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Abstract

This thesis is a study of a number of matching problems thelt gematch together pairs or groups
of agents subject to the preferences of some or all of thetagafle present a number of new
algorithmic results for five specific problem domains. Eatthese results is derived with the aid

of somestructural properties implicitly embedded in the problem.

We begin by describing an approximation algorithm for thebtem of finding anaximumstable
matching for an instance of theable marriage problem with ties and incomplete li@#AX-
SMTI). Our polynomial time approximation algorithm proesl a performance guarantee3g®
for the general version of MAX-SMTI, improving upon the pi@ys best approximation algorithm,

which gave a performance guarantee 3.

Next, we study thsex-equal stable marriage problgfBESM). We show that SESM 1§ [1]-hard,

even if the men’s and women'’s preference lists are both gfheat most three. This improves upon
the previously known hardness results. We contrast this avitexact, low-order exponential time
algorithm. This is the first non-trivial exponential timgafithm known for this problem, or indeed

for any hard stable matching problem.

Turning our attention to thirospitals / residents problem with coup(&tRC), we show that HRC is
NP-complete, even if very severe restrictions are placetth®mput. By contrast, we give a linear-
time algorithm to find a stable matching with couples (or réploat none exists) when stability
is defined in terms of the classical Gale-Shapley concepis rEisult represents the most general

polynomial time solvable restriction of HRC that we are aavaf.

We then explore ththree dimensional stable matching probl¢8DSM), in which we seek to find
stable matchings across three sets of agents, rather tlvatasnin the classical case). We show
that under two natural definitions of stability, finding aldeamatching for a 3DSM instance is

NP-complete. These hardness results resolve some opeiogaes the literature.

Finally, we study thgopular matching problerfPOP-M) in the context of matching a set of appli-
cants to a set of posts. We provide a characterization ofethef popular matchings for an arbitrary
POP-M instance in terms of a new structure calledsthigching graph We show that this structure

can be exploited to yield efficient algorithms for a range sfaxiated problems, extending and

improving upon the previously best-known results for thistgbem.
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Chapter 1

Introduction and summary

In amatching problem with preferencese seek to match together pairs or groups of agents (such
as men and women, or applicants and posts) subject to thefierpnce for one another. Such
matching problems incorporate eitifall or partial preference information in the following sense.
In a matching problem with full preference informatiaveryagent has some form of preference
list that ranks some or all of the other agents. In the paptiedlerence setting, however, ordgme

of the agents have preference lists — the rest of the ageimtg, ber example, inanimate objects.
This thesis presents a number of new algorithmic resultBfespecific problem domains from the
realm of both full and partial preference information. Wepdrasize atructural approach to each
individual problem in the sense that each new algorithmsaltgoresented relies crucially on some

structural property implicitly embedded in the problem.

We begin (in Chapter 2) with a selective survey of the resatlising in the context of matching
problems with preferences. Naturally, special attentfopaid to those results that are particularly
relevant in subsequent chapters of this thesis. Next, irp&ha 3 — 7, we present our primary

results, which are outlined briefly as follows.

The first problem we consider is a well-studied variant of steble marriage problem in which
we seek to find stable matchings that ardasige as possible. To be precise, when the men and
women of a stable marriage instance are permitted to haseatid incomplete preference lists,
stable matchings can have different sizes (in contraste@lssical case). It is known that finding
a maximum cardinality stable matching is NP-hard, even wiegy severe restrictions are placed

on the sizes and positions of the ties, and the lengths ofrfenence lists [74]. Accordingly, there



has been much recent interest in finding polynomial time@ppration algorithms with a constant

performance guarantee for both the general version of thisigm, and for several special cases.

The first contribution of this thesis is to describe an appnaion algorithm for the general version
of this problem with an improved performance guarantee. YAikgredient of our algorithm is a
classic structural result on matchings in bipartite gragaiked theGallai-Edmonds decomposition
theorem[70], which, roughly speaking, categorizes the verticea bfpartite graph in terms of its
maximum matchings. Our approximation algorithm employis #tructural theorem, along with
novel techniques, to obtain a performance guarantely Df The previously best known approxi-

mation algorithm for this problem gave a guaranteé /¥ [64].

Moving away from the notion of ties in the preference listg, mext consider theex-equal stable
marriage problen{SESM). The goal of this stable marriage variant is to fincahlstmatching that,
in a formal sense, ifair to both the men and the women. This problem is known to be gityon
NP-hard [58]. We focus our aim specifically on stable magiagstances in which the lengths of
the preference lists of the men and/or women are boundedgthdy a constant. Our contribution
is to strengthen the known hardness results by proving t8&\bis 1/ [1]-hard, even if the lengths
of the men’s and women'’s preference lists are both at mosethAdditionally, we give an exact
low-order exponential-time algorithm for SESM in which then’s preference lists are bounded in
length by a constarit and the lengths of the women'’s preference lists are uintestr The running
time of our algorithm is bounded b®*(1.0725™), O*(1.1503™), O*(1.2338"), ... for i = 3, 4, 5,

.... On the other hand, we show that wHes 2, SESM is solvable in polynomial time.

These hardness results and algorithms rely heavily on thetstal properties of the set of stable
matchings. In particular, we make use of some classical -nemd— bounds concerning the-

tations of a stable marriage instance [36]. Our exact algorithm atgpthese bounds, along with
a recent extremal result concerning the structure of graptilsbounded average degree [25], to

achieve the stated running time.

We next study the hospitals / residents problem (HR), a ntafgne generalization of the stable
marriage problem. Specifically, we consider the hospitedsilents problem with couples (HRC),
in which pairs of (for example, married) residents are aldwo formcouples who wish to be

matched to the same hospital, or to hospitals geograppicadirby [76, 21, 88, 65, 66]. We consider
a natural restriction of HRC in which the members of a coupleehindividual preference lists over

hospitals, and the couples form joint preference listsahatin a formal sensepnsistentvith these



individual preference lists. We give an appropriate siybilefinition and show that the problem
of deciding whether a stable matching exists is NP-compéaten if each resident’s preference list
has length at most three and each hospital has capacity atwwwsIn contrast to this result, we
give a linear-time algorithm to find a stable matching (orométhat none exists) when stability
is defined in terms of the classical Gale-Shapley concepis dlgorithm makes no assumptions
about the preference lists or capacities of the hospitailsalll, for an alternative formulation of
our restriction of HRC, which we call theospitals / residents problem with sizZgfRS), we give a
linear-time algorithm that always finds a stable matchingtltie case that hospital preference lists

are of length at most two, and where hospital capacities earltitrary.

Our linear-time algorithm utilizes the structure of the eétsolutions induced by Gale-Shapley
stability. In particular, the set of stable matchings theep couples together” adhere to a particular
dominancerelation, which defines a partially ordered set. Our algaritefficiently navigates a
path through the space of possible solutions by exploitiegattributes of this relation. This result

represents the most general polynomial time solvableicéstr of HRC that we are aware of.

The next chapter explores the generalisation of the stabteage problem tthreedimensions, so

that we have a set of, say, men, women, dags Donald Knuth initiated the study of this problem
in the mid-1970s by asking if the results surrounding thblstenarriage problem extended to this
setting [69]. Over the years, a number of researchers halerex various three dimensional stable
matching problems in an effort to answer Knuth’s open qoastOne recurring open problem in
the literature is theyclic three dimensional stable matching probl@BSM), in which men care

about only the women, women care about only the dogs, andawgsbout only the men. Several
authors have asked, either explicitly or implicitly, if Bta matchings always exist in this setting,
and, in any case, if there exists a polynomial time algoritoneither return a stable matching,
or report that none exists [26, 83, 11]. Our contributioncisekamine 3DSM under two natural
definitions of stability, given previously in the literayrand show that under both definitions of

stability, 3DSM is NP-complete.

The cardinal ingredient in our constructions is a speciedigstructed instance of 3DSM we call a
9-Sun When we view this instance in terms of itaderlying graphit is easy to see that the special
structural nature of this instance makes the creation oélslestmatching impossible. We use the
9-Sun strategically as a subgraph in the derived instancesirofeductions to attain our primary

hardness results.



Finally, we consider a problem with partial preference infation, in which we seek to match a set
of applicants to a set of posts. One notion of optimality is 8etting is that of @opular matching

— a kind of matching that is derivedemocraticallyfrom the applicant’s preference lists. Being
somewhat formal, a matchingy is popular if there is no majority of the applicants who would
agree to abandoi/ for a different matching\/’. The goal of thgpopular matching problertPOP-
M), therefore, is to find a popular matching if one exists. rféhie a known linear time algorithm
to determine whether a popular matching exists for a giveRPRDinstance [5], and if so, this
algorithm finds a largest such matching. A number of variamg extensions of POP-M have

recently been studied.

Our contribution is to provide a characterization of the afgpopular matchings for an arbitrary
POP-M instance in terms of a new structure calledstiiching grapha directed graph computable
in linear time from the preference lists. We show that thisicdire can be exploited to yield
efficient algorithms for a range of associated problemduding the counting and enumeration of
the set of popular matchings, generation of a popular magchniformly at random, finding all

applicant-post pairs that can occur in a popular matching, @mputing popular matchings that
satisfy various additional optimality criteria. Our algbms for computing such optimal popular

matchings improve upon the best previous results for tliblpm [60].

Thus, each result in this thesis — whether positive or negjatrelies heavily on some key underly-
ing structural observations. In some cases, we use thdigteuo force the problem to “bend to our
will”. The new results surrounding the switching graph dised in Chapter 7, or the half-century
old Gallai-Edmonds decomposition theorem given in Chaptdor example, introduce sufficient
orderandorganizationinto the problem to give us the desired results. On the otied J)sometimes
the structural observations reveal the kind of chaos thabcaur within a problem instance. This
gives invaluable insight into what makes certain probleoraputationally difficult. For example,
as we show in our hardness proofs in Chapter 6, the stratlgiempent of a feW-Suns into a three

dimensional stable matching instance is enough to bringtatmplete disorder.



Chapter 2

Background

2.1 Introduction

Computer scientists almost invariably model combinatasjatimization problems by assigning
numerical values (costs, weights, etc.) to the variousatdbjef the problem instance. The usual goal
is then to either maximize or minimize some objective fumetierived from these numerical values.
A researcher who studies graph algorithms, for examplepisié to have numerous references
within an arm’s reach that model various problems with gsahlat have costs or weights on subsets
of the edges and/or subsets of the vertices. Even withiretteicted realm of matchings in graphs,
entire books have been written to catalogue a number oficlas$ynomial-time algorithms for
finding maximum cardinality matchings, maximum weight nh&tgs, minimum cost maximum

matchings, and so on.

With this in mind, suppose we are given an instance of thevialig stable marriage problemrhe
instance consists of a setwfmen and: women, each of whom provides a preference list ranking,
in strict order, thex people of the opposite set. This problem clearly gives nsz bipartite graph,
whose two disjoint sets of vertices are the men and womepeotisely. Armed with decades of
algorithmic machinery, we could attempt to assign costsvegights to the edges and vertices of
this graph in a way that somehow captures the preferensedighe men and women. Thus we
could perhaps try to find various optimal matchings (mincosiximum cardinality, etc.) in this

weighted bipartite graph.
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Perhaps the most subtle contribution Gale and Shapley [&@derwhen they studied this problem
was to realize that all of the common or natural ways of domga@mpletelyfail in one particular
regard. It will not, in general, be possible to guarantee the matching will notunravelin the
following sense: there could be a man and a woman who botkempeeth other to their respective
marriage partners , and therefore might leave those partat instead run off together. This
exemplifies the fact that, since the vertices of our bipaditaph correspond tmeople we need an

optimality criterion that is convincingly good on amdividual level.

Gale and Shapley argued that an optimal matching should &¢hah avoids this unraveling situa-
tion — hence no one has motivation to be divorced or seek angement outside of the matching
mechanism. Fittingly, they called such a matchingtable matching In a single theorem, they

proved that at least one stable matching always exists, fatdstich a matching can be found in

polynomial time [30].

Now, decades later, this single publication has effegtigglawned a whole host of research areas
with results arising from the fields of mathematics, compatéence, and economics. Some of the
results are very rich and beautiful theoretical ideas, @xmij, for example, structural relationships
between various stable matchings. Other results — oftemidigiic — are instead motivated by prob-
lems arising from real-world applications. A few exampleslude the central assignment of grad-
uating medical students to their first job at a hospital [T, 107], matching students to schools
in urban areas [12], and finding optimal kidney exchangesngstoincompatible (donor,patient)

pairs [108].

Whether the focus is on theoretical or practical resultsthalse variousnatching problems with
preferencesiave a common theme: given a set of agents, each of whom haseomof preference
over the set of possible outcomes, find a matching of the adkat is in some sense optimal with
respect to these preferences. Specifically, matching gmublarising in this context involve a set
of agents (for example men and women), where some or all cigeats may have a preference
list over a subset of the other agents. Taking a broad viewugjhly five decades of literature, one

could categorize matching problems with preferences &safsl

1. Full preference informatior- where every agent has some form of preference list (pgssibl
involving ties) ranking some or all of the other agents of ittetance. This category can be

further refined into the following subcategories:
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(a) Bipartite matching problems in which the agents can be partitioned into two disjoint

sets, and the task is to match the agents in one set to thesagéé other.

(b) Nonbipartite matching problems where the agents form one homogeneous set with

each agent having preferences over a subset of the others.

(c) d-dimensional matching problemswhere the agents can be partitioned ifdto> 3

disjoint sets and the task is to match the agentsdriiaples.

2. Partial preference informatior- in which the agents of the instance can be partitioned into
two setsA and P, with the agents iM having preferences (possibly involving ties) over the

agents inP, but the agents i® do not have any form of preference lists.

It is impossible to completely review all of the results eggsin the context of matching problems

with preferences. Instead, this introductory chapterreffeselective survey of various structural
and algorithmic results for matching problems with prefiees according to the above classifica-
tion. Naturally, special attention is paid to those resthitd are particularly relevant in subsequent

chapters of this thesis.

2.2 Full preference information

2.2.1 Stable Marriage problem

An instance of thestable marriage problenfSM) consists of a set of men and a set of women.
Associated with each person igpeeference listdefined to be a total ordering (hence no ties are
allowed) ranking all of the members of the opposite set. Aguemce list is interpreted in such a
way that a person prefersb to cif and only if b precedeg ona’s preference list. A stable marriage
instance is typically said to hawzeor order n, as this is the number of people (hencefoatpents

in each set. Observe that this is actually a slight misnoasethe sum of the lengths of all of the

preference lists of the instance, and hence the actual gipaifor the instance, i (n?).

A matching(or amarriage, is defined to be a one-one correspondence between the rdehean
women. If a manm and a womanw are matched together in a matching, then we say that they
arepartnersin M, and writem = M (w) andw = M (m). A manm and a womanw are said to be a

blocking pairfor M if m prefersw to M (m) andw prefersm to M (w) — in English,m andw are
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mq ﬂ w3 W4 W2 Ws wq - m ms My 1Mo 14
mo . W1 ﬂ wy W3 Wsy wa : Mp @ my1 Mg My
ms3: w3 W4 % w1 w2 ws % mi1 Mg MMy M3
my M w1, W3 W Ws Wy : My M7 @ mo Mg
ms : % w1 Wy W4 W2 ws @ M1 M2 @ ms 14

Figure 2.1: An SM instance with a stable matching denotedraletlining.

a blocking pair if they would both rather be matched to eablethan to their respective partners.
For brevity, we often sayn andw areblocking for Mor thatm andw block M, and so forth, in a

way that should always be clear from the context.

If there is at least one blocking pair relative to a matchiig then M is said to be amnstable
matching or unstable Otherwise, if there are no blocking paird, is said to be &table matching
or simply stable The goal of the stable marriage problem is to take an arpistable marriage
instance and output a stable matching. Figure 2.1 showshke staarriage instance with a stable

matching denoted by underlining.

The primary contribution of Gale and Shapley [30] was to stimat a stable matching exists for ev-
ery stable marriage instance. They proved this result oactstely by describing a polynomial-time
deferred acceptance algorithrwhich is now instead widely known as the Gale-Shapley d#lgor

. It has been observed that this algorithm can be implemetotedn in O(n?) time [69], and is
therefore a linear-time algorithm relative to the size @ ilput. We remark that the stable match-
ing found by the Gale-Shapley algorithm is not necessahidydnly stable matching, as there can

be many stable matchings for a given instance. We commethiefuon this in Section 2.2.3.

Roughly speaking, the Gale-Shapley algorithm involvesogaieece of iterative proposals from the
men to the women, in which the men of the instance essentialypete with one another for the
women. An interesting property of the resulting stable miaig is that it isman-optimal because
each man actually achieves the best partner he can possiayim any stable matching. Hence if
we switch the roles of the men and women, so that the algorighmoman-orientedthe resulting
stable matching will bevoman-optimal We will use the convention/, and M., to denote the man-

optimal and woman-optimal stable matchings, respecti#lg given stable marriage instance.

McVitie and Wilson [78] showed that the optimality of the mien\/, or the women inV/, always
comes at the price of the other set’s extreme suboptimdlityarticular, they proved that/; is

woman-pessimat meaning every woman is actually matched to the worst marcaheever be
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matched to in any stable matching. Reversing the roles aofnitie and the women, we can deduce
that M, is thereforeman-pessimalmeaning every man is matched to the worst woman he can ever

be matched to in any stable matching.

In fact, the observations on the inter-relationships betwaan- and woman-optimal (man- and
woman-pessimal) matchings is just the tip of the icebergeéper and broader understanding of the
rich structure of the set of all stable matchings would evalhlf emerge from these observations, but
before diving into these details, we move on to some of therahextensions and generalizations

of the stable marriage problem.

2.2.2 Extensions of stable marriage

There are at least three obvious ways to relax the speaificafithe stable marriage problem.

1. We could allow the number of men and women of the instand® tmequa) so that some

agents will necessarily be unmatched .

2. We could allow the men and the women to deem some membehg afpposite set to be
unacceptable giving rise toincomplete preference listso that the men need only rank a
subset of the women on their preference list, and, simjlahg women need only rank a

subset of the men.

3. We could allow the agents to express some forrmdifferencein their preference lists, so

that the preference lists are no longer restricted to beitajly ordered.

The numerous results surrounding stable marriage wittatiesvorthy of their own section and are
discussed separately in Section 2.2.5. In this section, i/gust focus on the first two of the above

relaxations of the stable marriage problem.

The stable marriage problem with incomplete ligSMI) captures relaxations (1) and (2) in the
following way. An instance of this problem consists of a skt men and a set ofi; women
(possiblyny, # ns). We letn = ny + ny denote the sum of the numbers of men and women.
The preference list associated with each agent is a totalioglof a subset of the members of the

opposite set.
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mq ﬂ w3 W4 w1 m mo My
mo : W1 ﬂ w2 . Mp @ may
ms3: w3 W4 w3 : Mms M4 M3 My
my M w1, w3 Wy Wy : My M7 @ ms

ms: w3z w2

Figure 2.2: An SMI instance with a stable matching denotedrmerlining.

Hence SMI allows men (women) to implicitly declare some @& #iomen (men) to banaccept-
ablein that they would rather be unmatched than matched to apevko is not present on their
preference list. If an agentappears on ageints preference list, then we say thais acceptable
to b. If the converse is also true, therandb are said to benutually acceptableA matchingM for
an SMI instance is defined to be a set of disjoint (man,womairy pm, w) such thatn andw are
mutually acceptable. We let denote the sum of the lengths of the preference lists, héxedaput

size of an SMl instance i©(m).

It is easy to see that it may not be possible to match everytagem SMI instance. As a conse-
qguence, we require an alternative notion of a blocking paipair (m, w) is ablocking pairfor a

matchingM if:

(i) m andw are mutually acceptable, and
(i) m is either unmatched in/, or prefersw to his partner inV/, and

(iii) w is either unmatched in/, or prefersm to her partner inv/.

Figure 2.2 gives an example of an SMI instance with a stablehira.

The Gale-Shapley algorithm can be easily extended to theseltihg [36], proving that a stable
matching always exists for an SMI instance. The results @aiicg the man-optimal and woman-

optimal (man-pessimal and woman-pessimal) stable magshitso generalize in the obvious way.

Gale and Sotomayor [31] observed the remarkable result Widlte there can still be many sta-
ble matching for an arbitrary SMI instance, all stable matgs match exactly the same subset of
the agents. Thus if an agent is unmatched (matched) in ohke steatching, they are unmatched
(matched) in all of them. We can therefore think of the agefitan SMI instance as being par-

titioned into two sets — the matched set and the unmatchedfsge were to attempt to explore
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the set of stable matchings for an SMI instance, we need anfydur attention to the set of sta-
ble matchings for the matched set of agents. Because ofattistfis sometimes desirable to first
discard the unmatched agents from an SMI instance, deldéterg from the preference lists of the
agents in the matched set. The set of stable matchings foeshd#ing instance is exactly the same

as the set of stable matchings in the original instance [36].

2.2.3 The structure of stable matchings

So far we have discussed the existence of the man-optimalvanthn-optimal stable matchings
(My and M,) of an SMI instance, which are quite literally the most exteestable matchings.
When dealing with an instance in whidll, = M., My must be the unique stable matching — this
is the only way that every man’s best partner could also bevbist partner. If instead/y # M,,
there may indeed be many additional stable matchings. licpkar, Knuth [69] showed that the
maximum number of stable matchings for an SM instance groyereentially withn. Irving and
Leather [46] reestablished this fact in a different way, ahdwed that for each > 0, wheren is

a power of two, there exists an instance of SM of sizgith at leas2”~! stable matchings.

In what follows we summarize the rich results concerning gtracture of the set of all stable
matchings for an SMI instance. We also discuss the key comgpiesentations of the set of stable

matchings, along with the algorithmic consequences ofstinigcture.

Henceforth, we letM denote the set of all stable matchings of an arbitrary SMaimse. We define
the following partial order oo\V. Let M and M’ be two (not necessarily distinct) stable matchings
in M. We say that\V/ dominates)M’, denotedM = M/, if, for each matched mam, M (m) =
M'(m) or m prefersM (m) to M'(m). Intuitively, M dominatesM’ if each man is at least as

happy with his partner id/ as he is with his partner if/’.

Knuth [69] attributes the following striking result conoarg stable matchings to John Conway. Let
M and M’ be two distinct stable matchings. If each man is matchedeantbre (less) preferred
of his two partners in\/ andM’, then the result is a stable matching. One of the reasonshigy t
result is so surprising is that there is no a priori reason thigy/ operation should even constitute
a matching, much less one that is stable. In light of Conweggsilt, it can be seen that the pair
(M, =) actually forms a distributive lattice, with the meet (joiof) two stable matchings being

the operation of assigning each man to the better (worse)sofwo partners in any two stable
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matchings. The maximum and minimum elements of this latifreethe man- and woman-optimal

stable matchings, respectively.

The lattice representation of the set of stable matchinglsed quite interesting, but does not im-
mediately lend itself to any particularly efficient algaris for, say, generating all stable matchings
or finding a stable matching with some special additionapprty. SinceM can have exponential
size, any algorithm that explicitly generates this laticdoomed to require exponential-time (and
possibly even exponential space). Irving and Leather [4&javered a polynomial-space repre-
sentation ofM, called therotation posetwhich essentially captures all the different ways one can
‘navigate’ the lattice of stable matchings by moving frone@table matching to another (we define

this structure formally below).

The key to making a transition from one stable matching tattarois arotation [46]. Let M
be a stable matching. For each man let s);(m) denote the first woman on m’s preference
list succeedingV/ (m) such thatw prefersm to M (w), if such a woman exists. Then, a rotation
p is defined to be an ordered sequence of p@its, wy),. . .,(m,—1,w,_1), such that for each
(0<i<r—1)(my,w;) € M, andw;11 = sp(m;) (all subscripts are taken modutd. Such a
rotation is said to bexposedn M. To eliminatea rotation is to match each mam, to w;1, where

i + 1 is taken modula-, and leave all other agents matched ag4n The resulting matching is
denoted by /p, and is in fact always stable [46]. Note that by eliminatingtation p the men in

p become worse off and the womengrbecome better off, with everyone else nopinemaining

the same. Every stable matching excéfit has at least one exposed rotation [46].

Consider the set of rotatiod$y, p1, - - - px } €xposed inM (this set must be non-empty whét,

# M,). If we choose to eliminate a rotation, say, thenpy, ..., px remain exposed id/y/po.
Also, the elimination ofpy may have exposed different rotations that were not expasédii
Thus we may continue to eliminate rotations, arriving afedént stable matchings. With each
new stable matching, some new rotations may become expdasetd? denote the union of the
sets of exposed rotations taken over all stable matchidgslrving and Leather showed tha&t

is uniquely determined by the instance, because any twtionsaare either identical or disjoint.
For two rotationsp; andp,, we say thap, precedes,, denotedo; < ps, if po is never exposed
unlessp; has been eliminated. Thetation posetwhich is uniquely determined hy1, is the pair

IT = (R, <). Itis important to note that the number of element$lag O(m).

A closed subseR’ of the rotation posell = (R, <) is a subset o such that ifp € R’ and’
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< pthenyp’ € R'. The key contribution of Irving and Leather was not only towtthat the ideas
surrounding rotations and the rotation poset allowed offimtidifferent stable matchings, but was
to further show that eliminating rotations is, in a sense,ahly way to arrive at different stable
matchings. Specifically, they showed that there exists aomeecorrespondence betwe#n and
the closed subsets oF. let R’ be an arbitrary closed subset. If we compiig, we can eliminate
the rotations inRk’ in any order that adheres te, and arrive at a stable matching. Furthermore,
every stable matching can be obtained by startint/@gnd eliminating a distinct closed subset of
II. In this way,IT encodesM. A Hasse diagram representation (the transitive closurEl) @an be

computed inD(m) time and space [47, 36].

Example Before moving on to the next section, we provide an illugteaexample of the concept

of the lattice of stable matchings, its rotations, and itation poset. Consider the SMI instance

given below:
mi: wp w3 W2 w1 My M3 Mo My
mo: W2 W1 W3 W5 W4 w2 M1 M2 M3 My
ms3: w3 W W2 Ws w3z : Mg M2 M™M3 My
my4: W4 Wy W3 Wy @ My T4 My
ms: WwW; W4 W1 Wy M3z 1My M2y

This instance has a total of six stable matchings, wiérés the man-optimal stable matching, and

Mg is the woman-optimal stable matching:

My ={(m1,w1), (ma, ws), (M3, w3), (M4, wa), (ms, ws) }
My = {(m1,w2), (ma, w), (M3, w3), (ma, wa), (ms, ws) }
Mz = {(m1, w2), (m2, w3), (M3, w1), (M4, ws), (ms, ws)}
My = {(m1,w2), (ma, wa), (M3, w1), (ma, ws3), (ms, ws) }
M5 = {(m1,w2), (ma, w3), (M3, ws), (M4, wa), (ms, w1)}
Mg = {(m1,w2), (m2, ws), (M3, ws), (M4, w3), (M5, w1)}

The instance has a total of four rotations:

p1 = ((m1,w1), (ma, w2))
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O M
M2 p1
P,
M3
Ps P,
M, M,
M6

Figure 2.3: The Lattice and poset of an SMI instance

p2 = ((ma, w1), (m3, w3))
pP3 = ((mQ’w3)’ (m4’w4))

pa = ((ms,ws), (m3,w1))

The lattice structure and the Hasse diagram of the posetsoifigtance is given in Figure 2.3. The
correspondence between the elements of the lattice antbericsubsets of the rotation poset is as
follows: M1 and(Z), MQ and{pl}, M3 and{pl, pg}, M4 and{pl, P2, pg}, M5 and{pl, P2, p4}, M6

and{pla P2, P3, p4}

2.2.4 Exploiting the structure

The algorithmic consequences of the rotation pdsetf an SMI instance are numerous. Of im-
mediate interest is the fact that the rotation poset allawsHe efficient generation of all stable
matchings. Gusfield [34] showed th&t can be enumerated (m + n|M|) time — hence there
is only a linear-time delay between the output of each stataleching. He further showed that the
set of allstable pairs- the set of (man,woman) pairs that appear in some stabléningte can be

computed inD(m) time. Later, Gent et al [33] gave a different approach to esnating all stable
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matchings by using constraint programming. Their methas$ @sc consistent domains in order to

achieve failure-free enumeration of all stable matchings.

An interesting question that arises is whether there atdestmatchings that are somehow fair
to both the men and women of the instance, as opposed to tremexunfairness of the stable
matchingsM, and M. We next review several such problems, some of which arenpatyal-time
solvable, thanks to the structural results of the rotatiosep. Henceforth, for agentsandb, let
pa(b) denote thepositionof agentb on agent’s preference list. Iz findsb unacceptablep, () is

undefined.

Minimum regret stable matchings

Given a stable matchind/ we define theegretof agenta to bep, (M (a)), i.e, the position ofi's
partner inM. The regret of an unmatched agent is undefined. The regretnaitening)M is the
maximum regret taken over all agentsiii. A minimum regret stable matchiriga stable matching

with minimum possible regret.

For the stable marriage setting, Knuth [69] showed that thémnum regret stable matching prob-
lem can be solved i) (m?) time, attributing the result to Selkow. Gusfield [34] impeohthis to

an optimalO(m)-time solution.

Fair stable matchings

Suppose we wish to somehow treat the men and the women of amStsthice equally. For a stable

matching)M, define theegalitarian valuee(M) to be

An egalitarian stable matchings a stable matchind/ that minimizese(M') over all M’ € M.
The egalitarian egalitarian stable matching problem (EBNY find an egalitarian stable matching.

Intuitively, ESM captures the notion of finding a stable nhiarig with the best “social welfare”.



2.2 Full preference information 16

my o wp wy ... wy: my mi
ma: Wy wy ... we : mj mo
* . *
Mp—1 Wp—1 Wy Wp—1 1 My_o Mp—1
. * . *
My @ Wy wj Wy, my_q My

Figure 2.4: An SM instance with two stable matchings withedfsevarying values oé(-).

Example The example given in Figure 2.4 shows he{v) can greatly vary for different stable
matchings of a particular SMI instance. The example cansitn SM instance with two stable
matchings, one denoted by underlining, and the other by $tae ellipses in the preference lists
denote any arbitrary ordering of the remaining agents nptigtty mentioned. The egalitarian
valuee(-) for the stable matching denoted by underliningi¥s+ n, whereas:(-) for the matching

denoted by star i8n.

Another notion of a fair stable matching arises by attengptim find a stable matching with the
property that the men’s and women’s overall happiness idas® @s possible. To this end, the

sex-equality measu® M) of a stable matching is defined to be

A sex-equal stable matchinga stable matching/ that minimizegd(A/’)| over allM’ € M. The

sex-equal stable matching probld®ESM) is to find a sex-equal stable matching.

Example The example given in Figure 2.5 shows hjg\{¢)| can also greatly vary for different stable
matchings of a particular SMI instance. The example cansitn SM instance with two stable
matchings, one denoted by underlining, and the other by $tae ellipses in the preference lists
denote any arbitrary ordering of the remaining agents npliatty mentioned. The absolute value

of the sex-equality measudé-) for these two stable matchingssi$ — »n and zero, respectively.

The elimination of a rotation can, in general, result in @kgamatching with a different value
of e(-) and/ori(-). For a rotationp = (mg, wy), (m1,w1),...,(m,—1,w,—1), we definev(p) and
w(p) [47, 56] to capture the change in egalitarian value and serl¢gy measure, respectively, by

eliminating p:
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my: wp w; wy:me  my mi
mo: Wy wy ... we M3 mj ..My
* . *
Mp—1 Wp—1 Wy Wp—1 My My,_o9 Mp—1
* . *
T wj Wy 1M My My,

Figure 2.5: An SM instance with two stable matchings withedfsevarying values ofd(-)|.

r—1 r—1

v(p) = Z(pmz (Wit1) = pm,; (wi)) + Z(pwi (Mi—1) — puw,; (Mi)),
=0 1=0
r—1 r—1

w(p) = > (P, (Wis1) = P (wi)) = > (P, (Mi1) = Py (M)
=0 =0

Irving, Leather, and Gusfield [47] showed that ESM can beexbln O(m?) time by assigning the
weight given byu(-) to each rotation iil, and then finding a maximum weight closed subsdt of

Later, Feder [28] gave an alternative approach that imgrtvie running time t@ (m!-> logn).

At first one would probably suspect that a similar approachildevork for the sex-equal stable
marriage problem. Indeed, on the surface, these two prableok almost identicale(M) is a
sum of the ranks of the mens’ and womens’ partners, whexgds is the absolute difference. It
is perhaps surprising then, that the sex-equal stable mgtphoblem is strongly NP-hard [58]. On
the positive side, lwama et al [56] give a polynomial-timgegximation algorithm for the so-called
near-sex-equal stable marriage problerfiheir algorithms involve assigning the weightp) to
each rotation il and then attempting to find an appropriate subset of romtioliminate. They
further study the problem of finding a minimum regret stablahing amongst the set of all near-
sex-equal stable matchings. This latter problem is NP;lmarithere is an approximation algorithm
with a performance guarantee better than two [56]. We shadlysSESM more extensively in

Chapter 4.

As a final word on fair stable matchings, we mention thedian stable matchingroblem. For
each (matched) mamn in an SMI instance, sort the multiset of womenis matched to inM from
m’s most to least preferred. For example, if mans matched to womamw in exactly ten stable
matchings inM, thenw appears ten consecutive times in this sorted list.t;étn) denote the'”

woman in a mamn’s sorted list, and\/; denote the assignment obtained by matching eachrmian
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to w;(m'). Teo and Sethuraman [99] proved the surprising resultMiais not only a matching,
but is also stable. Th#&"-median stable matching is defined to be the stable matchitagned by
matching every man te;(m). Note that, in general, not evef; so obtained is distinct, and not

every stable matching/ is equal to somé/; for somey.

The definition of a median stable matching does not lend itselny natural polynomial-time algo-
rithm — it appears as though we must explicitly enumeyetdo construct a median stable match-
ing. Cheng [18] gave a new characterization of the so-c@&tkralizednedian stable matchings,
showing that there is an intimate relationship between arediable matchings and the median el-
ements of the lattice oM. She went on to show that finding a median stable matching b8,
but is approximable in a formal sense, and even polynorimad-solvable for some special cases.

Very recently, Kijima and Nemoto [63] improved upon some o@g’s results.

2.2.5 Indifference

A natural generalization of SM and SMI is to allow the agenimlved to express some form of
indifferencein their preference lists. The most natural way for agentexress indifference is
in the form oftiesin the preference list; a tieon an agent’s preference list is defined to be a
set of agents all of whom have the same positiorurlist. The notion of a tie is important in
the practical applications of SM and SMI — consider, for eghema hospital that must attempt to
produce a genuinely strict ranking of hundreds of mediaadests [105, 106, 107]. We use SMT

(SMTI) to stand for the variant of SM (SMI) in which preferenlists can contain ties.

Of course, with the inclusion of ties, the definition of a g pair must be reconsidered. It
stands to reason that a (man,woman) pair should still forrfoekimg pair if they both improve
by becoming matched to each other, but what if, for examplés indifferent between his current

partner andv?

There are three particularly natural formulations of blagkpair, each with a corresponding notion

of stability. These three kinds of stability are defined dlofes:

o weak-stability:a (man,woman) pair can block only by both becoming better off

e strong-stability:a (man,woman) pair can block if at least one of them becomtbsrludf, and

the other no worse off
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e super-stability:a (man,woman) pair can block if neither of them becomes angevoff.

Notice that each form of stability above is increasingly enmstrictive than the previous, so super-
stability implies strong-stability implies weak-stabjli Irving [43] observed that while weakly-
stable matchings always exist for an SMT instance, strond-saiper-stable matchings need not.
He further gave a polynomial-time algorithm for each of theeé forms of stability that either
returns a stable matching or reports that none exists (ircdlse of weak-stability, the algorithm
always returns a weakly-stable matching). Manlove extéridéng’s results to the SMTI setting

[72].

Stability, size, and structure

There is an interesting interplay between the various farfristability and the cardinality of stable
matchings. If a super-stable matching exists for an SMThimse, then all stable matchings for the
instance have equal cardinality, regardless of the defimiof stability. Otherwise, if a strongly-
stable matching exists, then all strongly-stable matchimagve the same size. In general, weakly
stable matchings can have different cardinalities, butyestongly-stable matching is at least two-

thirds the size of an arbitrary weakly-stable matching [93]

Spieker [95] showed that the set of super-stable matchimgarf SMTI instance forms a distribu-
tive lattice. Later, Manlove [73] gave an alternative, amdhaps more accessible proof showing
that both strong- and super-stable matchings have a ditéblattice structure. The elements of
the lattice structure described by Manlove astsof “equivalent” stable matchings, rather than
individual stable matchings. The maximum and minimum elasef the lattice correspond to the
sets of man- and woman-optimal stable matchings. Scottd2&nded the notion of a rotation
to super-stability, and described polynomial-time altjoris for finding egalitarian and minimum-
regret stable matchings, along with algorithms for genegadll super-stable matchings and finding
all super-stable pairs. Extending such results to the gtstability case remains an open question,

but it seems likely that this can be done in light of the stiattresults of Manlove [73].
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my: (wa  wi) wi: (ma  my) ms
mo . W3 w1 w2 ¢ My ms

mz: wi (Wi wi) wr wy: (M3 ma) mo
my: w3 wy: m3

Figure 2.6: An SMTI instance with stable matchings of difersizes.

Weak stability

Irving [43] showed that finding a weakly stable matching inSMT/SMTI instance is particularly
easy. simply arbitrarily break the ties and find any stabléching in the resulting instance. In a
sense, this method is the only “easy” thing about weak styabilalmost everything else seems to
be computationally difficult. In the SMT setting, minimungret stable matchings and egalitarian
stable matchings are both not only NP-hard to find, but areapptoximable withirt2(n) unless
P=NP [74]. It is also NP-hard even to determine if a given (jwaman) pair occurs in a stable
matching (i.e. is a stable pair). ldentifying any structuedationship involving weakly stable
matchings is open, although one can construct SMT/SMThires that have neither man- nor
woman-optimal stable matchings [88]. Efficiently enumieigtall weakly-stable matchings also

remains an open question.

We mentioned above, that, in general, the weakly-stablehirags of an SMTI instance can have
different cardinality. This fact is illustrated when onegsrving’s tie-breaking algorithm: the ways
in which the ties are broken can have a significant impact ercéindinality of the stable matchings

obtained.

Example Figure 2.6 presents an SMTI instance with two different Istabatchings of different

cardinality. The example shows two weakly stable matchings denoted by underlining, and the
other by star. The stable matching denoted by underliningiise the size of the stable match-
ing denoted by star. These matchings can be arrived at byngithe (extended) Gale/Shapley

algorithm on two of the different ways that the ties of thed@mge can be broken.

Manlove et al [74] first observed the fact that weakly stabé&tahings can have different sizes, and
further showed that an arbitrary weakly stable matchifigcan be as little as one-half the size of
a maximum cardinality stable matching. The obvious quadtien, is, can we find a maximum
cardinality weakly stable matching in polynomial-time? mitave et al [74] showed that finding a

maximum cardinality weakly-stable matching is NP-hardgrein the highly restricted setting in
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which the preference lists on one side are strictly ordemad,the preference list of each member
of the opposite set is either strictly ordered or is a tie nfté two (these conditions holding simul-
taneously). Henceforth, we let MAX-SMTI denote the probleffinding a maximum cardinality

weakly stable matching of an SMTI instance.

Motivated by the hardness results of Manlove et al [74],aes®ers have been interested in finding
polynomial-time approximation algorithms for MAX-SMTI.sAa first step, we may observe that
simply computing an arbitrary stable matching is an easp@@aimation algorithm, because an
arbitrary stable matching must be a maximal matching. A remdf improvements have since

appeared in the recent literature.

For the general case of SMTI, lwama et al [53] ga\zeﬁaclo% approximation algorithm, where
is a positive constant. This algorithm was subsequentlyéwgd to yield a performance guarantee
of 2 — C—/n wherec’ is a positive constant which is at mast4./6 [55]. The first approximation

algorithm for general SMTI with a constant performance gatee better than two was given by

Iwama et al [54], with a performance ratio b /8.

The approximability of several special cases of SMTI haws &leen studied. Halldorsson et al
[37] gave &a2/(1 + T—2)-approximation algorithm for the restricted case in whiels fare only on
one side, and the length of the longest tig"isThis bound can be improved 18/7 if the ties can
appear in both men’s and women'’s preference lists, but ateated to being size at most two [37].
These same authors later described a randomized algorittmamvexpected guarantee 1if/ 7 for
this special case with the additional restriction that &ippear only on one side [39]. Motivated
by a restricted case of SMTI arising in practice [44, 107A}jrig and Manlove [48] described a
5/3-approximation algorithm for MAX-SMTI instances in whiche ties appear only on one side,
say, the women, and each woman may have at most one tie ondfergnrce list, and this tie, if

any, appears at the end of her list.

A recent landmark paper of Kiraly [64] gave two simple altans that effectively superseded all
previously known approximation algorithms for MAX-SMTg4dve only the randomized algorithm
for the very special case studied in [39]). Kiraly’s firsgatithm provides &/2-approximation for

the restricted case of MAX-SMTI in which ties are allowed wyoappear on the women'’s side
(this is the only restriction). The second algorithm pr@gdab/3-approximation for the general
MAX-SMTI setting, in which no restrictions are placed on thi@blem input. In Chapter 3, we

describe Kiraly’'s approach in more detail, and give an appnation algorithm with an improved
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performance guarantee.

From an inapproximability point of view, it is known that MARMTI is APX-complete [38] and
cannot be approximated withi /19 (unless P = NP) [37]. Yanagisawa [103] improved this bound
to 33/29, and also showed that MAX-SMTI cannot be approximated with3 under the assump-

tion that the minimum vertex cover problem cannot be appnaexéd within a factor o2 — e.

We mention one final result regarding weakly stable matchihgt(«, 5)-SMTI denote an SMTI
instance in which the men’s (women’s) preference lists &monded maximum length (5). De-
fine (a, 5)-MAX-SMTI similarly. Irving et al [51] showed that3, 3)-MAX-SMTI is NP-hard, but

(2, 00)-MAX-SMTI is polynomial-time solvable (thec here denotes preference lists of unbounded
length). They furthermore showed that there exists a coh&gauch thai4, 3)-MAX-SMTI is not
approximable withiry unless P=NP. The inapproximability 3, 3)-MAX-SMTI remains open.

2.2.6 The Hospitals/Residents problem

Moving away from the notion of indifference, we turn our atien to the many-one generalization
of SMI, the so-calledhospitals/residentproblem (HRY [30, 36]. The problem is so named because
of its widespread application to centralised automatedcthirag schemes that allocate graduating
medical students (residents) to hospital posts, which weflypmentioned in Section 2.1. The best
known scheme is the National Resident Matching Program (RRMO5] in the United States,
which annually allocates some 31,000 graduating medicdlesits to their first job at a hospital.
Similar schemes exist in Canada [106] and Scotland [1073lllof these applications, the medical
students produce preference lists ranking a subset of gmthts, who in turns produce preference
lists ranking a subset of the available residents. All oéheentralized schemes incorporate various

extensions of the Gale-Shapley algorithm to find stable hirags of medical students to hospitals.

Formally, an instancé of (HR) [30, 36] involves a set aksidents, ..., r, and a set ohospitals
hi, ..., hn. Each hospitah; has acapacityc; € Z indicating the maximum number of residents
who could be assigned to;. Associated with each residentis a strictly ordered preference list
ranking a subset of the hospitals, hiceptable hospitaJsind each hospitdl; ranks, again in strict

order, those residents it finds acceptable. The definiti@toéptable paiandmutually acceptable

1Gale and Shapley referred to this problem asibliege Admissions problernowever this problem has now widely
become known as the hospitals/residents problem.
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r1: hi hy hs hi: 2 @ rg ryg 13 14
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rq : hl @

rs: hg

Figure 2.7: An HR instance with a stable matching denotedriaetlining.
pair are defined in the obvious way.

An assignmenf// is a set of mutually acceptable (resident,hospital) pdirsiatchingis an assign-
ment such that each resident is assigned at most one hpgpitheach hospital; is assigned at
mostc; residents [36, 30]. For a matching, we defineM (r) to be the hospital residentis as-
signed inM, and similarly we letV/ (h;) denote the set of residents assignettm M. If |M (h;)]

< ¢j, h; is said to baundersubscribedif insteadh; is full to capacity,h; is fully subscribed

A blocking pair of a matching// is a resident; and hospitah; such that:

1. r; andh; are mutually acceptable; and
2. r; is unmatched, or; prefersh; to M (r;); and

3. hjisundersubscribed if/, or is fully subscribed and prefersto its least-preferred assignee
in M.

A matching isstableif it admits no blocking pair. Just as in the SMI setting, ikieown that every
instance of HR admits a stable matching, and that such a ingtclan be found in linear time
using the extended Gale-Shapley algorithm [30];[36, $acti.6]. Furthermore, the notion of man-
and woman-optimal matchings can be extendedesident-optimaland hospital-optimalstable
matchings [36, Sectionl1.6]. Figure 2.7 shows an example ¢iR instance, with the capacity of

each hospital denoted by the number written next to the talspi

Structure of HR

One of the first observations on the structural nature oféhefsstable matchings for an HR instance

is the so-calledRural Hospitals Theorefy which generalizes the fact that, in the SMI setting, the

2Historically, the NRMP found it problematic to match interiw unpopular hospitals, which were often found in the
more rural areas of the United States. This theorem esBgmbiglains why this happens, and shows that stability must
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same number of agents are matched in all stable matchingsth€borem [91, 36] is described as

follows:

Theorem 2.2.1 (Rural Hospitals Theorem) [91, 36]. For a given hospitaésidents instance,

(i) exactly the same residents are assigned in all stablechiags, so, in particular, all stable

matchings have the same size;
(i) each hospital is assigned the same number of residerddi stable matchings;

(iii) any hospital that is undersubscribed in one stable chatg is matched with precisely the same

set of residents in all stable matchings.

The notion ofdominanceamongst the sed of all stable matchings of an HR instance also gener-
alizes from the SMI setting. Let/ and M’ be stable matchings for an HR instance. We say that
M dominatesM’ (denotedM = M’) if, for each assigned resident M (r) = M'(r), or r prefers

M (r)to M'(r). Hence each resident is at least as happy/ias inM’. Analogously with the SMI
setting, (M, =) forms a distributive lattice, with the maximum and minimutareents being the

resident- and hospital-optimal stable matchings.

Couples

By the early 1970s, proportionally fewer residents wereurntdrily participating in the NRMP.
Checker [17] and later, Roth [88], attributed some of thelidedo the existence afouples i.e.,
pairs of (perhaps married) residents who wish to intern ttagyeor geographically close to one
another. Such couples would choose to negotiate directly dgspitals to arrange their residency

assignments rather than participate in the NRMP.

Today, the NRMP uses a modified algorithm to attempt to batteommodate couples. However,
it is known that stable matchings need not exist when cougplepresent [88], and, moreover, it is
NP-complete to decide if a stable matching exists [84]. Qnabthis, it has been shown that the
NRMP algorithm may be prone to strategic manipulation bypbesipretending to be single [67].

necessarily be sacrificed for unpopular hospitals to bedaihto capacity. Hence the strange name of this theorem.
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Figure 2.8: An HRC instance with a stable matching denotedraerlining.

This discussion on couples is formalized by defining an ingrdrvariant of HR called thirospitals

/ residents problem with coupldsIRC). An instance of HRC involves both single residents and
couples(pairs of residents) such that each resident belongs to at am@ couple. Each couple
(ri,r;) has a preference list oveairs of hospitals(hy, k), representing the assignmentigfto

hi, and ofr; to h;. Ronn [84] (see also [36, Section 1.6.6]) described a #tialgititerion for a
matching in HRC that is a natural generalisation of the agmls concept in the HR context. As
we mentioned above, it was Roth [88] who showed that an HRf@riee need not admit a stable
matching, while Ronn proved that the problem of decidingtiveean HRC instance admits a stable
matching is NP-complete, even if there are no single retsdand each hospital has capacity one
[84].

Example The example in Figure 2.8 gives an HRC instance in which esggdl, o andrs are
single, and residents, andrs; are a couple with a joint preference list. There is a stabliiniag

for this instance, denoted by underlining.

There has been much study devoted to HRC by economists iopart(see for example [88, 23,
13, 65, 66, 68], and references therein). From a computenseipoint of view, the problem is
not nearly as well-studied, but there are a couple of exgapti Marx and Schlotter [76] studied
the parameterized complexity of HRC with the number of cesphs a parameter. Dean et al
[21] studied the so-callednsplittable Stable Marriage problemwvhich they described in terms of
assigning jobs with integral sizes (representing couptegraups of residents) to machines with
capacities (representing hospitals). They provide a pothyjal-time integral variant of the Gale-
Shapley algorithm that finds a stable matching in which eaabhime is congested by at most the
processing time of the largest job. Put differently, thégoaithm finds a stable matching in which
each hospital is oversubscribed by at most the size of tgedaresident. In Chapter 5, we shall

revisit HRC and also the unsplittable stable marriage jembl
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Figure 2.9: An SR instance with a stable matching denotechioelining.

2.2.7 Stable Roommates problem

The stable roommates proble@R), first introduced by Gale and Shapley [30] is the nontitea
generalization of SM. The definition of the problem, alonghwhe notion of matching and stability

generalize in the obvious ways, but for completeness, l&msally spell them out.

An instance of the stable roommates problem consists of oiferm set of agents? = {r,
ro,...,rnt. EaAch agent; supplies a preference list that ranks the memberB of {r;} in strict
order of preference. Matchingis a partition of the agents into disjoint pairs.bfocking pairrel-
ative toM is a pair(r;, ;) such that-; prefersr; to M (r;) andr; prefersr; to M (r;). A matching
is stableif it admits no blocking pair. Thé&table Roommates problem with incomplete SRRI1)
is the generalization of SR that allows incomplete prefeedlists, and an odd number of agents.
The notions of blocking pair and stability are defined acowydo the obvious generalization of the
SMI context. We again use: to denote the sum of the lengths of the preference lists ofRin S

instance. Figure 2.9 gives an example of an SR(I) instandaatable matching.

Notice that SMI is just a special case of SRI. In contrast to @M6MI, however, not every SR
or SRI instance admits a stable matching. The kind of obvalgsrithms one would attempt to
construct to generalize the Gale/Shapley algorithm aresufficient to determine if an SR/SRI
instance admits a stable matching. Knuth [69] asked if tloenmates problem was polynomial-
time solvable, or if perhaps this problem was NP-completeing [42] resolved this question by
presenting & (m)-time algorithm that either returns a stable matching oorespthat none exists.

Although he described his algorithm in the SR setting, iidiegeneralizes to the SRI case as well.

We briefly remark that the set of stable matchingsof an SRI instance formsmeet semi-lattice
[35, 36]. There is also a similar notion of a rotation andtiotaposet [35, 36], although these ideas

are more involved than that of the bipartite case.
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Stable roommates with ties

We can extend SR/SRI to allow for ties in the preference, l{stsnoted by SRT and SRTI, respec-
tively) which again gives rise to the notion of weak-, strgrand super-stability. Ronn [84] showed
that in contrast to the stable marriage setting, determiffiman SRT instance admits any weakly
stable matching is NP-complete. For the case of supetisfabiving and Manlove [49] described

an algorithm with running time&(m) that either returns a super-stable matching or reports that
none exists. In his PhD thesis, Scott [93] resolved the gtstability case by giving & (m?)-time

algorithm to either return a strongly-stable matching @oréthat none exists.

When the agents of an SRI instance are allowed to haapacity we obtain the so-callestable
fixtures problen{SF). Irving and Scott [52] generalized Irving’s algorithA?] to this setting, ob-
taining aO(m) time algorithm. Scott [93] also showed that SF is polynortirake solvable under

super-stability. The case of strong-stability for SF remaipen.

Almost stable roommates

Since a stable matching for the roommates problem need isif &xs natural to seek matchings
that are “as stable as possible” in some well-defined senan.[9I7] introduced the notion of a
stable partition which is a partitioning of the roommates instance into gd@ycles. These cycles
have the property that if each agentould somehow be matched to both of the agents adjacent to
r in the given cycle, then there would be no blocking pairs. drdsing, Tan provided a method
for describing a succinct certificate for checking whethenot an SR instance admits a stable
matching without explicitly running Irving’s algorithmnla later paper, Tan [98] gave a linear-time
algorithm for finding a so-callechaximum stable matchingefined to be a largest possible 3ét

of disjoint pairs such that there are no blocking pairs withd.

Perhaps the most natural way of finding an “almost stable’chiag) is to find a matching that
admits the fewest blocking pairs. The decision versionigfiitoblem, then, is to determine whether
a matching exists that admits at mdstblocking pairs. Abraham et al [3] proved this problem is
NP-complete, and is not approximable within —¢. However, whenk is a fixed constant, they

showed that the problem is solvable in polynomial time (wittbeing in the exponent).
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Stable roommates and kidney exchange

In recent years, a renewed interest has been found in thke staimmates problem because it
provides a way of modelling and solving problems relatea&d-worldkidney-exchangprograms,

which exist in several different countries including the &l&l the UK.

Living donation is the most effective treatment that is eatly known for kidney failure. How-
ever, a patient who requires a transplant may have a willovgpdwho cannot donate to them for
immunological reasons. As a result, these incompatiblemationor pairs may want to exchange
kidneys with other pairs. Kidney exchange programs hawadir been established in several coun-

tries such as the Netherlands [62], the USA [85] and the UK]10

We can capture this kidney exchange problem by creating ghgréth a vertex for each patient-

donor pair, and a directed afe, v) for every pair of vertices:, v such that the donor in the pair

corresponding to vertex can donate a kidney to the patient in the pair correspondingitexw.

A set of disjoint cycles in this graph corresponds to a cykilimey exchange. In practice, however,
we cannot find arbitrarily long cyclic exchanges of kidnegs all operations along a cycle have to
be carried out simultaneously. Hence the length of the exgdm are typically bounded to two or

three in practice.

In most of the current programs the goal is to maximise thebmirof patients that receive a suitable
kidney in the exchange [86, 87, 92, 2] by regarding only tlesiality of the grafts. Some more
sophisticated variants consider also the differences dmtvguitable kidneys. When the value of
a kidney for a given patient can be quantified with a numenedle, the “total benefit” could be
maximised [94]. However, this is not always feasible andeiad the differences between suitable
kidneys for a given patient give rise to a preference list.né¢¢estability could be the primary
objective of a kidney exchange [90, 14, 15, 9]. When the cyelichanges are limited to being of

length at most two, the underlying problem is precisely théle roommates problem.

2.2.8 Three-dimensional stable matchings

Knuth [69] asked if the stable marriage problem could be gdized to three sets, so that the
instance contains not only men and women, but also a thirdvbéth he calledlogs Let A, B, C

be disjoint sets of men, women, and dogs, respectively, eid | = | B| = |C| = n. In response
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Figure 2.10: An instance of cyclic 3DSM

to Knuth’s open question, several different variationshi$ fproblem have been considered. The
common goal of these variations is to find a matchidghat is a set ofriples from the setd x

B x C. Similar to the SMI setting, the common notion of stabilitythe variants of this problem
involves the absence of any blocking triples, w, d) ¢ M such that a subset ¢, w, d} would
somehow improve and all of them must be at least as happy dhedttogether instead of staying
with their current triples. The primary differences in thariations of this problem arise in the

definition of stability, and also the nature of the prefeeehsts.

In the three-dimensional stable matching probléB®M), each agent has a preference list ranking
all pairs of the other two sets. Aatchingis a set of disjoint triples, and a matching is stable if
there exists nblocking tripleT = (m, w, d) ¢ M such that every member @fprefersT over their

current triple.

Alkan [7] gave the first example of an instance of 3DM where table matching exists. Ng and
Hirschberg [83] proved that the problem of deciding whethestable matching exists, given an
instance of 3DM, is NP-complete; later Subramanian [96kgav alternative proof for this. Huang
[40] proved that the problem remains NP-complete even ifpifederence lists areonsistenin a

formal sense.

As an open problem, Ng and Hirschberg [83] mentiongdic 3DSM where men care about only
the women, women care about only the dogs and dogs aboutenigen. Boros et al. [11] showed
that if the number of agents is at most 3 in each set, then a stable matching always ekigksson

et al. [26] proved that this also holds far= 4 and conjectured that a stable matching exists for

every instance of cyclic 3DSM. The example in Figure 2.10nsha cyclic 3DSM instance.

Danilov [20] provided a polynomial-time extension of thel&8hapley algorithm for a restricted
version of 3DSM in which the men capeimarily about the women they are matched to, and women
care primarily about the men. More precisely, a strictlyevedl preference list of the women can

be derived from a man’s preference list of (woman,dog) paimgl such a strictly ordered list of the
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men can be derived from each woman's preference list of (@ogh,pairs. The dog’s preference
list consists of unrestricted (man,woman) pairs. Danilefiried a reasonable notion of stability in
this setting and showed that a stable matching always eMktgeover, his results generalize to five

sets of agents [20].

In Chapter 6, we revist the cyclic 3DSM problem.

2.3 Partial preference information

Matching problems with partial preference informationeoftake the form of two disjoint sets of
agents, with one of the sets of agents expressing prefer@ves members of the other set. Such
problems are often described in terms of assigning appfidarhouses or applicants to posts. We

will use the latter terminology.

In an instancel of the post allocation problem(PA) we are given a set af; applicants{a,

az,. . .,an, }, and a set ofiy Posts{p1, p2, . . . Pn, }- Associated with each applicamtis a preference
list which ranks a subset of the posts. This subset compifiseacceptable postsf a;, and an
(applicant,post) paifa;, p;) is anacceptable paiif and only if a; finds p; acceptable. We let
denote the sum of the lengths of the preference lists of #tarice, and = ny + ny be the number

of applicants plus the number of posts. Notice the key diffee between this problem and SMI
is that the posts of the instance do not express any form &ngrece. Amatching)/ is a disjoint
subset of acceptable pairs bfWhen ties are allowed in the preference lists, we obtaimstaince

of the post allocation problem with tiePAT) with the notion of acceptable post, acceptable pair,

and matching all generalizing in the obvious way.

Since the posts of a PA/PAT instance do not have preferestse the notion of a “stable” matching
does not have any real meaning in this context. We need sdfeesdi optimality criteria. Notice
that simply finding a maximum cardinality matching is not &isfactory approach, as an arbitrary
maximum cardinality matching will not take into account tireferences of the applicants. In what
follows we will review two of the most fruitful approachessearchers have taken to find optimal
matchings for PA/PAT instances. The first thread involvedifig matchings with googbrofiles
(which we define below). The second involves finding matchitigit argpareto optimal or even

popular— two terms we will define also below.
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Figure 2.11: A comparison of rank-maximal and maximum miath

2.3.1 Profile-based optimality

Supposd is an instance of PA. Therofile of a matching) is the(nz + 1)-tuple (z1, .. ., 2 (5, 11))
where, for eachi (1 < i < ny + 1), x; is the number of applicants who are matchedinwith
theiri*"-choice post. An applicant who is unmatched is considerée tmatched to higu + 1)~
choice post, regardless of the length of his preferenceTisére are various ways we can quantify

the quality of a matching in terms of its profile.

Suppose that = (z1, ..., z,,) andy = (y1, ..., yn,) are profiles. We say thatleft-dominatesy
(denotedr >, y) if, for someyj, z; = y; for 1 < i < j andz; > y;. A rank-maximalmatching
is a matching whose profile is maximal with respecktp. A rank-maximal matching need not be

unique, but, for a given instance, all must have the same size

Example The example in Figure 2.11 demonstrates the differencedssta rank-maximal match-
ing and a maximum cardinality matching. The example consi$ta PA instance with a rank-
maximal matching denoted by underlining and a maximum oaliy matching denoted by star.
The rank-maximal matching is smaller than a maximum matgHnt assigns more agents to their

first choice.

A rank-maximal matching can be computed by a reduction tomatance of the maximum weight
bipartite matching problem (MWBM). The resulting instanéeof MWBM has the property that
the weights on the edges are of the forfi* for an edge representing an agent’s choice.
Using the algorithm of Gabow and Tarjan [29], and making flaadard assumption that numbers
of magnitudeO(n) can be handled in constant time and space, a rank-maximahimgtcan be
found inO(k2,/nmlogn) time. The space requirementG¥ km). Irving et al [45] improved this
by describing a direct algorithm for finding a rank-maximatohing inO(min(n + C,Cy/n)m)

time, whereC' < k is the maximum rank that appears in an optimal solution. r_&téchail [81]
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gave a different reduction to MWBM which achieves the sanmming time as that of Irving et al
[45].

A rank-maximal matching can in fact be significantly smatlen an arbitrary maximum matching,
so, typically, other definitions of profile optimality firstquire that the size of the matching must
be maximum, and then require that the profile is optimal in s@®nse. Define a profile =
(z1,z9,...,2y,) to befeasibleif there is some matching with profile. A feasible g-profilds a
feasible profiler with Y z; = ¢. A feasibleg-profile z is g-left maximaif there is no other feasible
g-profile that left-dominates. A matchingM whose profile is;-left maximal is called ayreedy
g-matching Wheng is the size of a maximum matching, a greegdynatching is called greedy

maximum matching

A different form of optimality arises when we seek a maximuardinality matching that minimizes
the number of applicants who obtain théir, 4+ 1) choice (i.e., are unmatched), and subject to
that, minimizes the number of applicants who receive thgit choice, and so on. To define this
formally, define a second total ordeg; on two feasibley-profiles so that: = (x1,...,zn,+1) <a

Y = (Y1, Yny+1) if, for somey, x; = y; for j < i < no+ 1 andz; < y;. A matching that is
maximal with respect tex is agenerougmatching. Wher is the size of an arbitrary maximum

matching, a generousmatching is called generous maximum matching

One can also reduce greedy and generous matchings to MWEdh by assigning suitably large
weights to the edges of the derived instance. The resulting tequirement i€ (k2,/nmlogn),
although Mehlhorn and Michail [79] showed this can be redueO (ky/nmlogn) time. It re-
mains an open question to construct faster, direct algostthat perhaps do not require the use of

MWBM for greedy and generous matchings.

2.3.2 Pareto optimal matchings

We move on to other kinds of non-profile based optimality. &oPA/PAT instancd, we say that
an applicaniprefersa matching)M to a matching)’ if (i) a is matched inM/ and unmatched in
M, or (ii) a is matched in bothi/ and M’ and prefers\/(a) to M’(a) (whereM (a) is again the
post applicant is assigned in matching/). For two matchings\/ and M, let (M, M") denote
the number of applicants who prefgf to M’. A matching) is said to bepareto optimaif there

is no matchingV/’ with o(M’, M) > 0 anda(M, M') = 0. Intuitively, M is pareto optimal if there
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is no subset of the applicants who chimprove while leaving everyone else no worse off.

For every PA instance, at least one pareto optimal matcHimgya exists, and one can easily be
computed with the so-calleskrial-dictatorship mechanis(see, e.g., [1]). However, pareto optimal
matchings can have different sizes, and the matching aatdig the serial-dictatorship mechanism
will not, in general, return a maximum pareto optimal matchi Finding a maximum cardinality
pareto-optimal matching can be solved by a reduction to ssgament problem, but Abraham et
al [4] found a faster, more direct algorithm havié,/nm) time complexity. Since every PA/PAT
instance has a pareto optimal matching with the same céditgliaa an arbitrary maximum matching
[4], any improvement in the running time of this algorithm wd imply a faster algorithm for

finding a maximum matching in a bipartite graph.

2.3.3 Popular matchings

A matching M’ is said to bemore popularthan a matchingV/ if a(M', M) > «(M,M"). A
matching M is popular if there is no matching/” with a(M’, M) > «(M,M'). A moment's
reflection reveals that a popular matching is a strongeonaif optimality than pareto optimality,
as a popular matching must be pareto optimal. The conceptpopalar matching is attributed
to Gardenfors [32] who studied the popular matchings in thik &ntext. He showed that every
stable matching of an SMI instance is also popular; hencellpopnatchings always exist in the
SMI setting. In contrast, there exist PA/PAT instances Wiiiave no popular matching, and, if they
do exist, they can have different sizes. The goal ofgbpular matching problenPOP-M), then,

is to find a popular matching or report that none exists.

Example The example in Figure 2.12 denotes a POP-M instance with tpalpr matchings that
differ in cardinality. The example consists of a POP-M ins@awith two popular matchings, one
denoted by underlining, and the other by star. The populdchiray denoted by star is twice the

size of the popular matching denoted by underlining.

Abraham et al [5] described &n(n+m) time algorithm which computes a largest possible popular
matching, or reports that no popular matching exists for @Bfance. In the case of PAT, they gave

an algorithm withO(y/nm) time complexity.

The results of Abraham et al [5] led to a number of subsequapérs covering variants and ex-
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*

ap: p1 P2 P4
az: p2 p3 pP1 P

*

as: ps Pg

ag: pi
as: p3
ag : 3

Figure 2.12: The difference in cardinality of different pdgr matchings.

tensions of the popular matching problem. Manlove and SBydfudied thecapacitated popular
matching problemC-POP-M in which each post has a capacity, defined to be tkamen number
of applicants that can be assigned to it. Manlove and Sng @&¥e/Cn, + m) time algorithm
for C-POP-M, where”' is the sum of the capacities of the posts. Mestre [80] gaveeatitime
algorithm for a version of the problem in which each applidzas an associated weight; the goal is
to find a matchingV/ with the property that there is no other matchibg preferred by a weighted
majority of agents. Mahdian [71] showed that popular maigsiexist with high probability for
random instances of POP-M if the number of posts exceedsuimber of applicants by a small
constant multiplicative factor. Abraham and Kavitha [G]died a dynamic version of POP-M al-
lowing for applicants and posts to enter and leave the iostaand for applicants to arbitrarily
change their preference lists. They showed the existenaesofcalled 2-stepoting pathto com-
pute a new popular matching after every such change, asgutm a popular matching exists.
McCutchen [77] focused on instances of POP-M for which nayteopmatching exists, defined two
notions of ‘near popularity’, and proved that for each ofsihét is NP-hard to find a matching that
is as near to popular as possible. Huang et al [41] built uperwtork of McCutchen with a study
of approximation algorithms in the context of near poptjarKavitha and Nasre [60] described
algorithms to determine aoptimal popular matching for various interpretations of optimalin
particular they gave @ (n?+m) time algorithm to findminimum costrank-maximakndfair popu-
lar matchings (a fair popular matching being a synonym faeregous popular matching). To cope
with POP-M instances which do not admit a popular matchirayitha et al [59] defined the notion
of amixed popular matchingand showed that a mixed popular matching exists for every-RD
instance. Very recently, Kavitha and Nasre explored popuktchings with variable job capacities

[61], a problem they show is NP-complete. We study populachiags further in Chapter 7.



Chapter 3

An improved approximation algorithm

for MAX-SMTI

3.1 Introduction

A crucial objective of many centralised matching schemes fsnd matchings that match as many
agents as possible — without sacrificing stability. As thedes may recall from Section 2.2.2,
finding a maximum stable matching in the SMI setting is stiiyward, as all stable matchings
must have the same size. However, allowing agents to tiesé their preference lists changes
everything. As we mentioned in Section 2.2.5, weakly stabddchings for SMTI instances can
have different sizes, and the problem of finding a maximumkiyestable matching (MAX-SMTI)
is NP-hard [74].

We surveyed all of the relevant background for SMTI, and thaglsequence of approximation
results for MAX-SMTI in Section 2.2.5. For our purposes iiistiohapter, we need only recall
that the most recent approximation algorithms for MAX-SMiiére due to Kiraly, who gave a
%-approximation algorithm for the restricted case of MAX-SMn which ties are not allowed to
appear in the men'’s preference lists, an@-approximation algorithm for the general MAX-SMTI
setting (meaning that there are no restrictions on the jnpthese results effectively superseded
all previously known approximation algorithms for MAX-SNExcept for a very special case that

was studied by Halldorsson et al [39].

35
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Our contribution in this chapter is to provide a three ph%smproximation algorithm for MAX-
SMTI (no restrictions on the input), which improves uponafy’s general performance guarantee
of % Our work builds from some ideas used in Kiralgsapproximation algorithm (henceforth
Kiraly’s algorithm) in the sense that one of the three phases of our algoritheiaugeneralisation

of this algorithm.

3.2 Background

3.2.1 Kiraly's algorithm

To make our presentation self-contained, we describe aoveof Kiraly’s algorithm using the
concept ofpromotionfrom a tie rather than that of extra score used by Kiraly [64% input to

this algorithm, the men of the instance have strictly ordgneference lists and the women have no
restriction on the nature of the ties in their preferends.li¥he idea behind the algorithm is to allow
men to make proposals to the women on their preference #sts) the Gale/Shapley algorithm,
but with an additional feature. The change is that a mawho is unmatched after proposing to
every woman on his preference list — we use the teximaustedo describe such a man — is given
one “second chance” in which is promoted ahead of each tie in which he appears, and is then

allowed to propose to each woman on his list a second time.

At the start of the algorithm, each man is set taupenatchedunpromotedandunexhaustedThe
main body of the algorithm is a while loop, which continuedag as there exists a manm who

is (i) unmatched and (i) either unpromoted or unexhausted¢th). If m is exhaustedin is set
to be promoted. The operation of promotinginvolves examining each woman who findsm
acceptable, and, if: is in a tie of size at least 2 om’s list, m is promoted immediately ahead of
this tie onw’s preference list. Furthermore; is set to be unexhausted andésictivated meaning
he will now begin again making proposals to women startingnfthe beginning of his preference
list. The algorithm proceeds by: proposing to the next woman on his preference list to whom
he has not yet proposed (or to whom he has proposed only dimeehas been reactivated). When
a manm proposes to a womai, she rejects her current partner (if any) and accepté m is a
strict improvement for her, taking into account any promotions thay have occurred. Otherwise,

she retains her current partner and reject€On rejection, a man becomes (or remains) unmatched.
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set every man to be unmatched, unpromoted, and unexhausted
while 3m such thatn is unmatched an@n is unpromoted o is unexhausted
if m is exhausted:
promotem and setn to be unexhausted
reactivatem so that he begins proposing again from the start of his list
w < next woman onn’s preference list [*m proposes tav */
if w is unmatched:
M« M U{(m,w)} I* w acceptsn */
else ifw prefersm to her partner’:
M+ M U{(m,w)} —{(m',w)} I* w rejectsm’ and accepts */
if w is the last woman on the list of’:
setm’ to be exhausted
else: I* w rejectsm */
if w is the last woman on his list:

setm to be exhausted
Figure 3.1: Kiraly’s algorithm
When a man has been rejected by every woman on his list, hetis lse exhausted.

When Kiraly’s algorithm terminates, each man is eithem{gtched (possibly having been previ-
ously promoted as well), or (ii) promoted, exhausted, andatched. A pseudocode description of

Kiraly's algorithm is given in Figure 3.1.

3.2.2 Gallai-Edmonds decomposition theorem

Phase 2 of our approximation algorithm uses a classicalt regarding bipartite matchings known
as theGallai-Edmonds decomposition theorem this section we review the parts of this theorem
that we will need in the forthcoming sections. To this end,de= (U U V, E) be a bipartite
graph andV a maximum cardinality matching @¥. With respect tal/, we partition the vertex
set of G in the following way. A vertexv is said to beodd (respectively,ever) if there exists an
odd (respectively, even) length alternating path from som@atched vertex to. A vertexw is
said to beunreachabldf there is no alternating path tobeginning at some unmatched vertex. The

following Gallai-Edmonds decomposition theorem providasmportant characterisation of the set
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of maximum cardinality matchings @f with respect to this vertex partition [70, 45].

Theorem 3.2.1 (Gallai-Edmonds decomposition) L&t= (U UV, E) be a bipartite graph and/
be a maximum cardinality matching fet. Let&, O, andif be the set of even, odd, and unreachable

vertices as defined above with respecttand M. Then

1. &, O, andU/{ are pairwise disjoint. Every maximum matchingi®partitions the vertex set of

G into the same sets of even, odd, and unreachable vertices.

2. In any maximume-cardinality matching 6f, every vertex irO is matched with some vertex
in £, and every vertex it is matched with another vertex . The size of a maximum-

cardinality matching i3O| + |U/|/2.

3. There is no edge i& connecting a vertex if with a vertex irnA.

We note that the Gallai-Edmonds decomposition of a bigagtiaph can be obtained as a by-product

of a maximum cardinality matching algorithm.

3.3 The approximation algorithm

Our approximation algorithm consists of 3 phases. A psex®alescription is given in Figures
3.2 and 3.3. In general, multiple calls are made to phasesi2aas phase 1 may pass control
to phase 2 and vice versa. Control is passed to phase 3 at must tn the first phase, we use
an approach somewhat similar to the Kiraly algorithm, aeldpo take into account the ties in the
men'’s preference lists. In this phase, men again may becoomegted, exhausted, and matched,
but may also enter a different state in which they becataled The meaning of this state will
become clear in the description of phase 1 below. Prior tingahe phase 1 algorithm for the first
time, each man is set to be unmatched, unpromoted, unerkaastd unstalled, and the matching

M is initialised to be empty.

3.3.1 Phasel

For ease of exposition, we think of the entries on a man'sepeefice list as being a series of ties;

some ties may be of size exactly one. In the first phase of gwidim, the men iteratively make
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M« 0
set all men to be unmatched, unpromoted, unexhausted, atallad
Phase 1:
while Im such thatn is unmatched and unstalled afd is unpromoted orn is unexhausted
if m is exhausted:
promotem and setn to be unexhausted
reactivatem, setm’s current tie to be his first choice
t < m’s current tie
if [t] > 2:
if ¢ contains exactly one unmatched woman
promotew ahead of
else ift contains no unmatched woman:
breakt arbitrarily
else:
setm to be stalled
else:
w < only woman int I* m proposes tav */
if w is unmatched:
M +— MU (m,w) * w acceptsn */
unstall the appropriate men, if any
else ifw prefersm to her partner’:
M+~ MU{(m,w)} —{(m,w)} I* w rejectsm’ and acceptsn */
if w is the last woman on his list:
setm’ to be exhausted
else: I* w rejectsm */
if w is the last woman on his list:
setm to be exhausted
if the setS of stalled men is empty:
return M
else:

invoke phase 2

Figure 3.2: Phase 1 of the approximation algorithm.
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Phase 2:
Construct the phase-2 graph= (U UV, E)
N + maximum cardinality matching it
identify the set<, O, andi/
N’ <+ subset ofV obtained by removing all pairs
(m,w) such thatn € O andw € &
if N =0:
invoke phase 3
else:
for (m,w) € N”:
promotew ahead ofn's current tie [*m proposes tav */
M+ MU (m,w)
setm to be unstalled
unstall all men inJ who are unmatched iV

invoke phase 1

Phase 3:
for (m,w) € N [* m proposes tav */
M + M U (m,w)

return M

Figure 3.3: Phases 2 and 3 of the approximation algorithm.

40
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proposals to the women on their preference lists in a simiiyr to the Kiraly algorithm. The main
body of this phase is again a while loop, which continues ag ks there exists a man who is

(i) unmatched and unstalled, and (ii) unpromoted or unesteal(or both). In general, there may
be many men who satisfy the loop condition, in which case twice ofm is made arbitrarily. If

m is exhausted, he is promoted, set to be unexhausted, aeddtvated precisely as described
in the Kiraly algorithm. Next, we let denote the first tie omn’s preference list containing a
womanw to whomm has not yet proposed (or to whom he has proposed only onoe hidé been
reactivated) . We refer tbasm's current tie The algorithm then proceeds based on the following
cases concerning The first case (i) is if the size dfis at least 2. Ift also contains exactly one
unmatched womaw, w is promoted ahead af on m'’s preference list. If instead contains no
unmatched womery, is broken arbitrarily onn’s preference list, creating a total order of these
women to replace on his list. Otherwise; must contain at least 2 unmatched women, ang set

to be stalled. The second case (ii) is if the size isfexactly one. In this case proposes tav, the
only woman int. When a mamn proposes to a womaun, she accepts ifr is a strict improvement
for her, taking into account any promotions that have beedem®therwise, she rejects. When

an unmatched womain becomes matched, the men who, as a result, have now just orsaired
woman in their current tie are unstalled. As before, when a has been rejected by every woman

on his preference list, he is set to be exhausted.

The primary task of phase 1 ends with the termination of thHidleMoop. At this point in the
execution of the approximation algorithm every manis in exactly one of three categories: (i)
m is matched to an acceptable woman (and possibly is prometegeh), or (ii) m is exhausted,
promoted and unmatched, having been rejected by every woméis preference list despite his

promotion, or (iii)m is stalled.

If the setS of stalled men is empty, the algorithm returns the currertthiag and halts. Otherwise,

we proceed to phase 2.

3.3.2 Phase?2

The goal of the algorithm in this phase is to attempt to matckréain subset of the stalled men.
We construct a bipartite grapghl = (U U V, E) with U being the set of men i§ andV being the

set of unmatched women appearing in the current tie of at esman inS. We refer to these
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men and women and the vertices @frepresenting them interchangeably. The set of edges are
those (man,woman) paifs:, w) such thatv € V appears inn’s current tie. We call this graph the

phase-2 graphThe algorithm then computes a maximum cardinality matgiVnin G.

We proceed by removing selected pairs fréfin the following way. We identify the set§, O,
and/ of vertices as described according to the Gallai-Edmondsrdposition theorem in Section
3.2.2. All pairs inN consisting of a mamn € O and a womanw € £ are removed fromV,
yielding a new matchingv’ € N. One of the crucial properties &f’ (proved in Lemma 3.4.2) is
that, for each mam who is matched inV’, if wy,ws, ... w; are the unmatched (if/) women in
m's current tie, thenv,, ws, . .., w; are also matched itV’. This important property oV’ is key

to the establishment of the performance guarantee of tloeitdm.

If N is empty, we proceed to phase 3. Otherwise, for every(pajiw) € N’, w is promoted ahead
of m’s current tie. Manm then proposes ta, who accepts because she is unmatchet/irand

this pair is added td/. All the men matched iV’ are now set to be unstalled.

At this point in phase 2, the assignment of any man nof ihas remained unchanged, as the
matching has changed only by matching previously unmateleden to men ir5. However, the
situation of the men who were ifi at the beginning of phase 2 has, of course, changed. We claim
(proved in Lemma 3.4.2) that those menremaining inS fall into one of two categories: (i

was matched inV, is not matched inV’, and still has at least 2 unmatched women in his current
tie, or (i) m was unmatched iV and every woman in his current tie is now matchedin The

men in (ii) are set to be unstalled, and the algorithm rettomshase 1.

3.3.3 Phase 3

Phase 3 takes as input the current matchidgalong with the matchingV constructed in the
execution of phase 2 that passed control to phase 3. Theathigaarrives at phase 3 if and only
if the matchingN’ of phase 2 is empty. We will show (in Lemma 3.4.1) that thisliegpthat vV
matches every man if. The algorithm terminates after the man in each paiNimproposes to
his partner inN — all of these women are single — and these pairs are add&fl. tdhe current

matching is returned.
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3.4 Correctness

Let us establish a few key properties of the algorithm, amifyveertain claims made in the de-

scription of the pseudocode.

Lemma 3.4.1 Let S denote the set of stalled men at the start of an arbitrary etiec of phase
2 of the approximation algorithm. If the matchidg’ constructed in this call is empty, then the

corresponding maximum cardinality matchingmatches every man isi.

Proof SupposéV’is empty, and that a man is unmatched by. Letw be an arbitrary neighbour
of m in G. Sincem is not matched inV, m is even (i.e.m € £), and thereforev is odd w € O).
SinceN is maximal,w was matched to a man’ in N, who therefore must also be even. But this
implies the pai{m’, w) could not have been removed fraWy as it consists of an even man and an

odd woman. O

Corollary 3.4.1 Phase 3 of the approximation algorithm finds a matching thaitcines every man

who was inS in the preceding execution of phase 2.

Proof By Lemma 3.4.1, when control of the algorithm reaches phasee8y man inS is matched,

for control is passed to this point only N’ is empty. O

Lemma 3.4.2 establishes the key properties of the matchiihgad N’ constructed in phase 2 of

the approximation algorithm.

Lemma 3.4.2 Let m be a stalled man in the sét with current tiet at the start of an arbitrary
execution of phase 2. Then, exactly one of the followinguis &fm when that execution of phase

2 ends (i.e., the instant before eithinvoke statement in phase 2 is executed).
1. m was matched iV’, som is now matched i/ to a woman irt, and every woman inis
matched inM .

2. m was matched idV but not inN’, m’s current tie is still¢, and there are at least two women

in t who are still unmatched if/.
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3. m was unmatched iV, m’s current tie is stillz, and every woman in his current tie is now

matched inM.

Proof (1) Supposen was matched idV’. Then,, was an even or unreachable vertex with respect
to M. Therefore, all neighbours ofi in G are either odd or unreachable, and could not have been
deleted from/V, for only even women are removed fram. It follows that all ofm’s neighbours

are inN’, and therefore they all receive proposals in this execuifgshase 2, and are matched in

M.

(2) If insteadm is matched to a womaim in N but is unmatched iN’, thenm was removed from
N because he is an odd vertex. We establish the claim by shadivang is another even woman
w’ # w who is adjacent ten and is unmatched iV’ as well. To see this, consider the path of odd
length that makes: an odd vertex. This path cannot reach him via his partneraémthtching, for
alternate edges in that path would have to be edges in thdimgtddence the first edge in the path
would be in the matching (since the last edge is), contrimgjdhe fact that the starting vertex in
the path must be unmatched. Therefore this path must reacfrdrin another neighbouring vertex
w’, which must be even. This woman is unmatcheai for she can only be matched to an odd

man in N or unmatched inVv.

(3) Finally, if m is unmatched by he is an even vertex. All women in his current tie are thegefor
odd vertices, are matched ¥ becauseV is maximal, and could not have been removed fidm
Therefore, these women are all matchedvihand all receive proposals in this execution of phase

2, and hence are matchedMh.

Having considered every possibility of the outcomend$ participation in phase 2, the lemma is

established.O

Lemma 3.4.3 On termination of the approximation algorithm, any man whmains unmatched

has been promoted, and has been rejected by every womanlimt éien after becoming promoted.

Proof The execution of the algorithm can only halt in one of two pRcThe first place is at the
end of phase 1, on the condition that there are no stalled iigis.implies that every unmatched

man is promoted and has still been rejected by every womarisdisth The other point at which



3.4 Correctness 45

the algorithm may terminate is in phase 3. Now, control reagbhase 3 only if, in phase 2, itis
discovered thafV’ is empty, implying thatV matches every man ifi by Corollary 3.4.1. Notice
that when this happens nothing is done in phase 2 to modifiassgyinment of any agent, rather
phase 2 simply passes control to phase 3, which matches eaer1yn.S. Hence, the unmatched
men are those who were unmatched after the final call to phaaedl as described above, they

must have become exhausted while promoted.

Lemmas 3.4.4 and 3.4.5 establish the stability of the matcbutput by the approximation algo-

rithm.

Lemma 3.4.4 Suppose a woman becomes matched to a manat some point in the execution of
the approximation algorithm. Them only rejectsm if she accepts a proposal from a man ranked

at least as highly as» onw’s (original) preference list.

Proof Matched women can only change their partner in one placesiapiproximation algorithm,
and that is when receiving a proposal in phase 1 from a mandtnyly prefer, possibly after
promotions, to their current partner. This new suitor mestanked at least as highly ass current

partner onw’s original preference list.O

Lemma 3.4.5 The matchingM returned at the end of the approximation algorithm is a stabl

matching.

Proof Suppose thatm,w) blocks M. The essence of the approximation algorithm from a man’s
point of view is a left-to-right sweep of his preference listwhich, if necessary, he becomes
promoted and again makes another left-to-right sweep gireference list. Hence, fan to prefer

w, he must have proposed to her at least once, whether it beasepghor phase 2 (he cannot have
proposed to her in phase 3, for otherwise they would be mdtch&/). The fact thatv has rejected

m along with Lemma 3.4.4 implies that does not prefem to her current partner in/, and hence

(m,w) does not block\/. O

Lemma 3.4.6 The approximation algorithm runs iﬁ)(n3/2m) time, wheren is the sum of the

numbers of the men and women ands the sum of the lengths of the preference lists.
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Proof The algorithm essentially constitutes one or two partiatamplete left to right sweeps of
the men’s preference lists, interleaved with calls to ptlas&he total number of calls to phase 2

is bounded by the number of men, as each call to phase 2 eiti@lysncreases the size d¥/

or passes control to phase 3, in which phase the algorithmirtates. Le{V'| and|E| denote the
numbers of vertices and edges, respectively, in the pheseptaph. Any one execution of phase

2 requires a total 0D (+/[V[|E|) = O(y/nm) time, as the construction 6¥ is the dominant step

of phase 2. In the worst cas@(n) calls could be made to phase 2, each of which computes a
matchingN of sizeQ2(n) but a matchingV’ of sizeO(1). These successive calls to phase 2 would

clearly dominate the complexity, yielding a bound®@fn?®/?m). O

3.5 The performance guarantee

For a given instance of MAX-SMTI, led! be the stable matching returned by the approximation
algorithm and letM/,,, denote an optimal stable matching for a given instance of MZWKTI.
Consider the symmetric difference @& M,,; of these two matchings. The components of the
underlying graph of\/ @ M,,, consist of alternating cycles and paths. Each cycle comyane
M @ M, is of even length, so the ratio 8f -edges ta\/,,,-edges in these components is one. For
an alternating path component, the ratia\éf,;-edges tal/-edges is always at most 3/2 except for
a component that is a path of length 3 with its endpointd/g),. Therefore, if we can establish
that M @ M,,,; contains no such path, we will have shown that the ratid/gf;-edges tal/-edges

in each component is at most 3/2, establishing that the ithgoiis a%-approximation algorithm.

Lemma 3.5.1 is the missing piece of the puzzle to establisipénformance guarantee.

Lemma3.5.1 Let P; = w' — m —w — m’ be an alternating path id/ & M,,: with (m,w) € M
and(m,w'), (m',w) € M,y (as described in Figure 3.4). Then, the following facts hold

(i) The manm’ in P; must be exhausted and promoted.

(i) The manm in P; was never promoted by the approximation algorithm.
(i) Womanw in P; strictly prefersm to m’ in her original preference list.

(iv) Manm in Pj is indifferent between andw’ in his original preference list.
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Figure 3.4: AP; in M & M,,;. Dashed edges belong 1d,,,, the undashed edge 1d.

(v) Manm’ proposed to womam prior to the end of the final execution of phase 1 and was

rejected by her. Hencey is matched prior to any potential call to phase 3.

Proof (i) This follows from Lemma 3.4.3 and the fact that is unmatched inV/. (ii) Sincem

has an unmatched womari on his preference list, he could never have become exhadsted’
cannot have received a proposal. (iiijufstrictly prefersm’ to m, then(m/, w) is a blocking pair

for M, a contradiction. If, instead, she were indifferent betwt®se two men, she could not have
rejectedm’, who, by Lemma 3.4.3, must have proposeduvtat some point after being promoted.
But at that momentv was matched ten. or someone ranked lower, amad was never promoted.
(iv) If m strictly prefersw’ to w, then(m,w’) blocks M. But by (iii), m forms a blocking pair
with w in M, if he strictly prefersw to w’. (v) Every man who participates in phase 3 becomes
matched, hence:’ did not participate in phase 3, and since no matched man kecanmatched
during phase 3 or phase 2, marnwas unmatched at the end of the final call to phase 1. By Lemma
3.4.3,m/ proposed tav even after becoming promoted, but since he is singl®irshe must have
rejected him. Hencey is matched to someone ranked at least as highly: a the final call to

phase 1.0

Now, we arrive at the contradiction. Consider again the gatlas shown in Figure 3.4. Since
matched women never become unmatched, maiways had womam’ unmatched on his pref-
erence list, and by Lemma 3.5.1 (iv) she is tied within what phase of the algorithm cam have
become matched te? It cannot have been in phase 1, for the phase 1 algorithmrduesiow

him to propose tav, regardless of whether or natis matched, because of being tied withw
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mi. W2 W3 w1 . Mg ms
meo . (wl, wg) wy - (ml, mg)
ms3:. Wi w3 M

Figure 3.5: An instance of SMTI that yields a performancerat 3/2.

and unmatched. Buh cannot become matched t@in some call to phase 2 either, for the fact
thatw’ is unmatched at the end of the algorithm implies she coulémbe in N’ at any call to

phase 2. By Lemma 3.4.2, this implies that the jjair w) would have to be deleted in the creation
of N’ as well. Thus, we conclude that became matched t@ in phase 3. However, men only
become matched to unmatched women in phase 3, implyingitigsingle at the start of phase 3,

a contradiction of Lemma 3.5.1 (v).

We are forced to conclude th&t cannot exist iV @© M.

Theorem 3.5.1 The polynomial-time approximation algorithm outputs abamatching at least

% the size of an optimal stable matching.

3.6 Tightness of the performance guarantee

We give an example to show that this is the tightest boundigles®r our approximation algorithm.
Yanagisawa [104] first observed ttggt2 was the tightest possible bound, later, Chebolu [16] gave
a different example to establish the tightness of the perdmce guarantee. We have chosen to
present the example of Chebolu because the particularlymgtric nature of the preference lists
make it very easy to understand. Consider the SMTI instaivem gn Figure 3.5; note that we use
parentheses to denote a tie in a preference list. One pessibtution of the algorithm begins by
m1 proposing tow-, followed by a proposal frommn; to wy. Manmg could then propose ten,
and, although he will become promoted, and propose agaiwilhstill remain unmatched. The
algorithm stops with a matching containing the pairs; , wy) and(msz, w;). An optimal solution,
however, is the perfect stable matching given by the gairs ws),(ms, w2), and(ms, wy ). Notice
that because of the symmetry of the instance, this examiplagglies if the roles of the men and

women are reversed.
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3.7 Conclusion and open questions

We have presented a polynomial-time approximation algarifor general MAX-SMTI with a
performance guarantee ®f2, improving the previously best known algorithm for this Iplem. An
obvious open problem is to find a further improved approxiamaglgorithm or to further tighten

the inapproximability bound for MAX-SMTI.

Finally, we note that our approximation algorithm also exi®to the Hospitals/Residents with ties
setting (HRT), by a technique involving “cloning” [48], witthe same performance guarantee of

3/2.



Chapter 4

Sex-equal stable matchings

4.1 Introduction

How can we find stable matchings that are somehow fair to tnatimten and the women of an SMI
instance? Of course, this begs the question, what does i toetreat the men and the women
fairly? A natural definition of fairness could arise from ttedlowing intuition. Suppose we could
somehow quantify the overall “happiness” of the men, andtrezall “happiness” of the women.
Then, a stable matching could be considered fair if the hmaggsi of the men is equal, or as close as

possible, to the happiness of the women.

This is precisely the goal of the sex-equal stable marriagelem (SESM) we discussed in Section
2.2.4. Let us recall the definition of this problem. Liebe an arbitrary SMI instance, and let
denote the number of agentsofi.e., the number of men plus the number of women. For agents

andb, letp,(b) denote theositionof agentb on agent’s preference list.

Define thesex-equality measui-) for a stable matching/ € M as follows.

The goal of thesex-equal stable marriage problef8ESM) is to find a stable matchiny € M
that minimizes|§(M)|, whereM is the set of all stable matchings. SESM is NP-hard [58], and

50
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the only positive results known for this problem are due tariva et al [56], as reviewed in Section

2.24.

This chapter explores SESM for SMI instances in which thgtles of the preference lists of the
men and/or women are bounded in length by a constant. We eseotiation(«a, 5)-SESM to
denote the problem of finding a sex-equal stable matchingn @Ml instance in which the men’s
(women’s) preference lists have length at mests). We usecco for the case whem or 5 can
be arbitrarily large, so, for examplé, c0)-SESM means the men’s lists are bounded byt the

women'’s lists can be arbitrarily long.

This chapter specifically explords;, 5)-SESM from the viewpoint of exact exponential-time al-
gorithms and parameterized (FPT) complexity (a review of BRd parameterized complexity is
given in Section 4.4). There has been much recent interestict exponential-time algorithms for

computationally hard problems. We refer the reader to tieeys of Woeginger [101, 102].

Our results are summarized as follows. On the negative sideshow thai3, 3)-SESM isW[1]-
hard. This strengthens the NP-hardness results of Kato fa8thermore, we show that our hard-
ness result is “tight” by giving a polynomial-time dynamicogramming algorithm for2, co)-
SESM and ~, 2)-SESM. On the positive side, we give a low-order exponetitiaé algorithm for
(1,00)-SESM. To be precise, we give an algorithm with running firneunded byO*(1.0725™),
0*(1.1503™), O*(1.2338"), ... for I = 3,4,5,.... By reversing the roles of the men and the

women, this algorithm applies {eo, [)-SESM as well.

Our algorithm is built on a number of new observations regarthe rotation poset and the rotation
digraph (Hasse diagram) of &h oo)-SESM instance (see Section 2.2.3 for a review of the struc-
tural results for SMI). We show that, in a formal sense, wientumber of rotations in the rotation
posetll is at most a certain threshold, then a brute-force algoritieth enumerates all closed sub-
sets of the rotations di suffices to find a SESM. Otherwise, if the number of rotatioceeds this
threshold, then we show that the rotation digrdpf must besparse We then use existing results
concerning sparse graphs to design an exponential-tinogithign with a running time as described

above.

We reviewed the structural results for SMI in Section 2.2r8] we shall rely on these results quite

heavily in this chapter. In the next section, we review thesallts and also cover some of the finer

"We use the standax@* notation that suppresses polynomial factors in any ternagmadyze the running time of an
exponential-time algorithm.
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structural details omitted from Section 2.2.3 that we djpeadly require only in this chapter.

4.2 Further structural results for SMI

4.2.1 The number of men

As we discussed in Section 2.2.2, Gale and Sotomayor [3)jeti@ll stable matchings of an
SMI instance match exactly the same subset of the agentsceHar®e may assume without loss
of generality that those agents who are never matched irbkestaatching are discarded from the
instance. These agents can never affect the sex-equal#tgureeof a stable matching, and thus can
be ignored. A consequence of this is that the number of rangaimen must equal the number of
remaining women. Henceforth we letdenote the number of men plus the number of women of

this remaining instance in which all unmatched agents hieady been discarded.

4.2.2 Rotations, rotation posets, and SESM

The rotation posetII

For an arbitrary SMI instancé, we let M, and M, denote the man- and woman-optimal stable
matchings ofl, respectively, andl = (R, <) the rotation poset of. For a subset of rotations
R’ C R, we denote byI[R’] the partially ordered set induced B/. The canonical reference for

the following details regarding rotations is the monograptsusfield and Irving [36, Chapter 3].

Let p = ((mg,wop),...,(m,—1,w,—1)) be a rotation. We say thatmovesm; downfrom w; to
w;+1 andmovesw; up from m; tom;_;. If w is eitherw; or is strictly betweenv; andw; 1 in m;’s
list, thenp movesn; beloww. Similarly, p movesw; abovem; if m is m; or is strictly betweenn;

andm;_1 in w;'s list.

Fact 4.2.1 (Gusfield and Irving [36]) LeflI be the rotation poset of an arbitrary SMI instance.
Then,

1. For any mann and womanw, there is at most one rotation that movesdown tow, andw

up tom. Furthermore, there is at most one rotation that mowvefom w.
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2. For any manm and womanw, there is at most one rotation that movego a man strictly

abovem in w’s preference list.

The rotation digraph Dy and the underlying graph Gy

We let Dy; denote the rotation digraph of (recall that this is the directed Hasse diagranilpf

There is a key characterisation of the arcdgf that is given by the fact below.

Fact 4.2.2 (Gusfield and Irving [36]) LetD; denote the rotation digraph of an arbitrary SMI

instance.

1. If (m,w) € p, andp’ is the (unique) rotation that moves to w, then(y’, p) is a directed

edge inDr. In this casey’ is called a type-1 predecessor af

2. If p movesn beloww, andp’ # p is the (unique) rotation that movesabovemn, then(y’, p)

is a directed edge iDy1. In this casep’ is called a type-2 predecessor af

3. Every arc(p’, p) € Dy satisfies either (1) or (2) (or both) for some, w.

When referring taDy; we will sometimes find it useful to consider the arcsiaf as being undi-
rected. So, we let7;; denote the undirected graph obtained by replacing eveegtdid arc ofDy;

with an undirected edge. We also take a moment to remark thaefer to the rotations dif and
the vertices ofG; and Dy as both rotations and vertices interchangeably. The meastinuld

always be clear from the context.

Weighted rotations and weighted subsets

Recall the goal of SESM is to find a stable matchivig minimizing the absolute value of
(M) = > pu(w)= D pulm).
(m,w)eM (m,w)eM

We sometimes use tldenotation for a closed subset of rotatiofisso thatj(S) provides a shorthand

for 6(Ms), whereMs is the stable matching obtained by eliminating the rotationS.
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For a rotationp = (mg, wo), (m1,w1),...,(m.—1,w,—1), lwama et al [56] define the following

weightw(p), which captures the change in sex-equality measure negudtbm the elimination of

p:

|
—

r—1 r

w(p) =D (P (Wit1) = Py (wi)) = Y (Puy (Mim1) = Py ()
=0 i

s
Il
o

For a set of rotationsg?’, we letw(R’) denote the sum of the weights of the rotationskin An

understanding of the following facts is necessary for théhods used in the forthcoming sections.

Fact 4.2.3 (lwama et al [56]) Let/ be an arbitrary SMI instance. Then

1. w(p) >0Vp € R.
2. 6(M/p) = 6(M) + w(p) for any stable matchind/ and rotationp exposed inV/.

3. Foraclosed subse®’, 6(R') = 6(Mo) + >_ e w(p) = 0(Mo) + w(R).

Notice that in light of Fact 4.2.3 (1), #(Mp) > 0, then M, must necessarily be the unique sex-
equal stable matching, as the elimination of any rotatiofisomly worsen the sex-equality measure
of the stable matching. We also briefly remark on the impoudéference between)(.S) andd(S).
The notationw(.S) refers to the sum of the weights of a (not necessarily closetpf rotations
while §(S) is the sex-equality measure of the stable matching obtdigegliminating a (closed)

subsetS.

4.3 Series-parallel graphs

Our exact algorithm in Section 4.8 relies heavily on the prtps of so-calledseries-parallel
graphs In this section we briefly review the necessary definitiomd properties of series-parallel

graphs.

A two-terminal labelled graphiG, s, t) consists of an undirected graphwith two distinct marked
verticess,t € V, wheres is called thesourceandt is called thesink Theseries compositionf two-

terminal labelled graph&G1, s1,t1) and (Gs, s2,t2), Wheres; andss (¢; andtsy) are the sources
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Figure 4.1: A series-parallel graph and a corresponding &P t

(sinks) of G; and G, respectively, is the two-terminal labelled graph obtdibg identifying ¢,
with so. Theparallel compositionof two-terminal labelled graph&=y, s1,¢1) and(Ga, so, t2) is
the two-terminal labelled graph obtained by identifyingwith so and¢; with ¢5. A graph is a
series-parallel graphf and only if it can be created from single two-terminal esldpy a sequence

of series and/or parallel compositions.

An interesting side-effect of the definition of series-flatagraphs is that the way in which the
series-parallel graph is constructed implicitly descibebinary tree, called &8P tree The leaves
of the SP treg™ are the edges aF, and every internal node ¢f is labelled eithelS or P to denote
whether a series or parallel operation was used to join tlestries-parallel graphs described by

its children. See Figure 4.1 for an example of a seriesdehgaph and a corresponding SP tree.

4.4 Parameterized problems, FPT, and W[1]-hardness

Before presenting the primaiy'[1]-hardness result of this chapter, we give a very basic reefew

the necessary definitions and background of parameterizddeps and parameterized complex-
ity. We refer the reader to the texts of Neidermeier [82] amivbBey and Fellows [22] for a more

thorough treatment. We begin our basic tutorial with therfakrdefinition of a parameterized prob-
lem. The key point of interest in the definition of a paramegat problem is that it is a decision

problem that asks for a solution of siegactlyk, as opposed to saying, for exampde mostk or

at leastk. The formal definition is given as follows.
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Definition 4.4.1 (Neidermeier [82]) A parameterized problem over an alphabet is a set of
pairs (z, k) with z € ¥* and k a non-negative integer such that there isswith (z, k) € L and

(x,k") € L for somek’ # k.

By way of example of a parameterized problem, consider th@peterized versions of Cliqgue and

(1, 00)-SESM given below.

Clique
Input: A graphG = (V, E) and a non-negative integer

Question DoesG contain a complete subgraghC V with exactlyk vertices?

(I,00)-SESM
Input: An (I, c0)-SMI instancel and a non-negative integér

Question Is there a stable matching for I such that (M) is exactlyk?

We continue our brief tutorial with the definition of fixedypaneter tractability.

Definition 4.4.2 (Neidermeier [82]) A parameterized problefrover an alphabek is fixed-parameter
tractable if it can be determined ifi(k)n°() time whether or notz, k) € L, wheref is a com-

putable function depending only @ The corresponding complexity class is called FPT.

The class FPT contains the complexity class P. In additiaanynNP-hard problems are known to
lie within FPT, including, for example, the well-known minum vertex cover problem. However,

this is not true of all NP-hard problems.

As is commonly known, proving that a combinatorial problesyNiP-complete provides a proof
that the problem cannot be solved in polynomial-time unfessNP. In what follows we explain
the notion of so-called W[1]-hardness, an idea analogodPtdardness, which provides the the-
oretical background for formally establishing some notarfixed-parameter intractability of a
problem. We first define the concept of a parameterized ramhydollowed by the definition of the

complexity class WI[1].
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Definition 4.4.3 (Neidermeier [82]) LetL, L’ C ¥* x N, whereN denotes the positive integers,
be two parameterized problems. We say thatduces ta.’ by a standard parameterized reduction
if there are functionsf (k) — k¥’ andg(k) — k” from N to N and a functionh(z, k) — =’ from
¥* x N to X* such that:

1. h(z, k) — 2’ is computable irk” |(z, k)|° time for a constant and

2. h(z,k) € Lifand only if(2/, k') € L'.

Consider the following examples that distinguish the défeee between a ‘classical’ polynomial
time reduction and a parameterized reduction. It is easigndhat a graplr has a vertex cover

of sizek if and only if it has an independent set of size- k. Therefore, vertex cover reduces
to independent set in polynomial time. This is not a pararietd reduction, because the derived
instance of independent set has the parameter valué:, which does not exclusively depend on
k but also om. On the other hand, it is easy to see that a gr@gias an independent set of size
k if and only if its complement graph¥’ has a clique of sizé&. This constitutes a parameterized

reduction.

The Weighted 2-CNF-Satisfiability problem, which plays & kade in defining the complexity class

W1] (given in Definition 4.4.4 below) is defined as follows.

Weighted 2-CNF-Satisfiability
Input: A boolean formulaF in conjunctive normal form, in which every clause Bfhas at most
two literals, and a nonnegative integer

Question Is there a satisfying truth assignment fBithat has exactly variables set to true?

Now we may present the definition of the cla$31].

Definition 4.4.4 (Neidermeier [82])
1. The clasdV[1] contains all problems that can be reduced to Weighted 2-Q4fisfiability
by a parameterized reduction.

2. A parameterized problem is said to be W[1]-hard if the paederized problem Weighted
2-CNF-Satisfiability can be reduced to it by a parameterigtiiction.
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3. Aproblem ini¥[1] that isW[1]-hard is said to be W[1]-complete.

It is known that FPTC W/1], and, if anyW|1]-complete problem were shown to be in FPT,
the result would imply a collapse of complexity classes FRd@ ®/[1], which is thought to be
unlikely. Quite a few well-studied problems are known tolbi¢l|-hard, including dominating set
and independent set. For our purposes, we need only theviojoresult, which concludes this

section.

Theorem 4.4.1 (Neidermeier [82, Corollary 13.5]) Clique i8/[1]-hard.

45 (3,3)-SESMisWW|1]-hard

We next describe a parameterized reduction fromitfeé]-hard problem Clique tol{cc)-SESM.
In fact, our reduction will prove W[1]-hardness even for #gecial case of3(3)-SESM. The
reduction is inspired by a construction of Johnson and N[&fjiwho reduce an instance of Clique

to an instance of the partially ordered knapsack problerfinel below.

Partially ordered knapsack

Input: Directed acyclic grapliz = (V, A), a weightw(v) € Z+ and a valuen(v) € Z for each
vertexv € V, a knapsack capacit € Z*, and a bound” € Z*.

Question: Is there a subset” C V, closed under predecessor, such thgt’) < B and

p(V') > C?

To make the description of our transformation more easilyenstood, we review the construction
of Johnson and Neimi. Given an instante- (G = (V, E), K) of the Clique problem, they create

aninstancd’ = (G' = (V', A"), B’, C") of the partially ordered knapsack problem as follows.

V' =V UE,

A" ={(v,e) :v e V,e e E,vis an endpoint o }

w(v) =pv) =|E|+1 forallv e V,
w(e) =p(e) =1, foralle € F,
B'=C"=K(E+1)+ ().
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HenceG' is a bipartite acyclic graph in which each arc is directednfran element o/ to an
element ofE’. Each element oF necessarily has exactly two predecessors, and each elefriént
has the same number of successor&’ias it has edges incident to it {#. Suppose now tha® has
aclique(Vk, Ex) of size K. Then the set of verticelsx U E is a closed subset @’ of weight
and valueK (|E| + 1) + (%). Suppose instead that has a closed subsét of weight and value
K(|E|+1)+ (12() Notice that the choice of weights and values foare such that each element
of V" weighs more than the sum of all elementsifwhich have weight and value one. A closed
subset ofG’ that has exactly a weight and value | E| + 1) + (%) must consist ofx’ vertices
from V and (%) vertices fromE. SinceS’ is closed,S’ corresponds tds vertices fromV with

(12() edges between them @, i.e. a clique of sizé in G.

45.1 Reductionidea

Our reduction to SESM will use the transformation of Johnaod Niemi in the following way.
The idea is to reduce an instantef Clique to an instancé& of SESM such that the rotation poset
of I’ has precisely the same structure as that constructed foetiveed partially ordered knapsack
instance above. Our reduction will map everg V' to a rotationv with weightw(v) = 8|E| + 2,
and every edge = {v;, v, } of E to a rotatiore with predecessors; andv; andw(e) = 8. We will
construct our derived instance in such a way that the mamapstable matching/, for I’ will
have the property that( M,) = —[K (8|E| + 2) + 8(12()]. Hence a closed subset of weight exactly
K(8|E| +2) + 8(5) corresponds to a stable matchifgy havingd(Mgs) = 0. Since the rotation
poset of our derived instance will have the same structutbaof the reduction of Johnson and
Niemi, such a closed subset must correspond to a clique @ksiactlyK” in G. We next describe

this reduction formally.

4.5.2 The parameterized reduction
Step 1: the vertex gadget

For each vertex; € V, we createt|E| + 1 men{m?, m},.. .,mf‘E‘} and4|E| + 1 women{w?,
wh,. . .,wf‘E‘}. Each of these men will have at most three entries on his namede lists while each

[N

of these women will have exactly three entries on her prafardist. However, in this step, we only
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define two entries for each man and woman. The first two enbriethe preference list of a man
m! arew’ andw! ™, respectively, wherg + 1 is taken modulot|E| + 1. The second and third
man on a womam’’s preference list arex) " andrmn?, respectively, wherg — 1 is taken modulo
4|E| + 1. The third entry of a mam? and the first entry of a womamn’ will be defined below at
a later step. The preference lists created by this step a@ided below; an underlined star in a

preference list indicates an entry that has not yet beenettea

mg : w? wil * w? Cox m;l\E\ m?
1. 1 2 % 1. =% 0 1
m; o w; w;  * w; X om; m;
4|E 4|E _
mAEL JAUEL 00« HUE o« BT 4B

v ’ g RS i = i i

Step 2: the edge gadget

For each edge = {v.,v,} € E, we create two me#m,. ., m2 .} and two women{w; ., w7 }.
These men and women will each have two agents on their prefedests. The preference lists for

these agents are shown below, where again the blanks derdesaot yet specified.

1 1 * 1 * 1
r,s " wr,s — wr,s — r,8
2 2 * 2 * 2
r,s " wr,s — wr,s — r,S

Step 3: complete the preference lists

For each edge = {v,,vs} € E, withr < s, we choose two men created in correspondence to ver-
ticesv, andv, by selecting the first mam? (respectivelym?) from the sorted listn}, m?, . . ., mﬁ'E |
(respectivelym’, m?2,.. .,mi‘E‘) whose third choice has not yet been specified. We complete th
preference lists of agents?, m2, w2, witt, m! m2 ., wy,, andw? ; as described in the figure

r,s1 r,81

below. The underlining is in place to illustrate which eesriare completed by this step.

D . D p+1 1 +1 . —1
mP: Wl Wl W, wkT m% s my m?
q. q q+1 2 +1 . -1
mi: wl Wl w; wi™ m,{s mi mi
1 . 1 q+1 1 D 1
Myt We, W 1 wyg My My
) T 2 q 2
m2,: w2, wh Wyl oms My

r,S TS
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After the above step has been performed for every edge, agenmnt created in step 2 has had their
preference list completed. However, there will still be acﬂervomenw{ created in step 1 who still
have an unspecified first choice. For each of these women,eateca dummy man and a dummy
woman who rank each other first, and plaa;félast on the dummy man’s list and place the dummy
man first onw!’s list. Note there will also be a set of men created in stepth wih unspecified third
choice on their preference lists; these men only requirdad td two women on their lists. This

completes the construction of the agents created in stepd 2 and their preference lists.

Step 4. pad the instance

The final step of the reduction is to pad the instance to apatety ‘offset’ 6(My), whereM is
the man-optimal stable matching of the derived instancethi®end, lett = 8|V'||E| + 2|V| +
2|E| — [K(8|E| +2) +8(%)] (this expression is intentionally left unsimplified). Weate2¢ men
{x},x1,... 2k, 2t} and2t women{y}, v, ..., vb, vt }. The preference lists of meri, z¢, y§, and
y4 for (1 < i < t) are shown below.

R B N R
"El . 7 7 ]

1 .

(% Y1+ 2
The final step of the reduction maps the paramétéo K’ = 0. Thus we have reduced an instance
I of Clique to an instancé’ of SESM. We now prove that has a clique of size exactli if and

only if I’ has a stable matchini/s with §(Mg) = K’ = 0. Our first concern are the properties
of the man-optimal stable matching Bf The first lemma follows immediately from the reduction

and requires no proof.

Lemma 4.5.1 The man-optimal stable matchingj for the derived instancé’ of SESM matches
every man created in step 1 and step 2 to his first choice. Blguitly, every woman created in step

1 and step 2 is matched to her last choicelify.

Lemma 4.5.2 Let M, denote the man-optimal stable matching for the derivechims I’. Then,

(M) = —[K (8|E| +2) + 8(5)].

Proof As stated in Lemma 1}/, matches every man created in step 1 and step 2 to his firstechoic

and every woman created in step 1 and step 2 to her last chééree the difference in happiness
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of these men and women|[¥®|(4|E| + 1) + 2|E| — [|[V|(12|E| + 3) + 4|E|], which simplifies to
—8|V||E| — 2|V| — 2|E|. Every dummy man created in step three is matched to his firste
and his partner inV/, is matched to her first choice, so these agents contributeaime sum to
the men’s and women’s happiness, respectively, and cambeed. What remains are the agents
created in step 4. For ea¢h{l < i < 2t), the pairs(z), yj)) and(z},y}) must always be matched
together in any stable matching. Therefore, in any stabletvay M/’ for I’, each such group of
four agents contributes a sum of one&jtd/’). Since there aresuch groups of four, the difference
in the men’s and women'’s happiness amongst those agentsatieatep 4 ig = 8|V||E| + 2|V +

2|E| - [K(81E| +2) +8(K)). Therefores(Mo) = —[K (8|E| +2) +8(%)). O

Corollary 4.5.1 I’ has a stable matching/ with §(M) = K’ = 0 if and only if there is a closed
subset of the rotation poset dfweight exactly-[K (8| E| + 2) + 8(%)]

The next three lemmas establish the structure and natureabtations and rotation poset of the

derived instance of SESM.

Lemma 4.5.3 For each vertexy; € I, there exists a rotationp; = (m?,w?), (m},w}), ...
(miE w‘.”E‘) exposed in/, with weight8|E| + 2.

3 K3

Proof SincelM, matches every man to his first choice, it is easy to verifytimasuccessor woman
j+1

of any manm{ in Myisw; ", wherej + 1 is taken modulat| E| + 1, implying p; is indeed exposed
in My. The elimination ofp; moves every man down one place to his second choice, dewyahsi
sum of the positions of the men’s partners4y’| + 1, and moves every woman up one place to
her second choice, increasing the sum of the positions ofitieen’s partners by|E| + 1. Hence

pi; has weighB|E| + 2. O

Lemma4.5.4 Let{v,,vs} € E be an edge il wherer < s. Then, the elimination of both, =
E| 4|E E| 4|E

(mY,w?), (mL,wh), ... (m;1| |,wr‘ ‘) andps = (m%,w?), (m},wl), ... (m;1| |,ws‘ ‘) exposes a

rotation o, = (m ,,wl,), (mf,wi™h), (m2 ,,wl,), (mf,wi*) for somep, g € {0,1,...,4|E[}

T,8)

with weight 8.

Proof Suppos€v,,v,) with r < sis an edge of.. In step 3 of the reduction, two men, say and

m¢, whose third choice had not yet been defined, were selectetharpreference lists ofil., m{,
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wit™ Wl oml  m2 w! andw? , were completed. After the elimination of rotatiops and

r,s1 e g1 Wr gy

ps, the menn! andm? are matched to the womerf ™ andw?t!, respectively. Therefore after the

elimination of both of these rotations the successor wonfenemm; andm{ arew, , andw? ,
respectively. Furthermore, the successor women of andm? arew? ™!

It follows thato,,, = (m} ,,wl,), (mf,wi™), (m2,,w?,), (m?,wi*") is a rotation whose set of

7,87 7,87

andw? ™, respectively.

predecessors is precisdly,, ps }. The elimination obr, ; moves every man down one place on his

list, and every woman up one place on her list, hence the wefgh. ; is 8. O

Lemma 4.5.5 The rotation poset fof’ contains exactly one rotatiop; for everyv; € I, and one
rotation o, ; for every edggv,, vs} such thatr < s in I. The predecessors of. ; are exactlyp,

andp,, and the rotationg; have no predecessors.

Proof By the previous lemmas, it is clear that the rotation poset f@ontainsp; for everyv; €

I, ando, ¢ for every edge{v,,vs}, such that < s, with the predecessors of. ; being exactly
{pr,ps}. TO see that these are precisely the rotations of the ratatiset of the derived instance,
notice that the elimination of all rotations ando,. ; assigns every man created in step 1 and step
2 to his last choice. Every dummy agent created in step 3 nhwalya be matched to his/her first
choice in any stable matching, and the same is true oftimeen created in step 4. Hence no other

rotations can exist.0

Lemma 4.5.6 The given instancé has a clique of size exactlil if and only if I’ has a stable

matchingMs with §(Mg) = K’ = 0.

Proof

The first direction of the proof is almost immediate. (&}, Ex) be a clique of size exactli in
I. Then, the rotations created in correspondendd’te, Ex ) from a closed subset of the rotation
poset ofl’ with weight preciselyK (8| E| + 2) + 8(12() which, by Corollary 4.5.1 must correspond

to a stable matching of cost exac#ly = 0.

Now suppose that’ has a SESM of cost exactlit’ = 0. Then, again by Corollary 4.5.1, the
closed subset of rotatiorfs eliminated to obtain such a stable matching has cost exad$fE| +

2) + 8(%). Since the rotation poset df was constructed in a correspondence to the reduction
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of Johnson and Niemi [57]$ must containk rotationsp; and (%) rotationso, s, but as in the

construction of Johnson and Niemi, such a choice must quoresto a clique of siz&” in G. O

Theorem 4.5.1 The sex-equal stable matching probleniii§1]-hard, even if both the men’s and

women'’s preference lists are of length at most three.

Proof It is clear that the men and the women have preference lisksngth at most 3. Let us
be thorough in verifying the reduction satisfies the requérts of a many-one parameterized re-
duction. Clearly, for a given instande;, k) of Clique, our derived instance can be computed
easily in|(z, k)|? time, without any attempt at optimization. Our mappingsifrthe parametek
are therefore such that— k” = 1 andk — kK’ = 0. Finally, we have established in Lemma 4.5.6

that(z, k) is a ‘yes’ instance if and only ifz’, k') is as well. O

4.6 Inapproximability results for SESM

Recall that, for an arbitrary SESM instance, it could be #mabptimal solutiomV/,,; has|d (M|
= 0. In order to reason about approximability results for thigapem, let us define a new optimality
measuref(-) of a stable matching/ to be f(M) = |5(M)| + 1. Hence the value of (-) is always

greater than zero.

Since thd¥/[1]-hardness of a problem implies NP-hardness as well, a eoyalf Lemma 4.5.6 and
Theorem 4.5.1 is that it is NP-complete to decide whetheatdesimatching instance admits a stable
matchingM such thatf (M) = 1. The following theorem shows that there is no polynomialeti

approximation algorithm with a performance guarantee guesl according té(-)) less than two.

Theorem 4.6.1 The sex-equal stable matching problem is NP-hard to apprate (relative to the
measuref (-)) within a factor less than two, even if the men’s and womerggepence lists are of

length at most three.

Proof

For a contradiction, lef be an arbitrary stable matching instance, ahd c-approximation algo-

rithm with ¢ < 2 for SESM. Consider a stable matching returned by an execution of algorithm
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A on the instancd. If I admits a stable matchinty/” with f(M') = 1, then M satisfiesf (M) <
2, i.e. f(M') =1, sincef(M’) must be integral. On the other hand/ifloes not admit a stable
matchingM with f(M) = 1, thenM’ must satisfyf (M') >= 2.

Hence,A decides an NP-complete problem in polynomial-time, a eati¢tion, unless P = NP3

4.7 Polynomial-time algorithm for (2, c0)-SESM

The polynomial-time solvability of2, co)-SESM follows almost immediately from the following

lemma.

Lemma4.7.1 Let I be a(2,00)-SESM instance, anfl = (R, =) its rotation poset. Then, the

relation < is the empty set. In other word®; has no edges.

Proof Suppose for a contradiction that there are rotatigng € R with o’ < p. By Fact 4.2.2,
P is either a type-1 or a type-2 predecessop ¢br both). Suppose that is a type-1 predecessor
of p. By definition, there existém, w) € p, such thap' is the unique rotation that moves to w.
This implies thatv is m’s second (and therefore last) choice on his preferenceTlisisp does not

exist.

Suppose instead that is a type-2 predecessor. By definition there is (i) a maand a womanu
such thatp movesm beloww, and (ii) p” movesw abovem. Sincem’s preference list has length
at most two, (i) forces us to conclude that, w) € p andw is m’s first choice. But (ii) forces us to

conclude thap’ matchesn to w. This cannot be the caseuifis m’s first choice. O

Now we describe the algorithm. Ldt = p1,...,p; be the set of all rotations fak, all of which
must be exposed in the man-optimal stable matching by Lemiha.4LetWW = w(p1) + w(p2)

+ ...+ w(px). Using the standard dynamic programming algorithm for titeset-sum problem,
we can determine ifl has a (closed) subset of weight for eachk € {0, 1,...,W} in O(nW¥)
time. Since the weight of each rotationgn), W is polynomially bounded. Hence a closed
subsetS minimizing §(.S) can be computed in polynomial-time. Clearly, this algaritivorks for

(00, 2)-SESM instances by reversing the roles of the men and the wome
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Theorem 4.7.1Let I be a(2,00)-SESM (or(c0,2)-SESM) instance. Then, a sex-equal stable

matching forl can be found in polynomial-time.

4.8 An exact algorithm for (1, c0)-SESM

4.8.1 The structure of Dy
Properties of Dy

In this section we describe an exact exponential-time dlgorfor SESM when the men’s pref-
erence lists are bounded in length by a constant3 (if [ < 2 then we can solve the problem in
polynomial time). Our method hinges on the observation wian the number of rotations in the
rotation digraphDyy is at most(5 — 1/24)(I —2)n (the reason for this particular factor ebecomes
apparent later on), a brute-force algorithm that enumeiatesubsets of the vertices bf;; suffices
to find a SESM. Otherwise, if the number of rotations excebdsfactor ofn, we prove thatG
must have bounded average degree. This allows us to usmgxissults concerning graphs with
bounded average degree to design a moderately exponémigahlgorithm. In particular, we will

apply the following theorem, which is due to Edwards and R8T, to G1;.

Theorem 4.8.1 (Edwards and Farr [25]). LetG be an undirected graph with vertices andn
edges of average degree> 4, or a connected graph of average degrée> 2. Then, inO(nm)
time, a series-parallel induced subgraphof G can be found such thaP| > 3n/(d + 1). Hence,

if N =G — P, then|N| < (d — 2)n/(d + 1).

To see how this theorem may be used we will establish seveyapioperties regardin@;. We
establish a few bounds on the number of vertices and edg€y;im terms of the numben of
agents of the instance, the lengthaf the men’s preference lists, and the numbeif rotations in
Drr. We begin by bounding from above the number of rotationsthe number of vertices iby,

and the number of edges iDy;.

Lemma 4.8.1 Let I be an(l, o0)-SMI instance, andDy; its rotation digraph. ThenDy; contains

at most(l — 1)n/4 rotations (vertices).
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Proof Any mutually acceptable (man,woman) pair can appear asrarnpai most one rotation in
Dy, except for a pai{m, w) such thatw is ranked last om:’s preference list, which cannot appear
in any rotation. A rotation must always have at least two (jwvaman) pairs. It follows that each
rotation accounts for at least two distinct (man,womanjpaind the woman in such a pair may
not be last on the man’s preference list. Since therex@gemen, (! — 1)n/4 is an upper bound on

the number of rotationsd

Lemma 4.8.2 Let I be an(l, c0)-SMI instance, andy; its rotation digraph. Then, the number of

edges ofDyy is at most(l — 2)n /2.

Proof Consider any edge= (', p) € Dy. If p’ is a type-1 predecessor pfland possibly also a
type-2 predecessor), then by definition there exists a(pairw;) in p such that the elimination of
o matchesn; to w;. Notice thatw; can neither ben;’s first or last choice. If instead’ is a type-2
predecessor g, then there is a pairm;, w;) in p such thatp movesm; below a womanv # w;
andy’ is the unique rotation that movesabovem;. Notice in this case as welly cannot be the

first or last choice ofn’.

Therefore, for every edge db;; we are able to identify a distinct (man,woman) pait, w) such
thatw is neitherm'’s first nor last choice. Hence the number of edge®gfis bounded above by

(1 —2)n/2. O

Recall that our ultimate goal is to apply Theorem 4.8.1Gtg in a particular way as a part of
the algorithm of this section. But, notice that Theorem 4 @oes not apply to graphs that are
disconnected and have average degree less than 4. We wiit iedful later on to know that we

can connect as described in the following lemma.

Lemma 4.8.3 Let G be a graph withc components andr > 0 edges. Then by adding a single

vertex and: + 1 edges ta= a new connected grapi’ may be formed with average degree2.

Proof Suppose thafs hasr vertices, so thatn > r — ¢. Add a new vertexy together with an
edge connecting to a vertex in each component @f and a second edge connectintp a second

vertex in one particular component. (Sinee > 0 some component has more than one vertex.)
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Then the new graph’ is connected, has = r + 1 vertices,m’ = m + ¢ + 1 edges, and average

degree

2 /
m 2(m—|—c+1)>2(r+1)>2
! r+1 - or+1

Dealing with small components

The algorithm we describe in the forthcoming sections weily ron the fact tha&; has no compo-
nents withc vertices or fewer, where is a fixed constant independent of the size of the input. In
what follows we will show that we can use dynamic programnimgreprocess the constant-sized
components of7f; in polynomial-time, allowing to make the assumption thasooh components

are present ifd7.

Let@Q = Q1,...Q: be the components aF; with at moste, vertices, wherey is an arbitrary
constant. For eacly;, construct a binary vectok;, whosejth component is 1 if and only if
there exists a closed subsetIdiC;| with weight exactly; (recall II[C;] is the partially ordered set
induced byC;). The length of this vector is polynomially bounded (for ewae, the sum of the
weights of all of the rotations ifil suffices). Sincé); has constant size, computing this vector takes

polynomial-time.

The next step is to compute a sequencearshbined binary vectors;, such that theth component
of Y3 is 1 if and only if there exists a closed subsetthfU ... U @ with weight exactlyj. To
begin, seft; = X;. Suppose now thdt; is known for some (1 < i < t). We compute thgth

entry ofY; 4 (denotedYZ.{'H) by the following formula:

J
, , -
Y, =Y/ v\ (V! A XIT)).
1=0
Hence the non-zero componentsYpfare exactly the weights attainable by the closed subséps of

The set) may now be discarded frofit, giving a new grapl@y;.

This procedure is invoked in the step labeled by (1) in theigseode description of the algorithm
in Figure 4.2. The vecto¥; is stored and used later (specifically, in Section 4.9) wheflosed

subset corresponding to a sex-equal stable matching f@otlginal) instance is computed.
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4.8.2 The algorithm

Algorithm idea

The general idea of the algorithm is the following. IIf contains sufficiently few rotations, the
algorithm finds a sex-equal stable matching by brute forcéhe@vise, we use Theorem 4.8.1 to
partition Gy into two parts,/N and P, whereP is a series-parallel graph (defined in Section 4.3) and
the size of/V is bounded. The algorithm then decides which rotations fddshould be eliminated

by explicitly trying all subsetsV’ of V. Notice of course that at least one such subset is a maximal
subset ofV that is contained in an optimal closed subsellofFor a fixed subset aV’, it may be
that there existp € N — N’ such that, inDyy, p precedes somg € N’, in which case we may
immediately rejectV’. Otherwise, if N’ is valid in this sense, then some rotations frétnnamely
those that precede a rotation/\, areforcedalso to be eliminated. Other rotations, namely those
with a predecessor itv — N’ cannot be eliminated and afi@biddenfor this choice ofN’. Notice
that sinceN’ is valid, the sets of forced and forbidden rotations arepdisj All other rotations inP

are neither forced nor forbidden. Our goal is to find a sub%et )’ such thatP’” C P and@’ C Q
(recallQ is the set of components of size at magtsuch thatP’ U Q' extendsN’ optimally in the

following way:

(i) N'U P'UQ is a closed subset @f. Note that this is equivalent to saying thitincludes every
forced rotation and no forbidden rotations, apdis a closed subset @J.

(i) N'U P’ U @' is anoptimal extensiomf N’ i.e. P’ U Q' minimizes§(N' U P’ U Q') over all
choices ofP’ and@’ that satisfy (i).

In Section 4.9 we will show that a choice #f U Q' that satisfies the above criteria can be found
in polynomial time. Hence the running time of the algorithrifl twe within a polynomial factor of

2INl, We next describe the algorithm in detail.

Formal description of the algorithm

The algorithm, which is outlined in Figure 4.2, takes as trgnu/, co)-SMI instance. It consists of

two phases, the first is the preprocessing phase, whichreestage for the second phase, which is
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the main loop of the algorithm.

The preprocessing phase starts by computing the man-dgtiatde matching\/y. If 6(My) > 0,

we are done, and simply outpidy. Next, in polynomial time we findI, Dy, andGy and assign
each rotation the appropriate weightIlfcontains fewer thahn rotations, where: is the number

of agents and: is (5 — v/24)(I — 2), find a sex-equal stable matching by enumerating all closed
subsets ofl. The justification for this choice df becomes clear in the time complexity analysis
of the algorithm. Otherwisell has at leaskn rotations. In that case, we next preprocess the
components of5; containing at most, vertices as described in Section 4.8.1, computing the

vectorY;, and remove these components fr6f, giving a new graplé;.

If GY; is disconnected with average degree less than four, themecb@/;, so that it has average
degree at least two as described in Lemma 4.8.3. Give tHialtvertex created in this process a
weight of zero. Let3}] denote the resulting graph. Apply the Edwards and Farr ifgordescribed
in Theorem 4.8.1 t@7}; and find the set$vV and P of the vertex partition. After the partition is
found, we may discard the additional vertex if it liesifhy along with any edges incident to it. It is

kept if it lies in P.

The main body of the algorithm then begins in the form of a |a@lpich iteratively considers every
valid subsetN’ of N. For a given valid subseV’, we identify the forced and forbidden vertices
of P, and colour them black and red respectively. All other eeriof P are coloured white. The

final step of the loop is to compute an optimal extensgi¥iu Q' for N’. The closed subsét = N’

U P’ U Q' found in this loop minimizing)(S) is kept and returned.

The next section is devoted to showing how step (2) in thequsmde description of the algorithm

may be accomplished in polynomial time.

4.9 Computing P’ U @' in polynomial time

We assume thaP is a connected graph, for, if it is not, we can always conngotgeries-parallel

component$ Py, s1, t1) and(P,, so, t2) of P in series by creating a dummy vertexvith weight O,



4.9 Computing P’ U Q' in polynomial time

Preprocessing phase

computeM
if 6(Mpy) > 0:
return M
computell, Dy, andGry, and assign the rotations the appropriate weights
k+ (5—24)(1—2)
if IT has fewer tharkn rotations:
return a SESM using complete enumeration of the closed subbeotations ofll
Compute the vectoy; described in Section 4.8.1 (1)
G < graph resulting from preprocessing step described in @edt8.1
Gl + Gy
if G7; is not connectednd has average degree4:
G{; < graph resulting by connectingj; as described in Lemma 4.8.3
assign the new vertex the weight zero
N, P « vertex partition ofG}; (andII) found by the Edwards and Farr algorithm

remove any artificial vertex fronmV along with any edges incident to it

Main loop
keep the closed subsétof IT minimising d(S) found in the following loop
for each valid choice oV’ C N :

P’ U @' + optimal extension foiN’

S+ N UPUQ

Figure 4.2: Algorithm to find a SESM for &fb, oo)-SMI instance

71
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and adding the edgés;, v) and(sz, v) to P. In terms oflI[P], v is added as a maximal element of
P. Since our algorithm for finding”’ U @Q’ is polynomial inn andm, this transformation will not
influence the overall running time of the algorithm, as thepss performedafter N and P have
been computed. Itis also irrelevant if the inclusion of &#ddal edges changes the average degree

of Gy, again becaus® and P have already been found.

The plan is to use dynamic programming on an SPTrder P to allow us to compute the choice
of P’. Henceforth let? denote the series-parallel graph rooted at naafe], ands; andt; denote
the two terminals ofd?. We will use the terminologyeasibleclosed subset to denote a closed
subset ofd? that contains every black vertex f* and none of the red vertices &f. Our goal,
then, is to compute four binary vectassd?, AB?, BA*, and BB, the jth element of each of those

being defined as follows:

AA§ =1 if and only if there exists a feasible closed sulsse(f I1[H*] of weight exactly; such that
seCandteC.
AB;ﬁ = 1 if and only if there exists a feasible closed sulsseff I1[H’] of weight exactly; such that
seCandt ¢C.
BA;ﬂ =1 if and only if there exists a feasible closed sulgsetf I1[*] of weight exactlyj such that
s¢ CandteC.
BB; =1 if and only if there exists a feasible closed sulgseif IT[?] of weight exactlyj such that
s¢ Candt ¢ C.

The length of each vector is bounded By= } . o(w(p)), Which is polynomially bounded. For
a leaf node of 7 corresponding to an edge= (s, t) the four values are simple to compute. The
first step is to initialize every component of each vector&ddb The vectors are then potentially

changed according to the following rules.

AA*: If neither s nort is red, then changﬁAjU( to be 1.

s)+w(t)
AB': If s < t, sisnotred, and is not black, changeleu(s) to be 1.
BA": If t < s, tis not red, and is not black, changBAjU(t) to be 1.

BB : If neither s nort is black, setB B} to 1.
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Lemma 4.9.1 Leti be an internal node of with a child node/;. LetC be a feasible closed subset

of II[H], andC;, = C NI[H"]. Then,C;, is a feasible closed subsetidfH*!].

Proof Letc € C;,. If some predecessdr € II[H'] of ¢ is not also inC, then clearlyC' is

not a closed subset di[H?]. Thereforeb is in C and hence also id;,. It follows that every
predecessor of in TI[H] is in C;,, implying thatC;, is a closed subset dl[H]. If ¢, or any
of ¢’s predecessors were red, théhcould not be feasible. Similarly, if’;, did not contain every

black vertex ini;, C could not be feasible. S¢;;, is also feasible.O

We therefore derive the following lemma, whose proof is indiage in light of Lemma 4.9.1.

Lemma 4.9.2 Every feasible closed subsgtof T[] consists of the union of two feasible closed

subsets’;, andC;, of II[H*] andII[H*], respectively, wherg andi, are the children of node

49.1 Series nodes

The following lemma is necessary to understand how to coeniigt vectors associated with a series

node; of T.

Lemma 4.9.3 Leti be a series node ¢f with child nodesi; and iy, and letr denote the single
vertex inH N H®. Suppos&’;, andC;, are feasible closed subsetsIofH ], TI[H 2], respec-
tively. If either (i)r ¢ C;; Ar & C;, or (i) r € C;;, A7 € Cy,, thenC = C;, U C;, is a feasible
closed subset dil[H?].

Proof

(Feasibility). SinceC;, and C;, are both feasible, they contain no red vertices and evemkbla

vertex inTI[H ] andI1[H ], respectively, s& must be feasible.

(Closure. Suppose for a contradiction th@tis not a closed subset 8f{H?]. Then,3z € C with
a predecessay ¢ C. Suppose, without loss of generality, that II[H™]. If y € TI[H"] as well
(note that possibly = r), theny ¢ C;,, implying C;, is not closed folI[H], a contradiction. So,

suppose thay € TI[H®], and thaty # r. Then, there exists a sequence of immediate successors



4.9 Computing P’ U Q' in polynomial time 74

ofy =y < ... < y. = xinII[H'], and since- is the unique vertex ikl** N H?2, we must have
y < r < z. If case (i) from the statement of the lemma holds, then we liaatr < x, butr ¢ C;,,
so Cy, is not closed fodl[H“]. If case (ii) holds, thery < r, butr € C;,, implying C;, is not
closed forll[H?2]. O

Lemma 4.9.3 essentially established a sufficiency conditiocreate a feasible closed subéét
from the union of two feasible closed subséts andC;,. Lemma 4.9.4 will, in a sense, establish
necessity in that feasible closed subsg{sandC;, satisfying either case (i) or (ii) of the previous

lemma always exist for a gived.

Lemma 4.9.4 Leti be a series node ¢f with child nodesi; andi,, and letr denote the single
node inH N H2. LetC be a feasible closed subsetlof?]. Then, there exist feasible closed
subsets’;, and C;, of II[Ht] and II[H 2], respectively, such that;, U C;, = C, and either (i)
r¢& Ciy Ar ¢ Cyor(ii)yreCy AreCy,.

Proof Lemma 4.9.2 establishes the existence of feasible clogeetsr;, andC;, of II[H ] and
TI[H "], respectively, such that;, U C;, = C. We will establish the claim by showing thatifc C
thenC;, U {r} andC;, U {r} remain closed. This is easy to see — siageU C;, = C' is closed,

every predecessor ofin IT1[H*] (respectivelyII[H]) is also inC;, (respectivelyC;,). O

The following theorem follows from Lemmas 4.9.3 and 4.9.4d @ the key to describing the

dynamic programming procedure for processing a series hofig.

Theorem 4.9.1 Leti be a series node of with child nodes; andisy, and letr denote the single
node inH™ N H*. A feasible closed subset Biff H?] of weight exactlyj exists if and only if
there exist feasible closed subséts, C;, of II[H"], I[H*], respectively, such that () ¢ C;,
Ar ¢ Cy,, Withw(C;,) = landw(Cy,) = j —lor (i) r € C;, Ar € C;, withw(C;,) =1 and
w(Ciy) =7 — 1+ w(r).

We are now in a position to describe the construction of the Binary vectors associated with a
series node. Letbe a series node ¢f with childreni; andi, and terminal nodes; and¢;. Let

r denote the unique vertex in bofii"* and H'>. Suppose we wish to computed’;, and that there
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exists a feasible closed subgebf H*. There are two cases to consider k¥ C, then by Theorem

4.9.1 there exists a valuesuch tha( AA;* A AA% | ) = 1. Ifinsteadr ¢ C, then there exists

avaluel such tha{ AB;* A BA? ) = 1. This leads to the formula,

j J
AA; = ( \/ AA;I A AA;aler(r)) v (\/ ABZ“ A BAEQ*l)
I=w(r) 1=0

The reasoning behind the next 3 formulae is similar, we prtesely the final formulae below.

ABE = (V_yy A4 NAB? )V (ViZg AB;* A BBY).

BAS = (Vi_yy BA' NAAT )V (Visg BB[' ABAZ)).
BB} = (Vi_y BA NAB? )V (Vieg BB ABBR2)).

4.9.2 Parallel nodes

Our approach for parallel nodes is similar to that for seniedes. Our first goal is to establish an
analogous claim for parallel nodes to that made in Theoréni4The first step is the following

lemma.

Lemma 4.9.5 Leti be a parallel node of” with child nodes; andi,, and{s, ¢} the two nodes in
H*NH™, LetC;,, C;, be feasible closed subsetdfjfff 1] andII[H ], respectively. 1€, N{s,t}
= C;, N {s,t}, thenC;, U C;, is a feasible closed subsetigfH?].

Proof (Feasibility). By definition, C;, andC;, contain all black vertices ihl[H%] and IT[H ],
respectively, and neither can contain any red vertices.celefp U C;, contains all black vertices

in II[H?] and contains no red vertices.

(Closurd. SupposeC = C;, U C;, is not closed fodl[H!]. Then,3 » € C such thatr has a
predecessoy # x andy ¢ C. Suppose without loss of generality thate TI[H], implying

x € Cyy. If y € TI[H"], (note that possibly € {s,t}) thenC;, is not closed, a contradiction.
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So, suppose € II[H?] andy ¢ {s,t}. Sincey < z, there exists a sequence of succesgossyg
< ... =<y, =xin[H'. The only nodes if{"t N H*2 ares andt, so eithery < s <z ory <t <

x (or both). We continue the proof based on the following foases.

(i) s,t ¢ C;, ands,t ¢ C;,. Since we have either < x ort¢ < z (or both),C;, cannot be closed,
a contradiction. (ii)s,t € C;, ands,t € C;,. Sincey ¢ C;, and eithery < s ory < t, C;, is not
closed, a contradiction. (i} € C;,,t ¢ C;, ands € Cj,, t ¢ Cj,. If y < s < x, thenC;, is not
closed, a contradiction. If instead< ¢ < z, thenCj, is not closed, ag < z andz € Cj,. (iv)

s¢ Cyy,t e Cy, ands ¢ Cy,, t € C;,. This case is analogous to case (jii).

a

The next lemma is analogous to Lemma 4.9.4 for series nodes.

Lemma 4.9.6 Leti be a parallel node of” with child nodes; andis, and{s, ¢} the two nodes in
H N H2. Suppose that is a feasible closed subsetdfH?]. Then, there exist feasible closed
subsets’;, and C;, of II[H*] and II[H 2], respectively, such that;, N {s,t} = C;, N {s,t} =
CnN{s,t}.

Proof Lemma 4.9.2 establishes the existence of feasible clogettsr;, andC;, of II[H ] and
TI[H?], respectively, such that;, U C;, = C. Let B = C' N {s,t}. We will establish the claim
by showing thaiC;, U B andC;, U B remain closed. This is easy to see — singeU C;, = C
is closed, every predecessor of an elenteatB from II[H*] (respectivelyll[H2)) is also inC;,

(respectivelyC;,). O

Now we state the main theorem for describing the dynamicraragiing procedure for processing

a parallel nodé of 7.

Theorem 4.9.2 Leti be a parallel node of” with child nodes; andis, and{s, ¢} the two nodes
in H1 N H2. A feasible closed subsetdf H?] of weight exactlyj exists if and only if there exist

feasible closed subsetg, andC;, of II[H*] and II[H ], respectively, such that

1. s,t ¢ C;, ands,t ¢ Cy,, w(Cy,) =1, andw(C;,) = j —I; or
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2. s€Cy,t ¢ Cyyands € Cy,,t ¢ Ciy, w(Cyy) = 1, andw(Cy,) = j — I+ w(s); or
3. s¢Cy,teCyands ¢ Cy,,t € Ciy, w(Cyy) = 1, andw(C;,) = j — L+ w(t); or

4. s,t € Gy, ands,t € Cy,, w(Cy,) =1, andw(Cy,) = j — I +w(s) + w(t).

This leads to the following four formulae.

A4S = (Viwrum A4 N AAL o))
AB;: = ( g:w(S) ABlZl A ABJZ'Q*HW(S)).

BAj = (Vi_, @ BAI' NBAT |, )

BB} = (\{_y BBj' ABB ).

Suppose now that the four binary vectors have been compatdtd root nodeoot of 7. Recall
that we also have computed the so-called combined végtas described in Section 4.8.1. We
choose a position of AA™°t AB"™°t, BA™°t or BB™°! with a non-zero entry along with a
positionk of Y; with a nonzero entry that together minimizgs/y) + w(N’) + j + k. The actual
feasible closed subsé& UQ’ of P can be found by simple modifications and the standard trageba
technique through the dynamic programming tables. Thusave bomputed an optimal extension

for N’ in polynomial time.

Theorem 4.9.3 Let N/ be a valid subset in an arbitrary iteration of the main loogtloé algorithm

described in Figure 4.2. An optimal extensiBhU @’ for N’ can be computed in polynomial-time.

4.10 Putting it all together

We have established the correctness of the algorithm destin the preceding sections. All that
remains is to provide an upper bound on the time complexitye fbllowing theorem establishes

the running time.
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Theorem 4.10.1Let I be an(l, c)-SMI instance. Then, a sex-equal stable matching fcan be
computed ir0*(2°") time, wherex = (5 — 1/24)(1 — 2). Hence the running time 8*(1.0725"),
0*(1.1503"), 0*(1.2338"), ... forl = 3,4, 5, .. ..

Proof

Let G1 denote the input graph, withvertices (rotations)n edges, and average degegelf the
algorithm terminates because the number of rotations iatam, the theorem is obviously true,
as we can enumerate every subselldb compute a sex-equal stable matching)in(2¢™) steps.

Suppose instead that hastn rotations for some constant which, by Lemma 4.8.1 is at most

(I =1)/4).

We consider two cases. In the first case we suppose that affpropessing the constant-sized
components of, the resulting graple;; satisfies Theorem 4.8.1, so that step (1) in Figure 4.2 is
not performed. Clearly the time complexity of the algoritis®* (2(¢ ~2)7'/(d'+1)) 'whered is the
average degree @f};. This is defined to bem//r’, wherem’ andr’ are the number of edges and
vertices, respectively, a&;. Sincem’ < m, and, by Lemma 4.8.2 we have that< (I — 2)n/2,

we can provide the following upper bound dh

(d' —2)r’

Consider the exponen{z) of the expressio #+1, namely,

(I —2)nr' — 2" kx — 222

elw) = (I=2)n+r T k+a

wherez = 7’ andk = (I — 2)n.
Let us use differentiation to compute the maximum value(af:

k+x)(k —4x) — (kx — 222)

oy (
¢(w) = (k+x)?
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¢ (x) =0« 222 + 4kx — k> = 0.

dz)=0sx= (\/g— 1)k.

Substituting into (1) shows that the maximum valuec6f) is (5 — v/24)(I — 2)n, precisely the

expression in the claim of the theorem.

The second case of the proof is if, after preprocessing thetant-sized components 6f, the
resulting graptGy; with m’ edgesy’ vertices, and average degréeloes not satisfy Theorem 4.8.1,
so that step (1) in the pseudocode description is perforrbeshote the graph resulting from this
step (1) in the pseudocode Bit;», with m” edgesy” vertices, and average degrée= 2m" /r".

We have the following facts.

L7 =7r"+1.
2. m" =m/ 4+ + 1, wherec is the number of components &
3. " > /(cy + 1), since each component 6f has at least, + 1 vertices.

4. d' < 4, asGy; does not satisfy the requirement of Theorem 4.8.1.

This allows us to establish an upper boundd6n

om”  2(m' +d +1 om! 2d 2
d’ = = ( g )< ~ +7+ﬁ<d/+2+1:7'

We next derive an upper bound fdf by rewriting the expressiom” = m’ + ¢ + 1 as below:

r//d” T/d/ T//d// T"d’
=3 + d+1 = <

/
1
5 2—|—c+

giving
p_20d+1)
r d' — d :
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1" ” @’ —2)r"”
Now, consider the exponer{r”’) = % of the expressior2” @’+1 . Sinced” < 7 and
" < 24D we have that
5 2(d +1)
o) = S
By fact (3) above, this gives
oy < BT+l 5 B 4 +1
= 4(d" —d)(cop+ 1) 4(d"—d)(co+1)

Therefore, by choosing, to be sufficiently largeg(r”) can be made strictly less th&h—/24) (1 —

2)n. Hence the theorem.

a

4.11 Conclusions and open problems

We have given a complete characterisation of the parametecomplexity of «, 5)-SESM. When
the preference lists on one side are of length at most twoprthiglem is solvable in polynomial
time, but, if the preference lists on either side are allowstead to be of length three or greater,

the problem is W[1]-hard.

As far as we know, our exponential-time algorithm is the finsbderately’ exponential-time al-
gorithm for any computationally hard stable marriage varigPerhaps further research could be
devoted to finding reasonably fast exponential-time atgors for other SMI-based problems. As
a next step, one could consider searching for an exact tigofior SESM with no bound on the

lengths of the preference lists.

In his PhD thesis, Feder [27] describes the so-cdli@dnced stable matching problemamely to

find a stable matching/ that minimizes

max{ > pmw) Y puy(mi)}

(m;,wi)EM (m;,wj)EM
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over all M € M. Intuitively, a balanced stable matching minimizes theapginess of the most
unhappy group of people (the men or the women). Feder [2%jgorthat this problem is NP-hard.
Is the balanced stable matching problem solvable by sintélenniques to that presented in this

chapter?

An immediate corollary to our dynamic programming algaritipresented in Section 4.9 is that
whenever the underlying graphy of the rotation posell of an arbitrary SESM instance is series-
parallel, a sex-equal stable matching can be computed ynpuolial time. We conjecture that
SESM can be solved in polynomial time whene¢&s has boundedreewidth(see, for example,
one of the many surveys by Bodlaender [10] for the relevackdpaund on treewidth). Specifically,
wheneverGy has treewidth bounded by a valiiewe conjecture a sex-equal stable matching can
be found in timeO(n® f(k)), where f (k) is a (probably exponential) function dependent only

on k. For example, the running time could B&n°1)2%).

This leads to further questions about treewidth and harolestaarriage problems. Are there
other hard stable marriage problems that can be solved ympwaiial time when; has bounded
treewidth? A particularly interesting problem could be thedian stable matching problem (dis-

cussed in Section 2.2.4). Is this efficiently solvable wbgnhas bounded treewidth?

Finally, we remark that very recently an improvement in tloevBrds and Farr theorem has been
made [24]. This probably implies an improvement in the ugymemd of the running time described
in Theorem 4.10.1.



Chapter 5

Keeping couples together

5.1 Introduction

It is something of a folklore theorem that when the residerfitan HR instance are not only in-
terested in their own assignment, but are also interestedrireone else'assignment, then stable
matchings may not exist and they may be computationallycdiffito find when they do exist. It
is perhaps not surprising, then, that determining how arakred matching algorithm should deal

with couples(pairs of residents) is a significant computational chaiéen

In Section 2.2.6, we reviewed the relevant literature arakdepund regarding the Hospitals / Res-
idents problem with couples (HRC). In the present chaptercantinue the search for algorithmic
results in the HRC setting. Specifically, we consider a rtrgstriction of HRC in which each
member of a given couple-;, ;) has an individual preference list over a subset of hospitald
the joint preference list of the couple is consistent with ithdividual preferences of andr; in a
precise sense. Specifically,, ;) ranks distinct pairs of hospitals in order of preferencehshat

if (hp, hq) precedegh,, hy) on this list then (i) either; prefershy, to h, or b, = h,, and (i) either
r; prefersh, to hg, or hy = hy. We refer to this restriction of HRC as thtospitals / Residents

problem with Consistent CouplédRCC).

Thus HRCC models a situation in which the members of eachleaam agree to construct a joint
preference list from their individual preferences comsifly, in the sense that if a couple jointly

prefers(h,, hy) to (h,, hs), then when comparing, to A,., r; would be no worse off, and similarly

82



5.1 Introduction 83

when comparing,, to h,, r; would be no worse off. This includes the case where both meswife
a given couple have identical individual preference ligigh the intended outcome being that they

are either matched to the same hospital or not matched at all.

HRCC does not seem to have been studied previously in thmatlire from an algorithmic point of
view. In this chapter we show that an instardcef HRCC need not admit a stable matching, and
that the problem of deciding whethéradmits a stable matching is NP-complete. This result holds
even if the length of each resident’s individual list and kwegth of each couple’s joint list is at
most three, and the capacity of each hospital is at most twis, firoviding another highly restricted
version of HRC that remains NP-complete, in addition to thgecconsidered by Ronn [84]. This
restriction is important from a practical viewpoint, besain many applications the preference lists
on one side tend to be short (for example in the context of SF&sdents are asked to rank up to

ten hospitals in order of preference).

By contrast, we also give a linear-time algorithm to find dgkanatching or report that none exists,
for the case that stability is defined in terms of the classBale-Shapley stability (that is, each
member of a couple can form a blocking pair with a hospitahwiitt regard to the other member
of the couple). This version of stability can be motivatethe HRCC context as follows. Suppose
that a given couplér;, ;) is given the joint assignmertth,., hs) by a matching algorithm. Now
suppose that; prefers some hospitél, to &,., whilst the joint assignmerit:,, k) is not acceptable
to the couple for whatever reason (perhaps geographicaraém). The previous agreement of
the couple to supply a joint (consistent) preference lisidde overridden in practice if, has an
overarching desire to be allocated/ip as opposed t&,. In reality this could mean that either
r; moves withr; to remain geographically close, and attempts to make amgegraent withh,,
(or a hospital nearby) outside of the matching scheme, changes career, or indeed the couple
even split up. In the spirit of “keeping couples togethehistis a situation that we seek to avoid,
thus motivating this stronger form of stability in the coxttef HRCC. Hence we obtain a natural
restriction of HRC that, unlike the general problem, is able in polynomial time. Our algorithm
does not make any assumptions regarding the lengths ofeéfer@nce lists or regarding the hospital

capacities.

We remark that a matching that satisfies classical stahilithe context of HRCC is stable with
respect to the criteria defined earlier by Roth and Ronn [89f& HRC (see Section 5.2 for a

formal definition of this stability criterion). The convershowever, is not true in general. Our
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algorithm for HRCC under classical stability helps to nartbe search for the boundary between
polynomial time solvable and NP-complete variants of HRCparticular, HRCC under classical
stability is the most general restriction of HRC that we arai@ of that is solvable in polynomial

time.

Hospitals / Residents problem with Sizes

A special case of HRCC arises when each cogple-;) is such that that the individual preference
lists of r; andr; are identical, and the joint preference list (@f, r;) satisfies the property that
h, = hq for any elementh,,, hy) on this list. Thus-; andr; wish to be either assigned to the same
hospital, or both be unassigned. We refer to this restrictibHRCC as thdHospitals / Residents
problem with Inseparable CouplésIRIC).

Let I be an instance of HRIC and I¢t;, ;) be a couple in/. Given the structure ofr;,r;)’s
preference list, itis natural to replagg, ;) by a single entity”; ; whose preference list is obtained
from that of (;,7;) by replacing each occurrence @iy, ki) by hy. Thus each single resident
occupies one post at a given hospital, whilst each couplepies two posts. This suggests a natural
generalisation of HRIC to the case where each resideat R has asizes; € Z™, indicating the
number of posts that; occupies at any hospital. Hospitals will now rank resideftany size
(including couples) as a single entity. We refer to thisasatriof HRC as thélospitals / Residents
problem with SizeHRS).

A formal definition of HRS is given in Section 5.2, in which warinulate an appropriate notion of
stability for this context. With this stability definition eviater prove that, given an HRS instance
where the size of each resident is at most two and the capzEoitgch hospital is at most two, the
problem of deciding whether a stable matching exists is biffgtete, even if the length of each
preference list is at most three. We also show that the ctistriof HRS in which each resident
has size at most two is reducible to HRCC (essentially eagilest of size two becomes a couple),

thus implying the aforementioned NP-completeness resulHRCC.

However, by contrast, we also prove that, given an instafi¢¢éRS in which the length of each
hospital’s preference list is at most two, a stable matchimgys exists and can be found in linear
time. The result holds for arbitrary resident sizes and talspapacities. This result therefore

indicates a boundary between the polynomial-time soligtdihd NP-completeness of HRS with
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respect to the length of a hospital’s preference list.

5.2 Formal definitions of HRS and HRCC

We firstly give a formal definition of the Hospitals / Residemroblem with Sizes (HRS). An
instancel of this problem is defined in the same way as an instance of ldR€fined in Section
5.1) except that each resident € R has asizes; € Z*. An assignmentM in I is a set of
(resident,hospital) pairs such that, h;) € M only if ~; andh; find each other acceptable. For
r; € R we denote the sdth; € H : (r;,h;) € M} by M(r;), for h; € H we denote{r; € R :
(ri,hj) € M} by M(h;), and forh; € H we denote) {s; : r; € M(h;)} by O]M and refer to
this as theoccupancyof h; in M. We say thah; is undersubscribedf O} < ¢;, wherec; is the

capacity of hospitah,;.

A matchingis an assignment/ such thaf M (r;)| < 1 for eachr; € R and Oj” < ¢; for each
hj € H. In other words, in a matching, each resident is assigned tooat one hospital, and
the sum of the sizes of the residents assigned to a hospial miut exceed its capacity. Given a
matchingM in which a resident; is matched to a hospitdl;, with a slight abuse of notation we

let M (r;) denoteh;. A pair (r;, h;) € R x H blocksa matching)/, or is ablocking pairfor M, if

1. r; is unmatched, or; prefersh; to M (r;), and
2. Oj-” + s; < ¢;, or h; prefersr; to residentsy, , ..., € M(h;) such that

t
O}/l—}—si — ZS’% <g¢j.
p=1
The definition implies thak; could participate in a blocking pair with if (i) either h; currently
has room for;, or (ii) h; can make room for; by rejecting a set of residents it ranks lower than

r;. A matching isstableif it admits no blocking pair.

We assume without loss of generality that, for eackk R and for each hospital; onr;'s prefer-

ence list,s; < ¢;, for otherwise(r;, h;) could never belong to a stable matching, nor cduidh;)

form a blocking pair.

We firstly observe that HR is clearly the special case of HR&lith s; = 1 for eachr; € R. The
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1: 7 h2 hl
1: ro: hy he
2: rg: h

2: h1 .1 rg 1o
1: ho: 711 nm

Figure 5.1: An HRS instance for which no stable matchingtsxis

blocking pair definition for HR, which is given in Section B2can then be deduced from that for
HRS by interpreting Condition (2) as follows: eithy is undersubscribed or prefersto some

resident inM (h;).

We next observe that, in contrast to HR, an HRS instance magdmit a stable matching. An
example instancé that illustrates this is shown in Figure 5.1 (in this figuradahroughout the
chapter, sizes and capacities are written next to the msidad hospitals, respectively). Suppose
for a contradiction thal admits a stable matchindy/. If (rs, h1) € M, then(r,hs) € M or else
(r1, h1) blocks M. Hence(rs, he) blocks M, a contradiction. Suppose instead that h1) ¢ M.
Then(rqe, h1) € M, or else(rz, hy) blocks M (sinceh; has capacity two). Hende, ha) € M or

else(ry, ha) blocks M. This implies tha{rs, k1) blocks M, a contradiction.

Our third observation is that the restriction of HRS wherehegesident has size at most two is
reducible to the Hospitals / Residents problem with Coasis€ouples (HRCC), which is a special
case of the Hospitals / Residents problem with Couples (HR{) demonstrate this in Lemma

5.2.1, but first we give a formal definition of each of HRC and®{R

An instancel of HRC involves a seRR = {r;,...,r,} of residentsa setd = {hq,...,h,} of
hospitals and a seC of couples i.e., ordered pairs of residents such that each residgeiaap in

at most one pair. As in the HR case, each hospifat H has acapacityc; € Z™.

Eachsingleresidentr; € R (i.e., a resident who does not belong to a couple) submitsca jstef-
erence list of acceptable hospitals. Each coupler;) submits a joint (strict) preference list over
pairs of acceptable hospitals. Each entry in this list is @ei@d pair(hy, h;) of (not necessarily
distinct) hospitals representing the assignment;db 5, and ofr; to h;. Finally, each hospital
h; € H ranks those residents (whether single or a member of a gowplefind2; acceptable in

strict order of preference.

In this context, the definition of a matchinly is the same as in the classical HR setting (see

Section 2.2.6), with the additional requirement that, factecouple(r;, r;), if (r;, hy) € M and
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(rj,hy) € M then the pair(hy, h;) must appear on the joint preference list of that couple. A

matching is unstable if at least one of the following holds:

1. The matching is blocked by a hospita] and a single resident;, as in the classical HR

problem (defined in Section 2.2.6).

2. The matching is blocked by a hospitgl and a resident; who is coupled, say with;; that
is, (14,7;) prefers(hy, M (r;)) to (M (r;), M (r;)), andhy, is either undersubscribed i or

prefersr; to some member a¥/ (hy)\{r;}.

3. The matching is blocked by a cougle;, ;) and (not necessarily distinct) hospitdls #
M (r;), hy # M(r;); thatis,(r;, ;) prefers the joint assignmethy,, h;) to (M (r;), M(r;)),

andeither

(8) hi # hy, andhy (respectivelyh;) is either undersubscribed I or prefersr; (respec-

tively r;) to at least one of its assigned residentddnor
(b) hy = hy, andhy has at least two free posts M, i.e.,c,, — |[M (hy)| > 2; or

() hx = hy, andhy has one free post i/, i.e.,cy — |M (hy)| = 1, andhy, prefers at least

one ofr;, r; to some member ai/ (h,); or

(d) hi = hy, by isfullin M, hy, prefersr; to somer, € M (hy,), andhy, prefersr; to some

re € M (hi)\{rs}.

The above stability definition for HRC extends that given36,[ Section 1.6.6], in order to deal
with the case thal,, = h;, given a couplér;, ;) who prefer(hy, h;) to (M (r;), M (r;)). As far as
we are aware, this possibility does not appear to have beamambadequately by previous stability

definitions for HRC in the literature [88, 36, 84, 23, 13, 66, 68].

HRCC is the special case of HRC in which each resident (whaihgle or a member of a couple)
ranks a subset dff in strict order of preference. Each couyte, r;) ranks a subset of x H in
strict order, subject to the constraint that this joint prefce list beconsistentwith the individual
preference lists of; andr;. That is,(r;, ;) prefers(hy, hq) to (h,, hs) only if (i) either r; prefers

hy to h,. or hy, = h,., and (ii) eitherr; prefersh, to h, or hy = hs.

We now show that the restriction of HRS in which each resitlastsize at most two is polynomially

reducible to HRCC.
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Lemma 5.2.1 The restriction of HRS in which each resident has size at tastan be reduced

in polynomial time to HRCC.

Proof Given an instancé of HRS, construct an instandé of HRCC in the following way. For
each resident; of size two, create a couple; 1,7;2) in I’. Suppose the preference listigfin I
iS h1, ha, ... hy. Assign to each of;; andr; » an individual list equal to that of;. Let the joint
preference list ofr; 1,7 2) in I' be (hy, k1), (he, h2), ..., (ht, hi) — this is clearly consistent with

the lists ofr; ; andr; ».

For each hospitat; that findsr; acceptable irT, replace the entry; on h;’s preference list i’
with r; 1 andr; » in arbitrary order. Leave all residents of size one the sanféas inI. This ends

the transformation. We claim that a stable matching exatg'fif and only if one exists fol.

Suppose a stable matchiig exists forI. Then, construct a matching’ for I’ in the following
way. If (r;, h;) isin M, place(r;, h;) into M" if r; has size one, else pla¢e 1, h;) and(r; 2, h;)
into M’. Notice that the capacities of the hospitals are preseméale reduction, and also that
if a hospitalh; has an occupancy dfin A, thenh; is assigned residents inM’. Suppose a
blocking pair exists fol/” in I’. Then, the blocking pair must be of Type 1 or 3 above, as Tyge 2i
impossible by the special nature of the couple’s preferdigtse If there is a blocking pair;, ;)

by Type 1,M surely also had the same blocking pairirf instead)M is blocked by a pair of Type
3, then it must be because a coupte;, r; 2) block with the pair(h;, h;) in I'. But then resident

r; of size two inI must also block with hospitdi; in M.

Conversely suppose a stable matchivig exists forl’. Then, construct a stable matching for

I in the following way. If (r;, h;) is in M, place(r;, h;) into M, if r; has size one id, else

if (ri1,h;) and(r;2, h;) are inM’, place(r;, h;) into M. By the nature of the preference lists,
r;1 andr; o are always assigned the same hospital. Suppgsg;) blocks M in I. Then, by an
argument similar to the abovg;;, h;) must have blocked/’ in I” if r; has size one, otherwise the

pair (r;,1,7:,2) must have blocked/’ in I’ with (h;, h;). O

It follows immediately from the example of Figure 5.1 and lmmn5.2.1 that an HRCC instance

need not admit a stable matching.
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5.3 NP-completeness of HRS and HRCC

This section describes a polynomial-time reduction th&tdishes NP-completeness for the prob-
lem of deciding whether a stable matching exists, given a8 HiRtance where the size and capacity
of each resident and each hospital, respectively, is at mastand the length of each preference
list is at most three. This reduction is from a restrictedamrof MAX-SMTI (see Section 2.2.5
and Chapter 3 for background and definitions). Defih&)-COM-SMTI to be the problem of de-
ciding whether a complete stable matching exists (i.e aldlstmatching that matches every agent),
given an instance of SMTI in which each preference list issoth at most three, every woman’s
preference list is strictly ordered, and each man’s prefardist is either strictly ordered or is a tie

of length two (all of these conditions holding simultandglus

The proof that(3, 3)-COM-SMTI is NP-complete is somewhat peripheral to the ltssof this
chapter, moreover, we use the hardness of this problem ag&thapter 6. For this reason, the

proof of the following theorem is presented in the Appendix.

Theorem 5.3.1 (3, 3)-COM-SMTI is NP-complete.

5.3.1 The reduction

Given an instancé of (3, 3)-COM-SMTI with n menmy,ma,. . .,m,, andn womenw,, wa,. . .,wn,
we create an instandé of HRS, whose residents and hospitals are constructed lawolFirstly,

a hospitalh; is created for each woman in 1.

Next, for each mam; in I with a preference list consisting of a two-way (e, w;) wherek < [,
create eight resident§r; 1, 72, 76,3, Ti4s Tiays Tiaa Tig1r Tigo t @Nd six hospitalgh; 1, k2,

h h h hi,, }. The preference lists, sizes and capacities of these esgitants and

Ta,11 "ig 29 Tlig 19

six hospitals are shown in Figure 5.2. For each mann I with a strictly ordered preference list
Wsy, Wy, - - -, W, Create three residentss, rs_ ,, s, , } and two hospitaldh,_ ,, hs. , }. The
preference lists, sizes and capacities of these threeergsiénd two hospitals are also shown in

Figure 5.2.

Finally, for each hospitah, created from a woman; with preference listn,,...,m;_, set the

preference list oh; to initially be equal tomy,, ..., m,,, temporarily placing “men” ork;’s pref-
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2: ’I“i71 . hi71 hk hia,l 2: hi71 . ’I“i74 ’I“i71 ’I“i73
2: rig2: hia MWy hig 2 hig: riz Tia Tia
1: 7"@‘73 : hl‘71 hz‘72
1: ’I“i74 . hi72 h@l
1: Tia,l . hia,g hia,l 2: hia,l . Tia,l ’I“i71 Tia,g
1: 7"@'072 : hia,l hia,g 1: hiag : 7"@'072 7"@'071
1: Ti/;‘,l . hiﬁ,2 hiﬁ,l 2 hi[;‘,l . Ti/;‘,l ’I“i72 ’I“Z‘/J,y2
Lo migyt higy hig, Lo hig,: Tigy Tigs
S hs,  hsy ... hs, hs,,
Lo ore,y i hey, hspy 20 hg,,t T, Ts Tsyo
© Ty h5%1 h’S%Q : h’S%Q © Tsy2 Tsyn

Figure 5.2: Preference lists in the constructed instan¢¢éR

erence list. Now, suppose that finds some mam:; acceptable. lin;'s preference list is strictly
ordered in/, replacem; on h;'s preference list with-;. If m;’s preference list is not strictly or-
dered, his preference list consists of a two-way tie, ay,wy). If t < k, replacem; with r; ; on
hi's preference list, else, replace; with r; 5 on h;'s preference list. Set the capacity /af to be

two.

This ends the reduction. Clearly, itis computable in potyiad time. We now argue that it is correct
by the following sequence of lemmas, each of which statespepty of any stable matchiny/’ in
r.

Lemma 5.3.1 Let m,; be a man with a strictly ordered preference listinand letm; be a man
with a preference list consisting of a two-way tiefinThen, every resident in the Set;, r; 1,2}

is matched to some hospital i/, and that hospital is not the last entry on his preference lis

Proof Suppose that, is unmatched id/’. Then,rs_ , must be matched th;_,, to prevent s from
forming a blocking pair with;_,. Residentrs_, must be matched th;_, as well, for otherwise

he forms a blocking pair with,_ , . But this implies(r._ ,, hs. ,) is a blocking pair for)/’.

Suppose instead that is matched tdi,_,. Then, neither_, norr, , is matched tou,_ ., else

its capacity would be exceeded. Sorif , is matched toh rs., IS unmatched, and forms a

Sv,27

blocking pair withhsw. If, instead,rs%2 is matched tdLS%Q, thean%1 is unmatched, and forms a

blocking pair withh_ .. Clearly, if neitherr,_, norr,_ , is matched tois_ ,, they form blocking
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pairs withh,_ ,. This exhausts every possibility. It follows thatsif is unmatched im\/’ or is

matched to the last hospital on his preference list, a bimckair cannot be avoided.

The same argument holds foy; by substitutingh;,, , andh;, , for hs_, andh,_,, respectively,

ia,l

andr;, , andr;_, forr, , andr, ,, respectively. Similarly, the argument is analogousrfgr, by

replacingr;_, andrs_, with r;,, andr;, ,, respectively, and_ , andhs_ , with h;,, andh

8,1 08,21

respectively. O

Lemma 5.3.2 For all menm,; € I with a preference list consisting of a two-way tie, the regis
r; 3 andr; 4 are matched to some hospital M’. Moreover,r; 5 andr; 4 are matched to the same

hospital inM’.

Proof If r; 3 is not matched in/’, he clearly forms a blocking pair with; o, which hasr; 5 first

on its preference list. Similarly, if; 4 is not matched, he blocks with ;.

For the second claim, suppo&g s, h;,1) and(r; 4, h; 2) are inM’. Thenr; ; cannot be matched to
h;1 andr; o cannot be matched th; » in M’, for otherwise the capacities &f ; andh; » would
be exceeded. However, this impli€s 1, h; 1) and(r; 2, h; 2) form blocking pairs ford/’. On the
other hand, if(r; 3, h; 2) and(r; 4, h; 1) are inM’, then(r; 3, h; 1) forms a blocking pair im/’, for

hi1 has enough spare capacity to admi. O

Lemma 5.3.3 For all menm; € I with a preference list consisting of a two-way tie, exacthg o
of the residents in the s¢t; 1,7; 2} is matched to his first choice, and the other is matched to his

second choice id/’.

Proof By Lemma 5.3.2, itis clear that ; andr; o cannot both be matched to their first choice in

M, for this would result in-; 3 andr; 4 being unassigned if/’, a contradiction.

On the other hand, if; ; andr; o are both matched to their second choice, then if andr; 4
are both matched tb; ;, andr; » forms a blocking pair withh; . If insteadr; 3 andr; 4 are both

matched toy; o, thenr; ; forms a blocking pair witth; ;.

Finally, by Lemma 5.3.13; ; andr; » cannot be unmatched or matched to the last hospitals on their
preference lists, so exactly one pf; 1,7 2} is matched to his first choice if/’, and the other to

his second.O
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Lemmas 5.3.1 — 5.3.3 lead us to the following corollary.

Corollary 5.3.1 Every resident is matched in any stable matchidgfor I’.

Proof The only residents not yet shown to be matchedifirare those residents; , ford € {a, 5}
andk € {1, 2} created from a mam, with a preference list consisting of a tie of size twd/jrand
the residents;_, for & € {1,2} created from a mam; with a strictly ordered preference list in
I. Each of these residents must be matchedi/in for otherwise they would form a blocking pair
with the last hospital on their preference list, which hasrésident in question in first place on its

list O

We are now in a position to prove the correctness of the ramuat one direction.

Lemma 5.3.4 If the derived HRS instancE admits a stable matching/’, then the given instance

I of (3,3)-COM-SMTI admits a complete stable matchirig

Proof Given a stable matchindy/’ for I’, we describe how to construct a complete stable matching
M in I’ as follows. Consider the residentg; for k € {1,2, 3,4} that were created in correspon-
dence to a mam;, in I with a preference list consisting ¢fux, w;), a tie of size two, wheré < .

By Lemma 5.3.3, either; ; is matched tdy; or r; 5 is matched tdy; in M’, and, since the capacity

of every hospital i’ is either two or one, no other resident is assigneletd r; ; is, and similarly

for r; o andh;. Hence, we construdt by placing(m;, wy) into M if and only if (r; 1, hy) € M/,

and (m;,w;) into M if and only if (r; 2, h;) € M’. Again, Lemma 5.3.3 ensures that we always
place exactly one such pair infd. To complete the construction af, for each resident; corre-
sponding to a mam; with a strictly ordered preference list, plage;, w;) into M if and only if
(ri,h;) € M'. Corollary 5.3.1 ensures every manlinis assigned to some woman Mf; in what

follows we will show thatM is indeed a matching, and is also stable.

We have already argued by Lemma 5.3.3 that no two men withotietheir preference lists are
matched to the same woman M. For any resident; corresponding to a mam; in I with a
strictly ordered preference list; must have size two, and is matchedlihto a hospital;, which

is not his last choice by Lemma 5.3.1, and which thereforeesponds to womam; in I. Hospital

h; has capacity two, and so is matched to anlin M. This means that exactly one man is matched

tow; in M. Therefore M is a matching.
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We will show that)/’ is stable by demonstrating that no man can be part of a blggiair relative

to M. For any manm; with a preference list consisting of a tie of size two, thissirioe true, for
such a man is indifferent between the only two women on hiepgace list. Suppose instead that
m; has a strictly ordered preference list. Consider any womawhomm; prefers to his partner
in M. Then, inM’, residentr; must also have preferred hospitalto its assigned hospital. By
Lemma 5.3.1 and the construction of the hospitald’of;'s preference list contains residents of
size two only. Sincé\/’ is stable }y; is assigned a resident it strictly prefersrtpand hence, id/,

wy is assigned a man she strictly prefersia It follows that M is a complete stable matching in

1. O

We now prove that the reduction is correct in the other divect

Lemma 5.3.5 If the given instancd of (3,3)-COM-SMTI admits a complete stable matchirg
then, the derived HRS instanéeadmits a stable matchingy/’.

Proof Given a complete stable matchidg for I, we describe how to construct a complete stable
matching)M’ in I. For each mam; with a strictly ordered preference list, plage, ;) into M’ if
and only if(m;, w;) € M. For each mam; in M with a tie of size two consisting of, sayyy,, w;),

wherek < [, place pairs ilV/’ by the following two rules:

1. If (mi, U}k) e M, place(rm, hk), (Ti,Qa h@z), (T‘Lg, hi,l), (’I“i74, h@l) into M’ , and assign all
residentsr; , Vé € {a, B} andvk € {1, 2} their first choice.

2. If (mi,wl) e M, place(rm, hi71), (7"@'72, hl), (7"@'73, h@g), (7“1‘74, h@g) into M/, and assign all

residentsr; , Vé € {a, B} andvk € {1, 2} their first choice.

It is easy to verify that the capacity of each hospital is nateeded in)M’, and thatM’ is a

matching. We claim that/’ is also stable.

For, suppose residents, for t € {1,2, 3,4} are matched by Rule 1 above. Immediately we notice
thatr; » andr; 3 are matched to their first choices, and hence cannot formckiblp pair with any
hospital inI’. Resident; ; prefers only hospitak; ; to his assignment id/’, but does not form a
blocking pair with it because; 3 andr; 4 are matched t@; ;. The remaining resident; 4 prefers

only h; o, who is matched te; », and hence does not form a blocking pair with. All residents
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15, V6 € {a, B} andVk € {1, 2} are matched to their first choice and cannot form a blockirig pa

with any hospital.

Suppose residents, for ¢ € {1, 2,3, 4} are matched by Rule (2) above. In an argument analogous
to the previous case; ; andr; 4 are matched to their first choices, and cannot be part of &ibigc
pair. Resident; o prefers only hospitak; » to his assignment id/’, but does not form a blocking
pair with it because; 3 andr; 4 are matched té; ». The remaining resident; ;3 prefers onlyh; 1,

who is matched te; ;, and hence cannot form a blocking pair witfy. Again, the residents;; ,

Vo € {a, 8} andVk € {1,2} are matched to their first choice and cannot form a blockirgvgith

any hospital.

In the final case, a resident corresponding to a mam,; with a strictly ordered preference list in
I’ cannot block for the same reasons thagtdid not block inM. If m; preferred a womamw; in

M, thenr; must also prefef,; in M. However,h; must be matched to a resident that precedes
r; on its preference list, since; is matched to a man precedimg; on her preference list. The
capacity ofh; is two, and the size of; is also two, sd; has insufficient capacity to accommodate

r;. Therefore M’ is a stable matching faf. O

Lemmas 5.3.4 and 5.3.5 immediately imply the following tiezn.

Theorem 5.3.2 The problem of determining whether an HRS instance admitatdesmatching
is NP-complete, even if the size of each resident and thecitgpaf each hospital is at most two,
and the lengths of the residents’ and hospitals’ preferdiste are at most three (these conditions

holding simultaneously).

The following corollary follows immediately from Theorem32 and Lemma 5.2.1.

Corollary 5.3.2 The problem of determining whether an HRCC instance adnstalde matching
is NP-complete, even if the individual preference list aftesesident and the joint preference list
of each couple has at most three entries, and the capacitaalf bospital is at most two (these

conditions holding simultaneously).
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5.4 HRCC under classical (Gale-Shapley) stability

In this section we introduce a variant of HRCC in which stiabik defined in terms of the classical
(Gale-Shapley) stability. We provide a linear time aldamitfor this problem, without any assump-
tions about the lengths of the preference lists or capaditi¢he hospitals. The problem is defined
in the same manner as HRCC, the difference, however, ligwidefinition of a blocking pair. So,
as before, each hospital € H provides a preference list of acceptable residents, ddndte
and each resident, € R (whether they are a member of a couple or not) submits anithdiV
preference listC,, of acceptable hospitals. Each coupjethen constructs a joint preference list
L., that isconsistentas defined in Section 5.2. A blocking pair for a matching israefito be

a (resident,hospital) pait;, h;) such that (iy-; is unmatched, or, according 1., r; prefersh;

to M(r;) and (i) eitherh; is undersubscribed, or according £g , h; prefersr; to at least one
member ofM/ (h;). Notice the difference in the stability definition to thaffided in Section 2 for
HRC is that blocking pairs are defined with respect to theviddial preference lists, rather than the
couples’ joint preference lists. We partition the set off@rence listsC of an instance of HRCC
into three set€ = £¢ ULRU LT where£” is the set of individual preference lists of the residents,
L is the set of hospitals’ preference lists, afid is the set of joint lists created by the couples.

The goal in this setting is to find a matching satisfying tHéofeing two criteria:

1. The matching contains no blocking pairs relativeCtband £ under the classical notion of

Gale-Shapley stability as defined above.

2. Each coupley, = (r;,r;) is assigned to a pair of hospitdls,, h,) € L, or bothr; andr;

are unassigned.

The instance induced by the preference li&ts and £ is a classical Hospitals / Residents in-
stance, so finding a matching satisfying (1) above simplgliras using the extended Gale-Shapley
algorithm to compute a stable matching. Of course, M may not satisfy (2), in which case we

need to determine if there is a different stable matchingctvldioes. Henceforth, let such a stable

matching be called feasible stable matching

Given an instancé of HRCC, letM denote the set of all stable matchings under classicalligfabi
with respect to” and £”. We shall obtain a polynomial-time algorithm for determipithe

existence of a feasible stable matching by exploiting thakmresults on the rich structure oft,
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which we discussed in detail in Section 2.2.6. We briefly ltdwzre the necessary structural results,

beginning with theRural Hospitals theorerf88, 31] (see also [36, Section 1.6.5]).

Theorem 5.4.1 For any given HR instance, (i) each hospital is assigned #mesnumber of res-
idents in all stable matchings; (ii) exactly the same setesidents are unassigned in all stable
matchings; (iii) any hospital which is undersubscribed imeostable matching is matched with

precisely the same set of residents in all stable matchings.

Part (ii) of Theorem 5.4.1 implies that if for some instané¢he problem we have a stable match-
ing in which one member of a couple is assigned and the othemdssigned, no feasible stable
matching exists, for there is no stable matching in whicly tire either both assigned or both unas-
signed. By the same token, we cannot, in general, trividiitaio a feasible stable matching by
forcing every resident in a couple simply to be unassigneée.c@nhtinue with the following known

relation which induces a partial order gl [36].

Definition 5.4.1 Let M and M’ be stable matchings for an HR instance. We say Miatominates
M’ (denotedM » M) if, for each assigned resident M (r) = M’(r), or r strictly prefersi (r)

to M’(r). Intuitively, M dominatesM’ if each resident is at least as happy M as in M’ (The
case thatV = M’ and M # M’ is denoted by\ = M’).

Notice that a stable matching dominates itself. As we meetian Section 2.2.6, the pgiM, =)
actually forms a distributive lattice, with the maximumralent beingesident-optimalin that every
resident is matched to the most-preferred hospital he canabtain in any stable matching. It is
this underlying structure of that will allow us to develop the efficient algorithm presshin this

section. We end our review of the structural resultsfdémwith the following fact.

Fact 5.4.1 The resident-optimal stable matchiddr dominates all stable matchings i, and

the hospital-optimal stable matching; is dominated by every stable matching.

5.4.1 Breakmarriage

The algorithm we develop will use as a subroutine a genedlgrsion of an algorithm known

as AlgorithmBreakmarriage first defined by McVitie and Wilson [78] and used again by Gaidfi
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[34]. Our modified version of Algorithm Breakmarriage tal@sinput any stable matching
My, and takes as a second parameter any residevito is matched inM/ such thatM (r) #
My (r), and always outputs a new stable matching dominated/byintuitively, M is the ‘most
dominant’ stable matching subject to the constraint thatust be matched to a hospital further

down his list. A description of this algorithm is as follows:

Breakmarriage(M, r)

Given the stable matching/ and a matched residentas input, letR” C R denote the set of
residents”’ matched taV/(r) = h in M such that’ = r or »’ succeeds on the preference list of
h. Restart the extended Gale-Shapley algorithm (describ8edtion 2.2.6 by unassigning all pairs
(', h) forr’ € R’. Allresidents inR’ are now free and are pushed onto a stélék arbitrary order.
Hospitalh is defined to be “semi-free” in that it only accepts new prep®from residents it strictly
prefers tor. Algorithm Breakmarriage iteratively pops a residefitrom S with »” proposing to
the first hospital followingM (") on his preference list. This initiates a sequence of prdppsa
rejections, and acceptances as given by the residentedi€sale-Shapley algorithm [36, Section
1.6.3] in which free residents that have not been rejecteevbyy hospital on their preference list
are pushed ont§. Algorithm Breakmarriage terminates whe&rbecomes empty. The current set

of assignmentd/’ is then output.

The following facts hold about Algorithm Breakmarrid@é, r).

Lemma 5.4.1 SupposeV/ and M’ are stable matchings such thaf = A’, and that resident is

matched inV/ and satisfied\/(r) # M’(r). Then, in the execution of Algorithm Breakmarriadg r),
no residentr’ € R ever proposes to a hospital succeedihf(r’) on his preference list (in the
case thatM (r') = M'(+'), this implies that’ remains matched td/(r’) in the execution of

BreakmarriagéM, r)).

Proof Leth = M(r), and letR’ C R denote the set of residentse M (h) such that’ = r orr’
succeeds on the preference list df. Sincer ¢ M'(h) andM = M’, it follows thatr prefersh to
M’(r). Henceh is full in M’ and prefers each of its assignees\ii to r. It follows thath prefers

each of its assignees M’ to each member ak’.

Now suppose that a resideritwho is matched inV/ is the first resident in the execution of Algo-

rithm Breakmarriage\/, r') to be rejected by the hospital he is assigned td/in Leth’ = M'(r').
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Clearly if " = handr’ € R thenM (r") = M’ ('), which is impossible by the conclusion of the pre-
vious paragraph. Heneé was rejected by’ during the phase of Algorithm Breakmarridgé, )
that corresponds to the restart of the resident-orientdé-Slaapley algorithm. Lefi/4 be the
matching at the point during the execution of the algorithtrenh’ rejectedr’. Thenh' is full in

M 4 and prefers each of its assignees\in (4') tor’. Sincer’ € M'(h') \ Ma(h') andh’ is full in

M 4, it follows that there exists somg, € M4 (k') \ M'(h').

If , is matched in\/’, thenr,, cannot yet have proposed Ad’(r,,) (ash’ # M'(r,,), and hence
this would contradict the fact that is the first resident to be rejected by the hospital that he is
assigned to inV/’). Hence either,, is unmatched inV/’ and findsh’ acceptable, or,, prefers

h' to M'(r,). But this implies tha{r,,, h’) forms a blocking pair fo\/’, ash’ prefersr,, to r'.

Thereforey’ is not rejected by:’ in the call to Algorithm Breakmarriagé/, ). O

Corollary 5.4.1 Let M # My be a stable matching and an arbitrary resident withM (r) #

My (r). Then, noresident € Ris ever rejected by/ (') in a call to Algorithm Breakmarriagé\/, r).

Lemma 5.4.2 When Algorithm Breakmarriagé/, r) terminates, the set of assignmen#s output

by the algorithm is a stable matching.

Proof We first observe thad/(r) is full in M, by Theorem 5.4.1, sinc&/(r) # Mpg(r). We
proceed by showing that every hospital that is fullihis also full in/’. Throughout the execution
of Algorithm Breakmarriag€\/, ), no hospital that was full ini/ can become undersubscribed
except forM (r), as no other hospital rejects a resident without gainingiteibene. Therefore, the
hospitals that are undersubscribed at some point in thesggaof the algorithm are those that are
undersubscribed in every stable matching (by Theorem sahd M (). Suppose that during the
algorithm’s execution a resident were to propose to a hospital, such that:’ is undersubscribed
in M. By Theorem 5.4.1}’ is undersubscribed ih/;;, and alsqr’, ') ¢ My, since(r’, h') ¢ M.

If " is unmatched il/y then(r’, ") blocks My, a contradiction. Hence is matched il/y. As

h' # Mpy(r'"), by Corollary 5.4.15' precedes\i (r') onr'’s preference list, implying th&t”’, h’)
blocks My, a contradiction. Hence, no resident may propose to a labsgpdt is undersubscribed
in M at any point in the execution of the algorithm, implying thabposals are only made to those

hospitals that are full id/. It follows by a simple counting argument thiaf(r) is full in M.

The stability of M’ follows from the fact that a residemthas proposed to, and been rejected by,
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any hospitalh it prefers over)M (r). Since hospitals continually improve throughout the cew®

the algorithm;- cannot be a part of a blocking pairl

Lemma 5.4.3 Let M and M’ be distinct stable matchings, and suppose thatdominates)’.
Then, ifr is a resident with\/ () # M'(r), Algorithm Breakmarriag@\/, ') either returnsM’ or
a stable matching//” that dominates\/’ (i.e., M = M" = M’).

Proof This is an immediate consequence of Lemmas 5.4.1 and 504.2.

Lemma 5.4.4 Any stable matching/ can be obtained by a series of calls to Algorithm Break-
marriage from the resident-optimal stable matchibf; in O(m) time, wheren is the sum of the

lengths of the preference lists.

Proof The fact that an arbitrary stable matchihfycan be obtained from/ by a series of calls to
Algorithm Breakmarriage is a straightforward consequesfdeemma 5.4.3. A total 0O (m) time

is spent, as any arbitrary series of calls to the algorithnstitutes at most one left to right traversal
of each resident’s preference list, and similar time is sp@mersing the hospitals’ preference lists.

a

So, in light of Lemmaéb.4.4, we can see that the computation of a feasible stable mat¢tiane
exists) can be achieved by first finding the resident-optstettle matchind/r (which, in general,
need not be feasible), and making a suitable selection & walAlgorithm Breakmarriage. In the
next subsection, we will show that because the preferesteifiL., are consistent, we can always

compute an appropriate sequence of calls to Algorithm Breakiage in linear time.

We also note that repeated calls to Algorithm Breakmarrigimately yield the hospital-optimal
stable matching, in which every resident is, of course,gagsl toM (). Thus this is the only

stable matching Algorithm Breakmarriage cannot take astinp

5.4.2 The algorithm

Before presenting the main algorithm of this section, weaumegsome preliminary lemmas and

definitions. LetM be a stable matching. Recall Theorem 5.4.1, which statésptbaisely the
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’C’T'l hl h2 @ h5 1: [,hlt T_g rs 11 T7 Te T2
E,«Q h1 @ h3 2: Ehgt rs rg 7"_2 Ts5 ﬂ (&)
Lry: hy hg hy 2: Lp,: r7 11 T2 T3 T6 T4
Emt h3 @ 2: £h4: r7oTs 7"_4 7"_5 rs3
['r5: h4 h2 hl 1: [,h5 T_G 1

Lys: hs hi hs

Lr,: hy hy hy h

['rg: hl h2 h4

Lirars) : (h1,h3) (hs, h2)
L(T47r5) : (h4’ h4) (h4) h2) (h4, hl)
Lirrre) : (ho,h2) (ha,hy)

Figure 5.3: An HRCC instance with a stable but not feasibléchiag

same set of residents are matched in every stable matchiitiy thig in mind, we define enatched
couplecy, = (74, ;) to be a couple such that andr; are matched id/ (and hence in every stable
matching). Similarly, we define ammatched couple;, = (r;, ;) to be a couple such that one or
both ofr; andr; are unmatched id/ (and hence in every stable matching). kgt= (r;,7;) be

a matched couple. We define thext acceptable paion L., (denotednext;(cy)) to be the first
pair of hospitalg i, hq) On L., such thath, succeeds or is equal fd (r;) on £,, andh, succeeds
or is equal toM (r;) on L,.. If no such pair exists, we sayextys(cx) = () with slight abuse of

notation.

Example To illustrate the notion of the next acceptable pair for apteuwe refer the reader to Figure
5.3. This shows an HRCC instance with 8 residents-,...,rs and 5 hospital$iy, hs, ..., hs. There
are three couples, namely,r3), (r4,75), and(r7,rg). A stable (but not feasible) matching for this
instance is denoted by underlining. M, nexty(ro,73) = (hs, he), nexty(rqe,r5) = (ha, hs), and

nextyr(r7,rg) = (ha, ha).

The next two lemmas will help us to develop the algorithm ttedeine an appropriate sequence

of calls to Algorithm Breakmarriage to obtain a feasibldofganatching, if one exists.

Lemma 5.4.5 Let M be a non-feasible stable matching that dominates a feasthlde matching
Mjy. Lete, = (r;,7;) be any matched couple who are not matched to a pair of hospiaL.., .
Then, inMy, (r;,7;) is either assigned taext,(cx) or a pair of hospitals succeedingext s (cr,)

oncL,,.
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Proof Since M dominates)M¢, for each resident either M (r) = M¢(r) or M¢(r) succeeds
M (r) on L, by Definition 5.4.1. So, for a couplg. = (r;,r;), their partners in\/; are either their
current hospitals or hospitals that appear further dowin thdividual preference lists. It follows
thatnextys(cy) is the first pair of hospitals of., thatc;, could be assigned to if/;. So, inMy,

¢y, is either assigned toext /(i) or to a pair of hospitals that succeedsrtys(c;) onLe,. O

Lemma 5.4.6 Let M be a non-feasible stable matching that dominates a feasthlde matching
M;. Lete, = (r;,7;) be any matched couple who are not matched to a pair of hospial.., .

Let(hp, hy) = nextr(ck). Then,

1. EitherM((r;) # hy or M(r;) # hq (or both).

2. The stable matching obtained by calling Algorithm Breakiage with A/ andr* dominates

My, wherer* is r; it M(r;) # h, and is otherwiser;.

Proof For the first claimy; andr; cannot both be assigned kg andh,, respectively in\/, for

My is feasible, and this pair does not appearlop, by the assumption of the lemma.

For the second claim, sinc® is not feasible and/ dominatesi/;, the members of;, must be
assigned tawextys(ci) or to a pair of hospitals succeedimgzxt,,(cx) by Lemma 5.4.5. By the
nature of the construction of the joint preference figf, and by the fact thab/ dominates),
this implies that-* is assigned to a hospital succeedihf(r*) on £, in M. Hence by Lemma
5.4.3, calling Algorithm Breakmarriage on the current rhatg andr* yields a stable matching

that dominates\/;. O

We are now ready to describe the algorithm for finding a féasitable matching or reporting that
none exists. The algorithm begins by computing the residptitnal stable matching/r and the
hospital-optimal stable matchinyy. By Lemma 5.4.1 )M r dominates all stable matchings.m

— hence it dominates every feasible stable matching (if arst)eas well. If My, is itself feasible,
the algorithm returnd/g. Otherwise, if for any couplér;, ;) it is the case that; is assigned and
r; Is unassigned, the algorithm halts, correctly reportirag tio feasible stable matching exists by

Theorem 5.4.1.

Only if no such couple exists do we enter the while loop whicintains the loop condition that the

current matchingV/ is not feasible — hence there is some couple- (r;, r;) who are not assigned
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ComputeMr and My
M + Mpg
for each couple € C:
if one member of is assigned i/ and the other is unassigned irh:
report “no feasible stable matching exists”
HALT
while some coupley, = (5, ;) is not assigned a pair fro,, in M:
if ¢, hasnexty;(cx) = 0
report “no feasible stable matching exists”
HALT
r* < aresident irc, with different partners inV/ andnext s (cy)
if M(r*) = Mg(r*):
report “no feasible stable matching exists”
HALT
else
M < BreakmarriagéM, r*)

return M

Figure 5.4: Algorithm HRCC

to a hospital onC.,. If nexta(c;) = 0, the algorithm reports failure. Otherwise the algorithm
identifies a resident* € {r;,r;} such thatM (r*) is not equal ta-*’s partner innextys(cy). If r*
has the same partner M and inMp, the algorithm reports failure. Otherwise, we call Algbnit
Breakmarriage withl/ andr*. The loop is exited only when the algorithm reports failurevhen
the current matching/ is feasible. The pseudocode for the algorithm is present&igure 5.4 as

Algorithm HRCC.

5.4.3 Correctness

Suppose that no feasible stable matching exists. Then,ritigp HRCC will clearly correctly
output “no feasible stable matching exists” in one of thriaegs. If, before entering the while
loop, there is a couple with one member assignhed and the wtiassigned, the algorithm correctly

halts. Otherwise, the algorithm enters the while loop, andesno feasible stable matching exists,
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the algorithm continues to make calls to Algorithm Breakriage. This process must eventually
halt, either whemexty;(c) = () for some coupley, or when the successive calls to Algorithm
Breakmarriage eventually yield/y, at either point Algorithm HRCC will correctly output the

failure message.

So, instead, let us suppose a feasible stable matchipgloes exist. We claim that Algorithm
HRCC maintains the invariant that at each iteration of théleMoop the current matching/
dominatesM;. The claim is clearly true when!/ = Mg, by Lemma 5.4.1, so let us assume the
invariant is true at the end of thé" iteration. Let)M; denote the stable matching at the end of
iteration: of the while loop and suppose thaf; is not feasible. Sincé/; is not feasible, there is
some assigned couplg = (rs, ) that is not assigned a pair frof, . By Lemma 5.4.6, there is
at least one resident € {r,,;} that is not assigned to a hospital in the ordered paitt /, (c),
and, further, calling Algorithm Breakmarriage on the catrematching)M; andr* yields a stable
matching that dominatesd/;. Thus the matching/;,, obtained by this process dominatkg,

and the claim follows.

Thus, at each iteration of the while loop of Algorithm HRCRg tturrent matching dominatég;.
Hence, the algorithm eventually terminates having enaedt)/; or a different feasible stable
matching that dominates/;. Let M}* denote the feasible stable matching that is returned by the
algorithm. SincelM; is an arbitrary feasible stable matching, we have arguelﬂ]\@adominates
everyfeasible stable matching. Henck/; is resident-optimalmongst the set of feasible stable

matchings.

We summarise this section with the following theorem.

Theorem 5.4.2 Algorithm HRCC finds the resident-optimal feasible stabktaming M if one
exists or reports “none exists” il (m) time, wherem is the sum of the lengths of the preference

lists of the input.

Proof We have shown that the algorithm finds the resident-optimasible stable matching if it
exists, or reports “none exists” correctly. To establish ¢kaimed running time, we observe that
the algorithm constitutes essentially a “left to right” peof the residents’ preference lists. So, by
using appropriate data structures (extending those testi [36, Section 1.2.3] for the Extended
Gale-Shapley algorithm for SMI to the HR case), we can imglenthis algorithm to run i (m)
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time. O

We end this section with the remark that HRCC under classizddility is a variant of HR that
can be solved in polynomial time by a unified approach [19¢esithis problem exhibits the so-
calledindependence proper{igee [19] for the definition of this property and further dlg)a For
completeness and for consistency with the notation andinetogy adopted in the remainder of

this chapter, we have chosen to present the main resulto$dation as a standalone algorithm.

5.5 HRS with hospital preference lists of length< 2

In light of the NP-completeness result for HRS presentedeictiBn 5.3, it is natural to ask if, by
specialising the problem version, we can identify a “bougtiat which HRS becomes polynomial-
time solvable. One option for us to consider is to allow ttaxesiof the residents to be at most one,
rather than two. This restriction would, of course, yieldiastance of the classical Hospitals /
Residents problem, which is polynomial-time solvable. Hedent option is to further restrict the
lengths of the preference lists for the residents and/ohdispitals. We show that by restricting the
length of the preference list of each hospital to be at most tather than three, a stable matching
always exists, and an extension of the Gale-Shapley digofinds a stable matching in polynomial
time, even if no restriction is placed on the sizes of thedesis, the lengths of the preference lists
of the residents, or the capacities of the hospitals. Sireedmpleteness for HRS holds even for
hospital preference lists of length at most three, the tesidithis section indicate such a boundary
for HRS. We describe the restricted version of HRS in whiehlémgths of the hospitals’ preference

lists are at most two and the residents’ lists are unboundé¢cba2)-HRS.

The procedure for solvingx, 2)-HRS is as follows. The algorithm can be seen as a sequence of
“proposal” operations from the residents to the hospitalsesident proposes sequentially to each
hospital on his list until he becomes assigned or his lisbbexs empty. When a residentproposes

to a hospital:;, r; becomes provisionally assigned/g. If r; is that hospital’s first choice, and
h;’s preference list has another entry, werlgtdenoteh;’s second choice. I; + s, > c;, the pair

(rk, hj) is deleted, meaning thaj, is removed fromh;’s preference list, and; is removed from

ri's preference list. This is the only time a (resident,h@pipair is deleted by the algorithm. The
algorithm continues this process until each resident leeifissigned a hospital or has an empty

list. The details of the algorithm are shown in Figure 5.5.
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assign all residents to be free
while some resident; is free and-; has a nonempty list:
h; « first hospital orr;’s list
if r; is h;’s first choice andh;’s list is of length 2:
r, < h;’s second choice
if s; + s, > ¢j:
if 1, is assigned ta;:
unassign-y,
delete(ry, h;)

assignr; to h;
Figure 5.5: Algorithm(co, 2)-HRS

Let us now establish the correctness and time complexitjeohtgorithm presented.

Theorem 5.5.1 Algorithm (oo, 2)-HRS finds the resident-optimal stable matching for an imsta

of (00, 2)-HRS inO(m) time, wheren is the sum of the lengths of the preference lists.

Proof It is clear that the provisional assignments at the terranadf Algorithm (oo, 2)-HRS
form a matchingl/. We claim thatM is stable. To see this, consider an arbitrary residentho

is unassigned or prefers a hospitglto his assignment i/. Then, since-; is not assigned t,

in M and prefersh; to his current assignment,; must have been deleted frofyis preference list.
But this can only happen f; is h;’s second choice anbl; was assigned to its first choice at some
point in the algorithm and does not have enough spare cggdaciccommodate;. But h;’s first
choice can never become unassigned ffgnat any subsequent step of the algorithm — so insfact
cannot block withh; in M. Sincer; was chosen arbitrarily it follows that no resident is partof

blocking pair inM.

Secondly, we claim that Algorithrtoo, 2)-HRS never deletes a stable pair (i.e., a (resident,hdspita
pair that belongs to some stable matching). For, supposéitha:;) is the first such pair deleted
during an arbitrary execution of the algorithm, and¢t be a stable matching containig, /; ).
Thenr;, was deleted because the residenprecedingr;, on h;’s preference list became assigned
to h; ands; + s, > c;. Now, since no stable pair has been deleted prior to thispoid/’, r; is
either assigned th; or to a hospital lower than;, or is unassigned. Sineg andr;, cannot both

be assigned td; in M’, it follows that(r;, h;) blocksM’, a contradiction.
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Thus we have shown thatl is stable and that each resident is assigned to his optinnalgoan

M. Let us now show that &(m) implementation is easily achieved with the use of simpladat
structures. If we maintain a stack of free residents, then each iteration of the loop involves a
subset of the following operations: (i) pop a residenoff of, S (ii) examining the first entryh;

of ;s list, (i) examining the length of;’s list (it is either one or two), (iv) simple comparisons
and arithmetic, (v) assigning and/or unassigning at mostregidents td;, (vi) deleting the first
entry of a resident’s list, (vii) pushing a resident otolf each preference list is stored as a linked
list, each of these operations clearly can be performed(in time, and thus a single iteration of
the loop take$)(1) time. Since each resident proposes to each hospital orshéa linost once, the
number of iterations of the loop 3(m), and therefore the running time of the algorithnOién).

a

5.6 Conclusion and open problems

Our stability definition for HRS allows a resident to displace a group of inferior residents of
a given total size, so long as this frees up enough space _.fofhis could, of course, include a
situation whereby a resident of size ten is displaced inrdamake way for a resident of size one,
for example. Our definition assumes that the quality of treigages takes precedence over the
size. However it may be the case that a hospital's primargeonis to ensure that its occupancy
is as high as possible. Thus it would not participate in albhar pair if its occupancy were to be
reduced as a result of rejecting the inferior residents akitdg on the new resident. This gives rise
to an alternative stability definition which is obtainedrfrehe one given for HRS in Section 5.2 by

modifying Condition (2) as follows:

2. Oj” + s; < ¢;, or h; prefersr; to residentsy, , ..., € M(h;) such that

t t
M
S; > E Sky and Oj +8; — E Sky < Cj-
p=1 p=1

It remains open to investigate the algorithmic complexitthe problem of finding a matching that

satisfies this new version of stability, for a given HRS ins&



Chapter 6

Three dimensional stable matching

6.1 Introduction

Knuth [69] initiated the study of three dimensional stabkching problems by asking if the stable
marriage problem could be extended to three sets, so thaaveeriot only men and women, but a
third set, which he called dogs. Knuth’s question is (peshatentionally) somewhat open-ended.
He did not suggest a new stability criterion or specify wlhet agent’s preference lists would be

like.

Over the years, a handful of researchers have exploreddimemsional stable matching problems,
in an effort to answer Knuth’s question. In Section 2.2.8,sueveyed the relevant literature and
known results regarding three dimensional stable matshing this chapter we are particularly
interested in the study of the so-callegklic three dimensional stable matching problem, in which
men care about only the women, women care about only the dodghe dogs care about only the
men. As an open question, Ng and Hirschberg [83] asked folympmial-time algorithm to find
stable matchings in this setting (we define cyclic stablechiags and stability formally in Section
6.2). Boros et al [11] showed that if there are at most thremigin each set of men, women and
dogs, then a stable matching always exists. Eriksson ebapf@ved that this also holds if there
are four agents in each set and conjectured that a stabl@imgxists for every instance of cyclic

3DSM.

In this chapter we continue the study of cyclic three dimemsi stable matching problems under

107
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two natural definitions of stability given by Eriksson et ab], called weak and strong stability,
respectively. We describe a special instance of the threertiional stable matching problem with
incomplete lists called the-Sun, and show that it is particularly problematic. Spealfic we
show that thed-Sun admits no weakly stable matching, and use this instas@n instrumental
gadget in showing that weakly stable matchings are NP-tafithd when agents are allowed to
have incomplete lists, and that strongly stable matchingsso NP-hard to find, regardless of the
length of the preference lists (complete or incomplete).bfevity we have chosen to omit the word

‘cyclic’ when referring to the cyclic three dimensional ls&matching problem in this chapter.

6.2 Formal definitions

Thethree-dimensional stable matching probléB®DSM) consists of a set of men,n women, and

n dogs. Associated with each agent is a preference list whittlg ranks all of the members of
one of the other sets. Specifically, each man has a strictnarete list ranking all of the women,
each woman has a strict preference list over all of the daus$.esery dog has a strict preference
list over all of the men. When preference lists are allowebamcomplete so that an agent ranks
only a subset of the appropriate set of agents, we obtainstarice of thehree-dimensional stable
matching problem with incomplete li8DSMI). In keeping with the common terminology of this
thesis, if agenb appears on ageunfs preference list, then finds b acceptable Notice that in the
3DSMI setting there is no analogous notionmiitually acceptable paias there is in the stable
marriage or stable roommates setting. @steptable triplas a triple (m, w, d) such thatm finds

w acceptableyw finds d acceptable, and findsm acceptable.

A matching M for a 3DSMI instance is a disjoint set of acceptable triplés triple (m,w, d) is
in M, then we letM (m) = w, M (w) =d, andM (d) = m. M(a) is undefined for an unmatched
agenta.

There are at least two natural definitions of stability whacise in the context of 3DSMI. A match-
ing M is said to beweakly stabldf there is nostrongly blocking triple i.e. an acceptable triple
(m,w,d) ¢ M such that (iyn is unmatched or prefers to M (w), (i) w is unmatched or prefers
d to M(d), and (iii) d is unmatched or prefers to M (d). A matching isstrongly stabldf there
is noweakly blocking triplgm, w, d) ¢ M such that (iyn is unmatched} (m) = w or m strictly
prefersw to M (m) (i) w is unmatchedM (w) = d, or w strictly prefersd to M (w), and (iii) d
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is unmatched M (d) = m, or d strictly prefersm to M (d). Note that the definition of a weakly
blocking triple crucially depends on the fact thiat, w, d) ¢ M. Hence at least one agent strictly
improves in a weakly blocking triple, while the other two atgeare at least as happy. Observe that
every strongly stable matching is also weakly stable, h#frmoe weakly stable matching exists for

an instancd, then no strongly stable matching can exist faither.

The underlying directed grapP; = (V, A) of an instancel of 3DSMI consists of a vertex for
each agent of, and a directed ar@:, b) for each pair of agents:, b) such that: findsb acceptable.
Clearly, a matching fof corresponds to a disjoint subset of directed 3-cycld3;init is sometimes
convenient for us to think of matchings in this graph-théoreontext, so we sometimes refer to a
matching as a set of disjoimtycles(rather than triples). We also occasionally refer to anyeoitr

a preference list as azdge or refer to an agent aswertex The meaning should always be clear

from the context.

We use the notatior, to denote the preference list of an agenand£’, to denote the'” entry of

agenta’s preference list.

6.3 The9-Sun: a problematic subgraph

At the core of all the results in this chapter is a particulBiSB/l instance that admits no weakly

stable matching (and thus no strongly stable matching).pféference lists and underlying directed
graph of this instance are given in Figure 6.1. The thickredsthe arcs of the directed graph

illustrate the preference of a given vertex in that thickersarepresent higher preferences. For
obvious reasons, we refer to this 3DSMI instance as9tain (denotedSy) . Note that, rather

paradoxically, th&-Sun has six agents of each kind, hence 18 agents in total.
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mq wlw’l wq dldll d1 . QOIQ

ma @ wowh wy : dad, do : mam,

mg : waws ws : dgdy ds : mym}
/. /. /.

mj w3 wy : ds 1:my
/. /. /.

mey : Wy Wyt dy d; 1 ma
!/ / /

M3 W2 wy : do ds : m3

Figure 6.1: The-Sun

We refer to the agentem;, w;, d; : 1 <i < 3} as theinner agentf Sy and the agent$m!, wy,

d; :1 <1 < 3} as theouter agentf Sy. In what follows we will show that th€-Sun admits
no weakly stable matching, and, moreover, that the preferésts of thed-Sun can be completed
to a 3DSM instance which admits no strongly stable matchifigese observations are crucially
important in the NP-hardness results of the subsequeribseatf this chapter, ag-Suns play a

vital role in the reductions.

Lemma 6.3.1 The9-Sun admits no weakly stable matching.

Proof By inspection of the underlying graph of theSun, we can observe that the only acceptable
triples are of the form(m;, w}, d;_1), (m;, w;, d;) and(m}, w;_1, d;_1), o that any acceptable
triple contains exactly two inner agents. In any matchirgat least one inner agent is unmatched.
By the symmetry of the instance we may suppose, without lbgemerality, that this unmatched

inner agent isny. Then, the triplgmy, w}, ds) is a blocking triple forM. O

For an inner agent;, we letSy \ a; denote the 3DSMI instance obtained by removingand
all incident edges). In the following lemma, we show that ithe&tance obtained by removing an

arbitrary inner agent from th& Sun does, in fact, admit a (unique) weakly stable matching.

Lemma 6.3.2 Let a; be an inner agent of th@-Sun. Then, the instance obtained by removing

(So \ a;) admits a unique weakly stable matchiihg,. Moreover,M,, is strongly stable.
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Proof Suppose without loss of generality that the inner agents removed. Then)/,, = {(m),
wi, di), (ma, we, dy), (ms, wh, d2), (M}, ws, d3)} is a weakly stable matching. To see that
M, is the unique weakly stable matching, notice that the tript¢, ws, d3) must be in any stable
matching)M’, otherwisels andm/ are unmatched, and form a blocking triple with. This implies
that the triple(msg, wj, d2) must be inM’ as well, for otherwisens andw?, are unmatched, and will
form a blocking triple withd,. This argument continues in such a way that must necessarily

contain(ma, wa, dy) and(mb, wi, d1). HenceM' = M,,.

Verifying that M, is also strongly stable is a trivial task achieved by inspgdhe preference lists.

a

For a given ageni; in the 9-Sun, we denote the unique weakly stable matching madelpeds;

removinga; by Mg\, -

Corollary 6.3.1 Mg\, is the only weakly or strongly stable matching féy\ a;.

We next show that by completing the preference lists of #&un in an arbitrary way (so that
each man ranks every woman, every woman ranks every dogthetaksulting instance of 3DSM,
denoted bySy, does not admit any strongly stable matching. For ease afsitipn, we call the

triples of Sy original triples.

Lemma 6.3.3 The instanceSy of cyclic 3DSM admits no strongly stable matching.

Proof Suppose, for a contradiction, th&f is a strongly stable matching. As the nine inner agents
form a 9-cycle in the underlying directed graph, the ningiodl triples have a natural cyclic order.
We show that if an arbitrary original triple, sdyn, w1, d}), is not in M, then the “successor”
original triple (mf, w1, dy ) must be inM, which would imply a contradiction given that the number
of these original triples is odd. To this end, suppose withass of generality thatm,,wy,d}) ¢

M. Then,M (wy) = dy, for otherwise(m,, w1, d}) would be weakly blocking. Similarlygm/, w1,

di) ¢ M implies M (d;) = ms. But this means thatms, w, d1) € M, so(maq, w), d) is weakly

blocking. O
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Let Sy \ a; denote the instance created by removing an inner agdram Sy. Consider the unique
strongly stable matchind/g,,, for So \ a;. The next fact we wish to establish is thef, \ ,, is in

fact the only strongly stable matching 85 \ a;.

Lemma 6.3.4 Let M be a matching foSy \ a; such thatM # Mgg\q,- Then,M is not strongly

stable.

Proof Suppose thal/ is a matching ofS \ a;. As in the proof of Lemma 6.3.3, we use the fact
that if an arbitrary original triple is not i/, then the successor original triple is eitherify or is
weakly blocking. Therefore, if we do not include four of theven original triples oy \ a; in a
matching then one of them would be weakly blocking. Therenly one way to select four of the

seven original triples ofy \ a;, hence the lemman

6.4 NP-completeness of 3DSMI under weak-stability

6.4.1 The reduction

This section describes the polynomial-time reductionéiséblishes NP-completeness for the prob-
lem of deciding whether a weakly stable matching exists foagbitrary 3DSMI instance. The
reduction is from a restricted variant of MAX-SMTI (see Sext2.2.5 and Chapter 3 for back-
ground and definitions) calle@, 3)-COM-SMTI. We used this same starting point for a reduction
presented in Section 5.3. To make this chapter self-ccedaidefine(3, 3)-COM-SMTI to be the
problem of deciding whether a complete stable matching®fie., a stable matching that matches
every agent), given an instance of SMTI in which each prefezdist is of length at most three,
every woman's preference list is strictly ordered, and eaelm’s preference list is either strictly
ordered or is a tie of length two (all of these conditions hajdsimultaneously). In the Appendix
we prove thai{3, 3)-COM-SMTI is NP-complete. Of course, this hardness resulisif the roles

of the men and women are reversed, which, for conveniencassume in the following reduction.
The remainder of this section is devoted to describing armotyial-time reduction fron{3, 3)-

COM-SMTI to cyclic 3DSMI.

Given an arbitrary(3, 3)-COM-SMTI instance!, the underlying graphG = (A U B, E) of I

consists of the sett = {aj, a9, ...,a,} of mena,;, all of whom have strictly ordered preference
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lists, and the seB of women which is partitioned into two sely U By = {by,..., by, } U {b7,...,
bl } wheren; + ny = n. Each womarb; € B; has a strictly ordered preference list, and each
womanb]T € Bs has a preference list consisting solely of a tie of length. tWe denote a woman

who may be a member of eithéh or B by bET).

Let I be aninstance dB, 3)-COM-SMTI with the underlying grapt¥ = (A U B, E). We construct
an instancd’ of cyclic 3DSMI which initially consists of the set3, R, andS of men, women, and

dogs, respectively, as follows.

Step 1: the proper part

The sets of men and women Bfwe create in this step are in direct correspondence to theamen

women inl. The dogs ofl’ are created to capture the preference lists of the womén of

Create merQ = {my,..., m,} and womenR = Wy U Wy = {w1,..., wp, } U {wl,..., wl

ngJ*
The set of dogs of’ consists of two part$; U Sy = S, defined by creating a dagj;; in .S; for

eachi such that; € Ly, (1 <j <mnq), and creating dogdjT (1<j<mngy)inS,.

Recall thatZ! denotes theé'” entry on agent’s preference list. A tie in the preference list of an
agent (in the given instandg is indicated by parentheses. The (strictly ordered) peefee lists of

the agents i), R, andS are constructed by the following cases:

1. 1f Ll = bET) then letc!, = w§T) (1 <1 < r, wherer is the length ofy;’s list).
2. If Ubj = a; then Ietﬁﬁvj =d;; andLy,, = m; (1 <1 <r, wherer is the length ob;’s list).

3. If Lyr = (ap, a,) thenletl, r = dI andLr = m,, m, (in arbitrary order).
J J J

The collection of agents and preferences created in thisaftthe reduction is theroper partof

the instance.

Step 2: the additional part (add 9-Suns)

We construct thadditional partof I’ by creatingn (|Q|) copies ofSy. Thet! copy of Sy (denoted

S§ consists of the inner agenfsn,,, wy,, dy, : 1 < i < 3} and outer agent§m} , wj., d;. : 1 <
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i < 3} with preference lists as described in Figure 6.1. We addethesopies ofSy to I’ in the

following way. Replace the inner agemt;, in S§ with manm, € @ by replacing each occurrence
of my, in the preference lists of each agentSk with m;. Also, letm;,’s acceptable partners in
St, namelyw,, andw;, be appended in this order to the endmofs list. The final preference list
of manm; along withS{ is shown below. The portion of.;’s preference list consisting of women

from the proper part of the instance is denotedhy

. / . / . /
my 1 Ppwg wy, w1 dyy dy dg, 1 myg, My,
. / . / . /
My, o Wy W, Wy, 1 dyy dy, dg, 1 My My,
. / . ! . /
Mis 1 Wiy Wy Wy, 1 dig dy, dgg 1 mgmy,
/ - / - ! .
my, o Wi wy L dg dy, 1omy
/ - / - ! .
my, L Wy wy, 1 dy dy, 1 my,
/ . / . d d/ .
mts - Wy wts . to ts - My

This ends the reduction, which can be computed in polynotimed. Now, we prove that there is a
one-to-one correspondence between the complete staldbings in/ and the stable matchings in

r.

First we show that there is a one-to-one correspondencesbatthe matchings dfand the match-
ings in the proper part of’. This comes from the natural one-to-one correspondenceckeatthe
edges ofl and the triples in the proper part &f. More precisely, ifM is a matching inZ, then
a corresponding matchind/, in the proper part of is created as follows(a;,b;) € M <=
(my, wj, dj;) € M, and(a;, bjT) EM < (mj, ij, djT) € M,. Next, we show that stability is
preserved by this correspondence.

Lemma 6.4.1 A matching)M of I is weakly stable if and only if the corresponding matchivig

in the proper part ofl” is weakly stable.

Proof It is enough to show that an edge;, b;) is blocking in! if and only if the corresponding
triple (m;, wj, d; ;) is also (strongly) blocking id’; and similarly, an edgéu;, b]T) is blocking inT

if and only if the corresponding triplen;, w , d} ) is also blocking inl’.
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Suppose first thata;, b;) is blocking inI, which means thai; is either unmatched or prefebs
to M (a;) andb; is either unmatched or prefees to M (b;). This implies thatm, prefersw; to

M,

(m;), w; prefersd; ; to M(w;), andd;; is unmatched inVf,, i.e. (m;, wj, d; ;) is blocking in
I'. Similarly, if (a;, bJ) is blocking then; is either unmatched or prefeb$ to M (a;) andb; is
unmatched inV/. This implies thatn; prefersw! to M,,(m;), w] andd] are both unmatched in

M, and hencém,, w] , dI ) is blocking inI”.

In the other direction, ifm;, w;, d;;) is blocking inI’, thenm; prefersw; to M,(m;), w; prefers
d;j; to M,(wj), andd; ; is unmatched inV/,. This implies that; is either unmatched or prefebs
to M (a;) andb; is either unmatched or prefeas to M (b;), so(as, b;) is blocking inZ. Similarly,
if (m;, ij, djT) is blocking inI’, thenij andd]T are both unmatched ih, andm; preferSij to

M,

»(m;). This implies that; is either unmatched or prefeb§ to M (a;) andeT is unmatched in

M, so(a;,b] ) is blocking inI. O

Furthermore, if the matchingy/ is complete, then we can enlarge the corresponding matohihe
additional part off’ by matching every} \ m; in the unique stable way. So by adding this matching
M st\m, 10 M, for everyt, this leads to the one-to-one correspondence betweenthglete stable

\my

matchings ofl and the stable matching f.

Lemma 6.4.2 The instancel admits a complete stable matchidg if and only if the reduced

instancel” admits a stable matchindy/,, wherelM,, is the corresponding matching o1

Proof The stability of M implies that),, is stable in the proper part df by Lemma 6.4.1. The

completeness af/ and Lemma 6.3.2 implies that, is also stable in the additional part Bf

In the other direction, if\/, is stable then every man i, must be matched in a proper triple. For,
if a proper manmn, does not have a proper partnerfif then.S§ would contain a blocking triple,
by Lemma 6.3.1. This implies that the corresponding matehlif, defined in Lemma 6.4.1, is
complete. The stability od/ is a consequence of Lemma 6.4.1. Finally, we note that thiti@atal
part has a unique stable matching, since ey a; must be matched in the unique stable way

indicated by Lemma 6.3.2, which implies the one-to-oneaspgondence O

The following theorem is a direct consequence of Lemma 6ah#é by observing that no agent’s

preference list in” exceeds the length of five.
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Theorem 6.4.1 Determining the existence of a stable matching in a givetaite of cycli@DSMI

is NP-complete, even if the preference list of each agerftlength at most five.

6.5 NP-completeness of 3DSM under strong stability

In this section we prove that 3DSM is NP-hard under stroniilitia As in Section 6.4, ouf-Sun
gadgets play an instrumental role. The reduction in thif@@¢s somewhat more complex than the
other reductions in this thesis. We have therefore provatedxample in Section 6.7 to illustrate

some of the more involved steps of the transformation.

6.5.1 The reduction

The reduction we describe in this section again begins witinstance of3, 3)-COM-SMTI, only
this time we assume that ties are allowed on the men’s, r#tlerthe women'’s preference lists.
To be precise, we assume the underlying graph @f 8)-COM-SMTI instancel to have a vertex
set((A; U A2) U B) that consists of a set; = {ay, as,..., a,, } of men with strictly ordered
preference lists, and a set withy = {a], af ..., al,} of men with preference lists consisting of
a single tie of length two, and; + ns = n. We letA = A; U Ay. The setB = {b1, bo, ..., by}
consists entirely of women with strictly ordered preferfists. As previously stated, all agents of

I have a preference list of length at most three.

Given an instancé of (3,3)-COM-SMTI as defined above, we create an instaHoaf 3DSM as

follows.

Step 1: the proper instance

The proper instancel,, of cyclic 3DSMI is a subinstance df with agents),,, R,,, andS,, of men,

women, and dogs, respectively, with each set being ofrsize

The preference list of womam; € R, is the single entryl; € S,. The preference list of; € S,

is such that ifC} = a;, then£!, = m,;. Otherwise, ifC) = al, thent!, =m! for1 <1<,
J J ' 7 5]
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wherer is the length ob;’s list. So the preference list of datj is essentially the “same” as that of

womanb;, only with men inQ,, rather thanA.

The preference list of a man, € @, created in correspondence to mare A; is given as follows.

If Eﬁu =, thenﬁﬁni =w; for 1 <1 <r, wherer is the length oty;’s list. So the preference list of
manm; is essentially the “same” as that of man For each mam:; created in correspondence to
mana! € A,, with a preference list consisting of a single tie of lengtlotsay 6., bs), we create

d

1,8

1 T / " / 2 / 1/ / 2 U U
five menm;, m; ., m; ., m; ., m{ ;, four womenw; ., wi’,, w; ., wi; and four dogst; ., d;’ .,

dY,. The preference list of.] containsw;, andwy . in an arbitrary order, and the other preference

lists are as shown below.

mg,r : wg,r Wr wg,r : d;,r d;/,r d;,r : mgl,r m’zT
mll, wl il d,dloml, ml
m;,s : wg,s Ws wg,s : d;,s d;,,s d;,s : m;/,s sz
mll, wfdl, d, o dlm, wl

These agents are added to the §gisR, andS,, respectively. Note that ifi,, every set of agents
has the same cardinality;, = |Q,| = |R,| = |Sp| = n + 4ns. The notions oproper agent, proper

partnerandproper tripleare defined in the obvious way, i.e., they all belong to th@erinstance.

Step 2: the additional part (add 9-Suns)

The additional partof I’ is the disjoint union of3n,, copies ofSy, such that the' copy of Sy,
denotedS;, incorporates thé'" agent ofI,,, as described in Step 2 of the previous reduction for
the proof of Theorem 6.4.1 (we omit the full description aéthrocess again). The new agents are

referred to asdditional agents

-----

described in Section 6.3 and Lemma 6.3.2, whegris the proper agent ofj. We sometimes call

M, theadditional matching

-----

are covered by, and we calll = Uic 1, 3n,) USé\ai the set ofuncovered additional agentas

these additional agents are not coveredihy
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Step 3: pad the instance

Note thatU has equal numbers of men, women and dogs. fitieg part of I’ is constructed on

U by creating disjoint triples that covéf. This is done in such a way that every agent has exactly
one agent in his/herl/its list, i.e. the fitting part is a coet@lmatching ot/, denoted by\/;. There

is a certain amount of nondeterminism in this step, as thera@mumber of ways this step can be

accomplished.

Finally, thedummy partis obtained by an arbitrary extension of the preference tsensure that

all preference lists are complete. Note that this does motve adding any additional agents. By
putting together the three subinstances — the proper,iadalit and fitting parts — we have con-
structed the complete instanéé The preferences of the agents over partners in differers pa
respect the order in which we defined these parts: the listgbper agent contains the proper
partners first, then the additional partners, and finallydhemy partners; the list of a covered
additional agent contains the additional partners firgntthe dummy partners; the list of an un-
covered additional agent contains the additional partfiests then the fitting partner, and finally

the dummy partners.

Thus we have reduced an instaroef (3, 3)-COM-SMTI to an instancé’ of 3DSM in polynomial

time.

We show that there is a one-to-one correspondence betweeniiplete stable matchings band
the complete strongly stable matchingdpf The stability is preserved via the following one-to-one

correspondence between the complete matchingsaofi complete matchings of:
(ai,bj) eM <— (mi,wj,dj) € Mp

(aiT,bS) eM = (mlw,, d ),(mé{s,w" d ), (m} ¢, ws,ds) € M,

i %i,s0 Yis 2,57 1,8 1,8

(al by) ¢ M < (m} i, dl), (mlswl,,d,) €M,

1,87 Yi,50 Yi,s 2,59 i,50 Yis

Lemma 6.5.1 A complete matching/ of I is stable if and only if the corresponding complete

matching)M,, of I, is strongly stable.

Proof Asamana! cannot belong to a blocking pair i) it may be verified that his corresponding
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copym! cannot belong to a weakly blocking triple Ip either. Therefore, it is enough to show that
a pair(a;, b;) is blocking for M if and only if the corresponding triplen;, w;, d;) is blocking for
M,,. But this is obvious, because the preference lists; @ndm; are essentially the same, and the

preference lists of; andd; are also essentially the samel

Now, given a matchingd/ of I let us create the corresponding matchivigof I’ by adding)M, and

My to My, soM = M, U Mg U My.

Lemma 6.5.2 The instancel admits a complete stable matchidg if and only if the reduced

instancel’ admits a strongly stable matchidg’, whereM’ is the corresponding matching of.

Proof Suppose that we have a complete stable matchihgf 7, and M’ is the corresponding
matching inI’. Lemma 6.5.1 implies that every proper agent has a propéngran M/’ and no
proper triple is weakly blocking. Therefore, no proper agem be involved in any weakly blocking
triple either. Recall thad/; is the union of the unique strongly stable matchings of thiable part.
By construction of)M,, every covered additional agent has an additional parmédi and by
Lemma 6.3.4, no additional triple is weakly blocking. THere, no such agent can be part of
any weakly blocking triple. Finally, every uncovered addigl agent has a fitting partner i,

so these agents cannot form a weakly blocking triple eitsiace an uncovered additional agent
prefers only additional partners to fitting partners, whielmnot be involved in a weakly blocking

triple. HenceM' is strongly stable.

In the other direction, suppose thet' is a strongly stable matching &f. Every proper agent must
have a proper partner, since otherwiseyifhad no proper partner if/’, thenS_g would contain

an additional weakly blocking triple, by Lemma 6.3.3. So teresponding matching/ in I is
complete. The stability of/ is a consequence of Lemma 6.5.1. Finally, we note that thiticwial
agents must be matched in the unique strongly stable way’innamely, the covered additional
agents must be covered by matchimfy, by Lemma 6.3.4, and the uncovered additional agents
must be covered by/; (recall this is the matching created during the fitting pasice otherwise

a fitting triple would weakly block)M’. Therefore, we have a one-to-one correspondence as was

claimed. O

Theorem 6.5.1 Determining the existence of a strongly stable matching miven instance of

3DSMis NP-complete.
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6.6 Conclusion and open questions

The 9-Sun described in Section 6.3 is the smallest example thatanwdind of a 3DSMI instance
with no weakly stable matching. Is there a smaller exampig®d case of strong stability, one can
construct smaller examples (with= 4) that admit no strongly stable matching. However, we have

not found a use for such instances as gadgets for NP-hargroes's.

It is an intriguing question to determine if there exists astance of 3DSM that admits no weakly
stable matching. A natural place to start would be to try tmplete the preference lists of the
9-Sun in a way that does not introduce a weakly stable matchiogvever, we conjecture that this
is not possible. A larger question is whether there is a potyial-time algorithm to find a weakly

stable matching or report that none exists, given an instah8DSM.

It is very uncommon to find a matching problem with preferenice which there is no clear way to
extend a hardness result to complete preference lists¢inviee know of no other such problem).
Could it really be the case that when one attempts to comhetgreference lists of a 3DSMI

instance, one cannot avoid introducing a weakly stable mrag®

6.7 Example

We consider an example reduction from a sim@@g3)-COM-SMTI instancel with five men{a,

as, as, aq, as} and five women{by, be, bs, by, bs}. The instance is given in Figure 6.2. The men
a4 andas have preference lists consisting of a single tie of size gl all the other agents of the
instance have strictly ordered preference lists. Thisimst is a “yes” instance, fal = {(a1,b1),

(ag,b2), (as,bs), (a4,by), (as,bs)} is a complete stable matching for

Even for this small instance, the derived instaritkas a total of 663 agents (221 of each set), and
the sum of the lengths of the preference listd’oéxceeds 100,000. Ideally, we would present all
the details, but constructing a complete example seemgatnitting. We will instead illustrate the
second step of the reduction, which involves creating &latgnber of agents, from the perspective

of just a single agent. For the first step, however, we givenaptete construction.

The result of Step 1 of the reduction is given in Figure 6.3ctEmana; with a strictly ordered

preference list has been transformed into a manwhereas a man; whose preference list is a
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ai - b1 b1 . a2 agz ai
as . by b1 by by : as Qa9

ag . by b1 bs: as

a4 . (b4 b5) b4 .a4 as az
as . (bg b4) bs . a4 a3

Figure 6.2: The given instandeof (3, 3)-COM-SMTI

mi . Wi w1 - d1 d1 oMo m3g mj
mo . W2 w1 Wy wy - d2 d2 .My Mo
ms. Ws w1 ws . dg dg LMy
T . / / . .
m% . U}474 w4’5 W4 . d4 d4 . My My M2
. / / . .
mg 1 Wsg Why ws . ds ds: my mg3
/. / /. ! 1 ! . /i T
Mygq-. Wyy W4 Wyg- Qqq Q49 44+ Mgq My
" . " " Ui ! 1 . / "
Myg- Wyy Wy 4 44 Q44 d4,4 My 4 m%4
/ . / ! . U u ! "

Mys5-. Wys Ws Wy5- Q45 4,5 d4,5 Mys My
" . ! /! . u ! U / "
My s Wy 5 Wy 5 4,5 4,5 d4,5 Mys Mys
m/ . w/ w w/ . ! i ! . m// mT
5,3 - 5,3 3 53+ 053 053 5,3 - 5,3 5
n . ! /! . u ! 1! . ! "
ms5.3 Wsg 3 Wy 3 5,3 5,3 5,3 Mg3 Mg3

/ . U Ui ! "
M5q-. W5y W4 Wk 4 - 5,4 5,4 54+ M54 Mj
" /i " . Ui ! 1 / "
M54 . Wsg Ws 4 54 054 54 - M5q Mgy

Figure 6.3: The proper instance Bfresulting from Step 1 of the reduction

tie has been transformed into a nmf . Each dogd; of the proper instance has been created in
correspondence to the wom@nand the women of the proper instance are created with arprefe
list containing a single dog. The block of agents beginniity w.; , was created in correspondence

to a4, and the block of agents beginning wiﬁrg;,, was created froms.

The numbers of agents created in Step 2, in which wedafidns, is quite large. We illustrate this
step on a single agent, mam;, chosen arbitrarily. Recall that the preference listiof after the

end of Step 1 consists of the womang followed by w .

mz I ows  wyp w3 W w3, 1 ods  dy d3, : ms3, mj,
ms3, . W3y w’32 w3, - d32 é d32 . m3s m§3
ms, © Ws, w_’33 w3, 1 dzy  dj, d3, © my my
my w3, wy o da, 3, - M3
my, L w3, wy, o dg 3, - M3,
mh, 1 ws, wy, 1 dg, b, 1 g

Figure 6.4: Step 2 illustrated on many.
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We now illustrate the notion of theoveredanduncovered agentss described in Step 2 in Section
6.5.1. If we consider mams to be the “third” agent of’, then this9-Sun is the third copy of to
be added td’, and is therefore denotet§. The covered agentSgs, ,,, are denoted by underlining

in Figure 6.4. The uncovered agentss, ,,,, are those in the seftms,, ws,, ws,, dj,, d3, }.

Notice that this particular set of uncovered agents cansisbne man, two women, and two dogs.
When we apply this process to, say, andd;, wherew; andd; are the sixth and eleventh agents of
the proper instance, respectively, we would add the sixthedeventh copies of the-Sun, denoted
S§ andS$t, respectively, td’. The uncovered agentsss, ,,, consist of one woman, two men, and
two dogs. The uncovered agelﬁf§él\d1 consist of one dog, two men, and two women. Thus it is

easy to see that the numbers of men, women, and dogs of thearadagents are equal.

In Step 3, when the fitting part is constructed, we could, f@meple, create three arbitrary triples

from the setd/gz,,,,,. Uss andUgi1 4, , as these sets contain a total of six men, six women, and

\wy?
six dogs. Clearly there are a number of ways in which this eaadzomplished. Any of these ways

will do.

Finally, in Step 4, the dummy part completes the prefereistedf the existing agents by arbitrarily
completing each agent’s preference list in any way that idhi® the rule that the list of a proper
agent contains the proper partners first, then the additfmréners, and finally everyone else; the
list of a covered additional agent contains the additioratrers first, then everyone else; and the
list of an uncovered additional agent contains the additigartners first, then the unique fitting

partner, then everyone else.

We illustrate this process on the proper agent the covered additional agents,, and the uncov-
ered additional agent:;_ in Figure 6.5. Notice the woman* in the list ofms_ — this is the fitting

partner found in Step 3.

m3 . wsw; w3, wy ...0ther proper women ... other womenﬂgw ...allothers ...
ms, 1 ws, wh ...otherwomenirsy ... all others ...
mf, : ws, w*...otherwomenirs; ...all others ...

Figure 6.5: The completion of the preference lists in Step 4



Chapter 7

Popular matchings: structure and

algorithms

7.1 Introduction

We consider the popular matching problem (POP-M) in thérggtif the post allocation problem
(PA). All the relevant concepts and terminology for PA andA”K were introduced in Section
2.3.3. Our goal in this chapter is to characterize the sirecdf the set of popular matchings for
an instance of POP-M. This characterization is in terms of\&hdata structure which we call a
switching graph We will show that this structure can be exploited to enaledesign of efficient
algorithms for a range of extensions of the basic populachiag problem, such as counting and
enumerating popular matchings, generating a popular rmgteiformly at random, and finding
popular matchings that satisfy various additional optitpalriteria. In particular, we improve on
the algorithm of Kavitha and Nasre [60] by showing how minimtaost popular matchings can be
found inO(n 4+ m) time, and rank-maximal and generous popular matchings(inlogn + m)

time (these terms are defined in Section 7.3.5).

7.1.1 Preliminaries

For convenience, a uniquast-resort postdenoted byi(a), is created for each applicant and

placed last oru’s preference list. As a consequence, in any popular majclevery applicant is

123
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matched, although some may be matched to their last-resstt l[dote that this technique was also
used by Abraham et al [5]. Lgt(a) denote the first-ranked post ais preference list; any post that
is ranked first by at least one applicant is calledfgpost Let s(a) denote the first norf-post on
a’s preference list. (Note that(a) must exist, forl(a) is always a candidate fof(a)). Any such

post is called an-post By definition, the sets of -posts and-posts are disjoint.

The following fundamental result, proved in [5], complgteharacterizes popular matchings, and

is key in establishing the structural results that follow.

Theorem 7.1.1 (Abraham et al [5]) A matchingV/ for an instance of POP-M is popular if and
only if (i) every f-post is matched id/, and (ii) for each applicant, M (a) € {f(a), s(a)}.

In light of Theorem 7.1.1, given a POP-M instanteve define theeduced instancef I to be the
instance obtained by removing from each applicéstpreference list every post excepta) and
s(a). Itis immediate that the reduced instancel/ afan be derived frond in O(n + m) time, i.e.,

in time that is linear in the size of the input. Henceforthlegs explicitly stated, it is assumed that
a given instance of POP-M is a reduced instance. For a (rdiligtancel of POP-M, letM be a
popular matching, and letbe an applicant. Denote liy;(a) the post oru’s (reduced) preference
list to whicha is not assigned ifi/. Note that sincd is a reduced instancé),, (a) is well defined.

So, ifa is matched tof (a) in M, thenOys(a) = s(a), whereas itz is matched ta(a) in M, then
Owm(a) = f(a).

Throughout this chapter, we refer to a working example foim&ection 7.5, which illustrates

many of the important concepts surrounding popular magshand their structure.

Example As an illustration of the reduced instance of a POP-M instanonsider the full POP-M
instancel of Figure 7.2 in Section 7.5 with applicanis. .. a;g and post®; ... pis. The reduced
instance off is shown in Figure 7.3. It may be inferred that the matchingwshin Figure 7.3

satisfies the conditions of Theorem 7.1.1, and is thus a popuhtching for this instance.
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7.2 The structure of popular matchings — the switching graph

The key concept that underlies the characterization of thectsire of popular matchings is the
switching grapha directed graph which captures all the ways in which apptE may form differ-
ent popular matchings by switching between the two poste@inteduced preference lists. Given a
popular matching// for an instanced of POP-M, theswitching graphGG; of M is a directed graph
with a vertex for each post, and a directed edgep;) for each applicant, wherep; = M(a)
andp; = Op(a). A vertexw is called anf-post vertex(respectivelys-post vertexif the post it
represents is arfi-post (respectively-post). Each vertex (respectively edge) is labelled with th
post (respectively applicant) that it represents. In fae,refer to posts and vertices 6f; in-
terchangeably, and likewise to applicants and edges,ef A componenbf G, is any maximal
weakly connected subgraph @f,;. An applicant (respectively post) is said toibea component,
or path, or cycle of7,, if the edge (respectively vertex) representing it is in t@nhponent, path

or cycle.

A very similar graph was defined by Mahdian [Lemma 2][71]. Hwer, Mahdian used this struc-

ture solely to investigate the existence of popular matghin random instances of POP-M.

Some simple properties of switching graphs are spelledmailie following lemma.

Lemma 7.2.1 Let M be a popular matching for an instanceof POP-M, and letG,,; be the
switching graph of\/. Then

(i) Each vertex in7y; has outdegree at most 1.

(ii) The sink vertices of7;; are those vertices corresponding to posts that are unmdtahé/,
and are alls-post vertices.

(iii) Each component of7;; contains either a single sink vertex or a single cycle.

Proof (i) A vertexv in G, has an outgoing edge for each applicant who is matchéd o the
post represented hy, and there can be at most one such applicant bedausea matching.

(ii) A vertex has no outgoing edge if and only if it represeatsunmatched post, and by Theorem
7.1.1 (i) any such post is anpost.

(i) This is an easy consequence of (il

Every component of the switching graph is therefore eitheea or a “tree plus one edge”, and
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is called atree componenor acycle componenaccording as it contains a sink or a cycle. Each
cycle inG)y is called aswitching cycleand must have even length, as the posts of such a cycle are
alternatelyf- ands-posts. IfT is a tree component i&',; with sink p, and if ¢ is anothers-post
vertex inT', the (unique) path fromg to p is called aswitching path So each cycle component of
G has a unique switching cycle, but each tree component mayzee or more switching paths;

to be precise it has one switching path for eagbost vertex that it contains, other than the sink
vertex. It is immediate that the cycle components and tregpoments ofy,, can be identified, say

using depth-first search, in linear time.

Example Figure 7.4 of Section 7.5 provides an illustrative examgl¢he switching graph of a
popular matchingV/ in the POP-M instance described in Figures 7.2 and 7.3. Thtetsng graph

of this instance contains one cycle component and two tregoaents.

Let C be a switching cycle of7y;. Toapply C to M is to assign each applicaatin C to Oy (a),
while leaving all other applicants assigned adgin We denote by\/ - C' the matching obtained by
applying the switching cycl€’ to M.

Similarly, let P be a switching path off,;. To apply P to M is to assign each applicantin P
to Oys(a), while leaving all other applicants assigned agin We denote by\/ - P the matching
obtained by applying the switching pathto M. Note that, ifp is the sink vertex inGj; and the
path P begins at vertey, then inM - P, the posip is matched but the postis unmatched (whereas
in M, ¢ is matched ang is unmatched). In general, if we apply a switching cycle oitaving
path that contains the edge representing applieaand this edge connects pagsto postp, then

applicanta is switched from posj to postp as a result.

Note that the switching graph is uniquely determined by di@dar popular matching\/, but
different popular matchings for the same instance yieltediht switching graphs. However, all
switching graphs for an instance of POP-M have the same nuailvertices (one for each post),

and the same number of edges (one for each applicant).

The significance of switching paths and switching cyclesisem emerge in the following theorem.

Theorem 7.2.1Let M be a popular matching for an instandeof POP-M, and let&,; be the
switching graph of\/.
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(i) If C is a switching cycle itz ; thenM - C'is a popular matching fof.
(i) If P is a switching path irG; thenM - P is a popular matching for.

Proof (i) Let M’ = M - C. By Theorem 7.1.1, it is sufficient to argue that (a) evérpost is
matched in)M’ and (b) for each applicant, M'(a) € {f(a),s(a)}. Itis clear, from the cyclic
nature of the reassignments that take place on applginthat each post that is matched A

is also matched in\/’. Hence allf-posts are matched if/’, and condition (a) is established.
Furthermore, each applicamt ¢ C is assigned to the same postliff as inM, and each applicant
a; € C'is assigned t@®,(a;) in M’, which is clearly eitherf (a;) or s(a;), establishing (b).

(if) Condition (b) follows by a similar argument to that of,(since every applicantis still assigned
to either f(a) or s(a) in M - P. Also, the only post that is “vacated” by applyirgis the s-post
corresponding to the initial vertex d. Eachf-post inP is filled by a different applicant, and all

f-posts not inP are filled by the same applicant asif, so that condition (a) is satisfied

Theorem 7.2.1 shows that, given a popular matchihgpr an instancd of POP-M, and the switch-
ing graph ofM, we can potentially find other popular matchings. Our nesp $ to establish that
this is essentially the only way to find other popular matghirMore precisely, we show thatif’

is an arbitrary popular matching fdr then/’ can be obtained from/ by applying a sequence of
switching cycles and switching paths, at most one per compoof GG ;. First we state a simple

technical lemma, the proof of which is an easy consequentteafefinition of the switching graph.

Lemma 7.2.2 Let M be a popular matching for an instandeof POP-M, letG; be the switching
graph of M, and letM’ be an arbitrary popular matching fof. If the edge representing applicant
a in Gy connects the vertexto the vertex, then

() a is assigned te in M;

(ii) if M'(a) # M(a) thena is assigned t@ in M’.

Lemmas 7.2.3 and 7.2.4 deal with switching cycles and swi¢chaths respectively.

Lemma 7.2.3 Let M be a popular matching for an instandeof POP-M, letT be a cycle compo-
nent with cycleC' in the switching graph,; of M, and letM’ be an arbitrary popular matching
for 1.

(i) Either every applicantz in C has M’(a) = M(a), or every such applicant has M'(a) =
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On(a).
(i) Every applicanta in T' that is not inC hasM'(a) = M (a).

Proof (i) Let a;y,...,a;_, be the sequence of applicantsdh and suppose that/’(a;;) #
M (a;;) for somea;, in C. Then, by Lemma 7.2.2;;, must be assigned inf’ to Om(ai;) =
M(a;,; ) (Wwherej + 1 is taken mod). It follows thata;, , must also be assigned to a different
post in)M’ as compared td/, and that this post must W@y, (a;,,,) = M(a;,,,) (Wherej + 2 is
taken modr). Inductively, this implies that every applicant @ is assigned different posts il
and M’ if any one of them is.

(i) Suppose, for a contradiction, that an applicantvho is in 7" but not in C' has M’'(a) #
M(a). Let the sequence of distinct edges on the path’ithat begins with edge be (a =
)aj,,-..,aj, ... a;, wherea;, is the last edge in this path that is not in the cy€le Then, by
an argument similar to that in (i) above, we must hav&a;,) = M(aj,, ). But, by the same rea-
soning, we must hav&/’(a;,) = M(aj,.,), since the edge;, ., follows the edge:;, in the cycle.
This implies that a particular post, namely(a;, , , ), has two applicants;;, anda;,, assigned to it

in M’, a contradiction. O

Lemma 7.2.4 Let M be a popular matching for an instanéeof POP-M, letT’ be a tree component
in the switching graphz,; of M, and letM’ be an arbitrary popular matching fof. Then either
every applicantz in T hasM'(a) = M(a), or there is a switching patt® in 7" such that every
applicanta in P hasM’(a) = Oys(a) and every applicant in 7' that is not inP has M’(a) =
M(a).

Proof Suppose thad/’(a) # M(a) for some applicant in 7. By an argument similar to that of
part (i) of Lemma 7.2.3, the same must be true of every applioa the path fromu to the sink
vertex of G ;. Suppose that two applicantsThwhose edges have a common end point,jsare
both matched to different posts i’ as compared td/. Then, by Lemma 7.2.2, both would have
to be assigned id/’ to p, a contradiction. Hence the applicantsZinvho are assigned different
posts inM and M’ form a path ending at the sink vertex. Moreover, this pathtrbagin at an
s-post vertex, otherwise thé-post at the start of the path would be unfilledliff, contradicting

Theorem 7.1.1, so the path is a switching path.

Suppose thad/ is a popular matching for an instanéef POP-M, and thaf” and7” are distinct
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components of the switching graphy, of M. If we apply the switching cycle i (if T is a
cycle component) or a switching pathn(if T" is a tree component) to obtain a different popular
matching, then the assignments of the applicanfg’iare unaffected. Hence, the compon&his
present in the switching graph corresponding to the new mirggc Intuitively, this means that the
application of switching cycles and paths are independertgsses when in different components

of the switching graph. This notion of independence is aagtin the following lemma.

Lemma 7.2.5LetT and 7’ be components of a switching gragh,; for a popular matchingV/,
and letQ) be either the switching cycle (if is a cycle component) or a switching pathqiis a tree

component) irf". Then,I” is a component in the switching grag.¢.

We can now characterize fully the relationship between amygopular matchings for an instance

of POP-M.

Theorem 7.2.2 Let M and M’ be two popular matchings for an instanéeof POP-M. Then\/’
may be obtained fromd by successively applying the switching cycle in each of aetudf the cycle
components offy; together with one switching path in each of a subset of thee¢mmponents of

G-

Proof We describe a procedure for obtaining’ from M in a way that will establish the claim.
By Lemma 7.2.5, we can describe this procedure in terms skjarate effect on each component

of the switching graph.

For each cycle componefit of G, we know by Lemma 7.2.3 that either the applicanta T all
have M (a) = M'(a), or those applicants in the unique cycle®ohave M’ (a) = Ops(a). In the
former case, we leav&€ unchanged, and in the latter case, we apply the switchinkg igd’, so

that every applicant in T’ becomes matched o/’ (a).

For each tree componefit of Gj;, we know by Lemma 7.2.4 that either every applicarin 7"
hasM(a) = M'(a), or there is a single switching patf in 7" such that every applicant; in
P hasM'(a;) = On(a;), and all applicants, in 7" but not in P must haveM (ay,) = M’(ay).
Hence, by applying®, every applicant in 7" is matched taV/’(a). Thus we obtaim/’ from M

by successively applying at most one switching cycle pelecgomponent ofy,,, and at most one
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switching path per tree component @f,;. Moreover, the order in which these switching cycles

and paths are applied is arbitrari

An immediate corollary of this theorem is a characterizaid the set of popular matchings for a

POP-M instance.

Corollary 7.2.1 Let] be a POP-M instance, and I&t be an arbitrary popular matching fafF with
switching graphG,. Let the tree components 6fy; be X1, ..., X, and the cycle components
of Gas beYy, ..., Y. Then, the set of popular matchings fbronsists of exactly those matchings
obtained by applying at most one switching pattXinfor eachi (1 <i < k) and by either applying

or not applying the switching cycle i¥j for eachi (1 <i <.

Example Taken all together, the figures and textual description@éttample in Section 7.5 contain
a POP-M instance, its reduced instance, the switching gophparticular popular matching/,
and an indication of how the application of switching pathd aycles leads to different popular

matchings with different, but closely related, switchingghs.

7.3 Algorithms that exploit the structure

In this section we show how the characterization of the sirecof the set of popular matchings
for an instance of POP-M allows the construction of efficialgorithms to solve a number of
extensions of the basic problem, namely to compute the nuoflEpular matchings, to generate
a popular matching uniformly at random, to enumerate thefsall popular matchings, to find all

applicant-post pairs that can occur in a popular matching,ta find popular matchings that are

optimal in one of a number of natural ways.

Each of these algorithms begins in the same way — by conistguitte reduced instance, finding an
arbitrary popular matching/ (if one exists) with the (n+m) time algorithm given by Abraham et

al [5], building the switching grapt¥,, and identifying the cycle components and tree components
of this graph using, say, depth-first search. Clearly alhef tan be achieved i@(n + m) time,
wheren is the number of applicants and posts ands the sum of the lengths of the original
preference lists, in other words in time that is linear in itmgut size. This sequence of steps is

referred to as thpreprocessing phase
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7.3.1 Counting popular matchings

Recall that a tree component havipg-posts has exactly — 1 switching paths. For a tree com-
ponentX;, denote byS(X;) the number ok-posts inX;. The following theorem is an immediate

consequence of Corollary 7.2.1.

Theorem 7.3.1 Let] be a POP-M instance, and I8t be an arbitrary popular matching faf with
switching graph(z;,. Let the tree components 6f; be X1, ..., X, and the cycle components of

G b