
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

McDermid, Eric J. (2011) A structural approach to matching problems
with preferences. PhD thesis.

http://theses.gla.ac.uk/2371/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/1225/

A Structural Approach to Matching Problems with Preferences

by

Eric McDermid

Submitted for the
Degree of
Doctor of Philosophy
University of Glasgow

May 7 2010

c© Eric McDermid

Abstract

This thesis is a study of a number of matching problems that seek to match together pairs or groups

of agents subject to the preferences of some or all of the agents. We present a number of new

algorithmic results for five specific problem domains. Each of these results is derived with the aid

of somestructuralproperties implicitly embedded in the problem.

We begin by describing an approximation algorithm for the problem of finding amaximumstable

matching for an instance of thestable marriage problem with ties and incomplete lists(MAX-

SMTI). Our polynomial time approximation algorithm provides a performance guarantee of3/2

for the general version of MAX-SMTI, improving upon the previous best approximation algorithm,

which gave a performance guarantee of5/3.

Next, we study thesex-equal stable marriage problem(SESM). We show that SESM isW [1]-hard,

even if the men’s and women’s preference lists are both of length at most three. This improves upon

the previously known hardness results. We contrast this with an exact, low-order exponential time

algorithm. This is the first non-trivial exponential time algorithm known for this problem, or indeed

for any hard stable matching problem.

Turning our attention to thehospitals / residents problem with couples(HRC), we show that HRC is

NP-complete, even if very severe restrictions are placed onthe input. By contrast, we give a linear-

time algorithm to find a stable matching with couples (or report that none exists) when stability

is defined in terms of the classical Gale-Shapley concept. This result represents the most general

polynomial time solvable restriction of HRC that we are aware of.

We then explore thethree dimensional stable matching problem(3DSM), in which we seek to find

stable matchings across three sets of agents, rather than two (as in the classical case). We show

that under two natural definitions of stability, finding a stable matching for a 3DSM instance is

NP-complete. These hardness results resolve some open questions in the literature.

Finally, we study thepopular matching problem(POP-M) in the context of matching a set of appli-

cants to a set of posts. We provide a characterization of the set of popular matchings for an arbitrary

POP-M instance in terms of a new structure called theswitching graph. We show that this structure

can be exploited to yield efficient algorithms for a range of associated problems, extending and

improving upon the previously best-known results for this problem.

i

Contents

1 Introduction and summary 1

2 Background 5

2.1 Introduction .. . 5

2.2 Full preference information 7

2.2.1 Stable Marriage problem .. . 7

2.2.2 Extensions of stable marriage 9

2.2.3 The structure of stable matchings 11

2.2.4 Exploiting the structure 14

Minimum regret stable matchings . 15

Fair stable matchings . 15

2.2.5 Indifference .18

Stability, size, and structure .. 19

Weak stability . 20

2.2.6 The Hospitals/Residents problem 22

Structure of HR . 23

ii

Couples . 24

2.2.7 Stable Roommates problem .. 26

Stable roommates with ties . 27

Almost stable roommates . 27

Stable roommates and kidney exchange28

2.2.8 Three-dimensional stable matchings 28

2.3 Partial preference information 30

2.3.1 Profile-based optimality 31

2.3.2 Pareto optimal matchings 32

2.3.3 Popular matchings .33

3 An improved approximation algorithm for MAX-SMTI 35

3.1 Introduction .. . 35

3.2 Background .36

3.2.1 Király’s algorithm .. . 36

3.2.2 Gallai-Edmonds decomposition theorem 37

3.3 The approximation algorithm 38

3.3.1 Phase 1 . 38

3.3.2 Phase 2 . 41

3.3.3 Phase 3 . 42

3.4 Correctness .. 43

3.5 The performance guarantee 46

iii

3.6 Tightness of the performance guarantee 48

3.7 Conclusion and open questions 49

4 Sex-equal stable matchings 50

4.1 Introduction .. . 50

4.2 Further structural results for SMI 52

4.2.1 The number of men . 52

4.2.2 Rotations, rotation posets, and SESM 52

The rotation posetΠ . 52

The rotation digraphDΠ and the underlying graphGΠ 53

Weighted rotations and weighted subsets 53

4.3 Series-parallel graphs 54

4.4 Parameterized problems, FPT, and W[1]-hardness 55

4.5 (3, 3)-SESM isW [1]-hard . 58

4.5.1 Reduction idea . 59

4.5.2 The parameterized reduction 59

4.6 Inapproximability results for SESM 64

4.7 Polynomial-time algorithm for(2,∞)-SESM . 65

4.8 An exact algorithm for(l,∞)-SESM . 66

4.8.1 The structure ofDΠ . 66

Properties ofDΠ . 66

Dealing with small components . 68

iv

4.8.2 The algorithm . 69

Algorithm idea . 69

Formal description of the algorithm .. 69

4.9 ComputingP ′ ∪Q′ in polynomial time . 70

4.9.1 Series nodes . 73

4.9.2 Parallel nodes .75

4.10 Putting it all together 77

4.11 Conclusions and open problems 80

5 Keeping couples together 82

5.1 Introduction .. . 82

5.2 Formal definitions of HRS and HRCC 85

5.3 NP-completeness of HRS and HRCC 89

5.3.1 The reduction . 89

5.4 HRCC under classical (Gale-Shapley) stability 95

5.4.1 Breakmarriage . 96

5.4.2 The algorithm . 99

5.4.3 Correctness . 102

5.5 HRS with hospital preference lists of length≤ 2 104

5.6 Conclusion and open problems 106

6 Three dimensional stable matching 107

6.1 Introduction .. . 107

v

6.2 Formal definitions 108

6.3 The9-Sun: a problematic subgraph .109

6.4 NP-completeness of 3DSMI under weak-stability 112

6.4.1 The reduction . 112

Step 1: the proper part . 113

Step 2: the additional part (add9-Suns) 113

6.5 NP-completeness of 3DSM under strong stability 116

6.5.1 The reduction . 116

Step 1: the proper instance . 116

Step 2: the additional part (add9-Suns) 117

Step 3: pad the instance . 118

6.6 Conclusion and open questions 120

6.7 Example . 120

7 Popular matchings: structure and algorithms 123

7.1 Introduction .. . 123

7.1.1 Preliminaries .123

7.2 The structure of popular matchings – the switching graph. 125

7.3 Algorithms that exploit the structure 130

7.3.1 Counting popular matchings 131

7.3.2 Random popular matchings .. 131

7.3.3 Enumerating popular matchings 132

vi

7.3.4 Popular pairs . 133

7.3.5 Optimal popular matchings 134

Improving the running time . 137

7.4 Conclusions and open problems 142

7.5 Example . 142

8 Conclusions and Future Work 147

8.1 Introduction .. . 147

8.2 Approximation algorithms for MAX-SMTI 147

8.3 Sex-equal stable matchings 148

8.4 Keeping couples together 150

8.5 3D-stable matchings 151

8.6 Popular matchings .. . 152

Appendix 153

A NP-completeness of (3,3)-COM-SMTI 153

vii

List of Figures

2.1 An SM instance with a stable matching denoted by underlining. 8

2.2 An SMI instance with a stable matching denoted by underlining. 10

2.3 The Lattice and poset of an SMI instance 14

2.4 An SM instance with two stable matchings with greatly varying values ofe(·). . . 16

2.5 An SM instance with two stable matchings with greatly varying values of|δ(·)|. . . 17

2.6 An SMTI instance with stable matchings of different sizes. 20

2.7 An HR instance with a stable matching denoted by underlining. 23

2.8 An HRC instance with a stable matching denoted by underlining. 25

2.9 An SR instance with a stable matching denoted by underlining. 26

2.10 An instance of cyclic 3DSM 29

2.11 A comparison of rank-maximal and maximum matchings. 31

2.12 The difference in cardinality of different popular matchings. 34

3.1 Király’s algorithm 37

3.2 Phase 1 of the approximation algorithm. 39

3.3 Phases 2 and 3 of the approximation algorithm. 40

viii

3.4 AP3 in M ⊕Mopt . 47

3.5 Tightness example .. . 48

4.1 A series-parallel graph and a corresponding SP tree 55

4.2 Algorithm to find a SESM for an(l,∞)-SMI instance 71

5.1 An HRS instance for which no stable matching exists 86

5.2 Preference lists in the constructed instance of HRS 90

5.3 An HRCC instance with a stable but not feasible matching 100

5.4 Algorithm HRCC .102

5.5 Algorithm(∞, 2)-HRS . 105

6.1 The9-Sun . 110

6.2 The given instanceI of (3, 3)-COM-SMTI . 121

6.3 The proper instance ofI ′ resulting from Step 1 of the reduction 121

6.4 Step 2 illustrated on manm3. 121

6.5 The completion of the preference lists in Step 4 122

7.1 The postorder traversal of a tree component 140

7.2 A popular matching instanceI . 144

7.3 A reduced POP-M instance 144

7.4 The switching graphGM for popular matchingM 145

7.5 Applying a switching cycle 145

7.6 Applying a switching path 146

ix

A.1 Preference lists in the constructed instance of (3,3)-COM-SMTI 154

x

Declaration

This thesis is submitted in accordance with the rules for thedegree of Doctor of Philosophy at

the University of Glasgow in the Faculty of Information and Mathematical Sciences. None of the

material contained herein has been submitted for any other degree, and all the results are claimed

as original.

Some of the work in this thesis is the product of collaboration with the members of my research

group. Chapters 4 and 7 were undertaken jointly with Rob Irving. In particular, the in depth analysis

of the profile-based algorithm described in Section 7.3.5 originated with Rob. The results of Chapter

5 and Chapter 6 represent a joint effort with David Manlove and Peter Biró, respectively. The proof

of Theorem 4.6.1, in Chapter 4, is due to David Manlove.

Publications

The following publications contain some of the results presented in this thesis.

E. McDermid, A 3/2-approximation algorithm for general stable marriage. In Proceedings of the

36th International Colloquium on Automata, Languages and Programming (ICALP 2009),pages

689–700, 2009. (This paper is based on Chapter 3).

R. Irving and E. McDermid, Sex-equal stable matchings: improved complexity results and exact

algorithms.In submission. (This paper is based on Chapter 4).

E. McDermid and D. Manlove, Keeping partners together: Algorithmic results for the hospi-

tals/residents problem with couples.Journal of Combinatorial Optimization, 46(3):359–367, 2009.

(This paper is based on Chapter 5).

P. Biró and E. McDermid, Three-sided stable matchings withcyclic preferences. To appear inAl-

gorithmica, 2010. (Preliminary version appeared in Proceedings of the2nd International Workshop

on Computational Social Choice (COMSOC 2008), pages 97–108, 2008) (This paper is based on

Chapter 6).

E. McDermid and R. Irving, Popular matchings: structure andalgorithms. To appear inJournal

of Combinatorial Optimization, 2010. (Preliminary version appeared in Proceedings of the15th

xi

Annual International Conference on Computing and Combinatorics (COCOON 2009), pages 506–

515, 2009.) (This paper is based on Chapter 7).

xii

Acknowledgements

Oddly enough, the most difficult part of writing this thesis did not involve producing a proof of a

difficult theorem ‘from the book’. Rather, the hardest part was determining how I can thank my

colleagues, friends, and family in an appropriate way, without making this thesis twice as long as it

would otherwise be.

I will try to be brief. I will not succeed.

I am truly honored to have had Rob Irving as my primary supervisor – I could not have asked for

someone better. Rob read absolutely everything I wrote overthese three years, providing me with

invaluable feedback that greatly increased the quality of the thesis, and other papers that I have

written. Collaborating with Rob felt like exploring research problems with a friend, rather than an

actual supervisor. His enthusiasm for our research area is infectious, and I often benefited from

his thorough knowledge of mathematics. The fact that he always took the time to patiently listen

to my ideas – even the ones that were, well, stupid – gave me thecourage to try to accomplish

things I would not have otherwise attempted. So, thanks Rob,for playing the perfect combination

of advisor, colleague, and friend.

Thanks also to David Manlove, my second supervisor, for his general enthusiasm and encourage-

ment. I am also grateful for his impeccable proof-reading abilities, and uncanny skill to imme-

diately understand mathematical transformations. Most importantly, without David, I would not

understand the momentous significance of the phraseHibs vs Hearts.

I greatly benefited from many helpful discussions and collaborations with my friend and officemate

Peter Biró, who I also thank for often sharing his wife’s delicious cooking (thanks Marti!).

My studentship was funded by the Engineering and Physical Sciences Research Council grant

EP/E011993/1, as a part of the Match-Up project. I hope they appreciate this return on their in-

vestment.

I thought for quite a while about how to acknowledge all of my friends without attempting to

actually name everyone. I have narrowed it down to this: if you (i) know the significance of the

phrase “Nice, come back, nice”, (ii) have been forced to foldduring poker for not paying attention,

(iii) have watched “Errand of Mercy”, or (iv) have camped at Bailey’s Bluff, then, whether you

realize it or not, you played an important role in this thesis. Thanks, you guys.

xiii

Sean, thanks for making such an effort to keep in contact overthe last few years, and also for

making it your mission to distract me as much as possible. I thought of a thousand things to write

here, but somehow this one word summarizes all of it: KHAAAAAAAAN!

Thank you Grandma and Grandpa McDermid, for your generosityand kindness to Megan and I

over the last three years. Thank you also for consistently feeding me the most wonderful food

imaginable when I visit you. You have made a significant impact on my life. Did I mention the

food? Thanks also to Grandma Lipinski for your encouragement and kindness, and for the steady

stream of cards and gifts sent to Megan and I. GO PACK GO!

I’m grateful to my sister Julie, for her generosity and encouragement over the years. Thanks for

being a great sister. The first theorem of this thesis is the following: my sister is better than yours.

Proof: she gave me a laptop. QED.

My parents are an inexhaustible source of encouragement andhelp, and are certainly the most

generous people I have ever known. Thank you so much, you two,for your help, advice, and

prayers. It’s funny how as I get older I find myself seeking outyour advice and opinionsmore, not

less – who would have thought that people in their twenties didn’t know everything? I have heard

it said, that anyone who writes something, does so with someone particular in mind. In this case it

is indeed true – this thesis is written for you, because I knewit would make you proud.

Thank you, Megan, for coming with me to a strange land where itrains almost everyday, and things

like fritter rolls are considered lunch. It is so important to me that you know this: you and I achieved

this together. We came here with a goal, and we accomplished it. There is no way I could have

done it without you. At this point I could make a multitude of corny comments like ‘you’re my

stable marriage partner’ or ‘you’re my first choice on my preference list’ (I know what you’d say to

that one: “Who ELSE is on your preference list?!”). Let me instead simply say that I love you, and

am so thankful to have you as my wife.

I thank God for constantly providing for me, and making senseout of my life. Anything good I

have done or will do is because of Him. In Psalms it says,If I rise on the wings of the dawn, if I

settle on the far side of the sea, even there your hand will guide me, your right hand will hold me

fast. Trust me, it’s true. I tried it.

Finally, I thank the University of Glasgow for supplying me with the booksHow to Get a PhD,

xiv

How to Write a Thesis, andHow to Survive your Viva. For three years, rain or shine, these three

books have done an absolutely amazing job of keeping our office window propped open to let the

breeze in.

I wonder if they are any good?

xv

Chapter 1

Introduction and summary

In a matching problem with preferences, we seek to match together pairs or groups of agents (such

as men and women, or applicants and posts) subject to their preference for one another. Such

matching problems incorporate eitherfull or partial preference information in the following sense.

In a matching problem with full preference information,everyagent has some form of preference

list that ranks some or all of the other agents. In the partialpreference setting, however, onlysome

of the agents have preference lists – the rest of the agents being, for example, inanimate objects.

This thesis presents a number of new algorithmic results forfive specific problem domains from the

realm of both full and partial preference information. We emphasize astructuralapproach to each

individual problem in the sense that each new algorithmic result presented relies crucially on some

structural property implicitly embedded in the problem.

We begin (in Chapter 2) with a selective survey of the resultsarising in the context of matching

problems with preferences. Naturally, special attention is paid to those results that are particularly

relevant in subsequent chapters of this thesis. Next, in Chapters 3 – 7, we present our primary

results, which are outlined briefly as follows.

The first problem we consider is a well-studied variant of thestable marriage problem in which

we seek to find stable matchings that are aslarge as possible. To be precise, when the men and

women of a stable marriage instance are permitted to have ties and incomplete preference lists,

stable matchings can have different sizes (in contrast to the classical case). It is known that finding

a maximum cardinality stable matching is NP-hard, even whenvery severe restrictions are placed

on the sizes and positions of the ties, and the lengths of the preference lists [74]. Accordingly, there

1

2

has been much recent interest in finding polynomial time approximation algorithms with a constant

performance guarantee for both the general version of this problem, and for several special cases.

The first contribution of this thesis is to describe an approximation algorithm for the general version

of this problem with an improved performance guarantee. A key ingredient of our algorithm is a

classic structural result on matchings in bipartite graphscalled theGallai-Edmonds decomposition

theorem[70], which, roughly speaking, categorizes the vertices ofa bipartite graph in terms of its

maximum matchings. Our approximation algorithm employs this structural theorem, along with

novel techniques, to obtain a performance guarantee of3/2. The previously best known approxi-

mation algorithm for this problem gave a guarantee of5/3 [64].

Moving away from the notion of ties in the preference lists, we next consider thesex-equal stable

marriage problem(SESM). The goal of this stable marriage variant is to find a stable matching that,

in a formal sense, isfair to both the men and the women. This problem is known to be strongly

NP-hard [58]. We focus our aim specifically on stable marriage instances in which the lengths of

the preference lists of the men and/or women are bounded in length by a constant. Our contribution

is to strengthen the known hardness results by proving that SESM isW [1]-hard, even if the lengths

of the men’s and women’s preference lists are both at most three. Additionally, we give an exact

low-order exponential-time algorithm for SESM in which themen’s preference lists are bounded in

length by a constantl, and the lengths of the women’s preference lists are unrestricted. The running

time of our algorithm is bounded byO⋆(1.0725n), O⋆(1.1503n), O⋆(1.2338n), . . . for l = 3, 4, 5,

. . .. On the other hand, we show that whenl = 2, SESM is solvable in polynomial time.

These hardness results and algorithms rely heavily on the structural properties of the set of stable

matchings. In particular, we make use of some classical – andnew – bounds concerning thero-

tationsof a stable marriage instance [36]. Our exact algorithm exploits these bounds, along with

a recent extremal result concerning the structure of graphswith bounded average degree [25], to

achieve the stated running time.

We next study the hospitals / residents problem (HR), a many-to-one generalization of the stable

marriage problem. Specifically, we consider the hospitals /residents problem with couples (HRC),

in which pairs of (for example, married) residents are allowed to formcouples, who wish to be

matched to the same hospital, or to hospitals geographically nearby [76, 21, 88, 65, 66]. We consider

a natural restriction of HRC in which the members of a couple have individual preference lists over

hospitals, and the couples form joint preference lists thatare, in a formal sense,consistentwith these

3

individual preference lists. We give an appropriate stability definition and show that the problem

of deciding whether a stable matching exists is NP-complete, even if each resident’s preference list

has length at most three and each hospital has capacity at most two. In contrast to this result, we

give a linear-time algorithm to find a stable matching (or report that none exists) when stability

is defined in terms of the classical Gale-Shapley concept. This algorithm makes no assumptions

about the preference lists or capacities of the hospitals. Finally, for an alternative formulation of

our restriction of HRC, which we call thehospitals / residents problem with sizes(HRS), we give a

linear-time algorithm that always finds a stable matching for the case that hospital preference lists

are of length at most two, and where hospital capacities can be arbitrary.

Our linear-time algorithm utilizes the structure of the setof solutions induced by Gale-Shapley

stability. In particular, the set of stable matchings that “keep couples together” adhere to a particular

dominancerelation, which defines a partially ordered set. Our algorithm efficiently navigates a

path through the space of possible solutions by exploiting the attributes of this relation. This result

represents the most general polynomial time solvable restriction of HRC that we are aware of.

The next chapter explores the generalisation of the stable marriage problem tothreedimensions, so

that we have a set of, say, men, women, anddogs. Donald Knuth initiated the study of this problem

in the mid-1970s by asking if the results surrounding the stable marriage problem extended to this

setting [69]. Over the years, a number of researchers have explored various three dimensional stable

matching problems in an effort to answer Knuth’s open question. One recurring open problem in

the literature is thecyclic three dimensional stable matching problem(3DSM), in which men care

about only the women, women care about only the dogs, and dogscare about only the men. Several

authors have asked, either explicitly or implicitly, if stable matchings always exist in this setting,

and, in any case, if there exists a polynomial time algorithmto either return a stable matching,

or report that none exists [26, 83, 11]. Our contribution is to examine 3DSM under two natural

definitions of stability, given previously in the literature, and show that under both definitions of

stability, 3DSM is NP-complete.

The cardinal ingredient in our constructions is a speciallyconstructed instance of 3DSM we call a

9-Sun. When we view this instance in terms of itsunderlying graph, it is easy to see that the special

structural nature of this instance makes the creation of a stable matching impossible. We use the

9-Sun strategically as a subgraph in the derived instances ofour reductions to attain our primary

hardness results.

4

Finally, we consider a problem with partial preference information, in which we seek to match a set

of applicants to a set of posts. One notion of optimality in this setting is that of apopular matching

– a kind of matching that is deriveddemocraticallyfrom the applicant’s preference lists. Being

somewhat formal, a matchingM is popular if there is no majority of the applicants who would

agree to abandonM for a different matchingM ′. The goal of thepopular matching problem(POP-

M), therefore, is to find a popular matching if one exists. There is a known linear time algorithm

to determine whether a popular matching exists for a given POP-M instance [5], and if so, this

algorithm finds a largest such matching. A number of variantsand extensions of POP-M have

recently been studied.

Our contribution is to provide a characterization of the setof popular matchings for an arbitrary

POP-M instance in terms of a new structure called theswitching graph, a directed graph computable

in linear time from the preference lists. We show that this structure can be exploited to yield

efficient algorithms for a range of associated problems, including the counting and enumeration of

the set of popular matchings, generation of a popular matching uniformly at random, finding all

applicant-post pairs that can occur in a popular matching, and computing popular matchings that

satisfy various additional optimality criteria. Our algorithms for computing such optimal popular

matchings improve upon the best previous results for this problem [60].

Thus, each result in this thesis – whether positive or negative – relies heavily on some key underly-

ing structural observations. In some cases, we use the structure to force the problem to “bend to our

will”. The new results surrounding the switching graph described in Chapter 7, or the half-century

old Gallai-Edmonds decomposition theorem given in Chapter3, for example, introduce sufficient

orderandorganizationinto the problem to give us the desired results. On the other hand, sometimes

the structural observations reveal the kind of chaos that can occur within a problem instance. This

gives invaluable insight into what makes certain problems computationally difficult. For example,

as we show in our hardness proofs in Chapter 6, the strategic placement of a few9-Suns into a three

dimensional stable matching instance is enough to bring about complete disorder.

Chapter 2

Background

2.1 Introduction

Computer scientists almost invariably model combinatorial optimization problems by assigning

numerical values (costs, weights, etc.) to the various objects of the problem instance. The usual goal

is then to either maximize or minimize some objective function derived from these numerical values.

A researcher who studies graph algorithms, for example, is bound to have numerous references

within an arm’s reach that model various problems with graphs that have costs or weights on subsets

of the edges and/or subsets of the vertices. Even within the restricted realm of matchings in graphs,

entire books have been written to catalogue a number of classic polynomial-time algorithms for

finding maximum cardinality matchings, maximum weight matchings, minimum cost maximum

matchings, and so on.

With this in mind, suppose we are given an instance of the following stable marriage problem. The

instance consists of a set ofn men andn women, each of whom provides a preference list ranking,

in strict order, then people of the opposite set. This problem clearly gives rise to a bipartite graph,

whose two disjoint sets of vertices are the men and women, respectively. Armed with decades of

algorithmic machinery, we could attempt to assign costs andweights to the edges and vertices of

this graph in a way that somehow captures the preference lists of the men and women. Thus we

could perhaps try to find various optimal matchings (mincost, maximum cardinality, etc.) in this

weighted bipartite graph.

5

2.1 Introduction 6

Perhaps the most subtle contribution Gale and Shapley [30] made when they studied this problem

was to realize that all of the common or natural ways of doing so completelyfail in one particular

regard. It will not, in general, be possible to guarantee that the matching will notunravel in the

following sense: there could be a man and a woman who both prefer each other to their respective

marriage partners , and therefore might leave those partners and instead run off together. This

exemplifies the fact that, since the vertices of our bipartite graph correspond topeople, we need an

optimality criterion that is convincingly good on anindividual level.

Gale and Shapley argued that an optimal matching should be one that avoids this unraveling situa-

tion – hence no one has motivation to be divorced or seek an arrangement outside of the matching

mechanism. Fittingly, they called such a matching astable matching. In a single theorem, they

proved that at least one stable matching always exists, and that such a matching can be found in

polynomial time [30].

Now, decades later, this single publication has effectively spawned a whole host of research areas

with results arising from the fields of mathematics, computer science, and economics. Some of the

results are very rich and beautiful theoretical ideas, exploring, for example, structural relationships

between various stable matchings. Other results – often algorithmic – are instead motivated by prob-

lems arising from real-world applications. A few examples include the central assignment of grad-

uating medical students to their first job at a hospital [105,106, 107], matching students to schools

in urban areas [12], and finding optimal kidney exchanges amongst incompatible (donor,patient)

pairs [108].

Whether the focus is on theoretical or practical results, all these variousmatching problems with

preferenceshave a common theme: given a set of agents, each of whom has some form of preference

over the set of possible outcomes, find a matching of the agents that is in some sense optimal with

respect to these preferences. Specifically, matching problems arising in this context involve a set

of agents (for example men and women), where some or all of theagents may have a preference

list over a subset of the other agents. Taking a broad view of roughly five decades of literature, one

could categorize matching problems with preferences as follows:

1. Full preference information– where every agent has some form of preference list (possibly

involving ties) ranking some or all of the other agents of theinstance. This category can be

further refined into the following subcategories:

2.2Full preference information 7

(a) Bipartite matching problems– in which the agents can be partitioned into two disjoint

sets, and the task is to match the agents in one set to the agents in the other.

(b) Nonbipartite matching problems– where the agents form one homogeneous set with

each agent having preferences over a subset of the others.

(c) d-dimensional matching problems– where the agents can be partitioned intod ≥ 3

disjoint sets and the task is to match the agents intod-tuples.

2. Partial preference information– in which the agents of the instance can be partitioned into

two setsA andP , with the agents inA having preferences (possibly involving ties) over the

agents inP , but the agents inP do not have any form of preference lists.

It is impossible to completely review all of the results arising in the context of matching problems

with preferences. Instead, this introductory chapter offers a selective survey of various structural

and algorithmic results for matching problems with preferences according to the above classifica-

tion. Naturally, special attention is paid to those resultsthat are particularly relevant in subsequent

chapters of this thesis.

2.2 Full preference information

2.2.1 Stable Marriage problem

An instance of thestable marriage problem(SM) consists of a set ofn men and a set ofn women.

Associated with each person is apreference list, defined to be a total ordering (hence no ties are

allowed) ranking all of the members of the opposite set. A preference list is interpreted in such a

way that a persona prefersb to c if and only if b precedesc ona’s preference list. A stable marriage

instance is typically said to havesizeor ordern, as this is the number of people (henceforth,agents)

in each set. Observe that this is actually a slight misnomer,as the sum of the lengths of all of the

preference lists of the instance, and hence the actual inputsize for the instance, isΘ(n2).

A matching(or a marriage), is defined to be a one-one correspondence between the men and the

women. If a manm and a womanw are matched together in a matchingM , then we say that they

arepartnersin M , and writem = M(w) andw = M(m). A manm and a womanw are said to be a

blocking pairfor M if m prefersw to M(m) andw prefersm to M(w) – in English,m andw are

2.2Full preference information 8

m1 : w1 w3 w4 w2 w5 w1 : m1 m3 m5 m2 m4

m2 : w1 w2 w4 w3 w5 w2 : m5 m2 m1 m3 m4

m3 : w3 w4 w5 w1 w2 w3 : m5 m1 m2 m4 m3

m4 : w4 w1 w3 w2 w5 w4 : m5 m1 m4 m2 m3

m5 : w3 w1 w5 w4 w2 w5 : m1 m2 m3 m5 m4

Figure 2.1: An SM instance with a stable matching denoted by underlining.

a blocking pair if they would both rather be matched to each other than to their respective partners.

For brevity, we often saym andw areblocking for Mor thatm andw block M, and so forth, in a

way that should always be clear from the context.

If there is at least one blocking pair relative to a matchingM , thenM is said to be anunstable

matching, or unstable. Otherwise, if there are no blocking pairs,M is said to be astable matching,

or simply stable. The goal of the stable marriage problem is to take an arbitrary stable marriage

instance and output a stable matching. Figure 2.1 shows a stable marriage instance with a stable

matching denoted by underlining.

The primary contribution of Gale and Shapley [30] was to showthat a stable matching exists for ev-

ery stable marriage instance. They proved this result constructively by describing a polynomial-time

deferred acceptance algorithm, which is now instead widely known as the Gale-Shapley algorithm

. It has been observed that this algorithm can be implementedto run inO(n2) time [69], and is

therefore a linear-time algorithm relative to the size of the input. We remark that the stable match-

ing found by the Gale-Shapley algorithm is not necessarily the only stable matching, as there can

be many stable matchings for a given instance. We comment further on this in Section 2.2.3.

Roughly speaking, the Gale-Shapley algorithm involves a sequence of iterative proposals from the

men to the women, in which the men of the instance essentiallycompete with one another for the

women. An interesting property of the resulting stable matching is that it isman-optimal, because

each man actually achieves the best partner he can possibly have in any stable matching. Hence if

we switch the roles of the men and women, so that the algorithmis woman-oriented, the resulting

stable matching will bewoman-optimal. We will use the conventionM0 andMz to denote the man-

optimal and woman-optimal stable matchings, respectively, of a given stable marriage instance.

McVitie and Wilson [78] showed that the optimality of the menin M0 or the women inMz always

comes at the price of the other set’s extreme suboptimality.In particular, they proved thatM0 is

woman-pessimal– meaning every woman is actually matched to the worst man shecan ever be

2.2Full preference information 9

matched to in any stable matching. Reversing the roles of themen and the women, we can deduce

thatMz is thereforeman-pessimal, meaning every man is matched to the worst woman he can ever

be matched to in any stable matching.

In fact, the observations on the inter-relationships between man- and woman-optimal (man- and

woman-pessimal) matchings is just the tip of the iceberg. A deeper and broader understanding of the

rich structure of the set of all stable matchings would eventually emerge from these observations, but

before diving into these details, we move on to some of the natural extensions and generalizations

of the stable marriage problem.

2.2.2 Extensions of stable marriage

There are at least three obvious ways to relax the specification of the stable marriage problem.

1. We could allow the number of men and women of the instance tobeunequal, so that some

agents will necessarily be unmatched .

2. We could allow the men and the women to deem some members of the opposite set to be

unacceptable, giving rise toincomplete preference lists, so that the men need only rank a

subset of the women on their preference list, and, similarly, the women need only rank a

subset of the men.

3. We could allow the agents to express some form ofindifferencein their preference lists, so

that the preference lists are no longer restricted to being totally ordered.

The numerous results surrounding stable marriage with tiesare worthy of their own section and are

discussed separately in Section 2.2.5. In this section, we will just focus on the first two of the above

relaxations of the stable marriage problem.

The stable marriage problem with incomplete lists(SMI) captures relaxations (1) and (2) in the

following way. An instance of this problem consists of a set of n1 men and a set ofn2 women

(possiblyn1 6= n2). We letn = n1 + n2 denote the sum of the numbers of men and women.

The preference list associated with each agent is a total ordering of a subset of the members of the

opposite set.

2.2Full preference information 10

m1 : w1 w3 w4 w1 : m1 m2 m4

m2 : w1 w2 w2 : m5 m2 m4

m3 : w3 w4 w3 : m5 m4 m3 m1

m4 : w4 w1 w3 w2 w4 : m5 m1 m4 m3

m5 : w3 w2

Figure 2.2: An SMI instance with a stable matching denoted byunderlining.

Hence SMI allows men (women) to implicitly declare some of the women (men) to beunaccept-

able in that they would rather be unmatched than matched to a person who is not present on their

preference list. If an agenta appears on agentb’s preference list, then we say thata is acceptable

to b. If the converse is also true, thena andb are said to bemutually acceptable. A matchingM for

an SMI instance is defined to be a set of disjoint (man,woman) pairs(m,w) such thatm andw are

mutually acceptable. We letm denote the sum of the lengths of the preference lists, hence the input

size of an SMI instance isO(m).

It is easy to see that it may not be possible to match every agent in an SMI instance. As a conse-

quence, we require an alternative notion of a blocking pair.A pair (m,w) is ablocking pairfor a

matchingM if:

(i) m andw are mutually acceptable, and

(ii) m is either unmatched inM , or prefersw to his partner inM , and

(iii) w is either unmatched inM , or prefersm to her partner inM .

Figure 2.2 gives an example of an SMI instance with a stable matching.

The Gale-Shapley algorithm can be easily extended to the SMIsetting [36], proving that a stable

matching always exists for an SMI instance. The results concerning the man-optimal and woman-

optimal (man-pessimal and woman-pessimal) stable matchings also generalize in the obvious way.

Gale and Sotomayor [31] observed the remarkable result that, while there can still be many sta-

ble matching for an arbitrary SMI instance, all stable matchings match exactly the same subset of

the agents. Thus if an agent is unmatched (matched) in one stable matching, they are unmatched

(matched) in all of them. We can therefore think of the agentsof an SMI instance as being par-

titioned into two sets – the matched set and the unmatched set. If we were to attempt to explore

2.2Full preference information 11

the set of stable matchings for an SMI instance, we need only turn our attention to the set of sta-

ble matchings for the matched set of agents. Because of this fact it is sometimes desirable to first

discard the unmatched agents from an SMI instance, deletingthem from the preference lists of the

agents in the matched set. The set of stable matchings for theresulting instance is exactly the same

as the set of stable matchings in the original instance [36].

2.2.3 The structure of stable matchings

So far we have discussed the existence of the man-optimal andwoman-optimal stable matchings

(M0 andMz) of an SMI instance, which are quite literally the most extreme stable matchings.

When dealing with an instance in whichM0 = Mz, M0 must be the unique stable matching – this

is the only way that every man’s best partner could also be hisworst partner. If insteadM0 6= Mz,

there may indeed be many additional stable matchings. In particular, Knuth [69] showed that the

maximum number of stable matchings for an SM instance grows exponentially withn. Irving and

Leather [46] reestablished this fact in a different way, andshowed that for eachn > 0, wheren is

a power of two, there exists an instance of SM of sizen with at least2n−1 stable matchings.

In what follows we summarize the rich results concerning thestructure of the set of all stable

matchings for an SMI instance. We also discuss the key compact representations of the set of stable

matchings, along with the algorithmic consequences of thisstructure.

Henceforth, we letM denote the set of all stable matchings of an arbitrary SMI instance. We define

the following partial order onM. LetM andM ′ be two (not necessarily distinct) stable matchings

in M. We say thatM dominatesM ′, denotedM � M ′, if, for each matched manm, M(m) =

M ′(m) or m prefersM(m) to M ′(m). Intuitively, M dominatesM ′ if each man is at least as

happy with his partner inM as he is with his partner inM ′.

Knuth [69] attributes the following striking result concerning stable matchings to John Conway. Let

M andM ′ be two distinct stable matchings. If each man is matched to the more (less) preferred

of his two partners inM andM ′, then the result is a stable matching. One of the reasons why this

result is so surprising is that there is no a priori reason whythis operation should even constitute

a matching, much less one that is stable. In light of Conway’sresult, it can be seen that the pair

(M,�) actually forms a distributive lattice, with the meet (join)of two stable matchings being

the operation of assigning each man to the better (worse) of his two partners in any two stable

2.2Full preference information 12

matchings. The maximum and minimum elements of this latticeare the man- and woman-optimal

stable matchings, respectively.

The lattice representation of the set of stable matchings isindeed quite interesting, but does not im-

mediately lend itself to any particularly efficient algorithms for, say, generating all stable matchings

or finding a stable matching with some special additional property. SinceM can have exponential

size, any algorithm that explicitly generates this latticeis doomed to require exponential-time (and

possibly even exponential space). Irving and Leather [46] discovered a polynomial-space repre-

sentation ofM, called therotation poset, which essentially captures all the different ways one can

‘navigate’ the lattice of stable matchings by moving from one stable matching to another (we define

this structure formally below).

The key to making a transition from one stable matching to another is arotation [46]. Let M

be a stable matching. For each manm, let sM(m) denote the first womanw on m’s preference

list succeedingM(m) such thatw prefersm to M(w), if such a woman exists. Then, a rotation

ρ is defined to be an ordered sequence of pairs(m0, w0),. . .,(mr−1, wr−1), such that for eachi

(0 ≤ i ≤ r − 1) (mi, wi) ∈M , andwi+1 = sM (mi) (all subscripts are taken modulor). Such a

rotation is said to beexposedin M . To eliminatea rotation is to match each manmi towi+1, where

i + 1 is taken modulor, and leave all other agents matched as inM . The resulting matching is

denoted byM/ρ, and is in fact always stable [46]. Note that by eliminating arotationρ the men in

ρ become worse off and the women inρ become better off, with everyone else not inρ remaining

the same. Every stable matching exceptMz has at least one exposed rotation [46].

Consider the set of rotations{ρ0, ρ1, . . . ρk} exposed inM0 (this set must be non-empty whenM0

6= Mz). If we choose to eliminate a rotation, sayρ0, thenρ1, . . . , ρk remain exposed inM0/ρ0.

Also, the elimination ofρ0 may have exposed different rotations that were not exposed in M0.

Thus we may continue to eliminate rotations, arriving at different stable matchings. With each

new stable matching, some new rotations may become exposed.Let R denote the union of the

sets of exposed rotations taken over all stable matchingsM . Irving and Leather showed thatR

is uniquely determined by the instance, because any two rotations are either identical or disjoint.

For two rotationsρ1 andρ2, we say thatρ1 precedesρ2, denotedρ1 ≺ ρ2, if ρ2 is never exposed

unlessρ1 has been eliminated. Therotation poset, which is uniquely determined byM, is the pair

Π = (R,≺). It is important to note that the number of elements ofΠ is O(m).

A closed subsetR′ of the rotation posetΠ = (R,≺) is a subset ofR such that ifρ ∈ R′ andρ′

2.2Full preference information 13

≺ ρ thenρ′ ∈ R′. The key contribution of Irving and Leather was not only to show that the ideas

surrounding rotations and the rotation poset allowed one tofind different stable matchings, but was

to further show that eliminating rotations is, in a sense, the only way to arrive at different stable

matchings. Specifically, they showed that there exists a one-one correspondence betweenM and

the closed subsets ofΠ: let R′ be an arbitrary closed subset. If we computeM0, we can eliminate

the rotations inR′ in any order that adheres to≺, and arrive at a stable matching. Furthermore,

every stable matching can be obtained by starting atM0 and eliminating a distinct closed subset of

Π. In this way,Π encodesM. A Hasse diagram representation (the transitive closure) of Π can be

computed inO(m) time and space [47, 36].

Example Before moving on to the next section, we provide an illustrative example of the concept

of the lattice of stable matchings, its rotations, and its rotation poset. Consider the SMI instance

given below:

m1 : w1 w3 w2 w1 : m5 m3 m2 m1

m2 : w2 w1 w3 w5 w4 w2 : m1 m2 m3 m4

m3 : w3 w1 w2 w5 w3 : m4 m2 m3 m1

m4 : w4 w2 w3 w4 : m2 m4 m5

m5 : w5 w4 w1 w5 : m3 m5 m2

This instance has a total of six stable matchings, whereM1 is the man-optimal stable matching, and

M6 is the woman-optimal stable matching:

M1 = {(m1, w1), (m2, w2), (m3, w3), (m4, w4), (m5, w5)}
M2 = {(m1, w2), (m2, w1), (m3, w3), (m4, w4), (m5, w5)}
M3 = {(m1, w2), (m2, w3), (m3, w1), (m4, w4), (m5, w5)}
M4 = {(m1, w2), (m2, w4), (m3, w1), (m4, w3), (m5, w5)}
M5 = {(m1, w2), (m2, w3), (m3, w5), (m4, w4), (m5, w1)}
M6 = {(m1, w2), (m2, w4), (m3, w5), (m4, w3), (m5, w1)}

The instance has a total of four rotations:

ρ1 = ((m1, w1), (m2, w2))

2.2Full preference information 14

Figure 2.3: The Lattice and poset of an SMI instance

ρ2 = ((m2, w1), (m3, w3))

ρ3 = ((m2, w3), (m4, w4))

ρ4 = ((m5, w5), (m3, w1))

The lattice structure and the Hasse diagram of the poset of this instance is given in Figure 2.3. The

correspondence between the elements of the lattice and the closed subsets of the rotation poset is as

follows: M1 and∅, M2 and{ρ1}, M3 and{ρ1, ρ2}, M4 and{ρ1, ρ2, ρ3}, M5 and{ρ1, ρ2, ρ4}, M6

and{ρ1, ρ2, ρ3, ρ4}.

2.2.4 Exploiting the structure

The algorithmic consequences of the rotation posetΠ of an SMI instance are numerous. Of im-

mediate interest is the fact that the rotation poset allows for the efficient generation of all stable

matchings. Gusfield [34] showed thatM can be enumerated inO(m + n|M|) time – hence there

is only a linear-time delay between the output of each stablematching. He further showed that the

set of allstable pairs– the set of (man,woman) pairs that appear in some stable matching – can be

computed inO(m) time. Later, Gent et al [33] gave a different approach to enumerating all stable

2.2Full preference information 15

matchings by using constraint programming. Their method uses arc consistent domains in order to

achieve failure-free enumeration of all stable matchings.

An interesting question that arises is whether there are stable matchings that are somehow fair

to both the men and women of the instance, as opposed to the extreme unfairness of the stable

matchingsM0 andMz. We next review several such problems, some of which are polynomial-time

solvable, thanks to the structural results of the rotation poset. Henceforth, for agentsa andb, let

pa(b) denote thepositionof agentb on agenta’s preference list. Ifa findsb unacceptable,pa(b) is

undefined.

Minimum regret stable matchings

Given a stable matchingM we define theregretof agenta to bepa(M(a)), i.e, the position ofa’s

partner inM . The regret of an unmatched agent is undefined. The regret of amatchingM is the

maximum regret taken over all agents inM . A minimum regret stable matchingis a stable matching

with minimum possible regret.

For the stable marriage setting, Knuth [69] showed that the minimum regret stable matching prob-

lem can be solved inO(m2) time, attributing the result to Selkow. Gusfield [34] improved this to

an optimalO(m)-time solution.

Fair stable matchings

Suppose we wish to somehow treat the men and the women of an SMIinstance equally. For a stable

matchingM , define theegalitarian valuee(M) to be

e(M) =
∑

(m,w)∈M
(pm(w) + pw(m)).

An egalitarian stable matchingis a stable matchingM that minimizese(M ′) over allM ′ ∈ M.

The egalitarian egalitarian stable matching problem (ESM)is to find an egalitarian stable matching.

Intuitively, ESM captures the notion of finding a stable matching with the best “social welfare”.

2.2Full preference information 16

m1 : w1 w∗
2 . . . w1 : m∗

n . . . m1

m2 : w2 w∗
3 . . . w2 : m∗

1 . . . m2
...

...
mn−1 : wn−1 w∗

n . . . wn−1 : m∗
n−2 . . . mn−1

mn : wn w∗
1 . . . wn : m∗

n−1 . . . mn

Figure 2.4: An SM instance with two stable matchings with greatly varying values ofe(·).

Example The example given in Figure 2.4 shows howe(·) can greatly vary for different stable

matchings of a particular SMI instance. The example consists of an SM instance with two stable

matchings, one denoted by underlining, and the other by star. The ellipses in the preference lists

denote any arbitrary ordering of the remaining agents not explicitly mentioned. The egalitarian

valuee(·) for the stable matching denoted by underlining isn2 + n, wherease(·) for the matching

denoted by star is3n.

Another notion of a fair stable matching arises by attempting to find a stable matching with the

property that the men’s and women’s overall happiness is as close as possible. To this end, the

sex-equality measureδ(M) of a stable matching is defined to be

δ(M) =
∑

(m,w)∈M
pm(w)−

∑

(m,w)∈M
pw(m).

A sex-equal stable matchingis a stable matchingM that minimizes|δ(M ′)| over allM ′ ∈M. The

sex-equal stable matching problem(SESM) is to find a sex-equal stable matching.

ExampleThe example given in Figure 2.5 shows how|δ(·)| can also greatly vary for different stable

matchings of a particular SMI instance. The example consists of an SM instance with two stable

matchings, one denoted by underlining, and the other by star. The ellipses in the preference lists

denote any arbitrary ordering of the remaining agents not explicitly mentioned. The absolute value

of the sex-equality measureδ(·) for these two stable matchings isn2 − n and zero, respectively.

The elimination of a rotation can, in general, result in a stable matching with a different value

of e(·) and/orδ(·). For a rotationρ = (m0, w0), (m1, w1),. . .,(mr−1, wr−1), we definev(ρ) and

w(ρ) [47, 56] to capture the change in egalitarian value and sex-equality measure, respectively, by

eliminatingρ:

2.2Full preference information 17

m1 : w1 w∗
2 . . . w1 : m2 m∗

n . . . m1

m2 : w2 w∗
3 . . . w2 : m3 m∗

1 . . . m2
...

...
mn−1 : wn−1 w∗

n . . . wn−1 : mn m∗
n−2 . . . mn−1

mn : wn w∗
1 . . . wn : m1 m∗

n−1 . . . mn

Figure 2.5: An SM instance with two stable matchings with greatly varying values of|δ(·)|.

v(ρ) =

r−1
∑

i=0

(pmi
(wi+1)− pmi

(wi)) +

r−1
∑

i=0

(pwi
(mi−1)− pwi

(mi)),

w(ρ) =

r−1
∑

i=0

(pmi
(wi+1)− pmi

(wi))−
r−1
∑

i=0

(pwi
(mi−1)− pwi

(mi)).

Irving, Leather, and Gusfield [47] showed that ESM can be solved inO(m2) time by assigning the

weight given byv(·) to each rotation inΠ, and then finding a maximum weight closed subset ofΠ.

Later, Feder [28] gave an alternative approach that improves this running time toO(m1.5 log n).

At first one would probably suspect that a similar approach would work for the sex-equal stable

marriage problem. Indeed, on the surface, these two problems look almost identical:e(M) is a

sum of the ranks of the mens’ and womens’ partners, whereasδ(M) is the absolute difference. It

is perhaps surprising then, that the sex-equal stable matching problem is strongly NP-hard [58]. On

the positive side, Iwama et al [56] give a polynomial-time approximation algorithm for the so-called

near-sex-equal stable marriage problem. Their algorithms involve assigning the weightw(ρ) to

each rotation inΠ and then attempting to find an appropriate subset of rotations to eliminate. They

further study the problem of finding a minimum regret stable matching amongst the set of all near-

sex-equal stable matchings. This latter problem is NP-hard, but there is an approximation algorithm

with a performance guarantee better than two [56]. We shall study SESM more extensively in

Chapter 4.

As a final word on fair stable matchings, we mention themedian stable matchingproblem. For

each (matched) manm in an SMI instance, sort the multiset of womenm is matched to inM from

m’s most to least preferred. For example, if manm is matched to womanw in exactly ten stable

matchings inM, thenw appears ten consecutive times in this sorted list. Letwi(m) denote theith

woman in a manm’s sorted list, andMi denote the assignment obtained by matching each manm′

2.2Full preference information 18

to wi(m
′). Teo and Sethuraman [99] proved the surprising result thatMi is not only a matching,

but is also stable. Theith-median stable matching is defined to be the stable matching obtained by

matching every man towi(m). Note that, in general, not everyMi so obtained is distinct, and not

every stable matchingM is equal to someMj for somej.

The definition of a median stable matching does not lend itself to any natural polynomial-time algo-

rithm – it appears as though we must explicitly enumerateM to construct a median stable match-

ing. Cheng [18] gave a new characterization of the so-calledgeneralizedmedian stable matchings,

showing that there is an intimate relationship between median stable matchings and the median el-

ements of the lattice ofM. She went on to show that finding a median stable matching is NP-hard,

but is approximable in a formal sense, and even polynomial-time solvable for some special cases.

Very recently, Kijima and Nemoto [63] improved upon some of Cheng’s results.

2.2.5 Indifference

A natural generalization of SM and SMI is to allow the agents involved to express some form of

indifferencein their preference lists. The most natural way for agents toexpress indifference is

in the form of ties in the preference list; a tiet on an agenta’s preference list is defined to be a

set of agents all of whom have the same position ona’s list. The notion of a tie is important in

the practical applications of SM and SMI – consider, for example a hospital that must attempt to

produce a genuinely strict ranking of hundreds of medical students [105, 106, 107]. We use SMT

(SMTI) to stand for the variant of SM (SMI) in which preference lists can contain ties.

Of course, with the inclusion of ties, the definition of a blocking pair must be reconsidered. It

stands to reason that a (man,woman) pair should still form a blocking pair if they both improve

by becoming matched to each other, but what if, for example,m is indifferent between his current

partner andw?

There are three particularly natural formulations of blocking pair, each with a corresponding notion

of stability. These three kinds of stability are defined as follows:

• weak-stability:a (man,woman) pair can block only by both becoming better off

• strong-stability:a (man,woman) pair can block if at least one of them becomes better off, and

the other no worse off

2.2Full preference information 19

• super-stability:a (man,woman) pair can block if neither of them becomes any worse off.

Notice that each form of stability above is increasingly more restrictive than the previous, so super-

stability implies strong-stability implies weak-stability. Irving [43] observed that while weakly-

stable matchings always exist for an SMT instance, strong- and super-stable matchings need not.

He further gave a polynomial-time algorithm for each of the three forms of stability that either

returns a stable matching or reports that none exists (in thecase of weak-stability, the algorithm

always returns a weakly-stable matching). Manlove extended Irving’s results to the SMTI setting

[72].

Stability, size, and structure

There is an interesting interplay between the various formsof stability and the cardinality of stable

matchings. If a super-stable matching exists for an SMTI instance, then all stable matchings for the

instance have equal cardinality, regardless of the definition of stability. Otherwise, if a strongly-

stable matching exists, then all strongly-stable matchings have the same size. In general, weakly

stable matchings can have different cardinalities, but every strongly-stable matching is at least two-

thirds the size of an arbitrary weakly-stable matching [93].

Spieker [95] showed that the set of super-stable matchings for an SMTI instance forms a distribu-

tive lattice. Later, Manlove [73] gave an alternative, and perhaps more accessible proof showing

that both strong- and super-stable matchings have a distributive lattice structure. The elements of

the lattice structure described by Manlove aresetsof “equivalent” stable matchings, rather than

individual stable matchings. The maximum and minimum elements of the lattice correspond to the

sets of man- and woman-optimal stable matchings. Scott [93]extended the notion of a rotation

to super-stability, and described polynomial-time algorithms for finding egalitarian and minimum-

regret stable matchings, along with algorithms for generating all super-stable matchings and finding

all super-stable pairs. Extending such results to the strong-stability case remains an open question,

but it seems likely that this can be done in light of the structural results of Manlove [73].

2.2Full preference information 20

m1 : (w2 w∗
1) w1 : (m2 m∗

1) m3

m2 : w3 w1 w2 : m1 m3

m3 : w1 (w∗
3 w4) w2 w3 : (m∗

3 m4) m2

m4 : w3 w4 : m3

Figure 2.6: An SMTI instance with stable matchings of different sizes.

Weak stability

Irving [43] showed that finding a weakly stable matching in anSMT/SMTI instance is particularly

easy: simply arbitrarily break the ties and find any stable matching in the resulting instance. In a

sense, this method is the only “easy” thing about weak stability – almost everything else seems to

be computationally difficult. In the SMT setting, minimum regret stable matchings and egalitarian

stable matchings are both not only NP-hard to find, but are notapproximable withinΩ(n) unless

P=NP [74]. It is also NP-hard even to determine if a given (man,woman) pair occurs in a stable

matching (i.e. is a stable pair). Identifying any structural relationship involving weakly stable

matchings is open, although one can construct SMT/SMTI instances that have neither man- nor

woman-optimal stable matchings [88]. Efficiently enumerating all weakly-stable matchings also

remains an open question.

We mentioned above, that, in general, the weakly-stable matchings of an SMTI instance can have

different cardinality. This fact is illustrated when one uses Irving’s tie-breaking algorithm: the ways

in which the ties are broken can have a significant impact on the cardinality of the stable matchings

obtained.

Example Figure 2.6 presents an SMTI instance with two different stable matchings of different

cardinality. The example shows two weakly stable matchings, one denoted by underlining, and the

other by star. The stable matching denoted by underlining istwice the size of the stable match-

ing denoted by star. These matchings can be arrived at by running the (extended) Gale/Shapley

algorithm on two of the different ways that the ties of the instance can be broken.

Manlove et al [74] first observed the fact that weakly stable matchings can have different sizes, and

further showed that an arbitrary weakly stable matchingM can be as little as one-half the size of

a maximum cardinality stable matching. The obvious question then, is, can we find a maximum

cardinality weakly stable matching in polynomial-time? Manlove et al [74] showed that finding a

maximum cardinality weakly-stable matching is NP-hard, even in the highly restricted setting in

2.2Full preference information 21

which the preference lists on one side are strictly ordered,and the preference list of each member

of the opposite set is either strictly ordered or is a tie of length two (these conditions holding simul-

taneously). Henceforth, we let MAX-SMTI denote the problemof finding a maximum cardinality

weakly stable matching of an SMTI instance.

Motivated by the hardness results of Manlove et al [74], researchers have been interested in finding

polynomial-time approximation algorithms for MAX-SMTI. As a first step, we may observe that

simply computing an arbitrary stable matching is an easy 2-approximation algorithm, because an

arbitrary stable matching must be a maximal matching. A number of improvements have since

appeared in the recent literature.

For the general case of SMTI, Iwama et al [53] gave a2− c lognn approximation algorithm, wherec

is a positive constant. This algorithm was subsequently improved to yield a performance guarantee

of 2 − c′√
n

, wherec′ is a positive constant which is at most1/4
√
6 [55]. The first approximation

algorithm for general SMTI with a constant performance guarantee better than two was given by

Iwama et al [54], with a performance ratio of15/8.

The approximability of several special cases of SMTI have also been studied. Halldórsson et al

[37] gave a(2/(1 + T−2)-approximation algorithm for the restricted case in which ties are only on

one side, and the length of the longest tie isT . This bound can be improved to13/7 if the ties can

appear in both men’s and women’s preference lists, but are restricted to being size at most two [37].

These same authors later described a randomized algorithm with an expected guarantee of10/7 for

this special case with the additional restriction that tiesappear only on one side [39]. Motivated

by a restricted case of SMTI arising in practice [44, 107], Irving and Manlove [48] described a

5/3-approximation algorithm for MAX-SMTI instances in which the ties appear only on one side,

say, the women, and each woman may have at most one tie on her preference list, and this tie, if

any, appears at the end of her list.

A recent landmark paper of Király [64] gave two simple algorithms that effectively superseded all

previously known approximation algorithms for MAX-SMTI, (save only the randomized algorithm

for the very special case studied in [39]). Király’s first algorithm provides a3/2-approximation for

the restricted case of MAX-SMTI in which ties are allowed to only appear on the women’s side

(this is the only restriction). The second algorithm provides a5/3-approximation for the general

MAX-SMTI setting, in which no restrictions are placed on theproblem input. In Chapter 3, we

describe Király’s approach in more detail, and give an approximation algorithm with an improved

2.2Full preference information 22

performance guarantee.

From an inapproximability point of view, it is known that MAX-SMTI is APX-complete [38] and

cannot be approximated within21/19 (unless P = NP) [37]. Yanagisawa [103] improved this bound

to 33/29, and also showed that MAX-SMTI cannot be approximated within 4/3 under the assump-

tion that the minimum vertex cover problem cannot be approximated within a factor of2 − ǫ.

We mention one final result regarding weakly stable matchings. Let(α, β)-SMTI denote an SMTI

instance in which the men’s (women’s) preference lists are of bounded maximum lengthα (β). De-

fine (α, β)-MAX-SMTI similarly. Irving et al [51] showed that(3, 3)-MAX-SMTI is NP-hard, but

(2,∞)-MAX-SMTI is polynomial-time solvable (the∞ here denotes preference lists of unbounded

length). They furthermore showed that there exists a constant δ0 such that(4, 3)-MAX-SMTI is not

approximable withinδ0 unless P=NP. The inapproximability of(3, 3)-MAX-SMTI remains open.

2.2.6 The Hospitals/Residents problem

Moving away from the notion of indifference, we turn our attention to the many-one generalization

of SMI, the so-calledhospitals/residentsproblem (HR)1 [30, 36]. The problem is so named because

of its widespread application to centralised automated matching schemes that allocate graduating

medical students (residents) to hospital posts, which we briefly mentioned in Section 2.1. The best

known scheme is the National Resident Matching Program (NRMP) [105] in the United States,

which annually allocates some 31,000 graduating medical students to their first job at a hospital.

Similar schemes exist in Canada [106] and Scotland [107]. Inall of these applications, the medical

students produce preference lists ranking a subset of the hospitals, who in turns produce preference

lists ranking a subset of the available residents. All of these centralized schemes incorporate various

extensions of the Gale-Shapley algorithm to find stable matchings of medical students to hospitals.

Formally, an instanceI of (HR) [30, 36] involves a set ofresidentsr1, . . . , rn and a set ofhospitals

h1, . . . , hm. Each hospitalhj has acapacitycj ∈ Z+ indicating the maximum number of residents

who could be assigned tohj . Associated with each residentri is a strictly ordered preference list

ranking a subset of the hospitals, hisacceptable hospitals, and each hospitalhj ranks, again in strict

order, those residents it finds acceptable. The definition ofacceptable pairandmutually acceptable

1Gale and Shapley referred to this problem as theCollege Admissions problem, however this problem has now widely
become known as the hospitals/residents problem.

2.2Full preference information 23

r1 : h1 h2 h3 h1 : 2 : r1 r2 r3 r4
r2 : h2 h1 h2 : 1 : r4 r3 r2 r1
r3 : h2 h3 : 3 : r1 r5 r4 r2
r4 : h1 h3
r5 : h3

Figure 2.7: An HR instance with a stable matching denoted by underlining.

pair are defined in the obvious way.

An assignmentM is a set of mutually acceptable (resident,hospital) pairs.A matchingis an assign-

ment such that each resident is assigned at most one hospital, and each hospitalhj is assigned at

mostcj residents [36, 30]. For a matchingM , we defineM(r) to be the hospital residentr is as-

signed inM , and similarly we letM(hj) denote the set of residents assigned tohj in M . If |M(hj)|
< cj , hj is said to beundersubscribed. If insteadhj is full to capacity,hj is fully subscribed.

A blocking pair of a matchingM is a residentri and hospitalhj such that:

1. ri andhj are mutually acceptable; and

2. ri is unmatched, orri prefershj toM(ri); and

3. hj is undersubscribed inM , or is fully subscribed and prefersri to its least-preferred assignee

in M .

A matching isstableif it admits no blocking pair. Just as in the SMI setting, it isknown that every

instance of HR admits a stable matching, and that such a matching can be found in linear time

using the extended Gale-Shapley algorithm [30];[36, Section 1.6]. Furthermore, the notion of man-

and woman-optimal matchings can be extended toresident-optimaland hospital-optimalstable

matchings [36, Section1.6]. Figure 2.7 shows an example of an HR instance, with the capacity of

each hospital denoted by the number written next to the hospital.

Structure of HR

One of the first observations on the structural nature of the set of stable matchings for an HR instance

is the so-calledRural Hospitals Theorem2, which generalizes the fact that, in the SMI setting, the

2Historically, the NRMP found it problematic to match interns to unpopular hospitals, which were often found in the
more rural areas of the United States. This theorem essentially explains why this happens, and shows that stability must

2.2Full preference information 24

same number of agents are matched in all stable matchings. The theorem [91, 36] is described as

follows:

Theorem 2.2.1 (Rural Hospitals Theorem) [91, 36]. For a given hospitals/residents instance,

(i) exactly the same residents are assigned in all stable matchings, so, in particular, all stable

matchings have the same size;

(ii) each hospital is assigned the same number of residents in all stable matchings;

(iii) any hospital that is undersubscribed in one stable matching is matched with precisely the same

set of residents in all stable matchings.

The notion ofdominanceamongst the setM of all stable matchings of an HR instance also gener-

alizes from the SMI setting. LetM andM ′ be stable matchings for an HR instance. We say that

M dominatesM ′ (denotedM �M ′) if, for each assigned residentr, M(r) = M ′(r), or r prefers

M(r) toM ′(r). Hence each resident is at least as happy inM as inM ′. Analogously with the SMI

setting,(M,�) forms a distributive lattice, with the maximum and minimum elements being the

resident- and hospital-optimal stable matchings.

Couples

By the early 1970s, proportionally fewer residents were voluntarily participating in the NRMP.

Checker [17] and later, Roth [88], attributed some of the decline to the existence ofcouples, i.e.,

pairs of (perhaps married) residents who wish to intern together or geographically close to one

another. Such couples would choose to negotiate directly with hospitals to arrange their residency

assignments rather than participate in the NRMP.

Today, the NRMP uses a modified algorithm to attempt to betteraccommodate couples. However,

it is known that stable matchings need not exist when couplesare present [88], and, moreover, it is

NP-complete to decide if a stable matching exists [84]. On top of this, it has been shown that the

NRMP algorithm may be prone to strategic manipulation by couples pretending to be single [67].

necessarily be sacrificed for unpopular hospitals to becomefull to capacity. Hence the strange name of this theorem.

2.2Full preference information 25

r1 : h1 h2 h3 h1 : 2 : r1 r2 r3 r4
r2 : h2 h1 h2 : 1 : r4 r3 r2 r1
r3 : h2 h3 : 3 : r1 r5 r4 r2

(r4, r5) : (h1, h3) (h3, h3)

Figure 2.8: An HRC instance with a stable matching denoted byunderlining.

This discussion on couples is formalized by defining an important variant of HR called thehospitals

/ residents problem with couples(HRC). An instance of HRC involves both single residents and

couples(pairs of residents) such that each resident belongs to at most one couple. Each couple

(ri, rj) has a preference list overpairs of hospitals(hk, hl), representing the assignment ofri to

hk and ofrj to hl. Ronn [84] (see also [36, Section 1.6.6]) described a stability criterion for a

matching in HRC that is a natural generalisation of the analogous concept in the HR context. As

we mentioned above, it was Roth [88] who showed that an HRC instance need not admit a stable

matching, while Ronn proved that the problem of deciding whether an HRC instance admits a stable

matching is NP-complete, even if there are no single residents and each hospital has capacity one

[84].

Example The example in Figure 2.8 gives an HRC instance in which residentsr1, r2 andr3 are

single, and residentsr4 andr5 are a couple with a joint preference list. There is a stable matching

for this instance, denoted by underlining.

There has been much study devoted to HRC by economists in particular (see for example [88, 23,

13, 65, 66, 68], and references therein). From a computer science point of view, the problem is

not nearly as well-studied, but there are a couple of exceptions. Marx and Schlotter [76] studied

the parameterized complexity of HRC with the number of couples as a parameter. Dean et al

[21] studied the so-calledUnsplittable Stable Marriage problem, which they described in terms of

assigning jobs with integral sizes (representing couples or groups of residents) to machines with

capacities (representing hospitals). They provide a polynomial-time integral variant of the Gale-

Shapley algorithm that finds a stable matching in which each machine is congested by at most the

processing time of the largest job. Put differently, their algorithm finds a stable matching in which

each hospital is oversubscribed by at most the size of the largest resident. In Chapter 5, we shall

revisit HRC and also the unsplittable stable marriage problem.

2.2Full preference information 26

r1 : r2 r3 r5 r4 r6
r2 : r6 r1 r5 r3 r4
r3 : r4 r1 r6 r2 r5
r4 : r6 r1 r2 r5 r3
r5 : r6 r1 r4 r3 r2
r6 : r2 r5 r3 r4 r1

Figure 2.9: An SR instance with a stable matching denoted by underlining.

2.2.7 Stable Roommates problem

Thestable roommates problem(SR), first introduced by Gale and Shapley [30] is the nonbipartite

generalization of SM. The definition of the problem, along with the notion of matching and stability

generalize in the obvious ways, but for completeness, let usformally spell them out.

An instance of the stable roommates problem consists of one uniform set of agentsR = {r1,
r2,. . . ,rn}. Each agentri supplies a preference list that ranks the members ofR − {ri} in strict

order of preference. Amatchingis a partition of the agents into disjoint pairs. Ablocking pairrel-

ative toM is a pair(ri, rj) such thatri prefersrj toM(ri) andrj prefersri toM(rj). A matching

is stableif it admits no blocking pair. TheStable Roommates problem with incomplete lists(SRI)

is the generalization of SR that allows incomplete preference lists, and an odd number of agents.

The notions of blocking pair and stability are defined according to the obvious generalization of the

SMI context. We again usem to denote the sum of the lengths of the preference lists of an SRI

instance. Figure 2.9 gives an example of an SR(I) instance and a stable matching.

Notice that SMI is just a special case of SRI. In contrast to SMor SMI, however, not every SR

or SRI instance admits a stable matching. The kind of obviousalgorithms one would attempt to

construct to generalize the Gale/Shapley algorithm are notsufficient to determine if an SR/SRI

instance admits a stable matching. Knuth [69] asked if the roommates problem was polynomial-

time solvable, or if perhaps this problem was NP-complete. Irving [42] resolved this question by

presenting aO(m)-time algorithm that either returns a stable matching or reports that none exists.

Although he described his algorithm in the SR setting, it clearly generalizes to the SRI case as well.

We briefly remark that the set of stable matchingsM of an SRI instance forms ameet semi-lattice

[35, 36]. There is also a similar notion of a rotation and rotation poset [35, 36], although these ideas

are more involved than that of the bipartite case.

2.2Full preference information 27

Stable roommates with ties

We can extend SR/SRI to allow for ties in the preference lists, (denoted by SRT and SRTI, respec-

tively) which again gives rise to the notion of weak-, strong-, and super-stability. Ronn [84] showed

that in contrast to the stable marriage setting, determining if an SRT instance admits any weakly

stable matching is NP-complete. For the case of super-stability, Irving and Manlove [49] described

an algorithm with running timeO(m) that either returns a super-stable matching or reports that

none exists. In his PhD thesis, Scott [93] resolved the strong-stability case by giving aO(m2)-time

algorithm to either return a strongly-stable matching or report that none exists.

When the agents of an SRI instance are allowed to have acapacity, we obtain the so-calledstable

fixtures problem(SF). Irving and Scott [52] generalized Irving’s algorithm[42] to this setting, ob-

taining aO(m) time algorithm. Scott [93] also showed that SF is polynomial-time solvable under

super-stability. The case of strong-stability for SF remains open.

Almost stable roommates

Since a stable matching for the roommates problem need not exist, it is natural to seek matchings

that are “as stable as possible” in some well-defined sense. Tan [97] introduced the notion of a

stable partition, which is a partitioning of the roommates instance into special cycles. These cycles

have the property that if each agentr could somehow be matched to both of the agents adjacent to

r in the given cycle, then there would be no blocking pairs. In so doing, Tan provided a method

for describing a succinct certificate for checking whether or not an SR instance admits a stable

matching without explicitly running Irving’s algorithm. In a later paper, Tan [98] gave a linear-time

algorithm for finding a so-calledmaximum stable matching, defined to be a largest possible setM

of disjoint pairs such that there are no blocking pairs within M .

Perhaps the most natural way of finding an “almost stable” matching is to find a matching that

admits the fewest blocking pairs. The decision version of this problem, then, is to determine whether

a matching exists that admits at mostK blocking pairs. Abraham et al [3] proved this problem is

NP-complete, and is not approximable withinn
1
2
−ǫ. However, whenK is a fixed constant, they

showed that the problem is solvable in polynomial time (withK being in the exponent).

2.2Full preference information 28

Stable roommates and kidney exchange

In recent years, a renewed interest has been found in the stable roommates problem because it

provides a way of modelling and solving problems related to real-worldkidney-exchangeprograms,

which exist in several different countries including the USand the UK.

Living donation is the most effective treatment that is currently known for kidney failure. How-

ever, a patient who requires a transplant may have a willing donor who cannot donate to them for

immunological reasons. As a result, these incompatible patient-donor pairs may want to exchange

kidneys with other pairs. Kidney exchange programs have already been established in several coun-

tries such as the Netherlands [62], the USA [85] and the UK [100].

We can capture this kidney exchange problem by creating a graph with a vertex for each patient-

donor pair, and a directed arc(u, v) for every pair of verticesu, v such that the donor in the pair

corresponding to vertexu can donate a kidney to the patient in the pair corresponding to vertexv.

A set of disjoint cycles in this graph corresponds to a cyclickidney exchange. In practice, however,

we cannot find arbitrarily long cyclic exchanges of kidneys,as all operations along a cycle have to

be carried out simultaneously. Hence the length of the exchanges are typically bounded to two or

three in practice.

In most of the current programs the goal is to maximise the number of patients that receive a suitable

kidney in the exchange [86, 87, 92, 2] by regarding only the feasibility of the grafts. Some more

sophisticated variants consider also the differences between suitable kidneys. When the value of

a kidney for a given patient can be quantified with a numericalvalue, the “total benefit” could be

maximised [94]. However, this is not always feasible and instead the differences between suitable

kidneys for a given patient give rise to a preference list. Hence stability could be the primary

objective of a kidney exchange [90, 14, 15, 9]. When the cyclic exchanges are limited to being of

length at most two, the underlying problem is precisely the stable roommates problem.

2.2.8 Three-dimensional stable matchings

Knuth [69] asked if the stable marriage problem could be generalized to three sets, so that the

instance contains not only men and women, but also a third set, which he calleddogs. LetA, B, C

be disjoint sets of men, women, and dogs, respectively, and let |A| = |B| = |C| = n. In response

2.2Full preference information 29

m1 : w2 w3 w1 w4 w1 : d1 d2 d3 d4 d1 : m2 m3 m1 m4

m2 : w2 w1 w4 w3 w2 : d2 d3 d1 d4 d2 : m2 m4 m1 m3

m3 : w1 w3 w2 w4 w3 : d3 d4 d1 d2 d3 : m3 m1 m4 m2

m4 : w3 w1 w4 w2 w4 : d4 d3 d2 d1 d4 : m1 m4 m3 m2

Figure 2.10: An instance of cyclic 3DSM

to Knuth’s open question, several different variations of this problem have been considered. The

common goal of these variations is to find a matchingM that is a set oftriples from the setA ×
B × C. Similar to the SMI setting, the common notion of stability in the variants of this problem

involves the absence of any blocking triples(m,w, d) /∈M such that a subset of{m, w, d} would

somehow improve and all of them must be at least as happy if matched together instead of staying

with their current triples. The primary differences in the variations of this problem arise in the

definition of stability, and also the nature of the preference lists.

In the three-dimensional stable matching problem(3DM), each agent has a preference list ranking

all pairs of the other two sets. Amatchingis a set of disjoint triples, and a matching is stable if

there exists noblocking tripleT = (m,w, d) /∈M such that every member ofT prefersT over their

current triple.

Alkan [7] gave the first example of an instance of 3DM where no stable matching exists. Ng and

Hirschberg [83] proved that the problem of deciding whethera stable matching exists, given an

instance of 3DM, is NP-complete; later Subramanian [96] gave an alternative proof for this. Huang

[40] proved that the problem remains NP-complete even if thepreference lists areconsistentin a

formal sense.

As an open problem, Ng and Hirschberg [83] mentionedcyclic 3DSM, where men care about only

the women, women care about only the dogs and dogs about only the men. Boros et al. [11] showed

that if the number of agentsn, is at most 3 in each set, then a stable matching always exists. Eriksson

et al. [26] proved that this also holds forn = 4 and conjectured that a stable matching exists for

every instance of cyclic 3DSM. The example in Figure 2.10 shows a cyclic 3DSM instance.

Danilov [20] provided a polynomial-time extension of the Gale/Shapley algorithm for a restricted

version of 3DSM in which the men careprimarily about the women they are matched to, and women

care primarily about the men. More precisely, a strictly ordered preference list of the women can

be derived from a man’s preference list of (woman,dog) pairs, and such a strictly ordered list of the

2.3Partial preference information 30

men can be derived from each woman’s preference list of (man,dog) pairs. The dog’s preference

list consists of unrestricted (man,woman) pairs. Danilov defined a reasonable notion of stability in

this setting and showed that a stable matching always exists. Moreover, his results generalize to five

sets of agents [20].

In Chapter 6, we revist the cyclic 3DSM problem.

2.3 Partial preference information

Matching problems with partial preference information often take the form of two disjoint sets of

agents, with one of the sets of agents expressing preferences over members of the other set. Such

problems are often described in terms of assigning applicants to houses or applicants to posts. We

will use the latter terminology.

In an instanceI of the post allocation problem(PA) we are given a set ofn1 applicants{a1,
a2,. . .,an1}, and a set ofn2 posts{p1, p2, . . . pn2}. Associated with each applicantai is a preference

list which ranks a subset of the posts. This subset comprisesthe acceptable postsof ai, and an

(applicant,post) pair(ai, pj) is anacceptable pairif and only if ai findspj acceptable. We letm

denote the sum of the lengths of the preference lists of the instance, andn = n1 + n2 be the number

of applicants plus the number of posts. Notice the key difference between this problem and SMI

is that the posts of the instance do not express any form of preference. AmatchingM is a disjoint

subset of acceptable pairs ofI. When ties are allowed in the preference lists, we obtain an instance

of thepost allocation problem with ties(PAT) with the notion of acceptable post, acceptable pair,

and matching all generalizing in the obvious way.

Since the posts of a PA/PAT instance do not have preference lists, the notion of a “stable” matching

does not have any real meaning in this context. We need some different optimality criteria. Notice

that simply finding a maximum cardinality matching is not a satisfactory approach, as an arbitrary

maximum cardinality matching will not take into account thepreferences of the applicants. In what

follows we will review two of the most fruitful approaches researchers have taken to find optimal

matchings for PA/PAT instances. The first thread involves finding matchings with goodprofiles

(which we define below). The second involves finding matchings that arepareto optimal, or even

popular– two terms we will define also below.

2.3Partial preference information 31

a1 : p1 p∗4
a2 : p2 p∗5
a3 : p3 p6

∗

a4 : p3
∗

a5 : p3 p∗1
a6 : p3 p∗2

Figure 2.11: A comparison of rank-maximal and maximum matchings.

2.3.1 Profile-based optimality

SupposeI is an instance of PA. Theprofileof a matchingM is the(n2+1)-tuple(x1, . . . , x(n2+1))

where, for eachi (1 ≤ i ≤ n2 + 1), xi is the number of applicants who are matched inM with

their ith-choice post. An applicant who is unmatched is considered tobe matched to his(n2+1)th-

choice post, regardless of the length of his preference list. There are various ways we can quantify

the quality of a matching in terms of its profile.

Suppose thatx = (x1, . . ., xn2) andy = (y1, . . ., yn2) are profiles. We say thatx left-dominatesy

(denotedx ≻L y) if, for somej, xi = yi for 1 ≤ i < j andxj > yj . A rank-maximalmatching

is a matching whose profile is maximal with respect to≻L. A rank-maximal matching need not be

unique, but, for a given instance, all must have the same size.

ExampleThe example in Figure 2.11 demonstrates the difference between a rank-maximal match-

ing and a maximum cardinality matching. The example consists of a PA instance with a rank-

maximal matching denoted by underlining and a maximum cardinality matching denoted by star.

The rank-maximal matching is smaller than a maximum matching, but assigns more agents to their

first choice.

A rank-maximal matching can be computed by a reduction to an instance of the maximum weight

bipartite matching problem (MWBM). The resulting instanceI ′ of MWBM has the property that

the weights on the edges are of the formnk−i for an edge representing an agent’sith choice.

Using the algorithm of Gabow and Tarjan [29], and making the standard assumption that numbers

of magnitudeO(n) can be handled in constant time and space, a rank-maximal matching can be

found inO(k2
√
nm log n) time. The space requirement isO(km). Irving et al [45] improved this

by describing a direct algorithm for finding a rank-maximal matching inO(min(n + C,C
√
n)m)

time, whereC ≤ k is the maximum rank that appears in an optimal solution. Later, Michail [81]

2.3Partial preference information 32

gave a different reduction to MWBM which achieves the same running time as that of Irving et al

[45].

A rank-maximal matching can in fact be significantly smallerthan an arbitrary maximum matching,

so, typically, other definitions of profile optimality first require that the size of the matching must

be maximum, and then require that the profile is optimal in some sense. Define a profilex =

(x1, x2, . . . , xn2) to befeasibleif there is some matching with profilex. A feasible q-profileis a

feasible profilex with
∑

xi = q. A feasibleq-profilex is q-left maximalif there is no other feasible

q-profile that left-dominatesx. A matchingM whose profile isq-left maximal is called agreedy

q-matching. Whenq is the size of a maximum matching, a greedyq-matching is called agreedy

maximum matching.

A different form of optimality arises when we seek a maximum cardinality matching that minimizes

the number of applicants who obtain their(n2 + 1)th choice (i.e., are unmatched), and subject to

that, minimizes the number of applicants who receive theirn2
th choice, and so on. To define this

formally, define a second total order≺G on two feasibleq-profiles so thatx = (x1, . . . , xn2+1) ≺G

y = (y1, . . . , yn2+1) if, for somej, xi = yi for j < i ≤ n2 + 1 andxj < yj. A matching that is

maximal with respect to≺G is agenerousmatching. Whenq is the size of an arbitrary maximum

matching, a generousq-matching is called agenerous maximum matching.

One can also reduce greedy and generous matchings to MWBM, again by assigning suitably large

weights to the edges of the derived instance. The resulting time requirement isO(k2
√
nm log n),

although Mehlhorn and Michail [79] showed this can be reduced to O(k
√
nm log n) time. It re-

mains an open question to construct faster, direct algorithms that perhaps do not require the use of

MWBM for greedy and generous matchings.

2.3.2 Pareto optimal matchings

We move on to other kinds of non-profile based optimality. Foran PA/PAT instanceI, we say that

an applicantprefersa matchingM to a matchingM ′ if (i) a is matched inM and unmatched in

M ′, or (ii) a is matched in bothM andM ′ and prefersM(a) to M ′(a) (whereM(a) is again the

post applicanta is assigned in matchingM). For two matchingsM andM ′, letα(M,M ′) denote

the number of applicants who preferM to M ′. A matchingM is said to bepareto optimalif there

is no matchingM ′ with α(M ′,M)> 0 andα(M,M ′) = 0. Intuitively, M is pareto optimal if there

2.3Partial preference information 33

is no subset of the applicants who canall improve while leaving everyone else no worse off.

For every PA instance, at least one pareto optimal matching always exists, and one can easily be

computed with the so-calledserial-dictatorship mechanism(see, e.g., [1]). However, pareto optimal

matchings can have different sizes, and the matching obtained by the serial-dictatorship mechanism

will not, in general, return a maximum pareto optimal matching. Finding a maximum cardinality

pareto-optimal matching can be solved by a reduction to the assignment problem, but Abraham et

al [4] found a faster, more direct algorithm havingO(
√
nm) time complexity. Since every PA/PAT

instance has a pareto optimal matching with the same cardinality as an arbitrary maximum matching

[4], any improvement in the running time of this algorithm would imply a faster algorithm for

finding a maximum matching in a bipartite graph.

2.3.3 Popular matchings

A matchingM ′ is said to bemore popularthan a matchingM if α(M ′,M) > α(M,M ′). A

matchingM is popular if there is no matchingM ′ with α(M ′,M) > α(M,M ′). A moment’s

reflection reveals that a popular matching is a stronger notion of optimality than pareto optimality,

as a popular matching must be pareto optimal. The concept of apopular matching is attributed

to Gardenfors [32] who studied the popular matchings in the SMI context. He showed that every

stable matching of an SMI instance is also popular; hence popular matchings always exist in the

SMI setting. In contrast, there exist PA/PAT instances which have no popular matching, and, if they

do exist, they can have different sizes. The goal of thepopular matching problem(POP-M), then,

is to find a popular matching or report that none exists.

Example The example in Figure 2.12 denotes a POP-M instance with two popular matchings that

differ in cardinality. The example consists of a POP-M instance with two popular matchings, one

denoted by underlining, and the other by star. The popular matching denoted by star is twice the

size of the popular matching denoted by underlining.

Abraham et al [5] described anO(n+m) time algorithm which computes a largest possible popular

matching, or reports that no popular matching exists for a PAinstance. In the case of PAT, they gave

an algorithm withO(
√
nm) time complexity.

The results of Abraham et al [5] led to a number of subsequent papers covering variants and ex-

2.3Partial preference information 34

a1 : p1 p2 p∗4
a2 : p2 p3 p1 p∗5
a3 : p3 p∗6
a4 : p∗1
a5 : p∗2
a6 : p∗3

Figure 2.12: The difference in cardinality of different popular matchings.

tensions of the popular matching problem. Manlove and Sng [75] studied thecapacitated popular

matching problem, C-POP-M in which each post has a capacity, defined to be the maximum number

of applicants that can be assigned to it. Manlove and Sng gaveaO(
√
Cn1 + m) time algorithm

for C-POP-M, whereC is the sum of the capacities of the posts. Mestre [80] gave a linear time

algorithm for a version of the problem in which each applicant has an associated weight; the goal is

to find a matchingM with the property that there is no other matchingM ′ preferred by a weighted

majority of agents. Mahdian [71] showed that popular matchings exist with high probability for

random instances of POP-M if the number of posts exceeds the number of applicants by a small

constant multiplicative factor. Abraham and Kavitha [6] studied a dynamic version of POP-M al-

lowing for applicants and posts to enter and leave the instance, and for applicants to arbitrarily

change their preference lists. They showed the existence ofa so-called 2-stepvoting pathto com-

pute a new popular matching after every such change, assuming that a popular matching exists.

McCutchen [77] focused on instances of POP-M for which no popular matching exists, defined two

notions of ‘near popularity’, and proved that for each of these it is NP-hard to find a matching that

is as near to popular as possible. Huang et al [41] built upon the work of McCutchen with a study

of approximation algorithms in the context of near popularity. Kavitha and Nasre [60] described

algorithms to determine anoptimal popular matching for various interpretations of optimality; in

particular they gave aO(n2+m) time algorithm to findminimum cost, rank-maximalandfair popu-

lar matchings (a fair popular matching being a synonym for a generous popular matching). To cope

with POP-M instances which do not admit a popular matching, Kavitha et al [59] defined the notion

of a mixed popular matching, and showed that a mixed popular matching exists for every POP-M

instance. Very recently, Kavitha and Nasre explored popular matchings with variable job capacities

[61], a problem they show is NP-complete. We study popular matchings further in Chapter 7.

Chapter 3

An improved approximation algorithm

for MAX-SMTI

3.1 Introduction

A crucial objective of many centralised matching schemes isto find matchings that match as many

agents as possible – without sacrificing stability. As the reader may recall from Section 2.2.2,

finding a maximum stable matching in the SMI setting is straightforward, as all stable matchings

must have the same size. However, allowing agents to haveties in their preference lists changes

everything. As we mentioned in Section 2.2.5, weakly stablematchings for SMTI instances can

have different sizes, and the problem of finding a maximum weakly stable matching (MAX-SMTI)

is NP-hard [74].

We surveyed all of the relevant background for SMTI, and the long sequence of approximation

results for MAX-SMTI in Section 2.2.5. For our purposes in this chapter, we need only recall

that the most recent approximation algorithms for MAX-SMTIwere due to Király, who gave a

3
2 -approximation algorithm for the restricted case of MAX-SMTI in which ties are not allowed to

appear in the men’s preference lists, and a5
3 -approximation algorithm for the general MAX-SMTI

setting (meaning that there are no restrictions on the input). These results effectively superseded

all previously known approximation algorithms for MAX-SMTI, except for a very special case that

was studied by Halldórsson et al [39].

35

3.2Background 36

Our contribution in this chapter is to provide a three phase3
2 -approximation algorithm for MAX-

SMTI (no restrictions on the input), which improves upon Király’s general performance guarantee

of 5
3 . Our work builds from some ideas used in Király’s32 -approximation algorithm (henceforth

Kir ály’s algorithm) in the sense that one of the three phases of our algorithm uses a generalisation

of this algorithm.

3.2 Background

3.2.1 Király’s algorithm

To make our presentation self-contained, we describe a version of Király’s algorithm using the

concept ofpromotionfrom a tie rather than that of extra score used by Király [64]. As input to

this algorithm, the men of the instance have strictly ordered preference lists and the women have no

restriction on the nature of the ties in their preference lists. The idea behind the algorithm is to allow

men to make proposals to the women on their preference lists,as in the Gale/Shapley algorithm,

but with an additional feature. The change is that a manm who is unmatched after proposing to

every woman on his preference list – we use the termexhaustedto describe such a man – is given

one “second chance” in whichm is promoted ahead of each tie in which he appears, and is then

allowed to propose to each woman on his list a second time.

At the start of the algorithm, each man is set to beunmatched, unpromoted, andunexhausted. The

main body of the algorithm is a while loop, which continues aslong as there exists a manm who

is (i) unmatched and (ii) either unpromoted or unexhausted (or both). Ifm is exhausted,m is set

to be promoted. The operation of promotingm involves examining each womanw who findsm

acceptable, and, ifm is in a tie of size at least 2 onw’s list, m is promoted immediately ahead of

this tie onw’s preference list. Furthermore,m is set to be unexhausted and isreactivated, meaning

he will now begin again making proposals to women starting from the beginning of his preference

list. The algorithm proceeds bym proposing to the next womanw on his preference list to whom

he has not yet proposed (or to whom he has proposed only once, if he has been reactivated). When

a manm proposes to a womanw, she rejects her current partner (if any) and acceptsm if m is a

strict improvement for her, taking into account any promotions that may have occurred. Otherwise,

she retains her current partner and rejectsm. On rejection, a man becomes (or remains) unmatched.

3.2Background 37

set every man to be unmatched, unpromoted, and unexhausted

while ∃m such thatm is unmatched and(m is unpromoted orm is unexhausted):

if m is exhausted:

promotem and setm to be unexhausted

reactivatem so that he begins proposing again from the start of his list

w← next woman onm’s preference list /*m proposes tow */

if w is unmatched:

M ←M ∪ {(m,w)} /* w acceptsm */

else ifw prefersm to her partnerm′:

M ←M ∪ {(m,w)} − {(m′, w)} /* w rejectsm′ and acceptsm */

if w is the last woman on the list ofm′:

setm′ to be exhausted

else: /* w rejectsm */

if w is the last woman on his list:

setm to be exhausted

Figure 3.1: Király’s algorithm

When a man has been rejected by every woman on his list, he is set to be exhausted.

When Király’s algorithm terminates, each man is either (i)matched (possibly having been previ-

ously promoted as well), or (ii) promoted, exhausted, and unmatched. A pseudocode description of

Király’s algorithm is given in Figure 3.1.

3.2.2 Gallai-Edmonds decomposition theorem

Phase 2 of our approximation algorithm uses a classical result regarding bipartite matchings known

as theGallai-Edmonds decomposition theorem. In this section we review the parts of this theorem

that we will need in the forthcoming sections. To this end, let G = (U ∪ V,E) be a bipartite

graph andM a maximum cardinality matching ofG. With respect toM , we partition the vertex

set ofG in the following way. A vertexv is said to beodd (respectively,even) if there exists an

odd (respectively, even) length alternating path from someunmatched vertex tov. A vertexv is

said to beunreachableif there is no alternating path tov beginning at some unmatched vertex. The

following Gallai-Edmonds decomposition theorem providesan important characterisation of the set

3.3The approximation algorithm 38

of maximum cardinality matchings ofG with respect to this vertex partition [70, 45].

Theorem 3.2.1 (Gallai-Edmonds decomposition) LetG = (U ∪V,E) be a bipartite graph andM

be a maximum cardinality matching forG. LetE ,O, andU be the set of even, odd, and unreachable

vertices as defined above with respect toG andM . Then

1. E ,O, andU are pairwise disjoint. Every maximum matching ofG partitions the vertex set of

G into the same sets of even, odd, and unreachable vertices.

2. In any maximum-cardinality matching ofG, every vertex inO is matched with some vertex

in E , and every vertex inU is matched with another vertex inU . The size of a maximum-

cardinality matching is|O|+ |U|/2.

3. There is no edge inG connecting a vertex inE with a vertex inU .

We note that the Gallai-Edmonds decomposition of a bipartite graph can be obtained as a by-product

of a maximum cardinality matching algorithm.

3.3 The approximation algorithm

Our approximation algorithm consists of 3 phases. A pseudocode description is given in Figures

3.2 and 3.3. In general, multiple calls are made to phases 1 and 2, as phase 1 may pass control

to phase 2 and vice versa. Control is passed to phase 3 at most once. In the first phase, we use

an approach somewhat similar to the Király algorithm, adapted to take into account the ties in the

men’s preference lists. In this phase, men again may become promoted, exhausted, and matched,

but may also enter a different state in which they becomestalled. The meaning of this state will

become clear in the description of phase 1 below. Prior to calling the phase 1 algorithm for the first

time, each man is set to be unmatched, unpromoted, unexhausted, and unstalled, and the matching

M is initialised to be empty.

3.3.1 Phase 1

For ease of exposition, we think of the entries on a man’s preference list as being a series of ties;

some ties may be of size exactly one. In the first phase of the algorithm, the men iteratively make

3.3The approximation algorithm 39

M ← ∅
set all men to be unmatched, unpromoted, unexhausted, and unstalled

Phase 1:

while ∃m such thatm is unmatched and unstalled and(m is unpromoted orm is unexhausted):

if m is exhausted:

promotem and setm to be unexhausted

reactivatem, setm’s current tie to be his first choice

t←m’s current tie

if |t| ≥ 2:

if t contains exactly one unmatched womanw:

promotew ahead oft

else ift contains no unmatched woman:

breakt arbitrarily

else:

setm to be stalled

else:

w← only woman int /* m proposes tow */

if w is unmatched:

M ←M ∪ (m,w) /* w acceptsm */

unstall the appropriate men, if any

else ifw prefersm to her partnerm′:

M ←M ∪ {(m,w)} − {(m′, w)} /* w rejectsm′ and acceptsm */

if w is the last woman on his list:

setm′ to be exhausted

else: /* w rejectsm */

if w is the last woman on his list:

setm to be exhausted

if the setS of stalled men is empty:

return M

else:

invoke phase 2

Figure 3.2: Phase 1 of the approximation algorithm.

3.3The approximation algorithm 40

Phase 2:

Construct the phase-2 graphG = (U ∪ V,E)

N ← maximum cardinality matching inG

identify the setsE ,O, andU
N ′← subset ofN obtained by removing all pairs

(m,w) such thatm ∈ O andw ∈ E
if N ′ = ∅:

invoke phase 3

else:

for (m,w) ∈ N ′:

promotew ahead ofm’s current tie /*m proposes tow */

M ←M ∪ (m,w)

setm to be unstalled

unstall all men inU who are unmatched inN

invoke phase 1

Phase 3:

for (m,w) ∈ N /* m proposes tow */

M ←M ∪ (m,w)

return M

Figure 3.3: Phases 2 and 3 of the approximation algorithm.

3.3The approximation algorithm 41

proposals to the women on their preference lists in a similarway to the Király algorithm. The main

body of this phase is again a while loop, which continues as long as there exists a manm who is

(i) unmatched and unstalled, and (ii) unpromoted or unexhausted (or both). In general, there may

be many men who satisfy the loop condition, in which case the choice ofm is made arbitrarily. If

m is exhausted, he is promoted, set to be unexhausted, and isreactivated, precisely as described

in the Király algorithm. Next, we lett denote the first tie onm’s preference list containing a

womanw to whomm has not yet proposed (or to whom he has proposed only once, if he has been

reactivated) . We refer tot asm’s current tie. The algorithm then proceeds based on the following

cases concerningt. The first case (i) is if the size oft is at least 2. Ift also contains exactly one

unmatched womanw, w is promoted ahead oft on m’s preference list. If insteadt contains no

unmatched women,t is broken arbitrarily onm’s preference list, creating a total order of these

women to replacet on his list. Otherwise,t must contain at least 2 unmatched women, andm is set

to be stalled. The second case (ii) is if the size oft is exactly one. In this casem proposes tow, the

only woman int. When a manm proposes to a womanw, she accepts ifm is a strict improvement

for her, taking into account any promotions that have been made. Otherwise, she rejectsm. When

an unmatched womanw becomes matched, the men who, as a result, have now just one unmatched

woman in their current tie are unstalled. As before, when a man has been rejected by every woman

on his preference list, he is set to be exhausted.

The primary task of phase 1 ends with the termination of this while loop. At this point in the

execution of the approximation algorithm every manm is in exactly one of three categories: (i)

m is matched to an acceptable woman (and possibly is promoted as well), or (ii) m is exhausted,

promoted and unmatched, having been rejected by every womanon his preference list despite his

promotion, or (iii)m is stalled.

If the setS of stalled men is empty, the algorithm returns the current matching and halts. Otherwise,

we proceed to phase 2.

3.3.2 Phase 2

The goal of the algorithm in this phase is to attempt to match acertain subset of the stalled men.

We construct a bipartite graphG = (U ∪ V,E) with U being the set of men inS andV being the

set of unmatched women appearing in the current tie of at least one man inS. We refer to these

3.3The approximation algorithm 42

men and women and the vertices ofG representing them interchangeably. The set of edges are

those (man,woman) pairs(m,w) such thatw ∈ V appears inm’s current tie. We call this graph the

phase-2 graph. The algorithm then computes a maximum cardinality matching N in G.

We proceed by removing selected pairs fromN in the following way. We identify the setsE , O,

andU of vertices as described according to the Gallai-Edmonds decomposition theorem in Section

3.2.2. All pairs inN consisting of a manm ∈ O and a womanw ∈ E are removed fromN ,

yielding a new matchingN ′ ⊆ N . One of the crucial properties ofN ′ (proved in Lemma 3.4.2) is

that, for each manm who is matched inN ′, if w1, w2, . . . wt are the unmatched (inM) women in

m’s current tie, thenw1, w2, . . . , wt are also matched inN ′. This important property ofN ′ is key

to the establishment of the performance guarantee of the algorithm.

If N ′ is empty, we proceed to phase 3. Otherwise, for every pair(m,w) ∈ N ′, w is promoted ahead

of m’s current tie. Manm then proposes tow, who accepts because she is unmatched inM , and

this pair is added toM . All the men matched inN ′ are now set to be unstalled.

At this point in phase 2, the assignment of any man not inS has remained unchanged, as the

matching has changed only by matching previously unmatchedwomen to men inS. However, the

situation of the men who were inS at the beginning of phase 2 has, of course, changed. We claim

(proved in Lemma 3.4.2) that those menm remaining inS fall into one of two categories: (i)m

was matched inN , is not matched inN ′, and still has at least 2 unmatched women in his current

tie, or (ii) m was unmatched inN and every woman in his current tie is now matched inM . The

men in (ii) are set to be unstalled, and the algorithm returnsto phase 1.

3.3.3 Phase 3

Phase 3 takes as input the current matchingM along with the matchingN constructed in the

execution of phase 2 that passed control to phase 3. The algorithm arrives at phase 3 if and only

if the matchingN ′ of phase 2 is empty. We will show (in Lemma 3.4.1) that this implies thatN

matches every man inS. The algorithm terminates after the man in each pair inN proposes to

his partner inN – all of these women are single – and these pairs are added toM . The current

matchingM is returned.

3.4Correctness 43

3.4 Correctness

Let us establish a few key properties of the algorithm, and verify certain claims made in the de-

scription of the pseudocode.

Lemma 3.4.1 Let S denote the set of stalled men at the start of an arbitrary execution of phase

2 of the approximation algorithm. If the matchingN ′ constructed in this call is empty, then the

corresponding maximum cardinality matchingN matches every man inS.

Proof SupposeN ′ is empty, and that a manm is unmatched byN . Letw be an arbitrary neighbour

of m in G. Sincem is not matched inN , m is even (i.e.m ∈ E), and thereforew is odd (w ∈ O).

SinceN is maximal,w was matched to a manm′ in N , who therefore must also be even. But this

implies the pair(m′, w) could not have been removed fromN , as it consists of an even man and an

odd woman.2

Corollary 3.4.1 Phase 3 of the approximation algorithm finds a matching that matches every man

who was inS in the preceding execution of phase 2.

Proof By Lemma 3.4.1, when control of the algorithm reaches phase 3, every man inS is matched,

for control is passed to this point only ifN ′ is empty. 2

Lemma 3.4.2 establishes the key properties of the matchingsN andN ′ constructed in phase 2 of

the approximation algorithm.

Lemma 3.4.2 Let m be a stalled man in the setS with current tiet at the start of an arbitrary

execution of phase 2. Then, exactly one of the following is true ofm when that execution of phase

2 ends (i.e., the instant before eitherinvoke statement in phase 2 is executed).

1. m was matched inN ′, som is now matched inM to a woman int, and every woman int is

matched inM .

2. m was matched inN but not inN ′, m’s current tie is stillt, and there are at least two women

in t who are still unmatched inM .

3.4Correctness 44

3. m was unmatched inN , m’s current tie is stillt, and every woman in his current tie is now

matched inM .

Proof (1) Supposem was matched inN ′. Then,m was an even or unreachable vertex with respect

to M . Therefore, all neighbours ofm in G are either odd or unreachable, and could not have been

deleted fromN , for only even women are removed fromN . It follows that all ofm’s neighbours

are inN ′, and therefore they all receive proposals in this executionof phase 2, and are matched in

M .

(2) If insteadm is matched to a womanw in N but is unmatched inN ′, thenm was removed from

N because he is an odd vertex. We establish the claim by showingthere is another even woman

w′ 6= w who is adjacent tom and is unmatched inN ′ as well. To see this, consider the path of odd

length that makesm an odd vertex. This path cannot reach him via his partner in the matching, for

alternate edges in that path would have to be edges in the matching. Hence the first edge in the path

would be in the matching (since the last edge is), contradicting the fact that the starting vertex in

the path must be unmatched. Therefore this path must reach him from another neighbouring vertex

w′, which must be even. This woman is unmatched inN ′, for she can only be matched to an odd

man inN or unmatched inN .

(3) Finally, if m is unmatched byN he is an even vertex. All women in his current tie are therefore

odd vertices, are matched inN becauseN is maximal, and could not have been removed fromN .

Therefore, these women are all matched inN ′ and all receive proposals in this execution of phase

2, and hence are matched inM .

Having considered every possibility of the outcome ofm’s participation in phase 2, the lemma is

established.2

Lemma 3.4.3 On termination of the approximation algorithm, any man who remains unmatched

has been promoted, and has been rejected by every woman on hislist even after becoming promoted.

Proof The execution of the algorithm can only halt in one of two places. The first place is at the

end of phase 1, on the condition that there are no stalled men.This implies that every unmatched

man is promoted and has still been rejected by every woman on his list. The other point at which

3.4Correctness 45

the algorithm may terminate is in phase 3. Now, control reaches phase 3 only if, in phase 2, it is

discovered thatN ′ is empty, implying thatN matches every man inS by Corollary 3.4.1. Notice

that when this happens nothing is done in phase 2 to modify theassignment of any agent, rather

phase 2 simply passes control to phase 3, which matches everyman inS. Hence, the unmatched

men are those who were unmatched after the final call to phase 1, and, as described above, they

must have become exhausted while promoted.2

Lemmas 3.4.4 and 3.4.5 establish the stability of the matching output by the approximation algo-

rithm.

Lemma 3.4.4 Suppose a womanw becomes matched to a manm at some point in the execution of

the approximation algorithm. Thenw only rejectsm if she accepts a proposal from a man ranked

at least as highly asm onw’s (original) preference list.

Proof Matched women can only change their partner in one place in the approximation algorithm,

and that is when receiving a proposal in phase 1 from a man theystrictly prefer, possibly after

promotions, to their current partner. This new suitor must be ranked at least as highly asw’s current

partner onw’s original preference list.2

Lemma 3.4.5 The matchingM returned at the end of the approximation algorithm is a stable

matching.

Proof Suppose that(m,w) blocksM . The essence of the approximation algorithm from a man’s

point of view is a left-to-right sweep of his preference listin which, if necessary, he becomes

promoted and again makes another left-to-right sweep of hispreference list. Hence, form to prefer

w, he must have proposed to her at least once, whether it be in phase 1 or phase 2 (he cannot have

proposed to her in phase 3, for otherwise they would be matched inM). The fact thatw has rejected

m along with Lemma 3.4.4 implies thatw does not preferm to her current partner inM , and hence

(m,w) does not blockM . 2

Lemma 3.4.6 The approximation algorithm runs inO(n3/2m) time, wheren is the sum of the

numbers of the men and women andm is the sum of the lengths of the preference lists.

3.5The performance guarantee 46

Proof The algorithm essentially constitutes one or two partial orcomplete left to right sweeps of

the men’s preference lists, interleaved with calls to phase2. The total number of calls to phase 2

is bounded by the number of men, as each call to phase 2 either strictly increases the size ofM

or passes control to phase 3, in which phase the algorithm terminates. Let|V | and|E| denote the

numbers of vertices and edges, respectively, in the phase-two graph. Any one execution of phase

2 requires a total ofO(
√

|V ||E|) = O(
√
nm) time, as the construction ofN is the dominant step

of phase 2. In the worst case,Ω(n) calls could be made to phase 2, each of which computes a

matchingN of sizeΩ(n) but a matchingN ′ of sizeO(1). These successive calls to phase 2 would

clearly dominate the complexity, yielding a bound ofO(n3/2m). 2

3.5 The performance guarantee

For a given instance of MAX-SMTI, letM be the stable matching returned by the approximation

algorithm and letMopt denote an optimal stable matching for a given instance of MAX-SMTI.

Consider the symmetric differenceM ⊕ Mopt of these two matchings. The components of the

underlying graph ofM ⊕Mopt consist of alternating cycles and paths. Each cycle component in

M⊕Mopt is of even length, so the ratio ofM -edges toMopt-edges in these components is one. For

an alternating path component, the ratio ofMopt-edges toM -edges is always at most 3/2 except for

a component that is a path of length 3 with its endpoints inMopt. Therefore, if we can establish

thatM ⊕Mopt contains no such path, we will have shown that the ratio ofMopt-edges toM -edges

in each component is at most 3/2, establishing that the algorithm is a 3
2 -approximation algorithm.

Lemma 3.5.1 is the missing piece of the puzzle to establish the performance guarantee.

Lemma 3.5.1 LetP3 = w′ −m− w −m′ be an alternating path inM ⊕Mopt with (m,w) ∈M

and(m,w′), (m′, w) ∈Mopt (as described in Figure 3.4). Then, the following facts hold.

(i) The manm′ in P3 must be exhausted and promoted.

(ii) The manm in P3 was never promoted by the approximation algorithm.

(iii) Womanw in P3 strictly prefersm tom′ in her original preference list.

(iv) Manm in P3 is indifferent betweenw andw′ in his original preference list.

3.5The performance guarantee 47

Figure 3.4: AP3 in M ⊕Mopt. Dashed edges belong toMopt, the undashed edge toM .

(v) Manm′ proposed to womanw prior to the end of the final execution of phase 1 and was

rejected by her. Hence,w is matched prior to any potential call to phase 3.

Proof (i) This follows from Lemma 3.4.3 and the fact thatm′ is unmatched inM . (ii) Sincem

has an unmatched womanw′ on his preference list, he could never have become exhausted, for w′

cannot have received a proposal. (iii) Ifw strictly prefersm′ to m, then(m′, w) is a blocking pair

for M , a contradiction. If, instead, she were indifferent between these two men, she could not have

rejectedm′, who, by Lemma 3.4.3, must have proposed tow at some point after being promoted.

But at that momentw was matched tom or someone ranked lower, andm was never promoted.

(iv) If m strictly prefersw′ to w, then(m,w′) blocksM . But by (iii), m forms a blocking pair

with w in Mopt if he strictly prefersw to w′. (v) Every man who participates in phase 3 becomes

matched, hencem′ did not participate in phase 3, and since no matched man becomes unmatched

during phase 3 or phase 2, manm′ was unmatched at the end of the final call to phase 1. By Lemma

3.4.3,m′ proposed tow even after becoming promoted, but since he is single inM , she must have

rejected him. Hence,w is matched to someone ranked at least as highly asm at the final call to

phase 1.2

Now, we arrive at the contradiction. Consider again the pathP3 as shown in Figure 3.4. Since

matched women never become unmatched, manm always had womanw′ unmatched on his pref-

erence list, and by Lemma 3.5.1 (iv) she is tied withw. In what phase of the algorithm canm have

become matched tow? It cannot have been in phase 1, for the phase 1 algorithm doesnot allow

him to propose tow, regardless of whether or notw is matched, because ofw′ being tied withw

3.6Tightness of the performance guarantee 48

m1 : w2 w3

m2 : (w1, w2)
m3 : w1

w1 : m2 m3

w2 : (m1,m2)
w3 : m1

Figure 3.5: An instance of SMTI that yields a performance ratio of 3/2.

and unmatched. Butm cannot become matched tow in some call to phase 2 either, for the fact

thatw′ is unmatched at the end of the algorithm implies she could never be inN ′ at any call to

phase 2. By Lemma 3.4.2, this implies that the pair(m,w) would have to be deleted in the creation

of N ′ as well. Thus, we conclude thatm became matched tow in phase 3. However, men only

become matched to unmatched women in phase 3, implying thatw is single at the start of phase 3,

a contradiction of Lemma 3.5.1 (v).

We are forced to conclude thatP3 cannot exist inM ⊕Mopt.

Theorem 3.5.1 The polynomial-time approximation algorithm outputs a stable matching at least

2
3 the size of an optimal stable matching.

3.6 Tightness of the performance guarantee

We give an example to show that this is the tightest bound possible for our approximation algorithm.

Yanagisawa [104] first observed that3/2 was the tightest possible bound, later, Chebolu [16] gave

a different example to establish the tightness of the performance guarantee. We have chosen to

present the example of Chebolu because the particularly symmetric nature of the preference lists

make it very easy to understand. Consider the SMTI instance given in Figure 3.5; note that we use

parentheses to denote a tie in a preference list. One possible execution of the algorithm begins by

m1 proposing tow2, followed by a proposal fromm2 to w1. Manm3 could then propose tow1,

and, although he will become promoted, and propose again, hewill still remain unmatched. The

algorithm stops with a matching containing the pairs(m1, w2) and(m2, w1). An optimal solution,

however, is the perfect stable matching given by the pairs(m1, w3),(m2, w2), and(m3, w1). Notice

that because of the symmetry of the instance, this example still applies if the roles of the men and

women are reversed.

3.7Conclusion and open questions 49

3.7 Conclusion and open questions

We have presented a polynomial-time approximation algorithm for general MAX-SMTI with a

performance guarantee of3/2, improving the previously best known algorithm for this problem. An

obvious open problem is to find a further improved approximation algorithm or to further tighten

the inapproximability bound for MAX-SMTI.

Finally, we note that our approximation algorithm also extends to the Hospitals/Residents with ties

setting (HRT), by a technique involving “cloning” [48], with the same performance guarantee of

3/2.

Chapter 4

Sex-equal stable matchings

4.1 Introduction

How can we find stable matchings that are somehow fair to both the men and the women of an SMI

instance? Of course, this begs the question, what does it mean to treat the men and the women

fairly? A natural definition of fairness could arise from thefollowing intuition. Suppose we could

somehow quantify the overall “happiness” of the men, and theoverall “happiness” of the women.

Then, a stable matching could be considered fair if the happiness of the men is equal, or as close as

possible, to the happiness of the women.

This is precisely the goal of the sex-equal stable marriage problem (SESM) we discussed in Section

2.2.4. Let us recall the definition of this problem. LetI be an arbitrary SMI instance, and letn

denote the number of agents ofI, i.e., the number of men plus the number of women. For agentsa

andb, let pa(b) denote thepositionof agentb on agenta’s preference list.

Define thesex-equality measureδ(·) for a stable matchingM ∈ M as follows.

δ(M) =
∑

(m,w)∈M
pm(w)−

∑

(m,w)∈M
pw(m).

The goal of thesex-equal stable marriage problem(SESM) is to find a stable matchingM ∈ M
that minimizes|δ(M)|, whereM is the set of all stable matchings. SESM is NP-hard [58], and

50

4.1 Introduction 51

the only positive results known for this problem are due to Iwama et al [56], as reviewed in Section

2.2.4.

This chapter explores SESM for SMI instances in which the lengths of the preference lists of the

men and/or women are bounded in length by a constant. We use the notation(α, β)-SESM to

denote the problem of finding a sex-equal stable matching of an SMI instance in which the men’s

(women’s) preference lists have length at mostα (β). We use∞ for the case whenα or β can

be arbitrarily large, so, for example,(l,∞)-SESM means the men’s lists are bounded byl but the

women’s lists can be arbitrarily long.

This chapter specifically explores(α, β)-SESM from the viewpoint of exact exponential-time al-

gorithms and parameterized (FPT) complexity (a review of FPT and parameterized complexity is

given in Section 4.4). There has been much recent interest inexact exponential-time algorithms for

computationally hard problems. We refer the reader to the surveys of Woeginger [101, 102].

Our results are summarized as follows. On the negative side,we show that(3, 3)-SESM isW [1]-

hard. This strengthens the NP-hardness results of Kato [58]. Furthermore, we show that our hard-

ness result is “tight” by giving a polynomial-time dynamic programming algorithm for(2,∞)-

SESM and(∞, 2)-SESM. On the positive side, we give a low-order exponential-time algorithm for

(l,∞)-SESM. To be precise, we give an algorithm with running time1 bounded byO⋆(1.0725n),

O⋆(1.1503n), O⋆(1.2338n), . . . for l = 3, 4, 5, By reversing the roles of the men and the

women, this algorithm applies to(∞, l)-SESM as well.

Our algorithm is built on a number of new observations regarding the rotation poset and the rotation

digraph (Hasse diagram) of an(l,∞)-SESM instance (see Section 2.2.3 for a review of the struc-

tural results for SMI). We show that, in a formal sense, when the number of rotations in the rotation

posetΠ is at most a certain threshold, then a brute-force algorithmthat enumerates all closed sub-

sets of the rotations ofΠ suffices to find a SESM. Otherwise, if the number of rotations exceeds this

threshold, then we show that the rotation digraphDΠ must besparse. We then use existing results

concerning sparse graphs to design an exponential-time algorithm with a running time as described

above.

We reviewed the structural results for SMI in Section 2.2.3,and we shall rely on these results quite

heavily in this chapter. In the next section, we review theseresults and also cover some of the finer

1We use the standardO⋆ notation that suppresses polynomial factors in any terms toanalyze the running time of an
exponential-time algorithm.

4.2Further structural results for SMI 52

structural details omitted from Section 2.2.3 that we specifically require only in this chapter.

4.2 Further structural results for SMI

4.2.1 The number of men

As we discussed in Section 2.2.2, Gale and Sotomayor [31] showed all stable matchings of an

SMI instance match exactly the same subset of the agents. Hence, we may assume without loss

of generality that those agents who are never matched in a stable matching are discarded from the

instance. These agents can never affect the sex-equality measure of a stable matching, and thus can

be ignored. A consequence of this is that the number of remaining men must equal the number of

remaining women. Henceforth we letn denote the number of men plus the number of women of

this remaining instance in which all unmatched agents have already been discarded.

4.2.2 Rotations, rotation posets, and SESM

The rotation posetΠ

For an arbitrary SMI instanceI, we letM0 andMz denote the man- and woman-optimal stable

matchings ofI, respectively, andΠ = (R,�) the rotation poset ofI. For a subset of rotations

R′ ⊆ R, we denote byΠ[R′] the partially ordered set induced byR′. The canonical reference for

the following details regarding rotations is the monographof Gusfield and Irving [36, Chapter 3].

Let ρ = ((m0, w0), . . . , (mr−1, wr−1)) be a rotation. We say thatρ movesmi down from wi to

wi+1 andmoveswi up frommi tomi−1. If w is eitherwi or is strictly betweenwi andwi+1 in mi’s

list, thenρ movesmi beloww. Similarly,ρ moveswi abovemi if m ismi or is strictly betweenmi

andmi−1 in wi’s list.

Fact 4.2.1 (Gusfield and Irving [36]) LetΠ be the rotation poset of an arbitrary SMI instance.

Then,

1. For any manm and womanw, there is at most one rotation that movesm down tow, andw

up tom. Furthermore, there is at most one rotation that movesm fromw.

4.2Further structural results for SMI 53

2. For any manm and womanw, there is at most one rotation that movesw to a man strictly

abovem in w’s preference list.

The rotation digraph DΠ and the underlying graph GΠ

We letDΠ denote the rotation digraph ofΠ (recall that this is the directed Hasse diagram ofΠ).

There is a key characterisation of the arcs ofDΠ that is given by the fact below.

Fact 4.2.2 (Gusfield and Irving [36]) LetDΠ denote the rotation digraph of an arbitrary SMI

instance.

1. If (m,w) ∈ ρ, andρ′ is the (unique) rotation that movesm to w, then(ρ′, ρ) is a directed

edge inDΠ. In this case,ρ′ is called a type-1 predecessor ofρ.

2. If ρ movesm beloww, andρ′ 6= ρ is the (unique) rotation that movesw abovem, then(ρ′, ρ)

is a directed edge inDΠ. In this case,ρ′ is called a type-2 predecessor ofρ.

3. Every arc(ρ′, ρ) ∈DΠ satisfies either (1) or (2) (or both) for somem, w.

When referring toDΠ we will sometimes find it useful to consider the arcs ofDΠ as being undi-

rected. So, we letGΠ denote the undirected graph obtained by replacing every directed arc ofDΠ

with an undirected edge. We also take a moment to remark that we refer to the rotations ofΠ and

the vertices ofGΠ andDΠ as both rotations and vertices interchangeably. The meaning should

always be clear from the context.

Weighted rotations and weighted subsets

Recall the goal of SESM is to find a stable matchingMS minimizing the absolute value of

δ(M) =
∑

(m,w)∈M
pm(w)−

∑

(m,w)∈M
pw(m).

We sometimes use theδ notation for a closed subset of rotationsS, so thatδ(S) provides a shorthand

for δ(MS), whereMS is the stable matching obtained by eliminating the rotations inS.

4.3Series-parallel graphs 54

For a rotationρ = (m0, w0), (m1, w1), . . . , (mr−1, wr−1), Iwama et al [56] define the following

weightw(ρ), which captures the change in sex-equality measure resulting from the elimination of

ρ:

w(ρ) =

r−1
∑

i=0

(pmi
(wi+1)− pmi

(wi))−
r−1
∑

i=0

(pwi
(mi−1)− pwi

(mi))

For a set of rotationsR′, we letw(R′) denote the sum of the weights of the rotations inR′. An

understanding of the following facts is necessary for the methods used in the forthcoming sections.

Fact 4.2.3 (Iwama et al [56]) LetI be an arbitrary SMI instance. Then

1. w(ρ) > 0 ∀ρ ∈ R.

2. δ(M/ρ) = δ(M) + w(ρ) for any stable matchingM and rotationρ exposed inM .

3. For a closed subsetR′, δ(R′) = δ(M0) +
∑

ρ∈R′ w(ρ) = δ(M0) + w(R′).

Notice that in light of Fact 4.2.3 (1), ifδ(M0) > 0, thenM0 must necessarily be the unique sex-

equal stable matching, as the elimination of any rotations will only worsen the sex-equality measure

of the stable matching. We also briefly remark on the important difference betweenw(S) andδ(S).

The notationw(S) refers to the sum of the weights of a (not necessarily closed)set of rotations

while δ(S) is the sex-equality measure of the stable matching obtainedby eliminating a (closed)

subsetS.

4.3 Series-parallel graphs

Our exact algorithm in Section 4.8 relies heavily on the properties of so-calledseries-parallel

graphs. In this section we briefly review the necessary definitions and properties of series-parallel

graphs.

A two-terminal labelled graph(G, s, t) consists of an undirected graphG with two distinct marked

verticess, t ∈ V , wheres is called thesourceandt is called thesink. Theseries compositionof two-

terminal labelled graphs(G1, s1, t1) and(G2, s2, t2), wheres1 ands2 (t1 andt2) are the sources

4.4Parameterized problems, FPT, and W[1]-hardness 55

Figure 4.1: A series-parallel graph and a corresponding SP tree

(sinks) ofG1 andG2, respectively, is the two-terminal labelled graph obtained by identifying t1

with s2. Theparallel compositionof two-terminal labelled graphs(G1, s1, t1) and(G2, s2, t2) is

the two-terminal labelled graph obtained by identifyings1 with s2 and t1 with t2. A graph is a

series-parallel graphif and only if it can be created from single two-terminal edges by a sequence

of series and/or parallel compositions.

An interesting side-effect of the definition of series-parallel graphs is that the way in which the

series-parallel graph is constructed implicitly describes a binary tree, called anSP tree. The leaves

of the SP treeT are the edges ofG, and every internal node ofG is labelled eitherS orP to denote

whether a series or parallel operation was used to join the two series-parallel graphs described by

its children. See Figure 4.1 for an example of a series-parallel graph and a corresponding SP tree.

4.4 Parameterized problems, FPT, and W[1]-hardness

Before presenting the primaryW [1]-hardness result of this chapter, we give a very basic reviewof

the necessary definitions and background of parameterized problems and parameterized complex-

ity. We refer the reader to the texts of Neidermeier [82] and Downey and Fellows [22] for a more

thorough treatment. We begin our basic tutorial with the formal definition of a parameterized prob-

lem. The key point of interest in the definition of a parameterized problem is that it is a decision

problem that asks for a solution of sizeexactlyk, as opposed to saying, for example,at mostk or

at leastk. The formal definition is given as follows.

4.4Parameterized problems, FPT, and W[1]-hardness 56

Definition 4.4.1 (Neidermeier [82]) A parameterized problemL over an alphabetΣ is a set of

pairs (x, k) with x ∈ Σ∗ andk a non-negative integer such that there is nox with (x, k) ∈ L and

(x, k′) ∈ L for somek′ 6= k.

By way of example of a parameterized problem, consider the parameterized versions of Clique and

(l,∞)-SESM given below.

Clique

Input : A graphG = (V,E) and a non-negative integerk.

Question: DoesG contain a complete subgraphC ⊆ V with exactlyk vertices?

(l,∞)-SESM

Input : An (l,∞)-SMI instanceI and a non-negative integerk.

Question: Is there a stable matchingM for I such thatδ(M) is exactlyk?

We continue our brief tutorial with the definition of fixed-parameter tractability.

Definition 4.4.2 (Neidermeier [82]) A parameterized problemL over an alphabetΣ is fixed-parameter

tractable if it can be determined inf(k)nO(1) time whether or not(x, k) ∈ L, wheref is a com-

putable function depending only onk. The corresponding complexity class is called FPT.

The class FPT contains the complexity class P. In addition, many NP-hard problems are known to

lie within FPT, including, for example, the well-known minimum vertex cover problem. However,

this is not true of all NP-hard problems.

As is commonly known, proving that a combinatorial problem is NP-complete provides a proof

that the problem cannot be solved in polynomial-time unlessP = NP. In what follows we explain

the notion of so-called W[1]-hardness, an idea analogous toNP-hardness, which provides the the-

oretical background for formally establishing some notionof fixed-parameter intractability of a

problem. We first define the concept of a parameterized reduction, followed by the definition of the

complexity class W[1].

4.4Parameterized problems, FPT, and W[1]-hardness 57

Definition 4.4.3 (Neidermeier [82]) LetL,L′ ⊆ Σ∗ × N , whereN denotes the positive integers,

be two parameterized problems. We say thatL reduces toL′ by a standard parameterized reduction

if there are functionsf(k) → k′ andg(k) → k′′ fromN toN and a functionh(x, k) → x′ from

Σ∗ ×N toΣ∗ such that:

1. h(x, k)→ x′ is computable ink′′|(x, k)|c time for a constantc and

2. h(x, k) ∈ L if and only if(x′, k′) ∈ L′.

Consider the following examples that distinguish the difference between a ‘classical’ polynomial

time reduction and a parameterized reduction. It is easily seen that a graphG has a vertex cover

of sizek if and only if it has an independent set of sizen − k. Therefore, vertex cover reduces

to independent set in polynomial time. This is not a parameterized reduction, because the derived

instance of independent set has the parameter valuen − k, which does not exclusively depend on

k but also onn. On the other hand, it is easy to see that a graphG has an independent set of size

k if and only if its complement graphG′ has a clique of sizek. This constitutes a parameterized

reduction.

The Weighted 2-CNF-Satisfiability problem, which plays a key role in defining the complexity class

W [1] (given in Definition 4.4.4 below) is defined as follows.

Weighted 2-CNF-Satisfiability

Input : A boolean formulaF in conjunctive normal form, in which every clause ofF has at most

two literals, and a nonnegative integerk.

Question: Is there a satisfying truth assignment forF that has exactlyk variables set to true?

Now we may present the definition of the classW [1].

Definition 4.4.4 (Neidermeier [82])

1. The classW [1] contains all problems that can be reduced to Weighted 2-CNF-Satisfiability

by a parameterized reduction.

2. A parameterized problem is said to be W[1]-hard if the parameterized problem Weighted

2-CNF-Satisfiability can be reduced to it by a parameterizedreduction.

4.5 (3, 3)-SESM isW [1]-hard 58

3. A problem inW [1] that isW [1]-hard is said to be W[1]-complete.

It is known that FPT⊆ W [1], and, if anyW [1]-complete problem were shown to be in FPT,

the result would imply a collapse of complexity classes FPT and W [1], which is thought to be

unlikely. Quite a few well-studied problems are known to beW [1]-hard, including dominating set

and independent set. For our purposes, we need only the following result, which concludes this

section.

Theorem 4.4.1 (Neidermeier [82, Corollary 13.5]) Clique isW [1]-hard.

4.5 (3, 3)-SESM isW [1]-hard

We next describe a parameterized reduction from theW [1]-hard problem Clique to (l,∞)-SESM.

In fact, our reduction will prove W[1]-hardness even for thespecial case of (3, 3)-SESM. The

reduction is inspired by a construction of Johnson and Niemi[57] who reduce an instance of Clique

to an instance of the partially ordered knapsack problem, defined below.

Partially ordered knapsack

Input: Directed acyclic graphG = (V,A), a weightw(v) ∈ Z+ and a valuep(v) ∈ Z+ for each

vertexv ∈ V , a knapsack capacityB ∈ Z+, and a boundC ∈ Z+.

Question: Is there a subsetV ′ ⊆ V , closed under predecessor, such thatw(V ′) ≤ B and

p(V ′) ≥ C?

To make the description of our transformation more easily understood, we review the construction

of Johnson and Neimi. Given an instanceI = (G = (V,E),K) of the Clique problem, they create

an instanceI ′ = (G′ = (V ′, A′), B′, C ′) of the partially ordered knapsack problem as follows.

V ′ = V ∪ E,

A′ = {(v, e) : v ∈ V, e ∈ E, v is an endpoint ofe }
w(v) = p(v) = |E|+ 1 for all v ∈ V ,

w(e) = p(e) = 1, for all e ∈ E,

B′ = C ′ = K(|E|+ 1) +
(

K
2

)

.

4.5 (3, 3)-SESM isW [1]-hard 59

HenceG′ is a bipartite acyclic graph in which each arc is directed from an element ofV to an

element ofE. Each element ofE necessarily has exactly two predecessors, and each elementof V

has the same number of successors inG′ as it has edges incident to it inG. Suppose now thatG has

a clique(VK , EK) of sizeK. Then the set of verticesVK ∪ EK is a closed subset ofG′ of weight

and valueK(|E| + 1) +
(K
2

)

. Suppose instead thatG′ has a closed subsetS′ of weight and value

K(|E| + 1) +
(K
2

)

. Notice that the choice of weights and values forI ′ are such that each element

of V weighs more than the sum of all elements ofE, which have weight and value one. A closed

subset ofG′ that has exactly a weight and value ofK(|E| + 1) +
(K
2

)

must consist ofK vertices

from V and
(

K
2

)

vertices fromE. SinceS′ is closed,S′ corresponds toK vertices fromV with
(K
2

)

edges between them inG, i.e. a clique of sizeK in G.

4.5.1 Reduction idea

Our reduction to SESM will use the transformation of Johnsonand Niemi in the following way.

The idea is to reduce an instanceI of Clique to an instanceI ′ of SESM such that the rotation poset

of I ′ has precisely the same structure as that constructed for thederived partially ordered knapsack

instance above. Our reduction will map everyv ∈ V to a rotationv with weightw(v) = 8|E| + 2,

and every edgee = {vi, vj} of E to a rotatione with predecessorsvi andvj andw(e) = 8. We will

construct our derived instance in such a way that the man-optimal stable matchingM0 for I ′ will

have the property thatδ(M0) = −[K(8|E|+ 2) + 8
(

K
2

)

]. Hence a closed subset of weight exactly

K(8|E| + 2) + 8
(K
2

)

corresponds to a stable matchingMS havingδ(MS) = 0. Since the rotation

poset of our derived instance will have the same structure asthat of the reduction of Johnson and

Niemi, such a closed subset must correspond to a clique of size exactlyK in G. We next describe

this reduction formally.

4.5.2 The parameterized reduction

Step 1: the vertex gadget

For each vertexvi ∈ V , we create4|E| + 1 men{m0
i , m1

i ,. . .,m4|E|
i } and4|E| + 1 women{w0

i ,

w1
i ,. . .,w4|E|

i }. Each of these men will have at most three entries on his preference lists while each

of these women will have exactly three entries on her preference list. However, in this step, we only

4.5 (3, 3)-SESM isW [1]-hard 60

define two entries for each man and woman. The first two entrieson the preference list of a man

mj
i arewj

i andwj+1
i , respectively, wherej + 1 is taken modulo4|E| + 1. The second and third

man on a womanwj
i ’s preference list aremj−1

i andmj
i , respectively, wherej − 1 is taken modulo

4|E| + 1. The third entry of a manmj
i and the first entry of a womanwj

i will be defined below at

a later step. The preference lists created by this step are described below; an underlined star in a

preference list indicates an entry that has not yet been created.

m0
i : w0

i w1
i *

m1
i : w1

i w2
i *

...

m
4|E|
i : w

4|E|
i w0

i *

w0
i : * m

4|E|
i m0

i

w1
i : * m0

i m1
i

...

w
4|E|
i : * m

4|E|−1
i w

4|E|
i

Step 2: the edge gadget

For each edgee = {vr, vs} ∈ E, we create two men{m1
r,s,m

2
r,s} and two women{w1

r,s, w
2
r,s}.

These men and women will each have two agents on their preference lists. The preference lists for

these agents are shown below, where again the blanks denote entries not yet specified.

m1
r,s : w1

r,s *
m2

r,s : w2
r,s *

w1
r,s : * m1

r,s

w2
r,s : * m2

r,s

Step 3: complete the preference lists

For each edgee = {vr, vs} ∈ E, with r < s, we choose two men created in correspondence to ver-

ticesvr andvs by selecting the first manmp
r (respectively,mq

s) from the sorted listm1
r,m

2
r , . . . ,m

4|E|
r

(respectively,m1
s, m

2
s,. . .,m

4|E|
s) whose third choice has not yet been specified. We complete the

preference lists of agentsmp
r , mq

s, w
p+1
r , wq+1

s , m1
r,s, m

2
r,s, w

1
r,s, andw2

r,s as described in the figure

below. The underlining is in place to illustrate which entries are completed by this step.

mp
r : wp

r wp+1
r w1

r,s

mq
s : wq

s wq+1
s w2

r,s

m1
r,s : w1

r,s wq+1
r

m2
r,s : w2

r,s wp+1
s

wp+1
r : m2

r,s mp−1
r mp

r

wq+1
s : m1

r,s mq−1
r mq

r

w1
r,s : mp

r m1
r,s

w2
r,s : mq

s m2
r,s

4.5 (3, 3)-SESM isW [1]-hard 61

After the above step has been performed for every edge, everyagent created in step 2 has had their

preference list completed. However, there will still be a set of womenwj
i created in step 1 who still

have an unspecified first choice. For each of these women, we create a dummy man and a dummy

woman who rank each other first, and placewj
i last on the dummy man’s list and place the dummy

man first onwj
i ’s list. Note there will also be a set of men created in step 1 with an unspecified third

choice on their preference lists; these men only require a total of two women on their lists. This

completes the construction of the agents created in steps 1 and 2 and their preference lists.

Step 4: pad the instance

The final step of the reduction is to pad the instance to appropriately ‘offset’ δ(M0), whereM0 is

the man-optimal stable matching of the derived instance. Tothis end, lett = 8|V ||E| + 2|V | +
2|E| − [K(8|E|+2) + 8

(

K
2

)

] (this expression is intentionally left unsimplified). We create2t men

{x10, x11, . . . , xt0, xt1} and2t women{y10 , y11, . . . , yt0, yt1}. The preference lists of menxi0, x
i
1, yi0, and

yi1 for (1 ≤ i ≤ t) are shown below.

xi0 : yi1 yi0
xi1 : yi1

yi0 : xi0
yi1 : xi1 xi0

The final step of the reduction maps the parameterK toK ′ = 0. Thus we have reduced an instance

I of Clique to an instanceI ′ of SESM. We now prove thatI has a clique of size exactlyK if and

only if I ′ has a stable matchingMS with δ(MS) = K ′ = 0. Our first concern are the properties

of the man-optimal stable matching ofI ′. The first lemma follows immediately from the reduction

and requires no proof.

Lemma 4.5.1 The man-optimal stable matchingM0 for the derived instanceI ′ of SESM matches

every man created in step 1 and step 2 to his first choice. Equivalently, every woman created in step

1 and step 2 is matched to her last choice inM0.

Lemma 4.5.2 LetM0 denote the man-optimal stable matching for the derived instanceI ′. Then,

δ(M0) = −[K(8|E| + 2) + 8
(K
2

)

].

Proof As stated in Lemma 1,M0 matches every man created in step 1 and step 2 to his first choice

and every woman created in step 1 and step 2 to her last choice.Hence the difference in happiness

4.5 (3, 3)-SESM isW [1]-hard 62

of these men and women is|V |(4|E| + 1) + 2|E| − [|V |(12|E| + 3) + 4|E|], which simplifies to

−8|V ||E| − 2|V | − 2|E|. Every dummy man created in step three is matched to his first choice

and his partner inM0 is matched to her first choice, so these agents contribute thesame sum to

the men’s and women’s happiness, respectively, and can be ignored. What remains are the agents

created in step 4. For eachi (1 ≤ i ≤ 2t), the pairs(xi0, y
i
0) and(xi1, y

i
1) must always be matched

together in any stable matching. Therefore, in any stable matchingM ′ for I ′, each such group of

four agents contributes a sum of one toδ(M ′). Since there aret such groups of four, the difference

in the men’s and women’s happiness amongst those agents created in step 4 ist = 8|V ||E| + 2|V | +
2|E| - [K(8|E| + 2) + 8

(

K
2

)

]. Thereforeδ(M0) = −[K(8|E|+ 2) + 8
(

K
2

)

]. 2

Corollary 4.5.1 I ′ has a stable matchingM with δ(M) = K ′ = 0 if and only if there is a closed

subset of the rotation poset ofI ′ weight exactly−[K(8|E|+ 2) + 8
(

K
2

)

]

The next three lemmas establish the structure and nature of the rotations and rotation poset of the

derived instance of SESM.

Lemma 4.5.3 For each vertexvi ∈ I, there exists a rotationρi = (m0
i , w

0
i), (m1

i , w
1
i), . . .

(m
4|E|
i , w

4|E|
i) exposed inM0 with weight8|E| + 2.

Proof SinceM0 matches every man to his first choice, it is easy to verify thatthe successor woman

of any manmj
i in M0 iswj+1

i , wherej+1 is taken modulo4|E|+1, implyingρi is indeed exposed

in M0. The elimination ofρi moves every man down one place to his second choice, decreasing the

sum of the positions of the men’s partners by4|E| + 1, and moves every woman up one place to

her second choice, increasing the sum of the positions of thewomen’s partners by4|E|+1. Hence

ρi has weight8|E|+ 2. 2

Lemma 4.5.4 Let {vr, vs} ∈ E be an edge inI wherer < s. Then, the elimination of bothρr =

(m0
r , w

0
r), (m

1
r , w

1
r), . . . (m

4|E|
r , w

4|E|
r) andρs = (m0

s, w
0
s), (m

1
s, w

1
s), . . . (m

4|E|
s , w

4|E|
s) exposes a

rotationσr,s = (m1
r,s, w

1
r,s), (m

q
r, w

q+1
r), (m2

r,s, w
2
r,s), (m

p
s, w

p+1
s) for somep, q ∈ {0, 1, . . . , 4|E|}

with weight 8.

Proof Suppose(vr, vs) with r < s is an edge ofI. In step 3 of the reduction, two men, saymp
r and

mq
s, whose third choice had not yet been defined, were selected and the preference lists ofmp

r , mq
s,

4.5 (3, 3)-SESM isW [1]-hard 63

wq+1
s , wp+1

r , m1
r,s, m

2
r,s, w

1
r,s, andw2

r,s were completed. After the elimination of rotationsρr and

ρs, the menmp
r andmq

s are matched to the womenwp+1
r andwq+1

s , respectively. Therefore after the

elimination of both of these rotations the successor women of menmp
r andmq

s arew1
r,s andw2

r,s,

respectively. Furthermore, the successor women ofm1
r,s andm2

r,s arewp+1
r andwq+1

s , respectively.

It follows thatσr,s = (m1
r,s, w

1
r,s), (m

q
r, w

q+1
r), (m2

r,s, w
2
r,s), (m

p
s, w

p+1
s) is a rotation whose set of

predecessors is precisely{ρr, ρs}. The elimination ofσr,s moves every man down one place on his

list, and every woman up one place on her list, hence the weight of σr,s is 8. 2

Lemma 4.5.5 The rotation poset forI ′ contains exactly one rotationρi for everyvi ∈ I, and one

rotation σr,s for every edge{vr, vs} such thatr < s in I. The predecessors ofσr,s are exactlyρr

andρs, and the rotationsρi have no predecessors.

Proof By the previous lemmas, it is clear that the rotation poset for I ′ containsρi for everyvi ∈
I, andσr,s for every edge{vr, vs}, such thatr < s, with the predecessors ofσr,s being exactly

{ρr, ρs}. To see that these are precisely the rotations of the rotation poset of the derived instance,

notice that the elimination of all rotationsρi andσr,s assigns every man created in step 1 and step

2 to his last choice. Every dummy agent created in step 3 must always be matched to his/her first

choice in any stable matching, and the same is true of the2t men created in step 4. Hence no other

rotations can exist.2

Lemma 4.5.6 The given instanceI has a clique of size exactlyK if and only if I ′ has a stable

matchingMS with δ(MS) =K ′ = 0.

Proof

The first direction of the proof is almost immediate. Let(VK , EK) be a clique of size exactlyK in

I. Then, the rotations created in correspondence to(VK , EK) from a closed subset of the rotation

poset ofI ′ with weight preciselyK(8|E|+ 2) + 8
(

K
2

)

, which, by Corollary 4.5.1 must correspond

to a stable matching of cost exactlyK ′ = 0.

Now suppose thatI ′ has a SESM of cost exactlyK ′ = 0. Then, again by Corollary 4.5.1, the

closed subset of rotationsS eliminated to obtain such a stable matching has cost exactlyK(8|E|+
2) + 8

(

K
2

)

. Since the rotation poset ofI ′ was constructed in a correspondence to the reduction

4.6 Inapproximability results for SESM 64

of Johnson and Niemi [57],S must containK rotationsρi and
(

K
2

)

rotationsσr,s, but as in the

construction of Johnson and Niemi, such a choice must correspond to a clique of sizeK in G. 2

Theorem 4.5.1 The sex-equal stable matching problem isW [1]-hard, even if both the men’s and

women’s preference lists are of length at most three.

Proof It is clear that the men and the women have preference lists oflength at most 3. Let us

be thorough in verifying the reduction satisfies the requirements of a many-one parameterized re-

duction. Clearly, for a given instance(x, k) of Clique, our derived instancex′ can be computed

easily in|(x, k)|3 time, without any attempt at optimization. Our mappings from the parameterk

are therefore such thatk → k′′ = 1 andk → k′ = 0. Finally, we have established in Lemma 4.5.6

that(x, k) is a ‘yes’ instance if and only if(x′, k′) is as well. 2

4.6 Inapproximability results for SESM

Recall that, for an arbitrary SESM instance, it could be thatan optimal solutionMopt has|δ(Mopt|
= 0. In order to reason about approximability results for this problem, let us define a new optimality

measuref(·) of a stable matchingM to bef(M) = |δ(M)| + 1. Hence the value off(·) is always

greater than zero.

Since theW [1]-hardness of a problem implies NP-hardness as well, a corollary of Lemma 4.5.6 and

Theorem 4.5.1 is that it is NP-complete to decide whether a stable matching instance admits a stable

matchingM such thatf(M) = 1. The following theorem shows that there is no polynomial-time

approximation algorithm with a performance guarantee (measured according tof(·)) less than two.

Theorem 4.6.1 The sex-equal stable matching problem is NP-hard to approximate (relative to the

measuref(·)) within a factor less than two, even if the men’s and women’s preference lists are of

length at most three.

Proof

For a contradiction, letI be an arbitrary stable matching instance, andA a c-approximation algo-

rithm with c < 2 for SESM. Consider a stable matchingM returned by an execution of algorithm

4.7Polynomial-time algorithm for (2,∞)-SESM 65

A on the instanceI. If I admits a stable matchingM ′ with f(M ′) = 1, thenM satisfiesf(M) <

2, i.e. f(M ′) = 1, sincef(M ′) must be integral. On the other hand, ifI does not admit a stable

matchingM with f(M) = 1, thenM ′ must satisfyf(M ′) >= 2.

Hence,A decides an NP-complete problem in polynomial-time, a contradiction, unless P = NP.2

4.7 Polynomial-time algorithm for (2,∞)-SESM

The polynomial-time solvability of(2,∞)-SESM follows almost immediately from the following

lemma.

Lemma 4.7.1 Let I be a (2,∞)-SESM instance, andΠ = (R,�) its rotation poset. Then, the

relation� is the empty set. In other words,DΠ has no edges.

Proof Suppose for a contradiction that there are rotationsρ′, ρ ∈ R with ρ′ ≺ ρ. By Fact 4.2.2,

ρ′ is either a type-1 or a type-2 predecessor ofρ (or both). Suppose thatρ′ is a type-1 predecessor

of ρ. By definition, there exists(m,w) ∈ ρ, such thatρ′ is the unique rotation that movesm to w.

This implies thatw ism’s second (and therefore last) choice on his preference list. Thusρ does not

exist.

Suppose instead thatρ′ is a type-2 predecessor. By definition there is (i) a manm and a womanw

such thatρ movesm beloww, and (ii)ρ′ movesw abovem. Sincem’s preference list has length

at most two, (i) forces us to conclude that(m,w) ∈ ρ andw ism’s first choice. But (ii) forces us to

conclude thatρ′ matchesm to w. This cannot be the case ifw ism’s first choice. 2

Now we describe the algorithm. LetR = ρ1,. . .,ρk be the set of all rotations forI, all of which

must be exposed in the man-optimal stable matching by Lemma 4.7.1. LetW = w(ρ1) + w(ρ2)

+ . . . + w(ρk). Using the standard dynamic programming algorithm for the subset-sum problem,

we can determine ifΠ has a (closed) subset of weightk, for eachk ∈ {0, 1,. . .,W} in O(nW)

time. Since the weight of each rotation isO(n), W is polynomially bounded. Hence a closed

subsetS minimizing δ(S) can be computed in polynomial-time. Clearly, this algorithm works for

(∞, 2)-SESM instances by reversing the roles of the men and the women.

4.8An exact algorithm for (l,∞)-SESM 66

Theorem 4.7.1 Let I be a (2,∞)-SESM (or(∞, 2)-SESM) instance. Then, a sex-equal stable

matching forI can be found in polynomial-time.

4.8 An exact algorithm for (l,∞)-SESM

4.8.1 The structure ofDΠ

Properties ofDΠ

In this section we describe an exact exponential-time algorithm for SESM when the men’s pref-

erence lists are bounded in length by a constantl ≥ 3 (if l ≤ 2 then we can solve the problem in

polynomial time). Our method hinges on the observation thatwhen the number of rotations in the

rotation digraphDΠ is at most(5−
√
24)(l−2)n (the reason for this particular factor ofn becomes

apparent later on), a brute-force algorithm that enumerates all subsets of the vertices ofDΠ suffices

to find a SESM. Otherwise, if the number of rotations exceeds that factor ofn, we prove thatGΠ

must have bounded average degree. This allows us to use existing results concerning graphs with

bounded average degree to design a moderately exponential time algorithm. In particular, we will

apply the following theorem, which is due to Edwards and Farr[25], toGΠ.

Theorem 4.8.1 (Edwards and Farr [25]). LetG be an undirected graph withn vertices andm

edges of average degreed ≥ 4, or a connected graph of average degreed ≥ 2. Then, inO(nm)

time, a series-parallel induced subgraphP ofG can be found such that|P | ≥ 3n/(d+ 1). Hence,

if N = G− P , then|N | ≤ (d− 2)n/(d + 1).

To see how this theorem may be used we will establish several key properties regardingDΠ. We

establish a few bounds on the number of vertices and edges inGΠ in terms of the numbern of

agents of the instance, the lengthsl of the men’s preference lists, and the numberr of rotations in

DΠ. We begin by bounding from above the number of rotations, i.e. the number of vertices inDΠ,

and the number of edges inDΠ.

Lemma 4.8.1 Let I be an(l,∞)-SMI instance, andDΠ its rotation digraph. Then,DΠ contains

at most(l − 1)n/4 rotations (vertices).

4.8An exact algorithm for (l,∞)-SESM 67

Proof Any mutually acceptable (man,woman) pair can appear as a pair in at most one rotation in

DΠ, except for a pair(m,w) such thatw is ranked last onm’s preference list, which cannot appear

in any rotation. A rotation must always have at least two (man,woman) pairs. It follows that each

rotation accounts for at least two distinct (man,woman) pairs, and the woman in such a pair may

not be last on the man’s preference list. Since there aren/2 men,(l − 1)n/4 is an upper bound on

the number of rotations.2

Lemma 4.8.2 Let I be an(l,∞)-SMI instance, andDΠ its rotation digraph. Then, the number of

edges ofDΠ is at most(l − 2)n/2.

Proof Consider any edgee = (ρ′, ρ) ∈ DΠ. If ρ′ is a type-1 predecessor ofρ (and possibly also a

type-2 predecessor), then by definition there exists a pair(mi, wi) in ρ such that the elimination of

ρ′ matchesmi to wi. Notice thatwi can neither bemi’s first or last choice. If insteadρ′ is a type-2

predecessor ofρ, then there is a pair(mi, wi) in ρ such thatρ movesmi below a womanw 6= wi

andρ′ is the unique rotation that movesw abovemi. Notice in this case as well,w cannot be the

first or last choice ofm′.

Therefore, for every edge ofDΠ we are able to identify a distinct (man,woman) pair(m,w) such

thatw is neitherm’s first nor last choice. Hence the number of edges ofDΠ is bounded above by

(l − 2)n/2. 2

Recall that our ultimate goal is to apply Theorem 4.8.1 toGΠ in a particular way as a part of

the algorithm of this section. But, notice that Theorem 4.8.1 does not apply to graphs that are

disconnected and have average degree less than 4. We will findit useful later on to know that we

can connectGΠ as described in the following lemma.

Lemma 4.8.3 Let G be a graph withc components andm > 0 edges. Then by adding a single

vertex andc+ 1 edges toG a new connected graphG′ may be formed with average degree≥ 2.

Proof Suppose thatG hasr vertices, so thatm ≥ r − c. Add a new vertexv together with an

edge connectingv to a vertex in each component ofG, and a second edge connectingv to a second

vertex in one particular component. (Sincem > 0 some component has more than one vertex.)

4.8An exact algorithm for (l,∞)-SESM 68

Then the new graphG′ is connected, hasr′ = r + 1 vertices,m′ = m+ c+ 1 edges, and average

degree

d′ =
2m′

r′
=

2(m+ c+ 1)

r + 1
≥ 2(r + 1)

r + 1
≥ 2.

2

Dealing with small components

The algorithm we describe in the forthcoming sections will rely on the fact thatGΠ has no compo-

nents withc vertices or fewer, wherec is a fixed constant independent of the size of the input. In

what follows we will show that we can use dynamic programmingto preprocess the constant-sized

components ofGΠ in polynomial-time, allowing to make the assumption that nosuch components

are present inGΠ.

Let Q = Q1, . . . Qt be the components ofGΠ with at mostc0 vertices, wherec0 is an arbitrary

constant. For eachQi, construct a binary vectorXi, whosejth component is 1 if and only if

there exists a closed subset ofΠ[Ci] with weight exactlyj (recallΠ[Ci] is the partially ordered set

induced byCi). The length of this vector is polynomially bounded (for example, the sum of the

weights of all of the rotations inΠ suffices). SinceQi has constant size, computing this vector takes

polynomial-time.

The next step is to compute a sequence ofcombined binary vectorsYk such that thejth component

of Yk is 1 if and only if there exists a closed subset ofQ1 ∪ . . . ∪ Qk with weight exactlyj. To

begin, setY1 = X1. Suppose now thatYi is known for somei (1 ≤ i < t). We compute thejth

entry ofYi+1 (denotedY j
i+1) by the following formula:

Y j
i+1 = Y j

i ∨
j
∨

l=0

(Y l
i ∧Xj−l

i+1).

Hence the non-zero components ofYt are exactly the weights attainable by the closed subsets ofQ.

The setQ may now be discarded fromGΠ, giving a new graphG′
Π.

This procedure is invoked in the step labeled by (1) in the pseudocode description of the algorithm

in Figure 4.2. The vectorYt is stored and used later (specifically, in Section 4.9) when aclosed

subset corresponding to a sex-equal stable matching for the(original) instance is computed.

4.8An exact algorithm for (l,∞)-SESM 69

4.8.2 The algorithm

Algorithm idea

The general idea of the algorithm is the following. IfΠ contains sufficiently few rotations, the

algorithm finds a sex-equal stable matching by brute force. Otherwise, we use Theorem 4.8.1 to

partitionGΠ into two parts,N andP , whereP is a series-parallel graph (defined in Section 4.3) and

the size ofN is bounded. The algorithm then decides which rotations fromN should be eliminated

by explicitly trying all subsetsN ′ of N . Notice of course that at least one such subset is a maximal

subset ofN that is contained in an optimal closed subset ofΠ. For a fixed subset ofN ′, it may be

that there existsρ ∈ N − N ′ such that, inDΠ, ρ precedes someρ′ ∈ N ′, in which case we may

immediately rejectN ′. Otherwise, ifN ′ is valid in this sense, then some rotations fromP , namely

those that precede a rotation inN ′, areforcedalso to be eliminated. Other rotations, namely those

with a predecessor inN −N ′ cannot be eliminated and areforbiddenfor this choice ofN ′. Notice

that sinceN ′ is valid, the sets of forced and forbidden rotations are disjoint. All other rotations inP

are neither forced nor forbidden. Our goal is to find a subsetP ′ ∪Q′ such thatP ′ ⊆ P andQ′ ⊆ Q

(recallQ is the set of components of size at mostc0) such thatP ′ ∪Q′ extendsN ′ optimally in the

following way:

(i) N ′∪P ′∪Q′ is a closed subset ofΠ. Note that this is equivalent to saying thatP ′ includes every

forced rotation and no forbidden rotations, andQ′ is a closed subset ofQ.

(ii) N ′ ∪ P ′ ∪ Q′ is anoptimal extensionof N ′ i.e. P ′ ∪ Q′ minimizesδ(N ′ ∪ P ′ ∪ Q′) over all

choices ofP ′ andQ′ that satisfy (i).

In Section 4.9 we will show that a choice ofP ′ ∪ Q′ that satisfies the above criteria can be found

in polynomial time. Hence the running time of the algorithm will be within a polynomial factor of

2|N |. We next describe the algorithm in detail.

Formal description of the algorithm

The algorithm, which is outlined in Figure 4.2, takes as input an(l,∞)-SMI instance. It consists of

two phases, the first is the preprocessing phase, which sets the stage for the second phase, which is

4.9Computing P ′ ∪ Q′ in polynomial time 70

the main loop of the algorithm.

The preprocessing phase starts by computing the man-optimal stable matchingM0. If δ(M0) ≥ 0,

we are done, and simply outputM0. Next, in polynomial time we findΠ, DΠ, andGΠ and assign

each rotation the appropriate weight. IfΠ contains fewer thankn rotations, wheren is the number

of agents andk is (5 −
√
24)(l − 2), find a sex-equal stable matching by enumerating all closed

subsets ofΠ. The justification for this choice ofk becomes clear in the time complexity analysis

of the algorithm. Otherwise,Π has at leastkn rotations. In that case, we next preprocess the

components ofGΠ containing at mostc0 vertices as described in Section 4.8.1, computing the

vectorYt, and remove these components fromGΠ, giving a new graphG′
Π.

If G′
Π is disconnected with average degree less than four, then connectG′

Π, so that it has average

degree at least two as described in Lemma 4.8.3. Give the artificial vertex created in this process a

weight of zero. LetG′′
Π denote the resulting graph. Apply the Edwards and Farr algorithm described

in Theorem 4.8.1 toG′′
Π and find the setsN andP of the vertex partition. After the partition is

found, we may discard the additional vertex if it lies inN , along with any edges incident to it. It is

kept if it lies inP .

The main body of the algorithm then begins in the form of a loop, which iteratively considers every

valid subsetN ′ of N . For a given valid subsetN ′, we identify the forced and forbidden vertices

of P , and colour them black and red respectively. All other vertices ofP are coloured white. The

final step of the loop is to compute an optimal extensionP ′ ∪Q′ for N ′. The closed subsetS =N ′

∪ P ′ ∪ Q′ found in this loop minimizingδ(S) is kept and returned.

The next section is devoted to showing how step (2) in the pseudocode description of the algorithm

may be accomplished in polynomial time.

4.9 ComputingP ′ ∪Q′ in polynomial time

We assume thatP is a connected graph, for, if it is not, we can always connect two series-parallel

components(P1, s1, t1) and(P2, s2, t2) of P in series by creating a dummy vertexv with weight 0,

4.9Computing P ′ ∪ Q′ in polynomial time 71

Preprocessing phase

computeM0

if δ(M0) ≥ 0:

return M0

computeΠ, DΠ, andGΠ, and assign the rotations the appropriate weights

k ← (5−
√
24)(l − 2)

if Π has fewer thankn rotations:

return a SESM using complete enumeration of the closed subsets of rotations ofΠ

Compute the vectorYt described in Section 4.8.1 (1)

G′
Π ← graph resulting from preprocessing step described in Section 4.8.1

G′′
Π ← G′

Π

if G′
Π is not connectedand has average degree< 4:

G′′
Π← graph resulting by connectingG′

Π as described in Lemma 4.8.3

assign the new vertex the weight zero

N,P ← vertex partition ofG′′
Π (andΠ) found by the Edwards and Farr algorithm

remove any artificial vertex fromN along with any edges incident to it

Main loop

keep the closed subsetS of Π minimisingδ(S) found in the following loop

for each valid choice ofN ′ ⊆ N :

P ′ ∪Q′← optimal extension forN ′ (2)

S← N ′ ∪ P ′ ∪Q′

Figure 4.2: Algorithm to find a SESM for an(l,∞)-SMI instance

4.9Computing P ′ ∪ Q′ in polynomial time 72

and adding the edges(t1, v) and(s2, v) toP . In terms ofΠ[P], v is added as a maximal element of

P . Since our algorithm for findingP ′ ∪Q′ is polynomial inn andm, this transformation will not

influence the overall running time of the algorithm, as this step is performedafter N andP have

been computed. It is also irrelevant if the inclusion of additional edges changes the average degree

of GΠ, again becauseN andP have already been found.

The plan is to use dynamic programming on an SP treeT for P to allow us to compute the choice

of P ′. Henceforth letH i denote the series-parallel graph rooted at nodei of T , andsi andti denote

the two terminals ofH i. We will use the terminologyfeasibleclosed subset to denote a closed

subset ofH i that contains every black vertex inH i and none of the red vertices ofH i. Our goal,

then, is to compute four binary vectorsAAi, ABi, BAi, andBBi, thejth element of each of those

being defined as follows:

AAi
j = 1 if and only if there exists a feasible closed subsetC of Π[H i] of weight exactlyj such that

s ∈ C andt ∈ C.

ABi
j = 1 if and only if there exists a feasible closed subsetC of Π[H i] of weight exactlyj such that

s ∈ C andt /∈ C.

BAi
j = 1 if and only if there exists a feasible closed subsetC of Π[H i] of weight exactlyj such that

s /∈ C andt ∈ C.

BBi
j = 1 if and only if there exists a feasible closed subsetC of Π[H i] of weight exactlyj such that

s /∈ C andt /∈ C.

The length of each vector is bounded byK =
∑

ρ∈P (w(ρ)), which is polynomially bounded. For

a leaf nodei of T corresponding to an edgee = (s, t) the four values are simple to compute. The

first step is to initialize every component of each vector to be 0. The vectors are then potentially

changed according to the following rules.

AAi : If neithers nor t is red, then changeAAi
w(s)+w(t) to be 1.

ABi : If s ≺ t, s is not red, andt is not black, changeABi
w(s) to be 1.

BAi : If t ≺ s, t is not red, ands is not black, changeBAi
w(t) to be 1.

BBi : If neithers nor t is black, setBBi
0 to 1.

4.9Computing P ′ ∪ Q′ in polynomial time 73

Lemma 4.9.1 Let i be an internal node ofT with a child nodei1. LetC be a feasible closed subset

ofΠ[H i], andCi1 = C ∩Π[H i1]. Then,Ci1 is a feasible closed subset ofΠ[H i1].

Proof Let c ∈ Ci1 . If some predecessorb ∈ Π[H i1] of c is not also inC, then clearlyC is

not a closed subset ofΠ[H i]. Thereforeb is in C and hence also inCi1 . It follows that every

predecessor ofc in Π[H i1] is in Ci1 , implying thatCi1 is a closed subset ofΠ[H i1]. If c, or any

of c’s predecessors were red, thenC could not be feasible. Similarly, ifCi1 did not contain every

black vertex ini1, C could not be feasible. So,Ci1 is also feasible.2

We therefore derive the following lemma, whose proof is immediate in light of Lemma 4.9.1.

Lemma 4.9.2 Every feasible closed subsetC of Π[H i] consists of the union of two feasible closed

subsetsCi1 andCi2 ofΠ[H i1] andΠ[H i2], respectively, wherei1 andi2 are the children of nodei.

4.9.1 Series nodes

The following lemma is necessary to understand how to compute the vectors associated with a series

nodei of T .

Lemma 4.9.3 Let i be a series node ofT with child nodesi1 and i2, and letr denote the single

vertex inH i1 ∩ H i2. SupposeCi1 andCi2 are feasible closed subsets ofΠ[H i1], Π[H i2], respec-

tively. If either (i)r /∈ Ci1 ∧ r /∈ Ci2 or (ii) r ∈ Ci1 ∧ r ∈ Ci2 , thenC = Ci1 ∪ Ci2 is a feasible

closed subset ofΠ[H i].

Proof

(Feasibility). SinceCi1 andCi2 are both feasible, they contain no red vertices and every black

vertex inΠ[H i1] andΠ[H i2], respectively, soC must be feasible.

(Closure). Suppose for a contradiction thatC is not a closed subset ofΠ[H i]. Then,∃x ∈ C with

a predecessory /∈ C. Suppose, without loss of generality, thatx ∈ Π[H i1]. If y ∈ Π[H i1] as well

(note that possiblyy = r), theny /∈ Ci1, implyingCi1 is not closed forΠ[H i1], a contradiction. So,

suppose thaty ∈ Π[H i2], and thaty 6= r. Then, there exists a sequence of immediate successors

4.9Computing P ′ ∪ Q′ in polynomial time 74

of y = y0 ≺ . . . ≺ yz = x in Π[H i], and sincer is the unique vertex inH i1 ∩H i2 , we must have

y ≺ r ≺ x. If case (i) from the statement of the lemma holds, then we have thatr ≺ x, butr /∈ Ci1 ,

soCi1 is not closed forΠ[H i1]. If case (ii) holds, theny ≺ r, but r ∈ Ci2, implying Ci2 is not

closed forΠ[H i2]. 2

Lemma 4.9.3 essentially established a sufficiency condition to create a feasible closed subsetC

from the union of two feasible closed subsetsCi1 andCi2 . Lemma 4.9.4 will, in a sense, establish

necessity in that feasible closed subsetsCi1 andCi2 satisfying either case (i) or (ii) of the previous

lemma always exist for a givenC.

Lemma 4.9.4 Let i be a series node ofT with child nodesi1 and i2, and letr denote the single

node inH i1 ∩ H i2 . LetC be a feasible closed subset ofΠ[H i]. Then, there exist feasible closed

subsetsCi1 andCi2 of Π[H i1] andΠ[H i2], respectively, such thatCi1 ∪ Ci2 = C, and either (i)

r /∈ Ci1 ∧ r /∈ Ci2 or (ii) r ∈ Ci1 ∧ r ∈ Ci2 .

Proof Lemma 4.9.2 establishes the existence of feasible closed subsetsCi1 andCi2 of Π[H i1] and

Π[H i2], respectively, such thatCi1 ∪Ci2 = C. We will establish the claim by showing that ifr ∈ C

thenCi1 ∪ {r} andCi2 ∪ {r} remain closed. This is easy to see – sinceCi1 ∪ Ci2 = C is closed,

every predecessor ofr in Π[H i1] (respectively,Π[H i2]) is also inCi1 (respectively,Ci2). 2

The following theorem follows from Lemmas 4.9.3 and 4.9.4, and is the key to describing the

dynamic programming procedure for processing a series nodei of T .

Theorem 4.9.1 Let i be a series node ofT with child nodesi1 and i2, and letr denote the single

node inH i1 ∩ H i2. A feasible closed subset ofΠ[H i] of weight exactlyj exists if and only if

there exist feasible closed subsetsCi1, Ci2 of Π[H i1], Π[H i2], respectively, such that (i)r /∈ Ci1

∧ r /∈ Ci2 , with w(Ci1) = l andw(Ci2) = j − l or (ii) r ∈ Ci1 ∧ r ∈ Ci2 with w(Ci1) = l and

w(Ci2) = j − l + w(r).

We are now in a position to describe the construction of the four binary vectors associated with a

series node. Leti be a series node ofT with childreni1 andi2 and terminal nodessi andti. Let

r denote the unique vertex in bothH i1 andH i2 . Suppose we wish to computeAAi
j , and that there

4.9Computing P ′ ∪ Q′ in polynomial time 75

exists a feasible closed subsetC of H i. There are two cases to consider. Ifr ∈ C, then by Theorem

4.9.1 there exists a valuel such that(AAi1
l ∧AAi2

j−l+w(r)) = 1. If insteadr /∈ C, then there exists

a valuel such that(ABi1
l ∧BAi2

j−l) = 1. This leads to the formula,

AAi
j = (

j
∨

l=w(r)

AAi1
l ∧AAi2

j−l+w(r)) ∨ (

j
∨

l=0

ABi1
l ∧BAi2

j−l).

The reasoning behind the next 3 formulae is similar, we present only the final formulae below.

ABi
j = (

∨j
l=w(r)

AAi1
l ∧ABi2

j−l+w(r)
) ∨ (

∨j
l=0AB

i1
l ∧BBi2

j−l).

BAi
j = (

∨j
l=w(r))BAi1

l ∧AAi2
j−l+w(r)) ∨ (

∨j
l=0BBi1

l ∧BAi2
j−l).

BBi
j = (

∨j
l=w(r)BAi1

l ∧ABi2
j−l+w(r)) ∨ (

∨j
l=0BBi1

l ∧BBi2
j−l).

4.9.2 Parallel nodes

Our approach for parallel nodes is similar to that for seriesnodes. Our first goal is to establish an

analogous claim for parallel nodes to that made in Theorem 4.9.1. The first step is the following

lemma.

Lemma 4.9.5 Let i be a parallel node ofT with child nodesi1 andi2, and{s, t} the two nodes in

H i1∩H i2. LetCi1 ,Ci2 be feasible closed subsets ofΠ[H i1] andΠ[H i2], respectively. IfCi1∩{s, t}
= Ci2 ∩ {s, t}, thenCi1 ∪Ci2 is a feasible closed subset ofΠ[H i].

Proof (Feasibility). By definition,Ci1 andCi2 contain all black vertices inΠ[H i1] andΠ[H i2],

respectively, and neither can contain any red vertices. HenceCi1 ∪ Ci2 contains all black vertices

in Π[H i] and contains no red vertices.

(Closure). SupposeC = Ci1 ∪ Ci2 is not closed forΠ[H i]. Then,∃ x ∈ C such thatx has a

predecessory 6= x andy /∈ C. Suppose without loss of generality thatx ∈ Π[H i1], implying

x ∈ Ci1 . If y ∈ Π[H i1], (note that possiblyy ∈ {s, t}) thenCi1 is not closed, a contradiction.

4.9Computing P ′ ∪ Q′ in polynomial time 76

So, supposey ∈ Π[H i2] andy /∈ {s, t}. Sincey ≺ x, there exists a sequence of successorsy = y0

≺ . . . ≺ yz = x in Π[H i]. The only nodes inH i1 ∩H i2 ares andt, so eithery ≺ s ≺ x or y ≺ t ≺
x (or both). We continue the proof based on the following four cases.

(i) s, t /∈ Ci1 ands, t /∈ Ci2 . Since we have eithers ≺ x or t ≺ x (or both),Ci1 cannot be closed,

a contradiction. (ii)s, t ∈ Ci1 ands, t ∈ Ci2 . Sincey /∈ Ci2 and eithery ≺ s or y ≺ t, Ci2 is not

closed, a contradiction. (iii)s ∈ Ci1 , t /∈ Ci1 ands ∈ Ci2 , t /∈ Ci2 . If y ≺ s ≺ x, thenCi2 is not

closed, a contradiction. If insteady ≺ t ≺ x, thenCi1 is not closed, ast ≺ x andx ∈ Ci1 . (iv)

s /∈ Ci1, t ∈ Ci1 ands /∈ Ci2 , t ∈ Ci2 . This case is analogous to case (iii).

2

The next lemma is analogous to Lemma 4.9.4 for series nodes.

Lemma 4.9.6 Let i be a parallel node ofT with child nodesi1 andi2, and{s, t} the two nodes in

H i1 ∩H i2 . Suppose thatC is a feasible closed subset ofΠ[H i]. Then, there exist feasible closed

subsetsCi1 andCi2 of Π[H i1] andΠ[H i2], respectively, such thatCi1 ∩ {s, t} = Ci2 ∩ {s, t} =

C ∩ {s, t}.

Proof Lemma 4.9.2 establishes the existence of feasible closed subsetsCi1 andCi2 of Π[H i1] and

Π[H i2], respectively, such thatCi1 ∪ Ci2 = C. Let B = C ∩ {s, t}. We will establish the claim

by showing thatCi1 ∪ B andCi2 ∪ B remain closed. This is easy to see – sinceCi1 ∪ Ci2 = C

is closed, every predecessor of an elementb ∈ B from Π[H i1] (respectivelyΠ[H i2]) is also inCi1

(respectivelyCi2). 2

Now we state the main theorem for describing the dynamic programming procedure for processing

a parallel nodei of T .

Theorem 4.9.2 Let i be a parallel node ofT with child nodesi1 and i2, and{s, t} the two nodes

in H i1 ∩H i2 . A feasible closed subset ofΠ[H i] of weight exactlyj exists if and only if there exist

feasible closed subsetsCi1 andCi2 ofΠ[H i1] andΠ[H i2], respectively, such that

1. s, t /∈ Ci1 ands, t /∈ Ci2, w(Ci1) = l, andw(Ci2) = j − l; or

4.10Putting it all together 77

2. s ∈ Ci1 , t /∈ Ci1 ands ∈ Ci2 , t /∈ Ci2 , w(Ci1) = l, andw(Ci2) = j − l + w(s); or

3. s /∈ Ci1 , t ∈ Ci1 ands /∈ Ci2 , t ∈ Ci2 , w(Ci1) = l, andw(Ci2) = j − l + w(t); or

4. s, t ∈ Ci1 ands, t ∈ Ci2, w(Ci1) = l, andw(Ci2) = j − l +w(s) + w(t).

This leads to the following four formulae.

AAi
j = (

∨j
l=w(s)+w(t)AA

i1
l ∧AAi2

j−l+w(s)+w(t)).

ABi
j = (

∨j
l=w(s)AB

i1
l ∧ABi2

j−l+w(s)).

BAi
j = (

∨j
l=w(t)BAi1

l ∧BAi2
j−l+w(t)).

BBi
j = (

∨j
l=0 BBi1

l ∧BBi2
j−l).

Suppose now that the four binary vectors have been computed for the root noderoot of T . Recall

that we also have computed the so-called combined vectorYt as described in Section 4.8.1. We

choose a positionj of AAroot, ABroot, BAroot, or BBroot with a non-zero entry along with a

positionk of Yt with a nonzero entry that together minimizesδ(M0) + w(N ′) + j + k. The actual

feasible closed subsetP ′∪Q′ of P can be found by simple modifications and the standard traceback

technique through the dynamic programming tables. Thus we have computed an optimal extension

for N ′ in polynomial time.

Theorem 4.9.3 LetN ′ be a valid subset in an arbitrary iteration of the main loop ofthe algorithm

described in Figure 4.2. An optimal extensionP ′ ∪Q′ for N ′ can be computed in polynomial-time.

4.10 Putting it all together

We have established the correctness of the algorithm described in the preceding sections. All that

remains is to provide an upper bound on the time complexity. The following theorem establishes

the running time.

4.10Putting it all together 78

Theorem 4.10.1Let I be an(l,∞)-SMI instance. Then, a sex-equal stable matching forI can be

computed inO⋆(2αn) time, whereα = (5−
√
24)(l− 2). Hence the running time isO⋆(1.0725n),

O⋆(1.1503n), O⋆(1.2338n), . . . for l = 3, 4, 5,

Proof

Let GΠ denote the input graph, withr vertices (rotations),m edges, and average degreed. If the

algorithm terminates because the number of rotations is at mostαn, the theorem is obviously true,

as we can enumerate every subset ofΠ to compute a sex-equal stable matching inO⋆(2αn) steps.

Suppose instead thatΠ hastn rotations for some constantt, which, by Lemma 4.8.1 is at most

((l − 1)/4).

We consider two cases. In the first case we suppose that after preprocessing the constant-sized

components ofGΠ, the resulting graphG′
Π satisfies Theorem 4.8.1, so that step (1) in Figure 4.2 is

not performed. Clearly the time complexity of the algorithmisO⋆(2(d
′−2)r′/(d′+1)), whered is the

average degree ofG′
Π. This is defined to be2m′/r′, wherem′ andr′ are the number of edges and

vertices, respectively, ofG′
Π. Sincem′ ≤ m, and, by Lemma 4.8.2 we have thatm ≤ (l − 2)n/2,

we can provide the following upper bound ond′:

d′ =
2m′

r′
≤ 2m

r′
≤ (l − 2)n

r′
.

Consider the exponente(x) of the expression2
(d′−2)r′

d′+1 , namely,

e(x) =
(l − 2)nr′ − 2r′2

(l − 2)n + r′
=

kx− 2x2

k + x
.

wherex = r′ andk = (l − 2)n.

Let us use differentiation to compute the maximum value ofe(x):

e′(x) =
(k + x)(k − 4x)− (kx− 2x2)

(k + x)2
.

4.10Putting it all together 79

e′(x) = 0⇔ 2x2 + 4kx− k2 = 0.

e′(x) = 0⇔ x = (

√

3

2
− 1)k.

Substituting into (1) shows that the maximum value ofe(x) is (5 −
√
24)(l − 2)n, precisely the

expression in the claim of the theorem.

The second case of the proof is if, after preprocessing the constant-sized components ofGΠ, the

resulting graphG′
Π with m′ edges,r′ vertices, and average degreed′ does not satisfy Theorem 4.8.1,

so that step (1) in the pseudocode description is performed.Denote the graph resulting from this

step (1) in the pseudocode byGΠ′′ , with m′′ edges,r′′ vertices, and average degreed′′ = 2m′′/r′′.

We have the following facts.

1. r′′ = r′ + 1.

2. m′′ = m′ + c′ + 1, wherec′ is the number of components inG′.

3. r′ ≥ c′/(c0 + 1), since each component ofG′ has at leastc0 + 1 vertices.

4. d′ < 4, asG′
Π does not satisfy the requirement of Theorem 4.8.1.

This allows us to establish an upper bound ond′′:

d′′ =
2m′′

r′′
=

2(m′ + c′ + 1)

r′′
<

2m′

r′
+

2c′

r′
+

2

r′′
< d′ + 2 + 1 = 7.

We next derive an upper bound forr′′ by rewriting the expressionm′′ = m′ + c′ + 1 as below:

r′′d′′

2
=

r′d′

2
+ c′ + 1 ⇒ r′′d′′

2
<

r′′d′

2
+ c′ + 1

giving

r′′ <
2(c′ + 1)

d′′ − d′
.

4.11Conclusions and open problems 80

Now, consider the exponente(r′′) = (d′′−2)r′′

d′′+1 of the expression2
(d′′−2)r′′

d′′+1 . Sinced′′ < 7 and

r′′ < 2(c′+1)
d′′−d′ , we have that

e(r′′) ≤ 5

8

2(c′ + 1)

d′′ − d′
.

By fact (3) above, this gives

e(r′′) ≤ 5

4

r′ + c0 + 1

(d′′ − d′)(c0 + 1)
≤ 5

4

(l−1)n
4 + c0 + 1

(d′′ − d′)(c0 + 1)
.

Therefore, by choosingc0 to be sufficiently large,e(r′′) can be made strictly less than(5−
√
24)(l−

2)n. Hence the theorem.

2

4.11 Conclusions and open problems

We have given a complete characterisation of the parameterized complexity of(α, β)-SESM. When

the preference lists on one side are of length at most two, theproblem is solvable in polynomial

time, but, if the preference lists on either side are allowedinstead to be of length three or greater,

the problem is W[1]-hard.

As far as we know, our exponential-time algorithm is the first‘moderately’ exponential-time al-

gorithm for any computationally hard stable marriage variant. Perhaps further research could be

devoted to finding reasonably fast exponential-time algorithms for other SMI-based problems. As

a next step, one could consider searching for an exact algorithm for SESM with no bound on the

lengths of the preference lists.

In his PhD thesis, Feder [27] describes the so-calledbalanced stable matching problem, namely to

find a stable matchingM that minimizes

max
{

∑

(mi,wj)∈M
pmi

(wj),
∑

(mi,wj)∈M
pwj

(mi)
}

4.11Conclusions and open problems 81

over allM ∈ M. Intuitively, a balanced stable matching minimizes the unhappiness of the most

unhappy group of people (the men or the women). Feder [27] proved that this problem is NP-hard.

Is the balanced stable matching problem solvable by similartechniques to that presented in this

chapter?

An immediate corollary to our dynamic programming algorithm presented in Section 4.9 is that

whenever the underlying graphGΠ of the rotation posetΠ of an arbitrary SESM instance is series-

parallel, a sex-equal stable matching can be computed in polynomial time. We conjecture that

SESM can be solved in polynomial time wheneverGΠ has boundedtreewidth(see, for example,

one of the many surveys by Bodlaender [10] for the relevant background on treewidth). Specifically,

wheneverGΠ has treewidth bounded by a valuek, we conjecture a sex-equal stable matching can

be found in timeO(nO(1)f(k)), wheref(k) is a (probably exponential) function dependent only

onk. For example, the running time could beO(nO(1)2k).

This leads to further questions about treewidth and hard stable marriage problems. Are there

other hard stable marriage problems that can be solved in polynomial time whenGΠ has bounded

treewidth? A particularly interesting problem could be themedian stable matching problem (dis-

cussed in Section 2.2.4). Is this efficiently solvable whenGΠ has bounded treewidth?

Finally, we remark that very recently an improvement in the Edwards and Farr theorem has been

made [24]. This probably implies an improvement in the upperbound of the running time described

in Theorem 4.10.1.

Chapter 5

Keeping couples together

5.1 Introduction

It is something of a folklore theorem that when the residentsof an HR instance are not only in-

terested in their own assignment, but are also interested insomeone else’sassignment, then stable

matchings may not exist and they may be computationally difficult to find when they do exist. It

is perhaps not surprising, then, that determining how a centralized matching algorithm should deal

with couples(pairs of residents) is a significant computational challenge.

In Section 2.2.6, we reviewed the relevant literature and background regarding the Hospitals / Res-

idents problem with couples (HRC). In the present chapter, we continue the search for algorithmic

results in the HRC setting. Specifically, we consider a natural restriction of HRC in which each

member of a given couple(ri, rj) has an individual preference list over a subset of hospitals, and

the joint preference list of the couple is consistent with the individual preferences ofri andrj in a

precise sense. Specifically,(ri, rj) ranks distinct pairs of hospitals in order of preference, such that

if (hp, hq) precedes(hr, hs) on this list then (i) eitherri prefershp to hr or hp = hr, and (ii) either

rj prefershq to hs, or hq = hs. We refer to this restriction of HRC as theHospitals / Residents

problem with Consistent Couples(HRCC).

Thus HRCC models a situation in which the members of each couple can agree to construct a joint

preference list from their individual preferences consistently, in the sense that if a couple jointly

prefers(hp, hq) to (hr, hs), then when comparinghp to hr, ri would be no worse off, and similarly

82

5.1 Introduction 83

when comparinghq tohs, rj would be no worse off. This includes the case where both members of

a given couple have identical individual preference lists,with the intended outcome being that they

are either matched to the same hospital or not matched at all.

HRCC does not seem to have been studied previously in the literature from an algorithmic point of

view. In this chapter we show that an instanceI of HRCC need not admit a stable matching, and

that the problem of deciding whetherI admits a stable matching is NP-complete. This result holds

even if the length of each resident’s individual list and thelength of each couple’s joint list is at

most three, and the capacity of each hospital is at most two, thus providing another highly restricted

version of HRC that remains NP-complete, in addition to the case considered by Ronn [84]. This

restriction is important from a practical viewpoint, because in many applications the preference lists

on one side tend to be short (for example in the context of SFAS, residents are asked to rank up to

ten hospitals in order of preference).

By contrast, we also give a linear-time algorithm to find a stable matching or report that none exists,

for the case that stability is defined in terms of the classical Gale-Shapley stability (that is, each

member of a couple can form a blocking pair with a hospital without regard to the other member

of the couple). This version of stability can be motivated inthe HRCC context as follows. Suppose

that a given couple(ri, rj) is given the joint assignment(hr, hs) by a matching algorithm. Now

suppose thatri prefers some hospitalhp tohr, whilst the joint assignment(hp, hs) is not acceptable

to the couple for whatever reason (perhaps geographical separation). The previous agreement of

the couple to supply a joint (consistent) preference list could be overridden in practice ifri has an

overarching desire to be allocated tohp as opposed tohr. In reality this could mean that either

rj moves withri to remain geographically close, and attempts to make an arrangement withhp

(or a hospital nearby) outside of the matching scheme, orrj changes career, or indeed the couple

even split up. In the spirit of “keeping couples together”, this is a situation that we seek to avoid,

thus motivating this stronger form of stability in the context of HRCC. Hence we obtain a natural

restriction of HRC that, unlike the general problem, is solvable in polynomial time. Our algorithm

does not make any assumptions regarding the lengths of the preference lists or regarding the hospital

capacities.

We remark that a matching that satisfies classical stabilityin the context of HRCC is stable with

respect to the criteria defined earlier by Roth and Ronn [89, 84] for HRC (see Section 5.2 for a

formal definition of this stability criterion). The converse, however, is not true in general. Our

5.1 Introduction 84

algorithm for HRCC under classical stability helps to narrow the search for the boundary between

polynomial time solvable and NP-complete variants of HRC. In particular, HRCC under classical

stability is the most general restriction of HRC that we are aware of that is solvable in polynomial

time.

Hospitals / Residents problem with Sizes

A special case of HRCC arises when each couple(ri, rj) is such that that the individual preference

lists of ri and rj are identical, and the joint preference list of(ri, rj) satisfies the property that

hp = hq for any element(hp, hq) on this list. Thusri andrj wish to be either assigned to the same

hospital, or both be unassigned. We refer to this restriction of HRCC as theHospitals / Residents

problem with Inseparable Couples(HRIC).

Let I be an instance of HRIC and let(ri, rj) be a couple inI. Given the structure of(ri, rj)’s

preference list, it is natural to replace(ri, rj) by a single entityCi,j whose preference list is obtained

from that of (ri, rj) by replacing each occurrence of(hk, hk) by hk. Thus each single resident

occupies one post at a given hospital, whilst each couple occupies two posts. This suggests a natural

generalisation of HRIC to the case where each residentri ∈ R has asizesi ∈ Z
+, indicating the

number of posts thatri occupies at any hospital. Hospitals will now rank residentsof any size

(including couples) as a single entity. We refer to this variant of HRC as theHospitals / Residents

problem with Sizes(HRS).

A formal definition of HRS is given in Section 5.2, in which we formulate an appropriate notion of

stability for this context. With this stability definition we later prove that, given an HRS instance

where the size of each resident is at most two and the capacityof each hospital is at most two, the

problem of deciding whether a stable matching exists is NP-complete, even if the length of each

preference list is at most three. We also show that the restriction of HRS in which each resident

has size at most two is reducible to HRCC (essentially each resident of size two becomes a couple),

thus implying the aforementioned NP-completeness result for HRCC.

However, by contrast, we also prove that, given an instance of HRS in which the length of each

hospital’s preference list is at most two, a stable matchingalways exists and can be found in linear

time. The result holds for arbitrary resident sizes and hospital capacities. This result therefore

indicates a boundary between the polynomial-time solvability and NP-completeness of HRS with

5.2Formal definitions of HRS and HRCC 85

respect to the length of a hospital’s preference list.

5.2 Formal definitions of HRS and HRCC

We firstly give a formal definition of the Hospitals / Residents problem with Sizes (HRS). An

instanceI of this problem is defined in the same way as an instance of HR (as defined in Section

5.1) except that each residentri ∈ R has asizesi ∈ Z
+. An assignmentM in I is a set of

(resident,hospital) pairs such that(ri, hj) ∈ M only if ri andhj find each other acceptable. For

ri ∈ R we denote the set{hj ∈ H : (ri, hj) ∈ M} by M(ri), for hj ∈ H we denote{ri ∈ R :

(ri, hj) ∈ M} by M(hj), and forhj ∈ H we denote
∑{si : ri ∈ M(hj)} by OM

j and refer to

this as theoccupancyof hj in M . We say thathj is undersubscribedif OM
j < cj , wherecj is the

capacity of hospitalhj .

A matchingis an assignmentM such that|M(ri)| ≤ 1 for eachri ∈ R andOM
j ≤ cj for each

hj ∈ H. In other words, in a matching, each resident is assigned to at most one hospital, and

the sum of the sizes of the residents assigned to a hospital does not exceed its capacity. Given a

matchingM in which a residentri is matched to a hospitalhj , with a slight abuse of notation we

letM(ri) denotehj . A pair (ri, hj) ∈ R×H blocksa matchingM , or is ablocking pairfor M , if

1. ri is unmatched, orri prefershj toM(ri), and

2. OM
j + si ≤ cj , or hj prefersri to residentsrk1 , . . . rkt ∈M(hj) such that

OM
j + si −

t
∑

p=1

skp ≤ cj .

The definition implies thathj could participate in a blocking pair withri if (i) either hj currently

has room forri, or (ii) hj can make room forri by rejecting a set of residents it ranks lower than

ri. A matching isstableif it admits no blocking pair.

We assume without loss of generality that, for eachri ∈ R and for each hospitalhj on ri’s prefer-

ence list,si ≤ cj , for otherwise(ri, hj) could never belong to a stable matching, nor could(ri, hj)

form a blocking pair.

We firstly observe that HR is clearly the special case of HRS inwhich si = 1 for eachri ∈ R. The

5.2Formal definitions of HRS and HRCC 86

1 : r1 : h2 h1
1 : r2 : h1 h2
2 : r3 : h1

2 : h1 : r1 r3 r2
1 : h2 : r2 r1

Figure 5.1: An HRS instance for which no stable matching exists

blocking pair definition for HR, which is given in Section 2.2.6, can then be deduced from that for

HRS by interpreting Condition (2) as follows: eitherhj is undersubscribed or prefersri to some

resident inM(hj).

We next observe that, in contrast to HR, an HRS instance may not admit a stable matching. An

example instanceI that illustrates this is shown in Figure 5.1 (in this figure, and throughout the

chapter, sizes and capacities are written next to the residents and hospitals, respectively). Suppose

for a contradiction thatI admits a stable matchingM . If (r3, h1) ∈ M , then(r1, h2) ∈ M or else

(r1, h1) blocksM . Hence(r2, h2) blocksM , a contradiction. Suppose instead that(r3, h1) /∈ M .

Then(r2, h1) ∈M , or else(r2, h1) blocksM (sinceh1 has capacity two). Hence(r1, h2) ∈M or

else(r1, h2) blocksM . This implies that(r3, h1) blocksM , a contradiction.

Our third observation is that the restriction of HRS where each resident has size at most two is

reducible to the Hospitals / Residents problem with Consistent Couples (HRCC), which is a special

case of the Hospitals / Residents problem with Couples (HRC). We demonstrate this in Lemma

5.2.1, but first we give a formal definition of each of HRC and HRCC.

An instanceI of HRC involves a setR = {r1, . . . , rn} of residents, a setH = {h1, . . . , hm} of

hospitals, and a setC of couples, i.e., ordered pairs of residents such that each resident appears in

at most one pair. As in the HR case, each hospitalhj ∈ H has acapacitycj ∈ Z
+.

Eachsingleresidentri ∈ R (i.e., a resident who does not belong to a couple) submits a strict pref-

erence list of acceptable hospitals. Each couple(ri, rj) submits a joint (strict) preference list over

pairs of acceptable hospitals. Each entry in this list is an ordered pair(hk, hl) of (not necessarily

distinct) hospitals representing the assignment ofri to hk and ofrj to hl. Finally, each hospital

hj ∈ H ranks those residents (whether single or a member of a couple) who findhj acceptable in

strict order of preference.

In this context, the definition of a matchingM is the same as in the classical HR setting (see

Section 2.2.6), with the additional requirement that, for each couple(ri, rj), if (ri, hk) ∈ M and

5.2Formal definitions of HRS and HRCC 87

(rj , hl) ∈ M then the pair(hk, hl) must appear on the joint preference list of that couple. A

matchingM is unstable if at least one of the following holds:

1. The matching is blocked by a hospitalhj and a single residentri, as in the classical HR

problem (defined in Section 2.2.6).

2. The matching is blocked by a hospitalhk and a residentri who is coupled, say withrj ; that

is, (ri, rj) prefers(hk,M(rj)) to (M(ri),M(rj)), andhk is either undersubscribed inM or

prefersri to some member ofM(hk)\{rj}.

3. The matching is blocked by a couple(ri, rj) and (not necessarily distinct) hospitalshk 6=
M(ri), hl 6= M(rj); that is,(ri, rj) prefers the joint assignment(hk, hl) to (M(ri),M(rj)),

andeither

(a) hk 6= hl, andhk (respectivelyhl) is either undersubscribed inM or prefersri (respec-

tively rj) to at least one of its assigned residents inM ; or

(b) hk = hl, andhk has at least two free posts inM , i.e.,ck − |M(hk)| ≥ 2; or

(c) hk = hl, andhk has one free post inM , i.e.,ck − |M(hk)| = 1, andhk prefers at least

one ofri, rj to some member ofM(hk); or

(d) hk = hl, hk is full in M , hk prefersri to somers ∈M(hk), andhk prefersrj to some

rt ∈M(hk)\{rs}.

The above stability definition for HRC extends that given in [36, Section 1.6.6], in order to deal

with the case thathk = hl, given a couple(ri, rj) who prefer(hk, hl) to (M(ri),M(rj)). As far as

we are aware, this possibility does not appear to have been covered adequately by previous stability

definitions for HRC in the literature [88, 36, 84, 23, 13, 65, 66, 68].

HRCC is the special case of HRC in which each resident (whether single or a member of a couple)

ranks a subset ofH in strict order of preference. Each couple(ri, rj) ranks a subset ofH ×H in

strict order, subject to the constraint that this joint preference list beconsistentwith the individual

preference lists ofri andrj . That is,(ri, rj) prefers(hp, hq) to (hr, hs) only if (i) either ri prefers

hp to hr or hp = hr, and (ii) eitherrj prefershq to hs or hq = hs.

We now show that the restriction of HRS in which each residenthas size at most two is polynomially

reducible to HRCC.

5.2Formal definitions of HRS and HRCC 88

Lemma 5.2.1 The restriction of HRS in which each resident has size at mosttwo can be reduced

in polynomial time to HRCC.

Proof Given an instanceI of HRS, construct an instanceI ′ of HRCC in the following way. For

each residentri of size two, create a couple(ri,1, ri,2) in I ′. Suppose the preference list ofri in I

is h1, h2, . . . ht. Assign to each ofri,1 andri,2 an individual list equal to that ofri. Let the joint

preference list of(ri,1, ri,2) in I ′ be(h1, h1), (h2, h2), . . . , (ht, ht) – this is clearly consistent with

the lists ofri,1 andri,2.

For each hospitalhj that findsri acceptable inI, replace the entryri on hj ’s preference list inI ′

with ri,1 andri,2 in arbitrary order. Leave all residents of size one the same in I ′ as inI. This ends

the transformation. We claim that a stable matching exists for I ′ if and only if one exists forI.

Suppose a stable matchingM exists forI. Then, construct a matchingM ′ for I ′ in the following

way. If (ri, hj) is in M , place(ri, hj) into M ′ if ri has size one, else place(ri,1, hj) and(ri,2, hj)

into M ′. Notice that the capacities of the hospitals are preserved in the reduction, and also that

if a hospitalhj has an occupancy oft in M , thenhj is assignedt residents inM ′. Suppose a

blocking pair exists forM ′ in I ′. Then, the blocking pair must be of Type 1 or 3 above, as Type 2 is

impossible by the special nature of the couple’s preferencelists. If there is a blocking pair(ri, hj)

by Type 1,M surely also had the same blocking pair inI. If insteadM ′ is blocked by a pair of Type

3, then it must be because a couple(ri,1, ri,2) block with the pair(hj , hj) in I ′. But then resident

ri of size two inI must also block with hospitalhj in M .

Conversely suppose a stable matchingM ′ exists forI ′. Then, construct a stable matchingM for

I in the following way. If (ri, hj) is in M ′, place(ri, hj) into M , if ri has size one inI, else

if (ri,1, hj) and(ri,2, hj) are inM ′, place(ri, hj) into M . By the nature of the preference lists,

ri,1 andri,2 are always assigned the same hospital. Suppose(ri, hj) blocksM in I. Then, by an

argument similar to the above,(ri, hj) must have blockedM ′ in I ′ if ri has size one, otherwise the

pair (ri,1, ri,2) must have blockedM ′ in I ′ with (hj , hj). 2

It follows immediately from the example of Figure 5.1 and Lemma 5.2.1 that an HRCC instance

need not admit a stable matching.

5.3NP-completeness of HRS and HRCC 89

5.3 NP-completeness of HRS and HRCC

This section describes a polynomial-time reduction that establishes NP-completeness for the prob-

lem of deciding whether a stable matching exists, given an HRS instance where the size and capacity

of each resident and each hospital, respectively, is at mosttwo, and the length of each preference

list is at most three. This reduction is from a restricted variant of MAX-SMTI (see Section 2.2.5

and Chapter 3 for background and definitions). Define(3, 3)-COM-SMTI to be the problem of de-

ciding whether a complete stable matching exists (i.e., a stable matching that matches every agent),

given an instance of SMTI in which each preference list is of length at most three, every woman’s

preference list is strictly ordered, and each man’s preference list is either strictly ordered or is a tie

of length two (all of these conditions holding simultaneously).

The proof that(3, 3)-COM-SMTI is NP-complete is somewhat peripheral to the results of this

chapter, moreover, we use the hardness of this problem againin Chapter 6. For this reason, the

proof of the following theorem is presented in the Appendix.

Theorem 5.3.1 (3, 3)-COM-SMTI is NP-complete.

5.3.1 The reduction

Given an instanceI of (3, 3)-COM-SMTI withn menm1,m2,. . .,mn andn womenw1, w2,. . .,wn,

we create an instanceI ′ of HRS, whose residents and hospitals are constructed as follows. Firstly,

a hospitalht is created for each womanwt in I.

Next, for each manmi in I with a preference list consisting of a two-way tie(wk, wl) wherek < l,

create eight residents{ri,1, ri,2, ri,3, ri,4, riα,1, riα,2 , riβ,1
, riβ,2

} and six hospitals{hi,1, hi,2,

hiα,1 , hiα,2 , hiβ,1
, hiβ,2

}. The preference lists, sizes and capacities of these eight residents and

six hospitals are shown in Figure 5.2. For each manms in I with a strictly ordered preference list

ws1, ws2 , . . ., wsy , create three residents{rs, rsγ,1 , rsγ,2 } and two hospitals{hsγ,1 , hsγ,2 }. The

preference lists, sizes and capacities of these three residents and two hospitals are also shown in

Figure 5.2.

Finally, for each hospitalht created from a womanwt with preference listmt1 , . . . ,mtz , set the

preference list ofht to initially be equal tomt1 , . . . ,mtz , temporarily placing “men” onht’s pref-

5.3NP-completeness of HRS and HRCC 90

2 : ri,1 : hi,1 hk hiα,1 2 : hi,1 : ri,4 ri,1 ri,3
2 : ri,2 : hi,2 hl hiβ,1

2 : hi,2 : ri,3 ri,2 ri,4
1 : ri,3 : hi,1 hi,2
1 : ri,4 : hi,2 hi,1

1 : riα,1 : hiα,2 hiα,1 2 : hiα,1 : riα,1 ri,1 riα,2

1 : riα,2 : hiα,1 hiα,2 1 : hiα,2 : riα,2 riα,1

1 : riβ,1
: hiβ,2

hiβ,1
2 : hiβ,1

: riβ,1
ri,2 riβ,2

1 : riβ,2
: hiβ,1

hiβ,2
1 : hiβ,2

: riβ,2
riβ,1

2 : rs : hs1 hs2 . . . hsy hsγ,1
1 : rsγ,1 : hsγ,2 hsγ,1 2 : hsγ,1 : rsγ,1 rs rsγ,2
1 : rsγ,2 : hsγ,1 hsγ,2 1 : hsγ,2 : rsγ,2 rsγ,1

Figure 5.2: Preference lists in the constructed instance ofHRS

erence list. Now, suppose thatwt finds some manmj acceptable. Ifmj ’s preference list is strictly

ordered inI, replacemj on ht’s preference list withrj . If mj ’s preference list is not strictly or-

dered, his preference list consists of a two-way tie, say,(wt, wk). If t < k, replacemj with rj,1 on

ht’s preference list, else, replacemj with rj,2 on ht’s preference list. Set the capacity ofht to be

two.

This ends the reduction. Clearly, it is computable in polynomial time. We now argue that it is correct

by the following sequence of lemmas, each of which states a property of any stable matchingM ′ in

I ′.

Lemma 5.3.1 Let ms be a man with a strictly ordered preference list inI, and letmi be a man

with a preference list consisting of a two-way tie inI. Then, every resident in the set{rs, ri,1, ri,2}
is matched to some hospital inM ′, and that hospital is not the last entry on his preference list.

Proof Suppose thatrs is unmatched inM ′. Then,rsγ,1 must be matched tohsγ,1 , to preventrs from

forming a blocking pair withhsγ,1 . Residentrsγ,2 must be matched tohsγ,1 as well, for otherwise

he forms a blocking pair withhsγ,1 . But this implies(rsγ,1 , hsγ,2) is a blocking pair forM ′.

Suppose instead thatrs is matched tohsγ,1 . Then, neitherrsγ,1 nor rsγ,2 is matched tohsγ,1 , else

its capacity would be exceeded. So, ifrsγ,1 is matched tohsγ,2 , rsγ,2 is unmatched, and forms a

blocking pair withhsγ,2 . If, instead,rsγ,2 is matched tohsγ,2 , thenrsγ,1 is unmatched, and forms a

blocking pair withhsγ,1 . Clearly, if neitherrsγ,1 nor rsγ,2 is matched tohsγ,2 , they form blocking

5.3NP-completeness of HRS and HRCC 91

pairs withhsγ,2 . This exhausts every possibility. It follows that ifrs is unmatched inM ′ or is

matched to the last hospital on his preference list, a blocking pair cannot be avoided.

The same argument holds forri,1 by substitutinghiα,1 andhiα,2 for hsγ,1 andhsγ,2 , respectively,

andriα,1 andriα,2 for rsγ,1 andrsγ,2 , respectively. Similarly, the argument is analogous forri,2, by

replacingrsγ,1 andrsγ,2 with riβ,1
andriβ,2

, respectively, andhsγ,1 andhsγ,2 with hiβ,1
andhiβ,2

,

respectively.2

Lemma 5.3.2 For all menmi ∈ I with a preference list consisting of a two-way tie, the residents

ri,3 andri,4 are matched to some hospital inM ′. Moreover,ri,3 andri,4 are matched to the same

hospital inM ′.

Proof If ri,3 is not matched inM ′, he clearly forms a blocking pair withhi,2, which hasri,3 first

on its preference list. Similarly, ifri,4 is not matched, he blocks withhi,1.

For the second claim, suppose(ri,3, hi,1) and(ri,4, hi,2) are inM ′. Thenri,1 cannot be matched to

hi,1 andri,2 cannot be matched tohi,2 in M ′, for otherwise the capacities ofhi,1 andhi,2 would

be exceeded. However, this implies(ri,1, hi,1) and(ri,2, hi,2) form blocking pairs forM ′. On the

other hand, if(ri,3, hi,2) and(ri,4, hi,1) are inM ′, then(ri,3, hi,1) forms a blocking pair inM ′, for

hi,1 has enough spare capacity to admitri,3. 2

Lemma 5.3.3 For all menmi ∈ I with a preference list consisting of a two-way tie, exactly one

of the residents in the set{ri,1, ri,2} is matched to his first choice, and the other is matched to his

second choice inM ′.

Proof By Lemma 5.3.2, it is clear thatri,1 andri,2 cannot both be matched to their first choice in

M ′, for this would result inri,3 andri,4 being unassigned inM ′, a contradiction.

On the other hand, ifri,1 and ri,2 are both matched to their second choice, then ifri,3 and ri,4

are both matched tohi,1, andri,2 forms a blocking pair withhi,2. If insteadri,3 andri,4 are both

matched tohi,2, thenri,1 forms a blocking pair withhi,1.

Finally, by Lemma 5.3.1,ri,1 andri,2 cannot be unmatched or matched to the last hospitals on their

preference lists, so exactly one of{ri,1, ri,2} is matched to his first choice inM ′, and the other to

his second.2

5.3NP-completeness of HRS and HRCC 92

Lemmas 5.3.1 – 5.3.3 lead us to the following corollary.

Corollary 5.3.1 Every resident is matched in any stable matchingM ′ for I ′.

Proof The only residents not yet shown to be matched inM ′ are those residentsriδ,k for δ ∈ {α, β}
andk ∈ {1, 2} created from a manmi with a preference list consisting of a tie of size two inI, and

the residentsrsγ,k for k ∈ {1, 2} created from a manms with a strictly ordered preference list in

I. Each of these residents must be matched inM ′, for otherwise they would form a blocking pair

with the last hospital on their preference list, which has the resident in question in first place on its

list 2

We are now in a position to prove the correctness of the reduction in one direction.

Lemma 5.3.4 If the derived HRS instanceI ′ admits a stable matchingM ′, then the given instance

I of (3,3)-COM-SMTI admits a complete stable matchingM .

Proof Given a stable matchingM ′ for I ′, we describe how to construct a complete stable matching

M in I ′ as follows. Consider the residentsri,k for k ∈ {1, 2, 3, 4} that were created in correspon-

dence to a manmi in I with a preference list consisting of(wk, wl), a tie of size two, wherek < l.

By Lemma 5.3.3, eitherri,1 is matched tohk or ri,2 is matched tohl in M ′, and, since the capacity

of every hospital inI ′ is either two or one, no other resident is assigned tohk if ri,1 is, and similarly

for ri,2 andhl. Hence, we constructM by placing(mi, wk) into M if and only if (ri,1, hk) ∈ M ′,

and(mi, wl) into M if and only if (ri,2, hl) ∈ M ′. Again, Lemma 5.3.3 ensures that we always

place exactly one such pair intoM . To complete the construction ofM , for each residentri corre-

sponding to a manmi with a strictly ordered preference list, place(mi, wj) into M if and only if

(ri, hj) ∈ M ′. Corollary 5.3.1 ensures every man inI is assigned to some woman inM ; in what

follows we will show thatM is indeed a matching, and is also stable.

We have already argued by Lemma 5.3.3 that no two men with tieson their preference lists are

matched to the same woman inM . For any residentri corresponding to a manmi in I with a

strictly ordered preference list,ri must have size two, and is matched inM to a hospitalhj , which

is not his last choice by Lemma 5.3.1, and which therefore corresponds to womanwj in I. Hospital

hj has capacity two, and so is matched to onlyri in M ′. This means that exactly one man is matched

towj in M . Therefore,M is a matching.

5.3NP-completeness of HRS and HRCC 93

We will show thatM ′ is stable by demonstrating that no man can be part of a blocking pair relative

to M . For any manmi with a preference list consisting of a tie of size two, this must be true, for

such a man is indifferent between the only two women on his preference list. Suppose instead that

mi has a strictly ordered preference list. Consider any womanwl whommi prefers to his partner

in M . Then, inM ′, residentri must also have preferred hospitalhl to its assigned hospital. By

Lemma 5.3.1 and the construction of the hospitals ofI ′, hl’s preference list contains residents of

size two only. SinceM ′ is stable,hl is assigned a resident it strictly prefers tori, and hence, inM ,

wl is assigned a man she strictly prefers tomi. It follows thatM is a complete stable matching in

I. 2

We now prove that the reduction is correct in the other direction.

Lemma 5.3.5 If the given instanceI of (3,3)-COM-SMTI admits a complete stable matchingM ,

then, the derived HRS instanceI ′ admits a stable matchingM ′.

Proof Given a complete stable matchingM for I, we describe how to construct a complete stable

matchingM ′ in I. For each manmi with a strictly ordered preference list, place(ri, hj) into M ′ if

and only if(mi, wj) ∈M . For each manmi in M with a tie of size two consisting of, say,(wk, wl),

wherek < l, place pairs inM ′ by the following two rules:

1. If (mi, wk) ∈ M , place(ri,1, hk), (ri,2, hi,2), (ri,3, hi,1), (ri,4, hi,1) into M ′ , and assign all

residentsriδ,k ∀δ ∈ {α, β} and∀k ∈ {1, 2} their first choice.

2. If (mi, wl) ∈ M , place(ri,1, hi,1), (ri,2, hl), (ri,3, hi,2), (ri,4, hi,2) into M ′, and assign all

residentsriδ,k ∀δ ∈ {α, β} and∀k ∈ {1, 2} their first choice.

It is easy to verify that the capacity of each hospital is not exceeded inM ′, and thatM ′ is a

matching. We claim thatM ′ is also stable.

For, suppose residentsri,t for t ∈ {1, 2, 3, 4} are matched by Rule 1 above. Immediately we notice

thatri,2 andri,3 are matched to their first choices, and hence cannot form a blocking pair with any

hospital inI ′. Residentri,1 prefers only hospitalhi,1 to his assignment inM ′, but does not form a

blocking pair with it becauseri,3 andri,4 are matched tohi,1. The remaining resident,ri,4 prefers

only hi,2, who is matched tori,2, and hence does not form a blocking pair withri,4. All residents

5.3NP-completeness of HRS and HRCC 94

riδ,k ∀δ ∈ {α, β} and∀k ∈ {1, 2} are matched to their first choice and cannot form a blocking pair

with any hospital.

Suppose residentsri,t for t ∈ {1, 2, 3, 4} are matched by Rule (2) above. In an argument analogous

to the previous case,ri,1 andri,4 are matched to their first choices, and cannot be part of a blocking

pair. Residentri,2 prefers only hospitalhi,2 to his assignment inM ′, but does not form a blocking

pair with it becauseri,3 andri,4 are matched tohi,2. The remaining resident,ri,3 prefers onlyhi,1,

who is matched tori,1, and hence cannot form a blocking pair withri,3. Again, the residentsriδ,k

∀δ ∈ {α, β} and∀k ∈ {1, 2} are matched to their first choice and cannot form a blocking pair with

any hospital.

In the final case, a residentri corresponding to a manmi with a strictly ordered preference list in

I ′ cannot block for the same reasons thatmi did not block inM . If mi preferred a womanwj in

M , thenri must also preferhj in M ′. However,hj must be matched to a resident that precedes

ri on its preference list, sincewj is matched to a man precedingmi on her preference list. The

capacity ofhj is two, and the size ofri is also two, sohj has insufficient capacity to accommodate

ri. Therefore,M ′ is a stable matching forI ′. 2

Lemmas 5.3.4 and 5.3.5 immediately imply the following theorem.

Theorem 5.3.2 The problem of determining whether an HRS instance admits a stable matching

is NP-complete, even if the size of each resident and the capacity of each hospital is at most two,

and the lengths of the residents’ and hospitals’ preferencelists are at most three (these conditions

holding simultaneously).

The following corollary follows immediately from Theorem 5.3.2 and Lemma 5.2.1.

Corollary 5.3.2 The problem of determining whether an HRCC instance admits astable matching

is NP-complete, even if the individual preference list of each resident and the joint preference list

of each couple has at most three entries, and the capacity of each hospital is at most two (these

conditions holding simultaneously).

5.4HRCC under classical (Gale-Shapley) stability 95

5.4 HRCC under classical (Gale-Shapley) stability

In this section we introduce a variant of HRCC in which stability is defined in terms of the classical

(Gale-Shapley) stability. We provide a linear time algorithm for this problem, without any assump-

tions about the lengths of the preference lists or capacities of the hospitals. The problem is defined

in the same manner as HRCC, the difference, however, lies in the definition of a blocking pair. So,

as before, each hospitalhj ∈ H provides a preference list of acceptable residents, denoted Lhj
,

and each residentri ∈ R (whether they are a member of a couple or not) submits an individual

preference listLri of acceptable hospitals. Each coupleck then constructs a joint preference list

Lck that isconsistentas defined in Section 5.2. A blocking pair for a matching is defined to be

a (resident,hospital) pair(ri, hj) such that (i)ri is unmatched, or, according toLri , ri prefershj

to M(ri) and (ii) eitherhj is undersubscribed, or according toLhj
, hj prefersri to at least one

member ofM(hj). Notice the difference in the stability definition to that defined in Section 2 for

HRC is that blocking pairs are defined with respect to the individual preference lists, rather than the

couples’ joint preference lists. We partition the set of preference listsL of an instance of HRCC

into three setsL = LC∪LR∪LH whereLR is the set of individual preference lists of the residents,

LH is the set of hospitals’ preference lists, andLC is the set of joint lists created by the couples.

The goal in this setting is to find a matching satisfying the following two criteria:

1. The matching contains no blocking pairs relative toLR andLH under the classical notion of

Gale-Shapley stability as defined above.

2. Each coupleck = (ri, rj) is assigned to a pair of hospitals(hp, hq) ∈ Lck or bothri andrj

are unassigned.

The instance induced by the preference listsLR andLH is a classical Hospitals / Residents in-

stance, so finding a matching satisfying (1) above simply involves using the extended Gale-Shapley

algorithm to compute a stable matchingM . Of course,M may not satisfy (2), in which case we

need to determine if there is a different stable matching which does. Henceforth, let such a stable

matching be called afeasible stable matching.

Given an instanceI of HRCC, letM denote the set of all stable matchings under classical stability

with respect toLR andLH . We shall obtain a polynomial-time algorithm for determining the

existence of a feasible stable matching by exploiting the known results on the rich structure ofM,

5.4HRCC under classical (Gale-Shapley) stability 96

which we discussed in detail in Section 2.2.6. We briefly recall here the necessary structural results,

beginning with theRural Hospitals theorem[88, 31] (see also [36, Section 1.6.5]).

Theorem 5.4.1 For any given HR instance, (i) each hospital is assigned the same number of res-

idents in all stable matchings; (ii) exactly the same set of residents are unassigned in all stable

matchings; (iii) any hospital which is undersubscribed in one stable matching is matched with

precisely the same set of residents in all stable matchings.

Part (ii) of Theorem 5.4.1 implies that if for some instance of the problem we have a stable match-

ing in which one member of a couple is assigned and the other isunassigned, no feasible stable

matching exists, for there is no stable matching in which they are either both assigned or both unas-

signed. By the same token, we cannot, in general, trivially obtain a feasible stable matching by

forcing every resident in a couple simply to be unassigned. We continue with the following known

relation which induces a partial order onM [36].

Definition 5.4.1 LetM andM ′ be stable matchings for an HR instance. We say thatM dominates

M ′ (denotedM �M ′) if, for each assigned residentr, M(r) = M ′(r), or r strictly prefersM(r)

to M ′(r). Intuitively, M dominatesM ′ if each resident is at least as happy inM as inM ′ (The

case thatM �M ′ andM 6= M ′ is denoted byM ≻M ′).

Notice that a stable matching dominates itself. As we mentioned in Section 2.2.6, the pair(M,�)
actually forms a distributive lattice, with the maximum element beingresident-optimal, in that every

resident is matched to the most-preferred hospital he can ever obtain in any stable matching. It is

this underlying structure ofM that will allow us to develop the efficient algorithm presented in this

section. We end our review of the structural results forM with the following fact.

Fact 5.4.1 The resident-optimal stable matchingMR dominates all stable matchings inM, and

the hospital-optimal stable matchingMH is dominated by every stable matching.

5.4.1 Breakmarriage

The algorithm we develop will use as a subroutine a generalised version of an algorithm known

as AlgorithmBreakmarriage, first defined by McVitie and Wilson [78] and used again by Gusfield

5.4HRCC under classical (Gale-Shapley) stability 97

[34]. Our modified version of Algorithm Breakmarriage takesas input any stable matchingM 6=
MH , and takes as a second parameter any residentr who is matched inM such thatM(r) 6=
MH(r), and always outputs a new stable matching dominated byM . Intuitively, M is the ‘most

dominant’ stable matching subject to the constraint thatr must be matched to a hospital further

down his list. A description of this algorithm is as follows:

Breakmarriage(M, r)

Given the stable matchingM and a matched residentr as input, letR′ ⊆ R denote the set of

residentsr′ matched toM(r) = h in M such thatr′ = r or r′ succeedsr on the preference list of

h. Restart the extended Gale-Shapley algorithm (described in Section 2.2.6 by unassigning all pairs

(r′, h) for r′ ∈ R′. All residents inR′ are now free and are pushed onto a stackS in arbitrary order.

Hospitalh is defined to be “semi-free” in that it only accepts new proposals from residents it strictly

prefers tor. Algorithm Breakmarriage iteratively pops a residentr′′ from S with r′′ proposing to

the first hospital followingM(r′′) on his preference list. This initiates a sequence of proposals,

rejections, and acceptances as given by the resident-oriented Gale-Shapley algorithm [36, Section

1.6.3] in which free residents that have not been rejected byevery hospital on their preference list

are pushed ontoS. Algorithm Breakmarriage terminates whenS becomes empty. The current set

of assignmentsM ′ is then output.

The following facts hold about Algorithm Breakmarriage(M, r).

Lemma 5.4.1 SupposeM andM ′ are stable matchings such thatM �M ′, and that residentr is

matched inM and satisfiesM(r) 6=M ′(r). Then, in the execution of Algorithm Breakmarriage(M, r),

no residentr′ ∈ R ever proposes to a hospital succeedingM ′(r′) on his preference list (in the

case thatM(r′) = M ′(r′), this implies thatr′ remains matched toM(r′) in the execution of

Breakmarriage(M, r)).

Proof Let h = M(r), and letR′ ⊆ R denote the set of residentsr′ ∈M(h) such thatr′ = r or r′

succeedsr on the preference list ofh. Sincer /∈M ′(h) andM �M ′, it follows thatr prefersh to

M ′(r). Henceh is full in M ′ and prefers each of its assignees inM ′ to r. It follows thath prefers

each of its assignees inM ′ to each member ofR′.

Now suppose that a residentr′ who is matched inM is the first resident in the execution of Algo-

rithm Breakmarriage(M, r) to be rejected by the hospital he is assigned to inM ′. Leth′ =M ′(r′).

5.4HRCC under classical (Gale-Shapley) stability 98

Clearly ifh′ = h andr′ ∈R′ thenM(r′) =M ′(r′), which is impossible by the conclusion of the pre-

vious paragraph. Hencer′ was rejected byh′ during the phase of Algorithm Breakmarriage(M, r)

that corresponds to the restart of the resident-oriented Gale-Shapley algorithm. LetMA be the

matching at the point during the execution of the algorithm whenh′ rejectedr′. Thenh′ is full in

MA and prefers each of its assignees inMA(h
′) to r′. Sincer′ ∈M ′(h′) \MA(h

′) andh′ is full in

MA, it follows that there exists somerw ∈MA(h
′) \M ′(h′).

If rw is matched inM ′, thenrw cannot yet have proposed toM ′(rw) (ash′ 6= M ′(rw), and hence

this would contradict the fact thatr′ is the first resident to be rejected by the hospital that he is

assigned to inM ′). Hence eitherrw is unmatched inM ′ and findsh′ acceptable, orrw prefers

h′ to M ′(rw). But this implies that(rw, h′) forms a blocking pair forM ′, ash′ prefersrw to r′.

Therefore,r′ is not rejected byh′ in the call to Algorithm Breakmarriage(M, r). 2

Corollary 5.4.1 Let M 6= MH be a stable matching andr an arbitrary resident withM(r) 6=
MH(r). Then, no residentr′ ∈R is ever rejected byMH(r′) in a call to Algorithm Breakmarriage(M, r).

Lemma 5.4.2 When Algorithm Breakmarriage(M, r) terminates, the set of assignmentsM ′ output

by the algorithm is a stable matching.

Proof We first observe thatM(r) is full in M , by Theorem 5.4.1, sinceM(r) 6= MH(r). We

proceed by showing that every hospital that is full inM is also full inM ′. Throughout the execution

of Algorithm Breakmarriage(M, r), no hospital that was full inM can become undersubscribed

except forM(r), as no other hospital rejects a resident without gaining a better one. Therefore, the

hospitals that are undersubscribed at some point in the execution of the algorithm are those that are

undersubscribed in every stable matching (by Theorem 5.4.1) andM(r). Suppose that during the

algorithm’s execution a residentr′ were to propose to a hospitalh′, such thath′ is undersubscribed

in M . By Theorem 5.4.1,h′ is undersubscribed inMH , and also(r′, h′) /∈MH , since(r′, h′) /∈M .

If r′ is unmatched inMH then(r′, h′) blocksMH , a contradiction. Hencer′ is matched inMH . As

h′ 6= MH(r′), by Corollary 5.4.1,h′ precedesMH(r′) on r′’s preference list, implying that(r′, h′)

blocksMH , a contradiction. Hence, no resident may propose to a hospital that is undersubscribed

in M at any point in the execution of the algorithm, implying thatproposals are only made to those

hospitals that are full inM . It follows by a simple counting argument thatM(r) is full in M ′.

The stability ofM ′ follows from the fact that a residentr has proposed to, and been rejected by,

5.4HRCC under classical (Gale-Shapley) stability 99

any hospitalh it prefers overM(r). Since hospitals continually improve throughout the course of

the algorithm,r cannot be a part of a blocking pair.2

Lemma 5.4.3 Let M andM ′ be distinct stable matchings, and suppose thatM dominatesM ′.

Then, ifr is a resident withM(r) 6= M ′(r), Algorithm Breakmarriage(M, r) either returnsM ′ or

a stable matchingM ′′ that dominatesM ′ (i.e.,M ≻M ′′ �M ′).

Proof This is an immediate consequence of Lemmas 5.4.1 and 5.4.2.2

Lemma 5.4.4 Any stable matchingM can be obtained by a series of calls to Algorithm Break-

marriage from the resident-optimal stable matchingMR in O(m) time, wherem is the sum of the

lengths of the preference lists.

Proof The fact that an arbitrary stable matchingM can be obtained fromMR by a series of calls to

Algorithm Breakmarriage is a straightforward consequenceof Lemma 5.4.3. A total ofO(m) time

is spent, as any arbitrary series of calls to the algorithm constitutes at most one left to right traversal

of each resident’s preference list, and similar time is spent traversing the hospitals’ preference lists.

2

So, in light of Lemma5.4.4, we can see that the computation of a feasible stable matching (if one

exists) can be achieved by first finding the resident-optimalstable matchingMR (which, in general,

need not be feasible), and making a suitable selection of calls to Algorithm Breakmarriage. In the

next subsection, we will show that because the preference lists inLck are consistent, we can always

compute an appropriate sequence of calls to Algorithm Breakmarriage in linear time.

We also note that repeated calls to Algorithm Breakmarriageultimately yield the hospital-optimal

stable matching, in which every resident is, of course, assigned toMH(r). Thus this is the only

stable matching Algorithm Breakmarriage cannot take as input.

5.4.2 The algorithm

Before presenting the main algorithm of this section, we require some preliminary lemmas and

definitions. LetM be a stable matching. Recall Theorem 5.4.1, which states that precisely the

5.4HRCC under classical (Gale-Shapley) stability 100

Lr1 : h1 h2 h3 h5 1 : Lh1 : r8 r5 r1 r7 r6 r2
Lr2 : h1 h2 h3 2 : Lh2 : r3 r8 r2 r5 r7 r1
Lr3 : h4 h3 h2 2 : Lh3 : r7 r1 r2 r3 r6 r4
Lr4 : h3 h4 2 : Lh4 : r7 r8 r4 r5 r3
Lr5 : h4 h2 h1 1 : Lh5 : r6 r1
Lr6 : h3 h1 h5
Lr7 : h2 h3 h4 h1
Lr8 : h1 h2 h4

L(r2,r3) : (h1, h3) (h3, h2)

L(r4,r5) : (h4, h4) (h4, h2) (h4, h1)

L(r7,r8) : (h2, h2) (h4, h4)

Figure 5.3: An HRCC instance with a stable but not feasible matching

same set of residents are matched in every stable matching. With this in mind, we define amatched

coupleck = (ri, rj) to be a couple such thatri andrj are matched inM (and hence in every stable

matching). Similarly, we define anunmatched coupleck = (ri, rj) to be a couple such that one or

both of ri andrj are unmatched inM (and hence in every stable matching). Letck = (ri, rj) be

a matched couple. We define thenext acceptable paironLck (denotednextM(ck)) to be the first

pair of hospitals(hp, hq) onLck such thathp succeeds or is equal toM(ri) onLri andhq succeeds

or is equal toM(rj) onLrj . If no such pair exists, we saynextM (ck) = ∅ with slight abuse of

notation.

Example To illustrate the notion of the next acceptable pair for a couple, we refer the reader to Figure

5.3. This shows an HRCC instance with 8 residentsr1, r2, . . . , r8 and 5 hospitalsh1, h2, . . . , h5. There

are three couples, namely(r2, r3), (r4, r5), and(r7, r8). A stable (but not feasible) matchingM for this

instance is denoted by underlining. InM , nextM (r2, r3) = (h3, h2), nextM (r4, r5) = (h4, h4), and

nextM (r7, r8) = (h2, h2).

The next two lemmas will help us to develop the algorithm to determine an appropriate sequence

of calls to Algorithm Breakmarriage to obtain a feasible stable matching, if one exists.

Lemma 5.4.5 LetM be a non-feasible stable matching that dominates a feasiblestable matching

Mf . Let ck = (ri, rj) be any matched couple who are not matched to a pair of hospitals onLck .

Then, inMf , (ri, rj) is either assigned tonextM (ck) or a pair of hospitals succeedingnextM (ck)

onLck .

5.4HRCC under classical (Gale-Shapley) stability 101

Proof SinceM dominatesMf , for each residentr eitherM(r) = Mf (r) or Mf (r) succeeds

M(r) onLr by Definition 5.4.1. So, for a coupleck = (ri, rj), their partners inMf are either their

current hospitals or hospitals that appear further down their individual preference lists. It follows

thatnextM(ck) is the first pair of hospitals onLck thatck could be assigned to inMf . So, inMf ,

ck is either assigned tonextM (ck) or to a pair of hospitals that succeedsnextM(ck) onLck . 2

Lemma 5.4.6 LetM be a non-feasible stable matching that dominates a feasiblestable matching

Mf . Let ck = (ri, rj) be any matched couple who are not matched to a pair of hospitals onLck .

Let (hp, hq) = nextM(ck). Then,

1. EitherM(ri) 6= hp or M(rj) 6= hq (or both).

2. The stable matching obtained by calling Algorithm Breakmarriage withM andr∗ dominates

Mf , wherer∗ is ri if M(ri) 6= hp and is otherwiserj.

Proof For the first claim,ri andrj cannot both be assigned tohp andhq, respectively inMf , for

Mf is feasible, and this pair does not appear onLck , by the assumption of the lemma.

For the second claim, sinceM is not feasible andM dominatesMf , the members ofck must be

assigned tonextM (ck) or to a pair of hospitals succeedingnextM (ck) by Lemma 5.4.5. By the

nature of the construction of the joint preference listLck , and by the fact thatM dominatesMf ,

this implies thatr∗ is assigned to a hospital succeedingM(r∗) onLr∗ in Mf . Hence by Lemma

5.4.3, calling Algorithm Breakmarriage on the current matching andr∗ yields a stable matching

that dominatesMf . 2

We are now ready to describe the algorithm for finding a feasible stable matching or reporting that

none exists. The algorithm begins by computing the resident-optimal stable matchingMR and the

hospital-optimal stable matchingMH . By Lemma 5.4.1,MR dominates all stable matchings inM
– hence it dominates every feasible stable matching (if any exist) as well. IfMR is itself feasible,

the algorithm returnsMR. Otherwise, if for any couple(ri, rj) it is the case thatri is assigned and

rj is unassigned, the algorithm halts, correctly reporting that no feasible stable matching exists by

Theorem 5.4.1.

Only if no such couple exists do we enter the while loop which maintains the loop condition that the

current matchingM is not feasible – hence there is some coupleck = (ri, rj) who are not assigned

5.4HRCC under classical (Gale-Shapley) stability 102

ComputeMR andMH

M ←MR

for each couplec ∈ C:

if one member ofc is assigned inM and the other is unassigned inM :

report “no feasible stable matching exists”

HALT

while some coupleck = (ri, rj) is not assigned a pair fromLck in M :

if ck hasnextM(ck) = ∅:
report “no feasible stable matching exists”

HALT

r∗ ← a resident inck with different partners inM andnextM (ck)

if M(r∗) = MH(r∗):

report “no feasible stable matching exists”

HALT

else:

M ← Breakmarriage(M, r∗)

return M

Figure 5.4: Algorithm HRCC

to a hospital onLck . If nextM (ck) = ∅, the algorithm reports failure. Otherwise the algorithm

identifies a residentr∗ ∈ {ri, rj} such thatM(r∗) is not equal tor∗’s partner innextM(ck). If r∗

has the same partner inM and inMH , the algorithm reports failure. Otherwise, we call Algorithm

Breakmarriage withM andr∗. The loop is exited only when the algorithm reports failure or when

the current matchingM is feasible. The pseudocode for the algorithm is presented in Figure 5.4 as

Algorithm HRCC.

5.4.3 Correctness

Suppose that no feasible stable matching exists. Then, Algorithm HRCC will clearly correctly

output “no feasible stable matching exists” in one of three places. If, before entering the while

loop, there is a couple with one member assigned and the otherunassigned, the algorithm correctly

halts. Otherwise, the algorithm enters the while loop, and since no feasible stable matching exists,

5.4HRCC under classical (Gale-Shapley) stability 103

the algorithm continues to make calls to Algorithm Breakmarriage. This process must eventually

halt, either whennextM (ck) = ∅ for some coupleck, or when the successive calls to Algorithm

Breakmarriage eventually yieldMH , at either point Algorithm HRCC will correctly output the

failure message.

So, instead, let us suppose a feasible stable matchingMf does exist. We claim that Algorithm

HRCC maintains the invariant that at each iteration of the while loop the current matchingM

dominatesMf . The claim is clearly true whenM = MR, by Lemma 5.4.1, so let us assume the

invariant is true at the end of theith iteration. LetMi denote the stable matching at the end of

iterationi of the while loop and suppose thatMi is not feasible. SinceMi is not feasible, there is

some assigned coupleck = (rs, rt) that is not assigned a pair fromLck . By Lemma 5.4.6, there is

at least one residentr∗ ∈ {rs, rt} that is not assigned to a hospital in the ordered pairnextMi
(ck),

and, further, calling Algorithm Breakmarriage on the current matchingMi andr∗ yields a stable

matching that dominatesMf . Thus the matchingMi+1 obtained by this process dominatesMf ,

and the claim follows.

Thus, at each iteration of the while loop of Algorithm HRCC, the current matching dominatesMf .

Hence, the algorithm eventually terminates having encounteredMf or a different feasible stable

matching that dominatesMf . Let M∗
f denote the feasible stable matching that is returned by the

algorithm. SinceMf is an arbitrary feasible stable matching, we have argued that M∗
f dominates

everyfeasible stable matching. Hence,M∗
f is resident-optimalamongst the set of feasible stable

matchings.

We summarise this section with the following theorem.

Theorem 5.4.2 Algorithm HRCC finds the resident-optimal feasible stable matchingM∗
f if one

exists or reports “none exists” inO(m) time, wherem is the sum of the lengths of the preference

lists of the input.

Proof We have shown that the algorithm finds the resident-optimal feasible stable matching if it

exists, or reports “none exists” correctly. To establish the claimed running time, we observe that

the algorithm constitutes essentially a “left to right” sweep of the residents’ preference lists. So, by

using appropriate data structures (extending those described in [36, Section 1.2.3] for the Extended

Gale-Shapley algorithm for SMI to the HR case), we can implement this algorithm to run inO(m)

5.5HRS with hospital preference lists of length≤ 2 104

time. 2

We end this section with the remark that HRCC under classicalstability is a variant of HR that

can be solved in polynomial time by a unified approach [19] since this problem exhibits the so-

called independence property(see [19] for the definition of this property and further details). For

completeness and for consistency with the notation and terminology adopted in the remainder of

this chapter, we have chosen to present the main result of this section as a standalone algorithm.

5.5 HRS with hospital preference lists of length≤ 2

In light of the NP-completeness result for HRS presented in Section 5.3, it is natural to ask if, by

specialising the problem version, we can identify a “boundary” at which HRS becomes polynomial-

time solvable. One option for us to consider is to allow the sizes of the residents to be at most one,

rather than two. This restriction would, of course, yield aninstance of the classical Hospitals /

Residents problem, which is polynomial-time solvable. A different option is to further restrict the

lengths of the preference lists for the residents and/or thehospitals. We show that by restricting the

length of the preference list of each hospital to be at most two, rather than three, a stable matching

always exists, and an extension of the Gale-Shapley algorithm finds a stable matching in polynomial

time, even if no restriction is placed on the sizes of the residents, the lengths of the preference lists

of the residents, or the capacities of the hospitals. Since NP-completeness for HRS holds even for

hospital preference lists of length at most three, the results of this section indicate such a boundary

for HRS. We describe the restricted version of HRS in which the lengths of the hospitals’ preference

lists are at most two and the residents’ lists are unbounded as (∞, 2)-HRS.

The procedure for solving(∞, 2)-HRS is as follows. The algorithm can be seen as a sequence of

“proposal” operations from the residents to the hospitals.A resident proposes sequentially to each

hospital on his list until he becomes assigned or his list becomes empty. When a residentri proposes

to a hospitalhj , ri becomes provisionally assigned tohj . If ri is that hospital’s first choice, and

hj ’s preference list has another entry, we letrk denotehj ’s second choice. Ifsi + sk > cj , the pair

(rk, hj) is deleted, meaning thatrk is removed fromhj ’s preference list, andhj is removed from

rk ’s preference list. This is the only time a (resident,hospital) pair is deleted by the algorithm. The

algorithm continues this process until each resident is either assigned a hospital or has an empty

list. The details of the algorithm are shown in Figure 5.5.

5.5HRS with hospital preference lists of length≤ 2 105

assign all residents to be free

while some residentri is free andri has a nonempty list:

hj ← first hospital onri’s list

if ri is hj ’s first choice andhj ’s list is of length 2:

rk ← hj ’s second choice

if si + sk > cj :

if rk is assigned tohj :

unassignrk

delete(rk, hj)

assignri to hj

Figure 5.5: Algorithm(∞, 2)-HRS

Let us now establish the correctness and time complexity of the algorithm presented.

Theorem 5.5.1 Algorithm (∞, 2)-HRS finds the resident-optimal stable matching for an instance

of (∞, 2)-HRS inO(m) time, wherem is the sum of the lengths of the preference lists.

Proof It is clear that the provisional assignments at the termination of Algorithm (∞, 2)-HRS

form a matchingM . We claim thatM is stable. To see this, consider an arbitrary residentri who

is unassigned or prefers a hospitalhj to his assignment inM . Then, sinceri is not assigned tohj

in M and prefershj to his current assignment,hj must have been deleted fromri’s preference list.

But this can only happen ifri is hj ’s second choice andhj was assigned to its first choice at some

point in the algorithm and does not have enough spare capacity to accommodateri. But hj ’s first

choice can never become unassigned fromhj at any subsequent step of the algorithm – so in factri

cannot block withhj in M . Sinceri was chosen arbitrarily it follows that no resident is part ofa

blocking pair inM .

Secondly, we claim that Algorithm(∞, 2)-HRS never deletes a stable pair (i.e., a (resident,hospital)

pair that belongs to some stable matching). For, suppose that (rk, hj) is the first such pair deleted

during an arbitrary execution of the algorithm, and letM ′ be a stable matching containing(rk, hj).

Thenrk was deleted because the residentri precedingrk on hj ’s preference list became assigned

to hj andsi + sk > cj . Now, since no stable pair has been deleted prior to this point, in M ′, ri is

either assigned tohj or to a hospital lower thanhj , or is unassigned. Sinceri andrk cannot both

be assigned tohj in M ′, it follows that(ri, hj) blocksM ′, a contradiction.

5.6Conclusion and open problems 106

Thus we have shown thatM is stable and that each resident is assigned to his optimal partner in

M . Let us now show that aO(m) implementation is easily achieved with the use of simple data

structures. If we maintain a stackS of free residents, then each iteration of the loop involves a

subset of the following operations: (i) pop a residentri off of, S (ii) examining the first entryhj

of ri’s list, (iii) examining the length ofhj ’s list (it is either one or two), (iv) simple comparisons

and arithmetic, (v) assigning and/or unassigning at most two residents tohj , (vi) deleting the first

entry of a resident’s list, (vii) pushing a resident ontoS. If each preference list is stored as a linked

list, each of these operations clearly can be performed inO(1) time, and thus a single iteration of

the loop takesO(1) time. Since each resident proposes to each hospital on his list at most once, the

number of iterations of the loop isO(m), and therefore the running time of the algorithm isO(m).

2

5.6 Conclusion and open problems

Our stability definition for HRS allows a residentri to displace a group of inferior residents of

a given total size, so long as this frees up enough space forri. This could, of course, include a

situation whereby a resident of size ten is displaced in order to make way for a resident of size one,

for example. Our definition assumes that the quality of the assignees takes precedence over the

size. However it may be the case that a hospital’s primary concern is to ensure that its occupancy

is as high as possible. Thus it would not participate in a blocking pair if its occupancy were to be

reduced as a result of rejecting the inferior residents and taking on the new resident. This gives rise

to an alternative stability definition which is obtained from the one given for HRS in Section 5.2 by

modifying Condition (2) as follows:

2. OM
j + si ≤ cj , or hj prefersri to residentsrk1 , . . . rkt ∈M(hj) such that

si ≥
t

∑

p=1

skp and OM
j + si −

t
∑

p=1

skp ≤ cj .

It remains open to investigate the algorithmic complexity of the problem of finding a matching that

satisfies this new version of stability, for a given HRS instance.

Chapter 6

Three dimensional stable matching

6.1 Introduction

Knuth [69] initiated the study of three dimensional stable matching problems by asking if the stable

marriage problem could be extended to three sets, so that we have not only men and women, but a

third set, which he called dogs. Knuth’s question is (perhaps intentionally) somewhat open-ended.

He did not suggest a new stability criterion or specify what the agent’s preference lists would be

like.

Over the years, a handful of researchers have explored threedimensional stable matching problems,

in an effort to answer Knuth’s question. In Section 2.2.8, wesurveyed the relevant literature and

known results regarding three dimensional stable matchings. In this chapter we are particularly

interested in the study of the so-calledcyclic three dimensional stable matching problem, in which

men care about only the women, women care about only the dogs,and the dogs care about only the

men. As an open question, Ng and Hirschberg [83] asked for a polynomial-time algorithm to find

stable matchings in this setting (we define cyclic stable matchings and stability formally in Section

6.2). Boros et al [11] showed that if there are at most three agents in each set of men, women and

dogs, then a stable matching always exists. Eriksson et al [26] proved that this also holds if there

are four agents in each set and conjectured that a stable matching exists for every instance of cyclic

3DSM.

In this chapter we continue the study of cyclic three dimensional stable matching problems under

107

6.2Formal definitions 108

two natural definitions of stability given by Eriksson et al [26], called weak and strong stability,

respectively. We describe a special instance of the three dimensional stable matching problem with

incomplete lists called the9-Sun, and show that it is particularly problematic. Specifically, we

show that the9-Sun admits no weakly stable matching, and use this instanceas an instrumental

gadget in showing that weakly stable matchings are NP-hard to find when agents are allowed to

have incomplete lists, and that strongly stable matchings are also NP-hard to find, regardless of the

length of the preference lists (complete or incomplete). For brevity we have chosen to omit the word

‘cyclic’ when referring to the cyclic three dimensional stable matching problem in this chapter.

6.2 Formal definitions

Thethree-dimensional stable matching problem(3DSM) consists of a set ofn men,n women, and

n dogs. Associated with each agent is a preference list which strictly ranks all of the members of

one of the other sets. Specifically, each man has a strict preference list ranking all of the women,

each woman has a strict preference list over all of the dogs, and every dog has a strict preference

list over all of the men. When preference lists are allowed tobe incomplete, so that an agent ranks

only a subset of the appropriate set of agents, we obtain an instance of thethree-dimensional stable

matching problem with incomplete lists(3DSMI). In keeping with the common terminology of this

thesis, if agentb appears on agenta’s preference list, thena findsb acceptable. Notice that in the

3DSMI setting there is no analogous notion ofmutually acceptable pairas there is in the stable

marriage or stable roommates setting. Anacceptable tripleis a triple(m,w, d) such thatm finds

w acceptable,w findsd acceptable, andd findsm acceptable.

A matchingM for a 3DSMI instance is a disjoint set of acceptable triples.If a triple (m,w, d) is

in M , then we letM(m) = w, M(w) = d, andM(d) = m. M(a) is undefined for an unmatched

agenta.

There are at least two natural definitions of stability whicharise in the context of 3DSMI. A match-

ing M is said to beweakly stableif there is nostrongly blocking triple, i.e. an acceptable triple

(m,w, d) /∈M such that (i)m is unmatched or prefersw to M(w), (ii) w is unmatched or prefers

d to M(d), and (iii) d is unmatched or prefersm to M(d). A matching isstrongly stableif there

is noweakly blocking triple(m,w, d) /∈M such that (i)m is unmatched,M(m) = w or m strictly

prefersw to M(m) (ii) w is unmatched,M(w) = d, or w strictly prefersd to M(w), and (iii) d

6.3The 9-Sun: a problematic subgraph 109

is unmatched,M(d) = m, or d strictly prefersm to M(d). Note that the definition of a weakly

blocking triple crucially depends on the fact that(m,w, d) /∈M . Hence at least one agent strictly

improves in a weakly blocking triple, while the other two agents are at least as happy. Observe that

every strongly stable matching is also weakly stable, henceif no weakly stable matching exists for

an instanceI, then no strongly stable matching can exist forI either.

The underlying directed graphDI = (V,A) of an instanceI of 3DSMI consists of a vertex for

each agent ofI, and a directed arc(a, b) for each pair of agents(a, b) such thata findsb acceptable.

Clearly, a matching forI corresponds to a disjoint subset of directed 3-cycles inDI . It is sometimes

convenient for us to think of matchings in this graph-theoretic context, so we sometimes refer to a

matching as a set of disjointcycles(rather than triples). We also occasionally refer to an entry on

a preference list as anedge, or refer to an agent as avertex. The meaning should always be clear

from the context.

We use the notationLa to denote the preference list of an agenta, andLia to denote theith entry of

agenta’s preference list.

6.3 The9-Sun: a problematic subgraph

At the core of all the results in this chapter is a particular 3DSMI instance that admits no weakly

stable matching (and thus no strongly stable matching). Thepreference lists and underlying directed

graph of this instance are given in Figure 6.1. The thicknessof the arcs of the directed graph

illustrate the preference of a given vertex in that thicker arcs represent higher preferences. For

obvious reasons, we refer to this 3DSMI instance as the9-Sun (denotedS9) . Note that, rather

paradoxically, the9-Sun has six agents of each kind, hence 18 agents in total.

6.3The 9-Sun: a problematic subgraph 110

m1 : w1w
′
1 w1 : d1d

′
1 d1 : m2m

′
2

m2 : w2w
′
2 w2 : d2d

′
2 d2 : m3m

′
3

m3 : w3w
′
3 w3 : d3d

′
3 d3 : m1m

′
1

m′
1 : w3 w′

1 : d3 d′1 : m1

m′
2 : w1 w′

2 : d1 d′2 : m2

m′
3 : w2 w′

3 : d2 d′3 : m3

w’
1

m’
1

d’
1

m’
2m

1

w
1

d
1

m
2

w
2

d
2

m
3

w
3

d
3

w’
2

d’
2

m’
3

w’
3

d’
3

Figure 6.1: The9-Sun

We refer to the agents{mi, wi, di : 1 ≤ i ≤ 3} as theinner agentsof S9 and the agents{m′
i, w

′
i,

d′i : 1 ≤ i ≤ 3} as theouter agentsof S9. In what follows we will show that the9-Sun admits

no weakly stable matching, and, moreover, that the preference lists of the9-Sun can be completed

to a 3DSM instance which admits no strongly stable matching.These observations are crucially

important in the NP-hardness results of the subsequent sections of this chapter, as9-Suns play a

vital role in the reductions.

Lemma 6.3.1 The9-Sun admits no weakly stable matching.

Proof By inspection of the underlying graph of the9-Sun, we can observe that the only acceptable

triples are of the form(mi, w′
i, di−1), (mi, wi, d′i) and(m′

i, wi−1, di−1), so that any acceptable

triple contains exactly two inner agents. In any matchingM , at least one inner agent is unmatched.

By the symmetry of the instance we may suppose, without loss of generality, that this unmatched

inner agent ism1. Then, the triple(m1, w
′
1, d3) is a blocking triple forM . 2

For an inner agentai, we letS9 \ ai denote the 3DSMI instance obtained by removingai (and

all incident edges). In the following lemma, we show that theinstance obtained by removing an

arbitrary inner agent from the9-Sun does, in fact, admit a (unique) weakly stable matching.

Lemma 6.3.2 Let ai be an inner agent of the9-Sun. Then, the instance obtained by removingai

(S9 \ ai) admits a unique weakly stable matchingMu. Moreover,Mu is strongly stable.

6.3The 9-Sun: a problematic subgraph 111

Proof Suppose without loss of generality that the inner agentm1 is removed. Then,Mu = {(m′
2,

w1, d1), (m2, w2, d′2), (m3, w′
3, d2), (m

′
1, w3, d3)} is a weakly stable matching. To see that

Mu is the unique weakly stable matching, notice that the triple(m′
1, w3, d3) must be in any stable

matchingM ′, otherwised3 andm′
1 are unmatched, and form a blocking triple withw3. This implies

that the triple(m3, w′
3, d2) must be inM ′ as well, for otherwisem3 andw′

3 are unmatched, and will

form a blocking triple withd2. This argument continues in such a way thatM ′ must necessarily

contain(m2, w2, d′2) and(m′
2, w1, d1). HenceM ′ = Mu.

Verifying thatMu is also strongly stable is a trivial task achieved by inspecting the preference lists.

2

For a given agentai in the9-Sun, we denote the unique weakly stable matching made possible by

removingai byMS9\ai .

Corollary 6.3.1 MS9\ai is the only weakly or strongly stable matching forS9 \ ai.

We next show that by completing the preference lists of the9-Sun in an arbitrary way (so that

each man ranks every woman, every woman ranks every dog, etc), the resulting instance of 3DSM,

denoted byS9, does not admit any strongly stable matching. For ease of exposition, we call the

triples ofS9 original triples.

Lemma 6.3.3 The instanceS9 of cyclic 3DSM admits no strongly stable matching.

Proof Suppose, for a contradiction, thatM is a strongly stable matching. As the nine inner agents

form a 9-cycle in the underlying directed graph, the nine original triples have a natural cyclic order.

We show that if an arbitrary original triple, say(m1, w1, d
′
1), is not inM , then the “successor”

original triple(m′
2, w1, d1) must be inM , which would imply a contradiction given that the number

of these original triples is odd. To this end, suppose without loss of generality that(m1, w1, d
′
1) /∈

M . Then,M(w1) = d1, for otherwise(m1, w1, d′1) would be weakly blocking. Similarly,(m′
2, w1,

d1) /∈M impliesM(d1) = m2. But this means that(m2, w1, d1) ∈M , so(m2, w′
2, d1) is weakly

blocking. 2

6.4NP-completeness of 3DSMI under weak-stability 112

LetS9 \ai denote the instance created by removing an inner agentai from S9. Consider the unique

strongly stable matchingMS9\ai for S9 \ ai. The next fact we wish to establish is thatMS9\ai is in

fact the only strongly stable matching forS9 \ ai.

Lemma 6.3.4 LetM be a matching forS9 \ ai such thatM 6= MS9\ai . Then,M is not strongly

stable.

Proof Suppose thatM is a matching ofS9 \ ai. As in the proof of Lemma 6.3.3, we use the fact

that if an arbitrary original triple is not inM , then the successor original triple is either inM , or is

weakly blocking. Therefore, if we do not include four of the seven original triples ofS9 \ ai in a

matching then one of them would be weakly blocking. There is only one way to select four of the

seven original triples ofS9 \ ai, hence the lemma.2

6.4 NP-completeness of 3DSMI under weak-stability

6.4.1 The reduction

This section describes the polynomial-time reduction thatestablishes NP-completeness for the prob-

lem of deciding whether a weakly stable matching exists for an arbitrary 3DSMI instance. The

reduction is from a restricted variant of MAX-SMTI (see Section 2.2.5 and Chapter 3 for back-

ground and definitions) called(3, 3)-COM-SMTI. We used this same starting point for a reduction

presented in Section 5.3. To make this chapter self-contained, define(3, 3)-COM-SMTI to be the

problem of deciding whether a complete stable matching exists (i.e., a stable matching that matches

every agent), given an instance of SMTI in which each preference list is of length at most three,

every woman’s preference list is strictly ordered, and eachman’s preference list is either strictly

ordered or is a tie of length two (all of these conditions holding simultaneously). In the Appendix

we prove that(3, 3)-COM-SMTI is NP-complete. Of course, this hardness result holds if the roles

of the men and women are reversed, which, for convenience, weassume in the following reduction.

The remainder of this section is devoted to describing a polynomial-time reduction from(3, 3)-

COM-SMTI to cyclic 3DSMI.

Given an arbitrary(3, 3)-COM-SMTI instanceI, the underlying graphG = (A ∪ B,E) of I

consists of the setA = {a1, a2, . . . , an} of menai, all of whom have strictly ordered preference

6.4NP-completeness of 3DSMI under weak-stability 113

lists, and the setB of women which is partitioned into two setsB1 ∪B2 = {b1,. . ., bn1 } ∪ {bT1 ,. . .,

bTn2
} wheren1 + n2 = n. Each womanbj ∈ B1 has a strictly ordered preference list, and each

womanbTj ∈ B2 has a preference list consisting solely of a tie of length two. We denote a woman

who may be a member of eitherB1 orB2 by b(T)
i .

Let I be an instance of(3, 3)-COM-SMTI with the underlying graphG= (A∪B,E). We construct

an instanceI ′ of cyclic 3DSMI which initially consists of the setsQ, R, andS of men, women, and

dogs, respectively, as follows.

Step 1: the proper part

The sets of men and women ofI ′ we create in this step are in direct correspondence to the menand

women inI. The dogs ofI ′ are created to capture the preference lists of the women ofI.

Create menQ = {m1,. . . , mn} and womenR = W1 ∪ W2 = {w1,. . . , wn1} ∪ {wT
1 ,. . . , wT

n2
}.

The set of dogs ofI ′ consists of two partsS1 ∪ S2 = S, defined by creating a dogdj,i in S1 for

eachi such thatai ∈ Lbj (1 ≤ j ≤ n1), and creating dogsdTj (1 ≤ j ≤ n2) in S2.

Recall thatLia denotes theith entry on agenta’s preference list. A tie in the preference list of an

agent (in the given instanceI) is indicated by parentheses. The (strictly ordered) preference lists of

the agents inQ, R, andS are constructed by the following cases:

1. If Llai = b
(T)
j then letLlmi

= w
(T)
j (1 ≤ l ≤ r, wherer is the length ofai’s list).

2. If Llbj = ai then letLlwj
= dj,i andLdj,i =mi (1 ≤ l ≤ r, wherer is the length ofbj ’s list).

3. If LbTj = (ap, aq) then letLwT
j
= dTj andLdTj =mp mq (in arbitrary order).

The collection of agents and preferences created in this step of the reduction is theproper partof

the instance.

Step 2: the additional part (add9-Suns)

We construct theadditional partof I ′ by creatingn (|Q|) copies ofS9. Thetth copy ofS9 (denoted

St
9 consists of the inner agents{mti , wti , dti : 1 ≤ i ≤ 3} and outer agents{m′

ti , w
′
ti , d

′
ti : 1 ≤

6.4NP-completeness of 3DSMI under weak-stability 114

i ≤ 3} with preference lists as described in Figure 6.1. We add these n copies ofS9 to I ′ in the

following way. Replace the inner agentmt1 in St
9 with manmt ∈ Q by replacing each occurrence

of mt1 in the preference lists of each agent inSt
9 with mt. Also, letmt1 ’s acceptable partners in

St
9, namelywt1 andw′

t1 be appended in this order to the end ofmt’s list. The final preference list

of manmt along withSt
9 is shown below. The portion ofmt’s preference list consisting of women

from the proper part of the instance is denoted byPt.

mt : Pt wt1 w
′
t1

mt2 : wt2 w
′
t2

mt3 : wt3 w
′
t3

m′
t1 : wt3

m′
t2 : wt1

m′
t3 : wt2

wt1 : dt1 d
′
t1

wt2 : dt2 d
′
t2

wt3 : dt3 d
′
t3

w′
t1 : dt3

w′
t2 : dt1

w′
t3 : dt2

dt1 : mt2 m
′
t2

dt2 : mt3 m
′
t3

dt3 : mt m
′
t1

d′t1 : mt

d′t2 : mt2

d′t3 : mt3

This ends the reduction, which can be computed in polynomialtime. Now, we prove that there is a

one-to-one correspondence between the complete stable matchings inI and the stable matchings in

I ′.

First we show that there is a one-to-one correspondence between the matchings ofI and the match-

ings in the proper part ofI ′. This comes from the natural one-to-one correspondence between the

edges ofI and the triples in the proper part ofI ′. More precisely, ifM is a matching inI, then

a corresponding matchingMp in the proper part ofI is created as follows:(ai, bj) ∈ M ⇐⇒
(mi, wj , dj,i) ∈Mp and(ai, bTj) ∈M ⇐⇒ (mi, wT

j , dTj) ∈Mp. Next, we show that stability is

preserved by this correspondence.

Lemma 6.4.1 A matchingM of I is weakly stable if and only if the corresponding matchingMp

in the proper part ofI ′ is weakly stable.

Proof It is enough to show that an edge(ai, bj) is blocking inI if and only if the corresponding

triple (mi, wj , dj,i) is also (strongly) blocking inI ′; and similarly, an edge(ai, bTj) is blocking inI

if and only if the corresponding triple(mi, wT
j , dTj) is also blocking inI ′.

6.4NP-completeness of 3DSMI under weak-stability 115

Suppose first that(ai, bj) is blocking inI, which means thatai is either unmatched or prefersbj

to M(ai) andbj is either unmatched or prefersai to M(bj). This implies thatmi preferswj to

Mp(mi), wj prefersdj,i to M(wj), anddj,i is unmatched inMp, i.e. (mi, wj , dj,i) is blocking in

I ′. Similarly, if (ai, bTj) is blocking thenai is either unmatched or prefersbTj to M(ai) andbTj is

unmatched inM . This implies thatmi preferswT
j to Mp(mi), wT

j anddTj are both unmatched in

Mp, and hence(mi, wT
j , dTj) is blocking inI ′.

In the other direction, if(mi, wj , dj,i) is blocking inI ′, thenmi preferswj to Mp(mi), wj prefers

dj,i to Mp(wj), anddj,i is unmatched inMp. This implies thatai is either unmatched or prefersbj

to M(ai) andbj is either unmatched or prefersai to M(bj), so(ai, bj) is blocking inI. Similarly,

if (mi, wT
j , dTj) is blocking inI ′, thenwT

j anddTj are both unmatched inMp andmi preferswT
j to

Mp(mi). This implies thatai is either unmatched or prefersbTj to M(ai) andbTj is unmatched in

M , so(ai, bTj) is blocking inI. 2

Furthermore, if the matchingM is complete, then we can enlarge the corresponding matchingto the

additional part ofI ′ by matching everySt
9\mt in the unique stable way. So by adding this matching

MSt
9\mt

toMp for everyt, this leads to the one-to-one correspondence between the complete stable

matchings ofI and the stable matching ofI ′.

Lemma 6.4.2 The instanceI admits a complete stable matchingM if and only if the reduced

instanceI ′ admits a stable matchingMp, whereMp is the corresponding matching ofM .

Proof The stability ofM implies thatMp is stable in the proper part ofI ′ by Lemma 6.4.1. The

completeness ofM and Lemma 6.3.2 implies thatMp is also stable in the additional part ofI ′.

In the other direction, ifMp is stable then every man inMp must be matched in a proper triple. For,

if a proper manmt does not have a proper partner inM thenSt
9 would contain a blocking triple,

by Lemma 6.3.1. This implies that the corresponding matching M , defined in Lemma 6.4.1, is

complete. The stability ofM is a consequence of Lemma 6.4.1. Finally, we note that the additional

part has a unique stable matching, since everySt
9 \ at must be matched in the unique stable way

indicated by Lemma 6.3.2, which implies the one-to-one correspondence.2

The following theorem is a direct consequence of Lemma 6.4.2, and by observing that no agent’s

preference list inI ′ exceeds the length of five.

6.5NP-completeness of 3DSM under strong stability 116

Theorem 6.4.1 Determining the existence of a stable matching in a given instance of cyclic3DSMI

is NP-complete, even if the preference list of each agent is of length at most five.

6.5 NP-completeness of 3DSM under strong stability

In this section we prove that 3DSM is NP-hard under strong stability. As in Section 6.4, our9-Sun

gadgets play an instrumental role. The reduction in this section is somewhat more complex than the

other reductions in this thesis. We have therefore providedan example in Section 6.7 to illustrate

some of the more involved steps of the transformation.

6.5.1 The reduction

The reduction we describe in this section again begins with an instance of(3, 3)-COM-SMTI, only

this time we assume that ties are allowed on the men’s, ratherthan the women’s preference lists.

To be precise, we assume the underlying graph of a(3, 3)-COM-SMTI instanceI to have a vertex

set ((A1 ∪ A2) ∪ B) that consists of a setA1 = {a1, a2,. . ., an1} of men with strictly ordered

preference lists, and a set withA2 = {aT1 , aT2 ,. . ., aTn2
} of men with preference lists consisting of

a single tie of length two, andn1 + n2 = n. We letA = A1 ∪ A2. The setB = {b1, b2, . . ., bn}
consists entirely of women with strictly ordered preference lists. As previously stated, all agents of

I have a preference list of length at most three.

Given an instanceI of (3, 3)-COM-SMTI as defined above, we create an instanceI ′ of 3DSM as

follows.

Step 1: the proper instance

Theproper instanceIp of cyclic 3DSMI is a subinstance ofI ′ with agentsQp, Rp, andSp of men,

women, and dogs, respectively, with each set being of sizen.

The preference list of womanwj ∈ Rp is the single entrydj ∈ Sp. The preference list ofdj ∈ Sp

is such that ifLlbj = ai, thenLldj = mi. Otherwise, ifLlbj = aTi , thenLldj = m′
i,j for 1 ≤ l ≤ r,

6.5NP-completeness of 3DSM under strong stability 117

wherer is the length ofbj ’s list. So the preference list of dogdj is essentially the “same” as that of

womanbj , only with men inQp rather thanA.

The preference list of a manmi ∈Qp created in correspondence to manai ∈A1 is given as follows.

If Llai = bj , thenLlmi
= wj for 1 ≤ l ≤ r, wherer is the length ofai’s list. So the preference list of

manmi is essentially the “same” as that of manai. For each manmi created in correspondence to

manaTi ∈ A2, with a preference list consisting of a single tie of length two, say (br, bs), we create

five menmT
i , m′

i,r, m
′′
i,r, m

′
i,s, m

′′
i,s, four womenw′

i,r, w
′′
i,r, w

′
i,s, w

′′
i,s and four dogsd′i,r, d

′′
i,r, d

′
i,s,

d′′i,s. The preference list ofmT
i containsw′

i,r andw′
i,s in an arbitrary order, and the other preference

lists are as shown below.

m′
i,r : w′

i,r wr

m′′
i,r : w′′

i,r

m′
i,s : w′

i,s ws

m′′
i,s : w′′

i,s

w′
i,r : d′i,r d′′i,r

w′′
i,r : d′′i,r d′i,r

w′
i,s : d′i,s d′′i,s

w′′
i,s : d′′i,s d′i,s

d′i,r : m′′
i,r mT

i

d′′i,r : m′
i,r m′′

i,r

d′i,s : m′′
i,s mT

i

d′′i,s : m′
i,s m′′

i,s

These agents are added to the setsQp, Rp andSp, respectively. Note that inIp, every set of agents

has the same cardinality:np = |Qp|= |Rp|= |Sp|= n + 4n2. The notions ofproper agent, proper

partnerandproper tripleare defined in the obvious way, i.e., they all belong to the proper instance.

Step 2: the additional part (add9-Suns)

The additional partof I ′ is the disjoint union of3np copies ofS9, such that theith copy ofS9,

denotedSi
9, incorporates theith agent ofIp, as described in Step 2 of the previous reduction for

the proof of Theorem 6.4.1 (we omit the full description of this process again). The new agents are

referred to asadditional agents.

Let Ms = ∪i∈{1,...,3np} MSi
9\ai be the unique strongly stable matching of the additional part, as

described in Section 6.3 and Lemma 6.3.2, whereai is the proper agent ofSi
9. We sometimes call

Ms theadditional matching.

We callC = ∪i∈{1,...,3np} CSi
9\ai the set ofcovered additional agents, as these additional agents

are covered byMs, and we callU = ∪i∈{1,...,3np} USi
9\ai the set ofuncovered additional agents, as

these additional agents are not covered byMs.

6.5NP-completeness of 3DSM under strong stability 118

Step 3: pad the instance

Note thatU has equal numbers of men, women and dogs. Thefitting part of I ′ is constructed on

U by creating disjoint triples that coverU . This is done in such a way that every agent has exactly

one agent in his/her/its list, i.e. the fitting part is a complete matching ofU , denoted byMf . There

is a certain amount of nondeterminism in this step, as there are a number of ways this step can be

accomplished.

Finally, thedummy partis obtained by an arbitrary extension of the preference lists to ensure that

all preference lists are complete. Note that this does not involve adding any additional agents. By

putting together the three subinstances – the proper, additional, and fitting parts – we have con-

structed the complete instanceI ′. The preferences of the agents over partners in different parts

respect the order in which we defined these parts: the list of aproper agent contains the proper

partners first, then the additional partners, and finally thedummy partners; the list of a covered

additional agent contains the additional partners first, then the dummy partners; the list of an un-

covered additional agent contains the additional partnersfirst, then the fitting partner, and finally

the dummy partners.

Thus we have reduced an instanceI of (3, 3)-COM-SMTI to an instanceI ′ of 3DSM in polynomial

time.

We show that there is a one-to-one correspondence between the complete stable matchings ofI and

the complete strongly stable matchings ofIp. The stability is preserved via the following one-to-one

correspondence between the complete matchings ofI and complete matchings ofI ′:

(ai, bj) ∈M ⇐⇒ (mi, wj , dj) ∈Mp

(aTi , bs) ∈M ⇐⇒ (mT
i , w

′
i,s, d

′
i,s), (m

′′
i,s, w

′′
i,s, d

′′
i,s), (m

′
i,s, ws, ds) ∈Mp

(aTi , bs) /∈M ⇐⇒ (m′
i,s, w

′
i,s, d

′′
i,s), (m

′′
i,s, w

′′
i,s, d

′
i,s) ∈Mp

Lemma 6.5.1 A complete matchingM of I is stable if and only if the corresponding complete

matchingMp of Ip is strongly stable.

Proof As a manaTi cannot belong to a blocking pair inI, it may be verified that his corresponding

6.5NP-completeness of 3DSM under strong stability 119

copymT
i cannot belong to a weakly blocking triple inIp either. Therefore, it is enough to show that

a pair(ai, bj) is blocking forM if and only if the corresponding triple(mi, wj , dj) is blocking for

Mp. But this is obvious, because the preference lists ofai andmi are essentially the same, and the

preference lists ofbj anddj are also essentially the same.2

Now, given a matchingM of I let us create the corresponding matchingM of I ′ by addingMs and

Mf to Mp, soM = Mp ∪Ms ∪Mf .

Lemma 6.5.2 The instanceI admits a complete stable matchingM if and only if the reduced

instanceI ′ admits a strongly stable matchingM ′, whereM ′ is the corresponding matching ofM .

Proof Suppose that we have a complete stable matchingM of I, andM ′ is the corresponding

matching inI ′. Lemma 6.5.1 implies that every proper agent has a proper partner inM ′ and no

proper triple is weakly blocking. Therefore, no proper agent can be involved in any weakly blocking

triple either. Recall thatMs is the union of the unique strongly stable matchings of the suitable part.

By construction ofMs, every covered additional agent has an additional partner in M ′ and by

Lemma 6.3.4, no additional triple is weakly blocking. Therefore, no such agent can be part of

any weakly blocking triple. Finally, every uncovered additional agent has a fitting partner inM ′,

so these agents cannot form a weakly blocking triple either,since an uncovered additional agent

prefers only additional partners to fitting partners, whichcannot be involved in a weakly blocking

triple. HenceM ′ is strongly stable.

In the other direction, suppose thatM ′ is a strongly stable matching ofI ′. Every proper agent must

have a proper partner, since otherwise ifat had no proper partner inM ′, thenSt
9 would contain

an additional weakly blocking triple, by Lemma 6.3.3. So thecorresponding matchingM in I is

complete. The stability ofM is a consequence of Lemma 6.5.1. Finally, we note that the additional

agents must be matched in the unique strongly stable way inM ′, namely, the covered additional

agents must be covered by matchingMs, by Lemma 6.3.4, and the uncovered additional agents

must be covered byMf (recall this is the matching created during the fitting part), since otherwise

a fitting triple would weakly blockM ′. Therefore, we have a one-to-one correspondence as was

claimed. 2

Theorem 6.5.1 Determining the existence of a strongly stable matching in agiven instance of

3DSM is NP-complete.

6.6Conclusion and open questions 120

6.6 Conclusion and open questions

The9-Sun described in Section 6.3 is the smallest example that wecan find of a 3DSMI instance

with no weakly stable matching. Is there a smaller example? In the case of strong stability, one can

construct smaller examples (withn = 4) that admit no strongly stable matching. However, we have

not found a use for such instances as gadgets for NP-hardnessproofs.

It is an intriguing question to determine if there exists an instance of 3DSM that admits no weakly

stable matching. A natural place to start would be to try to complete the preference lists of the

9-Sun in a way that does not introduce a weakly stable matching. However, we conjecture that this

is not possible. A larger question is whether there is a polynomial-time algorithm to find a weakly

stable matching or report that none exists, given an instance of 3DSM.

It is very uncommon to find a matching problem with preferences for which there is no clear way to

extend a hardness result to complete preference lists (in fact, we know of no other such problem).

Could it really be the case that when one attempts to completethe preference lists of a 3DSMI

instance, one cannot avoid introducing a weakly stable matching?

6.7 Example

We consider an example reduction from a simple(3, 3)-COM-SMTI instanceI with five men{a1,

a2, a3, a4, a5} and five women{b1, b2, b3, b4, b5}. The instance is given in Figure 6.2. The men

a4 anda5 have preference lists consisting of a single tie of size two,and all the other agents of the

instance have strictly ordered preference lists. This instance is a “yes” instance, forM = {(a1, b1),
(a2, b2), (a3, b5), (a4, b4), (a5, b3)} is a complete stable matching forI.

Even for this small instance, the derived instanceI ′ has a total of 663 agents (221 of each set), and

the sum of the lengths of the preference lists ofI ′ exceeds 100,000. Ideally, we would present all

the details, but constructing a complete example seems a bitdaunting. We will instead illustrate the

second step of the reduction, which involves creating a large number of agents, from the perspective

of just a single agent. For the first step, however, we give a complete construction.

The result of Step 1 of the reduction is given in Figure 6.3. Each manai with a strictly ordered

preference list has been transformed into a manmi, whereas a manaj whose preference list is a

6.7Example 121

a1 : b1
a2 : b2 b1 b4
a3 : b5 b1
a4 : (b4 b5)
a5 : (b3 b4)

b1 : a2 a3 a1
b2 : a5 a2
b3 : a5
b4 : a4 a5 a2
b5 : a4 a3

Figure 6.2: The given instanceI of (3, 3)-COM-SMTI

m1 : w1

m2 : w2 w1 w4

m3 : w5 w1

mT
4 : w′

4,4 w′
4,5

mT
5 : w′

5,3 w′
5,4

w1 : d1
w2 : d2
w3 : d3
w4 : d4
w5 : d5

d1 : m2 m3 m1

d2 : m5 m2

d3 : m5

d4 : m4 m5 m2

d5 : m4 m3

m′
4,4 : w′

4,4 w4

m′′
4,4 : w′′

4,4

m′
4,5 : w′

4,5 w5

m′′
4,5 : w′′

4,5

w′
4,4 : d′4,4 d′′4,4

w′′
4,4 : d′′4,4 d′4,4

w′
4,5 : d′4,5 d′′4,5

w′′
4,5 : d′′4,5 d′4,5

d′4,4 : m′′
4,4 mT

4

d′′4,4 : m′
4,4 m′′

4,4

d′4,5 : m′′
4,5 mT

4

d′′4,5 : m′
4,5 m′′

4,5

m′
5,3 : w′

5,3 w3

m′′
5,3 : w′′

5,3

m′
5,4 : w′

5,4 w4

m′′
5,4 : w′′

5,4

w′
5,3 : d′5,3 d′′5,3

w′′
5,3 : d′′5,3 d′5,3

w′
5,4 : d′5,4 d′′5,4

w′′
5,4 : d′′5,4 d′5,4

d′5,3 : m′′
5,3 mT

5

d′′5,3 : m′
5,3 m′′

5,3

d′5,4 : m′′
5,4 mT

5

d′′5,4 : m′
5,4 m′′

5,4

Figure 6.3: The proper instance ofI ′ resulting from Step 1 of the reduction

tie has been transformed into a manmT
j . Each dogdi of the proper instance has been created in

correspondence to the womanbi, and the women of the proper instance are created with a preference

list containing a single dog. The block of agents beginning with m′
4,4 was created in correspondence

to a4, and the block of agents beginning withm′
5,3 was created froma5.

The numbers of agents created in Step 2, in which we add9-Suns, is quite large. We illustrate this

step on a single agent, manm3, chosen arbitrarily. Recall that the preference list ofm3 after the

end of Step 1 consists of the womanw5 followed byw1.

m3 : w5 w1 w31 w′
31

m32 : w32 w′
32

m33 : w33 w′
33

m′
31 : w33

m′
32 : w31

m′
33 : w32

w31 : d31 d′31
w32 : d32 d′32
w33 : d33 d′33
w′
31 : d33

w′
32 : d31

w′
33 : d32

d31 : m32 m′
32

d32 : m33 m′
33

d33 : mt m′
31

d′31 : m3

d′32 : m32

d′33 : m33

Figure 6.4: Step 2 illustrated on manm3.

6.7Example 122

We now illustrate the notion of thecoveredanduncovered agents, as described in Step 2 in Section

6.5.1. If we consider manm3 to be the “third” agent ofI ′, then this9-Sun is the third copy ofS9 to

be added toI ′, and is therefore denotedS3
9 . The covered agentsCS3

9\m3
are denoted by underlining

in Figure 6.4. The uncovered agentsUS3
9\m3

are those in the set{m′
33 , w′

31 , w′
32 , d′31 , d′33}.

Notice that this particular set of uncovered agents consists of one man, two women, and two dogs.

When we apply this process to, say,w1 andd1, wherew1 andd1 are the sixth and eleventh agents of

the proper instance, respectively, we would add the sixth and eleventh copies of the9-Sun, denoted

S6
9 andS11

9 , respectively, toI ′. The uncovered agentsUS6
9\w1

consist of one woman, two men, and

two dogs. The uncovered agentsUS11
9 \d1 consist of one dog, two men, and two women. Thus it is

easy to see that the numbers of men, women, and dogs of the uncovered agents are equal.

In Step 3, when the fitting part is constructed, we could, for example, create three arbitrary triples

from the setsUS3
9\m3

, US6
9\w1

, andUS11
9 \d1 , as these sets contain a total of six men, six women, and

six dogs. Clearly there are a number of ways in which this can be accomplished. Any of these ways

will do.

Finally, in Step 4, the dummy part completes the preference lists of the existing agents by arbitrarily

completing each agent’s preference list in any way that adheres to the rule that the list of a proper

agent contains the proper partners first, then the additional partners, and finally everyone else; the

list of a covered additional agent contains the additional partners first, then everyone else; and the

list of an uncovered additional agent contains the additional partners first, then the unique fitting

partner, then everyone else.

We illustrate this process on the proper agentm3, the covered additional agentm32 , and the uncov-

ered additional agentm′
33 in Figure 6.5. Notice the womanw∗ in the list ofm′

33 – this is the fitting

partner found in Step 3.

m3 : w5 w1 w31 w
′
31 . . . other proper women . . . other women inS3

9 . . . all others . . .
m32 : w32 w

′
32 . . . other women inS3

9 . . . all others . . .
m′

33
: w32 w

∗ . . . other women inS3
9 . . . all others . . .

Figure 6.5: The completion of the preference lists in Step 4

Chapter 7

Popular matchings: structure and

algorithms

7.1 Introduction

We consider the popular matching problem (POP-M) in the setting of the post allocation problem

(PA). All the relevant concepts and terminology for PA and POP-M were introduced in Section

2.3.3. Our goal in this chapter is to characterize the structure of the set of popular matchings for

an instance of POP-M. This characterization is in terms of a novel data structure which we call a

switching graph. We will show that this structure can be exploited to enable the design of efficient

algorithms for a range of extensions of the basic popular matching problem, such as counting and

enumerating popular matchings, generating a popular matching uniformly at random, and finding

popular matchings that satisfy various additional optimality criteria. In particular, we improve on

the algorithm of Kavitha and Nasre [60] by showing how minimum-cost popular matchings can be

found inO(n + m) time, and rank-maximal and generous popular matchings inO(n log n + m)

time (these terms are defined in Section 7.3.5).

7.1.1 Preliminaries

For convenience, a uniquelast-resort post, denoted byl(a), is created for each applicanta, and

placed last ona’s preference list. As a consequence, in any popular matching, every applicant is

123

7.1 Introduction 124

matched, although some may be matched to their last-resort post. Note that this technique was also

used by Abraham et al [5]. Letf(a) denote the first-ranked post ona’s preference list; any post that

is ranked first by at least one applicant is called anf -post. Let s(a) denote the first non-f -post on

a’s preference list. (Note thats(a) must exist, forl(a) is always a candidate fors(a)). Any such

post is called ans-post. By definition, the sets off -posts ands-posts are disjoint.

The following fundamental result, proved in [5], completely characterizes popular matchings, and

is key in establishing the structural results that follow.

Theorem 7.1.1 (Abraham et al [5]) A matchingM for an instance of POP-M is popular if and

only if (i) everyf -post is matched inM , and (ii) for each applicanta, M(a) ∈ {f(a), s(a)}.

In light of Theorem 7.1.1, given a POP-M instanceI we define thereduced instanceof I to be the

instance obtained by removing from each applicanta’s preference list every post exceptf(a) and

s(a). It is immediate that the reduced instance ofI can be derived fromI in O(n +m) time, i.e.,

in time that is linear in the size of the input. Henceforth, unless explicitly stated, it is assumed that

a given instance of POP-M is a reduced instance. For a (reduced) instanceI of POP-M, letM be a

popular matching, and leta be an applicant. Denote byOM (a) the post ona’s (reduced) preference

list to whicha is not assigned inM . Note that sinceI is a reduced instance,OM (a) is well defined.

So, if a is matched tof(a) in M , thenOM (a) = s(a), whereas ifa is matched tos(a) in M , then

OM (a) = f(a).

Throughout this chapter, we refer to a working example foundin Section 7.5, which illustrates

many of the important concepts surrounding popular matchings and their structure.

Example As an illustration of the reduced instance of a POP-M instance, consider the full POP-M

instanceI of Figure 7.2 in Section 7.5 with applicantsa1 . . . a16 and postsp1 . . . p18. The reduced

instance ofI is shown in Figure 7.3. It may be inferred that the matching shown in Figure 7.3

satisfies the conditions of Theorem 7.1.1, and is thus a popular matching for this instance.

7.2The structure of popular matchings – the switching graph 125

7.2 The structure of popular matchings – the switching graph

The key concept that underlies the characterization of the structure of popular matchings is the

switching graph, a directed graph which captures all the ways in which applicants may form differ-

ent popular matchings by switching between the two posts on their reduced preference lists. Given a

popular matchingM for an instanceI of POP-M, theswitching graphGM of M is a directed graph

with a vertex for each post, and a directed edge(pi, pj) for each applicanta, wherepi = M(a)

andpj = OM (a). A vertexv is called anf-post vertex(respectivelys-post vertex) if the post it

represents is anf -post (respectivelys-post). Each vertex (respectively edge) is labelled with the

post (respectively applicant) that it represents. In fact,we refer to posts and vertices ofGM in-

terchangeably, and likewise to applicants and edges ofGM . A componentof GM is any maximal

weakly connected subgraph ofGM . An applicant (respectively post) is said to bein a component,

or path, or cycle ofGM if the edge (respectively vertex) representing it is in thatcomponent, path

or cycle.

A very similar graph was defined by Mahdian [Lemma 2][71]. However, Mahdian used this struc-

ture solely to investigate the existence of popular matchings in random instances of POP-M.

Some simple properties of switching graphs are spelled out in the following lemma.

Lemma 7.2.1 Let M be a popular matching for an instanceI of POP-M, and letGM be the

switching graph ofM . Then

(i) Each vertex inGM has outdegree at most 1.

(ii) The sink vertices ofGM are those vertices corresponding to posts that are unmatched in M ,

and are alls-post vertices.

(iii) Each component ofGM contains either a single sink vertex or a single cycle.

Proof (i) A vertex v in GM has an outgoing edge for each applicant who is matched inM to the

post represented byv, and there can be at most one such applicant becauseM is a matching.

(ii) A vertex has no outgoing edge if and only if it representsan unmatched post, and by Theorem

7.1.1 (i) any such post is ans-post.

(iii) This is an easy consequence of (i).2

Every component of the switching graph is therefore either atree or a “tree plus one edge”, and

7.2The structure of popular matchings – the switching graph 126

is called atree componentor a cycle componentaccording as it contains a sink or a cycle. Each

cycle inGM is called aswitching cycle, and must have even length, as the posts of such a cycle are

alternatelyf - ands-posts. IfT is a tree component inGM with sink p, and if q is anothers-post

vertex inT , the (unique) path fromq to p is called aswitching path. So each cycle component of

GM has a unique switching cycle, but each tree component may have zero or more switching paths;

to be precise it has one switching path for eachs-post vertex that it contains, other than the sink

vertex. It is immediate that the cycle components and tree components ofGM can be identified, say

using depth-first search, in linear time.

Example Figure 7.4 of Section 7.5 provides an illustrative example of the switching graph of a

popular matchingM in the POP-M instance described in Figures 7.2 and 7.3. The switching graph

of this instance contains one cycle component and two tree components.

Let C be a switching cycle ofGM . To applyC to M is to assign each applicanta in C to OM (a),

while leaving all other applicants assigned as inM . We denote byM ·C the matching obtained by

applying the switching cycleC to M .

Similarly, letP be a switching path ofGM . To applyP to M is to assign each applicanta in P

to OM (a), while leaving all other applicants assigned as inM . We denote byM · P the matching

obtained by applying the switching pathP to M . Note that, ifp is the sink vertex inGM and the

pathP begins at vertexq, then inM ·P , the postp is matched but the postq is unmatched (whereas

in M , q is matched andp is unmatched). In general, if we apply a switching cycle or switching

path that contains the edge representing applicanta, and this edge connects postq to postp, then

applicanta is switched from postq to postp as a result.

Note that the switching graph is uniquely determined by a particular popular matchingM , but

different popular matchings for the same instance yield different switching graphs. However, all

switching graphs for an instance of POP-M have the same number of vertices (one for each post),

and the same number of edges (one for each applicant).

The significance of switching paths and switching cycles begins to emerge in the following theorem.

Theorem 7.2.1 Let M be a popular matching for an instanceI of POP-M, and letGM be the

switching graph ofM .

7.2The structure of popular matchings – the switching graph 127

(i) If C is a switching cycle inGM thenM · C is a popular matching forI.

(ii) If P is a switching path inGM thenM · P is a popular matching forI.

Proof (i) Let M ′ = M · C. By Theorem 7.1.1, it is sufficient to argue that (a) everyf -post is

matched inM ′ and (b) for each applicanta, M ′(a) ∈ {f(a), s(a)}. It is clear, from the cyclic

nature of the reassignments that take place on applyingC, that each post that is matched inM

is also matched inM ′. Hence allf -posts are matched inM ′, and condition (a) is established.

Furthermore, each applicantai /∈ C is assigned to the same post inM ′ as inM , and each applicant

ai ∈ C is assigned toOM (ai) in M ′, which is clearly eitherf(ai) or s(ai), establishing (b).

(ii) Condition (b) follows by a similar argument to that of (i), since every applicanta is still assigned

to eitherf(a) or s(a) in M · P . Also, the only post that is “vacated” by applyingP is thes-post

corresponding to the initial vertex ofP . Eachf -post inP is filled by a different applicant, and all

f -posts not inP are filled by the same applicant as inM , so that condition (a) is satisfied.2

Theorem 7.2.1 shows that, given a popular matchingM for an instanceI of POP-M, and the switch-

ing graph ofM , we can potentially find other popular matchings. Our next step is to establish that

this is essentially the only way to find other popular matchings. More precisely, we show that ifM ′

is an arbitrary popular matching forI, thenM ′ can be obtained fromM by applying a sequence of

switching cycles and switching paths, at most one per component ofGM . First we state a simple

technical lemma, the proof of which is an easy consequence ofthe definition of the switching graph.

Lemma 7.2.2 LetM be a popular matching for an instanceI of POP-M, letGM be the switching

graph ofM , and letM ′ be an arbitrary popular matching forI. If the edge representing applicant

a in GM connects the vertexp to the vertexq, then

(i) a is assigned top in M ;

(ii) if M ′(a) 6= M(a) thena is assigned toq in M ′.

Lemmas 7.2.3 and 7.2.4 deal with switching cycles and switching paths respectively.

Lemma 7.2.3 LetM be a popular matching for an instanceI of POP-M, letT be a cycle compo-

nent with cycleC in the switching graphGM of M , and letM ′ be an arbitrary popular matching

for I.

(i) Either every applicanta in C hasM ′(a) = M(a), or every such applicanta hasM ′(a) =

7.2The structure of popular matchings – the switching graph 128

OM (a).

(ii) Every applicanta in T that is not inC hasM ′(a) = M(a).

Proof (i) Let ai0 , . . . , air−1 be the sequence of applicants inC, and suppose thatM ′(aij) 6=
M(aij) for someaij in C. Then, by Lemma 7.2.2,aij must be assigned inM ′ to OM (aij) =

M(aij+1) (wherej + 1 is taken modr). It follows thataij+1 must also be assigned to a different

post inM ′ as compared toM , and that this post must beOM (aij+1) = M(aij+2) (wherej + 2 is

taken modr). Inductively, this implies that every applicant inC is assigned different posts inM

andM ′ if any one of them is.

(ii) Suppose, for a contradiction, that an applicanta who is in T but not inC hasM ′(a) 6=
M(a). Let the sequence of distinct edges on the path inT that begins with edgea be (a =

)aj1 , . . . , ajt , . . . , ajs whereajt is the last edge in this path that is not in the cycleC. Then, by

an argument similar to that in (i) above, we must haveM ′(ajt) = M(ajt+1). But, by the same rea-

soning, we must haveM ′(ajs) = M(ajt+1), since the edgeajt+1 follows the edgeajs in the cycle.

This implies that a particular post, namelyM(ajt+1), has two applicants,ajt andajs , assigned to it

in M ′, a contradiction.2

Lemma 7.2.4 LetM be a popular matching for an instanceI of POP-M, letT be a tree component

in the switching graphGM of M , and letM ′ be an arbitrary popular matching forI. Then either

every applicanta in T hasM ′(a) = M(a), or there is a switching pathP in T such that every

applicanta in P hasM ′(a) = OM (a) and every applicanta in T that is not inP hasM ′(a) =

M(a).

Proof Suppose thatM ′(a) 6= M(a) for some applicanta in T . By an argument similar to that of

part (i) of Lemma 7.2.3, the same must be true of every applicant on the path froma to the sink

vertex ofGM . Suppose that two applicants inT whose edges have a common end point, sayp, are

both matched to different posts inM ′ as compared toM . Then, by Lemma 7.2.2, both would have

to be assigned inM ′ to p, a contradiction. Hence the applicants inT who are assigned different

posts inM andM ′ form a path ending at the sink vertex. Moreover, this path must begin at an

s-post vertex, otherwise thef -post at the start of the path would be unfilled inM ′, contradicting

Theorem 7.1.1, so the path is a switching path.2

Suppose thatM is a popular matching for an instanceI of POP-M, and thatT andT ′ are distinct

7.2The structure of popular matchings – the switching graph 129

components of the switching graphGM of M . If we apply the switching cycle inT (if T is a

cycle component) or a switching path inT (if T is a tree component) to obtain a different popular

matching, then the assignments of the applicants inT ′ are unaffected. Hence, the componentT ′ is

present in the switching graph corresponding to the new matching. Intuitively, this means that the

application of switching cycles and paths are independent processes when in different components

of the switching graph. This notion of independence is captured in the following lemma.

Lemma 7.2.5 LetT andT ′ be components of a switching graphGM for a popular matchingM ,

and letQ be either the switching cycle (ifT is a cycle component) or a switching path (ifT is a tree

component) inT . Then,T ′ is a component in the switching graphGM ·Q.

We can now characterize fully the relationship between any two popular matchings for an instance

of POP-M.

Theorem 7.2.2 LetM andM ′ be two popular matchings for an instanceI of POP-M. ThenM ′

may be obtained fromM by successively applying the switching cycle in each of a subset of the cycle

components ofGM together with one switching path in each of a subset of the tree components of

GM .

Proof We describe a procedure for obtainingM ′ from M in a way that will establish the claim.

By Lemma 7.2.5, we can describe this procedure in terms of itsseparate effect on each component

of the switching graph.

For each cycle componentT of GM , we know by Lemma 7.2.3 that either the applicantsa in T all

haveM(a) = M ′(a), or those applicants in the unique cycle ofT haveM ′(a) = OM (a). In the

former case, we leaveT unchanged, and in the latter case, we apply the switching cycle in T , so

that every applicanta in T becomes matched toM ′(a).

For each tree componentT ′ of GM , we know by Lemma 7.2.4 that either every applicanta in T ′

hasM(a) = M ′(a), or there is a single switching pathP in T ′ such that every applicantaj in

P hasM ′(aj) = OM (aj), and all applicantsak in T ′ but not inP must haveM(ak) = M ′(ak).

Hence, by applyingP , every applicanta in T ′ is matched toM ′(a). Thus we obtainM ′ from M

by successively applying at most one switching cycle per cycle component ofGM , and at most one

7.3Algorithms that exploit the structure 130

switching path per tree component ofGM . Moreover, the order in which these switching cycles

and paths are applied is arbitrary.2

An immediate corollary of this theorem is a characterization of the set of popular matchings for a

POP-M instance.

Corollary 7.2.1 LetI be a POP-M instance, and letM be an arbitrary popular matching forI with

switching graphGM . Let the tree components ofGM beX1, . . . ,Xk, and the cycle components

of GM beY1, . . . , Yl. Then, the set of popular matchings forI consists of exactly those matchings

obtained by applying at most one switching path inXi for eachi (1≤ i ≤ k) and by either applying

or not applying the switching cycle inYi for eachi (1≤ i ≤ l).

ExampleTaken all together, the figures and textual description of the example in Section 7.5 contain

a POP-M instance, its reduced instance, the switching graphof a particular popular matchingM ,

and an indication of how the application of switching paths and cycles leads to different popular

matchings with different, but closely related, switching graphs.

7.3 Algorithms that exploit the structure

In this section we show how the characterization of the structure of the set of popular matchings

for an instance of POP-M allows the construction of efficientalgorithms to solve a number of

extensions of the basic problem, namely to compute the number of popular matchings, to generate

a popular matching uniformly at random, to enumerate the setof all popular matchings, to find all

applicant-post pairs that can occur in a popular matching, and to find popular matchings that are

optimal in one of a number of natural ways.

Each of these algorithms begins in the same way – by constructing the reduced instance, finding an

arbitrary popular matchingM (if one exists) with theO(n+m) time algorithm given by Abraham et

al [5], building the switching graphGM , and identifying the cycle components and tree components

of this graph using, say, depth-first search. Clearly all of this can be achieved inO(n +m) time,

wheren is the number of applicants and posts andm is the sum of the lengths of the original

preference lists, in other words in time that is linear in theinput size. This sequence of steps is

referred to as thepreprocessing phase.

7.3Algorithms that exploit the structure 131

7.3.1 Counting popular matchings

Recall that a tree component havingq s-posts has exactlyq − 1 switching paths. For a tree com-

ponentXi, denote byS(Xi) the number ofs-posts inXi. The following theorem is an immediate

consequence of Corollary 7.2.1.

Theorem 7.3.1 LetI be a POP-M instance, and letM be an arbitrary popular matching forI with

switching graphGM . Let the tree components ofGM beX1, . . . ,Xk, and the cycle components of

GM beY1, . . . , Yl. Then, the number of popular matchings forI is 2l ∗∏k
i=1 S(Xi).

Thus, in light of Theorem 7.3.1, it is easy to see that an algorithm for counting the number of popular

matchings for an instanceI of POP-M first carries out the preprocessing phase, during which the

numberl of cycle components andS(Xi) for each tree componentXi in GM are determined. Once

these values are known, the algorithm then returns the product 2l ∗∏S(Xi).

Theorem 7.3.2 The number of popular matchings for an arbitrary instance ofPOP-M can be com-

puted in linear time.

7.3.2 Random popular matchings

Let I be an arbitrary POP-M instance, and letM denote the set of popular matchings forI. Corol-

lary 7.2.1 facilitates the generation of a popular matchingfromM uniformly at random in linear

time. The procedure again begins with the preprocessing phase, during which the cycle components

Y1, . . . , Yl and the tree componentsX1, . . . ,Xk of GM are identified. Next, for each cycle com-

ponentYi a bit b is generated uniformly at random (fair coin). The unique switching cycle inYi is

applied if and only ifb = 1. Likewise, for each tree componentXi, thes-posts other than the sink

are numbered1, 2, . . . , q − 1 whereq = S(Xi), and a valuer is chosen uniformly at random from

the set{0, 1, . . . , q − 1}. If r = 0, no switching path from this component is applied, otherwise,

the switching path beginning at thes-post numberedr in Xi is applied. The algorithm returns the

popular matching obtained by applying this choice of switching cycles and switching paths.

Theorem 7.3.3 LetI be an instance of POP-M, and letM denote the set of popular matchings for

7.3Algorithms that exploit the structure 132

I. There is an algorithm to generate a popular matching fromM uniformly at random in linear

time.

Proof It is immediate that any one of the popular matchings for the instance is equally likely to be

returned by the algorithm. To establish the complexity, it suffices to observe that the preprocessing

phase is linear, and the total time spent applying the switching paths and cycles is also linear.2

7.3.3 Enumerating popular matchings

An algorithm for enumerating the set of popular matchings can be obtained by first computing an

arbitrary popular matchingM along with the switching graphGM and then generating all possible

popular matchings by applying switching paths and switching cycles as described in Corollary

7.2.1.

The algorithm begins with the preprocessing phase. During this phase, for each tree componentXi,

S(Xi) is computed, and thes-posts of this component other than the sink are numbered1, . . . , q−1,

whereq = S(Xi). Let j = l + k. Next, a vectorV = (v1, . . . vj) is defined, wherevi ∈ {0, 1}
(1 ≤ i ≤ l) andvl+i ∈ {0, 1, . . . ,S(Xi)− 1} (1 ≤ i ≤ k).

At this point the matchingM is output, andV is initialized to be(0, 0, . . . , 0). The algorithm then

loops through all possible values of the vectorV . At each iteration, the switching cycle inYi is

applied toM if and only if vi = 1 (1 ≤ i ≤ l). For eachk (l < k ≤ j), if vk 6= 0, the switching

path beginning with thes-post numberedvk in componentXk is applied toM . Otherwise, if

vk = 0, no switching path inXk is applied. The popular matching so generated is then outputand

control passes to the next loop iteration.

Theorem 7.3.4 Let I be a POP-M instance, and letM denote the set of popular matchings forI.

There is an algorithm that enumeratesM in O(n+m+ n|M|) time.

Proof The preprocessing phase occupiesO(n+m) time. The generation of each popular matching

requires the identification and application of a set of switching paths and switching cycles. Within

each component this can be done in time linear in the size of the component, so overall in time

linear in the size of the switching graph, namelyO(n). 2

7.3Algorithms that exploit the structure 133

7.3.4 Popular pairs

A popular pair for an instanceI of POP-M, is an applicant-post pair(ai, pj) such that there exists

a popular matchingM with (ai, pj) ∈ M . We show that the popular pairs can be determined in

linear time. The following lemma is the key.

Lemma 7.3.1 Let M be a popular matching for an instanceI of POP-M, and letGM be the

switching graph ofM . Then,(ai, pj) is a popular pair if and only if (i)(ai, pj) is inM , or (ii) ai is

an incoming edge topj in GM , andai andpj are in a switching cycle or switching path inGM .

Proof The proof of sufficiency is easy, for if(ai, pj) is in M , it is by definition a popular pair.

If instead,ai is an incoming edge topj in GM andai is in a switching cycle or path inGM , we

know by Theorem 7.2.1 that applying this switching cycle or path matchesai andpj in a popular

matching.

On the other hand, suppose that(ai, pj) 6∈ M . If ai is not an incoming edge topj, thenOM (ai) 6=
pj, implying pj is not onai’s reduced preference list, soai can never be matched topj in a popular

matching. Suppose thatai is an incoming edge topj in GM , but ai is not in a switching cycle

or path inGM . If we suppose that(ai, pj) is in a popular matchingM ′, then, by Theorem 7.2.2,

there is a sequence of switching cycles and paths that can be applied to transformM to M ′. But

clearly forai to become matched topj, ai must be in one of these switching cycles or paths, giving

a contradiction.2

Theorem 7.3.5 There is a linear time algorithm to generate all of the popular pairs for a POP-M

instance.

Proof After the preprocessing phase, all pairs in the resulting popular matching (if any) are output.

The switching graphGM is then traversed to find all applicantsai in a switching path or switching

cycle, and for each suchai the pair(ai, pj) is output, wherepj is the end vertex of edgeai. Lemma

7.3.1 guarantees that the correct set of pairs has been generated. The preprocessing phase and

traversal of the switching graph can both be accomplished inlinear time. 2

7.3Algorithms that exploit the structure 134

7.3.5 Optimal popular matchings

Kavitha and Nasre [60] recently studied the following problem: suppose we wish to compute a

matching that is not only popular, but is also optimal with respect to some additional well-defined

criterion. They defined a natural optimality criterion and described an augmenting path-based algo-

rithm for computing an optimal popular matching. In this section we will describe faster algorithms

that exploit the switching graph of the instance to find an optimal popular matching with respect to

certain optimality criteria. We first define two particular optimality criteria, in terms of the profile

of the matching, which we discussed in detail in Section 2.3.1. We briefly recall here the necessary

definitions regarding profiles.

For a POP-M instance withn1 applicants andn2 posts, we define theprofileof M to be the(n2+1)-

tuple (x1, . . . , x(n2+1)) where, for eachi (1 ≤ i ≤ n2 + 1), xi is the number of applicants who

are matched inM with their ith-choice post. An applicant who is matched to his last-resortpost is

considered to be matched to his(n2 + 1)th-choice post, regardless of the length of his preference

lists.

Total orders≻L and≺G on profiles are defined as follows. Suppose thatx = (x1, . . . , xn2+1) and

y = (y1, . . . , yn2+1) are profiles. Then

• x ≻L y if, for somej, xi = yi for 1 ≤ i < j andxj > yj;

• x ≺G y if, for somej, xi = yi for j < i ≤ n2 + 1 andxj < yj.

A rank-maximalpopular matching is a popular matching whose profile is maximal with respect to

≻L. A generouspopular matching is a popular matching whose profile is minimal with respect to

≺G. Note that, since the number of(n2 + 1)th choices is minimised, a generous popular matching

is inevitably a maximum cardinality popular matching.

If a weightw(ai, pj) is defined for each applicant-post pair withpj acceptable toai, then theweight

w(M) of a popular matchingM is
∑

(ai,pj)∈M w(ai, pj). We call a popular matchingoptimal if it

is of maximum or minimum weight depending on the context.

Some examples of optimal popular matchings include, but arenot limited to:

7.3Algorithms that exploit the structure 135

• Maximum cardinalitypopular matchings: assign a weight of 0 to each pair involving a last

resort post, and a weight of 1 to all other pairs, and find a maximum weight popular matching.

(A linear time algorithm to find a maximum cardinality popular matching was already given

by Abraham et al [5].)

• Minimum cost maximum cardinalitypopular matchings: assign a large weight, sayn2, to

each pair involving a last resort post, and a weight ofk to each pair(ai, pj) such thatpj is

ai’s kth choice in the original instance, and find a minimum weight popular matching.

• Rank-maximalpopular matchings: assign a weight of 0 to each pair involving a last resort

post, and a weight ofnn−k+1 to each pair(ai, pj) wherepj is thekth choice ofai, and find a

maximum weight popular matching.

• Generouspopular matchings : assign a weight ofnn−k+1 to each pair(ai, pj) wherepj is the

(n− k)th choice ofai, and find a minimum weight maximum cardinality popular matching.

Kavitha and Nasre [60] described anO(n2 + m)-time algorithm for finding minimum cost, gen-

erous (which they calledfair), and rank-maximal popular matchings. In what follows, we give an

O(n +m)-time algorithm for finding minimum cost maximum cardinality popular matchings and

O(n log n+m)-time algorithms for finding generous and rank-maximal popular matchings.

From the above description of generous and rank-maximal popular matchings, it is apparent that we

may wish to assign very large weights to the applicant-post pairs, so we cannot assume that weights

can be compared or added in O(1) time. We assume that these weights occupyO(f(n)) space for

some functionf , so that this is also the time for comparison or addition of such values.

Given an instance of POP-M and a particular allocation of weights, letM be a popular matching,

andMopt an optimal popular matching (maximum or minimum weight, as appropriate). By The-

orem 7.2.2,Mopt can be obtained fromM by applying a choice of at most one switching cycle

or switching path per component of the switching graphGM . The algorithm for computingMopt

will compute an arbitrary popular matchingM , and make an appropriate choice of switching paths

and switching cycles to apply in order to obtain an optimal popular matching. The next step is to

show how to decide exactly which switching cycles and paths need be applied. In the following, for

simplicity of presentation, we assume that “optimal” means“maximum”. Analogous results hold

in the “minimum” case.

7.3Algorithms that exploit the structure 136

If T is a cycle component ofGM , anorientationof T is either the set of pairs{(a,M(a)) : a ∈ T},
or the set{(a,M · C(a)) : a ∈ T}, whereC is the switching cycle inT . Likewise, if T is a tree

component ofGM , anorientationof T is either the set of pairs{(a,M(a)) : a ∈ T}, or the set

{(a,M · P (a)) : a ∈ T}, for some switching pathP in T . The weight of an orientation is the sum

of the weights of the pairs in it, and an orientation of a component isoptimal if its weight is at least

as great as that of any other orientation. Intuitively, an optimal orientation of a componentT of GM

assigns the applicants inT so thatT contributes its optimal weight to the popular matching.

The following lemma establishes the relationship betweenM , Mopt, and optimal orientations of

components ofGM .

Lemma 7.3.2 If M is an arbitrary popular matching,T is a component ofGM , andMopt is an

optimal popular matching, then the set of pairs{(a,Mopt(a)) : a ∈ T} is an optimal orientation of

T .

Proof Recall thatMopt may be generated fromM by applying at most one switching cycle in each

cycle component ofGM and at most one switching path in each tree component ofGM . Suppose

that the set{(a,Mopt(a)) : a ∈ T} is not an optimal orientation ofT . Then if we were to generate

a matchingM ′ from M in exactly the same way asMopt, except that we deal with the component

T according to an optimal orientation, matchingM ′ would have a weight greater thanMopt, a

contradiction. 2

In light of Lemma 7.3.2, an algorithm for computing an optimal popular matching can be con-

structed as follows. The algorithm begins, as always, with the preprocessing phase. The next

step is to find an optimal orientation for each component inGM . An optimal orientation of each

cycle componentT with switching cycleC can be found by comparing
∑

a∈C w(a,M(a)) with
∑

a∈C w(a,M · C(a)). This is easily done inO(f(n)|T |) time, and the outcome tells us whether

or not the switching cycleC should be applied to give an optimal popular matching.

In the case of a tree componentT , we would like to find an optimal orientation also inO(f(n)|T |)
time. This cannot necessarily be achieved by independent evaluation of each switching path inT .

Instead, a depth-first traversal ofT can be carried out, starting from the sink, and traversing edges

in reverse direction. For ans-post vertexv, letPv be the switching path beginning atv. To find the

weight of the orientation ofT resulting from the application ofPv , suppose that the switching path

7.3Algorithms that exploit the structure 137

starting atv hasa andb as its first two edges. This evaluation involves subtractingthe weightw(a, v)

from, and adding the weightw(b, u) to, the weight of the orientation resulting from application of

Pu, whereu is the nearests-post ancestor ofv in the depth-first spanning tree. So the weight of

each orientation can be computed inO(f(n)) time. By this means we can determine an optimal

orientation of each tree componentT in O(f(n)|T |) time.

These considerations establish the main theorem of this section.

Theorem 7.3.6 There is an algorithm to compute an optimal popular matchingin O(m+ nf(n))

time, wheren is the number of posts,m is the sum of the lengths of the original preference lists,

andf(n) is the maximum time needed for a single comparison of two given weights.

We make the not unreasonable assumption that an arithmetic or comparison operation on numbers

of sizeO(n) can be carried out in constant time, but that the complexity of such an operation on

numbers of sizeO(nn) is no better thanO(n). In the case of a mincost popular matching, all

weights areO(n2), so that we can takef(n) = O(1). However, for rank-maximal or generous

matchings, we can only assume that the weights areO(nn), so thatf(n) = O(n). Hence we have

the following corollary.

Corollary 7.3.1 (i) A mincost popular matching can be found in linear time. (ii) A rank-maximal

popular matching and a generous popular matching can be found in O(m+ n2) time.

Improving the running time

When computing a rank-maximal or generous popular matching, the complexity of our algorithm

is dominated by the time required to compute an optimal orientation of a component ofGM . To

improve the complexity for these specific problems, we discard the weights and work directly

with matching profiles. This enables us to compute the optimal orientation of a tree component

in O(t log t) time, wheret is the number of edges in the given tree component. For simplicity

of presentation, this improved algorithm is described in terms of computing rank-maximal popu-

lar matchings, then we indicate the changes that need to be made to compute a generous popular

matching.

7.3Algorithms that exploit the structure 138

Let Z be a tree component of the switching graph with sinkz, let u 6= z be an s-post vertex inZ,

and letv 6= u be a vertex such that there is a pathP (u, v) in Z from u to v (hencev lies on the path

P (u, z)). Any such pathP (u, v) is the initial part of the switching pathP (u, z) starting atu.

The concept ofprofile changeC(u, v) along a pathP (u, v) quantifies the effect on the profile of

applying the switching path fromu, but only as far asv – we call this apartial switching path.

(It is a genuine switching path if and only ifv = z). Note that, unlessv = z, applying such a

partial switching path does not yield a matching, since two applicants would be matched to the post

represented byv. More precisely,C(u, v) is the sequence of ordered pairs〈(i1, j1), . . . , (ir, jr)〉,
wherej1 < j2 < . . . < jr, ik 6= 0 for all k, and, for eachk, there is a net change ofik in the

number of applicants assigned to theirjthk choice post when the partial switching pathP (u, v) is

applied.

Example As an illustration of the notion of profile change, consider the switching graph given in

Figure 7.5 in Section 7.5. Applying the pathP (l16, p11) causesa15 to move from his nineteenth

(last resort) choice to his first choice,a14 from his first to his second choice, anda12 from his fifth

to his first choice, so the resulting profile change is〈(1, 1), (1, 2), (−1, 5), (−1, 19)〉.

We define a total order≻ on profile changes (to reflect rank-maximality) in the following way.

If x = 〈(p1, q1), (p2, q2), . . . , (pk, qk)〉 andy = 〈(r1, s1), (r2, s2), . . . , (rl, sl)〉 are profile changes

(x 6= y), andj is the maximum index for which(pj , qj) = (rj, sj), we writex ≻ y if and only if

• k > l, j = l, andpj+1 > 0; or

• k < l, j = k andrj+1 < 0; or

• j < min(k, l), qj+1 < sj+1 andpj+1 > 0; or

• j < min(k, l), qj+1 > sj+1 andrj+1 < 0; or

• j < min(k, l), qj+1 = sj+1 andpj+1 > rj+1.

An improving profile change(with respect to≻L) is a profile change〈(i1, j1), . . . , (ir, jr)〉 with

i1 > 0. So an improving profile change leads to a better profile with respect to≻L. Moreover, ifx

andy are profile changes withx ≻ y, and if applyingx andy to the same profileρ yields profiles

ρx andρy respectively, thenρx ≻L ρy. The converse is also true: ifx andy are profile changes,

and if applyingx andy to the same profileρ yields profilesρx ≻L ρy, thenx ≻ y.

7.3Algorithms that exploit the structure 139

As a next step, we define the following arithmetic operation,which captures the notion of adding

an ordered pair to a profile change. For a profile changeC = 〈(i1, j1), . . . , (ir, jr)〉 and ordered pair

(i, j) (i 6= 0, j > 0), defineC + (i, j) as follows:

• If j = jk andik + i 6= 0, then

C + (i, j) = 〈(i1, j1), . . . , (ik + i, jk), . . . , (ir, jr)〉.

• If j = jk andik + i = 0, then

C + (i, j) = 〈(i1, j1), . . . , (ik−1, jk−1), (ik+1, jk+1) . . . , (ir, jr)〉.

• If jk−1 < j < jk, then

C + (i, j) = 〈(i1, j1), . . . , (ik−1, jk−1), (i, j), (ik , jk) . . . , (ir, jr)〉.

The algorithm computes an optimal orientation of a tree-componentZ by means of a post-order

traversal, viewingZ as a tree rooted at the sink. During this traversal,processinga vertexv means

determining the best improving profile changeCv obtainable by applying a partial switching path

that ends atv, together with the starting vertexuv of a pathP (uv, v) corresponding toCv. If no

path ending atv has an improving profile change thenCv is null anduv is undefined.

For a leaf vertexv, Cv is trivially null. For a branch nodev, Cv anduv are computed using the

best improving profile changeCw for each childw of v in the tree (excluding any suchw that is an

f -post leaf, since no switching path can begin in such a subtree of v). Let w be a child ofv, and

let a be the applicant represented by the edge(w, v) of Z. Let postsv andw be thejthw and lthw

choices, respectively, of applicanta, so that ifa were to be re-assigned from postw to postv the

profile would gain ajthw choice and lose anlthw choice. It follows at once thatCv is determined by

the formula

Cv = max
w∈Vc

{(Cw + (1, jw)) + (−1, lw)}

where the maximum is with respect to≻, andVc is the set of children ofv.

A pseudocode version of the algorithm appears in Figure 7.1.

On termination of the traversal, we have determinedCz, the best improving profile change, if any, of

a switching path inZ, together with the starting point of such a path. Application of this switching

7.3Algorithms that exploit the structure 140

/* Traverse(v) returns the optimum profile changeCv and corresponding

starting vertexuv of a partial switching path ending at vertexv */

Traverse(v):

if v is a leaf:

return null

else:

best =null

start =null

for (each childw of v that is not anf -post leaf):

(Cw, uw) = Traverse(w)

C = Cw + (1, jw)) + (−1, lw) (1)

if (C ≻ best): (2)

best =Cw

start =uw

return (best, start)

Figure 7.1: The postorder traversal of a tree component

path yields an optimum orientation ofZ, or, in casenull is returned, we know thatZ is already

optimally oriented.

From the pseudocode in Figure 7.1, we see that the complexityof the algorithm is determined by

the total number of operations involved in steps (1) and (2).

To deal with step (1), we represent a profile change by a balanced binary treeB whose nodes

contain the pairs(i, j), ordered by the second member of the pair. The+ operation on profile

changes involves amendment, insertion, or deletion of a node in B, which can be accomplished

in time logarithmic in the size ofB. Since the number of pairs in a profile change cannot exceed

the number of edges inZ, this isO(log t), and since step (1) is executed at mostt times, the total

number of operations carried out by step (1), summed over alliterations, isO(t log t).

As far as step (2) is concerned, we first note that two profile changes, involvingc1 andc2 pairs,

with c1 < c2, can be compared inO(c1) time. So the cost of a comparison is linear in the size of

each of the balanced trees involved. Once a profile change is the ‘loser’ in such a comparison, the

7.3Algorithms that exploit the structure 141

balanced tree representing it is never used again. Hence thecost of all such comparisons is linear

in s, the sum of the sizes of all of the balanced trees constructedby the algorithm. But each node in

a balanced tree originates from one or more edges inZ, and each edge inZ contributes to at most

one node in one balanced tree. Sos is bounded by the number of edges inZ, and hence the total

number of operations in step (2), summed over all iterations, isO(t).

It follows that the postorder traversal of a tree componentZ with t edges can be completed in

O(t log t) time, and once the optimal switching path is found it can be applied inO(t) time. Hence,

since the total number of edges in all tree components isO(n), this process can be applied to all

tree components inO(n log n) time.

Finally, we observe that the optimal orientation of each cycle component can be computed effi-

ciently. For a cycle componentY with switching cycleC, we need only check if the profile change

obtained by applyingC is an improving profile change, and, if so,C is applied, otherwise,Y is

already optimally oriented. Hence, the optimal orientation of a cycle componentY with y edges

can be computed inO(y) time. This process can therefore be applied to each cycle component in

O(n) time. Bearing in mind that the preprocessing phase of the algorithm requiresO(n+m) time,

we conclude that a rank-maximal popular matching can be found in O(n log n+m) time.

The algorithm can be amended to find a generous popular matching by making appropriate changes

to the definition of the order relation on profile changes, as follows.

We define a total order≺ on profile changes (to reflect generosity) in the following way. If x =

〈(p1, q1), (p2, q2), . . . , (pk, qk)〉 andy = 〈(r1, s1), (r2, s2), . . . , (rl, sl)〉 are profile changes (x 6= y),

we writex ≺ y if and only if

• qk > sk andpk < 0; or

• qk < sl andrl > 0; or

• j is the maximum value such that(pk−j, qk−j) = (rl−j , sl−j), and

– qk−j−1 > sl−j−1 andpk−j−1 < 0; or

– qk−j−1 < sl−j−1 andrl−j−1 > 0; or

– qk−j−1 = sl−j−1 andpk−j−1 < rl−j−1.

7.4Conclusions and open problems 142

An improving profile change(with respect to≺G) is a profile change〈(i1, j1), . . . , (ir , jr)〉 with

ir < 0. So an improving profile change leads to a better profile with respect to≺G. Moreover, ifx

andy are profile changes withx ≺ y, and if applyingx andy to the same profileρ yields profiles

ρx andρy respectively, thenρx ≺G ρy.

It is now straightforward to verify that an amended version of the postorder traversal algorithm

that uses≺ rather than≻ to compare profile changes will determine a switching path ina tree

component of the switching graph that is optimal with respect to generosity. All other aspects of

the algorithm, and its analysis, are identical to the rank-maximal case. It follows that a generous

popular matching can be computed inO(n log n+m) time.

7.4 Conclusions and open problems

This chapter has characterized the structure of the set of popular matchings for a POP-M instance

in terms of the so-called switching graph. This characterization leads to efficient algorithms for a

range of extensions of the basic problem.

We have assumed throughout that the applicants’ preferencelists are strictly ordered. Abraham et

al [5] considered also the case where the preference lists may contain ties, and gave aO(
√
nm)

time algorithm to determine a popular matching in that case.It is an open question to provide a neat

characterization of the structure for this more general problem, and to exploit any such structure

to give an analogous set of efficient algorithms. Note, however, that algorithms for, say, counting

or enumerating all popular matchings would necessarily subsume such algorithms for arbitrary

bipartite graphs. Consider, for example, a POP-M instance in which every applicant’s preference

list is a single tie – the set of popular matchings is exactly the set of maximum matchings. Therefore,

this is likely to be considerably more involved than in the no-ties case.

7.5 Example

To illustrate the notion of the switching graph and the implications of applying switching paths

and cycles, we provide a detailed example. Figure 7.2 shows the full preference lists (without last

resorts) for a POP-M instanceI. The instance consists of 16 applicantsa1, a2, . . . , a16 and 18 posts

7.5Example 143

p1, p2, . . . , p18. The set off -posts of the instance is{p1, p4, p5, p6, p10, p11, p15, p17} and, after

the inclusion of the last-resort posts, the set ofs-posts is{p2, p3, p7, p8, p9, p12, p13, p14, l15, p18}.
Note that postl15 is a15’s last resort post. This is the only last resort post that is also ans-post for

this instance.

Figure 7.3 shows the reduced instance ofI, obtained by removing all posts from an applicanta’s

preference list except forf(a) ands(a). This instance admits several popular matchings; one such

popular matchingM is denoted by underlining.

The switching graphGM for M is given in Figure 7.4. The graph consists of three components, one

cycle component and two tree components containing postsp18 andp9 as sinks, respectively. The

cycle component has a switching cycle containing postsp1, p2, p4, p3. The switching graph has a

total of 4 switching paths, all of which are contained in the larger tree component. These switching

paths can easily be identified by recalling that the path to the sink from any others-post vertex is a

switching path. Hence, the paths top9 starting atp12, p14, p13, andl15 are the switching paths for

this instance. The other tree component has no switching path; it represents a fixed pair – applicant

a16 must be matched to postp17 (and postp18 is unfilled) in every popular matching. Note that

the (applicant,post) pairs in the “tails” of the cycle component, namely the pairs(a7, p7), (a6, p6),

(a8, p8), and(a5, p5), are also fixed pairs.

If the switching cycle is applied, thena1 becomes matched top2, a2 to p4, a3 to p3, anda4 to p1,

giving a second popular matchingM ′. All other applicants are matched to the same posts inM ′ as

in M . Figure 7.5 shows the change in the switching graph when the switching cycle is applied; the

direction of each arc in the cycle is reversed while all otherarcs inGM are unchanged.

If, instead of applying the switching cycle, we apply a switching path, say the path beginning at

postp13, applicanta12 becomes matched top11, and applicanta10 to postp9 (which was previously

unoccupied inM), giving a third popular matchingM ′′. All other applicants remain matched to the

same posts inM ′′ as inM . Figure 7.6 shows the change in the switching graph resulting from the

application of this switching path; the direction of each arc on the path fromp13 to p9 is reversed,

so thatp13 becomes the new sink vertex in this tree component.

As an illustration of Theorem 7.3.1, this problem instance has a total of ten popular matchings,

resulting from the five possible orientations of the larger tree component and the two possible

orientations of the cycle component.

7.5Example 144

a1 : p1 p4 p10 p11 p2 p6 p8
a2 : p4 p6 p11 p17 p2 p5 p12 p13 p10
a3 : p4 p1 p3 p15 p8 p16
a4 : p1 p11 p6 p3 p15
a5 : p5 p1 p11 p4 p2 p6 p14
a6 : p6 p10 p11 p3 p1 p6
a7 : p6 p7
a8 : p6 p5 p8 p16
a9 : p10 p11 p4 p9 p2 p1 p18
a10 : p11 p9 p7 p1 p7 p12
a11 : p10 p4 p17 p6 p12 p7 p13
a12 : p11 p5 p6 p15 p13 p1 p9 p18
a13 : p11 p15 p4 p14 p3
a14 : p15 p13 p1 p4 p9 p8
a15 : p15 p6
a16 : p17 p15 p5 p4 p18 p8 p9 p13

Figure 7.2: A popular matching instanceI

a1 : p1 p2
a2 : p4 p2
a3 : p4 p3
a4 : p1 p3
a5 : p5 p2
a6 : p6 p3
a7 : p6 p7
a8 : p6 p8
a9 : p10 p9
a10 : p11 p9
a11 : p10 p12
a12 : p11 p13
a13 : p11 p14
a14 : p15 p13
a15 : p15 l15
a16 : p17 p18

Figure 7.3: The reduced instance ofI with popular matchingM denoted by underlining

7.5Example 145

Figure 7.4: The switching graphGM for popular matchingM

Figure 7.5: The switching graph for the popular matchingM ′ obtained by applying the switching
cycle inGM

7.5Example 146

Figure 7.6: The switching graph for the popular matchingM ′′ obtained by applying the switching
path beginning atp13 in GM

Chapter 8

Conclusions and Future Work

8.1 Introduction

This thesis has presented a number of new algorithmic results for five specific problem domains

from the realm of both full and partial preference information. We emphasized astructuralapproach

to each individual problem in the sense that each new algorithmic result presented relied crucially

on some structural property implicitly embedded in the problem.

This final chapter is a summary of the results presented in this thesis, along with a collection of

open problems and ideas of future work arising from the problems we have studied.

8.2 Approximation algorithms for MAX-SMTI

In Chapter 3, we considered the well-studied NP-hard variant of the stable marriage problem with

ties and incomplete lists in which we seek to find stable matchings that are as large as possible

(MAX-SMTI).

Roughly speaking, our performance guarantee is based on thefollowing argument: ifMopt is a

maximum cardinality stable matching, andM the stable matching returned by our algorithm, then

the symmetric differenceMopt ⊕ M can have no augmenting paths of length at most three with

the two end edges belonging toMopt. We then conclude that the ratio ofMopt edges toM edges

147

8.3Sex-equal stable matchings 148

is therefore at most3/2 in every component ofMopt ⊕ M . The performance guarantee of3/2

follows.

A next step, therefore, could be to devise an approximation algorithm that somehow also elminates

the presence of at least ‘some’ augmenting paths of length atmostfive. For example, perhaps there

is an algorithm for which it can be argued thatMopt ⊕M can have no augmenting paths of length

at most three with the two end edges belonging toMopt, as in our algorithm in Chapter 3, but also

has the property that at most, say,1/10 of the components cannot be augmenting paths of length at

most five. This would yield a constant performance strictly better than3/2.

On the practical side, it would be interesting to see the performance of this algorithm in practice.

There has been some work done in the comparison of such approximation algorithms in practice

[50] – how does this algorithm measure up? We conjecture thatour algorithm performs very well

when each of the men’s preference lists consist of a few largeties. The following is some intuition

as to why this may be the case. Notice that for an SMTI instancein which every man’s preference

list consists of a single tie, an arbitrary maximum matchingis a maximum cardinality stable match-

ing. Given such an input, our algorithm will go immediately to Phase 2 (assuming every man’s

preference list has length at least two). The algorithm willreturn a maximum cardinality matching,

which is the optimal solution. It would also be interesting to know if there is a formal argument to

show that the algorithm does indeed perform well when the men’s ties have this property.

8.3 Sex-equal stable matchings

In Chapter 4, we studied the strongly NP-hard problem of finding a sex-equal stable matching

(SESM). We gave a complete characterisation of the parameterized complexity of(α, β)-SESM

(defined in Chapter 4). When the preference lists on one side are of length at most two, the problem

is solvable in polynomial time, but, if the preference listson either side are allowed instead to be

of length three or greater, then the problem isW [1]-hard. Additionally, we presented an exact

low-order exponential-time algorithm for SESM in which themen’s preference lists are bounded in

length by a constantl, and the lengths of the women’s preference lists are unrestricted.

As far as we know, our exponential-time algorithm is the first‘moderately’ exponential-time al-

gorithm for any computationally hard stable marriage variant. Since the stable matching literature

8.3Sex-equal stable matchings 149

is rife with hard stable matching problems, we believe that this opens the door to the exploration

of the existence of other exponential-time algorithms with‘good’ theoretical running times for a

whole host of stable marriage problems. As an obvious next step, one could consider searching for

an exact algorithm for SESM with no bound on the lengths of thepreference lists.

A similar problem to SESM is a problem described in the PhD thesis of Feder [27], called the

balanced stable matching problem, the goal of which is to find a stable matchingM that minimizes

max
{

∑

(m,w)∈M
pm(w),

∑

(m,w)∈M
pw(m)

}

over allM ∈ M. Intuitively, a balanced stable matching minimizes the unhappiness of the most

unhappy group of people (the men or the women). Feder [27] proved that this problem is NP-hard.

Is the balanced stable matching problem solvable by similartechniques to that presented in Chapter

4?

A corollary to the dynamic programming algorithm given in Section 4.9 is that SESM is solvable

in polynomial-time whenever the underlying graph of the rotation posed is series-parallel. A next

step could be to ask if it is the case that SESM can be solved in polynomial-time whenever the

underlying graph has boundedtreewidth(see, for example, one of the many surveys by Bodlaender

[10] for the relevant background on treewidth).

This leads to an even larger question: what stable matching problems can be solved efficiently (or

more efficiently) when the underlying graph of the rotation poset has bounded treewidth? One

particularly interesting problem could be the median stable matching problem (discussed in Section

2.2.4). This problem is not even known to be in NP. Does the bounded treewidth property make this

problem easier?

Finally, we remark that very recently an improvement in the Edwards and Farr theorem has been

made [24]. This probably implies an improvement in the upperbound of the running time described

in Theorem 4.10.1. In fact, any further improvement upon thebound given in Theorem 4.10.1 will

likely imply an improved result for the exponential-time algorithm given in Chapter 4.

8.4Keeping couples together 150

8.4 Keeping couples together

Chapter 5 studies the hospitals / residents problem with couples (HRC) in which pairs of residents

are allowed to formcouples, with some form of joint preference lists that express the couples’

preference for where the members of the couple should both bematched. We considered a natural

restriction of HRC in which the members of a couple have individual preference lists over hospi-

tals, and the couples form joint preference lists that are, in a formal sense,consistentwith these

individual preference lists. We gave an appropriate stability definition and showed that the problem

of deciding whether a stable matching exists is NP-complete, even if each resident’s preference list

has length at most three and each hospital has capacity at most two. In contrast to this result, we

gave a linear-time algorithm to find a stable matching (or report that none exists) when stability

is defined in terms of the classical Gale-Shapley concept. This algorithm makes no assumptions

about the preference lists or capacities of the hospitals. Finally, for an alternative formulation of

our restriction of HRC, which we call thehospitals / residents problem with sizes(HRS), we gave a

linear-time algorithm that always finds a stable matching for the case that hospital preference lists

are of length at most two, and where hospital capacities can be arbitrary.

There are a couple of immediate open questions that arise from our results. Firstly, what is the

complexity of(2,∞)-HRS? We conjecture that this problem is solvable in polynomial-time, but

the solution appears to be non-trivial.

Another area of approach could be to reconsider our definition of HRS. As it stands, our definition

favors ‘quality over quantity’ in that a single resident could displace a large group of inferior resi-

dents. An alternative defintion of HRS would be to instead allow for ‘quantity over quality’, so that

a hospital’s primary concern is to ensure that its occupancyis as high as possible. This gives rise

to an alternative stability definition which is obtained from the one given for HRS in Section 5.2 by

modifying Condition (2) as follows:

2. OM
j + si ≤ cj , or hj prefersri to residentsrk1 , . . . rkt ∈M(hj) such that

si ≥
t

∑

p=1

skp and OM
j + si −

t
∑

p=1

skp ≤ cj .

Is this problem solvable in polynomial-time?

8.53D-stable matchings 151

Lastly, in the spirit of‘keeping couples together’, we could consider a different definition of a block-

ing pair where a residentr and a hospitalh do not form a blocking pair if movingr to h would

force the couple involvingr to break apart. Intuitively, this means thatr makes keeping his couple

together a priority over his own personal benefit of moving tohospitalh. We leave it as an open

question to give a proper formalization of this problem, andto determine its complexity1.

8.5 3D-stable matchings

In Chapter 6, we explored the generalisation of the stable marriage problem tothreesets, so that

we attempt to match men, women, anddogsinto triples (3DSM). We examined 3DSMI under so-

called weak- and strong-stability, and show that, in general, finding a strongly stable matching is

NP-hard in the 3DSM setting (and hence is also NP-hard for 3DSMI), and that finding a weakly

stable matching is NP-hard in the 3DSMI setting.

The key ingredient in our constructions was a specially constructed instance of 3DSM that we call a

9-Sun. When we view this instance in terms of its underlying graph,it is easy to see that the special

structural nature of this instance makes the creation of a stable matching impossible.

The 9-Sun is the smallest example that we can find of a 3DSMI instance with no weakly stable

matching. Is there a smaller example? In the case of strong stability, one can construct smaller

examples (withn = 4) that admit no strongly stable matching.

There is, in fact, no known instance of 3DSM (i.e. complete preference lists) that does not admit

at least one weakly stable matching. A natural place to try toconstruct a counterexample would be

to try to complete the preference lists of the9-Sun in a way that does not introduce a weakly stable

matching. However, we conjecture that this is not possible for this particular example. Is there a

3DSM instance with no weakly stable matching? A larger question is to determine whether there is

a polynomial-time algorithm to find a weakly stable matchingor report that none exists, given an

instance of 3DSM.

It is very uncommon to find a matching problem with preferences for which there is no clear way to

extend a hardness result to complete preference lists (in fact, we know of no other such problem).

1We thank Paul Goldberg for suggesting this problem.

8.6Popular matchings 152

Could it really be the case that when one attempts to completethe preference lists of a 3DSMI

instance, one cannot avoid introducing a weakly stable matching?

8.6 Popular matchings

Finally, Chapter 7 considers the popular matching problem (POP-M) in the context of matching a

set of applicants with preference lists to a set of posts without preferences. Our contribution was to

provide a characterization of the set of popular matchings for an arbitrary POP-M instance in terms

of a new structure called theswitching graph, a directed graph computable in linear time from the

preference lists. We showed that this structure can be exploited to yield efficient algorithms for a

range of associated problems, including the counting and enumeration of the set of popular match-

ings, generation of a popular matching uniformly at random,finding all applicant-post pairs that

can occur in a popular matching, and computing popular matchings that satisfy various additional

optimality criteria.

An obvious open question would be to consider the case in which the preference lists of the ap-

plicants may be allowed to have ties. Is there a generalization of the switching graph (or a similar

structure) to characterize the set of popular matchings in the presence of ties? We suspect that this

is a particularly difficult problem, as such a structure would subsume a structure for the set of all

maximum matchings of an arbitrary bipartite graph. Consider: when each applicant’s list is a single

tie, then the set of popular matchings is exactly the set of maximum matchings. Therefore, we

suspect that this problem is considerably more difficult than that of the no-ties case.

A different approach could be to consider the structure of the set of popular matchings without ties,

but with capacities (associated with the posts) and/or weights (associated with the applicants). Is

there a neat structural characterization of the set of popular matchings in this case?

On a different note, it would be interesting to know if there are faster algorithm than ourO(n log n+

m)-time method for finding rank-maximal or generous popular matchings. One possible approach

from the negative side could be to attempt a reduction from a problem such as Element Uniqueness,

with a known time complexity lower bound ofΩ(n log n).

Appendix A

NP-completeness of (3,3)-COM-SMTI

We prove that MAX-SMTI (defined in Section 2.2.5) remains NP-complete in a particularly re-

stricted setting. We are interested in this result is because it is particularly useful to us in some of

the NP-hardness reductions we present in Chapters 5 6. Define(3, 3)-COM-SMTI to be the prob-

lem of deciding whether a complete weakly stable matching exists (i.e., a weakly stable matching

that matches every agent), given an instance of SMTI in whicheach preference list is of length at

most three, every woman’s preference list is strictly ordered, and each man’s preference list is either

strictly ordered or is a tie of length two (all of these conditions holding simultaneously). Our proof

of this theorem is largely based on a reduction of Irving et al[51] with some small but non-trivial

modifications.

Theorem A.0.1 (3, 3)-COM-SMTI is NP-complete

Proof We reduce from a a restricted version of SAT. Let (2,2)-E3-SAT denote the problem of

deciding, given a Boolean formulaB in CNF in which each clause contains exactly 3 literals and,

for each variablevi, each of literalsvi andv̄i appears exactly twice inB, whetherB is satisfiable.

Berman et al. [8] showed that (2,2)-E3-SAT is NP-complete.

Hence letB be an instance of (2,2)-E3-SAT. LetV = {v0, v1, . . . , vn−1} andC = {c1, c2, . . . ,
cm} be the set of variables and clauses respectively inB. Then for eachvi ∈ V , each of literals

vi and v̄i appears exactly twice inB. (Hencem = 4n
3 .) Also |cj | = 3 for eachcj ∈ C. We

form an instanceI of (3,3)-COM-SMTI as follows. The set of men inI is X ∪ P ∪ U ∪Q, where

153

8.6Popular matchings 154

x4i : y4i c(x4i) y4i+1 (0 ≤ i ≤ n− 1)
x4i+1 : y4i+1 c(x4i+1) y4i+2 (0 ≤ i ≤ n− 1)
x4i+2 : y4i+3 c(x4i+2) y4i+2 (0 ≤ i ≤ n− 1)
x4i+3 : y4i c(x4i+3) y4i+3 (0 ≤ i ≤ n− 1)

psj : zsj csj (1 ≤ j ≤ m ∧ 1 ≤ s ≤ 3)

usj : zsj wj (1 ≤ j ≤ m ∧ 1 ≤ s ≤ 3)

qj : c1j c2j c3j (1 ≤ j ≤ m)

y4i : (x4i x4i+3) (0 ≤ i ≤ n− 1)
y4i+1 : (x4i x4i+1) (0 ≤ i ≤ n− 1)
y4i+2 : (x4i+1 x4i+2) (0 ≤ i ≤ n− 1)
y4i+3 : (x4i+2 x4i+3) (0 ≤ i ≤ n− 1)

csj : psj x(csj) qj (1 ≤ j ≤ m ∧ 1 ≤ s ≤ 3)

wj : u1j u2j u3j (1 ≤ j ≤ m)

zsj : (psj usj) (1 ≤ j ≤ m ∧ 1 ≤ s ≤ 3)

Figure A.1: Preference lists in the constructed instance of(3,3)-COM-SMTI

X = ∪n−1
i=0 Xi, Xi = {x4i+r : 0 ≤ r ≤ 3} (0 ≤ i ≤ n − 1), P = ∪mj=1Pj , Pj = {p1j , p2j , p3j}

(1 ≤ j ≤ m), U = ∪mj=1Uj, Uj = {u1j , u2j , u3j} (1 ≤ j ≤ m), andQ = {qj : 1 ≤ j ≤ m}. The set

of women inI isY ∪C ′∪W ∪Z, whereY = ∪n−1
i=0 Yi, Yi = {y4i+r : 0 ≤ r ≤ 3} (0 ≤ i ≤ n−1),

C ′ = {csj : cj ∈ C ∧ 1 ≤ s ≤ 3}, W = {wj : 1 ≤ j ≤ m}, Z = ∪mj=1Zj andZj = {z1j , z2j , z3j }
(1 ≤ j ≤ m).

The preference lists of the men and women inI are shown in Figure A.1. In a given preference list,

entries within round brackets are tied. In the preference list of an agentx4i+r ∈ X (0 ≤ i ≤ n− 1

andr ∈ {0, 1}), the symbolc(x4i+r) denotes the womancsj ∈ C ′ such that the(r+1)th occurrence

of literal vi appears at positions of cj . Similarly if r ∈ {2, 3} then the symbolc(x4i+r) denotes the

womancsj ∈ C ′ such that the(r−1)th occurrence of literal̄vi appears at positions of cj . Also in the

preference list of an agentcsj ∈ C ′, if literal vi appears at positions of clausecj ∈ C, the symbol

x(csj) denotes the manx4i+r−1, wherer = 1, 2 according as this is the first or second occurrence

of literal vi in B. Otherwise if literalv̄i appears at positions of clausecj ∈ C, the symbolx(csj)

denotes the manx4i+r+1, wherer = 1, 2 according as this is the first or second occurrence of literal

v̄i in B. Clearly each preference list is of length at most 3, the men’s lists are strictly ordered, and

each woman’s list is either strictly ordered or is a tie of length 2.

For eachi (0 ≤ i ≤ n − 1), let Ti = {(x4i+r, y4i+r) : 0 ≤ r ≤ 3} andFi = {(x4i+r, y4i+r+1)} :
0 ≤ r ≤ 3}, where addition is taken modulo4.

8.6Popular matchings 155

We claim thatB is satisfiable if and only ifI admits a complete stable matching.

For, letf be a satisfying truth assignment ofB. Define a complete matchingM in I as follows.

For each variablevi ∈ V , if vi is true underf , add the pairs inTi to M , otherwise add the pairs

in Fi to M . Now let cj ∈ C. As cj contains a literal that is true underf , let s ∈ {1, 2, 3} denote

the position ofcj in which this literal occurs. Add the pairs(pkj , c
k
j) and(ukj , z

k
j) (1 ≤ k 6= s ≤ 3),

(psj , z
s
j), (qj , c

s
j) and(usj , wj) to M .

As M is a complete matching inI, clearly no woman inY ∪ Z can be involved in a blocking pair

of M in I. Nor can a man inP ∪ U (since he can only potentially prefer a woman inZ), nor a

man inQ (since he can only potentially prefer a woman inC, who ranks him last), nor a woman

in W (since she can only potentially prefer a man inU , who ranks him last). Now suppose that

(x4i+r, c(x4i+r)) blocksM , where0 ≤ i ≤ n − 1 and0 ≤ r ≤ 3. Let csj = c(x4i+r), where

1 ≤ j ≤ m and1 ≤ s ≤ 3. Then(qj, csj) ∈M . If r ∈ {0, 1} then(x4i+r, y4i+r+1) ∈M , so thatvi

is false underf . But literalvi occurs incj , a contradiction, since literalvi was supposed to be true

underf by construction ofM . Hencer ∈ {2, 3} and(x4i+r, y4i+r) ∈ M , so thatvi is true under

f . But literal v̄i occurs incj , a contradiction, since literal̄vi was supposed to be true underf by

construction ofM . HenceM is stable inI.

Conversely suppose thatM is a complete stable matching inI. We form a truth assignmentf in B

as follows. For eachi (0 ≤ i ≤ n− 1), if M ∩ (Xi× Yi) = Ti, setvi to be true underf . Otherwise

M ∩ (Xi × Yi) = Fi, in which case we setvi to be false underf .

Now let cj be a clause inC (1 ≤ j ≤ m). There exists somes (1 ≤ s ≤ 3) such that(qj , csj) ∈M .

Letx4i+r = x(csj) for somei (0 ≤ i ≤ n−1) andr (0 ≤ r ≤ 3). If r ∈ {0, 1} then(x4i+r, y4i+r) ∈
M by the stability ofM . Thus variablevi is true underf , and hence clausecj is true underf , since

literal vi occurs in this clause. Ifr ∈ {2, 3} then(x4i+r, y4i+r+1) ∈ M (where addition is taken

modulo4) by the stability ofM . Thus variablevi is false underf , and hence clausecj is true under

f , since literalv̄i occurs in this clause. Hencef is a satisfying truth assignment ofB.

2

Bibliography

[1] A. Abdulkadiroǧlu and T. Sönmez. Random serial dictatorship and the core from random

endowments in house allocation problems.Econometrica, 66(3):689–701, 1998.

[2] D. J. Abraham, A. Blum, and T. Sandholm. Clearing algorithms for barter-exchange markets:

Enabling nationwide kidney exchanges.In Proceedings of ACM-EC 2007: the Eighth ACM

Conference on Electronic Commerce, 2007.

[3] D.J. Abraham, P. Biró, and D.F. Manlove. “Almost stable” matchings in the Roommates

problem. InProceedings of WAOA ’05: the 3rd Workshop on Approximation and Online

Algorithms, volume 3879 ofLecture Notes in Computer Science, pages 1–14. Springer, 2006.

[4] D.J. Abraham, K. Cechlárová, D.F. Manlove, and K. Mehlhorn. Pareto optimality in house

allocation problems. InProceedings of ISAAC 2004: the 15th Annual International Sympo-

sium on Algorithms and Computation, volume 3341 ofLecture Notes in Computer Science,

pages 3–15. Springer, 2004.

[5] D.J. Abraham, R.W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings.SIAM Journal

on Computing, 37:1030–1045, 2007.

[6] D.J. Abraham and T. Kavitha. Dynamic matching markets and voting paths. InProceedings

of SWAT 2006: the 10th Scandinavian Workshop on Algorithm Theory, volume 4059 of

Lecture Notes in Computer Science, pages 65–76. Springer, 2006.

[7] A. Alkan. Non-existence of stable threesome matchings.Mathematical Social Sciences,

16:207–209, 1988.

[8] P. Berman, M. Karpinski, and Alexander D. Scott. Approximation hardness of short symmet-

ric instances of MAX-3SAT. Electronic Colloquium on Computational Complexity Report,

number 49, 2003.

156

Bibliography 157

[9] P. Biró and K. Cechlárová. Inapproximability of the kidney exchange problem.Inf. Process.

Lett., 101(5):199–202, 2007.

[10] H. Bodlaender. A tourist guide through treewidth.Acta Cybernetica, 11(1-2), 1993.

[11] E. Boros, V. Gurvich, S. Jaslar, and D. Krasner. Stable matchings in three-sided systems with

cyclic preferences.Discrete Mathematics, 289:1–10, 2004.

[12] http://www.bostonpublicschools.org/assignment/ (boston public schools

website.

[13] D. Cantala. Matching markets: the particular case of couples.Economics Bulletin, 3(45):1–

11, 2004.

[14] K. Cechlárová, T. Fleiner, and D. Manlove. The kidneyexchange game. InProceedings

of SOR ’05: the 8th International Symposium on Operations Research in Slovenia, pages

77–83, 2005. IM Preprint series A, no. 5/2005, PJŠafárik University, Faculty of Science,

Institute of Mathematics.

[15] K. Cechlárová and V. Lacko. The kidney exchange game:How hard is to find a donor?IM

Preprint, 4/2006, 2006.

[16] P. Chebolu. Personal communication, 2009.

[17] A. Checker. The national intern and resident matching program, 1966-1972.Journal of

Medical Education, 48:107–109, 1973.

[18] C. Cheng. The generalized median stable matchings: Finding them is not that easy. In

Proceedings of LATIN 2008: the 8th Latin-American Theoretical INformatics Symposium,

volume 4957 ofLecture Notes in Computer Science, pages 568–579. Springer, 2008.

[19] C. Cheng, E. McDermid, and I. Suzuki. A unified approach to finding good stable matchings

in the hospitals/residents setting.Theoretical Computer Science, 400(1-3):84–99, 2008.

[20] V.I. Danilov. Existence of stable matchings in some three-sided systems.Mathematical

Social Sciences, 46:145–148, 2003.

[21] B.C. Dean, M.X. Goemans, and N. Immorlica. The unsplittable stable marriage problem.

In Proceedings of IFIP TCS 2006: the Fourth IFIP InternationalConference on Theoretical

Bibliography 158

Computer Science, volume 209 ofIFIP International Federation for Information Processing,

pages 65–75. Springer, 2006.

[22] R. Downey and M.R. Fellows.Parameterized Complexity. Springer, 1999.

[23] B. Dutta and J. Massó. Stability of matchings when individuals have preferences over col-

leagues.Journal of Economic Theory, 75:464–475, 1997.

[24] K. Edwards. Personal communication, 2010.

[25] K. Edwards and G. Farr. Planarization and fragmentability of some classes of graphs.Dis-

crete Mathematics, 308:2396–2406, 2008.

[26] K. Eriksson, J. Sjostrand, and P. Strimling. Three dimensional stable matching with cyclic

preferences.Mathematical Social Sciences, 52:77–87, 2006.

[27] T. Feder. Stable Networks and Product Graphs. PhD thesis, Stanford University, 1990.

Published inMemoirs of the American Mathematical Society, vol. 116, no. 555, 1995.

[28] T. Feder. A new fixed point approach for stable networks and stable marriages.Journal of

Computer and System Sciences, 45:233–284, 1992.

[29] H.N. Gabow and R.E. Tarjan. Faster scaling algorithms for general graph-matching prob-

lems.Journal of the ACM, 38(4):815–853, 1991.

[30] D. Gale and L.S. Shapley. College admissions and the stability of marriage. American

Mathematical Monthly, 69:9–15, 1962.

[31] D. Gale and M. Sotomayor. Some remarks on the stable matching problem.Discrete Applied

Mathematics, 11:223–232, 1985.

[32] P. Gärdenfors. Match making: assignments based on bilateral preferences.Behavioural

Science, 20:166–173, 1975.

[33] I.P. Gent, R.W. Irving, D.F. Manlove, P. Prosser, and B.M. Smith. A constraint programming

approach to the stable marriage problem. InProceedings of CP ’01: the 7th International

Conference on Principles and Practice of Constraint Programming, volume 2239 ofLecture

Notes in Computer Science, pages 225–239. Springer, 2001.

[34] D. Gusfield. Three fast algorithms for four problems in stable marriage.SIAM Journal on

Computing, 16(1):111–128, 1987.

Bibliography 159

[35] D. Gusfield. The structure of the stable roommate problem – efficient representation and

enumeration of all stable assignments.SIAM Journal on Computing, 17(4):742–769, 1988.

[36] D. Gusfield and R.W. Irving.The Stable Marriage Problem: Structure and Algorithms. MIT

Press, 1989.

[37] M. Halldórsson, K. Iwama, S. Miyazaki, and H. Yanagisawa. Improved approximation of

the stable marriage problem.ACM Transactions on Algorithms, 3(3), 2007.

[38] M.M. Halldórsson, R.W. Irving, K. Iwama, D.F. Manlove, S. Miyazaki, Y. Morita, and

S. Scott. Approximability results for stable marriage problems with ties.Theoretical Com-

puter Science, 306(1-3):431–447, 2003.

[39] M.M. Halldórsson, K. Iwama, S. Miyazaki, and H. Yanagisawa. Randomized approximation

of the stable marriage problem.Theoretical Computer Science, 325(3):439–465, 2004.

[40] C.-C. Huang. Two’s company, three’s a crowd: stable family and threesome roommate

problems. InProceedings of ESA ’07: the 15th Annual European Symposium on Algorithms,

volume 4698 ofLecture Notes in Computer Science, pages 558–569. Springer, 2007.

[41] C-C. Huang, T. Kavitha, D. Michail, and M. Nasre. Bounded unpopularity matchings. In

Proceedings of SWAT 2008, the 12th Scandinavian Workshop onAlgorithm Theory, volume

5124 ofLecture Notes in Computer Science, pages 127–137. Springer, 2008.

[42] R.W. Irving. An efficient algorithm for the “stable roommates” problem.Journal of Algo-

rithms, 6:577–595, 1985.

[43] R.W. Irving. Stable marriage and indifference.Discrete Applied Mathematics, 48:261–272,

1994.

[44] R.W. Irving. Matching medical students to pairs of hospitals: a new variation on a well-

known theme. InProceedings of ESA ’98: the Sixth European Symposium on Algorithms,

volume 1461 ofLecture Notes in Computer Science, pages 381–392. Springer, 1998.

[45] R.W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K.Paluch. Rank-maximal matchings.

ACM Transactions on Algorithms, 2(4):602–610, 2006.

[46] R.W. Irving and P. Leather. The complexity of counting stable marriages.SIAM Journal on

Computing, 15(3):655–667, 1986.

Bibliography 160

[47] R.W. Irving, P. Leather, and D. Gusfield. An efficient algorithm for the “optimal” stable

marriage.Journal of the ACM, 34(3):532–543, 1987.

[48] R.W. Irving and D. Manlove. Approximation algorithms for hard variants of the stable mar-

riage and hospitals/residents problem.Journal of Combinatorial Optimization, 16(3):279–

292, 2008.

[49] R.W. Irving and D.F. Manlove. The Stable Roommates Problem with Ties. Journal of

Algorithms, 43:85–105, 2002.

[50] R.W. Irving and D.F. Manlove. Finding large stable matchings.ACM Journal of Experimen-

tal Algorithmics, vol. 14 section 1 article no. 2, 30 pages, 2009.

[51] R.W. Irving, D.F. Manlove, and G. O’Malley. Stable marriage with ties and bounded length

preference lists.Journal of Discrete Algorithms, 7(2):213–219, 2009.

[52] R.W. Irving and S. Scott. The stable fixtures problem.Discrete Applied Mathematics,

155(2118-2129), 2007.

[53] K. Iwama, S. Miyazaki, and K. Okamoto. A
(

2− c lognn

)

-approximation algorithm for the

stable marriage problem. InProceedings of SWAT 2004: the 9th Scandinavian Workshop

on Algorithm Theory, volume 3111 ofLecture Notes in Computer Science, pages 349–361.

Springer, 2004.

[54] K. Iwama, S. Miyazaki, and N. Yamauchi. A 1.875–approximation algorithm for the stable

marriage problem. InProceedings of SODA 2007: the Eighteenth ACM/SIAM Symposium

on Discrete Algorithms, pages 288–297, 2007.

[55] K. Iwama, S. Miyazaki, and N. Yamauchi. A
(

2− c 1√
n

)

-approximation algorithm for the

stable marriage problem.Algorithmica, 51(3):342–356, 2008.

[56] K. Iwama, S. Miyazaki, and H. Yanagisawa. Approximation algorithms for the sex-equal

stable marriage problem. InProceedings of WADS 2007: the Tenth International Workshop

on Algorithms and Data Structures, volume 4619 ofLecture Notes in Computer Science,

pages 201–213. Springer, 2007.

[57] D.S. Johnson and K.A. Niemi. On knapsacks, partitions,and a new dynamic programming

technique for trees.Mathematics of Operations Research, 8(1):1–14, 1983.

Bibliography 161

[58] A. Kato. Complexity of the sex-equal stable marriage problem. Japan Journal of Industrial

and Applied Mathematics, 10:1–19, 1993.

[59] T. Kavitha, J. Mestre, and M. Nasre. Popular mixed matchings. InICALP ’09: Proceedings

of the 36th International Colloquium on Automata, Languages and Programming, pages

574–584, Berlin, Heidelberg, 2009. Springer-Verlag.

[60] T. Kavitha and M. Nasre. Optimal popular matchings.Discrete Applied Mathematics,

157(14):3181–3186, 2009.

[61] T. Kavitha and M. Nasre. Popular matchings with variable job capacities. InISAAC ’09:

Proceedings of the 20th International Symposium on Algorithms and Computation, pages

423–433, Berlin, Heidelberg, 2009. Springer-Verlag.

[62] K. M. Keizer, M. de Klerk, B. J. J. M. Haase-Kromwijk, andW. Weimar. The Dutch algo-

rithm for allocation in living donor kidney exchange.Transplantation Proceedings, 37:589–

591, 2005.

[63] S. Kijima and T. Nemoto. Finding a level ideal of a poset.In Proceedings of COCOON

’09 : the 15th International Computing and Combinatorics Conference, Lecture Notes in

Computer Science, pages 317–327. Springer, 2009.

[64] Z. Király. Better and simpler approximation algorithms for the stable marriage problem.

In Proceedings of ESA ’08: the 16th Annual European Symposium on Algorithms, Lecture

Notes in Computer Science, pages 623 – 634, 2008.

[65] B. Klaus and F. Klijn. Stable matchings and preferencesof couples. Journal of Economic

Theory, 121:75–106, 2005.

[66] B. Klaus and F. Klijn. Paths to stability for matching markets with couples.Games and

Economic Behavior, 58:154–171, 2007.

[67] B. Klaus, F. Klijn, and J. Massó. Some things couples always wanted to know about stable

matchings (but were afraid to ask).Journal Review of Economic Design, 11(3):175–184,

2006.

[68] B. Klaus, F. Klijn, and T. Nakamura. Corrigendum: Stable matchings and preferences of

couples.Journal of Economic Theory,to appear, 2009.

Bibliography 162

[69] D.E. Knuth.Mariages Stables. Les Presses de L’Université de Montréal, 1976.

[70] L. Lovász and M.D. Plummer.Matching Theory. Number 29 in Annals of Discrete Mathe-

matics. North-Holland, 1986.

[71] M. Mahdian. Random popular matchings. InProceedings of EC ’06: the 7th ACM Confer-

ence on Electronic Commerce, pages 238–242. ACM, 2006.

[72] D.F. Manlove. Stable marriage with ties and unacceptable partners. Technical Report TR-

1999-29, University of Glasgow, Department of Computing Science, January 1999.

[73] D.F. Manlove. The structure of stable marriage with indifference. Discrete Applied Mathe-

matics, 122(1-3):167–181, 2002.

[74] D.F. Manlove, R.W. Irving, K. Iwama, S. Miyazaki, and Y.Morita. Hard variants of stable

marriage.Theoretical Computer Science, 276(1-2):261–279, 2002.

[75] D.F. Manlove and C.T.S. Sng. Popular matchings in the Capacitated House Allocation prob-

lem. In Proceedings of ESA ’06: the 14th Annual European Symposium on Algorithms,

volume 4168 ofLecture Notes in Computer Science, pages 492–503. Springer, 2006.

[76] D. Marx and I. Schlotter. Stable assignment with couples: Parameterized complexity and lo-

cal search. InProceedings of IWPEC ’09: the 4nd International Workshop onParameterized

and Exact Computation, pages 200–311. Springer, 2009.

[77] R.M. McCutchen. The least-unpopularity-factor and least-unpopularity-margin criteria for

matching problems with one-sided preferences. InProceedings of LATIN 2008: the 8th

Latin-American Theoretical INformatics symposium, volume 4957 ofLecture Notes in Com-

puter Science, pages 593–604. Springer, 2008.

[78] D. McVitie and L.B. Wilson. The stable marriage problem. Communications of the ACM,

14:486–490, 1971.

[79] K. Mehlhorn and D. Michail. Network problems with non-polynomial weights and applica-

tions. Unpublished manuscript, 2006.

[80] J. Mestre. Weighted popular matchings. InProceedings of ICALP ’06: the 33rd International

Colloquium on Automata, Languages and Programming, volume 4051 ofLecture Notes in

Computer Science, pages 715–726. Springer, 2006.

Bibliography 163

[81] Dimitrios Michail. Reducing rank-maximal to maximum weight matching. Theoretical

Computer Science, 389(1-2):125–132, 2007.

[82] R. Neidermeier.Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.

[83] C. Ng and D.S. Hirschberg. Three-dimensional stable matching problems.SIAM Journal on

Discrete Mathematics, 4:245–252, 1991.

[84] E. Ronn. NP-complete stable matching problems.Journal of Algorithms, 11:285–304, 1990.

[85] A. E. Roth, T. Sönmez, and U. M.Ünver. A kidney exchange clearinghouse in New England.

American Economic Review, Papers and Proceedings, 95(2):376–380, 2005.

[86] A. E. Roth, T. Sönmez, and U. M.̈Unver. Pairwise kidney exchange.J. Econom. Theory,

125(2):151–188, 2005.

[87] A. E. Roth, T. Sönmez, and U. M.Ünver. Coincidence of wants in markets with compatibility

based preferences.American Economic Review, 97(3):828–851, 2007.

[88] A.E. Roth. The evolution of the labor market for medicalinterns and residents: a case study

in game theory.Journal of Political Economy, 92(6):991–1016, 1984.

[89] A.E. Roth. On the allocation of residents to rural hospitals: a general property of two-sided

matching markets.Econometrica, 54:425–427, 1986.

[90] A.E. Roth, T. Sönmez, and M. UtküUnver. Kidney exchange.Quarterly Journal of Eco-

nomics, 119:457–488, 2004.

[91] A.E. Roth and M.A.O. Sotomayor.Two-sided matching: a study in game-theoretic modeling

and analysis, volume 18 ofEconometric Society Monographs. Cambridge University Press,

1990.

[92] S. L. Saidman, A. E. Roth, T. Sönmez, U. M.Ünver, and S. L. Delmonico. Increasing the

opportunity of live kidney donation by matching for two and three way exchanges.Trans-

plantation, 81(5):773–782, 2006.

[93] S. Scott.A study of stable marriage problems with ties. PhD thesis, University of Glasgow,

Department of Computing Science, 2005.

Bibliography 164

[94] S. L. Segev, S. E. Gentry, D. S. Warren, B. Reeb, and R. A. Montgomery. Kidney paired

donation and optimizing the use of live donor organs.J. Am. Med. Assoc., 293:1883–1890,

2005.

[95] B. Spieker. The set of super-stable marriages forms a distributive lattice.Discrete Applied

Mathematics, 58:79–84, 1995.

[96] A. Subramanian. A new approach to stable matching problems.SIAM Journal on Computing,

23(4):671–700, 1994.

[97] J.J.M. Tan. A maximum stable matching for the roommatesproblem. BIT, 29:631–640,

1990.

[98] J.J.M. Tan. A necessary and sufficient condition for theexistence of a complete stable match-

ing. Journal of Algorithms, 12:154–178, 1991.

[99] C. Teo and J. Sethuraman. The geometry of fractional stable matchings and its applications.

Math. Oper. Res., 23(4):874–891, 1998.

[100] UK Transplant.http://www.uktransplant.org.uk.

[101] G. J. Woeginger. Exact algorithms for np-hard problems: a survey. pages 185–207, 2003.

[102] G.J. Woeginger. Open problems around exact algorithms. Discrete Appl. Math., 156(3):397–

405, 2008.

[103] H. Yanagisawa.Approximation Algorithms for Stable Marriage Problems. PhD thesis, Kyoto

University, School of Informatics, 2007.

[104] H. Yanagisawa. Personal communication, 2008.

[105] http://www.nrmp.org (National Resident Matching Program website).

[106] http://www.carms.ca (Canadian Resident Matching Service website).

[107] http://www.nes.scot.nhs.uk/sfas (Scottish Foundation Allocation Scheme

website).

[108] http://www.nepke.org (New England Program for Kidney Exchange website).

Bibliography 165

Index to first usage of major terminology and notation

(3,3)-COM-SMTI 89 minimum regret stable matching 15

9-sun 109 nonbipartite matching problem 7

acceptable 9 NRMP 22

almost stable matching 27 pa(b) 15

assigned 22 Π 12

bipartite matching problem 7 PA 30

blocking pair: see problem name parallel node 55

blocking triple 108 parameterized problem 55

breakmarriage 96 pareto optimal 32

closed subset 12 partial preference information 7

couple 24 partner 6

DΠ 51 popular matching 33

δ(M) 16 profile 31

deferred acceptance algorithm 8 rank-maximal matching 31

d-dimensional matching problem 7 rotation 12

domination 96 ELIMINATE 12

e(M) 15 EXPOSED 12

egalitarian stable matching 15 rotation digraph 51

FPT 56 rotation poset 12

full preference information 6 rural hospitals theorem 23

GΠ 53 series-parallel graph 55

gallai-edmonds decomposition 37 series node 55

gale/shapley algorithm 8 SESM 16

generous matching 32 SM

greedy maximum matching 32 definition 7

hasse diagram 13 blocking pair 8

HR SMI 9

definition 22 SMT

blocking pair 23 blocking pair weak stability 18

HRC 82 blocking pair strong stability 18

HRCC 82 blocking pair super stability 19

Bibliography 166

HRS SMTI 18

definition 85 stable:see problem definition

blocking pair 85 stable pair 14

indifference 9 SR(I)

kidney-exchange 28 definition 26

király’s algorithm 36 blocking pair 26

lattice 11 SRI 26

M/ρ 12 switching cycle 126

man-optimal 8 switching graph 125

matching switching path 126

3DSM 29 tie 18

SM 7 triple 29

SMI 10 unacceptable 10

HR 23 unmatched 9

HRS 85 v(ρ) 16

SR 26 w(ρ) 16

matched 7 W [1]-hardness 57

median stable matching 17 woman-optimal 8

