to give aaralsly “small” dispersion matrix.

A further requirement is that inputs have to batreély simple in form so that they
can be applied manually by the pilot.

An optimal spectrum program was developed succigstuproduce a binary multi-
step input having an auto-spectrum that satisfispeification of the type outlined
above.

The starting point for the development of the oplirspectrum program was to
consider a general a-periodic binary multi-steputnghich could be described in
terms of its Fourier transform by :

1 LR . n .

F(w) =j—w[1+ 2> (-D)' exp(-jat;) +(-1) exp(—den)} (2.8)
i=1

where F () is the Fourier transform of the signal,is the frequency (rad/sec)+1 is

the number of steps in the binary input sequetads,the time in seconds of thn
step in the input and= 0 sec.

The cost function is defined as
=Y a/F(@) (2.9)
k=1

and the optimal spectrum program uses as inpubhtneber of steps in the input
sequence, the numben, of weighting factors in the cost functibmnd the values of
the frequenciesy, and the corresponding weighting factegs These last two are
chosen so that the requirements are satisfiedrmstef frequencies that should and
should not be excited. For a given valuendhe cost function has to be optimised in
terms of the timing of the fixed number of stepsthe multi-step input. The
specification of a large positive value af produces an input having a small
component of the auto-spectrum at frequengy while specification of a large

negative value gives an auto-spectrum with a smafinitude at that frequency.

30



This approach was applied successfully to the desigtest inputs for a Lynx
helicopter operating at RAE (Bedford). Flight tsiakere performed for a test input
applied to the longitudinal cyclic control of thehicle for a flight condition of 80
knots level flight. As described in (Leith & Murre&gmith, 1989 -submitted paper,
[32]), the optimal test signal design process waseraout with weightings chosen to
ensure that the input auto-spectrum had no dc coemipthat it avoided known
resonances at about 0.3 rad/sec and that theempited frequencies between 2 and 3
rad/sec but not above 3 rad/sec. The upper limB odd/sec was imposed because
previous experience at RAE (Bedford) suggested thattheoretical model was
useful only for frequencies below about 3 rad/g&chigher frequencies it appears
that dynamic effects within the rotor sub-systenveha significant influence and
these were not included in the model. A signal timg of five steps was found to
be particularly useful. This signal, a double-deapéllowed long test records before
the response became nonlinear. Typical record herfgr the double doublet with the
Lynx helicopter were of the order of 30 seconds pared with 10-15 seconds for a
traditional doublet input and only 3 seconds fa 82-1-1 input. Estimates of seven
parameters of the pitching moment equation weraioét using the frequency-
domain equation-error approach described in (Bl&kMurray-Smith, 1989 -
submitted paper, [29). Other forms of multi-step input were consideesdl tested
in flight but the double-doublet gave results tivatre consistently better than those
obtained from the use of other inputs. The doublebtet appears to be more robust
to errors and uncertainties in the theoretical rhaded in its design.

It is of interest to note that the techniques agdpor the design of test signals for the
rotorcraft application differ from those applied modelling the gas exchanging
properties of the lungs. In that application th& s&@gnals were designed to minimise
an appropriate function of the dispersion matruglsas the determinant, in the time-
domain. In this application frequency-domain methecre adopted, partly because
of the physical insight that these provide in thbsequent application of the models
for flight control system design and also the theitt the frequency domain offers the
possibility of separating six-degrees-of-freedomaiyics and rotor dynamics.

A further paper (Leith & Murray-Smith, 1993 supporting paper, [33] - discusses
the development of energy and amplitude constraimgtiimal inputs for use in
system identification. Although that paper includestudy based on a fifth-order
helicopter flight mechanics model as an example, ghaper is written in a more
general way and the results could be applied topaoklem involving a combined
input and state energy constraint or an output énag constraint. For these types of
constraint the design of D-optimal inputs is fadsimonstrated for a simple first-order
system and the insight provided by this approactkenghasised. The fifth-order
helicopter example involves an output amplitudest@int. Although the best result
was obtained using the output amplitude constraiestdinput, this example provides
further evidence of the advantages of the doubiéld design over other
conventional test signals such as the doublet.

Further discussion of flight test procedures, desifj experiments and robustness
issues in helicopter system identification may benfl in (Murray-Smith, 1991a —
supporting paper, [34} (Murray-Smith & Padfield, 1991 supporting paper, [35]
and (Murray-Smith, 1991b supporting paper, [36] Further discussion of results
from the application of system identification medsdo helicopter flight mechanics
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model development are presented in (Padfield & Byu8mith, 1991 -supporting
paper, [37).

2.5.4 System identification strategies for helicopt rotor models

Coupled models describing rotor flapping dynamied eotor inflow phenomena are
of great importance in helicopter flight mecharaesl for the design of flight control
systems. The system identification technique deegldby (Black & Murray-Smith,

1989 —submitted paper, [29) which involves a combination of equation-errodan
output error methods in the frequency domain, i-steted to the investigation of
rotor models although it was developed initially the identification of rigid body

helicopter models. The main advantage of this ntetifaapproach is that it provides
a way of partially decoupling the estimation ofgraeters of a rotor model, involving
relatively high frequencies, from the estimationpafameters within the rigid-body
six-degrees-of freedom description which involves tow-frequency part of the
spectrum.

The application of system identification methodsntodels of the main rotor in a
vehicle having a conventional single main rotor #aibdrotor helicopter configuration
is challenging because of difficulties in excititige rotor blades over a wide enough
range of frequencies and also because of the inhpreblems of measuring the air
flow though the rotor. A paper by (Bradley, Black Mlurray-Smith, 1989 —
submitted paper, [38) describes the application of the frequency-donasgiproach
to the estimation of parameters within four commgtitheoretical models
incorporating induced flow. The most general forhmodel considered involved a
second-order description with induced-flow dynamiekich could be reduced to a
first-order description with induced-flow dynamiosto either a first or second order
form without induced flow dynamics. A modified forof state equation:

Ex = AX + Bu (2.10)

was adopted because it was found that use of dhis 6f mathematical description
could facilitate direct estimation of physically amngful parameters. With this
representation defined relationships can exist éetwthe elements of ti#e B andE
matrices.

Conclusions from this work indicated that the tioenstant of the dynamics of the
induced flow is of the same order as that of theagyics of tilting of the rotor disc
for the flight condition considered. The formulatiof the equations using the
structure of Equation (2.10) was found to be aipaerly useful development
because it facilitated physical interpretation egults and released investigators from
the restrictions of the standard state-space fation.
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2.6 Discussion

One important feature of the papers included in ttesis is that they discuss
modelling and control applications from a varietly aveas, including physiology,
electro-optics and rotorcraft dynamics as well asartraditional control engineering
areas such as ships, underwater vehicles andiet¢qgower generation systems. The
objectives of modelling in these different areas chffer significantly and prior
knowledge of the real system can be very importiamg. also essential to have a full
understanding of how the model is to be used. Tpgse of a model influences the
type of model needed and, if the goal is to providgher insight about the
corresponding real system, the form of the mode} beasignificantly different from
models used for quantitative prediction, simulatiortontrol system design.

The benefits of a cross-disciplinary approach wtesy modelling are believed to be
very significant and the value in terms of crossHfsation of ideas resulting from

involvement in a wide range of applications carsben from the detailed content of
the papers. Although the fields of neurophysiologgspiratory gas exchange
processes, electro-optic sensor-systems, helicdlpggt mechanics, hydro-electric

power generation and surface ship or underwatechketontrol appear to have little
in common, closer examination shows that systeom these different fields present
many similar difficulties in terms of accurate mthig. The papers included here
show that, in addition to displaying significantniaear behaviour, most credible
models of such systems involve significant unceti@s in the early stages of their
development. Significant simplifications may alsavé to be introduced, often for
reasons of computational complexity, if the modeta be useful for an application
such as non-invasive measurement, a real-timersysiulator or the design of an
automatic control system.

System identification and parameter estimationregres are important tools for the
modelling of complex systems. The papers includettis section of the thesis focus
on practical aspects of system identification ahded very different fields of
application are considered, two involving biologicgstems and one involving a
complex engineering system. Similarities highlightey the research reported in
these different application areas include problehsnherent system complexity,
difficulties caused by having to work with shorttalaecords and complications
introduced by experimental constraints, poor signaloise ratios and nonlinearities.

When used as a tool for refinement of system modelfor the indirect estimation of
physical quantities which are not accessible toealirmeasurement, system
identification methods are needed which providéearcindication to the user of the
accuracy of parameter estimates and of the validftythe model structure. In
parametric models, questions of accuracy can Iselyldinked to issues of numerical
identifiability and thus to experimental design.wé&ver, in many cases, especially
with nonlinear parametric models establishing tbeugacy of estimated quantities is
not straightforward (see, for example, (Nelles,020 pp. 431-434)). In the case of
non-parametric models useful insight concerning rdmege of validity of estimates
can be gained from the use of measures such asecalee

Following the successful application of identific&it methods, simulation tools can
be used in the evaluation of the resulting modetsfar the assessment of competing
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hypotheses in cases where major uncertainties rerfSach an approach can lead to
the formulation of new experiments and to a furstage of model refinement if that
is necessary for the intended application.
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3. Inverse Simulation for System Modelling

3.1 Introduction

Inverse simulation techniques applied to lineanonlinear dynamic models allow
the determination of time histories of system “itgfuineeded to achieve a specified
time history for a given set of required “outputs'his approach has attracted
considerable attention in the field of helicoptkght mechanics and a number of
methods of inverse simulation have been in useinvithe helicopter research
community since the late 1980s and early 1990s. t€bbniques are of potential
interest for other types of application as theyvmte important insight about
requirements in terms of the actuator charactesisteeded to achieve given levels of
controlled output performance. This is especiattportant when constraints, such as
amplitude and rate limits, are present and theagmpr is potentially useful for a wide
range of mechatronic and control systems applioafincluding integrated control
systems.

The first techniques, developed mainly for aircegiplications, may be divided into
three categories: (a) differentiation methods agldped by Kato and Saguira (1986)
and by Thomson and Bradley at the University ofsGtav (e.g., (Thomson &
Bradley, 1990); (Thomson & Bradley, 1994), (b) gretion methods which
originated with the work of Hess and his colleagaethe University of California,
Davis (e.g., (Hess, Gao & Wang, 1991) and, indepettgl by Thomson and other
members of his group at the University of Glasgevg.( (Rutherford & Thomson,
1996) and (c) methods which adapt traditional nucakoptimisation algorithms for
use in inverse simulation (e.g., (de Matteis, dei®& Leonessa, 1995), (Lee & Kim,
1997) and (Celi, 2000).

The mathematical basis of inverse simulation amddifferentiation and integration
based methods, which are based on the Newton-Rap{$R) algorithm, are
described in a review paper published in discussiugrse simulation methods and
their applications (Murray-Smith, 2000bsupporting paper, [39} The integration-
based approach using the NR algorithm is the mailywused technique at present.

Known difficulties with the integration-based methinvolving use of the NR
algorithm include:

» the existence of oscillations in the calculatedutspwhich are of high
frequency compared with the dynamics of the sydiemg simulated,;

» possible non-convergence of the algorithm;

» the occurrence of maintained or slightly dampedillatons (so-called
constraint oscillations of frequency similar to the frequency of an
oscillatory mode of the system;

* numerical issues associated with the use of dérezahformation in the
calculation of the Jacobian.

More fundamental issues that also apply to othemnrigues are concerned with the

structure of the model. One important limitatiorthsitt redundancy issues when the
number of system inputs is greater than the nunobesutputs may lead to non-
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convergence of inverse solutions. Another issughet the stability of inverse
simulation techniques for the case of non-minimumage systems has been given
little attention in the past.

It should be noted that inverse simulation techeggydiffer significantly from the

techniques of dynamic inversion which were developg Brockett (1965), Dorato

(1969) and Hirschorn (1979) and further developgdididori and his co-workers

(e.g., (Isidori, (1995)). Dynamic inversion invotvéransformation of the original
nonlinear system model into a linear and contrédlabhodel using a nonlinear state
feedback control law using concepts from differ@ngeometry. Surprisingly little

consideration has been given in most published workhe relationship between
model inversion and inverse simulation techniques.

Although there have been a number of useful reygapers describing the principles
and practical application of inverse simulation Imoels to problems of flight
dynamics, including two very useful reviews by Theam and Bradley (1998) and
(2006) and a more general review paper by (Murnaytdg 2000b —supporting
paper,[39]), little progress appeared to have been made dgtidrt of the twenty-
first century with the application of the inversenslation approach to problems in
other application areas. The approach also appeatréaat time, to have attracted no
attention as a possible alternative to analyticethmds of dynamic inversion for
control system design. These areas of work, togeilitdh developments aimed at
eliminating some of the current difficulties withvierse simulation algorithms, have
been emphasised within the papers on inverse diimmléhat are included in this
thesis.

3.2 Developments in Inverse Simulation Methods

3.2.1 An inverse sensitivity approach

The paper published in 2007 by (Lu, Murray-SmithTRomson, 2007submitted
paper, [40]) discusses numerical problems encountered withtitvadl methods of
inverse simulation based on the NR algorithm amgp@ses a new method of inverse
simulation based on sensitivity analysis theoryisTtew technique has been termed
“inverse sensitivity”. The central idea in this apgch is that the system input vector
can be regarded as a vector of time-varying pamnsetvhich are independent of
the state variables. In the traditional inverseusation algorithm the input vector is
assumed constant within the small time interyyakt <t,,; and it follows that the

vector a(t) is a constant vector over that interval. This mehas within the interval
t, <t<t,,, the standard state space form of description fasrdinear system can be
expressed in the form:

x = f(x,q) (3.1)
y=9(x,a) (3.2)

Transforming these equations into sensitivity eigumatform, as shown in (Lu,
Murray-Smith & Thomson, 200%Bubmitted paper,[40]), leads to a set of equations
in the form:
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V = A(t)V +B(t)

(3.3)
H =C(t)V + D(t)
where
0X of of ay Jag Jg
V=—— Al)=——; B=——; H= ; C= and D=
da’ ® ox" da’ da’ ox" da’

Equations (3.3) are the continuous sensitivity éqona which allow the system
output sensitivity functions to be calculated thgbuorward simulation. It can then
be shown that a small perturbation in the veatorat timety results in an output
variation Ay, ,; and the inverse simulation problem becomes anrsevproblem for
finding the value ofAa, from an equation of the form:

Ay, = I'(Aay) (3.4)
Full details concerning solution of this equatiore grovided in the paper (Lu,
Murray-Smith & Thomson, 2007 submitted paper, [40]). The benefit of this
approach is that it allows the Jacobian matrixdabtained through simulation rather
than by means of the usual approximation baseduorerical differentiation and thus
avoids many of the problems associated with thatgss. The disadvantage lies in
the computational demands of this method sincettler of the sensitivity equations
is g times larger than the order of the original sedeations, whergq is the order of
the input vector. There is thus a need to balaheerproved accuracy against the
increase in computational requirements.

Certain basic rules for convergence and stabiliplya to the inverse sensitivity
solution and numerical examples included in theepamow that inverse simulations
based on the sensitivity analysis method can peotile same results as the
traditional method based on the NR algorithm. Hosvedetailed analysis shows that
for a given time interval\t = tx+; — tx results from the sensitivity approach can be
approximately four times more accurate than resfiten the traditional NR
approach. As the numbgft of Runge-Kutta integration steps within the intérkais
varied an accuracy improvement is found for ther8éthod up to a value of about
M=20. No corresponding improvement is found in thgutts for the NR algorithm.
Beyond M=20 in the SA method there can be further accuragyrovements but
these are less marked and involve considerable etipnal cost. There is a clear
trade-off between accuracy and computer time inctiece ofM for the SA method
and a large value dfl is preferred but is not essential. In additiorstheesults mean
that it is not essential to use a smailvalue in the application of the SA method.
Thus, in some cases the problems associated wih ainvalues in the NR method
that lead to high frequency oscillations can bedea.

3.2.2 The constrained Nelder-Mead method

The established methods of inverse simulation, uthinothe differentiation and
integration-based approaches, introduce additidealative information associated
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with calculation of the Jacobian or Hessian masicBirect search methods of
optimisation are derivative free and thus avoideéssthat may arise in gradient based
methods when discontinuities are encountered, asichput saturation.

The 2008 paper by (Lu, Murray-Smith & Thomson, 2608ubmitted paper, [41])
provides details of a novel derivative-free apphotinverse simulation based on a
version of the downhill simplex optimisation methotl Nelder and Mead (1965).
The Nelder-Mead (NM) approach is a widely used meétfor minimising a scalar-
valued nonlinear function of real variables, usordy function values without any
explicit or implicit gradient information. Recenéwklopments in the method allow it
to be applied to multimodal, discontinuous and t@nsed optimisation problems.
The algorithm used as the basis for developmenthef derivative-free inverse
simulation method is based on the version of thiel&teMead algorithm by Lagarias
et al. (1998) with an additional feature to allaw input-constrained functions.

As with the integration-based method using the Ngbrithm, the NM approach
involves consideration of an interval, [t.1]. A key feature of the method is that the
optimisation is based upon a cost function ancctiwece of this function is of critical
importance.

The paper by (Lu, Murray-Smith & Thomson, 2008submitted paper, [41)
discusses numerical issues and stability of inversmilation with the integration-
based NR iterative scheme, including the constrastillation phenomenon and
problems associated with input saturation and discoities. The same issues are
also discussed in the context of the constrainedrdthod, outlined above, and two
case studies are used to compare the use of theniMthod with the more
conventional NR approach. These investigations bathive nonlinear mathematical
models used in ship steering control.

The first of these case studies involved a relbtiggmple nonlinear model of the
Norrbin type, which is a single-input single-outmigscription. The model includes
rudder amplitude and rate limiting. Although resuliom inverse simulations by the
two approaches agree well with each other for shgmoeuvres that involve rudder
angles and rates that are below the limits, it besn found that the NM-based
approach can achieve good convergence and propldescally meaningful inverse
simulation results in cases where the NR algoriféifs to converge.

The second case study involved a nonlinear comtahg model which has two
inputs and three output variables. In this examplming circle and pullout
manoeuvres were considered and good convergencachésved for both the NR
and NM methods with and without input saturationtfee turning circle manoeuvre.
However, in the case of the pullout manoeuvre,NiMe method was successful but
the NR algorithm failed to converge for any of tbases considered due to the
discontinuity in the manoeuvre.

It is concluded from the results of these caseissuithat the derivative-free procedure
based on the constrained NM algorithm provides mamb benefits compared with
the more conventional approach based on the NRi#ilgo The new approach gives
improved convergence and numerical stability pripercompared with the NR
algorithm for cases that include significant inpaturation or involve a discontinuous
manoeuvre.
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3.3 Inverse Simulation Applications in System Moddhg

Aeronautical applications considered in the redeart inverse simulation methods
for system modelling include a relatively simple -#Hi& fixed-wing aircraft model
having thrust and elevator inputs and a Lynx helieo model involving five sub-
systems: fuselage, tail plane, fin, main rotor aai rotor (Lu, Murray-Smith &
Thomson, 2007 submitted paper, [40). Surface ship applications are discussed in
(Lu, Murray-Smith & Thomson, 2008 submitted paper, [41), and underwater
vehicle applications in (Murray-Smith & Lu, 2008submitted paper, [42) and in
(Murray-Smith, Lu & McGookin, 2008 submitted paper, [43).

3.4 Inverse Simulation Techniques for Model Validabn

Conventional methods for the external validation dyinamic models generally
involve comparisons of the real system with coroesiing simulation model
responses when both the real system and the moglsluljected to the same input
for exactly the same operating point. Methods demal validation based on this
general approach have been found to be particulesdyul in the case of linearised
models and for some forms of nonlinear model. H@wein the case of models that
involve hard limits and other significant nonlingias (for example, for helicopter
flight mechanics models for applications involvinanoeuvres, such as nap-of-the-
earth flight, that demand large and aggressive rabnhputs) most traditional
methods of validation have been found to have malctimitations. The use of
inverse simulation methods and the comparison putsy needed to achieve a
specified form of response can offer insight ther be significantly different from
any information derived from more conventional giation methods.

This fact is especially true in the case of systemshich the immediate response to
inputs is essentially one of integration. Drift abmost inevitably present in such
systems and is due to small biases and offsetd Sflisets are unlikely to be the
same in the system and the model and can causeleaise difficulties as they may
produce effects having magnitudes that are sinidaresponses to the applied test
input. This issue has been examined in detail enpidyper by (Bradley, Padfield et al.
1990 - submitted paper, [44) in the context of helicopter nap-of-the-earth
manoeuvres where a strong case is made for théogevent of a validation strategy
that integrates forward and inverse simulation.e®tpublished studies of inverse
simulation for model validation applications haveluded the work of (Murray-
Smith & Wong, 1997 -supporting paper, [49] where inverse simulation was
applied successfully to a laboratory scale systewolving two coupled tanks of
liquid. Modelling errors observed in predictions daahrough conventional forward
simulation runs were fully reflected in resultsrfranverse simulation. The difficulty
in terms of the model development process is @slts from inverse simulation do
not allow the deficiencies in the model structurgparameter values to be established
directly. The investigation of modelling errors amcertainties would require further
inverse simulation tests based on other measurgdbles and possibly additional
experimentation using conventional forward simakatiOne important facility that is
lacking at present is an efficient method of sevigjt analysis that would allow
discrepancies between inputs predicted by invaraalation and the inputs applied

39



experimentally to be related to the structure aadameters of the model under
investigation.

3.5 Discussion and Conclusions

Developments in inverse simulation methods thapagesented in the thesis include a
sensitivity-based technique and the novel appbcabf methods of search-based
optimisation. Both these approaches show some estiag advantages over
conventional methods of inverse simulation invalyigradient techniques. In
particular, the new derivative-free approach basedthe use of the constrained
Nelder-Mead algorithm has been shown to have impbradvantages for problems
involving input constraints, abrupt changes of el output or discontinuities
within the model. Simulation studies involving tvdifferent nonlinear models of
ships which included actuator saturation and raté honlinearities showed that the
use of the Nelder-Mead approach could, for casethisfkind, give significantly
improved properties in terms of convergence anderigal stability compared with
more conventional methods.

Investigations concerned with the traditional ajppfhes to inverse simulation have
included studies of numerical accuracy and stgbibind have provided an
explanation of “constraint oscillation” phenomena terms of internal system
properties. In addition, these investigations hdeeused on the effect of
discontinuous manoeuvres, discontinuities withie thodel and input constraints on
instability and convergence failure for integrativesed methods of inverse
simulation based on the Newton-Raphson algorithines& investigations have
confirmed the superiority of the search-based typalgorithm for applications of
this kind.

Inverse simulation methods form an important amafdirther research, including
work on the further development and refinementweerse simulation algorithms. In
their present state of development these technicques very far from being
engineering tools that are suitable for routine msengineering system design and
development. Although the underlying approach hasnbtested and has proved
useful in a number of different application araasich remains to be done. Even with
present day personal computers inverse simulatmmpatations using the well-
established Newton-Raphson integration-based apipram the new approaches
discussed in this thesis (the inverse sensitiyifyraach and the Nelder-Mead search-
based method) are very time-consuming and alsoineseenewhat unpredictable in
terms of convergence properties. They are theref@propriate for routine use in a
design environment. Significant effort is neededi¢velop more efficient and robust
inverse simulation tools.
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4. Issues of Model Quality and the External Validabn of
Dynamic Models

4.1 General Issues

For physiological and other scientific applicatiptitee purpose of a model is usually
to explain a complex set of behaviours or to helphe design of experiments as part
of the process of hypothesis testing. In such diefdodel development is a central
element of the scientific method. In some engimge@applications it may also be
appropriate to use a model to describe, analysxgain the behaviour of a highly
complex system but it is much more common to fimateis being used to assist in
decision making or to underpin design activitiespryperly tested and well-proven
model can reduce engineering system developmeestend costs significantly for
many applications and complex computer-based mquelade the basis for much
analysis and design.

In all such application areas it is usual to bdse dtructure of the model on prior
physical, chemical or biological knowledge butmany cases, some sub-models may
be based purely on input-output descriptions ddrifrem tests carried out on the
corresponding elements of the real system (i.eckbox” models). Models can thus
range from completely “transparent” descriptionssdsh on the application of
recognised and accepted scientific or engineermgiples to purely empirical and
thus more opaque “black box” forms. Between thesgemes there is a very
important class of description, sometimes refetoeds a “grey box” model. In such
cases some elements of the model are based oni@hpescriptions derived using
system identification and parameter estimation oath but much of the model is
based on prior knowledge and the application of-estlablished physical laws and
principles.

In industrial applications of modelling and simudat there is much interest in
modularisation and component reuse as these arepiaguctivity factors in the

software development process. In both industry #ml academic world, until

recently at least, successive generations of stionlanodels were often restarted
from scratch which is clearly time-consuming andstgful. Recent advances in
object-oriented design and programming methodswallr repositories of reusable
objects that can help to reduce the problems as®ociwith the generation of new
simulation models for new objectives that are lohke earlier models of a similar
kind.

The concept of a generic model, which has a forat #llows a single piece of
simulation software to be used for projects cowgarrange of detailed applications,
is seen as increasingly important. One particuppr@ach to the development and
validation of a generic model is described in (3miurray-Smith & Hickman,

2007a —submitted paper, [46) and (Smith, Murray-Smith & Hickman, 2007b —
submitted paper, [47). Such a generic structure allows reuse of sirnaulagoftware

for a wide range of different projects with relay minor reorganisation in terms of
the associated modules that are used to defineat® under investigation. Although
these two papers relate specifically to the devak of a generic model of electro-
optic systems, the central ideas and methodologgaplicable to generic models in
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other fields of application. The issues of validatiof generic models present
particular problems that are somewhat differenmfrealidation problems for more
specific models and we address those issues inl detgSmith, Murray-Smith &
Hickman, 2007b submitted paper, [47).

Quite apart from the concept of a generic moded iteas of modularity and
component reuse are of key importance. These ieas that if we wish to build a
new model for new given objectives we can selettierg sub-models from a model
base to serve as elements of the new model. Themmel can thus be synthesised
largely from existing modules.

A number of issues arise in the practical applwabf the concepts of model reuse
and one of the most important is concerned withiskee of how component models
can be designed so that they meet current requirisna@d also possible future needs
(Cloud & Rainey, 1998, pp98-100). This can bestabhieved by designing sub-
models as building blocks for a family of appliceis rather than for a single project.
A second important point relates to practical issae flexibility in the large-scale
reuse of sub-models and the extent to which thecblgriented approach that is
commonly used in present-day general purpose pmograg languages can be
applied within more specialised dynamic system $atmn languages.

A paper by (Ostroversnik & Murray-Smith, 199&ibmitted paper, [48]) presents a
rationale for a modular and truly object-orienteginamic system simulation
language. Although many dynamic simulation langsagjaim to be object oriented
they do not, in many cases, fulfil all of the regdi conditions (i.e, classes, instances,
inheritance, etc.) to allow them to be regardettdg object-oriented. One feature of
particular importance for object-oriented simulatieoftware is the requirement for
sorting of code at run time rather than at the atengtage, as is more normal in
simulation software. The paper presents a possibfgementation of the sorting
algorithm within a new object-oriented simulatioanjuage known as OOSIlim
(Ostroversnik & Murray-Smith, 1998, submitted paper, [48]), (Ostroversnik,
Murray-Smith et al., 2000 submitted paper, [49), (Ostroversnik & Murray-Smith,
1995, - supporting paper, [50] and (Ostroversnik & Murray-Smith, 1996, -
supporting paper, [51]] Sub-models implemented using the approach adojpt
OOSIlim are believed to represent one possible agprdo the development of
commercially available libraries of sub-models.

The application of the OOSIim approach is illustthin (Ostroversnik, Murray-Smith
et al. 2000 submitted paper, [49), where the well-known PHYSBE physiological
simulation model is adopted as a benchmark. PHYSBELeod, 1966) is an
established model of the circulatory system in Whgach body part is considered as a
blood storage compartment. There are nine bodyealesrn total with the first group
involving four compartments (head, trunk, arms kag$) in parallel with a so-called
“Inner Cycle” which is made up of five blocks cowrted sequentially through valves.
These compartments represent the vena cava, igiticle, lungs, left ventricle and
aorta. The head, trunk, arms and legs compartnaatgonnected in parallel with
the inner cycle compartments. This model is sudfidy large and complex to make it
suitable for application of the OO approach.
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In OOPhysbe the compartments representing the haads, trunk, legs and

ventricles are similar and the only differencesthaeeinitialisation constants and their
location in the model graph. An abstract sub-masieherefore appropriate for this
and two classes (hamed “lump” for the external lachplements and “ventricle” for
both ventricles) can be formed. Then, instead ofifgasix, largely duplicated,

declarations in the simulation program there arly omo class definitions and six
short declarations and no code is duplicated urssaciy.

Since a model is, by definition, only an abstractid the system it represents, perfect
accuracy is impossible to achieve. A key questsomow best to establish the level of
model quality appropriate for an intended applaatand ensure that the model
satisfies that requirement before it is used. Altffovitally important, this is a much
neglected aspect of system modelling. As has beerigd out by many concerned
with modelling and simulation (e.g., (Cloud & Ramel998)), the validation of
models cannot be separated from the model builgingcess and validation
techniques should be applied repeatedly during maldeelopment. If model
building is approached as an iterative processidgente in a model should increase
steadily from iteration to iteration.

This remaining sub-sections within this part of thesis, together with the associated
submitted papers, address a number of issuesnigladi model credibility, model
verification methods and model validation methotsey describe, through selected
published papers, a number of relevant and illtiseaapplications where issues of
model quality are of great importance.

4.2 External Validation Methods

Errors and uncertainties in models arise in manfferdint ways, including
inappropriate assumptions, incorrecpriori information, inaccuracies in numerical
solutions of model equations and errors in expentaledata used in the model
development process. A number of reviews of modelity issues and model
validation procedures have been published (e.grragtSmith, 1990b supporting
paper, [52), (Murray-Smith, 1992 —supporting paper, [53] (Murray-Smith,
Bradley & Leith, 1993- supporting paper, [54] (Murray-Smith, 1995b supporting
paper,[55]), (Murray-Smith, 1998 supporting paper[56]), (Murray-Smith, 2000a
— supporting paper, [57} (Murray-Smith, 2006a submitted paper, [58]) and
(Gray, Voon & Murray-Smith, 1997 supporting paper, [59] The most recent of
these (Murray-Smith, 2006a submitted paper, [58) is included as a submitted
paper within this thesis.

Within engineering there are good examples, mastlpafety-critical application

areas, where rigorous procedures are applied intasieng of models and where
formal approval schemes for models are in placerantinely applied. However, the
model development procedures used within many eeging organisations often
involve surprisingly little systematic testing ofodels in terms of their useful range
and limits of accuracy. External pressures, throdgyelopments such as “simulation
based acquisition” and “smart procurement”, ardrbbegg to change this situation in
some areas such as the defence sector. In gehevatyer, progress in the field of
simulation model quality enhancement is slow. T&is marked contrast with related
areas such as software engineering. As was podnieith a paper by (Murray-Smith,
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2002 —supporting paper, [60] there are important lessons that the simulatioth a
modelling community could learn from computing swe and, especially, software
engineering in the context of model documentatgystematic testing and version
control.

External validation, in which the behaviour of analation model is compared
directly with the behaviour of the correspondinglreystem, is difficult in most
practical applications due to the fact that modets/ contain dozens or even many
hundreds or thousands of parameters that have svéhae are chosen by the user.
Similarly, models may involve large numbers of autpariables, all of which will
exhibit differences from the corresponding quaetitin the real system and these
differences are likely to vary with time. For therposes of assessing the overall
quality of a given model it is important to know i of the output variables are of
greatest importance for the given application am much error can be tolerated.

Confidence in a prediction depends critically omfatence in sub-system models as
well as in the complete system model. This is paldrly important when sub-system
models can be tested experimentally. Comprehersidedetailed testing at the sub-
model level helps to establish confidence in thecdption at that core level and
helps to allow it to be extended gradually to leedl-defined situations involving the
testing of the complete system model over a rafig®emditions. In the development
of a new engineering system, test data are nevailable at the design stage.
Historical data from earlier system designs of milar kind may be helpful in
evaluating the model but successful applicatiorthed approach depends on good
documentation of models of those earlier systenistha tests to which they were
subjected.

Comparisons (of a graphical kind or involving use@uantitative measure) of data
from a system and the corresponding model prowvigeabvious approach to external
validation. Complications arise with methods basadresponse comparisons when
several output variables have to be consideredl&naously or where un-modelled
disturbances or measurement noise are signifit@istich cases techniques based on
system identification and parameter estimation meyide a useful alternative to
direct comparisons and can offer additional physioaight concerning model
limitations. Methods based on parameter sensiti@itglysis are also important and
the techniques of inverse simulation discussedeicti®n 3 have proved useful in a
number of application areas. Methods involving ekpeinion are also important in
evaluating the suitability of a simulation modet # specific application. Details of
each of these approaches to external validationbedpund in (Murray-Smith, 1998
— supporting paper[56]) and (Murray-Smith, 2006a submitted paper, [58).
Discussion of other approaches to model validatimejuding model distortion
methods and comparisons with current practice withe software engineering field
may be found in (Gray, Voon & Murray-Smith, 199%upporting paper, [59] and

in (Murray-Smith, 2002 supporting paper, [60}

The external validation of nonlinear simulation ralsd involves a number of
important issues. Techniques for the identificatoriinear systems from measured
experimental data can provide insight through distalbg models for different
operating points across the operating envelopbesystem. These identified models
can then be compared with linearised models deffiged the full nonlinear
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simulation model for the same set of operating @ . Discrepancies between the
identified models and the models derived from tbalimear description have to be
considered carefully and may lead to the credibitift the nonlinear model being

guestioned. If, however, the level of agreemenwbeh the two sets of models is
considered adequate a second stage of the exteafidation process can be

attempted. This involves comparison of responseth@fnonlinear model with the

responses of the real system for a range of laggeigpations and is based on the
direct comparison type of approach mentioned abdyence again, the level of

agreement is judged to be acceptable over an apgm®pange of conditions the

model can be released for use in the intendedagtaln. It can continue to be used
until additional information or data raises newuss of model adequacy and the
acceptability of the model has to be reconsiderethe light of such new evidence.
This identification-based approach to the validatod complex nonlinear models is
discussed in more detail in (Bradley, Padfieldlgtl®90 -submitted paper, [44).

Whatever approaches to external validation are tedom a particular application

there are several issues concerned with identiialasind robustness that need to be
considered carefully. Identifiability has been dissed in Section 2 in the context of
system identification and parameter estimation, aggecially in connection with

experimental design. Robustness in this contexatesl to factors such as the
magnitude of error bounds on model parameters attonfrom experimental test

data, the accuracy and repeatability of model ptexatis, the effect of test input

magnitudes and the length of available experimeptairds.

In a report by (Murray-Smith, 1991bsupporting paper|36]) and a related lecture-
series paper (Murray-Smith 1991c) robustness istia@® been classified in the
following way:

i) robustness and reliability afpriori information used in model development

i) robustness of system identification and par@mestimation techniques used for
model development or external validation pggso

iii) robustness in terms of consistency and acgucdé¢he model structure and
parameter values identified from system des4.

One very important point, which is often disregakds that when a model includes
information obtained from the use of system idésdtfon and parameter estimation
methods it is vitally important that the data sesed for external validation do not
include any of the data sets already used in theldpment of the model. At a very
minimum there should be two sets of data, one tmechodel development purposes
(such as parameter estimation) and the secondtadedt the model in terms of its
predictive capabilities.

The choice of data sets to be used in the tesfimgodels that involve parameters or
structures identified using other experimental da&i@es some interesting issues.
Data sets used for the testing of models need tardedly similar to the sets used in
the identification process in terms of their spactproperties and amplitude
distributions. On the other hand, it is clear tiiaita sets used for testing should not be
too similar to those used for identification andrgmaeter estimation. Responses
obtained from inputs other than those used at teatification and parameter
estimation stage are bound to be different in tesh@mplitude, frequency and
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energy distribution. However, the differences indeloand system behaviour for
those new inputs may well be understandable onysiqdd basis and the results of
the tests may still be very helpful in assessing dality and limitations of the
model.

One important point is that it is essential to @by match test data used for external
validation to the intended application of the modkthat is not done it will not be
possible to make decisions about the suitability goality of the model in the
context of that application. Proper use of the rhaday then be significantly
restricted because of the set of conditions usedekting. Issues of this kind arise
both in the validation of identified models derivddom the application of
conventional parameter estimation procedures foeali models and also from
techniques leading more directly to the identifmatof nonlinear models.

In the case of linear models, the issue becomesobmbtaining experimental test
records that are significantly different in fornofin the records used in the parameter
estimation process but are similar in terms of dingplitude range and frequency
range. This can present difficulties in practicgdtem identification and parameter
estimation applications and the issue of the choifcexperimental records for the
validation of identified models has been discusseal number of papers and reports
relating to helicopter system identification (e@Aurray-Smith, 1991a supporting
paper, [34), (Murray-Smith and Padfield, 1991sdupporting paper, [39] (Murray-
Smith, 1991b -supporting paper, [36} and (Hamel 1994)).

For the validation of nonlinear models the tasklobosing appropriate test records is
more complex since the test signals must excitesyiseem in such a way that all the
significant nonlinearities are fully explored whidéso covering the entire frequency
range of interest.

4.3 Issues of Model Validation and Model Quality in Typical
Application Areas

Model accuracy has, for a very long time, been gas®ed as an issue of central
importance for the design of engineering contradtems. For high performance
closed-loop systems it is vitally important to hdoighly accurate models of the plant
in a frequency range that includes the frequensiesre the phase lag of the forward
path system transfer function approaches 180 dedithe so-called “cross-over”
region). Model uncertainties within the cross-okegion lead to major difficulties in
guaranteeing that stability and performance requergs are met in the closed-loop
system design (Murray-Smith, 1995asupporting paper, [22} (Murray-Smith,
1991b -supporting paper, [36] (Murray-Smith, 2000a supporting paper, [57)}

Other application areas, such as models that nayde a basis for the development
of novel methods for non-invasive measurement idion@e and physiology (e.qg.,
(Bache, Gray & Murray-Smith, 1981 submitted paper, [11), (Murray-Smith,
1990a —supporting paper, [12] (Thamrin & Murray-Smith, 2007 supporting
paper, [15]), models that are used within system simulatorsstaff training or
education (e.g., (Murray-Smith, Murray-Smith et 4995 —supporting paper, [7),
(Murray-Smith, 1990a supporting paper, [12), models used in systems for
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automatic fault detection or models that are usegfediction or hypothesis testing,
all impose important requirements in terms of mayiellity if the application is to be
successful. The sections that follow provide a &wamples of fields in which some
experience has been gained in the successful apphoof validation methods.

4.3.1 Helicopter flight mechanics model development

The validation of helicopter flight mechanics made$ a topic of considerable
practical interest. As in most other engineeringligptions, validation in this field
has to be regarded as a relative concept and tigatan procedures have to be
related to the intended use of the model. Factoas are particularly important
include the frequency range over which the modalityuhas to be established and
the range of values over which particular respore&bles have to be considered
(i.e. amplitudes). The paper by (Bradley, Padfegldl., 199Gubmitted paper, [44)

is concerned with the validation of helicopter flignechanics models intended for
the prediction of flying qualities and vehicle dyma performance. In terms of
frequency the requirements extend beyond the rasigehuman pilot control
(approximately 5 rad/s) to cover the whole rangefrefjuencies that could be
involved in active control of the vehicle (about 2&d/s). Amplitudes, specified
through translational and rotational velocities acdelerations, depend largely upon
the intended application of the model under ingagion.

Techniques of system identification and parametgémation, discussed in Section 2,
have been applied successfully to the externaldaatin of helicopter flight
mechanics models (e.g., (Murray-Smith, 1995supporting paper, [22} (Black &
Murray-Smith, 1989 -submitted paper, [29), (Leith, Bradley & Murray-Smith,
1993 —submitted paper, [30), (Padfield & Murray-Smith, 1991 supporting paper,
[37]), and (Bradley, Padfield et al., 1990bmitted paper, [44). Particular problems
include the fact that helicopters generally involae relatively high-vibration
environment, allow only short test records due targmally stable or unstable
dynamics under open-loop test conditions, involirergy nonlinearities and have a
strongly non-uniform flow field. During a ten yeperiod from about 1985 to 1995 a
number of software tools for state estimation, nhosteucture identification and
parameter estimation were developed in a collalveractivity involving the Royal
Aerospace Establishment, Bedford, (latterly the Uéefence Evaluation and
Research Agency, Bedford) and the University of sGéav (Departments of
Aerospace Engineering and Electronics and ElettEogineering). Some of these
software tools concerned with the implementationspécific identification and
parameter estimation methods have been referraldetady in Section 2.

One important aspect of external validation that ieen emphasised in work relating
to helicopter flight mechanics modelling is thae thalidation process may be best
viewed as a form ofmodel calibrationaimed at establishing the range of conditions
over which a given model may be used successfOllyside that range of operating
conditions the suitability of the model may be openquestion. The external
validation process can address issues of possibtielnrefinement or correction in
order to extend the range of applicability of aegivnodel.
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4.3.2 Modelling limitations for helicopter flight control system design

Good generic flight vehicle models are essentialtii@ successful design of high-
bandwidth full-authority active flight control sgshs for helicopters and other forms
of rotorcraft, such as tilt-rotor aircraft. Pubkghexamples provide plenty of evidence
that the achievable performance of helicopter flighntrol systems has been over-
estimated in initial design studies because oftétions in the flight mechanics
models of the vehicle (see, for example, (MurrayitBnil995a —supporting paper,
[22]), (Murray-Smith, 1991b -supporting paper, [36] (Murray-Smith, 2000a —
supporting paper, [57] for relevant discussion). These problems may bet
appreciated until the flight testing stage and izsults in costly redesign, extended
flight test programmes and delays in certificatitmproved modelling procedures
and improved models offer significant benefits. €oinsystem designs can always be
made robust to compensate for poor model accutaaty,only at the expense of
performance.

Accurate linearised models are especially imporfantthe initial stages of flight
control system design, as exemplified in the wofkManness & Murray-Smith,
1992 —supporting paper, [23] on the application of eigenstructure assignment
techniques to helicopter flight control. That pagaows clearly that when one has
confidence in the available model of the vehicleryv stringent performance
requirements can be satisfied. However, good vi@dlaonlinear models are also of
great importance in the subsequent evaluation efgds. For example, published
examples are avbailable which make it clear thatatiainable bandwidth of high
performance helicopters has often been overestimatdesign. Differences between
control system design approaches are probably s importance than having a
proven vehicle model which performs well in theticél ranges of frequency and
amplitude, although robust control system designthods do have potential
advantages over other methods.

The helicopter is nonlinear in its behaviour overstof its useful flight envelope and
there is a need both for linearised models inttiteal stages of control system design
and for externally validated nonlinear simulatiorodals in evaluating overall
performance in the later stages of the design gsodssues of experimental design
for model validation become particularly importamtthe context of this application
area. For example, in a control system design ggntiee frequency content of test
input signals must be chosen to give due emphagisetpart of the frequency range
close to the nominal cross-over frequency, whergasthe context of other
applications of flight mechanics models other regmients for test input design may
be more important.

4.3.3 Issues of model quality in ship control systedesign

Accurate navigation and autopilot system designimgortant concerns for control
engineers working in the marine field. As the sifesessels such as oil tankers has
increased new problems have been identified duectampatibility in terms of the
rudder surface area in relation to the size ofubssel. In order to make a large
manoeuvre a large turning moment must be genelateate flow of water over the
deflected rudder. The magnitude to this turning reomdepends on the rudder
dimensions and the forward speed of the vesseteShese attributes determine the
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manoeuvring capabilities of the vessel they neelet@accurately represented in any
mathematical model used in the design of the dkigrimg controller.

A paper by (McGookin & Murray-Smith, 2006bsubmitted paper, [64) discusses
problems associated with a model based on dynaguiatiens published by Fossen
(1994) using data from a paper by van Berlekom @utldard (1972). These
problems became evident when the model was usadaper by Cimen and Banks
(2004) that attempted to develop a novel form aflimear optimal controller design
for an oil tanker. Within the model, as appliedGiynen and Banks, the flow of water
over the rudder involved incorrect terms which méuke turning moment too large
for a vessel of the size considered in the papkis Tade the heading dynamics
unrealistically sensitive to changes of rudder argyl that, in simulation studies, the
vessel responded more rapidly than it should tarober commands. A modified
form of relationship that had been used in a malisdussed in an earlier paper by
(McGookin, Murray-Smith et al., 2000a submitted paper, [65) represents the
manoeuvring capability of a vessel of this size momre accurately.

The 2006 paper by (McGookin & Murray-Smith, 2006lsubmitted paper, [64)
provides simulation results for standard open-latgnoeuvring tests. Responses of
the modified and original models have been comparighl data of Van Berlekom
and Goddard (1972) and the simulated behaviourhef ghip under open-loop
conditions has been found to be significantly nreadistic for the modified model.

The results of this investigation show that, aldfiouthe controller design
methodology applied by Cimen and Banks (2004) isseful development in non
linear optimal control theory, the ship responsesg@nted in the illustrative example
included in their paper are not realisable in atcal tanker application for this size
of vessel. The controller design could not, theefde used in practice and a
complete redesign, using the modified model suggeby McGookin and Murray-
Smith (or some other form of improved model), iguieed.

4.3.4 Model quality and external validation in thedevelopment of generic models
of electro-optic sensor systems

Electro-optic (EO) sensors convert photons intateleal signals and are used within
electro-optic systems for imaging. A number of eiéint technologies allow
operation of electro-optic systems for the infrareidible and ultraviolet waveband.
Common applications include infrared search andktrsystems (IRST), missile
warning systems (MWS) and thermal imager systerf)s (T

EO sensor systems involve elements such as scaanthgteering devices, optical
components, detector elements with associated refechardware and signal

processing hardware and software. Models of compdétctro-optic systems may
involve dynamic systems (e.g motion of the targatjnospheric effects such as
atmospheric attenuation, characteristics of optaral detector elements, electronic
circuits and associated noise sources and a disyistgm (the modelling of which

may involve representation of the eye-brain systean elementary way).

The assessment of the performance of an EO segstens is a difficult, time-
consuming and costly exercise. Although the peréoroe of individual components
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can be established readily under laboratory cambti quantitative assessment of the
complete system requires field trials on productiorpre-production systems. As is
the case with the helicopter flight control systdesign, problems identified in trials
may well lead to costly redesign and, subsequetdlfyrther testing. Field trials may
also only cover parts of the operational envelop¢he system and the successful
completion of initial trials may not identify alhé problems that could adversely
affect the performance in an operational environmen

It is believed that modelling and simulation tecjugs can help to address some of
the problems of EO sensor system development. Easessment of overall
performance within or beyond the normal operatingedope and insight regarding
parameter sensitivities and inter-dependencies famportant ways in which
modelling and simulation can assist in design ojs@tion and minimise rework.

The paper by (Smith, Murray-Smith & Hickman, 2007aubmitted paper, [46])
outlines a generic approach to EO system modellihgre the similarity of the
structure of different types of EO system (all ilwnag an optical chain, a detector,
together with electronics, processing and displaynents) provides the basis for the
generic form of model. From a single generic matelcture of this kind all specific
types of EO system can readily be derived and tluptéon of a generic approach
facilitates model reuse in successive projects. phper discusses the role of
modelling and simulation in the EO systems fietdnt requirements engineering to
system performance evaluation and design optimoisaflhis is relevant to many
areas of engineering and especially for the dewedy and design of integrated
systems. In such applications a highly simplifiesh@eptual model of the proposed
complete system may provide a starting point, vifitt model then being further
developed and transformed as the project progrems@dirm design decisions are
made.

One very important issue relating to generic modelgshe question of internal
verification and external validation. The generature of the model gave rise to a
number of special questions in the context of magellity and credibility. These
issues are discussed in detail in a second papErith, Murray-Smith & Hickman,
2007b —submitted paper, [47]). Undoubtedly, issues of model credibility lead to
more problems when a generic model is considerad they do in special-purpose
models developed for a single application. Thisepaguidresses the issues of model
testing, internal verification and external validatfor the generic EO sensor system
model. A structural approach is proposed that agsgincreasing confidence during
the modelling process through repeated bottom-ggingg structured verification
procedures and carefully selected metrics for egtevalidation. These validation
metrics are based on a geometrical view of modgduds that may be compared with
measurements using qualitative methods or quamétapproaches involving image
processing, artificial neural networks or fuzzytpat recognition. The advantages
over traditional methods of external validation am®st marked in the case of
complex models with many key quantities, where thé&w approach not only
provides useful insight about the credibility oétimodel but also about sensitivities.
These tools for external validation have been agplin conjunction with other more
traditional metrics to the testing, verificationdavalidation of the generic EO sensor
system model configured as a thermal imager system.
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One important development in this work, that mayehaalue in other applications
involving external model validation, involves tagina number of key system
guantities and plotting these as radial lines @olar diagram. Values are normalised
and shown as points on the radial axes. Thesegpaistthen joined by straight lines
to form a polygon of the type shown in Figure 8BY.creating a polygon of model
results and a polygon of corresponding measurenmentie same polar diagram an
immediate indication of the validity of the comm@etmodel may be obtained.
Generally, the more similar the polygon shapesbee valid the model is declared.
Aspects of the system that are represented acburae immediately obvious and
areas requiring further analysis are also highightAlthough they have been
developed independently for model validation pugsoghese diagrams have many
features that are similar to those of Kieiat diagrams(Grant & Murray-Smith, 2004
— supporting paper, [66]that are used in the software engineering fiekdcbmputer
software and hardware performance evaluation.

C

Figure 4.1. Example of polygon representation fodei validation results. Here solid lines represent
modelled results for eight different quantities lehthe dashed lines indicate the corresponding
measured values. (Adapted from diagram in (Sriitirray-Smith & Hickman, 2007bsubmitted
paper, [67]).

Diagrams of this kind, as shown through illustratexamples in (Smith, Murray-
Smith & Hickman, 2007a submitted paper, [46), also have a role in analysing the
effect of system parameters on overall performametrics of a system. Shape-
processed visualisation methods such as thesettendselves to image processing
methods for quantification and a number of appreadiave been considered (Grant
& Murray-Smith, 2004 -supporting paper, [66]

4.4 Issues of Model Quality in Model Reduction
Model reduction has for long been recognised amaortant aspect of the process of

developing a model for a specific application. Example, in the evaluation of
aircraft handling qualities it is important to ensahat the model is of an appropriate
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accuracy over a defined frequency range. Frequermigside that range are not
usually of very great importance in terms of thieiactions between the pilot and the

vehicle. Similarly, as already discussed in SecioB.1, it is often important to

ensure that the plant model in control system apptins is highly accurate for a
range of frequencies in the vicinity of the gainss-over frequency but lower levels
of accuracy can often be tolerated at frequencied semoved from that critical

range.

Although the use of a relatively complex model tisaapplicable over a wide range
of frequencies may not present difficulties in sotyees of application, there are
other situations in which a simplified descriptiith more limited applicability may
be preferred. Situations of this kind can ariseapplications involving real-time
simulation where the use of a complex model thaipislicable over a wide range of
frequencies may introduce significant computatianadrheads.

One issue that is important in modelling of heli@yp and other multi-input multi-
output (MIMO) systems is to be able to derive aperlow-order model which has
characteristics capable of approximating those diiginer order description for a
specific frequency range. Simplified models of tkisd can be important at several
different stages of design.

A number of different time-domain and frequency-@mtechniques exist and have
been widely used, especially in the single-inpuiglg-output case. These include
methods, such as those those of Davison (1966)Bawdn and Schmidt (1988),
which involve the derivation of a model that inahdsdonly the dominant eigenvalues
from a given higher-order description. Another graaf methods involves the fitting
of a low-order model directly to frequency respomseime response data. In the
time-domain case, an example of this approach edound in the work of Anderson
(1967), while in the frequency-domain the derivatiof low-order models directly
from frequency response data has been describée\ny(1959), Payne (1970) and
Elliott and Wolovich (1980).

The paper by (Gong & Murray-Smith, 1993ubmitted paper, [67) describes work
carried out, in the context of helicopter modellfing flight control system design, on
the development of a MIMO model reduction methodcilinvolves an extension of
a complex curve-fitting approach described in thpgy by Levy (1959) and further
developed by Sanathanan and Koerner (1963) and’Nbgnnetje (1973). The
approach is transfer function based and uses afiewdieast-squares approach to fit
transfer functions to the target frequency respafe@. The method presented by
Levy (1959) involves minimisation of a sum of tlgpiares of the differences between
the absolute magnitudes of the frequency respoakey for the given data and the
reduced model over a specific range of frequendike.cost function in this case has
the form

n 2
3= e(@,) (4.1)
k=1
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wheren is the number of points in the frequency ranges®red ands(a, )s the

difference between the magnitude of the targetuieagy response and the frequency
response of the fitted transfer function at frequyedq, .

For the MIMO application the cost function is adifed form of the cost function
applied by Levy (1959) and subsequently developetthér by Sanathan and Koerner
(1963) and by t‘Mannatje (1973). Levy’'s method, ghiis an optimisation-based
approach, was developed for application to measineggiency response data but, as
described in the paper by (Gong & Murray-Smith, 39%ubmitted paper, [67), it
has been applied to model simplification. The digant development in this paper is
the extension of Levy’'s technique from the singlptit single-output case to multi-
input multi-output situations. A number of illusikee examples involving models of
an advanced fighter aircraft and also a large parnsircraft have been considered. It
has been found that, in order to obtain satisfgctesults, it is essential that two
factors must be chosen with particular care. Tha bf these is a weighting factor
within the frequency-weighted cost function useddptimisation that allows fitting
errors in chosen parts of the frequency range tgiben particular emphasis. The
second is the number of points used within thguemcy range of interest and the
applications considered show that this has a defioptimum for a given model
reduction problem. The examples considered show tth& optimisation process
converges very rapidly and that systematic invastg of the two factors that have
to be chosen by the user is not difficult or tine@suming.

A different example of model reduction is discussea paper by (Bryce, Foord et
al., 1976 -submitted paper, [68) which describes the development and application
of a model of a hydro-electric generator systenended for real-time simulation.
This work related specifically to the power statairSloy which, at the time when the
work was carried out, formed part of the system edvand operated by the North of
Scotland Hydro-Electric Board (NSHEB). The objeetivas to develop the real-time
simulation as a test-bed for work that was beingie@ out on a fast-acting form of
analogue electronic governor to replace the hydravernor that had been installed
when the station was built in the late 1940s. Thdel also provided a basis for
models used in the subsequent development of mimrepsor-based governors.
Although some tests on the real system were pathittiring the model development
process, tests to investigate the dynamics of tpelipe system, which is a vitally
important part of the overall system model, werepuassible for practical and safety
reasons. Extensive modelling of the pipeline nekwad been undertaken previously
by NSHEB engineers and a well-proven finite-elenmaotel existed, although this
relatively complex and numerically intensive modeiild not be implemented within
a real-time simulation. A decision was made to tlgva lumped-parameter model of
relatively low order that could capture the maiatéges of the more complex finite-
element pipeline model over the frequency rangenost significance for turbine
control. Versions of this lumped parameter desionipof different complexity were
tested against the finite-element description udmeguency-domain plots of the
performance of the full and reduced models as & ldas comparison. A model of
acceptable accuracy was then selected which caalomplemented easily in real-
time using the available computer hardware. Thduced model of the pipeline
system was then integrated into the overall systexdel which was then subjected to
external validation using data from tests carrigtian the full system. The real-time
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simulation was also subjected to detailed evalnatiod testing for conditions that
could not readily be included in the site testsisTévaluation involved experienced
operators from the Sloy Power Station as well a$iBIES engineers. The eventual
approval of the real-time simulation by the NSHER®)i@eers allowed it to be used as

a basis for evaluation of novel forms of governader a wide range of operating
conditions prior to their installation and testimgsite.

4.5 Discussion

The ideas of “verification, validation and accratiitn” methodologies, “smart

procurement” methods and the concept of “the madel specification” are currently
being emphasised in the defence procurement arelaotin sides of the Atlantic.

Books and technical reports dealing with applieddatiing and simulation topics in

the context of very large and complex systems ,(é@oud & Rainey, 1998)) are

appearing in ever increasing numbers from govermntadyoratories and agencies
due, in part at least, to concerns about excessige and time over-runs in major
projects. There appears to be a growing understgnitiat in many cases project
failures can be traced back to failure to use miodehnd simulation methods in an
appropriate fashion at an appropriate phase oesystevelopment. This interest in
issues of model testing and model quality for tlesigh and development of very
large systems is to be welcomed. However, it misi be realised that there are
many aspects of model validation, model optimisaaod model tuning that require
very careful consideration even in the case oftikdly simple dynamic models.

Inadequate attention to model quality at an eatlges however simple the
application, can lead to inappropriate design daess that may be difficult and

possibly expensive to correct at a later stage.

Issues of model quality and model validation canbet separated from other
processes of model development. The modelling oéa system is an iterative
process in which testing, evaluation and tuning afecentral importance and,
whatever the context, it is essential to ensurettiteamodel being used is appropriate
for the purpose. An application based on a modat does not have the necessary
quality is bound to lead to difficulties.

In the practical application of modelling and congsusimulation methods, models
are often developed on a one-off basis for a siget@$k. In industry, new designs of
engineering systems similar in many respects tdieeasystems often lead to

completely new models. Also, these models are seldabjected to a rigorous
process of validation and are seldom documentexhiadequate fashion. A poorly-
documented model of questionable validity is unlike be helpful in the project for

which it was intended. It is also unlikely to bensmlered for reuse in some future
project which means that expensive manpower anduress may have been
employed in creating a new model. This is undouptsldort-sighted and wasteful.

As model libraries and generic descriptions areobweg more widely used in many
application areas there is a new opportunity tadrgnsure that model documentation
and testing receives the necessary level of abienti future. Clearly the elements
within model libraries have to be accompanied Bgrmation about the accuracy and
limitations of each model or sub-model. Without dmentation of an appropriate
standard such libraries are going to be of litttdue and model documentation
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should, therefore, always include information abth& accuracy and limitations of
the model with supporting evidence relating to tésts that have been performed.
Such libraries should ideally involve precompilathenodels and this necessitates
the use of a simulation language having speciduifes. As described in Section 4.1
above, an example of such a language is the OOS&fiject-oriented simulation
language developed through a cooperative projetit thie Jozef Stefan Institute,
Ljubljana, Slovenia (Ostroversnik & Murray-SmitlQ948 —submitted paper, [48),
(Ostroversnik, Murray-Smith et al., 200Gwbmitted paper, [49).

In dealing with specific problems, whether to emte our understanding of an
existing system (as in physiology) or to improve thuality of a design (as in
engineering), it is important to ensure that theessary attention is given to the most
relevant issues in each application. Modelling aidulation tools produce results
that are of no practical value if they are appliedn inappropriate way and the old
adage that “garbage in produces garbage out” applge much in this field of
computer applications as in any other. Howevesinfulation and modelling methods
are applied in a highly focused fashion, with tightr questions in mind, they can
help to produce new insight that would be veryidifit to obtain in other ways. The
research reported in the paper by (Halliday, Mu®ayith & Rosenberg, 1992 —
submitted paper, [3) on the phenomenon of “driving” in the muscle sjbén
receptor provides an interesting example of theehisnof a focused approach of this
kind. A relatively simple single-output model stiwe, with nonlinearities and
parameter values determined from physiological ewe, was found (with some
minor tuning of parameter values) to provide sirtialaresults that matched very
closely those obtained experimentally.

In other fields of application, such as helicodtght mechanics, difficulties can be
encountered due to the presence of close coupfingr@bles and parameters within
the system. The fact that such systems are inthgremulti-input multi-output in
form means also that a number of output variablegshe system have to be
considered simultaneously and this tends to intedadditional problems. Although
guantitative measures of performance, suchllasil’'s Inequality Index(Murray-
Smith, 1998 -supporting paper, [56] are appropriate for applications of this kind,
the use of such criteria reduces the model quatisessment process to consideration
of values of a single index which masks the trummexity of the situation and
provides little or no physical insight. Methods fdisplaying results efficiently for
multi-output situations and for models where theae be strong interactions between
parameters are more desirable and the type of polgliagram introduced in the
papers by (Smith, Murray-Smith & Hickman, 2007asubmitted paper, [46),
(Smith, Murray-Smith & Hickman, 2007bsubmitted paper, [47) and discussed in
Section 4.3 offer new opportunities. Further disous of these diagrams may be
found in the paper by (Grant & Murray-Smith, 2004supporting paper, [66]
Diagrams of this kind provide a basis for compartiiferent results from different
models and results for different sets of paramdtmrad from system identification
and parameter estimation. They also allow resuftsemsitivity analysis to be
displayed in a simple and efficient fashion. They eearly applicable to problems in
many areas where there is a need to depict reHtips among multivariable data.
The use of such diagrams in the context of detaitedel analysis is believed to be
novel, at least when first applied. One advantdgle polygon diagram approach to
visualisation is that it is extremely flexible iarins of the comparisons that can be
made. It is also appropriate for use with detersticimeasures of performance such
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as overshoot magnitude or frequency of oscillatidhsnight well provide a useful
approach to the problems of comparing model antesy®ehaviour in the type of
situation that arose in the work on water turbiradslling outlined in Section 4.4 and
described in (Gong & Murray-Smith, 199%ubmitted paper, [67) and even in

situations involving simpler nonlinear system sashthe coupled tanks systems used

for laboratory teaching in control (Gong & Murrayah, 1998 —supporting paper,
[62]).
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5. Optimisation Methods in Nonlinear System Modelhg
and Nonlinear Control System Design Applicatioa

5.1 Introduction

In the case of nonlinear systems some aspecteahtdel structure usually need to
be determined from experiments as well as the salaE some parameters.
Identification of the model structure itself, indlag the nonlinear elements, can be
difficult. Often a trial and error approach invaigi a mix of expert knowledge and
experimental investigation is adopted to choosevéent several candidate models.
Such an approach is time-consuming and, inevitafbynewhat subjective. Some
form of automation of the procedure through theliappon of global optimisation
techniques would allow a larger number of possibledel structures to be
investigated in a much shorter time.

The optimisation of linear and nonlinear systemslso of central importance for
design in many areas of engineering and espeaaatly highly integrated systems.
Many aspects of present-day linear control theayehorigins that relate in some
way to optimisation methods but in the case ofesystthat involve significant plant
nonlinearities, or applications in which controflexith intentional nonlinearities are
introduced, the situation is more complex and thiereonsiderable scope for the
direct application of global optimisation methods.

5.2 Methods of Optimisation Considered
5.2.1 Simulated Annealing (SA)

Simulated annealings a probabilistic hill-climbing technique that lmsed on the
annealing of metals (see, for example, the workMstropolis et al., (1953),
Kirkpatrick (1983) and van Laarhoven and Aarts (@)98This natural process occurs
after the heat source is removed from molten neetdlthe temperature of the metal
starts to fall as heat is transferred to the emvirent. At each temperature level the
energy of the metal molecules decreases and thal imetomes more solid. This
continues until the temperature of the metal equhls temperature of the
surroundings and, at this stage, the energy hafhedats minimum. The simulated
annealing process mimics this natural annealingge®as it searches for a solution.

In the SA algorithm the solution space is seardietmposing perturbations on the
estimates of the parameters that are being optiimideese perturbations depend on a
“temperature” index T and their magnitudes at alages in the process are given by
an equation of the form:

pert(T) =k xT xrand (5.1)
wherepert(T) is the perturbation at temperature indéxXx is a scaling constant and
rand is a uniformly distributed random number lying woeen O and 1. In this

algorithm the temperature indédxbecomes smaller with each iteration, thus reducing
the size of the parameter perturbation, with lgrgeurbations at the start of the
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iterative process and small perturbations as cmdicome close to the optimum.
Each set of parameters arising from the applicatibthis procedure is substituted
into the equations defining the controller and pexformance of the system with
these parameters is evaluated through simulatidns Performance evaluation
involves comparison of the desired and simulatesgparses and is quantified using
the relative costQ). If the cost value is smaller than the previoestlrost the new
parameter set replaces the previous set. Howdvtre inew cost is not smaller the
new set of parameters is not immediately discaedetithe cost value is subjected to
a check in which the probabilityg, of the cost associated with the new parameters
(Cnew is compared with the previous best c@3id,) through the equation:

P= eX[{C Prev-; Cnewj (5.2)

This has the same form as Boltzmann’s Equation thedresult obtained from its
application is compared with a threshold numiverjf P > n the new parameter
values are accepted in the same way a€jf, <C,,, but the new values are

rejected if P > n. This so-calledMetropolis Criterion (Metropolis et al., 1953)
ensures that the SA avoids premature convergergeétmal minimum.

Following this step the temperature index is redubg the annealing schedule
involving an equation

AS(T) =Ty = y*T, (5.3)

whereT, is the initial temperaturey is the reduction constant adds the number

of iterations. The whole process is repeated wgitiler the cost has reached some
preset threshold level or the temperature value @some so small that the
parameters are no longer being perturbed significalf the cost value has reached
the minimum level, it follows that the SA should besing the optimum set of
parameters but if the temperature is too smalftékalts may not be optimal.

5.2.2 Segmented Simulated Annealing (SSA)

Segmented simulated anneali{5A) involves the application of a number of dienp
SA processes consecutively (e.g., (Atkinson, 19@2xGookin, Murray-Smith and
Li, 1996a —supporting paper, [94). SSA attempts, in this way, to overcome the
limited convergence properties of the SA methdtefparameters are not close to the
optimum initially. Each of the consecutive rungtstat a different point in the search
space so that, in effect, the search space is sggthmto number of smaller regions.
The final cost values, arising from the separatesrare then sorted in ascending
order and the smallest cost is taken as the optimlihe parameter values
corresponding to the best cost value form the aptimesult.
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5.2.3 Genetic Algorithms (GA)

The genetic algorithm(GA) approach to optimisation is based upon thecept of
survival of the fittest. The GA emulates the preessof evolution, with the strongest
elements becoming stronger while the weakest elesnaga eliminated.

The solution of an optimisation problem using th& @Gethodology involves a
stochastic search of the solution space using gstriof integers, known as
chromosomeswhich represent the parameters that are beingigetd. Each integer
within these chromosomes is known agemeand, in the context of the work being
discussed here, each gene has a decimal valuedrefivand 9lIt should be noted
that this is not the traditional GA approach whgemes are binary quantities. The
advantage of the decimal representation for ttpe tyf application is that it allows a
wider range of possible values in smaller chromassm

An initial population of chromosomes is generatedaadom and these are decoded
to obtain the corresponding parameters. These gaeamalues are then introduced
into the system model or controller. A simulatienriin and results are obtained for
each set of parameters within the population, usimgeasure of performance based
on a cost function similar to that used in simuaé@nealing. When the cost values
are all found they are sorted into ascending omleng with the corresponding
chromosomes. As before, the smallest cost valiesharsen as the best and are then
subjected to operations involvingeproduction cross-overand mutation. This
provides different points for analysis within theasch space.

Reproductions a procedure that involves retaining the besbrdosomes (say 20%)
for the next population. The remaining chromosonae replaced by new
chromosomes which are formed through the procestesossover and mutation.
This type of reproduction process is knownrak-based selectioand it allows only
the elite chromosomes to move on to the next itrafThis class of optimisation
method is known as alite genetic algorithniBrooks et al., 1996).

Crossoveris a process in which two chromosomes from theeciirgeneration (the
parentchromosomes) are involved in a procedure in wiizime of the genes from
one chromosome are interchanged with genes froradtresponding positions in the
other. This process produces two new chromosorhesffspring and the procedure
is repeated until there are sufficient offspringreplace the 80% of the present
population having the worst cost values. A procedurown agwo-point crossover
has been used in the work reported in the papehsded in this thesis.

Mutation involves selection, on a random basis, of a aemaimber of the genes in
the current population and random alterations hesm tmade to their values. This
provides a random element within the GA searchgss@nd thus ensures that more
of the search space is included.

Once the chromosomes have been changed to prdwedeetv population they have
to be evaluated, as was done for the previous geaer The whole procedure is then
repeated for a predefined number of iterationsréelgenerationy to produce a final
solution.
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The 1996 paper by (Li, Ng et al., 1996sdbmitted paper, [69) provides an
overview of the use of GAs in the design of a fafmonlinear control system and
illustrates the application of this approach toigiesautomation in the context of a
practical, but relatively simple, application invimilg a laboratory-scale system.
Further developments in terms of techniques hawen beported in subsequent
papers. These include a population minimisationcgge for genetic algorithms
(McGookin, Murray-Smith & Li, 1997 supporting paper, [70] and the inclusion of
non-uniform mutation (Alfaro-Cid, McGookin & Murragmith, 2005 -supporting
paper, [71).

5.2.4 Genetic Programming (GP)

Unlike the GA approach where, in a control engimggicontext, the objective is
parameter optimisation, the methodology known gametic programming(GP)
involves an approach where there is no prior spatibn of the size, shape and
structure of the solution and algebraic expressioive from a database of nonlinear
algebraic functional elements (Koza, 1992). Like tGA it is an evolutionary
optimisation method but, unlike the GA, it does remjuire a structure that is rigid in
form. While the problems to which the GA has beppliad involve a set number of
tuning parameters and a fixed-length string remtagien for the solutions, the
application of genetic programming leads to a sibmain which the size and shape of
solution evolve dynamically. Thus, in a control wt for example, genetic
programming can provide a controller structure asll vas an optimal set of
parameters.

The GP approach to evolutionary computation allopmisation of a tree structure
representation of a symbolic expression. The tregtsire has a variable length and
is made up of a series of nodes. These nodes ctarrhmal nodes, representing an
input variable or a constant. They may also be teominal nodes representing
functions involving some form of operation on onenwre variables of the system.
Figure 5.1 shows an example of a tree structure andhis particular case, the
terminal nodes are system inputs and variableseotystem under investigation or a
constant. The non-terminal nodes, in this diagr@mresent the operations of forming
a square root, addition and subtraction.

The GPalgorithm chooses possible elements from a libtardyuild trees of this kind
and each tree is evaluated as an algebraic expmessiprovide a fitness function
value. There is a population of trees of this kamdl this population evolves through
the processes of crossover, selection and mutetwards a structure that is optimum
in the sense of the chosen fitness function. Theegss is not deterministic and
repeated runs are therefore likely to produce difie solutions and analysis of a set
of runs is necessary in order to produce an exjoresisat is potentially useful.

5.3 Nonlinear Model Structure Identification usingGenetic
Programming

Genetic programming can be used to introduce anezieof automation in the model

structure identification process through the usa 6fness function which involves a
measure of the agreement between the model andygtem responses. A set of
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possible model structures evolves, through manemgions, towards a solution by
means of a selection scheme based on “survivdiesfittest” and using evolutionary
operators. At each stage the equation generatedighrgenetic programming is
combined with other equations involved in the modekcription to produce a
simulated time response which must be compared &fferimental data to give a
fitness value for that model.

Figure 5.1: Structure of GP tree representing tiretion y = \/; —(v+u-—23). Here the circles
represent non-terminal nodes whereas the rectangloleks are terminal nodes.

The parameters of the candidate models can be astimusing numerical
optimisation based on simulated annealing, or orukited annealing combined with
Nelder-simplex optimisation. It should be noted tipadient methods of optimisation
cannot be used in the parameter estimation prdmsssuse many models generated
through the GP process contain linearly dependaranpeters or parameters that have
no effect on the model output. The fitness functrafue from the best parameter fit
is then used by the genetic programming algoritiomdeéfine the fitness of that
specific function tree.

Experimental design is of particular importancethe identification of nonlinear
systems since the system must be excited over tiodevirequency range of interest
and also, in terms of amplitude, over the rangallathe nonlinearities in the system.
This means that a large training data set is neddedever, large data sets imply
additional computational demands in terms of theseh optimisation process so
there is an inevitable trade-off between model exmpiand optimisation time.

The papers (Gray, Li, Murray-Smith & Sharman, 1996submitted paper, [72),

Gray, Murray-Smith et al., 1996bsupporting paper, [73} (Gray, Murray-Smith et
al., 1997 —supporting paper, [74} (Gray, Weinbrenner et al., 1997sdpporting
paper, [75) and (Gray, Murray-Smith et al., 199&ubmitted paper, [76) describe
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the successful application of genetic programmirgghwods to the identification of
nonlinear model structures for continuous-time ni&de this approach the candidate
models may be described using both block-diagrard ardinary differential
equation-based representations and prior knowledigbe physical system can be
incorporated within those descriptions. The unknadynamics evolve through the
processes of genetic programming as an algebraiession that forms part of the
set of ordinary differential and algebraic equatiolescribing the system. The genetic
programming algorithm builds the models from adiyrof available functions. This
library is very important and must be sufficienfligxible to allow for a wide range of
functions, but not so general that a purely emalriepresentation can evolve. It
should include basic algebraic operations (such eaaKlition, subtraction,
multiplication, squaring etc.) together with furmets that represent common forms of
dynamic characteristics (such as first or secomi@olinear sub-models) that might
be expected to appear as elements within a cong@saription. Each member of the
genetic program population represents a possibtelidgate model for the given
system. It is important to note that any modelicdtire identified using genetic
programming needs to be validated using a datthaets different from the data set
used for the optimisation.

Although not concerned with the use of genetic mogning it is worth mentioning
that genetic algorithms and simulated annealingeteso been shown to be useful
tools in system modelling from empirical data. Tpeper (Tan, Li et al., 1995 —
supporting paper, [77)] gives an account of the application of these nipgres to
system identification and linearisation.

The papers (Gray, Li et al.,, 1996asubmitted paper, [72) and (Gray, Murray-
Smith et al., 1998 -submitted paper, [76) include results obtained from the
successful application of the GP approach to a murob different systems. These
include a simple simulated system involving a Imgansfer function and a pure
delay element in cascade, a laboratory systemvimgla coupled tanks fluid flow
system and a system for engine and rotor speedotamtan MBB Bo105 helicopter.
The results show that genetic programming can bd tesfit a model intelligently, in
terms of the topology and types of block structemeployed, while the parameters
can be estimated through the application of simredladnnealing. With suitable
constraints this approach could provide insightardmmg physically-based model
structures or could be used to validate a giverimesr model using experimental
data.

The paper by (Gray, Murray-Smith et al., 1998ubmitted paper, [76) describes
one particular approach to the use of genetic pragring within the modelling
process and describes its successful applicatican namber of simulated and real
physical systems. The main applications consideredlve test data from a coupled
system involving a pair of water tanks and helieofight test data for modelling of
helicopter engine dynamics.

Results from these applications show that genetigramming is a valuable tool for
the modelling of nonlinear dynamic systems usingeexnental test data. This
approach can allow nonlinear model structures tddweloped through automation of
the trial and error processes traditionally usedniodel structure estimation. It thus
allows more candidate model structures and compsrterbe evaluated. This method
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allows poor features to be eliminated and goodufest of specific structures to be
combined to give new forms of sub-model.

There is, however, an important issue in the selecdf the fitness function that

forms the basis for measuring the level of agredrbetween each candidate model
and the measured response from the real systems. dssential that the fitness
function should be chosen with due regard to alakailable information about the
real system and also the intended application efniodel. The simulation routines
used should return a value of the model fitnestkithscaled in a suitable way for the
GP selection operator.

Although the process of selection of the optimunscdetion from among the
candidate models is automated in this approachhtlean skill in the choice of
fitness function is vitally important for the ultate success of the method. It is also
important that the simulation methods used are migally efficient and fast because
each evaluation of the fitness function involves smulation run and the number of
evaluations needed may be large.

A model structure that has evolved from the appbcaof the GP approach can often
reveal new information about the system under itigason or can lead to additional
experimental testing that can, in turn, throw neéghtl on the physical processes
involved.

5.4 Optimisation in PID, State Variable Feedback at H,, Control
Schemes

Issues associated with the optimisation of clatsicatrollers of the PID type have
been explored in the paper by (Alfaro-Cid, McGookinMurray-Smith, 2001c —
supporting paper, [78]and discussed further in (Alfaro-Cid, McGookinMurray-
Smith, 2006 submitted paper, [79). This work builds, to some extent, on earlier
research reported by (Li, Tan et al., 1998upporting paper, [80] at the 1995 IEEE
Conference on Decision and Control involving lineantrol system design by
genetic evolution with simulated annealing. Bote #001 and 2006 papers involve
genetic algorithm optimisation methods and incldilcussion of the encoding of
each parameter value as a string of five genesdldw aepresentation of controller
parameters between 0.001%1@nd 9.999x1D For a PID controller with three
adjustable parameters 15 genes are needed toaepths controller. Results from
the application of GA optimisation have been comgarwith results from
conventional manual tuning of the PID controller &m example involving heading
and propulsion control systems for physical scabeles of two oil platform supply
ships. These scale modeBypership land Cybership I) are used as test vehicles at
the Marine Cybernetics Laboratory of the Norweglaniversity of Science and
Technology (NTNU) in Trondheim. The Laboratory gugped with a water basin
with a wave generator. The objective in these sti@vas to make the vessel track
desired dynamic responses with minimum actuatarteffo that cost function, with
two terms for each controller, has the form:

tot

C =3 [@w)? +4,(,)% + (Bu)? + Ay (r4)? (5.4)
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where Ay; is thei th value of the heading angle erray; is thei th value of the yaw
thrust force,Au; is thei th value of the surge velocity errary; is thei th value of the

surge thrust forcetot is the total number of iterations amjand A, are scaling

factors. It should be noted that since the yawsthforce and surge thrust force terms
are of increasing importance as the error termerbecsmaller, these input terms tend
to dominate the cost values near the optimum. iBhwghy the two scaling constants
are included in the cost function and a carefuiahof these can ensure that the four
terms within the cost are optimised equally. Altbbuthere is no difficulty in
achieving acceptable responses using manual tunatlgods, the time history far

showed oscillations when the system was subjectesiepp changes in the reference
inputs to both controllers simultaneously. This ikkstory behaviour was also
observed in the case of the same controllers ogpddnusing GAs and, since such
behaviour could lead to excessive wear and posfkue in actuators, a modified
form of cost function involving an additional paf terms representing the rates of
change of control inputs was considered. This ¢ethé adoption of a modified cost
function of the form:

2 2

o oo I

C =2 | Bg)* +4 (Tyi)2+ﬂ1(y'Tty('l)J +(Aui)2+)lz(rsi)2+ﬂz(s'TtS('l)J
i=0

(5.5)
which gave, with appropriate choices of the scalc@nstants/; and y,, a

satisfactory overall performance involving a goagde-off between tracking
accuracy and actuator oscillations.

The paper by (Alfaro-Cid, McGookin & Murray-SmitB006 —submitted paper,
[79]) compares GA-optimised PID controller performamdgth the performance of
pole placement (PP) controllers also optimised guSBA methods for the same
application. Interestingly, it is shown in the pagkat the optimised controllers
provide very similar responses for both control fgurations (PP and PID). In
addition to extensive simulation studies, testsewsarried out at NTNU in Norway
on the Cybership 111/70th scale model on which both types of controlere
implemented. It is interesting to note that the lengented controllers required no
adjustments beyond the tuning processes that had barried out as part of the
simulation studies.

The paper by (Alfaro-Cid, McGookin & Murray-SmitR008 —supporting paper,
[81]) is concerned with the design and optimisationHaf controllers An H,,
controller is a form of optimal controller whichviolves minimisation of ail.,, norm
instead of the more normal lquadratic norm. The advantage is that lthenorm
allows specification both of the level of plant ertainty and the signal gain from
disturbance inputs to error outputs and this presibust stability. The performance
of a controller of this kind depends critically @he choice of certain weighting
functions. A poor choice leads to poor control systperformance. The paper
describes the use of GAs for automatic optimisatbrthese weighting functions.
Two approaches were considered and these involyad¢nventional GA and also
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(i) a related method, developed by Dasgupta an@&idgor (1992), known as a
structured genetic algorithr(SGA). This latter approach is generally belietede
more suited to structural optimisation problems,aice the weighting functions in
theH,, problem involve transfer functions, this was aprapriate choice of method.
The application considered involved heading angupision control systems for an
oil platform supply ship. Results obtained suggleat the SGA can be very useful for
establishing appropriate weighting functions intttie tracking performance of the
system developed using the SGA approach was libterthe performance of the
equivalent system designed using the GA approadhk.important to note that this
improvement was achieved with weighting function§ lower order (with
corresponding advantages in terms of implementptiad that actuator usage for the
system designed using the SGA was significantlyiced compared with the usage
level for the other system.

Work on a novel non-uniform mutation operator réporn a paper by (Alfaro-Cid,
McGookin & Murray-Smith, 2005 -supporting paper,[71]) showed that

optimisation results could be further improved Ine tcase oH., controllers. The

inclusion of non-uniform mutation, together with naodified form of crossover
operator involving exponential crossover probapilivas shown to give significant
benefits in an application involving ship control.

5.5 Optimisation Techniques in Sliding-Mode Contrder Design

Sliding-mode controllers represent an importansxlaf nonlinear control systems
that have been widely applied. In its early develept the approach received
particular attention in the Soviet Union and inteas European countries but has
been very widely accepted in recent years as baingeful and highly practical

approach to control system design and implememtafibis acceptance is due to the
inherent properties of control systems designedgughis approach, which provide
robustness in applications involving a wide randeoperating conditions and

stringent requirements in terms of disturbancecteja. Such performance could not
be achieved so readily using linear controllers.

The favourable characteristics of sliding-mode oulldrs are provided by a
switching term within the controller structure. $haxtends the action of the so-called
nominal equivalent controller (which is usuallyimaelar form of controller designed
about a selected operating point) by providing drdction over a wider operating
envelope. The controller can then compensate fanadelled dynamics and external
disturbances.

The determination of the optimum set of valueshef adjustable parameters within a
sliding-mode controller is not a straightforwardeess due to complex interactions
between these quantities. This makes the desigrepsdedious and time-consuming
and is one of the reasons why nonlinear controtbérthis type have not been more
widely used in industrial applications. There iglaar need for a more automated
design process.

A number of different approaches to the automaidiine design process for sliding-

mode controllers have been considered, mainlyenctintext of marine applications.
The findings from these investigations of differeptimisation tools are, however,
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quite general and are applicable to many probleeasarThe methods selected for
comparison are simulated annealing (SA), segmesitedilated annealing (SSA),
genetic algorithms (GA) and genetic programming)(GP

The paper by (Li, Ng et al., 1996submitted paper, [69]) describes the application
of design automation based on the use of GAs talévelopment of a sliding-mode
controller for a two-input, two-output system. TBpecific application involved
control of liquid levels in a pair of coupled tanised for teaching. Results showed
that design automation based on GAs avoided tedr@isand error methods. It also
produced a system which had a performance thatoetisr than the performance of
designs produced manually. This is extended in, (Nget al., 1995 -supporting
paper, [82) to the design of sliding mode controllers thatoirporate fuzzy elements.
The idea, in this case, was to incorporate fuzaytrob to the switching logic to
overcome problems of chattering in conventionalisg-mode systems. The adoption
of the fuzzy approach increases the complexityhefdesign and makes a trial-and-
error approach very hard to apply successfully. &dorm of automated design
method really becomes essential in this case. @perpdescribes the development of
methods involving tournament and rank-based geragorithms. The method was
applied very successfully to the control of a taok coupled liquid-level system.

The optimisation of non-linear control systems bgnefic algorithms is also
discussed in the paper by (McGookin, Murray-Smithak, 2000b —submitted
paper, [83])). This paper involves applications to ship contsgstems and two
specific systems are considered. Both systemserdtata nonlinear model of a
190,000 ton oil tanker. One system is concerned wourse changing and the other
with track keeping through a form of line-of-sightitopilot. Various operating
conditions were used in the evaluation of systemiopmance. In the case of the
course changing controller these involved chandetesired course and changes in
water depth. For the case of the track-keepingrobet, the system performance was
tested in terms of positional accuracy for both pdeeater and shallow water
conditions and for different loading conditions. eTttontrollers used for both
applications were of the sliding-mode type usindeavation by Fossen (1994) and
Slotine and Li (1991) in which switching actiongsovided by a hyperbolic tangent
function. In order to smooth the switching actioboaindary layer is incorporated.

The switching action of the sliding mode controlietermines how robust the system
is to model uncertainties and also to externaludistnces, such as waves and wind
forces. Four parameters have to be optimised incih@rollers and these key
parameters have to be adjusted so that an appepoat function is minimised in
each case considered. The results presented papiex show that optimisation based
upon the use of genetic algorithms can be veryc¥ie in obtaining values of design
parameters in complex nonlinear controllers antlttiese controllers perform well in
simulations. It is suggested that the form of slidmode controller presented in the
paper has a structure suitable both for the cowefsnging and track keeping
applications. It is also suggested that the chdésen of controller exhibits excellent
robustness for the complete range of operating itond considered. The type of
sliding-mode controller developed in the coursehid investigation was therefore a
strong candidate for further testing and evaluatiora vessel or using a scale model
vessel in a testing tank.
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A further more detailed publication by (McGookin,ukday-Smith et al., 2000a —
submitted paper, [65) describes the application of sliding mode contogpitimised
using genetic algorithms, to the performance osation of a navigation system for
the same tanker model as that discussed above.flllisautonomous navigation
system involves two major sub-systems in contreteays terms. The first of these is
a line-of-sight autopilot which determines the desiheading of the tanker from
positional information and the second is a headiogtrol system. The nonlinear
sliding-mode control features arise in the headimgtrol loop and genetic algorithms
are applied to the optimisation of that sub-systéhe overall system performance
has been evaluated for a variety of different djregaconditions for the tanker
model, including different waypoint courses, altereaypoint acceptance radii,
different loading conditions and different forwarelocities for the vessel.

Simulated responses for the optimised system sheaivthe design criteria for the
optimisation were satisfied and that the solutiompares favourably with designs
derived using traditional engineering judgemennaloThe overall conclusion from
this investigation was that genetic algorithms allow a general-purpose navigation
system to be designed with sliding-mode contrgirameters which provide a very
satisfactory level of performance robustness. Irstnaf the cases considered the
system completely satisfied the design criterid,diwations involving a reduction in
forward velocity affect the flow over the rudderdathis reduces the turning moment
until a point is reached where there is insuffitiemgue to complete the commanded
manoeuvre.

The work on optimisation of sliding-mode controfldras been taken forward in a
significant way in work described in a more recstidy by (Alfaro-Cid, McGookin
et al., 2005a submitted paper, [84). This involved implementation and extensive
testing of sliding mode controllers for propulsiand heading control on the oil
platform supply ship@ybership Il)at NTNU in Norway. This vessel has a tunnel
thruster at the bow, two main propellors at thensend two rudders at the stern.
Facilities on the model and in the basin allow measents of the heading angle and
(x,y) coordinates of the vessd&lybership Ilis equipped with an on-board personal
computer (PC) but control calculations are perfatnmereal-time using an on-shore
PC which communicates with the on-board computesutth a wireless link The
simulation work required for design optimisation svéased upon a nonlinear
hydrodynamic model of the vessel

Controllers optimised through simulation studiesitifaut waves) have been
subjected to tests in the water basin both in tesgnce of wave disturbances and in
still water. Without waves the results showed tie tracking performance of the
control system was excellent and that in the pmseof waves the tracking
performance of the system was not degraded signifiz. The results for controllers
optimised in the presence of simulated waves wese $atisfactory, with a significant
reduction of control effort but a relatively po@sponse in terms of surge error.

The paper by (McGookin & Murray-Smith, 2006asubmitted paper [85) on the
optimisation of SM controllers for submarine mangeg using SA, SSA and elite
GA methods builds, in part, on a paper by McGooknrray-Smith and Li presented
at the UKACC Control '96 Conference (McGookin, MayfSmith & Li, 1996b —
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supporting paper, [86} Two controllers were involved in this investiigat, one for
depth control of the vehicle and the other for egaontrol. In this case there is
significant dynamic cross-coupling between the systems. Results showed that,
while SA is a useful local optimisation techniquteis not particularly useful as a
design automation tool. The reason is that it meguprior information about the
region of the parameter space in which the optissddition lies. It is, however, a
potentially useful method for fine tuning of a cailler that has been designed
initially by some other method. Application of tekte GA provided results that were
good in many respects but showed problems in thist global search method
provided very few incremental changes in the foeterations. This means that there
was no fine tuning of results and there were l@lickates in the final generation that
exhibited similar characteristics. However, thissslamply that a region has been
found that is near the global optimum and one tanefore have confidence in the
final solution provided by the GA. The SSA approaechs found to overcome the
restrictions of the SA method and could provide thesis of a useful global
optimisation method. In comparison with the GA, leeer, the SSA approach had
only 4 final candidates (compared with 16 from @& method) and the confidence
level is inevitably lower. Both the GA and SSA nmlk have advantages and
disadvantages for this application but, on balaniceyas concluded that the GA
approach provided the best overall performance.

Work presented at the 2005 IFAC World CongressLoo( McGookin & Murray-
Smith, 2005 —supporting paper, [87) involves the application of sliding-mode
control for feedback controller design combinedhwitverse model control for a
tanker. In this case it was found that the slidimgde controller could act as a
corrective controller with the inverse model actagya feed-forward controller. The
use of inverse model feed-forward control in cosjion with a corrective feedback
controller was found to provide benefits when comagawith conventional feedback
controllers. In particular the sliding-mode contscsheme benefits from the combined
control structure and the two controllers togethmrtperformed conventional
feedback control methodology. This topic is expibne more detail in Section 6 in
the context of inverse simulation methods appleedantrol system design.

Ship control applications involving sliding-mode ntwllers and other forms of
nonlinear controllers are reported in a number dditeonal publications including
(McGookin, Murray-Smith et al., 1997a supporting paper, [88] (McGookin,
Murray-Smith et al., 1997b supporting paper, [89} (McGookin, Murray-Smith &
Fossen, 2000 -supporting paper, [90] and (Alfaro-Cid, McGookin & Murray-
Smith, 2001a, supporting paper, [93} Gain scheduling controller analysis and
design using genetic algorithms is discussed irayGLi et al., 1997 -supporting
paper, [92])). The use of genetic algorithm optimisation in tevelopment of a ship
navigation system is described in (Alfaro-Cid, Ma@Bm & Murray-Smith, 2001b —
supporting paper, [93] Other work carried out on the application of adeed
optimisation methods to sliding mode controller igesincludes research on the
application of segmented simulated annealing metiibtGookin, Murray-Smith &
Li, 1996 —supporting paper, [94} Results of research on the specification of a
control system fitness function using constraimts genetic algorithm based design
methods may be found in (Gray, Li et al, 199%ispporting paper, [95]
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5.6 Controller Design using Genetic Programming

The 2005 and 2008 papers by Alfaro-Cid, McGookinyridy-Smith and Fossen
(Alfaro-Cid, McGookin et al., 2005b supporting paper, [96] and (Alfaro-Cid,
McGookin et al., 2008 -supporting paper, [97] are both concerned with the
application of a GP approach to the selection oftratler structures for heading and
propulsion systems for a surface vessel. The aisitag@rovide good tracking of the
desired response in each case while minimisingrebmffort. The function set
involved 11 functions that included variations oD Rontrol, sliding-mode control
and pole placement techniques. The vessel condidetiis work was th€ybership

Il scale model of an oil platform supply ship whichsadescribed in more detail in
Sections 5.4 and 5.5. Experimental evaluation efdbntrollers optimised by the use
of GP methods was carried out at NTNU.

Optimisation, with and without wave disturbanceswerged to trees that gave very
similar control strategies and this was consideeedouraging. The best results
involved a controller structure that was based dwy@erbolic tangent function in the
heading control loop (representing a form of skigdinode control approach) and
either a proportional term or a second hyperbaliection in the propulsion loop.
However, the terminal values resulting form therseamean that the hyperbolic
functions were operating in the proportional ranggher than in the switching area.
In the case of the propulsion loop this meant thatsystem was effectively providing
proportional control while, in the case of the hagdoop, it is shown in the paper
(Alfaro-Cid, McGookin et al., 2008 supporting paper, [97)] that the solution found
effectively involves full state-feedback control.

Another recent paper describing advances in thécapipn of genetic algorithms and
genetic programming methods to ship control proklésnAlfaro-Cid, McGookin &
Murray-Smith, 2009 -—supporting paper, [98] which presents results of a
comparative study of genetic operators for corgrgilarameter optimisation.

5.7 Other Approaches involving Nonlinear Controlles
5.7.1 Artificial Neural Network (ANN) methods

Artificial neural network (ANN) and fuzzy logic medds have received considerable
attention for nonlinear control system applicationsrecent years. These areas of
research have often been grouped together withugenlry computing methods
under the heading of “biomimitic” approaches sirtbey have some links with
biological systems. Although the biological anaksyare not emphasised in the work
presented in this thesis, these methods do pramndmteresting alternative to more
classical methods for nonlinear control system giesiApplications have been
concerned mainly with laboratory-scale applicatiamsl with problems of ship-
steering control.

In contrast to other work concerned with directnoecontrollers (e.g., (Haussler, Li

et al., 1995 -supporting paper, [99] the approach emphasised in this thesis for the
implementation of neural network based controlievelves training the network to
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behave like a specific form of conventional coré&olInput and target data for the
training process can be generated from the inpdtaarput of the controller when
operating in normal closed-loop fashion in conjiumttwith the plant. It should be
noted that the simple replacement of a conventiooatroller by an equivalent ANN
controller would give no benefits since this wouldquire the design of the
conventional controller by traditional methods ahén the training of the ANN
controller. The potential advantages come onlyt ifsi possible to train a single
artificial neural network, using a number of convemal controllers (optimised for
different operating points), to cover a range ohditions that would otherwise
necessitate the use of some form of scheduledattantsystem.

The main emphasis in the research on artificiataenetworks included in this thesis
is on applications involving ship steering contrdhe first work carried out at
Glasgow in this field, by (Simensen & Murray-SmittQ95 —submitted paper,
[100]), involved simulation studies in which a feed-fand network was trained to
behave like a feedback linearisation controllere Bhip model used was a relatively
simple description involving an extended versioNofmoto’s first order model (e.g.,
(Fossen, 1994)), which has been used as the basisydny other ship steering
studies. The network configuration used was a catimeal feed-forward network
with six inputs, one hidden layer and one outpw@n-Sigmoid activation functions
were used on the hidden layer neurons and a lexaration function on the output
layer neuron. Bias inputs were applied to thel@érdlayer and output layer neurons.
The back propagation algorithm, with momentum astapéive learning, was used for
training. The results obtained showed that the @qgr could yield a control system
which provided a satisfactory level of performanfoe a range of operating
conditions.

The success of the neural-network controller wasmdoto depend very much on the
choice of input variables and on the training dagtabeing used. Physical insight was
recognised as an important factor for both of thesseles. One particular issue
investigated, using simulation, concerned the eéffe#fcexternal disturbances and
whether or not disturbances should be includedhénttaining data. The conclusion
reached was that, for this application at leasaining data should include

disturbances due to the fact that this makes theitig data more varied in character
and this appears to yield a more robust form otrctier.

A second paper by (Unar & Murray-Smith, 1997 supporting paper, [10D]
investigated the application of radial basis fumtct{RBF) networks to problems of
ship steering control. For training and testingpmses models of three different
ships were considered. A supervised learning sfyateas applied for training the
networks, with PD and PID controllers designed ddferent forward speeds being
used as supervisors for the training process, athenearlier work described in
(Simensen & Murray-Smith, 1995 submitted paper, [100). The networks were
found to be capable of yielding satisfactory perfance at different forward speeds
within the range considered in the training phdseat paper includes comparisons of
the performance of the RBF networks with the penfamce of conventional MLP
type feed-forward networks trained using back-pgap@n methods. It was shown
that adoption of the RBF type of network can previzenefits in terms of reduced
training time and improved performance robustnesoime cases.
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A subsequent paper (Unar & Murray-Smith, 1998ubmitted paper, [102]), builds
upon the foundations established in (Simensen &rduBmith, 1995 -submitted
paper, [100) and (Unar & Murray-Smith, 1997 supporting paper, [103] and
describes both a successful investigation of raoelis function networks for ship
steering control and also discusses the use of lodel networks, as discussed in
Section 2, for the representation of ship dynamid¢se conclusions reached in that
1999 paper are that radial basis function netwalksv a controller to be derived that
incorporates the characteristics of a number otentional controllers and that this
form of network has some advantages over multirlageceptron type networks for
this application. These advantages are in ternteesimpler network structure and
the improved approximation properties of the resgltneural network based
controller. The paper also shows that local mo@#lvorks, trained from simulation
data, could be used successfully to representdympmics for a range of operating
conditions. This takes account of the limitatiohattare known to exist (see e.g.,
(Shorten et al., 1999)) for local model networksewhoperating far from the
equilibrium points at which the local models westablished.

5.7.2 Nonlinear control through velocity-based linarisation methods

A paper by (Kocijan & Murray-Smith, 1999submitted paper, [103) describes the
application of velocity-based linearisation methtmshe design of a gain-scheduling
controller for ship steering. The main advantagehis type of approach is that it
links nonlinear control system design with the tygfeknowledge required for the
analysis and design of conventional linear consgstems. In this approach a
nonlinear controller is designed via a velocityelmised nonlinear system description.
The extended form of Nomoto’s first order model vagsin used in this work (as in
(Simensen & Murray-Smith, 1995 submitted paper, [100), (Unar & Murray-
Smith, 1997 —supporting paper, [10]J] and (Unar & Murray-Smith, 1999 —
submitted paper, [102])). Robustness may be achieved during the lineasg@bf the
design process and is preserved when the nonlife@en of controller is
implemented. Performance requirements in termsagking of the reference model
signal were found to be met for the full operatiramge. Stochastic robustness
analysis showed that this nonlinear controller esstully performed its task
regardless of plant variations over a wide randee &dvantage of this approach is
that it provides a single controller of moderatenptexity which is valid for a wide
range of operating conditions and is robust to ipa&tar variations. It is thus similar
in its objectives to the work described above imira the use of ANN methods for
ship steering control. One perceived advantagehefvelocity-based linearisation
method over the approach based on ANNSs is thataviges increased physical
insight.

5.8 Discussion

This section of the thesis has highlighted the midefor automation of some aspects
of the processes of system modelling and contrdiésign. Although computational

tools such as genetic algorithms and genetic prnogriag can help to eliminate trial

and error methods and make the processes of muglaliid design more systematic,
it must be emphasised that the use of automatidimsnvay does not diminish in the
importance of the investigator or designer. The afsthese advanced optimisation
methods undoubtedly changes the nature of sonfeedasks involved. Their use
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eliminates some subjective elements of the proesdlout inevitably introduces
others, such as the choice of fithess function. iaé benefit is that, when properly
used, these powerful methods for global optimisatdlow a significantly larger

number of solutions to be considered than woul@milse be possible.

Similar issues arise in the use of artificial néumatworks in controller design. It is
believed that the approach considered in this cemsalving the training of an
artificial neural network to capture the charadiges of a humber of conventional
controllers which have been optimised separatelyafoumber of different operating
points, has particular benefits in that it builggo the expertise of the designer. The
approach produces a single “scheduled” type ofrotiat that can give satisfactory
control system performance for a wide range of ajgyg conditions within the limits
for which it has been trained. This produces a Bmpontroller to implement in
software than would be possible with a conventi@tdleduled control scheme. The
approach may be viewed as being similar to theofisgtificial neural networks to
represent a complex multi-input multi-output logk-table for nonlinear function
generation. Physical insight and understandinghef dynamics of the real system
were found to be important factors in the selecbbiraining data sets and the input
variables for the neural-network based controller.

An alternative approach to gain scheduled contralksign, considered in Section

5.7.2, involves velocity-based linearisation. Ibadieved to have potential advantages
over methods based on artificial neural networks thuthe fact that the approach

retains the possibility of interpreting featuredlod overall system performance using
basic physical insight.
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6. Inverse Simulation Methods for Control System D&gn
Applications

6.1 Inverse Simulation Techniques in Control SysterDesign

Control schemes for output tracking based awadegrees-of-freedoapproach, of
the type shown in Figure 6.1, frequently involvetinoels of design based on model
inversion. These techniques have been used exédnsiv design feed-forward
controllers. Key publications in this area inclutie papers by Francis and Wonham
(1976), Hirshorn (1979), Isidori and Byrnes (199®)Jd Devasia, Chen and Padden
(1996). In the block diagrald; is a model-inversion based feed-forward controller
andKj, is a feedback controller. If the inverse modelhe feed-forward path were
perfect and if the system was not subject to angraal disturbances there would be
no need for the corrective feedback pathway.

Kt

\ 4

Kt G

Figure 6.1: Block diagram of model-following corltsystem based on the two degrees-of-freedom
approach involving a feed-forward controlkrand a feedback controll&f,.

The control system structure of Figure 6.1 arisssabse it is impossible to produce a
perfect inverse model and external disturbancespaesent in almost all control
system design problems. Thus, for practical purposbe corrective feedback
controller is essential to provide the control @ctthat is not provided by the feed-
forward controller to compensate for external disamces and plant model
uncertainties. The design and analysis of scheshésis kind has been an active
topic of research since the 1990s and such sydtenesreceived particular attention
in the context of aircraft applications. The feedbaontroller may be designed by
any one of a number of well known methods suchlBsdentrol, theH,, algorithm,
the linear quadratic approach, or through slidirggiencontrol principles.

Inversion of the system dynamics for feed-forwaydtem design, although well
proven through a number of published studies, ptespractical difficulties in the
case of nonlinear plant models. The mathematicaisbaf the approach leads to
problems in terms of translating the approach mttechnique that can be applied
routinely by design engineers in industry. Theidifties are particularly important in
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the case of systems that have to be representbdjbyorder models, as is often the
case in aircraft flight control or marine applicats. Some success has been reported
in the use of inverse models for feed-forward aanschemes based on linearised
plant descriptions. An example of an applicatiorihe marine area may be found in
the paper by (Loo, McGookin & Murray-Smith, 2005upporting paper{87]).

Inverse simulation algorithms, of the types desdiln Section 3 of this thesis can
generate control inputs such that the mathematiwadlel can follow an ideally

defined trajectory. Thus, model inversion and iseersimulation both involve

specification of a required manoeuvre and detertioineof the inputs required to

follow that pre-defined manoeuvre. Replacement rofireverse model in a control

system design process by an inverse simulation doeappear to be a difficult step,
provided the inverse simulation can satisfy altre conditions that must be met for
the successful implementation of an inverse modblinva control system.

Previously, inverse simulation does not appear aeehbeen used within output-
tracking schemes, except for the work of Avenz#0(1) who has investigated the
possible use of inverse simulation to provide tafenence input for a controlled
helicopter model.

The papers by (Lu, Murray-Smith & McGookin, 2006supporting paper, [104)]
(Lu, Murray-Smith & McGookin, 2007 submitted paper, [105) show that inverse
simulation can provide an alternative to model rsi@n for some important cases.
The type of system considered involves a combinadiofeed-forward and feedback
control and corresponds to the general form of loldiagram of a model-following
control scheme of the type shown in Figure 6.1.

In this work inverse simulation was used to designfeed-forward controller and the
mixed sensitivityH,, algorithm (see e.g., (Skogestad & Postlethwa86)) has been
used for the design of the feedback controller.plsations described in the paper
(Lu, Murray-Smith & McGookin, 2007 submitted paper, [105) involve a linear
non-minimum-phase helicopter model and a nonlingartainer ship system. A
further example is described in (Lu, Murray-SmitiM&Gookin, 2006 -supporting
paper, [104) and this involves an application based on a neali model of the
HS125 fixed-wing aircraft, where results from insersimulation are compared
directly with results from the application of modelersion techniques. The inputs
found from the application of the two approachesidentical.

The overall conclusions of the studies describeflin Murray-Smith & McGookin,
2006 —supporting paper, [104] and (Lu, Murray-Smith & McGookin, 2007 —
submitted paper, [105) are that it is feasible for inverse simulatiorréplace model
inversion in output tracking applications. In trese of minimum-phase systems, for
an appropriate choice of discretisation intervalerse simulation provides a viable
alternative approach. The inverse simulation meth@dsier to apply, generally, than
model inversion. Depending upon what can be acHieue terms of zero
redistribution within the process of inverse sintiola it may also be possible to apply
inverse simulation for linear non-minimum-phasetesys. One major advantage of
the inverse simulation approach is that the contjmial overheads are modest
compared with those involved in dynamic inversion.
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6.2 Inverse Simulation in Man-Machine Control Systens
Investigations and the Predictive Inverse Sialation Approach

As mentioned in (Bradley, Padfield et al., 1998ubmitted paper, [44) and other
papers (e.g., (Rutherford & Thomson, 1996)), theegtigation of inverse simulation
techniques for the validation of helicopter fliglmechanics models highlighted an
issue when a defined standard manoeuvre, such agleastep or quick-hop
manoeuvre, was used as a basis for comparing fligbt results with model
predictions. While it is straight-forward to usevémse simulation methods to find the
pilot control-inputs that are appropriate for flgithe given manoeuvre, flight test
results tend to show control-input time historieattare different in form from those
predicted from the simulation model. While partloé difference is inevitably due to
errors in the mathematical model, there is a sedactr that is also very important.
In the flight testing case, the pilot is continyaldjusting inputs during the
manoeuvre to ensure that the helicopter keepsoselgl as possible to the desired
flight path. Thus, there is a complex process etiback present that does not exist in
inverse simulation with an open-loop flight mecltansimulation model. While this
is important in the context of the external validatof simulation models, it also
suggests that benefits could result from a studyedrse simulation in pilot-in-the-
loop modelling and thus also in the more generalteod of man-machine control
systems.

The paper by (Cameron, Thomson & Murray-Smith, 2088bmitted paper, [106)
describes the development of an approach to dirceaddling qualities investigation
using inverse simulation together with a pilot mlodéis combination provides an
integrated description of the complete system winmgl man and machine. In order to
include pilot-generated effects within the dataegated by inverse simulation, the
output obtained from an inverse simulation runpgli@&d as input to a closed-loop
system model that includes the dynamics of theckefasind a highly simplified model
of the pilot. This approach has been used in aastiyation simulating a predefined
mission task involving a lateral manoeuvre. Fos,thi simple mission-programmable
real-time flight simulator was constructed to all@xperimentation using human
subjects and thus estimation of parameters foiptleeé model. The conclusions of
that investigation suggested that, in principleyense simulation methods and a
simple real-time simulator could be used to gemersimulated flight data for
handling qualities investigations at an early stagéhe design of a new vehicle. The
principles of this approach could be applied toeottman-machine control problems
involving a human within the feedback loop.

It is recognised that simple inverse simulationhtegues can produce control
strategies for aircraft applications that an exgesed pilot would not normally adopt.
This could be, as discussed in the first paragptihis sub-section, because pilots
use feedback on a continuous basis to monitor giecke’s performance and this
feedback is of vital importance when external disémces are present. As indicated
above, such feedback pathways are not normallydec in the models that are used
for handling qualities investigations based on rseesimulation methods. Another
reason why solutions provided by simple inverseusation algorithms may not

match the strategies adopted by pilots is thainwerse simulation, no account is
taken of constraints that are well known to experésl pilots and are taken into
account in determining appropriate control actioi$fiese constraints include
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mechanical limitations of actuators, limitationsterms of main rotor and tail rotor
torque and structural limits of key componentshef Yehicle.

It has been shown in the 2007 IFAC Symposium péage(Bagiev et al., 2007b —
submitted paper, [108) that conventional inverse simulation can be imptbby
incorporating predictive capabilities for applicats involving manoeuvring flight.
As noted in Section 3, conventional approacheswerse simulation, such as the
differentiation or integration based methods inwadv the Newton-Raphson
algorithm, do not accommodate control constraifikss paper (Bagiev et al., 2007b)
provides details of the development of a predictigorithm and provides a number
of examples showing the application of the appros&whaggressive helicopter
manoeuvres. The results show that the method marove the realism of inverse
simulation results for controlled manoeuvring fliglt is also believed that the
approach could be helpful in the conceptual designew vehicles and could also
provide a basis for a trajectory generating algamit Such an algorithm could be
useful in terrain following guidance aids such,aagunnel in the sky” system. It is
clear that the methodology of predictive inversedation has potential value in
other fields, such as robotics, underwater vehiates automotive applications. These
results are further supported by similar findings the application of the receding
horizon approach to a different set of aggressiaagruvres in (Bagiev et al., 2007a
— supporting paper107]).

Although the examples considered in the work regubim the two papers discussed in
this section all relate to helicopter applicatidhere is no reason why the predictive
inverse simulation algorithm could not be appliggialy well to problems in many
other application areas. The approach has mucbrmmmon with nonlinear predictive
control.

6.3 Discussion

Inverse systems have provided a basis for muchrétieal research in the control
systems field over the past two decades and sagnédisant applications have been
reported by others. Despite the inherent diffi@gdtin the mathematical methods
needed for the nonlinear case, potential benefit®ntrol applications are believed to
be significant. Inverse simulation methods haveepiial advantages compared with
classical methods of inversion in that they ardiagbple, with some restrictions in the
case of non-minimum phase systems, to any modeniiach a forward simulation
can be developed.

A number of control engineering applications of arse simulation have been
presented, some of which involve helicopter fliglintrol problems while others
involve the design and evaluation of feed-forwawhtmllers for ship steering
systems. The possible benefits of using inverselaition methods for the design of
combined feed-forward and feedback control systefos,cases where actuator
saturation and other nonlinearities are significdras been a topic of particular
interest. The use of predictive control principlgghin the inverse simulation process
is a recent area of research that has produced gmmasing possibilities for future
work.
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7. Sensitivity-Function Based Optimisation for Contoller
Tuning

7.1 Introduction

Computer-aided control system design techniques lead to automatic control
systems that give excellent performance when sefficinformation is available
about the system being controlled (the plant) éowlathe environment within which
it operates. In real applications, whether in eagiing or involving problems in the
biomedical field, a mismatch always exists betwtdenplant and the corresponding
model used as the basis for system design. Howtherffects of modelling errors
and plant uncertainties can often be overcomenduwommissioning of the system,
through iterative tuning.

In the case of some commonly-used controllers, fglproportional, integral and
derivative (PID) controllers, there are well-knownd widely used procedures for
tuning that can lead rapidly to a satisfactory gerfance. For most other forms of
continuous and digital controller structures coneshtuning algorithms do not exist
and, in practice, controller tuning often involvieisl and error procedures. This can
add significantly to the overall time for commissilng and thus to the overall cost of
control system implementation. As the control systperformance requirements
become more demanding, the complexity of the rastttontroller tends to increase.
The extent to which controller parameters inteiiacterms of their effects on the
overall system response also tends to increase edgtitroller complexity. This
usually leads to additional problems for those im&d in on-site tuning.

7.2 Parameter Sensitivity Functions for Tuning Feeldack Control
Systems

Sensitivity functions offer valuable informationrfeystem design through providing
a measure of a change in the system response fhatesult from changes in
parameters of the system. The relative magnitudethese sensitivity functions
indicate which parameters are most significanterms of their influence on system
output variables. By selecting parameters that hlbeegreatest effects on the steady
state and dynamic performance of the system, thebauof adjustable quantities can
be kept to a minimum. If one knows the form of tlesired response characteristics it
is then possible to use sensitivity informationsystematically improve the system
performance.

Conventional approaches to the estimation of patemeensitivity in closed-loop
control systems (and also in other types of systeah do not necessarily involve
explicit feedback pathways) are mostly based oarpater perturbation methods or
on the use of a sensitivity co-system (see, formgte, (Tomow, 1963)).
Perturbation methods involve calculation of diffezes between responses before and
after changes of each adjustable parameter and fihug parameters, this process
requires at least@2separate tests. This approach also involves snifédrehces
between responses of similar magnitude and thdtseare likely to be adversely
affected by measurement noise. Although the usehef sensitivity co-system
approach reduces the number of tests to be cavuednd, in the special case of
single-input single-output linear systems, allowmutaneous estimation of all
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parameter sensitivity functions from a single té@stioes depend on preciaepriori
knowledge of the structure and parameters of tsgesy. Such information is seldom
available in practical control applications.

What is required for the tuning of parameters waitthe controller blocks of feedback
systems is an approach that does not requipeiori knowledge of the plant in the
form of a detailed mathematical model and alsods/the need for large numbers of
repeated tests, as is the case with parameteripaitn methods. Such an approach
is provided by the so-calledignal convolutionmethod for the estimation of
parameter sensitivities. The technique was devdldpéially for an application
involving adjustment of synchronous generator etiah controllers in electrical
power systems, but the approach has been showe tapplicable to many other
problems involving closed-loop control.

7.2.1 A sensitivity function method for feedback aatroller tuning in
multivariable closed-loop systems

For multivariable closed-loop systems describedthy block diagram shown in
Figure 7.1, a general method for controller tunbeged on controller parameter
sensitivity functions has been developed from tesplblished in (EI-Shirbeeny,
Murray-Smith and Winning, 1974 submitted paper, [109]) and (Winning, El-
Shirbeeny, Thomson and Murray-Smith, 197&upporting paper, [110] These
papers relate specifically to iterative tuning d@fgse-input single-output voltage
regulator systems.

R(s) + E(s) Y(s)
C(S) G(S)
(Cascade > (Plant) >
Controller)
B
(s) HE)

(Feedback |e
Controller)

Figure 7.1: Block diagram of single-input singletfmut system with cascade and feedback controllers,
whereR(s) represents the Laplace transform of the referémmat r(t) andY(s) represents the Laplace
transform of the system outpy(t). The variableg(t) andb(t) correspond to the transformed variables
E(s) andB(s) shown on the diagram.

The generalisation of this approach from the vataggulator application to other

forms of single-input single-output closed-loop teys showed that the method
avoids the need for explici priori information about the plant, provided the system
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does not depart significantly from a linear modeopération (Murray-Smith, 1986 -
submitted paper, [111).

In the multi-input multi-output case the block diagp is a straightforward
multivariable system equivalent of the single-ingutgle-output situation shown in
Figure 7.1. The tuning algorithm allows predicticlossbe made of the effects of
changes in parameters of the controller bldClesxdH in the multivariable version of

the diagram. Assume, first of all, that sensitiviilyctions dy(t)/dq; for the response

y(t) to variation of the parameter of the cascade controlle€, or of the feedback
controllerH are available. It is possible then to express tfferdnce between the
desired responsg(t) and the actual respong@) by an equation of the form:

— ay(t) ay(t)
Ya() = Y(t)+WM+¥AB+Re(t) (7.1)

where dy(t)/0a; and dy(t)/08, are the matrices of first order sensitivity funosoof
the system respong€) to variation of the controller parametars and 5, andRg(t)

is the residual error. The parameter vectts and AB in Equation (7.1) are defined
as follows:

AA=[Aa,Aa,...Aa, | (7.2)

where the quantitieg; are parameters of the cascade contr@land

AB =[ABAB,... A8, (7.3)
where the parametey are parameters of the feedback blbick

In addition to reflecting the difference betweee thesired and actual responses of
the model the quantityRe(t) includes components associated with higher order
parameter sensitivity functions which have beerlaotgd.

Equation (7.1) shows clearly that it is possibleirtiuence the residual error by
adjusting the controller parameters and this allomisimisation of an appropriate
cost function involvingRe(t). In the case of multi-input multi-output systentise
performance index to be minimised involves the safna number of distinct time
histories because separate tests have to be cauiddr each of the inputs (Murray-
Smith, 1986 —submitted paper, [111), (Manness & Murray-Smith, 1987 —
supporting paper, [113] Since there is an inherent approximation in tise of
sensitivity functions in this way, the process afgmeter adjustment is iterative. A
number of different optimisation approaches havenbased successfully in this
work, including quasi-Newton methods which haverbadopted for most of the
applications reported in later sub-sections.
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7.2.2 A signal convolution method for estimation ofontroller parameter
sensitivity functions

In addition to direct estimation of parameter stwvites by parameter perturbation,
there are a number of ways, such as the sensitteiyystem approach of Tomovi
(1963), in which parameter sensitivity functionsymae determined if there is a
parametric model of the plant available. This psscef sensitivity analysis becomes
more difficult if no reliable plant model is avéile and this is a commonly
encountered situation in practice.

The paper by (EI-Shirbeeny, Murray-Smith & Winnirt@74 —submitted paper,
[109]) established the foundation of an approach foimasion of controller
sensitivity functions through simple iterative tesh the closed loop system and the
application of signal processing techniques. Theragch was extended to
multivariable systems in the paper by (Murray-Smit®86 —submitted paper,
[111]) and subsequent papers by (Manness & Murray-SM#@,7 —supporting
paper, [112) and by (Gong, Oppen & Murray-Smith, 1995supporting paper,
[115]) provide evidence of the effectiveness of this rapph in a number of
applications. A further publication in 2003 by (May-Smith, Kocijan & Gong, 2003
— submitted paper, [116) brings together the main results of this reseant
compares the approach with therative feedback tuningnethod of Hjalmarsson
(2002).

For multivariable systems having the feedback stnec shown in Figure 7.1
involving a plant transfer function matr@3(s), a cascade controller transfer function
matrix C(s) and a transfer function matrix in the feedbacthp(s), it can be shown
that

¥(9) = (I +G(S)C(YH (5)) "G(C(r (s) =W (9)r (s) (7.4)

where W (s) = (I +G(s)C(s)H (s)) "G(s)C(s)r(s) is the transfer function matrix of
the closed-loop system. If the cascade and feedbt@uaikollers then depend on a set
of adjustable parametegst may be shown, for a given parametey that

S 2 (9 %9 e(s) - (91 (9H (9 2D - 6(9c(9 1

3 y(s) (7.9
ql ql ql ql

In cases where the parameters a parameter, of the cascade controller it may be
shown that

ay(s) _ aC(s)
Fye =W (s)CH(s)—2 Py

e(s) (7.6)

and when the parametgris a parametef; of the cascade controller

9y(s) _ (e HE oH (s)

B B y(s) (7.7)
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Hence the output sensitivities can, in both cabesexpressed as a product of the
closed-loop system transfer mats) and a sensitivity vectdy; (s) so that:

@ =W(9)Z4 () (7.8)

i
This sensitivity vector has the form:

41 0C(s,a
1 9C( )e(s) for the case of a cascade controller parameter and

Z4(s) =[C(s.a)]
i
Zyi(9) = —M y(s) for a feedback controller parameter. Hence, if ¢lesed-

|
loop transfer function can be estimated, it is icthat the sensitivity functions may be

found by applying signale(s) andy(s), which are both available within the system
itself, to filters that have forms that depend oaly the cascade controller transfer
function matrix or on the feedback path transfarction matrix. These filters are
independent of the plant transfer function ma@{s).

The closed-loop system transfer function mai¢s) may be estimated directly using
unit impulse or unit step signals applied at th&erence input. In the case of a
reference input test signal which approximates & umpulse Equation (7.8)

becomes:

0
% = Y(9Z4(9) (7.9)

For a reference input test signal in the form afnit step Equation (7.8) takes the
form:

219 - 19249 (7.10)
q.

|
In both cases the sensitivity signal vectdrg(s) may be found by applying the error

signal e(s) or the outputy(s) to filters Fqi(s) which have a structure and parameters
that depend only o€(s) or H(s). This is illustrated in the block diagram of Figw.2
which is, again, shown in single-input single-outfmrm for reasons of clarity.

In the case of a parameter of the cascade conthidtiek C(s) we have

Fqgi(s)=C7(s) o9 (7.11)
oa;
and, for a parameter of the feedback blbi¢k)
OH (s)
F . (s)=- 7.12
qi () o5 (7.12)
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Transformation of Equation (7.9) and Equation (Y.10 the time domain is
straightforward and gives, in the case of Equatiof)

R(s) +

Ay(t) _ ¢
e (- 7.13
o0, J(;y(r)qu( r)dr 713)
Zqi (s,a)
> Fqi(s,a) L
Zqi (s.B)
> Fqi(s!ﬂ) >
- Y
© (cC(S’da) G(s) (®)
> ascade R ‘
/ | controller) " (Plant) >
B
o H(s.f)
(Feedback |
Controller)

Figure 7.2: Block diagram for single-input singletjput case showing method of generation of the
sensitivity signals for one parameter of the cascedntroller and one parameter of the feedback
controller. Additional parameters can be handlednirpducing extra sensitivity filters in paralleith

each of the two sensitivity filters shown in thiagtam.

In the case of Equation (7.10) the veat@) is simply replaced by its derivative with
respect to time. Several different numerical teghas are available for calculation of
a convolution integral of this kind in the time daim

The approach may also be applied using the releegnations directly in the
frequency domain. This is discussed further in tB86lpaper by (Murray-Smith,
1986 - submitted paper, [111). The experimental estimation of controller
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sensitivity functions in the frequency domain, gsbroad-band signals applied at the
reference input, is described in a paper by (G@mpen & Murray-Smith, 1995 —
supporting paper, [115]

The paper by (Gong, Oppen & Murray-Smith, 1998upporting paper, [115]also
presents the theory for the signal convolution appih when applied to a digital
control system. The approach adopted there usemnewmtional system structure
involving idealised representations of the analegudigital and digital-to-analogue
conversion processes. In this case z-transformysisals used to show that the
sensitivity functions may be found directly by sim@rithmetic operations on the
sampled variables at the output, at the summinget in the feedback path and at
the outputs of the sensitivity filters. Once ag@iis demonstrated that the sensitivity
functions for the parameters of the digital coénomay be estimated entirely from
measured response signals and calculations regoidetailed information about the
plant and its parameter values.

7.3 Applications of the Controller Tuning Method based on
Sensitivity Functions Estimated using Signalonvolution.

There have been a number of different applicatiohshe methods of controller
tuning and sensitivity analysis based on signalvotution methods. Published
accounts of applications to single input singlepatisystems have included electrical
power systems applications involving on-site adnesit of automatic voltage
regulator systems (Winning, El-Shirbeeny et al.77.9- supporting paper, [110]
and an application to a simulated aircraft fligobtrol system (Murray-Smith, 1986 —
submitted paper, [111). Published applications to multi-input multi-outpystems
have included simulation studies for helicoptegHti control and related handling
gualities investigations (Manness & Murray-Smitt988a — supporting paper,
[113]), (Manness & Murray-Smith, 1988bsupporting paper, [114]and a detailed
investigation of the application of the method tavéwo-input two-output laboratory
system for liquid level control involving two cowa tanks (Murray-Smith, Kocijan
& Gong, 2003 -submitted paper, [116).

7.3.1 The signal convolution method applied to th&uning of a two-input two-
output liquid-level control system

Figure 7.3 is a schematic diagram of a two-inpu-bmtput coupled tanks laboratory
system. This system is a modified version of egeipimavailable commercially
(TecQuipment Ltd.). Changes made to the standastkmsyinvolved replacement of
resistive liquid level sensors by differential-pese based depth sensors and the
introduction of an additional pump to provide awflanput to the second tank. As
outlined by (Murray-Smith, Kocijan & Gong, 2003submitted paper, [116), the
system may be described by a linearised state-spadel

hi_| a a [N |a % (7.14)
h, k —ktk |, 0 1 g
a a a

where
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29C,,a \/29C,,a
klz\/gdll and K, = 9L 428,

and wherea is the cross-sectional area of tank 1 and tank, 2s the total cross-
sectional area of orifices linking the two tanksitfwan associated discharge
coefficient Cy,) and a, is the cross-sectional area of the outlet fronk ar{with a

discharge coefficienCy,).

|-

Tank 1 T Tank 2

H,
l Outflow

Hy

\ 4

Ha

Figure 7.3: Schematic diagram of the coupled-tasystem showing the output variablds and H,
(corresponding to the variablég andh, which, in the linearised equations, represent pleations in
the depths of liquidH; andH, in tanks 1 and 2 respectively) and the two inpoivflvariablesQ;; and
Q2 (which correspond to the variablgs andg, in the linearised model). It should be noted tiet t
guantityHs (and thushs in the linearised representation) is a constarnthviepresents the level of the
centre point of the outflow pipe from tank 2.

Figure 7.4 shows a block diagram of the completatrob system involving
continuous proportional plus integral type contdl which have been designed to
provide independent control of liquid level in ttweo tanks for operations about a
selected steady state condition.

It should be noted that, because of the fact #iédt & communicates only with tank 2

but tank 2 has an outlet, it is impossible for Hystem to operate in the desired
fashion as a two-input two-output system with caetgdl independent control of the

two levels. Specifically, the design requiremerasrot be satisfied if the steady state
level for tank 2 is set to be greater than the deted level for tankl1. This is not a

significant limitation since, for most practical epting requirements, the level in

tank1l would be greater than the level in tank 2.
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Figure 7.4: Structure of the liquid level contrgiseem showing the two-input two-output diagonal
form of proportional plus integral controller.

Initial design values for the proportional and g constants in the controller of
Figure 7.4 were found by use of the individual arelranalysis and design (ICAD)
approach of O’Reilly and Leithead (1991). Tuninglodé system by means controller
parameter sensitivity functions found using thenalgconvolution approach, outlined
above, was carried out successfully. Details o$ thork, including plots of the
sensitivity functions estimated experimentally ahd final form of control system
transients may be found in (Murray-Smith, Kocijan @ong, 2003 —-submitted
paper, [116). Changes in the values of some parameters asult of tuning were
significant, with the proportional gains being edi# by a factor of more than three in
both loops. However, the number of iterations resiito meet the design
requirements, despite these large changes in pseeneas only three.

Experience gained with this application confirmegults found previously during
studies involving the tuning of automatic voltagegulators in electrical power
systems (Winning, El-Shirbeeny et al., 1978upporting paper, [11Q] where the
presence of significant measurement noise was owtdf to present difficulties for
the numerical convolution approach. Although thesgevity function estimates may
be biased in situations with significant measurenmerse, the results obtained from
the two-tank system application show that the tgrprnocess converges rapidly and
produces system output responses which show sesmatlual errors compared with
the desired responses.

Although the technique is based entirely on lingeory, nonlinearities within the
two-tank system resulting from fluid flow phenomed@ not lead to difficulties
although they do lead to large changes of the mpdeimetersC,, and C,, for
different operating conditions. The tuning process found to be affected adversely

by saturation of the pumps, but successful tunmgdccbe achieved if the magnitudes
of step or pulse test inputs were chosen to erikatgoump saturation did not occur.

The main benefit of using the signal convolutiopra@ch for the generation of the

controller parameter sensitivity functions, complavgth more traditional parameter
perturbation methods, is that a minimum of two dest needed (one for each
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reference input) compared with a minimum of tenstesing parameter perturbations
to generate the data for calculation of all eigisstivity functions. This is due to the
fact that, in the parameter perturbation approacie, test signal would have to be
applied separately to each reference input withutigerturbed parameter settings and
then four tests would have to be applied for eagbuti for the four parameters
perturbed individually. Results show that sendiivfunctions found from the
application of the signal convolution approach agotosely with corresponding
results obtained using parameter perturbation Sfitbeeny, Murray-Smith &
Winning, 1974 -submitted paper [109), (Murray-Smith, Kocijan & Gong, 2003 —
submitted paper, [116).

7.3.2 Application of the controller tuning technique to helicopter flight control
systems

Although helicopter flight mechanics models areadily being improved in terms of
their fidelity, limitations of these descriptionsarc still have a significant and
degrading influence on the overall performancelight control systems designed on
the basis of such models. As the bandwidth requrgsof flight control systems are
extended to higher and higher frequencies in oidéurther enhance the agility and
handling qualities of the vehicle, factors involyirun-modelled or incorrectly
modelled higher order dynamics continue to preskfficulties. In particular, the
effects of imperfect modelling of the dynamics bk tmain rotor, tail rotor and
associated inflow dynamics and tip vortex phenomemammonly lead to
requirements for retuning of the controller pararetfollowing initial flight tests.
Trial and error solutions do not provide cost difex solutions in terms of satisfying
the demanding requirements of modern flight corggatems and suffer from a lack
of quantitative information about parameters tabpisted and the amount by which
they should be changed. Such an approach is dgriaadequate for the tuning of
full authority fly-by-wire systems where the higivel of system integration tends to
obscure relationships between the overall systerfonpeance and the individual
settings of adjustable parameters of the controller

The technique developed for systematic tuning dictyeter flight control systems
and described in the papers by Manness and MumairS(Manness & Murray-
Smith, 1988a -supporting paper, [113]and (Manness & Murray-Smith, 1988b —
supporting paper, [119) relies on information provided by sensitivitynfttions. The
signal convolution approach, outlined in Sectio2.Z.above, is ideal for the
estimation of controller parameter sensitivity ftiogs since this method does not
require an accurate dynamic model of the vehiclghEtesting is also kept to a
minimum by the adoption of this approach but nas feasible to carry out the tuning
process in real time or even using a single tesiceShelicopters are multi-input
multi-output systems separate tests must be caouednvolving the application of
appropriate inputs perturbations to each channéhe@fmultivariable control system
in turn. Controller adjustments must therefore mdenon the ground, between each
set of flight experiments.

7.4 Discussion

Controller parameter sensitivity functions providéormation which is potentially
very useful for the purposes of control system rigniespecially at the system
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commissioning stage. The iterative approach, beunggested here, is potentially
attractive for practical industrial applications chase it involves manual
implementation of changes in controller parametetirsys at each stage of the
procedure. This allows those carrying out the tgrpnocedure to review results at
each step in the light of their underlying knowledy the system.

Methods for estimation of controller parameter genty functions based on signal
convolution lead to a single-stage time-domain pdoce from data obtained from
step or impulse response tests carried out onltdsed-loop system. The approach
does not require explicé priori knowledge of the plant model and uses tests on the
real system to generate a non-parametric desarigticthe closed-loop system, in
addition to the sensitivity functions for contrallparameter tuning. The tuning
process based on sensitivity functions converg@idlsa and the computational
demands in terms of numerical calculation of countioh integrals are not limiting
for an off-line or semi-off-line tuning procedurmplementation of the sensitivity
filters for each adjustable parameter in the nuoa¢iconvolution approach does not
lead to significant additional problems since thélers have a relatively simple
form for most controller transfer functions of piiaal importance.

The applications have allowed investigation of éssof convergence and robustness
of the approach. Although the technique for calkoia of controller parameter
sensitivity functions is based on linear theory,astdctly speaking, is not applicable
to systems with significant nonlinearities, praatiexperience with real applications
suggests that this tuning method is remarkablyalédi and robust. Applications
involving physical systems, such as the voltageuletgr system and the coupled
tanks equipment, have shown that convergence oftuhang process was not
adversely affect by the plant nonlinearities préskssues of measurement noise have
also been investigated extensively through thogpdicgtions and measurement noise
was not found to present any insuperable problgmsyided appropriate signal
conditioning filters are applied in the instrumditta and data collection systems
(Murray-Smith, Kocijan & Gong, 2003 submitted paper, [116).

The approach must certainly be applied with cauifiohis known that the plant has
significant nonlinearities, such as saturation cffeor other hard nonlinearities,
within its normal operating range. Care must alsotdken if significant levels of
measurement noise are encountered during prelignitesting of the closed-loop
system.

Results presented in the accompanying submittecerpapnd in the supporting
publications show the significant practical bersefihat can be obtained from the
application of this approach to controller tuninghe applications considered are
typical of many practical control problems and loé situations encountered during
system commissioning tests that lead to a needdprstments to parameters within
controllers.
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8 Related Work involving System Modelling and Contol
Applications

8.1 Other Contributions in System Modelling and Cotrol

Further original contributions have been made muber of areas. These include:

Sensitivity analysis of linear closed-loop systdespecially in the context of
pole placement techniques for feedback system mlegilurray-Smith,

2003c -supporting paper, [117])(Murray-Smith, 2004b supporting paper,

[118]).

Applications of established multivariable contrgstem design methods to
problems of helicopter flight control (Parry & Mag-Smith, 1985 —
supporting paper, [119]( Manness & Murray-Smith, 1992 supporting
paper, [23)), (Gribble, Manness & Murray-Smith, 1994supporting paper,
[24]), (Gribble & Murray-Smith, 1990 supporting paper, [25] (Hughes,
Manness & Murray-Smith, 1990 supporting paper, [26} (Manness,
Gribble & Murray-Smith, 1990 supporting paper, [27]

Control and simulation problems in systems invajvsingle and multiple
unmanned underwater vehicles (Mitchell, McGookiM&rray-Smith, 2003 —
supporting paper, [120] (Mitchell, McGookin & Murray-Smith, 2004 —
supporting paper,[12]] (Carruthers, McGookin & Murray-Smith, 2005 —
supporting paper, [123] (Zenor, Murray-Smith, McGookin & Crosbie, 2009
— supporting paper, [123]

The design of observer systems for state estimafiaut detection and
system reconfiguration in helicopters and autonmnonderwater vehicles
(Paterson & Murray-Smith, 1987 supporting paper, [124] (Mitchell,
McGookin & Murray-Smith, 2004 supporting paper, [121)]

Biomimetic concepts and human factors aspects mtraoand robotics
(Murray-Smith, 2003b -supporting paper, [125] (Murray-Smith, 2005 —
supporting paper, [126]

Methods for the quantitative investigation of nenabactivity (Downie &
Murray-Smith, 1981 supporting paper, [127] (Olsen & Murray-Smith,
1993 -supporting paper, [128] (Davey, Ellaway, Halliday, Murray-Smith
& Rosenberg, 1986 supporting paper, [5}, (Conway, Lau et al.,, 1990 —
supporting paper, [6) (Murray-Smith, Murray-Smith et al., 1995 -
supporting paper, [7)

Implementation and experimental performance evainadf fuzzy control
systems for a pH neutralisation process (lbrahinMérray-Smith, 2007 —
supporting paper, [129]

Although none of the publications on these topgsnicluded among the papers
submitted as part of the work of this thesis, tlaeg relevant since they provide
information about some aspects of the broader gomtghin which the research on

system identification, modelling and system optatien has been undertaken. Our
publications relating to multivariable control syt design techniques applied to
helicopter flight control are especially relevantthis respect, as it was through that
particular application that model quality and siatidn model validation became one
of my strong research interests.
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8.2 Developments Relating to Education

Contributions have also been made to the field ystesn modelling and control
through publications describing educational dewvelepts. Some of these are
specifically concerned with engineering educatiovhile others describe new
developments in the use of dynamic system concemisirol and computer
simulation methods in the education and trainingstafdents in physiology and
medicine. Relevant examples, which can in many scdse linked to specific
developments described elsewhere in this thesikide:

Presentation of basic ideas of mathematical madghiethods and computer
simulation techniques for biologists together witse studies on applications
of modelling in medicine (Pack & Murray-Smith, 19#Xupporting paper,
[130]).

Development of educational material relating mgrec#ically to simulation
and modelling in the teaching of respiratory gashexge and respiratory
control (Mills, Middleton et al., 1974 supporting paper, [13)] (Carson &
Murray-Smith, 1988 -supporting paper, [132] (Murray-Smith & Carson,
1988a - supporting paper, [133] (Murray-Smith & Carson, 1988b -
supporting paper, [139]

Development of an educational case study on theeftiog of muscle,
muscle receptors and neuromuscular control (Mugayth & Zhao, 2007
supporting paper, [135]

Development of a practical exercise on simulatiadet validation involving
experimental and analytical work (Gong & Murray-8mil998 —supporting
paper, [62).

Development of a case study relating to the usanoircraft lateral beam
guidance system simulation in the teaching of @rgngineering (Murray-
Smith, 1983 supporting paper, [136]

Development of a case study involving use of a tnalectric generator and
governor system simulation in the teaching of aanéngineering (Murray-
Smith, 1984 supporting paper, [137]

Development of case studies on issues of modelitquahd inverse
simulation, in the context of the teaching of greged control system design
concepts (Murray-Smith, 2003asdpporting paper, [139] (Murray-Smith,
2004 —supporting paper, [139]

Preparation of two additional review papers, bo#falishg with biomedical
engineering topics relating to aspects of the nauszular system ((Murray-
Smith, Rosenberg & Rigas, 198&upporting paper, [140Q] (Murray-Smith,
2006b —supporting paper, [141)]
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9. Discussion and Overall Conclusions

The papers submitted in this thesis are stronglliegions-oriented and this is
believed to be one of the most important featureshe work. The emphasis on
applications has allowed situations to be consttlendere currently available
techniques of system modelling and control systesigih have significant limitations
and where developments of methodology could prowg®ortant benefits. The work
described in the different sections of the thests the associated papers has explored
some of these limitations and has provided evideviieh may be of help to others
in dealing with new applications or in moving todsrnew and more appropriate
techniques for analysis or design for more higiniegrated and complex systems.
The combination of system modelling and controb asrves to emphasise important
links that should always exist between the proces$enodel development and the
intended application of the model.

9.1 The System Modelling Aspects of the Research

The research on system modelling methods and appis emphasises the value of
integrating system identification and parameternnesdion techniques within a

modelling approach based mainly on the applicabbphysical laws and principles.

Also, the research helps to demonstrate that seetaigues which have attracted
only specialist interest in the past, such as swesimulation, have much to offer
within the more general areas of model developnaewt model validation. This is

particularly important in dealing successfully witbsues of model structure and
structural uncertainties.

Issues of experimental design, which have for loegn recognised as very important
in system identification, are also important fohet aspects of model development
and especially in the external validation of sintiola models. Assessing the
adequacy of a model for a specific use is a dilfitask and the problem of upgrading
or tuning a model which is shown to be inappropritdr an intended application
raises many questions which, ideally, should ingdiurther experimentation or the
use of available experimental data. Unfortunatélg, whole area of assessment of
model accuracy, model suitability for a specifiguplecation and external validation
of models attracts relatively little attention erms of research. Donald Rumsfeld’s
much quoted statement, made during a US Departofedtefense news briefing
(Rumsfeld, 2002) has direct relevance to the issoksmodel accuracy and
uncertainties:

"... as we know, there are known knowns; there angghwe know we know. We also
know there are known unknowns; that is to say vesvkimere are some things we do
not know. But there are also unknown unknowns -oties we don't know we don't
know”.

His statement has been much ridiculed and tookUtkePlain English Campaign’s
award for the most baffling remark by a public figlater in the same year, but those
words could certainly be applied to the processedeveloping models. The
“unknown unknowns” in modelling are among the magbortant things that have to
be exposed by testing and by the whole process watdescribe as “model
validation”.
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Use of the term “validation” may itself give a falsnpression of model capabilities.
Terms such as “model testing” or “model evaluatiamé really more appropriate.
They reduce the possibility of false confidencengeibuilt into model-based

predictions just because the model involved has tm#jected to some form of
“validation”. Theories can be proved to be wrond bannot ever be proved to be
right. Thus, models that can be shown to provideuiete predictions of reality in

some circumstances cannot be assumed to be capaeng good predictions in all

cases. The “unknown unknowns” mean that there eaermbe a simple conclusion in
the processes that we conventionally call “modétation”.

A second important feature of the papers includethe thesis is that they discuss
modelling and control applications from a varietly aveas, including physiology,
electro-optics and rotorcraft dynamics, as welirase traditional control engineering
areas such as ships, underwater vehicles andiet¢gower generation systems. The
benefits of a cross-disciplinary approach in systeadelling are believed to be very
significant. The value, in terms of cross-fertitiea of ideas resulting from
involvement in a wide range of applications, carseen from the detailed content of
these papers. Although the fields of neurophysiplogspiratory gas exchange
processes, electro-optic sensor-systems, helicdlpggt mechanics, hydro-electric
power generation and surface ship or underwateicheetcontrol may appear,
initially, to have little in common, closer examiimn shows that systems from these
different fields present many similar difficulti@s terms of accurate modelling. The
papers included in the thesis show that, in additiodisplaying significant nonlinear
behaviour, most credible models of such systemslwevsignificant uncertainties in
the early stages of their development. Importamipgfications may also have to be
introduced, often for reasons of computational clexify, if the model is to be useful
for an application such as non-invasive measurenaergal-time system simulator or
the design of an automatic control system.

One recurring theme that is important in the mawdiglivork is the additional insight
that can be gained through the dual use of timeadonand frequency-domain
information. One example of this is the importarafecoherence information in
establishing the existence of linear or nonlinedatronships between variables. This
has proved to be of considerable value, both inekgerimental investigation of
neuromuscular systems and in the identificatiohalicopter models from flight test
data. Frequency-domain techniques have also preseidl for the reduction of high-
order multi-input multi-output models.

Inverse systems also receive significant attentiothe thesis. Inverse simulation
methods, developed initially for use in handlinglifies studies for fixed-wing
aircraft and helicopters, have been shown to pewigportant insight in modelling
and simulation of complex systems of a more gerlenal. One aspect of this is the
different physical insight that can result from exaing the input needed to allow a
specific form of output to be achieved. This islit important in actuator design and
it is believed that the examples from the ship ratgearea show very clearly the
benefits that inverse simulation can provide ireassg the effects of control surface
limitations on performance.

Similar issues of robustness of the tools that ewerently available arise in
considering the routine use of evolutionary methfmtssystem modelling. Genetic
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algorithms offer a potentially important element afitomation for optimisation
procedures, both for model development and forgmedilowever, such methods are
at the stage where they could only be applied melti in an industrial design
environment if there was a significant period aining for those involved.

The use of genetic programming for system modellipglications has certainly led
to interesting results in a number of applicationssidered in the papers within this
thesis, but it is also clear that this is stillwenuch a research area. Although it was
concluded from the research reported in the papersthis topic that genetic
programming methods were useful for the identifaabf the structure of nonlinear
dynamic models, the success of the approach degamndieally on the selection of
appropriate functions for the function library. $mequires good understanding of the
likely physical phenomena in the system under itigaBon and therefore does not,
in any way, imply a fully automated approach. Exdamf prior knowledge that can
be helpful in establishing the elements neededhénfainction library and the initial
form of model include the following: first estimatef the order of the model, first
estimates of the forms of nonlinearity most likebybe involved, known interactions
between variables of the system and the form andaliions of existing models of
similar systems. It is also important for the imgetor to have an understanding of
the availability of experimental data, the limitats of experimental design and the
possibility that the resulting experimental datalddoe unevenly distributed over the
operating range.

The role of the investigator is still vitally imgant and interaction between the user
and the evolutionary optimisation tools is essén#ifh various stages. Similar
conclusions can be reached in the context of @elfneural networks and the closely
associated methods involving local model netwoHere factors such as the choice
of sub-models, the number of hidden layers andntimaber of neurons in a neural
network, the choice of learning rates and othetofachave to be chosen by the user,
mostly on the basis of previous experience. Indegtyally all methods of system
modelling involve issues of this kind where manugkrvention by the user is
essential.

In some cases this may involve the selection oarmpaters which are essentially
“fiddle factors”, whereas in others the manual psxinvolves more fundamental

choices. In many cases, however, the reason foertaldng these procedures

manually is associated with the fact that availadmrithms for the more automated

aspects of the system identification and model ldgveent process are not

sophisticated enough to carry out the necessanyi@u optimisation. In other cases

the objectives of this further level of optimisaticannot even be expressed in a
sufficiently simple fashion. In many applicationsnestraints have to be considered
and there may also be a number of different objestithat have to be satisfied

simultaneously. Trial and error procedures can &g Yedious and also introduce

additional subjective aspects to the modelling essc This is clearly an area in which
additional research is necessary, aimed at develomchniques that lead to an

improved interface between the computer user, tbhdembeing developed and the

available system identification and optimisatioal$o

It is generally accepted that an integrated appréaalesign should, ideally, involve

use of generic forms of description and re-usabkeraodels. Established examples
of such a generic modelling approach can be foumagpplication areas such as
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automotive engineering (Sayers & Han, 1995) and gabines (Visser &
Broomhead, 2000) as well in as the generic elemptaz sensor system model which
is discussed in Section 4 and presented in mo&l det(Smith, Murray-Smith &
Hickman, 2007a -submitted paper [46). Object-oriented methods are relevant for
this and it is suggested that appropriate softveag@ronments may offer significant
advantages for the development of re-usable artilyetendable models.

Block diagrams and flow graphs have for long beseduo describe the processes of
system modelling, including the processes involiwedhe application of system
identification and parameter estimation techniquéess therefore appropriate to
conclude this sub-section with the constructioraadiagram that attempts to bring
together some of the factors that are particulamphasised in this thesis, including
prior knowledge, experimental design, model optatian and external validation.

The most important fact about the system modeltiracess is that, when properly
applied, it is an iterative procedure that involdeselopment, testing and refinement.
Figure 9.1 represents an attempt to incorporateni@ steps involved in this cyclic
process. The blocks associated with the real syatehrsystem test data are shown in
yellow while steps concerned directly with the mlodes represented by pale blue
blocks. Blocks that represent the processes ofredtgalidation and decisions on the
adequacy of a model for the intended applicatian svown in pale green. Other
blocks concerned with defining the purpose of thedeh, the intended application
and the vitally important process of model docuragoh have no background
colour.

What is particularly attractive about this partawulform of diagram is that it
emphasises the vitally important role of externalidation and the importance of
prior knowledge about the real system. If a modeles inadequate for the intended
application when subjected to the rigorous proces$external validation, there is a
possibility of correction through feedback. Feedbpathways lead not only to the
blue blocks representing the model but also, thmodlge block representing
knowledge of the real system, to the yellow bloick®Ilving experimental design and
thus to further tests to collect additional datarfrthe real system. The importance of
documentation is also emphasised in the diagram ianchust be noted that
documentation must be put in place as soon as @&lnedpproved for use in the
intended application. The model documentation nhestupdated if, at any stage
during its life cycle, the model has to be modifleetause of evidence that was not
available when the initial positive decision waketa on its adequacy. The presence
of the uppermost block in this diagram (involvingfidition of the modelling
objectives and the application) also emphasisedatiethat a model developed for
one specific purpose cannot be used for anothdicappn without going through the
whole process of external validation, testing amdhier refinement if necessary. It
should be noted that the structure of Figure 9.gliep to the development and
assessment of inverse simulation models as wétl esnventional models.
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Figure 9.1: Block diagram of iterative processesnofdel development showing from formulation of
modelling objectives to external validation anditesof model adequacy.
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9.2 The Control Systems Aspects of the Research

Optimisation methods are particularly important dontrol systems that involve
significant nonlinearity, either within the plant within the controller. Particular
emphasis has been placed in this thesis on slidiode controllers and their design
using evolutionary techniques, together with redeanvolving the application of
other forms of advanced optimisation method, sgckimulated annealing.

Results obtained from the work on sliding-mode pantsystems are very
encouraging. The conventional approach to slidimgien control system design
involves manual adjustment of controller parameterthin a simulation. That
approach is very time-consuming and relies veryhmue the qualitative judgement
and experience of the designer. The automated agipronvolving evolutionary
techniques has been found to give reliable solstiora reasonable period of time.

Other developments in terms of sliding-mode contnethods have been associated
with the successful introduction and practical aaion of “soft switching”
techniques to eliminate problems associated wittitehing in conventional forms of
sliding-mode controller. While beneficial in impiiog robustness, the switching term
in a sliding-mode system can cause oscillationthefcontrol input which result in
unwanted wear within the actuators. The soft-swiighapproach that has been
adopted to avoid this problem involves use of atinoous hyperbolic tangent
function instead of the discontinuous sign functanconventional switching-mode
systems. In one application a soft switching sigdmode control system for ship
navigation and propulsion has been tested usingraware implementation of the
controller as well as through computer simulatidhe parameters of the control
structure were adjusted to optimise performanceguiie genetic algorithm approach
and the robustness was evaluated in the preserar@evmbnmental disturbances. The
performance was found to be satisfactory and theltefrom hardware testing were
entirely consistent with those found from simulatitnvestigations of robustness for
other ship control system applications through cat@psimulation studies, involving
factors such as changes of loading and increase@ifd speed, have provided results
that demonstrate good performance of sliding-moatems for significant changes
of operating condition.

Inverse simulation methods have also been examabeskely in terms of their
potential for control systems design in place ddlgiical inverse models which can
present difficulties in the nonlinear case. Appgiimas to problems involving the
design of combined feedback and feed-forward corgystems for ship steering
applications have shown very encouraging resultsis Tis believed to be a
particularly important and promising development.

Techniques for the tuning of feedback systems, hasethe on-line estimation of
parameter sensitivity functions, have been showpréwide a viable approach to the
on-line optimisation of closed-loop system perfonte during system
commissioning tests. Tests on a variety of differgstems have demonstrated the
capabilities and potential of this approach.
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9.3 Links between Modelling and Engineering Systerbesign

One general point is that the complexity and dethihodern systems in some fields,
such as in the defence and aerospace sectorsyosndéhe level at which simple
paper specifications seem appropriate. Althoughsygiems of this complexity are
considered in the papers in this thesis, other gpeytthan the electro-optic sensor
systems of Section 4, it is clear that conventiqmeber-based documentation and
performance specifications have significant limias. Some of these limitations are
linked to the kind of errors to which humans arengr. In recent years there have
been a number of well publicised examples from NABAbus, BAE Systems and
Boeing of complex systems that have failed or bgemously delayed because of
design issues. These design problems often resintiethuman errors, oversight or
inappropriate specifications. Current limitationgs iconventional methods of
documentation are referred to in the reviews of ehodalidation methods (e.g.,
(Murray-Smith, 1998 —supporting paper [56] and (Murray-Smith, 2006a -
submitted paper, [58)) and this is further emphasised by T.S. Ericskthe US
Office of Naval Research in the context of the gesof highly complex power
electronic systems. In a recent paper (2005), Enictates:

o The model is the only vehicle capable of convetlmegengineering details

needed and flexible enough to be used in a trueeagng design cycle. Moreover,
the model is the only vehicle that has the potéritie multi-physics relationships

supporting integrated multi-discipline design. Thtilee model must become the
specification and simulation the design mediunfditure systenis

Ericsen goes on to point out that today’s modelang simulation tools are primarily
analysis tools and are not really designed fortari@aand synthesis. The tools of the
future will have to be more synergistic, with maws and designers working
together. The machines would be handling large rumbf equations in a highly

automated fashion, with the human designers mongaolutions, observing trends
and making jumps in terms of the overall designgaan the basis of experience and
inspiration. It is hoped that the methodologicavelepments and accounts of
successful applications in the areas discussedhis thesis, such as system
identification and parameter estimation, inversauation, generic models, object-
oriented simulation methods, model validation, apgtimisation based on

evolutionary methods can contribute in some smail 0 this long term objective.

One further important issue concerned with modglliand design relates to
engineering education. Engineering students eneountathematical modelling
principles early in their university education andy also have met these ideas at an
earlier stage, although the word “model” may notenbeen applied. However, they
seldom have to consider what constitutes a goodemand this issue is seldom
discussed in introductory textbooks on modellingl ammulation methods. Many
students, therefore, lack an adequate understanditige effects of modelling errors
and uncertainties in design, since the emphasisllysgiven in undergraduate
courses is on the formulation of models and on migalemethods of solution. Issues
concerning accuracy and fithess for purpose nedzktemphasised more. Students
also need to be exposed to the iterative processdtl development from the initial
formulation stage, through simulation, internalifieation, external validation and
then back to the earlier stages for re-formulatind re-testing.
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At a more specialised level, students in areas saghcontrol engineering or
aeronautics should also be exposed to multidis@pyi problems such as those
arising in integrated flight control systems or rimbotics. Group design projects
involving students from different disciplines coydbvide valuable opportunities for
an introduction to some of the more complex isshascan arise in multidisciplinary
problem solving.

9.4 Areas for Further Research

Several research topics discussed in the papdiglatin this thesis provide areas of
work in which further developments are required.sbme cases, such as inverse
simulation, the need is to take existing methodkiclv have been demonstrated
successfully in a research environment, and tremghem into robust and reliable
tools for analysis and design that could be appieedinely by engineers in industry.
Evolutionary methods of optimisation have also beighlighted as being important
for modelling and system design optimisation a@plans, but existing
computational tools tend to limit the routine apability of these techniques to
research and development types of environment.

A further area of this kind is helicopter systenendfication where it has been

accepted by industry that system identification gadameter estimation methods
have the potential to reduce the time requiredflight testing within the processes

leading to certification. This would reduce the elepment time and costs of new
aircraft. However, because the currently availagfware tools lack robustness and
require specialist knowledge in their use, thoselwed with new projects in industry

are reluctant to make the investment of time amortefo ensure that their staff have
the necessary expertise to apply identificatioopimmisation methods reliably.

Further development of software tools is therefegen as being one of the main
priorities for further, more general, acceptanceechniques outlined in this thesis.
This suggestion is closely linked to the needs #ratnow emerging as a result of
increased levels of design integration where ctiyeavailable tools do not
adequately handle all of the necessary technologmsexample, an understanding of
how model approximations and uncertainties progagiatough a highly integrated
design is very complex but is also very importamd pustifies more investigation.
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