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Abstract

Non-Relativistic QCD (henceforth NRQCD) is a non-relativistic effective theory that

models the strong interaction. We use this formulation to perform lattice simulations of

the bound states of b quarks, known as the Υ spectrum. These simulations are performed

on a range of gauge ensembles provided by the MILC collaboration that include three

flavours of quark content - one at the approximate mass of the strange quark, and two

degenerate flavours that range from about a half to a tenth of the mass of the strange

quark.

We implement a random wall algorithm in the creation of our b quark propagators,

and develop a technique to combine the random wall with smearing functions, which are

used to assist in picking out the relevant quantum numbers in the the resulting meson

correlator. This is the first time these techniques have been used in this manner.

We employ a Bayesian fitting procedure to extract energies and amplitudes from our

simulated correlators. By using the 2S−1S Υ splitting on each configuration, and match-

ing to experimental results, we are able to extract the lattice spacings for each ensemble

from which we determine the heavy quark potential scale parameter r1. In concert with

results from our collaborators, we outline the procedure for combining multiple deter-

minations of r1, and present the collaborative result. We then use this parameter in a

determination of the strong coupling constant αs in the MS scheme.

We investigate the dispersion relation of the NRQCD action, and note some undesir-

able features that we are able to resolve with the precision attainable using the random

wall. We look at a number of ways to address these issues, including non-perturbative and

perturbative tuning of coefficients. Using the perturbative coefficients, we then proceed

to calculate heavy-heavy currents, which are perturbatively matched to the continuum,

and allow us to give results for the Υ leptonic width.
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Chapter 1

Introduction

1.1 Standard Model & Motivation

Our current understanding of the nature of particle physics is encompassed in The Stan-

dard Model (henceforth, the SM). In this model, matter is composed of elementary par-

ticles called quarks and leptons, and the interactions between these particles is mediated

by the gauge bosons. These particles are tabulated in Table 1.1.

Quarks Charge (e) Mass Spin Leptons Charge (e) Mass (MeV) Spin

u +2/3 1.5 - 3.3 MeV 1/2 e -1 0.510998910 ± 1.3 × 108 1/2

d −1/3 3.5 - 6 MeV 1/2 νe 0 < 0.460 1/2

c +2/3 1.27+0.07
−0.11 GeV 1/2 µ −1 105.658367 ± 4 × 106 1/2

s −1/3 105+25
−35 MeV 1/2 νµ 0 < 0.19 1/2

t +2/3 171.3 ± 1.1 ± 1.2 GeV 1/2 τ −1 1776.84 ± 0.17 1/2

b −1/3 4.2+0.17
−0.07 GeV 1/2 ντ 0 < 18.2 1/2

Gauge Bosons Charge (e) Mass Spin Charge (e) Mass (GeV) Spin

γ 0 0 1 W± 1 80.398 ± 0.025 ±1

g 0 0 1 Z 1 91.1876 ± 0.0021 1

Table 1.1: Particles of the Standard Model [1].

Quantum field theory has been highly successful in making calculations and predictions
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of the Weak and Electromagnetic interactions of the SM (those interactions mediated by

the Z/W± and γ respectively). This is largely due to the fact that one can employ

perturbation theory to the study of these forces, a process which involves making an

expansion in the coupling constant of the relevant governing theory. Such a process will

only work if the coupling constant is small; in the case of the strong force, governed by

Quantum Chromodynamics, this is frequently not the case.

When studying bound states of quarks, the running of the coupling constant brings it

too close to 1 for perturbation to be valid, and so one requires a non-perturbative, first

principles method to proceed. Lattice QCD is such a method.

The last decade or so has been an important time for lattice QCD. While the principles

of the approach to QCD were developed in the 1970’s, computing power at that time was

inadequate for handling the calculations necessary to make a realistic calculation. The

statistical nature of lattice techniques is very costly in terms of processing; as are the

difficulties associated with making the vacuum polarisation quark masses sufficiently small

and, indeed, the effort required to include such quarks at all. However, since the 1970’s

many algorithmic improvements have been made, while, at the same time, the technology

available for processing has improved dramatically; and what was once inconceivable is

now possible.

1.2 Quantum Field Theory

1.2.1 Path Integrals

Feynman showed in 1948 that the expectation values of the physical observables in a

quantum field theory can be calculated using path integrals to compute time-ordered

products of the theory’s fields, called correlation functions.
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〈0|T (φ(x1) . . . φ(xn)|0〉 =

∫
(Dφ)φ(x1) . . . φ(xn)e

iS

∫
(Dφ)eiS

(1.1)

where the T operator time-orders the fields; and S is the action of the theory, which

comes from the Lagrangian Density, L(φ, ∂µφ)

S =

∫
d4xL(φ, ∂µφ) (1.2)

Such a path integral is over all values of φ(x), over all values of x - resulting in an

integral with an uncountably infinite number of degrees of freedom, due to the continuous

nature of space-time. These infinities must be removed by regularising the theory, which

can be achieved by imposing a space-time lattice. This approach, applied to the theory

of Quantum Chromodynamics, is the basis of this thesis.

1.2.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the Standard Model theory used to describe the

strong force. It is described by a gauge theory based in SU(3) group theory. Gauge

theories are those theories which are invariant under local gauge transformations, and are

used in the SM to describe the electromagnetic, weak and strong forces.

The Lagrangian of QCD is given by

L = ψ̄i(x)(iγµ∂µ −m)ψi(x) − 1

4
F a
µνF

µν
a , (1.3)

where the index i denotes flavour and

ψ̄(x) = ψ†(x)γ0 (1.4)

The field strength tensor in the Lagrangian is given by equation 1.5, in which the fabc are

the SU(3) structure constants [7].

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν (1.5)
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We require that the Lagrangian is symmetric under the gauge transformation

ψ(x) → eiαa(x)λa

2 ψ(x) (1.6)

where λa are the eight Gell-Mann matrices - the generators of SU(3) in the fundamental

representation. These are related to the eight gluons from table 1.1, which transform as

the adjoint representation of SU(3). Invariance under this local phase rotation necessitates

replacing ∂µ with Dµ, the covariant derivative. Dµ is defined as:

Dµ = ∂µ − i
λa
2
Aaµ(x). (1.7)

The field Aaµ transforms as

Aaµ → Aaµ −
i

g
∂µαa(x) (1.8)

While our theory is gauge invariant, it can be useful to impose a particular gauge, de-

pending on one’s purpose. This is done by imposing a constraint on the field Aµ. There

are many possibilities, but notable gauges are the Landau (equation 1.9) and Coulomb

(equation 1.10) gauges defined below, where the Greek index denotes space-time and the

Roman index denotes only space:

∂µAµ = 0 (1.9)

∂iAi = 0 (1.10)

The lattice version of Coulomb gauge is used for the vast majority of work in this thesis,

and Landau is used on occasion, for example for defining the parameter u0 (see equation

2.33).

1.2.3 Consequences

The gluon fields couple to the quarks via the colour charge g, a quantum number also

carried by the gluon fields themselves. The non-abelian nature of SU(3) adds a self-

interaction between these fields, and this unusual feature is believed to be connected to

the other special features of QCD.
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First, there is the phenomenon known as confinement - coloured states are not ob-

served, only colour singlets (either 3 quarks of differing colour bound together [baryons],

or a quark and anti-quark of complimentary colour/anti-colour [mesons]). These singlet

states are known collectively as hadrons.

QCD also features asymptotic freedom - the coupling constant in QED, for example,

decreases as the scale increases. The situation for QCD is the opposite - the coupling

decreases with decreasing distance scale. This means that, as small distances (high ener-

gies) the particles are essentially free. This also means that perturbation theory is only

applicable at high energies, and not at the internal energy scales of the hadrons we wish

to study.
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Chapter 2

Lattice Methodology

2.1 Discretisation

As described in section 1.2, imposing a discrete lattice on to Quantum Field Theory allows

us to regularise otherwise infinite numbers of degrees of freedom in the path integrals.

This was first demonstrated by Wilson [8] in 1975. Such a lattice, of spatial volume L3

and temporal extent T, takes the form:

Λ = {x|x ∈ aZ4; x1,2,3 = 0, a, ..., a(L− 1); x4 = 0, a, ..., a(T − 1)}, (2.1)

where a is the spacing between adjacent lattice points.

Fermion fields are only defined on the lattice points xµ, and thus derivatives simply

become differences:

∆µψ(x) =
1

a
(ψ(x+ aµ̂) − ψ(x)) (2.2)

∆∗
µψ(x) =

1

a
(ψ(x) − ψ(x− aµ̂)) (2.3)

δµψ(x) =
1

2
(∆µψ(x) + ∆∗

µψ(x)) =
1

2a
(ψ(x+ aµ̂) − ψ(x− aµ̂)) (2.4)

The gluon fields are defined on the links between these lattice points, which will be

discussed later.
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With only a finite number of fields, the path integral becomes well-defined:

〈0|T (φ(x1) . . . φ(xn)|0〉 =

∫
(
∏

i dφi)φ(x1) . . . φ(xn)e
iS

∫
(
∏

i dφi)e
iS

(2.5)

2.2 Minkowski to Euclidean Space

Since our goal is to simulate the integral numerically, we must deal with the imaginary

exponent eiS in 2.1 as the oscillations resulting from this term that will otherwise make

our goal impossible. This can be done via a Wick Rotation, moving from Minkowski space

to Euclidean. The appropriate changes are:

x0
M = −ix4

E (2.6)

γM0 = γE4 (2.7)

γMi = −iγEi (2.8)

A0
M = −iA4

E (2.9)

∂0
M = i∂4

E (2.10)

D0
M = iD4

E , (2.11)

which changes the Lagrangian (suppressing the E subscript henceforth) to

L = ψ̄i(x)(γµ∂µ +m)ψi(x) − 1

4
F a
µνF

µν
a , (2.12)

and the exponent becomes e−S.

2.3 Monte Carlo

Having discretised the problem on to a lattice, we are now left with a finite, albeit large,

number of degrees of freedom. In such a situation, one finds Monte Carlo techniques
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particularly well suited to finding a numerical approximation to the integral.

Monte Carlo involves generating a random sample of the integrand phase-space, which

are then averaged over. An operator, O is approximated as:

〈O〉 =
ΣN
i=1Oie

−Si

ΣN
i=1e

−Si
(2.13)

The technique chosen to generate such a sample can have a profound effect on the

efficiency of the Monte Carlo integration. The most natural method for doing this would

be a flat distribution, however this proves to be inefficient as most of the contributions to

the sum comes from those configurations that minimise S. It makes sense, then, to use

importance sampling to generate configurations with a probability related to their weight

in the sum: e−S.

A simple method of doing this is the Metropolis algorithm [9], described below:

• Create a starting configuration, C1.

• Suggest a small change to C1, giving C2.

• Compute dS = S(C2) − S(C1).

• Accept the suggested change, and replace C1 with C2 if e−dS ≥ R, where R is a

random number in the range [0, 1].

• Repeat.

The procedure usually starts with a “thermalisation” step at the beginning, where

a number of cycles are performed to initialise the starting C before configurations are

recorded. Additionally, only every n′th configuration is recorded, where n is chosen before

production. This helps to ensure that two adjacent stored configurations will not be overly

auto-correlated.
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This algorithm works well for gluon configurations in the quenched approximation (an

approximation to QCD in which the only quarks are the valence quarks, see section 2.9),

but for what we require, more sophisticated algorithms are used [10].

2.4 Regularising QCD on a lattice

The description of the regularisation of a theory using a lattice has been relatively general

thus far. We will now look at the specifics of placing the QCD fermion (quark) and gauge

(gluon) fields on to the lattice.

The gauge fields, in the path integral language of section 1.2.1, serve to add a phase

to a fermion as it travels a path from position x1 to x2. On a lattice, this path is made up

of discrete steps, taking a fermion from x to x+ µ̂. We can then define parallel transport

fields linking adjacent lattice sites. This is the natural way to codify the lattice gauge

fields, Uµ(x):

Uµ(x, x+ µ̂) = Uµ(x) ≡ P exp

(
ig

∫ x+µ̂

x

Aµdx
µ

)
(2.14)

The link U(x+µ̂, x), the link reverse link from x+µ̂ back to x would then be U−µ(x+µ̂) =

U−1
µ (x) = U †

µ(x) (the last equality because U is unitary).

The U matrices transform under gauge transformations in a straight-forward way:

Uµ(x) → G(x)Uµ(x)G
−1(x+ µ̂), (2.15)

which means that any closed loop of these matrices is gauge invariant - for example the

plaquette, which is a 1 × 1 square of lattice links:

Uplaq = Uµ(x)Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν(x). (2.16)

The action for the gauge field needs to be gauge invariant, so it makes sense to write it

in terms of such loops, giving rise to the Wilson gauge action:

SG = β
∑

plaq

(
1 − 1

3
ReTrUplaq

)
(2.17)
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where β = 6
g2

. In the continuum limit (that is: a → 0), this will tend towards the

1
4

∫
d4xF a

µνF
µν
a term that comes from equation 2.12.

For the fermions ψ(x), we look at the Dirac equation (in Euclidean space), which is

of the form:

ψ(x)(γµ∂µ +m)ψ(x). (2.18)

On the lattice, the fermion fields are only defined on the lattice sites xµ, becoming ψ(xµ),

and the Dirac equation becomes

∑

i,j,µ

ψ(xi)

(
1

2
(δi,j−µ̂ − δi,j+µ̂) +mδi,j

)
ψ(xj), (2.19)

where δm,n is the Kronecker-δ function:

δm,n =

(
1

2π

)4 ∫ π

−π
d4peip(m−n) (2.20)

Using the Fourier transform, we find the free propagator to be

∑

µ

iγµ sin(pµ) +m. (2.21)

As expected from the mass shell condition (p2 +m2 = 0), the propagator has a pole when

p = m = 0, however, since the sine function is symmetrical under pµ → π = pµ it also has

poles when m = 0 and pµ = π, i.e at the corners of the Brillouin zone. This causes each

momentum state to be doubled for each µ, leading to 16 states instead of just one. These

degenerate states are referred to as “tastes” since they do not represent true physical

flavours. [11].

A solution to the doubling problem was suggested by Wilson himself. One may add an

irrelevant operator to the action, with the intention of giving the doublers in the corners

of the Brillouin zone an infinite mass [12].

S
(W )
F = SF − r

2

∑

x

ψ(x)∆(2)ψ(x), (2.22)

where r is the Wilson parameter, and ∆(2) is the lattice Laplacean:

∆(2) =
∑

µ

∇∗
µ∇µψ =

1

a2

∑

µ

(ψ(x+ µ̂) + ψ(x− µ̂) − 2ψ(x)) . (2.23)
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This extra term vanishes linearly with a as a→ 0. We can then write the Wilson Action

as:

SW =
∑

i,j,µ

ψ(xi)

(
1

2
(δi,j−µ̂ − δi,j+µ̂) +mδi,j

)
ψ(xj) −

∑

i,j,µ

ψ(xi)
(r

2
(δi,j−µ̂ + δi,j+µ̂ + 2δi,j)

)
ψ(xj)

=
∑

i,j

ψ(xi)

(
−1

2

∑

µ

[(r − 1)δi,j−µ̂ + (r + 1)δi,j+µ̂] + (m+ 4r)δi,j

)
ψ(xj) (2.24)

Which means the free propagator is:

∑
µ i sin(pµ) +m+ r

∑

µ

(1 − cos(pµ))

=
∑

µ i sin(pµ) +m+ 2r
∑

µ

sin2(
pµ
2

) (2.25)

We then get (with a shown explicitly now):

M(p) = m+
2r

a

∑

µ

sin2(pµa/2). (2.26)

This has the desired property that for pµ not in the corners of the Brillouin zone, M(p) →
M as a → 0, but for pµ ≈ π/a (the momentum of the doublers) the expression diverges,

decoupling them from the physics of the problem. Unfortunately, we have lost chiral

symmetry by adding the Wilson term for any r 6= 0, even when M = 0.

2.5 Lattice Path Integrals and Correlators

The discrete path integral from section 2.1, written specifically for QCD takes the form

〈O〉 =

∫ ∏
i,j,k dUidψjdψkOe−SLQCD

∫ ∏
l,m,n dUldψmdψne

−SLQCD

. (2.27)

The Monte Carlo techniques from section 2.3 cannot proceed directly for this equation

because the fermion fields are Grassmann variables, and these cannot be represented as

numbers on a computer. We can, however, integrate the quark fields by hand, which will

then allow for the application of the Monte Carlo procedure.
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For a Gaussian integral involving Grassmann numbers θ and θ∗ and an hermitian

matrix B with eigenvalues bi [13],

(
∏

i

∫
dθ∗i dθi

)
e−θ

∗
i Bijθj =

(
∏

i

∫
dθ∗i dθi

)
e−Σiθ

∗
i biθi =

∏

i

bi = det(B) (2.28)

(
∏

i

∫
dθ∗i dθi

)
θkθ

∗
l e

−θ∗i Bijθj = det(B)B−1
kl (2.29)

Therefore, writing S = Sg + Sf where the subscripts represent gluonic and fermionic,

we get

∫ ∏

i,j,k

dUidψjdψkOe−SLQCD =

∫ ∏

i,j,k

dUidψjdψkOe−(Sg+Sf ) =

∫ ∏

i,j,k

dUidψjdψkOe−(Sg+ψM(U)ψ)

(2.30)

in which we can replace the fermionic integral with detM(U). Any fermion fields that

appear in O can be changed to quark propagators M−1 by invoking equation 2.29. This

results in

〈O〉 =

∫ ∏
i dUi det(M)Oe−Sg

∫ ∏
j dUj det(M)e−Sg

, (2.31)

where O is now a time-ordered operator containing only gauge fields and quark propaga-

tors.

2.6 Improvement schemes

2.6.1 Tadpole Improvement

Tadpole diagrams appear in lattice perturbation theory due to higher order terms that

allow multiple gluons to couple to a single quark, terms that have no analogue in the

continuum where only a single gluon may couple to a quark. These terms cause renormal-

isations, which causes problems with lattice perturbation theory, it is therefore important

to remove their contribution. [14]
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If we can evaluate the mean contribution of these tadpoles, we can remove them if we

simply make the change:

Uµ → Uµ
u0

(2.32)

The mean field factor u0 can be evaluated by several means, such as the mean Landau

link:

u0 =
1

3
ReTr(Uµ) (2.33)

when the Uµ fields are in Landau gauge, or from the average plaquette [15]

u0 =

〈
1

3
Tr(Uplaquette)

〉1/4

, (2.34)

the former being favoured [16], and the method used through out this thesis.

2.6.2 Symanzik Improvement

When calculating a physical quantity using the lattice, the usual method for finding the

continuum limit is to simulate at multiple values of the lattice spacing a, and extrapolate

a → 0. Typically, a lattice simulation will not have a large enough number of different

values of a to do this satisfactorily because of the high computational cost of generating

and then simulating on such a large number of gauge configurations, particularly since

the cost of generating an ensemble becomes very high for small value of a.

To remedy this, Symanzik suggested [17] modifying the lattice action in such a way

as to improve the approach to the a = 0 limit. Writing the lattice action in a way that

explicitly demonstrates the a spacing dependence, (where Lk for k > 0 are local operators

of dimension k + 4):

Seff =

∫
d4x

∞∑

k=0

akLk(x) =

∫
d4xLQCD(x) +

∫
d4x

∞∑

k=1

akLk(x), (2.35)

Symanzik realised that one could add operators to the action with the sole purpose of

cancelling the terms dependent on a, hastening the theory’s approach to the continuum.
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2.6.3 Improvement of the gluon action

The action given previously for gluons is correct up to O(a2). This can be improved by

adding additional loops to the action composed of higher numbers of links [18]. This can

be done using two 6-link operators, illustrated in figure 2.1. The action becomes correct

up to O(a2α2
s, a

4), with the coefficients of the new terms being computing by matching

physical quantities to the continuum theory. The new action takes the form:

Figure 2.1: Corner-cube and rectangular gauge loops.

S = β
∑

x,µ>ν

(
1 − 1

3
ReTrUplaq

µν

)
(2.36)

+ βrect

∑

x,µ>ν

(
1 − 1

3
ReTrU rect

µν

)
(2.37)

+ βrect

∑

x,µ>ν

(
1 − 1

3
ReTrU rect

νµ

)
(2.38)

+ βcc

∑

x,µ>ν>σ

(
1 − 1

3
ReTrU cc

µνσ

)
(2.39)

Tadpole improvement has a large effect on the coefficients of these new terms [18].

2.6.4 Improvement of the Wilson fermion action

The simple Wilson action given in equation 2.22 has errors at O(a), as shown in equation

2.35. To account for these through to the next order, one must account for the O(5)

operators responsible for this error and add appropriate counter-terms [19]. At this order,

there are only two such operators that satisfy the criterion of preserving the symmetries
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of the Lagrangian. These are:

iψσµνF
µνψ and ψ (DµD

µ +DνD
ν)ψ (2.40)

although the latter is unnecessary and can be absorbed in to scaling of the mass. The

former motivates making an addition to the Wilson action, so that we get:

S = SWilson + a5
∑

x

cSWψ(x)
i

4
σµνF̂µν(x)ψ(x), (2.41)

where the F̂µν term is called the clover term, related to the plaquette, and arises from a

symmetric definition of the lattice field tensor:

F̂µν(x) =
1

8a2
{Qµν(x) −Qνµ(x)}, (2.42)

Qµν is the sum of the fields illustrated in figure 2.2. The choice of cSW must be appropriate

to achieve the desired level of improvement, and can be calculated either perturbatively

or non-perturbatively. It is 1 at tree-level, giving an action correct through to O(a2).

This improvement was first suggested by Sheikholeslami and Wohlert in 1985.

Figure 2.2: The cloverleaf arrangement of lattice gauge fields.
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2.7 Staggered Quarks

Another method of addressing the doublers in the fermion action is by using staggered

quarks [20, 21]. The doubling is caused by the fact that equation 2.21 vanishes at the

corners of the Brillouin zone. If we can double the effective length of the zone, then we

can dilute the doublers seen inside the lattice [12]. This is done by blocking the lattice in

to hypercubes of size 24. Our treatment here follows [22].

The fields ψ in the näıve quark action are replaced by χ with the transformation

ψ(x) → Ω(x)χ(x)

ψ(x) → χ(x)Ω†(x) (2.43)

where

Ω(x) ≡
3∏

µ=0

γxµ

µ . (2.44)

Expressing the näıve action in terms of the χ fields, we then get that

ψ(x)(γ · ∆ +m)ψ(x) = χ(x)(α(x) · ∆ +m)χ(x). (2.45)

αµ(x) = Ω†(x)γµΩ(x+ µ) (2.46)

which is diagonal in spinor space, and moreover every spin component of a χ field is

equivalent to the other components.

For the näıve quark action, the doublers appear as

ψ(x) → Bζ(x)ψ(x) ψ(x) → ψ(x)B†
ζ(x) (2.47)

Bζ(x) ≡ γζ(−1)ζ·x ∝
∏

ρ

(γ5γρ) exp(ixζ · π) (2.48)

where ζρ ∈ (Z2)
4, giving 16 doublers (15 high momentum copies, plus the original fermion).

A typical fermion field will contain contributions from all 16 of these fields, and hypercubic

blocking can be used to (approximately) separate these. This procedure involves taking

an average over a 24 hypercube within the lattice:

ψ
(ζ)
B =

1

16

∑

δx∈(Z2)4

Bζ(x+ δx)ψ(x+ δx) (2.49)
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When ζ = 0, the average will suppress contributions from ψ where p ≈ π. For all ζ 6= 0,

the B operator will transform that component to ζ = 0, and therefore the average will

preserve that component and suppress everything else.

When one repeats this procedure in the staggered formulation, the factor of four

reduction in the spinors translates in to a factor of four reduction in the doublers:

ψ
(ζ)
B =

1

16

∑

δx∈(Z2)4

Bζ(x+ δx)ψ(x+ δx) =
∑

δx

γδxBζ(0)




χ1(x+ δx)

0

0

0




(2.50)

where

γδx ≡
3∏

µ=0

(γµ)
δxµ . (2.51)

Since the Bζ(0) operator can only permute the χ fields and multiply by ±1 or ±i, there can

only be four independent ψ
(ζ)
B , referred to as “tastes” of a quark. Further, the spinors’

effect, each being equivalent, can be reduced to just one quark by taking the fourth

root of the quark determinant. The validity of using the fourth root has been a topic

of some controversy - in particular the locality of the operator, and so there remain

some unanswered theoretical concerns regarding staggered quarks. Nevertheless, much

empirical evidence exists that justifies the staggered formulation. This issue is beyond

the scope of this thesis, and we simply assume that staggered quarks are valid on the

basis of its many past successes. For an over-view of the situation, see [23, 24, 25, 26].

To complete the formulation of the staggered quark action, it must be Symanzik im-

proved to remove O(a2) errors. These errors appear because of taste changing interactions

that do not occur in normal QCD. Consider a high momentum gluon (p ≈ π/a) being

absorbed by a quark; in QCD this would push the quark off-shell, but with staggered

quarks it transforms the quark in to a different taste of an on-shell quark [27].

To correct for these taste-changing interactions, one may suppress high momentum

quarks by using a precess dubbed “link fattening”. A single link is replaced by a number
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of different paths between the same two lattice sites consisting of 1-, 3-, 5- and 7-link

terms, summarised in figure 2.3. An extra terms, the Lepage term, is then added to

correct for low momentum errors caused by the addition of the previous extra terms. All

of these terms are tadpole improved (as in equation 2.32). The Naik term [28] used to

correct simple errors in ∆, and the resulting action is called the ASQTAD action.

Figure 2.3: The fattened link staples, and the Lepage term (far right).

2.8 Highly-Improved Staggered Quarks

In recent years, the staggered quark action has been subject to further improvement, re-

sulting in an even further improved action, known as Highly-Improved Staggered Quarks,

or “HISQ”. The goal of HISQ is to remove higher order taste-exchanging interactions than

the tree-level corrections possible with staggered quarks. While simulations in this thesis

do not use HISQ directly, HISQ is important to work that combines simulations from this

thesis with that of collaborators, which will be described in chapter 4. Here, we outline

the basic idea behind the HISQ action, following [11].

The link smearing of the ASQTAD action is effectively introducing a form factor to

18



suppress the taste changing interactions:

fµ(q) → 1, q → 0

fµ(q) → 0, q → ζπ/a where ζ2 6= 0, ζµ = 0. (2.52)

This form factor is implemented by replacing the gauge links Uµ with FµUµ(x), where

Fµ ≡
∏

ρ6=µ

(
1 +

a2δ
(2)
ρ

4

)

is the smearing operator, and the function δ
(2)
ρ approximates a covariant second-derivative.

δ(2)
ρ Uµ(x) ≡ 1

a2
[Uρ(x)Uµ(x+ aρ̂)U †

ρ(x+ aµ̂) − 2Uµ(x)

+ U †
ρ(x− aρ̂)Uµ(x− aρ̂)Uρ(x− aρ̂+ aµ̂)]. (2.53)

This works because δ
(2)
ρ ∼ −4/a2 (which means F ∼ 0) when qρ ≈ π/a.

The ASQTAD action also adds an additional term

Fµ → Fµ −
∑

ρ6=µ

a2(δρ)
2

2
,

to cancel O(a2) errors in Fµ. This is the Lepage term in figure 2.3.

Repeated application of the smearing operator further suppresses the taste-dependent

properties, which is unsurprising as these have their roots in perturbation theory. Nor-

mally this would create new O(a2) errors, but this does not occur when using the ASQTAD

action, since it is already a2 improved. Another problem of repeated application of F is

that, if N is the number of terms in the smearing, two gluon vertices grow as
√
N - en-

hancing 1 loop diagrams that have 2 gluon vertices. This can be entirely avoided if we

reunitarise the gauge links, which we indicate with the operator U .

Because of this, ASQTAD action can be further improved to form the HISQ action by

applying the link smearing operation twice:

FHISQ =

(
F −

∑

ρ6=µ

a2(δρ)
2

2

)
UFµ.
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The HISQ action has been shown to be extremely useful for the simulation of charm

quarks. In most discretisations, large errors occur unless am ≪ 1, however the HISQ

formulation has achieved an accuracy of a few percent for charm masses as high as amc ≈
1/2. Without this improvement, the alternative would be to use an effective theory. This

approach works well for b quarks (and is the basis of chapter 3) which are unquestionably

“heavy”, but not for charm, which are much lighter and occupy a niche between light and

truly heavy quarks.

2.9 MILC configurations

The MILC collaboration have produced a large number of lattice ensembles on which QCD

simulations may be performed. These range from lattice spacings of about 0.18fm down

to 0.045fm. All spacings are merely approximate, as setting the scale is non-trivial; in

fact much of the work of this thesis involves trying to make accurate scale determinations.

The gauge fields are simulated with an O(αa2) Symanzik improved action, and the

asqtad improved staggered action (O(a2) improved) was used for the vacuum polarization

quarks (known as “sea quarks”) [3].

Historically, quenched configurations were used in lattice simulations. Quenched con-

figurations are produced without any sea quarks present, making them faster and easier

to create. While removing the sea quarks from the theory can be economical, doing so

compromises the consistency of the simulation and does not lead to realistic results. This

is done by simply setting det(M) = 1 (see section 2.5) during ensemble production.

Unquenched configurations - such as those produced by MILC - include sea quarks,

although not necessarily using the accepted number of flavours (i.e. they are partially

quenched), nor at the established masses. It is easy to justify the former - common

ensembles of configurations include only the u, d and s quarks as the heavier quarks,

having such high masses, have only very small effects on the theory as sea quarks. The
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latter issue, the unphysical masses used, is a necessity of computing time and power -

the calculation cost of configuration production (specifically, the computational cost of

det(M)) increases dramatically as sea quark mass falls. For the sake of feasibility, it is

therefore generally wiser to simulate at a higher mass, and extrapolate final results to

the physical limit. For this reason, numerous different quark masses are simulated for the

same (approximate) lattice spacing.

Monte Carlo configurations are generated using, for example, algorithms such as Hy-

brid Monte Carlo for Wilson quarks, or, for Staggered quarks, the R Algorithm [10].

The configurations used in this thesis (see table 4.1) are of the “2+1” variety. This

means that they include the s quark at approximately the correct mass, in addition to

the u and d quarks at degenerate masses of approximately ms to ms/10; c, b and t sea

quarks are omitted.

Other ensembles, created using different formulations, are available. In recent work

by Stefan Meinel [29, 30], the same valence quark action used in this thesis was used to

study b quarks on domain-wall lattices. The results are similar to those obtained here,

lending weight to the validity of the staggered quark ensembles.
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Chapter 3

Simulating Heavy Quark Mesons

3.1 Studying the Υ meson

Reliable lattice results are essential for various physics programmes, for example: limits

on the CKM matrix. The B meson system in particular is used to access these CKM

parameters. For this reason, the b quark needs to be well understood in lattice QCD; and

so the Υ meson (and the bottomonium system) are therefore important to lattice QCD,

as they allow us to test heavy quark lattice QCD actions.

The Υ system contains many “gold-plated1” states, which can be calculated accurately.

Further, the Υ spectrum is also a useful system to study because its radial splitting (i.e.

the splitting in which the two states are labelled by different radial excitation quantum

numbers n, in this case 2S-1S) is a good quantity for setting the lattice spacing. Υ energy

splittings (e.g. the 2S-1S or 1P-1S) are known to be insensitive to the heavy quark mass,

which is important to obviate entering in to a circular problem between determining lattice

spacing and lattice quark mass. As can be seen in figure 3.1, the energy splittings for the

Υ (bottomonium) system and the ψ (charmonium) system approximately correspond to

each other, despite the differences in mass between the constituent valence quarks. Each

1hadronically stable, narrow and experimentally well-characterised.
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system’s zero has been set to the mass of the spin average of the respective χ(3P0,1,2):

Mχ =
Mχ0 + 3Mχ1 + 5Mχ2

9
(3.1)
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Figure 3.1: The heavy quarkonium systems.

Experimentally, the Υ was first found is 1977 at Fermilab, in proton/nuclei collisions

[31]. Radiative decays of the 2S and 3S states in 1982-1983 subsequently led to the

detection of the χb states [32, 33, 34]. In 2008, BaBar observed the ηb for the first time

[35, 36].

It has been estimated [37] that, for an Υ meson, the b quark velocity, v2 ∼ 0.1c2

due to the large mass of the b-quark. This property allows us to treat the Υ with a

non-relativistic effective theory, and this is the basis of Non-Relativistic QCD (NRQCD).

In this formulation, quark and anti-quark degrees of freedom are decoupled (we will use

the symbol ψ for quarks and χ for anti-quarks), leading to two important consequences -

the propagator has only one pole, avoiding a problem known as ‘doubling’ that plagues
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other formulations (as in sections 2.4 and 2.7), and its evaluation is far simpler as it is

first order in ∂t [2].

3.1.1 Alternatives to NRQCD

NRQCD is not the only method currently being employed to simulate heavy valence

quarks on the lattice. Before going in to detail about the NRQCD action used in this

thesis, we briefly present some details of alternative approaches.

Heavy Quark Effective Theory

Heavy quark effective theory, or HQET (for a proper description, see for example

[38]), treats the heavy quark as being infinitely heavy “static” colour source on the

lattice, and then makes systematic corrections in 1/mQ as a series expansion. In

practice, carrying HQET out beyond O(1/mQ) is very difficult, however corrections

at this order are believed to be small because of the magnitude of the expansion

parameter.

HQET does suffer a major drawback in that the statistical errors grow strongly

with the time in the correlation functions, although current thinking does include

avenues to overcome this problem.

Fermilab Heavy Quarks

The effective theory described in [39] is an alternative approach to describing heavy

quarks, typically referred to as the Fermilab formulation. Here we will recount the

superficial details, see [39] for a full treatment.

The Fermilab formulation is based on the Wilson action, and so treats doublers

using the mechanism described in equation 2.22, however the Fermilab method

differs in that it is designed to be able to handle both light and heavy quarks by

including classes of interactions from both the small amq and large mQ/ΛQCD limits

in the effective Lagrangian of equation 2.35. To achieve this, they do not impose
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a symmetry between interactions related by the exchanging a spatial axis with the

temporal axis.

HISQ

Development of the HISQ formulation (described in section 2.8) is pushing the

upper-bound on the quark masses that can be simulated to a point where they

are approaching mb. While not currently being used to simulate b quarks, HISQ

may become viable for this purpose in the future. At present, HISQ is invaluable for

simulations involving the charm quark, which would have previously been simulated

with a heavy quark action such as NRQCD.

3.2 The NRQCD action

For a heavy-heavy system, there are three important scales to consider: the quark mass

MQ, momentum p ∼ MQv and kinetic energy K ∼ MQv
2, with MQ >> MQv >> MQv

2.

The effective theory employs an ultra-violet cut-off at the order of the quark mass (a ∼
1/MQ), exploiting the fact that the physics of the objects we are interested in, quark

bound states, occurs at the scales of the momentum and energy (as evidenced by figure

3.1). This decreases the otherwise very broad spread of scales by allowing us to drop the

mass term, and makes the problem tractable. Relativistic corrections may then be added

by means of additional local interactions in the Lagrangian, because relativistic states are

highly virtual and do not propagate long distances.

3.2.1 Building Blocks of NRQCD: Power Counting in the Con-

tinuum Effective Theory

The Lagrangian for a continuum effective theory may be found using a power counting

argument following [2], using the various fields that can appear: ψ, φ, A(x), and starting
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with:

LNRQCD = ψ†(x)

(
iDt +

D2

2M

)
ψ(x) − 1

4
FµνF

µν . (3.2)

We have dropped the term ψ†Mψ, which has no effect on energy differences, serving only

to shift the overall energy scale. This means that the “ground state” energy of a meson

will not correspond to its mass, but rather its mass plus some unknown offset.

The number operator for heavy quarks has an expectation value of 1 for a heavy quark

meson, localised within a region δx ∼ 1/p. This means that we expect
∫
d3x ∼ 1/p3;

therefore: ∫
d3xψ†(x)ψ(x) ∼ 1 ⇒ ψ†(x)ψ(x) ∼ p3, (3.3)

which means that ψ ∼ p3/2. Using this and the kinetic energy operator (which by defini-

tion has expectation value K):

∫
d3xψ†(x)

D2

2M
ψ(x), (3.4)

we can see that D2

2M
∼ K therefore

D ∼ (2MK)1/2 ∼ p. (3.5)

The field equation implies that

(
iDt +

D2

2M

)
ψ = 0, (3.6)

so that

Dt ∼
D2

2M
∼ K (3.7)

Continuing specifically in the Coulomb gauge, which is the natural gauge for a non-

relativistic problem (because the spatial gluon field is minimised and D2 is like p2 from

the Schrödinger equation), we next observe that the vector potential A is small in this

gauge, and therefore can be neglected in the field equation, which becomes:

(
i∂t − gφ(x) +

∇2

2M

)
ψ ≈ 0. (3.8)
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The operator gφ is the operator through which the potential energy enters, and - as this

is a bound system - it must balance the kinetic energy term. Therefore gφ(x) ∼ K in

Coulomb gauge.

The field equation for φ (with the vector potential neglected as before) would give us:

∇2gφ(x) = −g2ψ†(x)ψ(x) ⇒ gφ(x) ∼ 1

p2
g2p3 ∼ g2p, (3.9)

which is consistent with the previous assertion if the effective low energy coupling constant,

αs ∼ g2 ∼ v.

If we now include the vector potential in our solution for the field equations, we get

that

(∂2
t −∇2)gA =

g2

M
ψ†∇ψ + gφ∇gφ+ ... (3.10)

Using our previous estimates, we can use this to estimate the order of the field A as

gA(x) ∼ 1

p2

(
g2

M
p4 + pK2

)
∼ vK. (3.11)

Finally, we can estimate the nonabelian electric and magnetic fields:

gE = −∇gφ+ ... ∼ pK

gB = ∇× gA + ... ∼ K2 (3.12)

3.2.2 Building Blocks of NRQCD: Adding Correction Terms

The power counting of the previous section enables us to evaluate which correction terms

are necessary to the leading order equation so that important quarkonium physics is not

lost. It is sufficient to do this for the quark creation field, as charge-conjugation demands

that the total action is invariant under the change ψ ↔ χ, and this, like all symmetries

of the theory, must be respected. Similarly; parity, gauge invariance, unitarity etcetera

must be maintained, further restricting which interactions may appear in the action. For

example, electric dipoles are forbidden due to parity, whereas magnetic dipoles are not.

27



Operator Name Power counting estimate

ψ quark annihilation field (Mv)3/2

χ anti-quark creation field (Mv)3/2

Dt temporal covariant derivative Mv2

D spatial covariant derivative Mv

gφ scalar potential (Coulomb gauge) Mv2

gA vector potential (Coulomb gauge) Mv3

gE chromoelectric field M2v3

gB chromomagnetic field M2v4

Table 3.1: Summary of estimates of operator magnitudes from power-counting argument

for the NRQCD heavy quark action, given in terms of quark mass M and typical quark

velocity v [2].

Terms that do match the symmetries of the theory may be added, up to whatever order we

wish to work to. Any of these terms that includes a temporal derivative is inconvenient,

as they make numerical evaluation much more difficult, but may be obviated by using the

field equation for ψ to make the replacement

iDtψ(x) ∼ −D2

2M
ψ(x). (3.13)

Bilinear corrections, suppressed by v2 compared to the leading order, are required to

achieve an accuracy of at least 10% for the Υ, and take the form

δLbilinear ≡ c1
1

M3
ψ†D4ψ

+ c2
g

M2
ψ†(D · E − E · D)ψ

+ c3
ig

M2
ψ†

σ · (D × E −E × D)ψ

+ c4
g

M
ψ†

σ · Bψ (3.14)

Next, we would add interactions involving a quark and an anti-quark through four-

fermion contact terms, but these terms (equation 3.15) are not present in relativistic QCD,
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and so must be suppressed to one loop order or beyond. Therefore, their coefficients are

of order α2
s(π/a) and are thus less significant than the bilinears. For this reason, they are

not included.

δLcontact ≡ d1
1

M2
ψ†χχ†ψ

+ d2
1

M2
ψ†

σχ · χ†
σψ. (3.15)

There are also four-fermion terms in which the operators couple to coloured states:

δLcolour ≡ d3
1

M2

∑

a

ψ†T aχχ†T aψ

+ d4
1

M2

∑

a

ψ†T aσχ · χ†T aσψ (3.16)

These are also less significant and are not included because not only are both d3 and d4 of

order α2
s(π/a), but additionally can only interact with a colour-singlet meson if the meson

becomes coloured - which can only happen if the meson emits a virtual gluon, a process

suppressed by a further v2.

Finally, there exist additional spin dependent terms. As the first occurrence of non-

trivial spin terms occurred at O(v2) relative to the leading order, these correction terms

must be taken to an additional power of v2, i.e. O(v4). We do not generally include

these in our action, although they may become necessary to determine spin-dependent

splittings to the desired accuracy (see chapter 5). These terms are

δLspin ≡ f1
g

M3
ψ†{D2,σ · B}ψ

+ f2
ig

M4
ψ†{D2,σ · (D ×E − E ·D)}ψ

+ f3
ig2

M3
ψ†

σ · E ×Eψ. (3.17)

3.2.3 Relativistic Correction Coefficients

All of the corrections in the previous section contain unknown coefficients. Continuing in

the manner of [2] one can compare QCD and NRQCD, matching the NRQCD coefficients

29



so that any predictions would agree with QCD (to v2). We can make a very simple match

to the formula for the relativistic energy for a non-interacting quark:

√
p2 +M2 ≈M +

p2

2M
− p4

8M3
, (3.18)

which we recognise as the first of our bilinear corrections in equation 3.14; thus setting

c1 = 1/8.

Since many of our correction terms include gE, it makes sense to look next at the

scattering of a quark from a static electric field in QCD.

TE(p, q) = u(q)γ0gφ(q − p)u(p). (3.19)

Substituting in the Dirac spinors, which are normalised non-relativistically, and look like:

u(p) =

(
Ep +M

2Ep

) 1
2


 ψ

σ·p
Ep+M

ψ


 , (3.20)

(where Ep ≡
√
p2 +M2), we obtain the following:

TE(p,q) =

√
(Ep +M)(Eq +M)

4EpEq

× ψ†
[
1 +

p · q + iσ · p× q

(Ep +M)(Eq +M)

]
gφ(q− p)ψ (3.21)

≡ SE(p,q) + VE(p,q),

using the identity (σ · p)(σ · q) = p · q + iσ · p × q. Expanding the scalar part of 3.21,

SE , in terms of p/M and q/M , we see that

SE(p,q) =

(
1 − (p− q)2

8M2

)
ψ†gφ(q − p)ψ. (3.22)

The latter term in equation 3.21 is the spin-dependent term, and this can also be expanded

in the same terms.

VE(p,q) =

(
i

4M2
− 3i

32M4
(p2 + q2)

)
ψ†

σ · (q × p)gφ(q− p)ψ (3.23)
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The first term of SE is the scattering predicted by the lowest order action, but the others

require the addition of new interactions to the NRQCD action:

δLE =
g

8M2
ψ†(D · E −E · D)ψ

+
ig

8M2
ψ†(σ · D × E− σ · E ×D)ψ

+
3ig

64M4
ψ†{D2,σ · D ×E − σ · E× D}ψ. (3.24)

This sets the second and third terms in equation 3.14, so that c2 = c3 = 1/8, and also

means that f2 = 3/64 in equation 3.17.

We can repeat this calculation for the static vector potential A, and from this c4 = 1/2

and f1 = 1/8. We can also make an expansion for the double scattering of a quark from

an external static electric field, and doing so would give us the last coefficient: f3 = −1/8.

3.2.4 Lattice NRQCD

By replacing the continuum fields in the NRQCD action with discrete counterparts, and

derivatives with finite differences; we can reformulate NRQCD to Lattice NRQCD. If we

wish to maintain our level of precision, we must make corrections to these discretisations

at the same level as in the previous section. The field Fµν is represented using the

cloverleaf operators, discussed earlier(see diagram 2.2). The finite difference operators

(also discussed previously, see equations 2.2 - 2.4 and 2.23) are given below with the

lattice QCD fields explicitly included.

a∆(+)
µ = Uµ(x)ψ(x+ aµ̂) − ψ(x) (3.25)

a∆(−)
µ = ψ(x) − U †

µ(x− aµ̂)ψ(x− aµ̂) (3.26)

∆(±)
µ =

1

2
(∆(+)

µ + ∆(−)
µ ) (3.27)

∆(2) =
∑

i

∆
(+)
i ∆

(−)
i =

∑

i

∆
(−)
i ∆

(+)
i (3.28)
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The covariant derivatives of the Fµν field then look like

a∆(+)
ρ Fµν(x) ≡ Uρ(x)Fµν(x+ aρ̂)U †

ρ(x) − Fµν(x)

a∆(−)
ρ Fµν(x) ≡ Fµν(x) − U †

ρ(x− aρ̂)Fµν(x− aρ̂)Uρ(x− aρ̂) (3.29)

Fµν is then improved to O(a4) by making the replacement

Fµν(x) → Fµν(x) −
a2

6

[
∆(+)
µ ∆(−)

µ + ∆(+)
ν ∆(−)

ν

]
Fµν(x), (3.30)

which, upon expanding the lattice derivatives becomes

Fµν(x) → 5

3
Fµν(x) −

1

6
[Uµ(x)Fµν(x+ aµ̂)U †

µ(x)

+ U †
µ(x− aµ̂)Fµν(x− aµ̂)Uµ(x− aµ̂) − (µ⇔ ν)]. (3.31)

Tadpole improvement effects from the Uµ fields must be handled cautiously here, as there

are in fact some cancellations occurring in the square-bracketed terms. Terms of the form

UµFµνU
†
µ would look like six link operators (since Fµν is a four link operator), and are

therefore tadpole improved by a factor of 1/u6
0, but the unitarity of U means that in some

cases two adjacent U fields cancel, and it would then be correct to only tadpole improve

by a factor of 1/u4
0. To achieve this, we add a correction term (where the factor of 2 is to

account for the same error in the µ ⇔ ν terms) [40]. This term is illustrated in figure 3.2.

2 ×−1

6

(
1 − 1

u2
0

)
Fµν(x) (3.32)

The lattice chromoelectric and chromomagnetic fields are defined in terms of the clover-

leaf field Fµν as

Ei(x) = F0i(x), (3.33)

Bi =
1

2
ǫijkFjk(x). (3.34)

The discretised fields relate to the continuum versions with the relation

Uµ(x) ≡ Pexp

[
−ig

∫ x+aµ̂

x

A · dy
]
, (3.35)

32



Figure 3.2: Schematic of Uµ(x)Fµν(x+aµ̂)U †
µ(x) (right four loops) and U †

µ(x−aµ̂)Fµν(x−
aµ̂)Uµ(x− aµ̂) (left four loops). The red links cancel due to the unitarity of Uµ, leading

to over-division by the tadpole improvement factor. The loops within the dashed box are

therefore equivalent to 1
u2
0
Fµν . This motivates making the correction (1 − 1

u2
0
)Fµν

therefore, the difference operators would relate as

a∆
(+)
i ≡ exp(aDi) − 1 = aDi +

a2

2
D2
i +

a3

6
D3
i ... (3.36)

a∆
(−)
i ≡ 1 − exp(−aDi) = aDi −

a2

2
D2
i +

a3

6
D3
i ... (3.37)

which gives

a∆(±) =
1

2
(∆(+) + ∆(−)) = aDi +

a3

6
D3
i . (3.38)

We can suitably improve this operator by making the change

∆
(±)
i → ∆

(±)
i − a2

6
∆

(+)
i ∆

(±)
i ∆

(−)
i , (3.39)

and, in the same fashion, improve the Laplacian by

∆(2) → ∆(2) − a2

12

∑

i

[∆
(+)
i ∆

(−)
i ]2. (3.40)
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Finally, the temporal derivative needs to be addressed. The fact that NRQCD is non-

relativistic allows for a simpler treatment of temporal derivatives than the spatial ones.

Temporal derivatives have only appeared to the first power, which makes the problem

one of initial value rather than boundary conditions, and thus less computationally costly

to solve. If we were to improve the temporal derivative in the same way as we have the

spatial, then this advantage would be lost, as we would have introduced higher powers of

the derivative term. Instead, we can examine the evolution equation for a quark Green

function, and make the correction there.

The quark evolution operator, at leading order, would take the form

G(x, t+ a;x0, t0) = U †
0 (x, t)(1 − aH0)G(x, t;x0, t0), (3.41)

where H0 =
∑

i
∆

(+)
i ∆

(−)
i

2Ma
; this means that in momentum space, the expression is

G(p, t+ a; t0) =

(
1 −

∑

i

4 sin2 pia
2

2Ma

)
G(p, t; t0). (3.42)

This is a problem, because if pi ≈ π/a then

G(p|pi=π/a, t+ a; t0) ≈
(

1 − 12

2Ma

)
G(p, t; t0), (3.43)

which is potentially unstable: if (1 − 12
2Ma

) < −1 or (1 − 12
2Ma

) > 1, then the expression

will grow with time. This can only happen when Ma < 3.

If we replace (1 − aH) → (1 − aH/n)n then these high momentum quark states are

suppressed (and for a heavy quark meson, we expect these states to contribute little to the

masses of the meson), but low momentum behaviour remains the same. The instability

criterion becomes nMa < 3, and, as we are free to choose n, can be avoided as long as

we make n suitably large.

G(x, t+ a;x0, t0) =

(
1 − aH0

2n

)n
U †

0 (x, t)

(
1 − aH0

2n

)n
G(x, t;x0, t0), (3.44)

For the sake of convenience, we have also split the operator into two parts (relabelling

n → 2n in the process). This move is valid, and equivalent at tree level to the previous
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formulation, but infers some advantages, particularly at the start and end points of a

simulation.

Neglecting the gauge field in equation 3.44 for now, we can make a correction to the

temporal derivative by observing that

G(x, t+ a) =

(
1 − aH0

2n

)2n

G(x, t) = e−aHeffG(x, t), (3.45)

Heff = −2n

a
log

(
1 − aH0

2n

)
= H0 +

a

4n
H2

0 , (3.46)

which means that the temporal derivative can be corrected with the replacement H0 →
H0− a

4n
H2

0 . The correction a
4n
H2

0 ∼ a(Mv2)2 ∼ aM2v4, and can be implemented with the

term
a(∆(2))2

16nM2
(3.47)

Ultimately, these corrections give rise to a quark evolution equation, given below. The

ci are functions of αs (the strong coupling constant) and aM (the valence quark mass

in lattice units), but are 1 at tree level [41], which is the value used in this work unless

otherwise stated.

G(x, t+ a) =

(
1 − aH0

2n

)n(
1 − aδH

2

)
U †
µ(x, t)

(
1 − aδH

2

)(
1 − aH0

2n

)n
G(x, t)

H0 =
−∆(2)

2M

δH = −c1
(∆(2))2

8M3
+ c2

ig

8M2
(∆(±) · Ẽ − Ẽ · ∆(±))

− c3
g

8M2
σ · (∆(±) × Ẽ − Ẽ× ∆(±))

− c4
g

2M
σ · B̃ + c5

a2∆(4)

24M
− c6

a(∆(2))2

16nM2

where the operators with tildes have been tadpole improved.

3.3 Simulation of the Υ Meson

The quark and anti-quark propagators we have derived can then be used in combination

to produce mesons. Since ψ† and χ† create a quark and an anti-quark respectively, one
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can create a meson with the operator

O†(t) =
∑

x1,x2

ψ†(x1, t)Γ(x1 − x2)χ
†(x2, t) (3.48)

The Γ operator is responsible for picking the correct quantum numbers for the meson,

and makes use of a smearing function (see section 4.3) which helps to select the correct

radial quantum number n. Γ is also responsible for selecting the correct spin orientations,

by means of either the identity matrix for the ηb, or σi for the Υ.

A meson propagating from 0 to t is given by the two-point correlation function
〈
0|O(t)O†(0)|0

〉
. Since the propagator for the quark is given by

〈
0|ψ(y, t)ψ†(x, 0)|0

〉
,

and the anti-quark propagator is simply the complex conjugate, we can write the meson

propagator as

Gmeson(t) =
∑

y1,y2

Tr
[
G†(y2, t)Γ

†(sk) (y1 − y2)G̃(y1, t)
]

(3.49)

where

G̃(y, t) =
∑

x

G(y − x, t)Γ(sc)(x) (3.50)

and the sum over the initial anti-quark position has been removed by translational invari-

ance. The trace is over spin and colour. This expression represents a meson being created

at time 0 with smearing Γ(sc), propagating to time t and being destroyed with smearing

Γ(sk) [42].

3.4 Fitting

3.4.1 Correlator Functional Form

In order to make fits to the simulation results, it is useful to investigate the general form

of the correlator functions.
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Consider an operator in the Heisenberg representation, OH(t). Then an Υ propagating

from t = 0 to t = T would take the form

〈
0|OH(T )O†

H(0)|0
〉

H H
. (3.51)

In Euclidean space, this is related to the time-dependent Schrödinger representation

by

〈
0|OH(T )O†

H(0)|0
〉

H H
≡

〈
0|τ †(T )OSτ(T )O†

S|0
〉

H H

≡
〈
0, t = T |OSτ(T )O†

S|0, t = 0
〉

S S
, (3.52)

where the operator τ(t) ≡ e−Ht. [43]

Inserting a complete set of states
∑ |n〉〈n| = 1, we get that

〈
0, t = T

∣∣∣OSτ(T )O†
S

∣∣∣0, t = 0
〉

S S

≡
∑

n

〈
0, t = T

∣∣∣OSe
−EnT

∣∣∣n
〉〈
n
∣∣∣O†

S

∣∣∣0, t = 0
〉

S S

≡
∑

n

∣∣∣
〈
0
∣∣OS

∣∣n
〉 ∣∣∣

2

e−EnT . (3.53)

Therefore, the generalised functional form to fit a correlator would look like

G(t;An, En) =
∞∑

n=0

A2
ne

−Ent (3.54)

where An is the matrix element
∣∣∣
〈
0
∣∣OS

∣∣n
〉 ∣∣∣, and we define the index n so that En are

ordered from low energy to high. Clearly, it would be impossible to fit to the infinite

number of exponentials that make up this function, but it is not necessary to do so. As t

increases, higher energy states become suppressed far more quickly than the lower ones,

and at high values of t, the function is dominated by the low energy contributions. The

most significant energy is therefore E0, and this can be extracted from the effective mass,

defined as

Meff (t) = ln
G(t)

G(t+ 1)
. (3.55)
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As t→ ∞, Meff → E0, so one would expect a plot of Meff against time to plateau at

the ground-state energy (for an example, see figure 3.3). This would normally correspond

to the meson mass, but due to the formulation of NRQCD, this is not the case here (see

section 3.2.1). The exact rate at which this occurs will depend on the smearing function

used in the quark creation operators. This simple technique will allow easy access to the

ground-state, but in this work we are interested in higher energy levels, particularly in

the E1 −E0 splitting, so we will need to make use of a more advanced fit.
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Figure 3.3: Effective mass plot for the Υ on the “coarse” 010/050 MILC ensemble.

3.4.2 Bayesian Fitting

Bayesian fitting techniques use priors to provide a fit with physical information. By

including such information, such as the ordering of the energy levels and the expected size

of excited state splittings, one can reliably fit an arbitrarily high number of exponentials.

Fitting an excess of parameters (relative to the quality of the data being fitted) will not
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degrade the errors or fit quality of those parameters that are well-described by the data.

A normal fitting procedure would attempt to fit to

Gth(t;An, En) =
∑

n

Ane
−Ent, (3.56)

by minimising a χ2 defined as

χ2(An, En) ≡
∑

t,t′

∆G(t)σ−2
t,t′∆G(t′), (3.57)

in which

∆G(t) ≡ G(t) −Gth(t;An, En), (3.58)

and the covariance matrix is

σ2
t,t′ ≡ G(t)G(t′) −G(t) G(t′). (3.59)

The over-bars indicate the Monte Carlo estimator, given by ensemble averages.

The Bayesian technique minimises an augmented χ2 as follows:

χ2 → χ2
aug ≡ χ2 + χ2

prior (3.60)

defining χ2
prior as:

χ2
prior ≡

∑

n

(An − Ān)
2

σ̃2
An

+
∑

n

(En − Ēn)
2

σ̃2
En

The terms in χ2
prior push the fit towards An and En in the ranges Ān±σ̃An

and Ēn±σ̃En

respectively. The Ān’s, Ēn’s and the σ̃’s are chosen to reflect reasonable a priori knowledge

of these values [44].

The augmentation of χ2 can be justified using Bayes’ Theorem, and the assumption

that the probability of getting a particular set of Monte Carlo data G given a set of

parameters is Gaussian distributed P (G|p) ∝ e−χ
2(p)/2, and that the probability of getting

a particular set of parameters, p, is also Gaussian distributed with P (p) ∝ e−χ
2
prior(p)/2.
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We want to know the probability of getting a particular set of parameters, p, given the

Monte Carlo data we are fitting to, that is P (p|G). Bayes’ Theorem gives:

P (p|G) =
P (G|p)P (p)

P (G)
∝ P (G|p)P (p) ∝ e−χ

2(p)/2e−χ
2
prior(p)/2 = e−χ

2
aug(p)/2

implying that the fit parameters are distributed according to χ2
aug, consistent with equa-

tion 3.60 [44].

The fitting procedure utilises an increasing number of exponentials as the fit progresses,

and is expected to become stable once a sufficiently large number of such exponentials

is included, see figure 3.4. This means that once the number of exponentials is high

enough to describe all states meaningfully present in the correlator, the addition of extra

superfluous states does not have any impact on the fit for the lowest levels. As long as

enough are fitted that the error stabilises, we can be confident that our error includes the

full effect from the uncertainty associated with the higher state parameters; which would

not be the case had we used a smaller number of exponentials.

All of the fitting in this thesis was done using a Python script written by G. Peter

Lepage.
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Figure 3.4: Fitting of the energy splitting E1−E0 for an Υ point-to-point source calculated

on the 010/050 MILC ensemble. As successive exponentials are added to the fit, the result

and associated error stabilise.
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Chapter 4

Υ Spectroscopy

4.1 Introduction

The configurations used in this thesis were generated by the MILC Collaboration [3, 45]

[46], and their properties are tabulated in table 4.1.

The values of aM0
b are the bare-quark mass used for each ensemble, and were deter-

mined as described in section 4.4 and are consistent with the values used in similar work

by Alan Gray [4]; u0L is the value used for tadpole improving the simulation (equation

2.32) and is taken from the mean Landau link (equation 2.33), see section 4.2. The value

of the NRQCD stability parameter n (see section 3.2.4, equation 3.44) was chosen to be

appropriate for the “superfine” ensembles, and kept consistent across the set of ensembles

to allow for more meaningful comparison.

In order to increase statistics, multiple time origins were used on each configuration.

Origins are spaced maximally apart on the lattice, the first origin is at t = 0, and each

subsequent origin is located T/Norigin time-slices later, where T is the ensemble’s time

extent, and Norigin is the number of origins used for that ensemble. The results from these

origins were binned together prior to any analysis.
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Lattice V. Coarse Coarse Fine Superfine

Size 163 × 48 163 × 48 203 × 64 243 × 64 283 × 96 483 × 144

nf 2+1 2+1 2+1 2+1 2+1 2+1

β 6.572 6.586 6.760 6.760 7.090 7.470

au0Pmu,d 0.0097 0.0194 0.010 0.005 0.0062 0.0036

au0Pms 0.0484 0.0484 0.050 0.050 0.031 0.018

u0L 0.8218 0.8225 0.8359 0.8362 0.8541 0.8695822

aM0
b 3.40 3.40 2.80 2.80 1.95 1.34

n 4 4 4 4 4 4

Configs 631 631 595 202 / 2083∗ 557 698

Origins 24 24 32 32 8 8

Table 4.1: Summary of MILC ensemble parameters[3] ’Configs’ is the number of configurations

used in this work, and may not represent the total number of configurations in existence for that ensemble.

∗initial runs were done on an easily accessible subset of ensembles, due to computation cost, storage

availability and time constraints.

It is important to bin together data from the same configuration (but different start

times), and in principle even to bin together data from adjacent configurations due to auto-

correlations. The method for generating configurations means that a given configuration

is not independent, but rather derived from the preceding configurations. If the number

of Monte Carlo iterations between stored configurations in an ensemble is too small, then

one would expect simulations on sequential configurations to be correlated. One would

also expect correlations between simulations conducted on different starting times of the

same configuration, particularly if the number of alternate start times means that the

distance between each is less than the simulation time extent, as is the case in this thesis

(typical simulation times are ∼ 32 time slices, and typical origin separations are only

∼ 2). Even if autocorrelations do exist in repeated simulations on a single configuration,

such simulations are still valuable. Auto-correlated results still add to the accuracy of

the simulation, just not by as much as an uncorrelated measurement as there can still be

some information there. The binning process allows us to make use of auto-correlated
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measurements without over-estimating their significance.

To test for auto-correlations, a series of simple 1× 1 Bayesian fits were produced on a

selection of ensembles, each binned in four different manners. First, each is fitted with no

binning, then half the origins/configuration per bin, all the origins/configuration per bin,

and finally with each bin consisting of all the origins for two consecutive configurations

in each bin.
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Figure 4.1: Testing for autocorrelations: plot of fit results for E0 against bin size for the

“very coarse” 0097/0484 ensemble.

In practice, the MILC configurations used here were binned over repeated uses of the

same configuration. It is clear from plots 4.1 - 4.6 that even if this is unnecessarily binned,

doing so does not hurt the result, whereas failing to bin can lead to under estimation of

errors.
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Figure 4.2: Testing for autocorrelations: plot of fit results for E0 against bin size for the

“very coarse” 0194/0484 ensemble.
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Figure 4.3: Testing for autocorrelations: plot of fit results for E0 against bin size for the

“coarse” 005/050 ensemble.
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Figure 4.4: Testing for autocorrelations: plot of fit results for E0 against bin size for the

“coarse” 010/050 ensemble.
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Figure 4.5: Testing for autocorrelations: plot of fit results for E0 against bin size for the

“fine” 0062/031 ensemble.
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Figure 4.6: Testing for autocorrelations: plot of fit results for E0 against bin size for the

“superfine” 0036/018 ensemble.

4.2 Calculation of mean Landau links

In order to tadpole improve the gauge fields in the NRQCD action, it is necessary to

determine the mean Landau link. This has already been done for some of the ensembles

used in this thesis, but not for all. The existing u0 values were taken from [4]. I calculated

the value U0L for both of the very coarse ensembles, and both of the coarse ensembles

(although the 010/050 has an existing value that we simply chose to update to an extra

decimal place).

Taking a subset of the ensemble, we update each link by multiplying them by a gauge

transformation matrix. First, we take

M(x) =
∑

µ

(Uµ(x− µ̂) − Uµ(x)) (4.1)

which are made Hermitian and traceless. The process is hastened by Fourier accelerating

M [47]. After every iteration, the mean trace of MM † is calculated. The gauge transform
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Ensemble U0L

0097/0484 0.821794(54)

0194/0484 0.822508(89)

010/050 0.835874(40)

005/050 0.8362

Table 4.2: Values for the mean Landau link, calculated on various ensembles. Ensembles

are labelled using the values for the light and strange quark masses by taking the digits

after the decimal; for example the ensembles with au0Pmu,d = 0.010 and au0Pms = 0.050

is labelled 010/050.

matrix is then

G(x) = I + αM(x) (4.2)

where α is a constant parameter and I is the unit matrix.

Having updated the links by G(x), we find the current value of the mean gauge link.

This process is repeated until the value of the mean link and the mean trace of MM †

plateau, after which the final value is taken to be the mean link in Landau gauge.

The results of this calculation are tabulated in table 4.2, all of which were taken to

four decimal places when implemented in the Υ simulation.

4.3 Random Wall Techniques

The Random Wall algorithm allows us to increase our usage of the available configurations

without any significant increase in the processing required. The idea is to attempt to

simulate not just one quark/anti-quark pair at some starting spatial point on the lattice,

but rather a quark/anti-quark pair at every spatial point.

One could do this simply be rerunning the same configuration L3 times, but clearly this
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would be very computing intensive. Instead, we wish to place all of the quark/anti-quark

pairs on the lattice at once, so that they can all be processed as a single computation.

This would be as fast as the original single job, and a viable way of proceeding, but there

would be a lot of noise due to the ambiguity of which quark is bound to which anti-quark

to form the meson. To address this, we assign each spatial point a random phase θ ∈ R

in the complex plane. This phase multiplies the smearing function used in the creation

operator for a quark by η = eiθ, and thus logically the complex conjugate η† = e−iθ of

such a phase would be applied to the operator for an anti-quark. Since we use Gq = G†
q,

the conjugation of the phase occurs implicitly. Making use of the property of random unit

complex numbers, η:

〈ηaηb〉 = δab (4.3)

a quark and anti-quark that are created on the same lattice site have complimentary

phases, and the pair will be interpreted as a meson, whereas combinations of quark cre-

ation operator with an anti-quark operator from differing start sites will create noise that

tends to cancel in the average.

Had one calculated every meson-origin separately, the results would be highly corre-

lated, and we would bin them together to make a single representative correlator to use in

our Monte Carlo average. Such a correlator would be a more accurate representation of

the correlator for that configuration, leading to smaller errors in the final average. With

the exception of the residual noise, the random wall has effectively given us precisely this.

An example of an ensemble average correlator is depicted in figure 4.7.

Tests of the random wall showed a large improvement in the determination of the

ground state energies relative to a simple point-to-point simulation, although little was

gained for higher energy levels (see figures 4.9 and 4.10). Given the improved ground

state, and the low cost of this procedure, its use in Υ spectroscopy can help us to reduce

the statistical errors on our simulations. In chapter 5, these error improvements will allow

us to examine the NRQCD dispersion relation.

Smearing functions are typically used to improve simulations by helping to pick out
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Figure 4.7: The mean correlators from the “coarse” 010/050 using a point-to-point source

(dashes), and using a random wall (bursts). The bursts have been slightly off-set to the

right and the x-range has been truncated at the origin for clarity.
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particular radial quantum numbers for a given meson propagator. Smearing functions,

φ(x), spread the quark out over the spatial extent of the lattice, and are chosen such that

they have reasonable cross-over with the functional form of the Υ states that we are most

interested in.

In order to improve the determination of higher energy states, we investigated com-

bining such smearing functions with the random wall technique using a quark creation

operator of the form:

G(~x, 0) =
∑

~y

φ(|~x− ~y|)R(~y) (4.4)

where R(~y) is the random phase from the random wall associated with co-ordinate ~y.

Figure 4.8: The mean correlators from the “coarse” 010/050 using a point-to-point source

(dashes), and using a random wall (crosses). The crosses have been slightly off-set to the

right and the x-range has been truncated at the origin for clarity. The insert shows a

close up of a typical pair of points (in this case, at t=11) The error on the wall source is

favourable, but not by as much as in figure 4.7.
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Figure 4.8 shows a comparison of the correlator for a normal point-to-point smeared

meson, and for the same meson constructed using the same smearing function applied to

the random wall. As in figure 4.7, there is an improvement in the error associated with

the correlator, however the effect is not as marked as before - indeed figure 4.8 requires

an insert at a smaller scale for the error difference to clearly visible.
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Figure 4.9: Comparison of the ground state energy of the Υ from a 2× 2 matrix fit using

random wall and point-to-point sources.

4.4 Bare Quark Mass and the Kinetic mass

The bare mass of the b quark must be determined as it is a free parameter of the theory.

This is done by asserting that the mass of the Υ as measured in the simulation must

match that of experiment, and so we tune aMb until this is so.

Energies determined in the simulation are shifted relative to a physical zero as the
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Figure 4.10: Comparison of the E1 −E0 energy splitting of the Υ from a 2× 2 matrix fit

using wall and point-to-point sources.
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energy scale M has been removed from the simulation, and so one cannot use the normal

relativistic energy/mass relation

E(p) =
√

(M2 + p2).

However, since such a shift would be consistent, we can determine M if we also make two

measurements - one at rest and one at a higher momentum:

E(p) − E(0) =
√

(M2 + p2) −M.

Then the kinetic mass is given by:

M =
p2 − ∆E2

2∆E
,

where

∆E = E(p) −E(0).

Values of aMb were input in to the simulation, and used to generate 3S1 Υ correlators

at momenta of (0,0,0) and (2,0,0) (including all permutations) on each of the lattices

used. It was believed [48] that the kinetic mass had little dependence on p, and so the

value used to determine the kinetic mass of 2 was chosen as it represents a momentum

of 1 applied to each quark in the random wall. Giving a momentum p to a random wall

meson is done by multiplying the random phase by exp(iπx · p/L) for the quark and

exp(−iπx · p/L) for the anti-quark (where the negative sign ensures the anti-quark has a

positive momentum after complex-conjugation), i.e. half of the momentum is applied to

each constituent particle.

The two momenta were concurrently fitted using the Bayesian method described pre-

viously, and converted to physical units using a value for the lattice spacing calculated in

[4]. Fitting concurrently means that we fit the correlated difference ∆E directly, which

is more accurately determined than fitting the energies separately, and then taking the

difference. Results are tabulated in table 4.3.
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Υ Kinetic mass ηb Kinetic mass

Ensemble aMb E0|p2=4 − E0|p2=0 Lattice GeV E0|p2=4 − E0|p2=0 Lattice GeV

0097/0484 3.40 0.042548(82) 7.228(14) 9.56(15) 0.041781(24) 7.361(4) 9.74(15)

0194/0484 3.40 0.042576(69) 7.223(12) 9.49(15) 0.041825(34) 7.353(6) 9.66(15)

005/050 2.80 0.022869(38) 5.983(10) 9.73(15) 0.022676(21) 6.034(6) 9.82(15)

010/050 2.80 0.032938(32) 5.976(6) 9.62(15) 0.032597(19)) 6.039(4) 9.72(15)

0062/031 1.95 0.023455(66) 4.282(12) 9.74(15) 0.023298(10) 4.311(2) 9.80(15)

0036/018 1.34 0.011217(65) 3.050(18) 9.93(17) 0.01151(22) 2.972(57) 9.68(24)

Table 4.3: Kinetic masses from tuning bare quark mass aMb. Calculated using r1 =

0.321(5)fm from [4].

4.5 r1 scale calculation

Quantities determined on the lattice are dimensionless, containing factors of the lattice

spacing which have dimensions of inverse energy. The lattice and physical values are

related as:

Elattice = aEphysical,

Alattice = a3Aphysical,

where E is an energy and A an amplitude. Therefore, to make a dimensionally meaningful

determination, knowledge of a−1 is essential.

The lattice spacing itself is implicitly determined on the lattice by the choice of pa-

rameters that went in to its production, but is not explicitly known. To obviate this issue,

one makes use of the quantity known as r1, which is defined as the value of the heavy

quark potential at which r2F (r) = 1.0 (where F is the gradient of the potential) [49], and

is not physically measured. Instead, we determine a−1 for a set of lattices and use the

relevant r1/a for each lattice to determine r1, which can then be used to determine a−1 for

subsequent lattices. Since a−1 will factor into conversion from lattice to physical results,

some times at high powers, the accuracy in r1 can be paramount to the preservation of

accuracy in the final result.
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With this in mind, we require the values of r1/a for each lattice being used in this

work. Thankfully, the MILC collaboration[45], whose lattices we are using, have already

calculated this value for their ensembles. They do this by placing a static, infinitely

heavy quark and anti-quark on the lattice, and measuring the potential between them by

calculating loops between the quark/anti-quark pairs extending in the time direction. In

fact, the lattices are gauge fixed to Coulomb gauge, and only products of temporal links

need be multiplied [50]. The potential is then extracted from the ratio of such “loops”

with temporal distances T and T − 1 (in the case of [50], T = 5). The potential is

computed at all spatial separations, with related separations combined. This can then be

fitted to the form

V (r) = C − α/r + σr + λ(Vfree(r) − 1/r) (4.5)

where the last term is only used for small values of r, and is to correct for lattice artefacts.

Having fitted the static quark potential, all that remains is to calculate the value of r for

which r2F (r) = 1.0.

We measure the inverse lattice spacing on an assortment of lattices by comparing

the 2S-1S energy splitting as measured on the lattices with that of experiment. The 2S-

1S splitting is expected to have the lowest discretisation errors of the possible splittings

available [4]. Systematic errors arise from three major sources: relativistic corrections,

radiative correction and discretisation. In the case of relativistic errors, one must consider

that we are dealing not with expectation values, but with the difference between expec-

tation values - the 1S and 2S are similar enough that that the error in this difference will

be smaller than expected. Discretisation errors are also expected to favour the 2S − 1S

splitting due to their similarity.

We use a 3x3 Bayesian matrix fit to obtain our results, concurrently fitting three

different configurations of valence quarks at source and sink. This is achieved by applying

smearing functions to each valence b quark. We used, in addition to the δ local operator,

a hydrogenic function, applied to only one quark in the meson, to approximate the S wave

state; and the convolution of the same hydrogenic function by applying it to both valence
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Lattice Very coarse Coarse Fine Super Fine

0097/0484 0194/0484 005/050 010/050 0062/031 0036/018

a0 0.82 0.83 1.0 1.0 1.41 2.0

Table 4.4: Smearing radii for each ensemble used in out bb simulations. a0 is changed

with approximate lattice spacing.

quarks:

φqlocal(x) = δ(x) , φq̄local(x) = δ(x),

φq1S(x) = (2a0 − |x|) e(−0.5|x|/a0) , φq̄1S(x) = δ(x),

φq2S(x) = (2a0 − |x|) e(−0.5|x|/a0) , φq̄2S(x) = (2a0 − |x|) e(−0.5|x|/a0).

where a0 is a characteristic length for the smearing in lattice units, listed in table 4.4,

and |x| is the shortest distance from ~x to the origin, taking account of periodic boundary

conditions. The S-wave shown above is intended to pick out the excited Υ(2S) state, not

the 1S state - a local source with the random wall picks out the ground state so well that

the 2S is the limiting factor, and the smearing functions are chosen with this in mind.

These smearings are then combined with the random wall (Section 4.3) and used as

our (anti-)quark creation operator.

4.5.1 r1 Results

Using the bare quark masses for each configuration, as calculated in Subsection 4.4, each

ensemble was run using the local, 1S and 2S smearing functions. 3× 3 Bayesian fits were

made to these correlators. The results of these fits are tabulated in Tables 4.5 and 4.6,

along with Q, which measures the quality of the fit and is related to the value of χ2.

Q ≡
∫∞
x
ta−1e−tdt∫∞

0
ta−1e−tdt

, (4.6)

where a is equal to half the number of degrees of freedom, and x = χ2/2.
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Ensemble E0 E1 −E0 E2 − E0 Q

very coarse 0097/0484 0.287749(84) 0.4244(33) 0.596(74) 0.33

very coarse 0194/0484 0.288143(78) 0.4309(32) 0.707(32) 0.17

coarse 005/050 0.2933(26) 0.3439(8) 0.556(16) 0.88

coarse 010/050 0.292611(60) 0.3462(38) 0.549(42) 0.98

fine 0062/031 0.266175(49) 0.2381(37) 0.406(24) 0.3

superfine 0036/018 0.248500(33) 0.1679(14) 0.296(16) 0.36

Table 4.5: Fitted energies for the Υ from 3 × 3 Bayesian fits taken at Nexp = 10.

Ensemble E0 E1 −E0 E2 − E0 Q

very coarse 0097/0484 0.250892(69) 0.4453(38) 0.608(74) 0.65

very coarse 0194/0484 0.251723(66) 0.4522(37) 0.768(51) 0.32

coarse 005/050 0.261613(23) 0.3611(21) 0.541(57) 0.97

coarse 010/050 0.260696(50) 0.364(33) 0.539(77) 0.90

fine 0062/031 0.240843(35) 0.2534(38) 0.413(31) 0.22

superfine 0036/018 0.229198(30) 0.1781(16) 0.281(35) 0.45

Table 4.6: Fitted energies for the ηb from 3 × 3 Bayesian fits taken at Nexp = 10.

Q is the probability that the correct model could produce a χ2 as poor as that of our

fit. The closer Q is to one, the more likely it is that fit describes the data well. A fit

is considered “good” if Q is greater than about 0.1, lower values should be treated with

scepticism, and very small values are characteristic of a bad fit [51].

Table 4.7 shows the priors used in the Bayesian fits. All of the smearings are nor-

malised, and so we would expect a reasonable amplitude to be on the range [−1 : 1].

The amplitude priors Ai are all set to 0.1± 11, which makes them small (which would be

1We could have used 0.0±1, which would have given use the range [−1 : 1] exactly, but for programming

reasons, it was easier to use non-zero values. Since the priors are only loose constraints, this difference is

not important.
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Ensemble E0 Ei+1 − Ei ln(E0) σ2
0 ln(Ei−1 − Ei) σ2

i Ai σ2
A

very coarse 0097/0484 0.25 0.38 −1.4 0.41 −0.97 0.69 0.1 1

very coarse 0194/0484 0.25 0.38 −1.4 0.41 −0.97 0.69 0.1 1

coarse 005/050 ηb 0.25 0.30 −1.4 0.41 −1.2 0.69 0.1 1

coarse 005/050 Υ 0.30 0.37 −1.2 0.41 −1.0 0.69 0.1 1

coarse 010/050 0.25 0.30 −1.4 0.41 −1.2 0.69 0.1 1

fine 0062/031 0.25 0.25 −1.4 0.41 −1.4 0.69 0.1 1

superfine 0036/018 0.25 0.17 −1.4 0.41 −1.8 0.69 0.1 1

Table 4.7: Fitting priors for 3 × 3 Bayesian fits to both the Υ and ηb.

expected for higher values of the i index), but constrained sufficiently weakly that any

reasonable amplitude would be accepted by the fit.

The Υ spectrum energy splittings are relatively regularly spaced, so the same prior is

used for all energy splittings Ei+1 − Ei on the same ensemble, where i ≥ 1. The values

are simply rough guesses to the value of a given parameter, and can be estimated using,

for example, the experimental value of the splitting converted in to lattice units using an

approximate lattice spacing (since MILC have an approximate idea of how large a lattice

is when they create an ensemble). We take all of the Ei+1−Ei priors to be approximately

500 MeV2. E0 has its own prior, which can be estimated from an effective mass plot such

as figure 3.3. The widths are chosen to be wide enough not to overly constrain the fit

to these guessed values. In practice, we fit the logarithm of the energy splittings, which

ensures that E0 > 0, Ei+1 > Ei.

These lattice results were then compared to experiment to extract the inverse lattice

spacing per ensemble. These spacings were then compared to r1/a values, tabulated in

Table 4.8. The conversion factor from energy to distance is 197.327 MeV fm.

2The 005/050 Υ used slightly altered priors, and in this case the Ei+1−Ei priors were taken to around

600 MeV.
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Lattice r1/a a−1 r1

0097/0484 2.152(5) 1.33(1) 0.319(3)

0194/0484 2.138(4) 1.31(1) 0.322(3)

005/050 2.647(3) 1.64(1) 0.318(2)

010/050 2.618(3) 1.63(2) 0.317(4)

0062/031 3.699(3) 2.36(4) 0.309(5)

0036/018 5.296(7) 3.35(3) 0.312(3)

Table 4.8: r1/a from [3]

These results then need to be extrapolated to the continuum limit. This was done in

[52] by fitting the rΥ
1 from each ensemble (i.e. (r1/a)ia

Υ
i where the i subscript denotes

ensemble) to an equation for the effective r1:

rΥ
1 (a, δmsea

l , δmsea
s ) = r1

(
1 + cΥsea

2δmsea
l + δmsea

s

ms

)(
1 +

4∑

j=1

cΥj (a/r1)
2j

)
,

by means of a Bayesian fit (where r1, c
Υ
sea and cΥj are fit parameters). The δmsea terms

are the differences between the simulated s sea-quark and the physically correct value,

and between the simulation and correct u/d light sea-quark masses, which are taken to be

degenerate. By “physically correct”, we mean the bare mass that would give the correct

mass for π, K and ηs mesons. These bare masses (in HISQ formalism) and the means

by which one converts them in to ASQTAD quarks can be found in [52]. The second

bracketed term corrects for discretisation errors. This gave a result of:

r1 = 0.3091(44)fm,

with a χ2 of 0.2.

Ultimately we [52] combined the data from my Υ simulations (plotted in green in figure

4.11) with data produced by other members of the HPQCD collaboration; specifically

mDs
−mηc

/2 and fηs
which are outlined below.

The ηs is a fictitious meson composed of an s quark and anti-quark, which in reality
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would mix with uu and dd states, known as the η and η′ mesons: η = uu+dd−2ss√
6

, η′ =

uu+dd+ss√
3

. The ηs is simpler to study on the lattice, and has the advantage of being only

weakly dependent on the light sea quark masses. In the continuum, its mass and decay

constants may be determined from pion and kaon data (both simulation and experimental)

using chiral perturbation theory. Fitting of the ηs followed a similar procedure as that

used with the Υ system. This data can be found on figure 4.11 in blue.

Using bare quark masses that give the correct ηs and ηc masses, the mDs
−mηc

/2 gives

a better signal to noise ratio than in the Υ system because both mesons are ground-states,

however it is complicated by the involvement of two quark masses. This determination was

made possible by the HISQ action for simulating charm quarks [11]. In this simulation,

the collaboration simulated Ds, ηc and ηs at a number of s and c quark masses, and in

each case converted to physical units via the mDs
− mηc

/2 splitting. Fitting proceeds

using a multi-exponential form, including oscillating states for Ds. It is then possible to

interpolate a plot ofmηc
againstmηs

to experiment3. The lattice spacing is then defined as

the ratio of the lattice simulation of mDs
−mηc

/2 to the experimental result, at simulation

valence masses that reproduce ηs and ηc consistent with experiment. Two lattice spacings

were used,appearing in red on figure 4.11, and were fitted in the same manner used for

both the Υ and ηs methods.

To obtain the most accurate results, all three of these methods were fitted concurrently

in [52], with the requirement that each fit must agree on the value of the r1 parameter,

leading to a final result of

r1 = 0.3133(23)(3)fm,

where the second error is from finite-volume corrections.

Figure 4.11 demonstrates the low a2 dependence of the Υ splitting method, compared

to the other methods. In light of this, the group’s previous prediction of 0.321(5) from [4]

- which differs from this new determination by about 1.5σ - is not unexpected, as without

3More precisely, as described in [52], interpolated to a shifted experimental value, to account for

phenomena not simulated on the lattice, such as electromagnetism.
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Figure 4.11: r1 as a function of lattice spacing. Green points indicate determinations

from the Υ spectroscopy presented in this thesis. The red (top line) and blue (middle

line) points are from mDs
−mηc

/2 and fηs
respectively.
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the finer lattices that are now available, the flatness of the data is consistent with a higher

value of r1.

4.5.2 The Υ S-wave Spectrum

By defining the Υ(1S) state to match experiment, and using this new r1 value, we can

convert our S-wave results to physical units, and make comparison with experiment where

appropriate. We have converted the coarse 005/050 ensemble due to the higher statis-

tics we have for this ensemble (2083 configurations), and also our finest simulations: the

0063/031 fine and the 0036/018 superfine, plotted in figure 4.12 as dashes, crosses and

bursts respectively. We must sacrifice the Υ(1S) state as an example of a lattice deter-

mination because this state is used to define where the zero of energy is, however the

Υ(2S) state is not defined to match experiment because the scale determination, while

including the (2S − 1S) splitting, also includes other physics. For comparison, figure

4.12 also includes the experimental values for the Υ states, and the ηb(1S) state. The

higher ηb states have not yet been found experimentally. The plot shows good agreement

between the lattice and experimental values of the ηb. The Υ(3S) 005/050 determination,

benefiting from improved statistics over the other ensembles, also shows good agreement

with the accepted physical value.

4.6 Determination of αs

Lattice techniques can be used to determine the value of the strong coupling αs. By

computing non-perturbative values of short-range quantities which would take the form

Y =
∞∑

n=1

cnα
n
V (d/a) (4.7)

in perturbation theory (where cn and d are dimensionless constants independent of lattice

spacing, and αV (d/a) is the running QCD coupling constant with 3 light flavours in the V
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values taken from the Particle Data Group [1].
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scheme, in which αV is defined from the heavy-quark potential [53, 54]), we can, assuming

one knows the values of cn to the desired order, extract αV (d/a) by choosing it such that

this perturbative formula and the calculated non-perturbative value match [55]. Given

the values of d and a, and the masses of the c and b quarks, the value of αV (d/a) can

be re-expressed in the conventional αMS(MZ , nf = 5). This is done by converting to the

MS scheme (using equation 4.8, then using perturbation theory to first add in the c and

b vacuum polarisation [56] and then to evolve to the Z meson mass.

α
(nf )

MS
(e5/6q) = α

(nf )
V (q) ×

(
1 +

2αV
π

+ [0.1411nf − 0.7344]α2
V

)
(4.8)

Simple short-distance quantities are Wilson loop operators:

Wm,n ≡ 1

3

〈
0|ReTrPe−ig

∮
m,n

A·dx|0
〉
. (4.9)

P represents path-ordering, A is the QCD vector potential; the loop is over a closed

rectangular path of size ma × na. The coefficients cn have been calculated up to n = 3

for six planar rectangles and two non-planar loops (a two by one “bent” rectangle, and a

corner-cube) [see, for example, [5, 57]] using Feynman diagrams.

The expansion of such a loop is dominated by its self-energy contribution, which is

proportional to the loop size; as the loop becomes large, this contribution exponentiates.

The perturbation series is more convergent therefore for the logarithm of the loop, which

are then further reduced by tadpole improving them - dividing them by u
2(m+n)
0 . The

factor u0 is defined as the fourth root of the 1 × 1 Wilson loop.

Lattice simulations were done using MILC ensembles described in table 4.1. Wilson

loops are calculated simply as products of the tadpole improved lattice gluon fields Uµ(x),

as seen earlier in this thesis, and are tabulated in tables 4.9 and 4.10. This gives us a

value for eight different loops (Wi) over 5 different lattice spacings. To O(α3
V ),

− ln(W lattice
i ) = w0αV × [1 + r1αV + r2α

2
V ], (4.10)
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Loop 0097/0484 0194/0484 005/050 010/050

1,1 0.548012 5.1e-05 0.549471 5.3e-05 0.567069 1.6e-05 0.566911 4.9e-05

1,2 0.298624 6.8e-05 0.300307 7.0e-05 0.323163 2.1e-05 0.322943 6.6e-05

1,3 0.165063 6.7e-05 0.166527 7.0e-05 0.187281 2.4e-05 0.187026 6.8e-05

1,4 0.091701 6.3e-05 0.092797 6.3e-05 0.109122 2.7e-05 0.108887 6.4e-05

2,2 0.101572 7.3e-05 0.102638 7.6e-05 0.121542 1.9e-05 0.121356 7.4e-05

2,3 0.038333 5.4e-05 0.039007 5.4e-05 0.050751 1.5e-05 0.050547 5.7e-05

BR 0.3567634 6.8e-05 0.358571 7.0e-05 0.381148 2.5e-05 0.380915 6.9e-05

CC 0.3063154 7.8e-05 0.308143 7.9e-05 0.332184 2.7e-05 0.331941 7.5e-05

Table 4.9: Tadpole-improved Wilson loops on the very coarse and coarse MILC ensembles.

These loops were calculated by the author.

Loop 0082/082 0062/031 0036/018

1,1 0.534101 1.7e-05 0.594843 6.7e-06 0.6214623 2.5e-06

1,2 0.280720 2.2e-05 0.359761 9.4e-06 0.3957172 4.2e-06

1,3 0.149263 2.1e-05 0.221624 1.0e-05 0.2567700 4.6e-06

1,4 0.079710 1.9e-05 0.137271 1.0e-05 0.1674864 4.7e-06

2,2 0.087438 2.3e-05 0.153433 1.2e-05 0.1869588 5.1e-06

2,3 0.030150 1.6e-05 0.072261 1.0e-05 0.0968520 4.7e-06

BR 0.338982 2.2e-05 0.417002 8.6e-06 0.4517979 3.8e-06

CC 0.287376 2.5e-05 0.390239 9.8e-06 0.4072097 4.5e-06

Table 4.10: Tadpole-improved Wilson loops on the super coarse, fine and superfine MILC

ensembles. These loops were not calculated by the author. The 0082/082 ensemble

in column 1 is the MILC ensemble with β = 6.458, r1/a = 1.802(10), aml = 0.0082,

ams = 0.082 and dimension 163 × 48. The other ensembles are those seen previously in

table 4.1.
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where ri is divided in to gluonic and fermionic parts, the coefficients for which are tabu-

lated in 4.11:

ri = ri,g + r
(1)
i,fNf + r

(2)
i,fN

2
f . (4.11)

Loop aq∗ w0 r1,g r
(1)
1,f

r2,g r
(1)
2,f

r
(2)
2,f

1 × 1 3.325 3.0683955(6) -0.7779(2) -0.096774(12) -0.729(36) 0.7744(52) 0.010186(4)

1 × 2 2.998 5.5511998(242) -0.6213(4) -0.079059(19) -0.410(37) 0.6866(52) 0.007027(4)

1 × 3 2.934 7.8765622(481) -0.5311(8) -0.070857(13) -0.260(41) 0.6484(52) 0.005850(5)

1 × 4 2.895 10.1715778(773) -0.4892(8) -0.065937(12) -0.247(51) 0.6285(52) 0.005201(2)

2 × 2 2.582 9.1996965(641) -0.4920(10) -0.066753(16) -0.005(44) 0.6020(53) 0.005206(7)

2 × 3 2.481 12.3428213 (1129) -0.4169(13) -0.060892(17) 0.258(54) 0.5631(54) 0.004581(2)

BR 3.221 4.8342543(125) -0.5693(2) -0.095123(8) -0.399(36) 0.7018(52) 0.009845(2)

CC 3.047 5.2975794(169) -0.5174(3) -0.092238(9) -0.264(36) 0.6775(52) 0.009886(2)

Table 4.11: The Lepage-Mackenzie scale and coefficients for the two-loop perturbative

expansion of αV for various Wilson loops[5].

From this, we can iteratively extract αV for each loop / lattice-spacing combination

(plotted in figure 4.13), and convert to αMS(nf = 3) using equation 4.8, the results of

which are plotted in figure 4.14.

A more sophisticated version of this analysis was performed in [58], which utilised the

loops calculated here in addition to loops from other lattice spacings that were calcu-

lated by other members of the collaboration. Additionally, the improved version of the

analysis takes in to account some higher order coefficients beyond n = 3. The result for

αV (7.5GeV, nf = 3) from this analysis is plotted on figure 4.13 for comparison.

4.7 Input in to Bc and Bs spectroscopy

The b-quark simulations resulting from Υ spectroscopy can be put to use in studying the

Bs and Bc mesons - the bound state of bs and bc, respectively. Eric B. Gregory [61, 62]

performed this calculation, making use of the b-propagators calculated for the previous

sections by the author of this thesis.
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Figure 4.13: αV as a function of energy, compared to the final result for αV (7.5GeV, nf =

3) determined in [58]
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Figure 4.14: α as a function of energy, as in figure 4.13, now converted to αMS.
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Figure 4.15: Values of αMS for 5-flavours at the mass of the Z-meson for each of the 22

quantities. The grey band is the final result 0.1183(8). [58]
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Figure 4.16: Values of αMS for 5-flavours at the mass of the Z-meson from a variety of

different methods [59]; non-lattice results from [60].

Treatment of the c quark can pose a challenge for lattice QCD, as the mass of the

quark is such that it is unclear whether it should be considered “heavy” or “light”. For

a cc system, the quark velocity is ∼ 0.3c2, which allows for a non-relativistic treatment,

albeit with larger relativistic corrections. For the bc, the reduced mass of the system is

about 50% higher than in the charmonium case, and as such vc ∼ 0.4c2 - 0.5c2, which

makes a non-relativistic treatment even less favourable (although such an approach has

be used, for example [63]). We can, instead, treat the Bc as a heavy-light system, and

this is the approach that was taken in [61, 62].

Using the fine ensemble and both of the coarse and very coarse ensembles, as previ-

ously described, b-quarks propagators were created using the random wall method. Eric

Gregory used the same ensembles to produce Highly-Improved Staggered Quark (HISQ)

propagators for charm, strange and light quarks (taking mu = md). The HISQ action

is a fully relativistic discretisation, and is more appropriate for simulating c quarks than

NRQCD. These were then paired with the b propagators along with spin matrices to form
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pseudoscalar and vector mesons for B, Bs and Bc. Propagators with included smearing

functions were also included to improve access to the ground state energies.

In order to combine HISQ and NRQCD propagators, it is necessary to undo the HISQ

staggering transformation so that the Dirac structure of both quarks are compatible. In

order to do this, one multiplies the random noise source with the staggering operator

(equation 2.44)

Ω(x) = γx0
0 γ

x1
1 γ

x2
2 γ

x3
3 . (4.12)

Bayesian 3 × 3 matrix fits (on local and Gaussian smearings of different radii) were

used to extract the ground state energies of interest. As in the Υ spectroscopy, the energy

fit here is not the meson mass, because it contains an energy shift due to the way NRQCD

is formulated. This will disappear in energy differences that contain the same NRQCD

quark content, and so a similar state must also be simulated for comparison.

The first use of combining HISQ c quarks with NRQCD b quarks was to access the

masses of the Bs and Bc, using three methods :

MBs
=

(
EBs

− 1

2
Ebb

)

latt

+
1

2
Mbb (4.13)

MBc
=

(
EBc

− 1

2
(Ebb + Ecc)

)

latt

+
1

2
(Mbb +Mcc) (4.14)

MBc
= (EBc

− (EBs
+ EDs

−Eηs
))latt + (MBs

+MDs
−Mηs

) (4.15)

where bb is the spin average of ηb and Υ, and the terms subscripted with latt require

conversion to physical units using our previous determination of r1. The methods appro-

priate for MBc
compare mesons with differing electromagnetic properties, which are not

simulated on the lattice, and this is corrected for. The final results give

MBs
= 5.341(4)(10)GeV (4.16)

(where the errors are statistical and due quark mass tunings) and

MBc
= 6.279(2)(1)(5)(2)GeV

MBc
= 6.268(4)(6)(1)(1)GeV (4.17)
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where there results correspond to methods 4.14 (called the “heavy-heavy” or hh sub-

traction method) and 4.15 respectively, and the errors are, in order: statistical, scale

conversion from r1, systematic errors from NRQCD and electromagnetic corrections [61].

The results for the Bs and the “hh” method for Bc are pictured in figures 4.17 and 4.18

respectively, and are from [64].

Figure 4.17: Mass of the Bs meson as a function of lattice spacing. Error bars are

statistical, lattice spacing errors and tuning errors in the valence quark masses. The

shaded band is the physical result allowing for sea quark mass and lattice spacing, and

is described in detail in [64]. The burst symbol represents experiment. This is the first

accurate lattice QCD result including the effects of u, d and s sea quarks for this quantity.

Further work was carried out[61, 62] to access the B∗
c meson state. Similarly to the

Bs/c cases above, 3 × 3 Bayesian fits are made using local and smeared propagators, in

this fitting the E0(B
∗
q ) − E0(Bq) splitting directly. There are systematic errors, such as

radiative corrections to the σ ·B NRQCD term, in this splitting, but these can be removed

by taking the ratio

R =
∆c

∆s
=
E0(B

∗
c ) −E0(Bc)

E0(B∗
s ) −E0(Bs)

(4.18)
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Figure 4.18: Mass of the Bc meson as a function of lattice spacing. Error bars are

statistical, lattice spacing errors and tuning errors in the valence quark masses. The

shaded band is the physical result allowing for sea quark mass and lattice spacing, and is

described in detail in [64]. The burst symbol represents experiment.

One can then use the experimental values for E0(B
∗
s ) − E0(Bs) and MBc

to convert R in

to a value for the mass of the B∗
c with a result [62] of 6.330(7)(2)(6) GeV, where errors

are statistical, systematic and experimental respectively. Between the HISQ treatment

of the c quarks, and the use of the random wall algorithm, this was the most accurate

lattice prediction of a gold-plated hadron mass that has been made to date.
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Chapter 5

The NRQCD Dispersion Relation

The NRQCD action coefficients ci are all 1.0 at tree level[41], as can be seen by earlier

matching in chapter 3; however these coefficients have O(αs) corrections which have not

been taken in to account. These corrections look like, for example

ci = 1 + δci × αs + ... (5.1)

One would therefore expect some systematic errors to arise from the NRQCD action that

we have used.

Such errors would arise in quantities such as the energy of the simulated meson as a

function of momentum. Using the dispersion relation

Mkin(p) =
p2 − ∆E2

2∆E
. (5.2)

In the real world, Mkin should be a constant. On the lattice, this will not be the case,

and Mkin may vary not only with p, but with the different components of p due to the

loss of rotational invariance caused by the lattice. We can investigate this very accurately

thanks to the random wall techniques developed in chapter 4.

We simulate ηb and Υ over a range of momenta on a number of ensembles, paying

special attention to p2 = 9 since it can be represent on the lattice as both (3, 0, 0) and

(2, 2, 1).
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5.1 Calculations on the Very Coarse 0097 ensemble

We start our investigation on the 0097/0484 “very coarse” ensemble because this is com-

putationally the fastest.

Using ci = 1.0, we calculate the kinetic mass of the Υ and the ηb for a number of

different momenta, the results of which are summarised in table 5.1 and plotted in figure

5.1. In all applicable cases, we have averaged over all permutations of axes [e.g. E|p2=1

is taken from 1
3

(
E|(1,0,0) + E|(0,1,0) + E|(0,0,1)

)
].1 We fit momentum 0 and p2 together,

which allows us to fit ∆E more accurately since the errors in the individual energies are

correlated.

In figure 5.1, we fit not only the Υ and ηb, but also the spin average, which is defined

as

Mspin-avg =
3MΥ +Mηb

4
. (5.3)

The results have some notable undesirable features. The “off-axis” momenta give

consistent values of the kinetic mass (as expected), but the “on-axis” points (those that

carry all their momentum along one lattice axis) lie on a gradient that deviates from

the base line. In particular, this means that the (2, 2, 1) and (3, 0, 0) have a significant

splitting - around ten standard deviations - when one would expect the results to be equal.

Additionally the ηb results are higher than those of the Υ, which would give the hyperfine

splitting the wrong sign.

The significant term in the action that is sensitive to the difference between (3, 0, 0)

and (2, 2, 1) is the p4
i term (c5), as all other terms are either insensitive to momentum

(c2, c3, c4), or sensitive to p2 (c1, c6) which affects (3, 0, 0) and (2, 2, 1) equally. If one

assumes that the momentum of the meson is always divided equally between the valence

quarks, then one can calculate an approximation to the change in the p4
i coefficient c5

1For simplicity, we generally refer only to one “cardinal” direction in the text to stand for all. Thus,

for example, (3, 0, 0) may be understood to mean (3,0,0); (0,3,0); and (0,0,3) unless otherwise stated.
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Υ ηb

p2 E0|(0,0,0) E0|p2 ∆E aMkin E0|(0,0,0) E0|p2 ∆E aMkin

1 0.287679(95) 0.298373(94) 0.010694(22) 7.204(20) 0.250830(72) 0.261357(73) 0.010527(13) 7.319(9)

2 0.287711(90) 0.309075(91) 0.021364(31) 7.206(16) 0.250875(69) 0.271910(71) 0.021035(15) 7.321(5)

3 0.287635(97) 0.319731(106) 0.032096(63) 7.200(18) 0.250860(69) 0.282445(73) 0.031584(25) 7.308(6)

4 0.287727(90) 0.330250(95) 0.042523(28) 7.243(10) 0.250844(71) 0.292625(77) 0.041781(24) 7.361(4)

6 0.287648(97) 0.351461(134) 0.063813(93) 7.213(09) 0.250823(71) 0.313528(100) 0.062705(64) 7.347(8)

8 0.287699(89) 0.372685(120) 0.084986(66) 7.216(05) 0.250864(67) 0.334302(83) 0.083438(36) 7.351(3)

9|(3,0,0) 0.287677(93) 0.382063(146) 0.094385(97) 7.311(12) 0.250804(70) 0.343383(107) 0.092579(70) 7.450(6)

9|(2,2,1) 0.287685(92) 0.383362(120) 0.095677(83) 7.199(08) 0.250820(71) 0.344637(120) 0.093818(92) 7.350(7)

Table 5.1: Fit results for kinetic masses at various momenta on the 0097/0484 very coarse

ensemble. ci = 1.0
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required to make the difference vanish. In practice, this value will not be correct (due

to the over-simplified assumption), but will allow one to quickly home in on the correct

value. Using this technique, I estimated a value of c5 = 2.6, and this value does indeed

have the desired effect of removing the (3, 0, 0) − (2, 2, 1) splitting: ∆Mkin = 0.008(10).

However, this coefficient also creates a strong, and undesirable, momentum dependence

on the value of the kinetic mass, which can be seen in figure 5.2.
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Figure 5.2: Kinetic masses for the Υ in lattice units for the 0097/0484 ensemble with

c5 = 2.6.

Eike Müller [65] has calculated corrections, the δci’s in equation 5.1, to the tree level

coefficients c1, c5 and c6 of the action using perturbation theory by calculating the one-loop

(see figure 5.3) NRQCD quark self-energy

Σ(w,p) = Σ0(w) + Σ1(w)
p2

2m
+ Σ2(w)

(p2)2

8m2
+ Σ3(w)p4 (5.4)

He then demands that the quark match full relativistic QCD. Expanding in w, he finds

expressions for c1 and c5 (and also c6, as we will describe shortly). This method is not
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dissimilar to the rationale we used to calculate c5 = 2.6, except that we calculate the

meson directly, whereas Eike Müller calculates for the valence quarks. Correcting the

quarks should correct the meson to the same order.

Figure 5.3: Feynman diagrams which contribute to the heavy quark self-energy. The solid

line represents a heavy quark, and the patterned line a gluon.

Using these correction terms, we evolve αs in equation 5.1 to the appropriate energy

scale q∗ for each coefficient, as found in Morningstar [41] which gives values of aq∗. In

principle, the energy scales to which we evolve are sensitive to the bare quark mass aM ,

however the figures in [41] change the stability parameter n for different aM , which we

do not. We therefore choose to use a single value for each aq∗, taken at aM = 3.4. We

expect the aq∗ curves to be flatter than those presented in [41] when n is kept constant,

and so we do not expect aq∗ to change significantly in our case. On this basis, we evolve

to αs(
1.8
a

) for c1 and for c5 we evolve to αs(
1.4
a

). We use our previous determination of αs

as a starting point for the evolution: αV (7.5GeV, nf = 3) = 0.2120(28).

The δci are sensitive to the bare quark mass (expressed in lattice units), and these are

tabulated along with our results for the coefficients in table 5.2.
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Ensemble aM δc1 δc5 c1 c5 c6

0097/0484 3.4 0.952(30) 0.445(10) 1.36 1.21 1.36

010/050 2.8 0.951(26) 0.406(11) 1.31 1.16 1.31

0062/031 1.95 0.774(21) 0.392(17) 1.21 1.12 1.21

Table 5.2: Perturbative coefficients for the NRQCD action.

The coefficients c1 and c6 have a redundancy as they both multiply the (∆(2))2 term.

In principle, one can simply combine the terms as in [65], such that

c̃1 = (c1 +
m

2n
c6)/(1 +

m

2n
), (5.5)

thus we always set c1 = c6. Using these coefficients in the action (table 5.2), I re-ran the

lattice simulations for the kinetic masses on the 0097 ensemble, see table 5.3 and figure 5.4.

The effect is not of high significance, but it does reduce the (3, 0, 0) − (2, 2, 1) splitting;

∆Mkin = 0.087(15), or nearly seven standard deviations (c.f. ten standard deviations

from the tree level case).

Υ ηb

p2 E0|(0,0,0) E0|p2 ∆E aMkin E0|(0,0,0) E0|p2 ∆E aMkin

1 0.289633(95) 0.300344(95) 0.010711(23) 7.187(18) 0.252776(72) 0.263310(74) 0.010533(15) 7.315(10)

2 0.289669(91) 0.311087(92) 0.021418(32) 7.190(15) 0.252773(72) 0.273820(76) 0.021047(25) 7.317(9)

3 0.289599(97) 0.321719(106) 0.032120(63) 7.191(15) 0.252773(72) 0.284323(80) 0.031549(37) 7.316(9)

4 0.299418(74) 0.342266(76) 0.042849(89) 7.217(9) 0.252812(71) 0.294674(77) 0.041862(19) 7.347(3)

9|(3,0,0) 0.289601(97) 0.384238(166) 0.094636(121) 7.291(12) 0.252757(71) 0.345530(108) 0.092773(71) 7.434(6)

9|(2,2,1) 0.289603(96) 0.385322(126) 0.095719(96) 7.204(9) 0.252771(71) 0.346477(121) 0.093707(93) 7.359(7)

Table 5.3: Fit results for kinetic masses at various momenta on the 0097/0484 very coarse

ensemble. c1 = c6 = 1.36, c5 = 1.21.

5.1.1 The Hyperfine Splitting

We can also compare the results of modifying the ci coefficients on the hyperfine splitting

as a function of momentum. From our lattice simulations, we can extract the spin-

dependent hyperfine slitting in two way. Firstly, we can simply take the differences of the
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Figure 5.4: Kinetic masses for the Υ in lattice units for the 0097/0484 ensemble, comparing

results with ci=1.0 with ci as in table 5.2.

ground-state Υ and ηb energies at zero momentum. Since the Υ and ηb data from each

configuration-origin is correlated with data from the others, making concurrent fits to this

splitting will yield a more accurate result than simply subtracting the values from chapter

4; results from a concurrent fit, first for tree level coefficients ci = 1.0, are tabulated in

5.4.

We plot the hyperfine splitting from the concurrent fit in figure 5.5, in which we also

include a line for the expected hyperfine splitting at a given momentum. This is calculated
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as:

E(p2) =
√
p2 +M2 = M +

p2

2M
(5.6)

dE(p2 6= 0) = (MΥ −Mηb
) +

p2

2MΥ

− p2

2Mηb

= dE(0) +
p2

2(Mηb
+ dE(0))

− p2

2Mηb

, (5.7)

where Mηb
is chosen at some momentum (usually (1,1,1) where available since we do

not need to worry about permutations of axes), and then kept constant. We see a large

deviation from the expected line, although this is to be expected, and is consistent with

the fact that out Υ and ηb kinetic masses are wrong (in particular that their difference

has the wrong sign).

p2 E0(
3S1) − E0(

1S0)

0.0 0.036798(53)

1.0 0.036971(45)

2.0 0.037130(56)

3.0 0.037335(59)

4.0 0.037501(70)

6.0 0.037952(69)

8.0 0.038442(83)

9.0|(3,0,0) 0.038599(88)

9.0|(2,2,1) 0.038719(106)

Table 5.4: The spin-dependent hyperfine splitting Υ − ηb on the 0097/0484 ensemble at

ci = 1.0.

One could also extract the splitting, in principle, by calculating the kinetic mass of

both particles, and taking the difference. However, as noted earlier in this chapter, this

gives the wrong sign for the splitting. The simulation data has a self-consistency issue in

which the ηb has a lower mass than the Υ, yet has a higher kinetic mass. In figure 5.6, a
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comparison of direct and kinetic mass based determinations of the hyperfine splitting is

plotted for momenta ranging from p2 = 0 to p2 = 9.
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Figure 5.6: Hyperfine splittings in lattice units for the 0097/0484 ensemble with ci = 1.0.

The difference in kinetic masses between the Υ and the ηb are inconsistent with the

hyperfine splitting as extracted directly from the simulation data.

Continuing in this vein, we repeat the above for the perturbative coefficients of table

5.2, which can be seen in table 5.5 and in figure 5.7. These are not significantly different

from the tree level case, which is as expected since we have not modified any terms to

which the hyperfine splitting is sensitive, specifically the spin-dependent terms c3 and c4,

which contain a σ. We will revisit this issue on the coarse ensemble, where we will modify

the spin sensitive term c4.
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p2 E0(
3S1) − E0(

1S0)

0.0 0.036806(54)

1.0 0.036980(50)

2.0 0.037168(55)

3.0 0.037374(58)

4.0 0.037559(83)

9.0|(3,0,0) 0.038708(88)

9.0|(2,2,1) 0.038823(106)

Table 5.5: The spin-dependent hyperfine splitting Υ − ηb on the 0097/0484 ensemble at

c1 = c6 = 1.36, c5 = 1.21.
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5.1.2 Improvement to p6

We may also attempt to improve the NRQCD action dispersion relation by improving the

action to O(p6). We implement this change in two stages. First, we remove p6
i terms by

modifying the ∆(4) operator:

∆(4) → ∆(4) +
∆(6)

6
(5.8)

then, in addition to this, we modify the operator ∆ · E to improve it through O(α2) by

improving the ∆ operator.

∆ → −1

6

(
Uµ(x+ µ̂)Uµ(x) − U †

µ(x− 2µ̂)U †
µ(x− µ̂)

)
+

4

3

(
Uµ(x) − U †

µ(x− µ̂)
)

(5.9)

We then calculate the splitting between the two p2 = 9 states for both the Υ and ηb,

which are plotted in figure 5.8. We can see that making this order improvement reduces

the splitting by a factor of approximately 2. The change to the ∆ ·E term would seem to

work against us, but should be included to make the level of improvement in the action

consistent.

5.1.3 Tuning the Darwin Term Coefficient

We test the effects of modifying the spin-independent term c2, known as the Darwin

term, in the NRQCD action to investigate how important it is to the dispersion relation,

and how feasible it is to non-perturbatively tune. First we examine the effect on the

spin-dependent splitting Υ − ηb, then we calculate the kinetic mass in each case.

As in initial guess, we increase c2 to c2 = 3.0, a shift of +2.0. This decreases the

hyperfine splitting, which was already decreased when we changed c5 to 2.6. We make

another attempt, this time shifting c2 by −2.0, so that c2 = −1.0, increasing the hyperfine

splitting slightly. A comparison of these simulations with the c2 = 1.0 can be seen in figure

5.9. It is clear from this plot that in order to remove the shift in the spin-dependent caused

by retuning c5 would require a significant shift in c2.
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lattice units], for the unimproved case, and for both levels of improvement given in the

text (equations 5.8 and 5.9).

One may also compare the kinetic masses from each of these simulations in order to

assess the kinetic mass’ sensitivity to this term. We expect that the kinetic mass will not

change significantly with this coefficient. This expectation is supported by figure 5.10,

particularly when one considers the magnitude of the changes to c2.

We conclude that the effect of the Darwin term on such quantities is small, and unlikely

to have a major effect on our results. It is therefore not of great importance to improve

c2 beyond the tree level value of 1.0.

5.1.4 Summary

The very coarse ensemble has demonstrated a number of issues with the NRQCD action.

We have a consistency issue at tree level with the kinetic mass as a function of momentum,

in particular at the degenerate momentum p2 = 9. While we can näıvely correct the

discrepancy at p2 = 9 via non-perturbative tuning, this approach is inadequate overall.
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Figure 5.9: Hyperfine splitting as a function of momenta on the 0097/0484 ensemble. The

solid line is the expected splitting, as in equation 5.8 using Mηb
at (1,1,1).
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Figure 5.10: Υ kinetic mass as a function of momenta on the 0097/0484 ensemble. We

compare the resulting kinetic masses from setting c2 = 3.0 and c2 = −1.0 with the kinetic

masses from c2 = 1.0. In all three cases, c5 = 2.6 as in figure 5.2 in section 5.1.
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If, instead, we use perturbative coefficients then this goes some way to ameliorating the

p2 = 9 situation.

We also have a problem with the hyperfine splitting, which has the wrong sign when

calculated from kinetic masses. This causes the hyperfine splitting to scale incorrectly as a

function of momentum. To truly study these effects, we will need to look at finer lattices,

and so I repeat these simulations on the 010/050 coarse and 0062/031 fine ensembles.

5.2 Coarse and Fine Simulations

We calculate the perturbative values of the NRQCD coefficients for use on the 010/050

and 062/0031 ensembles, as tabulated in table 5.2. We fit Υ and ηb propagators at a

variety of momenta, as tabulated in 5.6 and 5.7. In the coarse run, we have added an

extra much higher momentum state in the form of p = (3, 3, 3). We wished to see the

effects of high momentum on the kinetic masses and hyperfine splittings as a function of

p2, although we find the error bars are prohibitive.

Since the p2 = 9 splitting is a discretisation problem, it should vanish as we approach

the continuum. The coarse ensemble, plotted in figures 5.11 and 5.12, shows a more

significant improvement than the “very coarse”, consistent with what one would expect.

Once we reach the granularity of the fine ensemble, plotted in figures 5.13 and 5.14, the

p2 = 9 splitting is small, and has all but disappeared in the simulations using perturbative

coefficients. The tree level results are now within about 1.5 standard deviations of each

other, and the perturbatively tuned results are within 1.

One can be confident that this discretisation phenomenon will not affect results af-

ter extrapolation to the continuum has occurred. The use of coefficients calculated in

perturbation theory, as in [65], diminishes the effect and removes the erroneous splitting

faster.
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Υ ηb

p2 E0|(0,0,0) E0|p2 ∆E aMkin E0|(0,0,0) E0|p2 ∆E aMkin

ci = 1.0

1 0.292656(69) 0.300917(69) 0.008262(16) 5.969(12) 0.260735(52) 0.268923(52) 0.008187(8) 6.024(6)

3 0.292644(69) 0.317456(76) 0.024812(43) 5.954(10) 0.260727(52) 0.285274(54) 0.024547(23) 6.019(6)

4 0.292642(70) 0.325580(81) 0.032938(32) 5.976(6) 0.260727(52) 0.293324(57) 0.032597(19) 6.039(4)

9|(3,0,0) 0.292637(69) 0.366251(97) 0.073614(59) 5.996(5) 0.260715(51) 0.333534(61) 0.072819(30) 6.063(3)

9|(2,2,1) 0.292629(68) 0.366605(102) 0.073976(70) 5.967(6) 0.260712(51) 0.333944(65) 0.073232(40) 6.028(3)

27 0.292663(69) 0.51085(95) 0.21819(94) 5.997(27) 0.260737(52) 0.47675(37) 0.21601(37) 6.060(11)

c1 = c6 = 1.31, c5 = 1.16; c2 = c3 = c4 = 1.0

1 0.297657(69) 0.305880(69) 0.008222(17) 5.998(12) 0.265319(52) 0.273452(52) 0.008133(8) 6.064(6)

3 0.297644(70) 0.322321(76) 0.024677(43) 5.987(10) 0.265311(52) 0.289680(54) 0.024369(23) 6.063(6)

4 0.297760(63) 0.330592(67) 0.032832(13) 5.996(2) 0.265337(51) 0.297743(54) 0.032406(11) 6.075(2)

9|(3,0,0) 0.297636(69) 0.370893(96) 0.073257(58) 6.026(5) 0.265298(51) 0.337622(61) 0.072324(29) 6.105(2)

9|(2,2,1) 0.297627(69) 0.37112(10) 0.073493(71) 6.006(6) 0.265302(50) 0.337908(63) 0.072606(37) 6.081(3)

27 0.297662(69) 0.51352(92) 0.21585(92) 6.065(27) 0.265320(52) 0.47857(35) 0.21325(35) 6.141(10)

Table 5.6: Kinetic masses on the 010/050 coarse ensemble. The upper half of the table

represents tree level coefficients, whereas the lower half uses the perturbative coefficients.

Υ ηb

p2 E0|(0,0,0) E0|p2 ∆E aMkin E0|(0,0,0) E0|p2 ∆E aMkin

ci = 1.0

1 0.266279(50) 0.272136(49) 0.005857(14) 4.296(10) 0.240867(34) 0.246704(34) 0.005837(6) 4.311(4)

2 0.266303(49) 0.289748(59) 0.023446(21) 4.284(4) 0.240895(34) 0.264192(38) 0.023297(10) 4.311((2)

9|(3,0,0) 0.266231(53) 0.318832(73) 0.052601(56) 4.282(5) 0.240885(34) 0.293092(43) 0.052208(22) 4.314(2)

9|(2,2,1) 0.266205(52) 0.318882(76) 0.052677(60) 4.275(5) 0.240867(33) 0.293127(44) 0.052260(27) 4.310(2)

c1 = c6 = 1.21, c5 = 1.12; c2 = c3 = c4 = 1.0

1 0.277899(50) 0.283728(59) 0.005828(14) 4.317(10) 0.251901(34) 0.257695(34) 0.005794(6) 4.343(5)

9|(3,0,0) 0.277859(50) 0.330120(70) 0.052260(44) 4.310(4) 0.251912(33) 0.303692(42) 0.051780(21) 4.350(2)

9|(2,2,1) 0.277838(50) 0.330140(75) 0.052302(53) 4.306(3) 0.251893(33) 0.303692(44) 0.051799(26) 4.349(2)

Table 5.7: Kinetic masses on 0062/031 fine ensemble. The upper half of the table repre-

sents tree level coefficients, whereas the lower half uses the perturbative coefficients.
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Figure 5.11: Kinetic masses in lattice units for the 010/050 ensemble with ci = 1.0.

These results, however, continue to display the feature that the hyperfine splitting, as

determined from the difference in the kinetic masses Υ and ηb calculated here, still has

the wrong sign.

5.3 Hyperfine Splittings

We return to the spin dependent splitting Υ − ηb, now simulated on the coarse and

fine ensembles from the previous section. There we focused on the splitting between

Mkin(3, 0, 0) and Mkin(2, 2, 1) for the same spin state, however tables 5.6 and 5.7 also

show that for any given momentum, the kinetic mass of the ηb is higher than the Υ.

It would seem that the inconsistency between a direct determination of the hyperfine

splitting, and the splitting taken from the kinetic masses of the two spin states remains

despite simulating on lattices closer to the continuum. In figures 5.15 and 5.16, we once
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Figure 5.12: Spin-averaged bb kinetic masses in lattice units for the 010/050 ensemble,

comparing results with ci=1.0 with ci as in table 5.2. The splitting between (3,0,0) and

(2,2,1) is slightly reduced in the latter case. The momentum (2,2,1) has a different symbol

from the rest of the series in each case (a box for the dash series, and a burst for the cross

series).
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Figure 5.13: Kinetic masses in lattice units for the 0062/031 ensemble with ci = 1.0. The

(2, 2, 1) data point is shown with an open-box for the 1S0, a closed-box for the 3S1 and a

circle for the spin-average.
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Figure 5.14: Spin-averaged bb kinetic masses in lattice units for the 0062/031 fine ensem-

ble, comparing results with ci=1.0 with ci as in table 5.2. The splitting between (3,0,0)

and (2,2,1), which is small in the tree level case, is consistent with zero in the pertur-

bative case. The momentum (2,2,1) has a different symbol from the rest of the series in

each case: the open-box belongs to the tree level data series, and the closed-box to the

perturbative.
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again plot the hyperfine splitting as a function of momentum along with a line indicating

the expected behaviour. The line and points should correspond, but they do not - just as

in the very coarse ensemble. Again, this is due to the incorrect relationship between the

Υ and ηb kinetic masses, the wrong sign in the splitting effectively giving the wrong sign

to the gradient of the hyperfine data points as a function of p2.
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Figure 5.15: Hyperfine splitting Υ − ηb on the 010/050 ensemble. The line indicates the

function given in 5.8, using Mηb
at (1,0,0). The open-box is the tree-level (2,2,1) data

point, and the cross is the perturbative (2,2,1).

We take this to indicate errors in the spin-dependent terms of the action, and can

attempt to correct it by adding in the lattice version of the term g
8M3ψ

†{D2,σ · B}ψ in

equation 3.17 to the NRQCD action, with some coefficient c7. As mentioned in section

3.2.2, the action typically only includes terms up to O(v2) relative to leading order. As

there are no spin-dependant terms at leading order, which means that spin-dependent

quantities such as the hyperfine splitting will be suppressed by an extra factor of v2. We

should therefore carry spin-dependent terms through to O(v4) relative to leading order.
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tree-level perturbative

p2 dE(Υ − ηb) a0(3S1)/a0(1S0) dE(Υ − ηb) a0(3S1)/a0(1S0)

0 0.031944(38) 0.90031(48) 0.032361(39) 0.89844(49)

1 0.032025(36) 0.89993(42) 0.032457(37) 0.89806(43)

3 0.032177(35) 0.89911(32) 0.032637(36) 0.89721(32)

4 0.032298(64) 0.89941(85) 0.032781(52) 0.89753(66)

9|(3,0,0) 0.032706(54) 0.89692(50) 0.033262(55) 0.89505(50)

9|(2,2,1) 0.032678(53) 0.89734(47) 0.033231(54) 0.89547(47)

Table 5.8: Hyperfine splittings and ratios of amplitudes (Υ(1S) and ηb(1S) in the local

smearing), simulated on the coarse 010/050 ensemble.
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Figure 5.16: Hyperfine splitting Υ− ηb on the 0062/031 ensemble. The line indicates the

function given in 5.8, using Mηb
at (1,0,0). The open-box is the tree-level (2,2,1) data

point, and the cross is the perturbative (2,2,1).
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tree-level perturbative

p2 dE(Υ − ηb) a0(3S1)/a0(1S0) dE(Υ − ηb) a0(3S1)/a0(1S0)

0 0.025375(27) 0.83390(31) 0.025965(27) 0.82892(32)

1 0.025394(25) 0.83343(30) 0.026002(26) 0.82852(31)

4 0.025526(46) 0.83279(58) N/A N/A

9|(3,0,0) 0.025723(46) 0.83185(51) 0.026426(47) 0.82655(52)

9|(2,2,1) 0.025724(52) 0.83208(57) 0.026435(53) 0.82690(58)

Table 5.9: Hyperfine splittings and ratios of amplitudes (Υ(1S) and ηb(1S) in the local

smearing), simulated on the fine 0062/031 ensemble.

With the exception of the term given here, the terms at this order are redundant or have

small coefficients, therefore g
8M3ψ

†{D2,σ · B}ψ is the only term we include at this order

[66, 67]. The addition of this term should allow us to better model the spin-dependent

behaviour manifest both the hyperfine splitting and the differences in Υ and ηb kinetic

masses.

We start with a slight aside: to investigate the importance of B terms, we start by

simulating on the 010 “coarse” ensemble without any B term at all. We then add the B

term, but without tadpole improvement. We compare these to the full action in plot 5.17,

which demonstrates that the B term is the most significant of the spin-dependent terms

in the NRQCD action. We also show the kinetic masses of the no B term case compared

to the full action in 5.18.

Having verified the effect of the pre-existing B term, simulations including the extra

term (c7) were carried out at momenta p2 = 0 and p2 = 3, with the coefficient c7 set

to 1 and 1.5, which is plotted in figure 5.19. As we tune the value of c7 up, we find

a small decrease in the direct hyperfine splittings (both at zero and finite momentum),

accompanied by a large increase in the difference in Υ and ηb kinetic masses, until the

two measurements are almost equal. This is a valid method of tuning this term, and we

can infer that the correct value is close to 1.5. We would, however, have to then retune

c4, which we have made no attempt at here. The figure also includes the experimental

result from BaBar [35] for reference, however we do not expect a match with this result -
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Figure 5.17: Spin dependent hyperfine splittings calculated at zero momentum on the

010/050 ensemble.
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the data present here is from a single coarse lattice spacing; furthermore, we would need

to retune c4 (as mentioned) and the bare quark mass before attempting physics runs.
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Figure 5.19: Hyperfine splittings, calculated on the 010/050 ensemble. The off-set points

at p2 = 3 are the differences between the Υ and ηb kinetic masses. For reference, the

BaBar observation [35] has been included (rescaled to lattice units for this ensemble).

5.4 Amplitude Plots

As another check of our dispersion relation, we plot the ratios of the amplitudes of energies

in the local smearing. In figures 5.20, 5.21 and 5.22 this is the ratio of the ground-state

at finite momentum to the zero-momentum case. Lorentz contraction will decrease the

width of the finite momentum state, therefore the amplitude must increase by the square

root of the Lorentz factor to conserve probability, thus:

a0(p)

a0(0)
≈

√
γa0(0)

a0(0)
≈
√

1 +
v2

2
≈
√

1 +
p2

2M2
≈ 1 +

p2

4M2
, (5.10)
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where the p terms must pick up a factor of 2π/L, and L is the spatial length of the

lattice. M is the kinetic mass, and we take it from p = (1, 1, 1) where we have data,

and p = (1, 0, 0) otherwise, using the tree level coefficients. The difference in taking it

it from a different momentum, or from the perturbative coefficients is negligible. While

each plot deviates from the expected result, and more so for the perturbative coefficients

than the tree level, it is clear from these plots that the degree of deviation decreases from

the coarsest to finest plots. We would therefore expect this effect to disappear in the

continuum limit.
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Figure 5.20: Very coarse KM amplitudes. In each case, the (2,2,1) uses a different symbol

(same colour) from the rest of its data series. With the exception of the tree-level Υ

(open-triangle), these points are all immediately below the (3,0,0) point from the same

series. The trend line is the expected ratios, as given be the formula in equation 5.10.

We also plot the local amplitude ratios for the ground state Υ to the ground state ηb,

which can be found in figures 5.23, 5.24 and 5.25.

All of these amplitude ratios could be improved upon by adding current corrections,

which we investigate in chapter 6.

100



 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

 0  5  10  15  20  25

a 0
(p

) 
/ a

0(
0)

p2

ηb (pert)
ϒ (pert)

ηb (tree)
ϒ (tree)

1 + p2/4M2
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the formula in equation 5.10.
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in equation 5.10.
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Figure 5.23: Very coarse Hyperfine amplitudes. The closed-circle is the (2,2,1) point for

the tree-level data, the open-circle is the (2,2,1) point for the perturbative data.
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Figure 5.24: Coarse Hyperfine amplitudes. The closed-circle is the (2,2,1) point for the

tree-level data, the open-circle is the (2,2,1) point for the perturbative data.
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Figure 5.25: Fine Hyperfine amplitudes. The closed-circle is the (2,2,1) point for the

tree-level data, the open-circle is the (2,2,1) point for the perturbative data.

5.5 Dispersion Relation Conclusions

With the random wall techniques developed in this thesis, we can now resolve minor

discrepancies in the NRQCD dispersion relation. While we can attempt to correct some

of these issues, the ultimate arbiter of success is the effect we see in the continuum

limit. Drawing from the data presented throughout this chapter, figure 5.26 presents the

mismatch between the p = (3, 0, 0) and p = (2, 2, 1) kinetic masses in physical units as a

function of a4. This appears to show a linear dependency, heading to the origin; which

would be consistent with higher order effects that will vanish in a continuum extrapolation.

The issue with the hyperfine splitting, however is not so easily dismissed. Again

drawing from the data presented earlier in this chapter, we plot the differences in Υ and

ηb kinetic masses in physical units as a function of a2, where the negative values indicate

that the ηb has a greater mass than the Υ. On the basis of this plot, one would not expect

the hyperfine splitting to reach a positive value in the continuum limit, and certainly not

reach one of the magnitude we would expect from the direct fits to the spin-dependent
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Figure 5.26: The (3,0,0)-(2,2,1) splitting, converted in to physical units, as a function of

a4.

splitting.

We conclude, therefore that in future simulations, it is preferable to use the perturba-

tively tuned coefficients. Kinetic masses should be tuned using the spin averaged mesons,

and not the Υ or ηb. This will avoid mistunings based on the anomalous kinetic mass split-

ting. Future simulations may also wish to include the additional term g
8M3ψ

†{D2,σ ·B}ψ,

added in figure 5.19, with an appropriately tuned coefficient.
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Chapter 6

Current Corrections and the Υ

Leptonic Width

The leptonic width of the Υ to two leptons, Γee, is given by the matrix element of the bb

vector current between the Υ and the vacuum:

Γee(nS) = 16πα2
eme

2
b

〈Υn|Jv|0〉
6M2

Υ(nS)

(Zmatch)
2 (6.1)

in which αem is the electromagnetic coupling constant, eb is the electric charge, in units

of electron charge, of the b quark and MΥ(nS) is the mass of the nth radial excitation of

the Υ meson. The factor Zmatch is a renormalisation constant, and it is required in order

to match the lattice current to a renormalisation scheme in the continuum. Calculation

of Zmatch can be done perturbatively.

We can calculate the matrix element on the lattice, and thereby calculate the Υ

leptonic width. Before we attempt this, however, we shall make a brief aside in light of

the previous chapter.
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6.1 Simulation Parameters

From chapters 4and 5, we can conclude that using the Υ to tune the bare quark mass

is not optimal due to the ambiguity seen in chapter 5’s kinetic masses, and that it is

preferable to use the perturbative values for ci in the NRQCD action. Rather than using

the Υ as a reference point for the bare quark mass, we now instead use the spin-average

Υ and ηb:

Mspin-avg =
3MΥ +Mηb

4
. (6.2)

Since we wish to now simulate with different values of ci from before, a retuning of the

bare quark masses would be necessary, and so we take this opportunity to tune with the

perturbative ci in the action.

We use the existing kinetic masses from chapter 5 that already use the perturbative

coefficients, but still use the original bare quark masses, to make an approximate calcu-

lation of what we believe the new bare quark mass to be. This approximation simply

assumes that all discrepancy between the simulation value of the spin-averaged kinetic

mass and that of experiment comes from an error in the bare quark mass. We take the

experimental value of the spin averaged bb to be 9.445 GeV.

The value of the bare quark mass extrapolated by this method is then confirmed with

a kinetic mass simulation at p2 = 0 and p2 = 3, and retuned if necessary. The change

from using p2 = 2 to p2 = 3 is again motivated by chapter 5, in particular figure 5.1

and related plots, in which the “on-axis” momenta are less consistent with the rest of the

simulation data.

With new bare b quark masses for the lattice we are using, we can now proceed to

the examination of the leptonic width of the Υ. We run a lattice simulation calculating

propagators for the local and excited state quark smearings (with local smearings on the

anti-quark):

φqlocal(x) = δ(x), (6.3)

φq1S(x) = (2a0 − |x|) e(−0.5|x|/a0) (6.4)
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Ensemble Previous aMb Resulting KM New aMb Final KM

0097/0484 3.4 9.789(77) GeV 3.28 9.467(61) GeV

010/050 2.8 9.903(75) GeV 2.66 9.435(74) GeV

0062/031 1.95 10.058(78) GeV 1.818 9.468(58) GeV

Table 6.1: Spin-averaged kinetic masses calculated using perturbative ci, first using the

same bare quark mass as used for tree-level ci, then using retuned bare-quark masses

extrapolated by comparing the previous kinetic mass with the experimental value of 9.445.

With the exception of the 0062/031 ensemble, all kinetic masses were calculated at p2 = 3.

For the 0062/031, the final mass is from p2 = 3, but the preceding kinetic mass is taken

at p2 = 1 since no existing p2 = 3 data existed for this ensemble with these coefficients;

since this mass is only used to aid in tuning the final bare quark mass, this distinction is

unimportant as long as the final kinetic mass is correct.

using the perturbative coefficients of described in chapter 5 and these new bare quark

masses.

6.2 Simulation Results and the Leading Order Lep-

tonic Width

We perform 2 × 2 Bayesian fits to the simulation data generated following the end of

the previous section, using the same fitting priors as in chapter 4, table 4.7. Since we

have changed many of the simulation parameters, we do not expect exact agreement with

chapter 4.

From these results, we calculate the leading order ratio of the leptonic widths

Υ(2S)M2
Υ(2S)

Υ(1S)M2
Υ(1S)

.

This is exceptionally simple, as the result is merely the ratio (squared) of two amplitudes
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from the Bayesian fit; specifically the amplitudes of the local smearing in the first excited

state and the ground state, known as the wave-function at the origin a3/2|Ψn(0)|.

Γee(2S)M2
Υ(2S)

Γee(1S)M2
Υ(1S)

=
|Ψ2(0)|2
|Ψ1(0)|2 (6.5)

The advantage of this is that, as a ratio, the majority of factors from equation 6.1 cancel, in

particular Zmatch, allowing for straightforward comparison with experiment (for example

[68, 1]).

Ensemble E0 E1 − E0 E2 −E0 a0(local) a1(local) |Ψ2(0)|2
|Ψ1(0)|2

0097/0484 0.302004(39) 0.4194(62) 0.710(27) 0.38747(11) 0.3074(85) 0.629(35)

010/050 0.312530(60) 0.3410(49) 0.535(45) 0.29411(13) 0.2280(73) 0.601(38)

0062/031 0.305234(31) 0.2449(14) 0.442(27) 0.171288(45) 0.1347(10) 0.598(39)

Table 6.2: The amplitudes of the ground and first excited states in the local smearing,

and the square of their ratio, which gives
Γee(2S)M2

Υ(2S)

Γee(1S)M2
Υ(1S)

as in equation 6.5

We assume that there is no dependence on the light quark mass (see, for example,

[4]), but that there is a dependence on a2. A plot of these ratios against a2 is presented

later in this chapter, in figure 6.2, along with the current experimental result.

6.3 Current Corrections to the Leptonic Width

So far, we have only calculated the ratio of leptonic widths for the Υ and Υ′, and it is

only the absence of Zmatch that has prevented us from calculating the widths explicitly.

In this section, we shall attempt to use perturbative results and our lattice data to make

this explicit calculation.

There are higher order current corrections to the true QCD matrix element that de-

scribes the leptonic width, which may in principle be calculated on the lattice. Following
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[6], we choose these currents to be

Ji = σ

(
∆2

M2

)i
, (6.6)

in which M is the bare b-quark mass. The QCD value is then related to these currents as

〈
0|JQCD|QQ

〉
=
∑

i

ki
〈
0|Ji|QQ

〉
, (6.7)

where ki are matching coefficients (which takes account of Zmatch, which are expanded as

a power series in αs:

ki =
∑

n

αnsk
(n)
i . (6.8)

The (n) denotes the order in αs to which the coefficient k
(n)
i contributes. These have been

calculated in [6], and for convenience the k
(n)
i used in this work are tabulated in table

6.3. It should be noted that the coefficients from [6] are calculated at a different stability

parameter n and bare quark mass than we are using (we use n = 4, rather than 2, and we

have updated the quark masses having changed coefficients in the action). We disregard

these issues for the coarse and fine ensembles, for which the masses in this work are close

to those in the reference. For the very coarse, we disregard n, but we attempt to linearly

interpolate to a slightly lower mass. Interpolating between aMb = 2.8 and aMb = 4.0, we

get k
(0)
0 = −0.1554 and k

(1)
1 = −2.15.

To O(αs), the QCD current is calculated as:

JQCD = J0 + αsk
(1)
0 J0

+
1

6
J1 + αsk

(1)
1 J1 (6.9)

The current J0 is just the amplitude of the meson state in the local smearing (as in

section 6.1), and we can calculate J1 by calculating the smearing functions described in

section 6.1, plus the operator in equation 6.6 with i = 1 applied to each such smearing,

and extending our Bayesian fit to a 3 × 2 matrix. Using equations 6.1 and 6.9 with

αem = 1/132 and αs = αV (1.8
a

), we calculate the leptonic widths of the Υ and Υ′. Fit

results and values of the width Γee are given in table 6.4.
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aM n k
(1)
0 k

(1)
1

1.95 2 -0.1358(16) -0.16(16)

2.8 2 -0.1732(16) -1.35(22)

4.0 2 -0.1288(27) -3.32(29)

3.28∗ - -0.1554 -2.15

k
(0)
0 = 1 k

(0)
1 = 1/6

Table 6.3: Coefficients for the αs expansion of the matrix element JQCD in terms of the

NRQCD currents given in equation 6.6. These are taken from [6], where they are denoted

a
(n)
i (we use the symbol k instead because we reserve the symbol a for lattice spacings).

∗ interpolated from aM = 2.8 and aM = 4.0.

Υ Υ′

Ensemble J0 J1 Γee (keV ) J0 J1 Γee (keV)

0097/0484 0.38750(12) -0.074306(60) 1.518(61) 0.3089(85) -0.0947(33) 0.9822(74)

010/050 0.294190(90) -0.068700(40) 1.411(48) 0.2263(72) -0.0813(30) 0.7955(61)

0062/031 0.171064(55) -0.051156(27) 1.137(33) 0.1325(25) -0.0590(11) 0.5844(34)

Table 6.4: The NRQCD currents for the Υ ground state and first excited state (Υ′).
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In figure 6.1, we plot the leptonic widths calculated here as function of a2. It is clear

that they would extrapolate to a value too low to be consistent with the experimental

values included in the figure. This is not entirely surprising, as this is only O(αs), and

O(α2
s) may be up to ∼ 10%. We must also consider that the coefficients we have used

from perturbation theory are used in the absence of coefficients that match our values of

aMb and n.
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Figure 6.1: The leptonic with Γee of the Υ (dashes) and Υ′ (bursts) in keV. The open and

closed boxes represent the respective experimental values [1].

The correction currents J1 contains a portion that looks like J0, and may be a large

fraction of the current J0. To demonstrate, we plot the ratio J1/J0 for each lattice in

figure 6.3. The figure shows that the J1 currents are indeed a significant fraction of the

currents J0, and the magnitude grows as lattice spacing decreases. However, one must

also be aware that at higher loop orders, J1 will contribute at lower orders of v2 than

would otherwise be expected; called “mixing downward” in [6]. It is therefore better to

define subtracted currents J i ≡ zijJj that ensure each current contributes only at its own

112



order or higher. z
(0)
ij = δij and z

(n>0)
ij = 0 for all j ≥ i (because it is only necessary to

prevent mixing downwards, not upwards), therefore for O(v2):

J1 = J1 + z10J0 = J1 + z
(1)
10 αsJ0,

and the ratio J1/J0 becomes J1/J0 = J1/J0 + z
(1)
10 αs. This can also be seen in table 6.5

and plot 6.3.

Υ Υ′

Ensemble z
(1)
10 J1/J0 J1/J0 J1/J0 J1/J0

0097/0484 0.14400(9)∗ -0.19176(17) -0.13762(17) -0.307(14) -0.252(14)

010/050 0.16171(8) -0.23352(15) -0.18064(15) -0.359(18) -0.306(18)

0062/031 0.22289(11) -0.29905(18) -0.23887(18) -0.445(12) -0.385(12)

Table 6.5: The ratios J1/J0 and J1/J0. The perturbative parameter z
(1)
10 is from [6],

with the exception of ∗ which was interpolated from z
(1)
10 (aM = 2.8) = 0.16171(8) and

z
(1)
10 (aM = 4.0) = 0.11743(5)

.

The fact that these subtracted corrections are still large presents a challenge in calcu-

lating the leptonic width in this way - with corrections being so large, we would ideally

want to go to higher order if we are to expect good agreement with experiment. With

this in mind, we would hope that J2/J0 presents a much smaller ratio that J1. In figure

6.4, we plot the ratio J2/J0 (but not J2 as we do not have values for the z20 parameters).

The values for J2 are tabulated in 6.6. The magnitude of the ratio is indeed smaller, as

expected.

Despite the mismatch with experiment, we can use the current corrected leptonic

widths to re-calculate the ratio of leptonic widths times the square of the mass from

section 6.2. One would hope that much of the discrepancy, present in both our Υ and

Υ′ determinations, would cancel in the ratio. For comparison, this ratio is plotted on

figure 6.2 along with the tree-level determination and experiment. The current corrected
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version gives a more pronounced a2 dependency, and suggests a slightly lower continuum

extrapolation than the tree-level equivalent. With the given errors on both data sets, the

results are consistent with experiment as we approach zero lattice spacing.
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Figure 6.2: The ratio of leptonic width times the mass squared for Υ′ and Υ as a function

of a2. The cross is the experimental value, taken from the Particle Data Group [1].

Υ Υ′

Ensemble J2 J2/J0 J2 J2/J0

0097/0484 0.0125577(7) 0.032457(21) 0.01842(60) 0.0600(25)

010/050 0.015439(10) 0.052497(40) 0.0109(68) 0.0913(26)

0062/031 0.014828(8) 0.086664(45) 0.0208(4) 0.1565(32)

Table 6.6: The values of J2 and the ratios J2/J0 for both Υ and Υ′

.
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Figure 6.3: The ratio J1/J0 for each lattice spacing a2.
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Chapter 7

Conclusion

The development of the random wall algorithm has allowed us to improve the precision

of with which we can simulate the b quark on the lattice. By combining the random wall

with the already established use of smearing functions, we can perform Υ spectroscopy

with greater accuracy than previously. In particular, the random wall has allowed us to

produce very accurate b quark propagators from which we can make very precise fits to

the ground state energies of the Υ(1S) and ηb(1S) mesons.

Using the NRQCD quark action, we tune the b bare quark masses for a variety of

MILC ensembles using Bayesian fits to the energy difference between the Υ at zero and

non-zero momenta to calculate the kinetic mass, and then match to experiment. We then

match the Υ(2S)−Υ(1S) splitting to experiment, and in doing so we can determine the

heavy quark potential scale parameter r1 with ∼ 1% errors. By combining this result

with other lattice calculations, the final result gives r1 = 0.3133(23)(3)fm. We were able

to reproduce the bottomonium spectrum in agreement with experiment.

In addition to Υ spectroscopy, the lattice can be used to determine the strong coupling

constant αs. We calculate Wilson loops on the MILC ensembles we have been studying,

and compare this non-perturbatively determined value to a third order perturbative ex-

pansion. A necessary input in to this calculation is knowledge of the lattice spacings used,
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and we use our value of r1 to obtain this. The final result gives αMS = 0.1183(8).

The very accurate b propagators produced with NRQCD using a random wall can

also be used in other simulations, and have been important in studying the Bc meson in

combination with c HISQ quarks.

We then investigate the NRQCD dispersion relation, with a view to improvement. At

the error levels we can achieve with the random wall technique, we can now resolve the

discrepancy between the two p2 = 9 states as a several standard deviation effect. We can

decrease or even remove this effect by modifying the NRQCD coefficients beyond tree level,

either via non-perturbative tuning or by simulating using coefficients calculated through

perturbation theory [65]. We also see an issue with the splitting between the Υ and ηb

kinetic masses, which has the wrong sign relative to both a direct lattice determination

of the spin-dependent splitting and experiment. We have shown that this can be resolved

by the addition of an extra higher order term to the NRQCD action. Future simulations

incorporating this additional term (see, for example, [30]) and perturbative coefficients

may provide a more consistent and accurate picture of the Υ spectrum. We also conclude

that bare quark masses can be better tuned by using spin-averaged mesons, which are

not affected by problems in the spin-dependent spectrum.

Amplitudes from fits to Υ simulations using the perturbative coefficients and retuned

bare quark masses suggested by our investigation of the dispersion relation provided

the wave-function at the origin. The wave-functions can be used to give the leading

order in v2 ratio of the leptonic width of the Υ ground state, and the excited state Υ′,

where the perturbative matching factors cancel in the ratio, allowing for comparison with

experiment.

We then followed a perturbative matching procedure to match NRQCD currents to

the continuum, including a higher order current J1. We compare the leptonic widths

calculated with this procedure to experiment, and find a mismatch. This is likely due to

the magnitude of the corrections made, and a discrepancy between the parameters of the
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action used in the original perturbative matching calculation and our lattice simulation.

Future works should investigate higher order terms; it is possible that α2
s may contribute

by as much as ∼ 10%. It may also be fruitful to include matching to the higher order

current J2. Further efforts may also utilise other approaches to determine the leptonic

width, such as current-current correlators.
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