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Abstract

The research involves the development of a discrete lattice approach for modelling heat

transfer, which can be an attractive alternative to other numerical approaches, such as

the �nite element method. In this work, the spatial arrangement of the lattice elements

is determined by the Delaunay triangulation and the Voronoi tessellation. The objective

of the present work is to investigate in more detail this type of lattice model for heat

transfer.

In the lattice models studied here the domain to be analysed is discretised by a network

of discrete lattice elements. The spatial arrangement of these elements is determined by

connecting nodes placed within the domain. There are two methods to determine the

connections between the nodes in the domain. In the �rst one, the connections are de�ned

as the edges of the Delaunay triangulation. In the second method, the nodes are de�ned

by the edges of Voronoi cells, based on a Voronoi tessellation of the domain. These

connections de�ne the arrangement of the pipe elements, which are used to perform the

heat transfer analysis. The cross-sections of the pipe elements for the two approaches

are chosen in several di�erent ways to be consistent with the discretisation approach.

It was shown that with this approach, analytical solutions could be represented accu-

rately. Several stationary and non-stationary heat transfer problems were analysed. The

performance of the two approaches was evaluated by comparing the numerical results

with analytical solutions. Both temperature and �ux distributions were studied.

2



Contents

1 Introduction 12

1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 The lattice method for heat transfer 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Governing equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Discretised governing equation . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Steady state problems . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Transient problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Discretisation approaches 21

3.1 Random point generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Lattice generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Cross-sectional area of lattice element . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Voronoi and Delaunay scaling . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Average cross-sectional area . . . . . . . . . . . . . . . . . . . . . . 25

3.3.3 Centroidal method . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Flux calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3



Contents

4 Results and discussions 31

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Steady state analyses of a homogeneous square domain . . . . . . . . . . . 31

4.2.1 Voronoi scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 Delaunay scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.3 Centroidal scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.4 Constant cross-sectional area . . . . . . . . . . . . . . . . . . . . . 40

4.3 Transient analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 E�ect of boundary layer on accuracy . . . . . . . . . . . . . . . . . . . . . 45

4.5 Steady state analyses of homogeneous domain with isolated inclusion . . . 51

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Conclusions and suggestions for future studies 57

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Suggestions for future studies . . . . . . . . . . . . . . . . . . . . . . . . . 58

Appendix 61

4



Nomenclature

∆t Time increment

` Length of domain

ωi Eigenvalue of the ith mode of the system

ρ Density

ρp Density of points

Ai Area calculated from the Voronoi or Delaunay scaling

C Speci�c heat capacity

C1, C2 Centroid of Delaunay triangle

k Lattice element conductivity

md Minimum distance

n Number of lattice elements.

PI Number of nodes inside the domain

q Flux

r Inclusion radius

T Temperature

5



Contents

t Total time of the analysis
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1 Introduction

The �eld of computational mechanics continues to develop rapidly, largely as a re-

sult of the unprecedented success of the Finite Element Method (FEM) and the ever

increasing availability of computational resources. Scientists and engineers are now able

to investigate extremes of size and condition, beyond the range of physical experiments,

through the development and use of so-called virtual laboratories. Despite the success of

the FEM, there are a number of alternative computational approaches for the analysis

of materials and structures that have proved successful in speci�c situations and warrant

further consideration.

The motivation for this work is the study of heterogeneous materials, through the

development of appropriate and e�cient computational tools, in order to simulate the

interaction of mechanical behaviour with other physical phenomena, such as heat transfer.

The macroscopic response of heterogeneous materials can be investigated by considering

the in�uence of processes on the �ne scales. However, the FEM may not be the best

candidate to solve such problems, since it can struggle to deal with displacement discon-

tinuities and material interfaces without a highly adapted mesh or the introduction of

an enrichment technique. A promising alternative is the lattice approach and this is the

subject of this thesis.

Within the context of the analysis of multiple physical process, this work focuses on

an investigation of the suitability of the lattice approach for modelling heat transport. In

the past, discrete lattice models have been used for analysing various physical problems.
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1 Introduction

For concrete, lattice models have shown to be capable of describing complex fracture

patterns [10, 14, 6, 3, 9]. Furthermore, mass transport can be described by a lattice of

conduit elements, which can be linked to the structural lattice to couple fracture and

transport processes [5, 13]. A special type of lattice model for the mechanical response

and mass transport was proposed recently, which provides mesh-independent and accu-

rate descriptions of basic aspects of the continuum response [4, 2]. In this approach, the

cross-sections of structural and transport elements are determined from the Voronoi tes-

sellation of random nodes placed in the structural domain. This modelling approach was

further developed to describe the interaction of transport along discrete cracks and the

surrounding material by introducing an additional lattice of transport elements [15, 11].

An alternative approach with only one lattice for both the intact material and the cracks

was developed by P. Grassl [7] for two dimensions and extended to three dimensions by

P. Grassl and J. Bolander[8].

In solving a continuum mechanics problem, the FEM utilises a discretisation of the

domain into a �nite number of continuum elements (e.g. triangles or quadrilaterals in

2D). In contrast, the lattice method utilises a lattice of simple line elements: truss or beam

elements for mechanical problems; pipe elements for heat transfer problems. Therefore,

the formulation for the lattice method is relatively straightforward but its e�ectiveness

for solving heat transfer problems requires further investigation. The focus of this work

is to investigate various discretisation techniques for the lattice method.

1.1 Outline

The thesis is organised as follows. Chapter 2 will introduce the lattice method and

present the formulation for solving both steady-state and transient heat transfer prob-

lems. Chapter 3 will focus on two discretisation methods that have been investigated in

detail. The �rst is based on a Delaunay triangulation of the domain under consideration

13



1 Introduction

and the second is based on the associated Voronoi tessellation. In order to accurately

reproduce the continuum solution, this discrete approach relies on an accurate geomet-

ric scaling of the individual line elements. Di�erent scaling techniques are presented

in Chapter 3. Chapter 4 presents numerical results for both steady-state and transient

problems and discusses the results obtained with the di�erent discretisation and scaling

techniques presented in Chapter 3. Chapter 5 draws conclusions and discusses future

research directions.
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2 The lattice method for heat transfer

2.1 Introduction

The lattice approach was used to solve steady state and transient heat transfer anal-

yses in the research carried out. In the modelling of a heterogeneous material such as

concrete, the assignment of di�erent material properties to each lattice element can be

easily achieved. Moreover the lattice approach has already been shown to be a reliable

alternative in the modelling of elasticity and fracture mechanics [3]. Various approaches

for discretisation of the domain are discussed in the next chapter. Here attention is

focused on the discretised system of equations.

2.2 Governing equation

The domain is discretised into a network of lattice elements, each one considered to be

a one dimensional pipe that conducts heat. More details on the discretisation is given in

the next Chapter. The one dimensional governing partial di�erential equation for heat

transfer is given by

ρC
∂T

∂t
= −dq

dξ
+Q (2.1)

where T is the temperature, ρ is the material density, C is the speci�c heat capacity,

15



2 The lattice method for heat transfer

t is time, Q is the volumetric heat generation per unit volume per unit time and q is the

heat �ux in direction ξ.

The formulation is completed by inclusion of Fourier's law, which is a relationship

between the gradient of temperature and the heat �ux - known as the thermal constitutive

equation. The Fourier law is a linear relationship given as:

q = −kdT
dξ

(2.2)

where k is the material thermal conductivity. Substituting of Fourier's law into Eq 2.1,

gives the governing equation in terms of temperature:

ρC
∂T

∂t
= k

d2T

dξ2
+Q (2.3)

2.3 Discretised governing equation

Consider a single lattice element, see Figure 2.1, de�ned by nodes i and j. The unknown

nodal temperatures are Ti and Tj and the temperature in each lattice element is assumed

to vary linearly between these nodal values as:

T (ξ) =
1
2

((Tj − Ti) ξ + Ti + Tj) (2.4)

where ξ is a local coordinate, varying from ξ = −1 at node i to ξ = +1 at node j.

Applying the standard Galerkin weighted residual approach, the discrete form of

Eq 2.5 [12] is:

KT + CṪ = f (2.5)

where K is the lattice element conductivity matrix, C is the capacitance matrix, f is

the �force� vector and T = (Ti Tj)
T is the vector of nodal temperatures:

16



2 The lattice method for heat transfer

Figure 2.1: Lattice element.

K =
KA

L

 1 −1

−1 1

 , C =
ρCA

12

 2 1

1 2

 , f =

 −qiA
−qjA

 (2.6)

Here, A is the element cross-sectional area, L is the element length and qi and qj are

the prescribed nodal �uxes at nodes i and j, respectively. Local heat sources/sinks have

been ignored for simplicity, i.e. Q = 0.

2.3.1 Steady state problems

The steady state form of Eq 2.5 is derived by removing the time dependence as:

KT = f (2.7)

This system of linear algebraic equations, together with appropriate boundary condi-

tions, can be solved using standard equation solvers.

2.3.2 Transient problems

For a given time interval ∆t = tn+1 − tn the temperature at time t is de�ned via a

linear interpolation:
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2 The lattice method for heat transfer

T (t) = θTn+1 + (1− θ)Tn (2.8)

where Tn and Tn+1 are the temperatures at the beginning and end of the time interval

and

θ =
1

∆t
(t− tn) (2.9)

which lies in the interval 0 < θ < 1.

Therefore the temperature rate is given as:

Ṫ =
1

∆t

(
Tn+1 − Tn

)
(2.10)

Substitution of this approximation into Eq 2.5, yields:

K
(
θTn+1 + (1− θ) Tn

)
+

1
∆t

C
(
Tn+1 −Tn

)
= f (2.11)

From this �nite di�erence approximation there are a number of possibilities:

1. Forward di�erence, corresponding to t = tn and θ = 0 :

C Tn+1 = (C−4tK) Tn +4t fn (2.12)

2. Backward di�erence, corresponding to t = tn+1 and θ = 1 :

(C +4tK) Tn+1 = C Tn +4tfn (2.13)

3. Central di�erence, corresponding to t = tn + 1
2∆t and θ = 0.5 :

C Tn+1 = C Tn−1 − 24tK Tn + 24t fn (2.14)

18



2 The lattice method for heat transfer

4. In general, Eq 2.11 is rearranged as follows to give the θ −Method:

(C + θ4tK) Tn+1 = (C− (1− θ)4K) Tn +4tfn (2.15)

To solve transient analyses using any of these methods, appropriate initial conditions

must be de�ned at time t = 0. In addition, solution stability must be considered.

Considering the generic θ−Method, the following conditions must be satis�ed to ensure

stability [12]:

|λ| < 0

where, λ = (1 − (1 − θ)4tωi)/(1 + θ4tωi) and,ωi is the eigenvalue of the ithmode of

the system which is equal to ωi = ki/mi.

Since 4t ≥ 0 and ωi ≥ 0 and 0 ≤ θ ≤ 1, λ < 1. Therefore, stability is given if,

λ > −1

As a result, the stability requirement is:

(1/2)ωi4t (1− 2θ) < 1 (2.16)

For θ ≥ 1/2, the solution is unconditionally stable. But when 0 ≤ θ < 1/2, stability is

conditional on the following being satis�ed:

ωi4t <
2

1− 2θ
(2.17)

If θ = 0, the stability requires a time step limitation, i.e.

4t < 2
ωi

(2.18)
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2 The lattice method for heat transfer

In the transient analyses presented in the next Chapter, θ = 0, i.e. backward di�erence

scheme, is adopted.

2.4 Discussion

In this chapter the numerical formulation for both steady state and transient heat

transfer analysis used in this thesis was presented. This formulation was implemented into

a MATLAB code for analysing 2D problems. Chapter 3 will describe the discretisation

approaches investigated.
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3 Discretisation approaches

This chapter describes the di�erent approaches used to discretise the domain, which

will be investigated in subsequent chapters. In all examples under consideration, a square

domain is adopted.

3.1 Random point generation

For all discretisation approaches investigated, the domain was �rst populated with

randomly generated nodes. To specify the number of nodes in the domain, two param-

eters are required. The �rst parameter is the density ρp of nodes placed in the domain,

where 0 < ρp < 1. If the density is low, this will result in a coarse distribution of nodes,

with less nodes in the domain. The second parameter required is the minimum distance

between the nodes md. These two parameter are used to control the number of nodes

and uniformity of the point arrangement, as explained later in this chapter.

To ensure that nodes were appropriately placed to enforce the boundary conditions

correctly, corner and boundary nodes were generated separately before the interior nodes.

Furthermore, the spacing of nodes at the edge of the domain was less than in the interior

of the domain, to ensure a well constructed Voronoi tessellation.

The number of nodes generated in the domain interior PI is given as:

PI =
`2ρp

m2
d

(3.1)
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3 Discretisation approaches

(a) (b)

Figure 3.1: Point distribution method: (a) Quasi-uniform point distribution, (b) Non-
uniform point distribution.

Here, ` is the side length of the square domain and md is the minimum distance

between generated nodes.

For all analyses of the homogeneous medium, the number of nodes and side length were

kept constant PI = 200, ` = 1. Two levels of uniformity were considered to investigate

the in�uence of the randomness of the nodes arrangements:

1. Quasi-uniform distribution, where md = 0.05 and ρp = 0.5 (Figure 3.1a).

2. Non-uniform distribution, where md = 0.0316 and ρp = 0.2 (Figure 3.1b).

For the generation of the nodes, random coordinates for each new node were generated

by a MATLAB code. Before each new node was accepted, the distance to all existing

nodes was �rst checked. If the distance was smaller than the minimum distance, the new

node was rejected. Such a procedure requires a very large number of trial nodes to reach

the desired point density. The maximum number of iterations was set equal to 1× 107.

3.2 Lattice generation

Following the population of the domain by randomly generated nodes, two discretisa-
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3 Discretisation approaches

tion techniques are investigated for de�ning the lattice elements:

1. Delaunay triangulation

2. Voronoi tessellation

A Delaunay triangulation for a set of nodes is a triangulation such that no point lies

inside the circumcircle of any of the triangles. Delaunay triangulation maximises the

minimum angle of all the angles of the triangles in the triangulation. An example of the

Delaunay triangulation, corresponding to the nodes shown in Figure 3.1a, is shown in

Figure 3.2. The edges of the Delaunay triangles de�ne the lattice elements. From this

point forward this is called Delaunay discretisation.

Voronoi tessellation is the geometric dual of Delaunay triangulation, such that each of

the Delaunay triangles' edges are bisected with a perpendicular line and the connection

of these lines represent the Voronoi tessellation. Figure 3.3 shows the Voronoi polygons

corresponding to the nodes in Figure 3.1a. The edges of these Voronoi polygons de�ne

an alternative set of lattice elements. From this point forward this is called Voronoi

discretisation.

3.3 Cross-sectional area of lattice element

The lattice discretisation is completed by de�nition of the cross-sectional area of each of

the lattice elements. Several de�nitions were investigated and presented in the following

chapter.
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3 Discretisation approaches

Figure 3.2: Delaunay domain discretisation for a set of nodes placed in the domain.

Figure 3.3: Voronoi domain discretisation for a set of nodes placed in the domain.
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3 Discretisation approaches

Figure 3.4: Voronoi scaling: De�nition of the cross-sectional area of a lattice element
determined by Delaunay discretisation.

3.3.1 Voronoi and Delaunay scaling

Two methods were used to de�ne the cross-sectional area of the lattice elements for

Delaunay and Voronoi discretisation. For the Delaunay discretisation, the cross-sectional

area (assuming unit out-of-plane dimension) was de�ned as the corresponding length of

the Voronoi polygon edge, as shown in Figure 3.4. This approach is called Voronoi

scaling and was proposed by Bolander [2].

For the Voronoi discretisation, the cross-sectional area of the lattice element is deter-

mined by the length of the corresponding edge of the Delaunay triangle, as shown in

Figure 3.5. This approach is called Delaunay scaling.

3.3.2 Average cross-sectional area

As a simpler alternative to the previous de�nitions, this approach assigns a constant

cross-sectional area to all lattice elements and was used for both the Delaunay and
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3 Discretisation approaches

Figure 3.5: Delaunay scaling: De�nition of the cross-sectional area of a lattice element
determined by Voronoi discretisation.

Voronoi discretisation. For the Delaunay discretisation the constant cross-sectional area

is determined as the average of all cross-sectional areas determined by the Voronoi

scaling. The average cross-sectional area of all the lattice elements is given as:

A =
∑n
i=1Ai
n

(3.2)

where Ai is the area calculated from Voronoi scaling and n is number of lattice elements

in the domain. A similar strategy is adapted for Voronoi discretisation.

3.3.3 Centroidal method

A further alternative approach was used to describe the cross-sectional area of lattice

elements determined by the Delaunay discretisation. To understand this method, con-

sider two neighbouring Delaunay triangles, Figure 3.6. First the triangles' centroids C1

and C2 are calculated. To calculate the cross-sectional area of element AB the centroids
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are connected to the edges of the elements constructing the lines AC1, AC2, BC1 and

BC2. The cross-sectional area will be presented by the summation of the triangles area

ABC1 and ABC2 divided by the length of element AB. Then multiplied by the specimen

thickness (Eq 3.3, 3.4).

A∗ =
AABC1 +AABC2

LAB
(3.3)

Ea = A∗th (3.4)

If element AB lies on the edge of the specimen as shown in Figure 3.6, the cross-

sectional area will be determined by the area of triangle ABC1 divided by the length of

AB.

A∗ =
AABC1

LAB
(3.5)

Ea = A∗th (3.6)

In summary four scaling techniques have been presented for determining the cross-

sectional area of the lattice elements:

1. Voronoi scaling for Delaunay triangulation.

2. Delaunay scaling for the Voronoi tessellation.

3. Average cross-sectional area.

4. Centroidal method for the Delaunay triangulation.

3.4 Flux calculation

Once the system of equations have been solved to determine the temperature distri-

bution in the lattice network, it is also helpful to be able to plot the nodal heat �uxes.
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3 Discretisation approaches

Figure 3.6: A section of Delaunay triangulation showing the cross-sectional area based
on the centroidal method.

The method used follows that presented by Bolander [2] for a Delaunay discretisation.

For a given point, �rst the associated Voronoi polygon is identi�ed and a cutting plane

is connected through the point. The left side of the plane is de�ned as positive and the

right side as negative. The plane is rotated through an angle θ starting from 0 to 360◦ as

shown in Figure 3.7. For each angle of rotation, a weighting factor Ri is calculated. There

are three possible cases to be considered in calculating Ri for each angle of rotation:

1. Ri = 1 if both vertices of the Voronoi cell edge are located on the positive side of

the cut.

2. Ri = 0 if both vertices of the Voronoi cell edge are located on the negative side of

the cut.

3. 0 < Ri = ai/bi < 1 if one of the Voronoi cell edges is located on the negative side

and the other is located on the positive side. Here, bi is the length of the Voronoi cell

edge which is divided by the cut and ai is the length of the Voronoi cell edge segment

which is located on the positive side.
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3 Discretisation approaches

Figure 3.7: Flux calculation for a Delaunay element node.

After calculating the weighting factor, the net �ow Qθ for the cut face is calculated by,

Qθ =
n∑
i

RiQi (3.7)

where Qi is the �ux in a lattice element and n is the number of facets in the associated

Voronoi cell.

The �ux is calculated by dividing the net �ow Qθ by the area of the cut face Aθ,

qθ =
Qθ
Aθ

(3.8)

This procedure will be repeated for each increment in θ. The maximum calculated qθ

is presented as the nodal �ux.

3.5 Discussion

In this chapter the di�erent lattice discretisation approaches were described. They

were divided into two approaches, Delaunay discretisation and Voronoi discretisation.
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3 Discretisation approaches

When using the Delaunay discretisation, lattice elements were represented by the edges

of the Delaunay triangles. For Voronoi discretisation approach, the lattice elements were

represented by the edges of the Voronoi polygons. The open Voronoi polygons on the

edge of the domain were modi�ed so that, where the end of an element was unde�ned,

it was relocated onto the domain edge.

Moreover, various de�nitions for the lattice element cross-sectional area were described

and the performance of these various methods are examined in the next chapter.
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4 Results and discussions

4.1 Introduction

Until now, the lattice modelling approach and di�erent lattice discretisation strategies

were discussed in Chapters 2 and 3, respectively. In the present chapter, the capabili-

ties of the di�erent techniques are studied by analysing steady state and transient heat

transfer problems for homogeneous and heterogeneous materials. The accuracy of the

di�erent discretisation strategies is assessed by comparing the numerical results with an-

alytical solutions for several benchmark tests. The di�erences between the numerical and

analytical solution are presented by several error norms.

4.2 Steady state analyses of a homogeneous square domain

In the �rst example, steady state heat transfer analyses of a homogeneous square

domain are performed. The geometry of the domain is shown in Figure 4.1. The left and

right hand side of the domain were subjected to temperatures of T = 0 and T = 1 as

illustrated in Figure 4.1. The exact solution for this steady state heat transfer problem

is

Te(x) =
x

`
(4.1)

where x is the coordinate in horizontal direction, Te(x) is the temperature distribution in
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4 Results and discussions

Figure 4.1: Domain geometry and boundary condition.

x-direction and ` is the length of the domain, which was chosen as ` = 1 in all analyses.

The domain was assumed to be made of a homogeneous material with physical prop-

erties as shown in Table 4.1.

Table 4.1: Properties of the domain

Parameters Values

ρp quasi-uniform 0.5
ρp non-uniform 0.2
md quasi-uniform 0.05
md non-uniform 0.0316

k 1
PN 292

Initially, boundary conditions were imposed only at the left and right hand side of

the domain according to the values T = 0 and T = 1 respectively. However, with this

approach the exact solution could not be represented accurately because lattice elements

close to the boundaries introduced an error into the numerical solution as discussed in

Section 4.4. Therefore, the temperatures of all nodes located in a boundary layer along
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4 Results and discussions

Figure 4.2: Delaunay domain discretisation based on a quasi-uniform point distribution.

the edges were prescribed according to the exact solution in Eq 4.1. The thickness of

this boundary layer was set to 0.15 `.

All the analyses are based on Delaunay and Voronoi discretisations for two random

point arrangements as shown in Figure 3.1a and 3.1b. The Delaunay and Voronoi dis-

cretisations for these random point generations are shown in Figure 4.2 to 4.5.

The numerical solutions associated with the two di�erent discretisation techniques and

the various techniques for calculating the cross-sectional area are presented.

4.2.1 Voronoi scaling

The results presented in this section were obtained for the two lattices shown in Fig-

ures 4.2 and 4.4, which are based on Delaunay discretisation and Voronoi scaling to

determine the cross-sectional area of the lattice element (Section 3.3.1). The results

of the numerical analyses for the uniform and non-uniform lattices are shown in Fig-

ure 4.6 and 4.7, respectively, in the form of the temperature distribution along the x-
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4 Results and discussions

Figure 4.3: Voronoi domain discretisation based on a quasi-uniform point distribution.

Figure 4.4: Delaunay domain discretisation based on a non-uniform point distribution.
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Figure 4.5: Voronoi domain discretisation based on a non-uniform point distribution.

direction in the middle of the domain (y = 0.5). The agreement between the numerical

and analytical results appears to be very good. To investigate the possible di�erence

between the two solutions in more detail, the results are evaluated by the error norms

which are de�ned in Eq. (4.2) and (4.3):

L1 =
∑ | Tai − Tni |

| Tai | PN
(4.2)

L2 =
∑

(Tai − Tni)2∑
T 2
ai

(4.3)

Here, Ta is the analytical solution and Tn is the numerical solution.

For the quasi-uniform lattice, the errors computed from the analytical and numerical

solutions are L1 = 5.6425× 10−16 and L2 = 6.3704× 10−16. For the non-uniform lattice,

the error norms are L1 = 3.2273× 10−16 and L2 = 5.1397× 10−16.

The small error norms indicate that the agreement between the results is very good

and that, even for a non-uniform lattice, the lattice approach performed very well.
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Figure 4.6: Comparison of numerical and analytical solution for a quasi-uniform lattice.

Figure 4.7: Comparison of numerical and analytical solution for a non-uniform lattice.
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Figure 4.8: Comparison of numerical and analytical solution for a quasi-uniform lattice.

4.2.2 Delaunay scaling

The second approach to determine the cross-sectional area of the lattice elements is

the Delaunay scaling (Section 3.3.1). For the Delaunay scaling, the lattice elements

are generated by the Voronoi discretisation. This scaling approach was tested for a

uniform and a non-uniform point distribution (Figures 4.3 and 4.5). Again, the results

are presented in the form of the temperature distribution along the x-direction in the

middle of the domain (y = 0.5) in Figures 4.8 and 4.9. In addition, the error norms

were computed. For the uniform mesh (Figure 4.3), L1 = 9.0141 × 10−16 and L2 =

1.0594 × 10−15. For the non-uniform mesh (Figure 4.5) the nodal temperature error

norms were L1 = 3.6698 × 10−15 and L2 = 7.9849 × 10−15. Similar to the Voronoi

scaling, the Delaunay scaling results in a very accurate approximation of the analytical
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Figure 4.9: Comparison of numerical and analytical solution for a non-uniform lattice.

solution.

4.2.3 Centroidal scaling

The third scaling approach is based on the centroidal method, which was described in

Section 3.3.3. This scaling method applies only to lattices generated by the Delaunay

discretisation. The temperature distribution obtained from the numerical solution with

this scaling approach is compared to the analytical solution in Figure 4.10 and 4.11 for

the quasi-uniform and non-uniform lattice, respectively. For the quasi-uniform mesh,

the error norms were determined to L1 = 0.0248 and L2 = 0.01436. On the other

hand, for the non-uniform mesh the error norms were determined to L1 = 0.027487 and

L2 = 0.017975. It can be seen that this centroidal scaling approach does not result in a
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Figure 4.10: Comparison of numerical and analytical solution using the centroidal
method for a quasi-uniform lattice.

Figure 4.11: Comparison of numerical and analytical solution using the centroidal
method for a non-uniform lattice.
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Figure 4.12: Comparison of numerical and analytical solution using a constant cross-
sectional area for a quasi-uniform lattice based on the Delaunay discretisa-
tion.

good approximation of the analytical solution.

4.2.4 Constant cross-sectional area

In the last method, the cross-sectional area of the lattice elements is set to a constant

value, which is chosen to be the average cross-sectional area of all lattice elements in the

domain (Section 3.3.2). This approach is applied to the Delaunay and Voronoi discreti-

sation for a non-uniform and a quasi-uniform mesh. For the Delaunay discretisation,

the results obtained from the numerical analysis with a constant cross-sectional area

are shown in the form of the temperature distribution in x-direction in the middle of

the specimen (y = 0.5) in Figures 4.12 and 4.13 for the quasi-uniform and non-uniform

mesh, respectively. In addition, the two error norms are determined for the two meshes.

For the quasi-uniform mesh, L1 = 0.009792 and L2 = 0.015180. For the non-uniform
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Figure 4.13: Comparison of numerical and analytical solution using a constant area for
a non-uniform lattice based on the Delaunay discretisation.

mesh, L1 = 0.009241 and L2 = 0.012967.

For the Voronoi discretisation, the temperature distributions are shown in Figures 4.14 and 4.15.

The error norms are determined to L1 = 0.005337 and L2 = 0.006852 for the quasi-

uniform mesh and L1 = 0.008688 and L2 = 0.0012163 for the non-uniform mesh. The

results show that the use of a constant cross-section does not lead to a good approxima-

tion of the analytical solution.

The poor results using both this scaling technique and the centroidal method indicates

that correct scaling of the cross-sectional area is critical if the lattice approach is to be

successful.

4.3 Transient analyses

In this section, transient analyses based on the theory described in Section 2.3.2 are

performed for the square domain introduced in the previous section. It was observed that
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Figure 4.14: Comparison of numerical and analytical solution using a constant area for
a uniform lattice based on the Delaunay discretisation.

Figure 4.15: Comparison of numerical and analytical solution using a constant area for
a non-uniform lattice based on the Voronoi discretisation.
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only Delaunay and Voronoi scaling result in an accurate approximation of the analyti-

cal solutions for the steady-state analysis performed. Therefore, these two approaches

are used in this section for the transient analyses based on the θ-method described in

Section 2.3.2. Two benchmark tests were used to study the performance of the lattice

approach for transient analyses. The same quasi-uniform and non-uniform nodes distri-

bution is used for the discretisation of the domain. For both tests, the properties of the

lattice elements were chosen according to the values shown in Table 4.2.

Table 4.2: Properties of the domain

Parameters Values

ρ 1
C 1
k 1
θ 0.9
t 1.2

∆t 0.001

where, ρ is the element density, C is the speci�c heat capacity of the element, t is the

total time of the analyses and ∆t is the increments of each time step.

The two benchmark tests di�er in their initial conditions. In the �rst benchmark test,

the initial condition for all nodes was T = 0 at time t = 0. For t > 0, the temperatures

at the nodes on the left and right hand side of the domain were set to 0 and 1, respec-

tively. The �rst set of analyses was performed using the Delaunay discretisation and

Voronoi scaling for the cross-sectional areas. The results are shown as the temperature

distribution along the x-axis in the middle of the specimen (y = 0.5) in Figure 4.16 for

the quasi-uniform and non-uniform point distribution.

The behaviour is very similar for both the quasi-uniform lattice and the non-uniform

lattice. With increasing time, the temperature in the domain increases until the lin-

ear temperature distribution, which is the steady-state limit presented in the previous

section, is reached.

The second set of analyses was performed using the Voronoi discretisation with Delau-
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(a)

(b)

Figure 4.16: Temperature distribution along in the x-direction for y = 0.5 for time steps
varying from 0 to 1 using a (a) quasi-uniform lattice and (b) non-uniform
lattice based on the Delaunay discretisation.
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nay scaling for the determination of the cross-sectional areas. The results obtained for

both quasi-uniform and the non-uniform mesh is shown in Figure 4.17.

Again, the behaviour is very similar for both the quasi-uniform lattice and the non-

uniform lattice. With increasing time, the temperature in the domain increases until the

linear temperature distribution, which is the steady-state limit from the example in the

previous section, is reached. The �rst benchmark test gave qualitatively good results.

However, the performance of the lattice model cannot be assessed quantitatively with this

test. Therefore, a second benchmark test is carried out, which allows for the comparison

of the numerical solution with an analytical one. The choice of this test is motivated by

the study of Bolander [2]. In this test, the initial conditions of the problem are given as

T (x, y, t = 0) = sin
πx

`
(4.4)

The analytical solution is

T (x, t) = sin
(
πx

`

)
e
−π2t

`2 (4.5)

Again, the position of the lattice elements is determined by the Delaunay and Voronoi

discretisation. Furthermore, the cross-sectional areas of the lattice elements were deter-

mined using Voronoi and Delaunay scaling. The numerical solution of the temperature

distribution in the x-direction for a section at a distance of 0.5 from the Y axis is com-

pared to the analytical solution in Figure 4.18. The numerical and analytical results

agree well.

4.4 E�ect of boundary layer on accuracy

This section discusses the treatment of the boundary conditions used in the analyses.

In Section 4.2 it was explained that the boundary conditions are applied according to

the analytical solution with in a distance of the boundary. This distance was chosen in

relation to the lengths of the lattice elements. This special treatment of the boundary
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(a)

(b)

Figure 4.17: Temperature distribution along the x-direction for y = 0.5 for the (a) quasi-
uniform lattice (b) non-uniform lattice based on the Voronoi discretisation.
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(a)

(b)

Figure 4.18: Transient analyses of the domain with comparison to the analytical solution:
(a) Delaunay discretisation, (b) Voronoi discretisation.
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Figure 4.19: Delaunay and Voronoi domain discretisation based on a non-uniform point
distribution.

is required since otherwise the numerical solution might deviate considerably from the

analytical one. The in�uence of the boundary layer is illustrated by the steady state

heat transfer problem analysed in Section 4.2. The domain geometry and boundary

conditions are shown in Figure 4.1. The results, obtained for a lattice based on Delaunay

discretisation and Voronoi scaling, are shown in Figure 4.19. The domain is assumed to

be made of a homogeneous material with physical properties as shown in Table 4.3.

Table 4.3: Physical properties of the domain.

Parameters Values

ρp 0.3
k 1
md 0.05
PN 175

Three di�erent treatments of the boundary conditions are studied. In the �rst ap-

proach, no boundary frame is used. Boundary conditions are presented only on the
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Figure 4.20: Comparison of numerical and analytical solution at y = 0. The boundary
conditions are described only on the left and right of the domain.

left and right side of the domain. The results obtained from the numerical analysis are

compared to the analytical solution in Figure 4.20.

The second approach is based on the introduction of a frame along the edge of the

specimen, in which the boundary conditions are applied according to the analytical so-

lution. Two analyses with di�erent frame thickness are performed. In the �rst analysis,

the frame thickness is set to 0.1 `. The results obtained from the numerical analysis are

compared to the analytical solution in Figure 4.21.

In the second analysis, the frame thickness is set to 0.2 `. The results obtained from

the numerical analysis are compared to the analytical solution in Figure 4.22.

In Figure 4.20 to 4.22, it can be seen that the introduction of the frame has a strong

in�uence on the results. For the analysis without the frame and a frame thickness of

0.1 `, the numerical results di�er strongly from the analytical results. Only for a frame

of 0.2 ` a good approximation of the analytical result is obtained. The thickness of the
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Figure 4.21: Comparison of numerical and analytical solution at y = 0.3. The boundary
condition are described as a frame with the thickness of 0.1 `.

Figure 4.22: Comparison of numerical and analytical solution at y = 0.3. The boundary
conditions are described as a frame with the thickness of 0.2 `.
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Table 4.4: Properties of the domain with an inclusion

Parameters Values

` 1
r 0.01
k1 1
k2 1× 10−15

Np 2728

frame, which results in a good approximation of the analytical solution, depends on the

length of the elements. If the density of the mesh is changed, the thickness of boundary

layer should be adjusted to cover all nodes connected to the Voronoi cell at the domain

boundary. Thus, the lattice approach result only in exact solutions for the Voronoi cells

inside the domain.

4.5 Steady state analyses of homogeneous domain with

isolated inclusion

In the previous two sections, steady state and transient analyses were performed for

quasi-uniform and non-uniform lattices, di�erent discretisation and di�erent scaling ap-

proaches. All of these analyses were performed for a homogeneous domain. In this

section, the lattice approaches are applied to heterogeneous materials.

The benchmark test considered here is a square domain with an inclusion of a radius

of r = `/100 in the centre. The input parameters for the analyses are listed in Table 4.4,

where k1 is the conductivity of the domain outside the inclusion and k2 is the conductivity

of the inclusion.

Again, the Delaunay and Voronoi discretisations were applied to determine the posi-

tions of the lattice elements. Furthermore, the cross-sectional areas of the lattice elements

were determined by Delaunay and Voronoi scaling. However, the point distribution for
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the di�erent discretisations was di�erent. Within the inclusion the distance between

nodes is smaller than outside the inclusion. This results in a denser lattice inside the

inclusion. The lattice mesh is shown in Figure 4.23. The boundary condition was applied

only on the left and right edges of the domain, because in these analyses the main aim

is to study the inside of the domain where the inclusion is located.

The �rst analysis was performed using the Delaunay discretisation and Voronoi scaling.

The temperature distribution in the x-direction for y = 0.5 is shown in Figure 4.24.

Figure 4.24b shows the temperature distribution across the inclusion and the e�ect of

the very low thermal conductivity of the inclusion compared to the surrounding material.

As part of the post-processing, the nodal �ux was calculated. The method of calculat-

ing the nodal �ux was presented in Section 3.4. The analytical solution for the �ux within

the domain with the inclusion was used earlier by Bolander [2] to assess the accuracy of

lattice approaches. The analytical solution is expressed in polar form as

q =

√(
r

x

)4

+ 1− 2cos2θ
(
r

x

)2

(4.6)

where r is the radius and θ is the angle of a polar co-ordinate system with its origin in

the centre of the inclusion.

The �ux obtained with the Delaunay discretisation compared to the analytical solution

is shown in Figure 4.25. It can be seen that there is no �ux on the left and right sides of

the isolated inclusion, but consequently concentration of the �ux at the top and bottom.

4.6 Discussion

In this chapter steady state and transient analyses were performed with two discretisation

approaches based on Delaunay triangulation and Voronoi tessellation, respectively. It was
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(a)

(b)

Figure 4.23: Domain discretisation with an inclusion: (a) The domain discretisation (b)
The discretisation of the inclusion.
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(a)

(b)

Figure 4.24: Temperature distribution along the x-direction for y = 0.5: (a) The entire
specimen (b) Detail around the inclusion.
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Figure 4.25: Flux around an inclusion obtained by the Delaunay discretisation. The
solid and dashed lines represent the numerical and analytical solution, re-
spectively.

shown that the lattice approach preformed very well for both quasi-uniform and transient

analyses and for both quasi-uniform and non-uniform lattices, if the correct scaling of

the cross-sectional area is adopted. Four di�erent methods for determining the cross-

sectional areas of the lattice elements were investigated. It was shown that the use of

cross-sectional areas determined by Voronoi and Delaunay scaling results in numerical

solutions which approximate well the analytical solutions. However, if the cross-sectional

areas are determined by the centroidal method or if a constant cross-sectional area is

used, the lattice approach fails to represent the analytical solutions exactly.

Transient analyses using the Delaunay and Voronoi discretisation with Voronoi and

Delaunay scaling, respectively, showed that accurate solutions are obtained with the

θ-Method.

Furthermore, the inclusion problem demonstrated that the lattice approach preforms

well for heterogeneous material. The post-processing of the �ux proved a useful technique
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to visualize results and demonstrated that the numerical and analytical solutions agree

well.
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5 Conclusions and suggestions for future

studies

5.1 Conclusions

In the work presented, a 2D lattice approach was investigated for solving heat transfer

problems. Two alternative discretisation were implemented. It was shown that the

performance of lattice approach was dependent on the scaling of the cross-sectional areas

of the lattice elements. Four scaling methods were investigated:

1. Voronoi scaling for the lattice generated from the Delaunay triangulation.

2. Delaunay scaling for the lattice generated from the Voronoi tessellation.

3. Centroidal method.

4. Constant average area method.

Both the Voronoi and Delaunay scaling methods enabled the lattice approach to ac-

curately reproduce analytical solutions. This is not the case for the other two scaling

methods.

In addition to steady state heat transfer analysis across a square domain with a homo-

geneous material, the e�ect of an isolated inclusion was investigated. A post-processing

procedure was investigated in order to visualise the non-uniform heat �ux. Once again

the lattice approach with Voronoi and Delaunay scaling accurately represented the ana-

lytical solution.
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The lattice modelling was also extended to transient heat transfer. Both methods

of discretisation allowed for an accurate representation of the analytical solution when

Voronoi and Delaunay scaling was adopted.

5.2 Suggestions for future studies

The present work is restricted to two-dimensions. A natural extension of the work would

be to three-dimensions, thereby providing wide application of the technique.

To date lattice models have been successfully applied to the mechanical behaviour

of elastic and fracturing materials of heterogeneous materials. A next step could be

to combine heat transfer modelling presented in this thesis with the lattice modelling

of mechanical behaviour, thereby enabling thermo-mechanical behaviour of fracturing

heterogeneous materials to be considered and to investigate the e�ect of fracture on the

thermal response.

This could be further extended to the coupling of the mechanical response with other

transport phenomena.
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Appendix

MATLAB code

In the work presented, all simulations were undertaken using a code generated in MAT-

LAB. The code consists of four parts. The �rst part is the node generator. To generate

the nodes a number of parameters was needed to describe the domain such as, the do-

main dimensions and nodes density, which will determine number of nodes in the domain.

Nodes are generated using a random number generator in MATLAB called (rand). X and

Y coordinates of each node are generated separately. The nodes generated are restricted

by the number of nodes PI 3.1 and the minimum distance dmbetween the nodes.

The second part of the code is discretisation of the domain. The discretisation is based

on the nodes which were generated. To discretise the domain using the two methods

Delaunay triangulation and Voronoi tessellation, Qhull was used. Qhull is a MATLAB

package which can discretise the domain based on the nodes generated. The function

used to generate the Delaunay triangulation is called (Delaunay). The function used to

generate the Voronoi tessellation is called (Voronoi). The voronoi function was modi�ed

to obtain the elements topography in a di�erent way than the origin function. The origin

function sets the Voronoi polygon edges that tend to in�nity as zero. The end nodes of

these elements are �rst relocated to the boundary. They are then renumbered. For

example, the topography matrix is as shown.
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Appendix



34 15 6 100

1 30 15 55

66 4 70 0

2 27 49 0


The �rst two numbers of the column present the Delaunay lattice elements nodes. The

second two numbers present the Voronoi lattice element nodes that correspond to the

Delaunay element. In the third column the number zero means that the coordinates of

the Voronoi element node is (∞,∞). This point is therefore relocated to the boundary

and given new appropriate coordinates.

The third part of the code is calculating the element sti�ness matrix and assembling

the global sti�ness matrix to solve the temperature distribution of the domain. This was

done with the help of a �nite element toolbox called CALFEM [1]. The functions used

were:

1. SPRINGLE, this function calculate each of the lattice element sti�ness matrix.

2. ASSEM, this function was used to assemble the global sti�ness matrix.

3. SOLVEQ, this function solves the system of equation in order to calculate the

temperature distribution.

4. SPRINGLEM, this was a modi�ed function of SPRINGLE, which calculates the

heat capacitance matrix.

The fourth part of the code post-processing, where the nodal �ux was calculated. The

method was implemented in MATLAB by creating a new function called QFLUX, where

the input was nodal temperatures, mesh topography, the lattice elements' cross-sectional

areas, and the nodal coordinates. The output of the function is the nodal �ux.

All the code, except of the Qhull and CALFEM functions, were written by the author.
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