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Abstract 

 

Probabilistic models to describe genetic differentiation between populations typically fail to 

include the effect of complex ancestry.  A Bayesian hierarchical model proposed by 

Nicholson et al. (2002) (ND) provides a framework for assessing differentiation using 

population-wise parameters for single-nucleotide polymorphism (SNP) data under certain 

assumptions regarding the evolution of allele frequencies over time.  Although the ND model 

offers a coherent method to estimate population divergence, a rather simplistic assumption 

must be made about the historical evolution of populations.  Since shared ancestry between 

populations results in correlations in allele frequencies, it is the potential capture of such 

correlations that motivates the development of the new model reported here.  

This thesis presents a review of the ND model using simulated and newly available SNP data, 

highlighting situations where the ND model does and does not fit the data well.  The model 

was fitted using Markov-chain Monte-Carlo (MCMC) methods, and the fit assessed using 

residual diagnostics.  Nicholson et al. (2002) reported instability in parameter estimates when 

a population was removed from the data set and the model re-fitted.  Analysis of simulated 

data ensured that this is not an inherent property of the ND model and therefore can be used 

to highlight discrepancies with the model.  Analyses on real data show that the ND model 

works well for groups of Europeans with low levels of genetic differentiation between 

populations, but a lack of fit is found when groups of populations dispersed across continents 

are considered.  Data are also simulated under an alternative ancestral configuration and it is 

shown that lack of fit, manifest in residuals and estimator instability, is present when 

analysed using the ND model.  An extension to the ND model is developed and fitted, 

supposing that discrepancies in the modelling assumptions of the ND model are due to the 

effect of alternative ancestral relationships.  The ND and the new model are compared, as 

regards their fit to various data sets, and it is found that in some cases the new model does 

provide a better fit and in other cases the distinction is unclear.  The new model is also used 

to infer the most likely ancestral relationships between populations sampled from the Human 

Genome Diversity Panel.   

Keywords: Bayesian model, population differentiation, residuals, ancestry  



  iv  

 

Contents 

Declaration................................................................................................................................. i 

Acknowledgements .................................................................................................................. ii 

Abstract ................................................................................................................................... iii 

Contents ................................................................................................................................... iv 

Chapter 1 Introduction............................................................................................................ 1 

1.1 Context ............................................................................................................................. 2 

1.2  Aims .............................................................................................................................. 12 

Chapter 2 Methods ................................................................................................................ 13 

2.1 ND Model for SNP Allele Frequencies ......................................................................... 13 

2.1.1 The Wright - Fisher Model ..................................................................................... 18 

2.1.2 Markov-Chain Monte-Carlo Methods .................................................................... 20 

2.1.2.1 Metropolis-Hastings Algorithm ....................................................................... 20 

2.1.2.2 Implementation ................................................................................................ 21 

2.1.2.3 Proposal Distributions ...................................................................................... 24 

2.1.2.4 Prior Distributions ............................................................................................ 25 

2.1.3 Assessment of Model Fit ........................................................................................ 27 

2.2 Simulation Methods ....................................................................................................... 28 

2.3 MCMC Estimation – Some Properties .......................................................................... 31 

2.4 ND Model Extension ..................................................................................................... 44 

2.4.1 Implementation ....................................................................................................... 46 

2.4.2 Proposal Distributions ............................................................................................. 49 

Chapter 3 ................................................................................................................................ 51 

3.1 Simulation under ND Model .......................................................................................... 51 

3.1.1 Analysis .................................................................................................................. 52 

3.2 European Populations .................................................................................................... 58 

3.3 Simulation under New Tree Model ................................................................................ 63 

3.3.1 Analysis .................................................................................................................. 63 

3.4 Global Populations 1 ...................................................................................................... 70 

3.5 Global Populations 2 ...................................................................................................... 74 

3.6 Identifiability .................................................................................................................. 79 



  v  

 

3.7 Simplified Model – An Example ................................................................................... 83 

3.8 Simulation under Simplified Model ............................................................................... 86 

3.9 Global Data Set 1 - Analysis under Simplified Model .................................................. 97 

3.10 Global Data Set 2 – Analysis under Simplified Model .............................................. 103 

Chapter 4 .............................................................................................................................. 107 

Conclusions and Discussion ................................................................................................ 107 

4.1 Conclusions .................................................................................................................. 107 

4.2 Discussion .................................................................................................................... 111 

Bibliography ...................................................................................................................... 114 

Appendix A ........................................................................................................................... 116 

 



    

1 

Chapter 1  

Introduction 

 

Understanding the structure of human populations is crucial to many areas of scientific 

research such as the mapping of genes associated with common diseases, forensics and the 

environmental sciences. For example, when conducting genetic association studies, a failure 

to acknowledge differences in population structure between cases and controls can lead to 

spurious results, in particular an inflation of type I error (Marchini et al., 2004).  If we are 

prepared to make some assumptions about the evolutionary processes responsible for patterns 

of variation observed in DNA samples from a collection of populations, inferences can be 

made about the history and relationships of such populations.   

Over the last two decades major advancements have been made in the experimental 

manipulation of DNA fragments, giving scientists access to huge volumes of genetic data.  

Such data are the result of various complex processes and attempts to understand the patterns 

of variation have led to the development of statistical models which rely on existing 

population genetics theory.  Single nucleotide polymorphisms (SNPs, pronounced “snip”) 

have become the marker of choice for genetic studies in recent years, a genetic marker being 

a piece of DNA, variable between individuals, whose position on the genome is known and 

whose inheritance can be traced.  A SNP is simply a single position in the DNA at which 

there is known to be variation between individuals within a species (Nicholson et al., 2002).  

Modelling the complex mechanisms which generated the observed data using traditional 

likelihood methods has in the past been problematic as maximisation of the likelihood 

function over a large number of parameters is a computationally difficult task.  The recent 

surge in popularity of Bayesian approaches to statistical inference in population genetics is 

largely due to the potential for parameter-rich models with inter-dependency to be handled 

with relative ease (Beaumont and Rannala, 2004).  Nicholson et al. (2002) proposed a 

Bayesian hierarchical model for SNP data in a pure drift setting using population-specific 

parameters to describe population differentiation and isolation and a simple structure of 

evolutionary history.  This thesis will develop new methods to account for uncertainty in the 
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ancestry of sampled populations while adhering to the probabilistic structure of the model 

suggested by Nicholson et al. (2002).    

 

1.1 Context 

 

It is often of importance to scientists in many differing fields to have an idea of human 

population structure and also some notion of the extent of differentiation between 

populations.  Any interpretation of the observed pattern of genetic diversity found in a sample 

can be potentially misleading without the formal assessment of hidden population structure 

(Excoffier, 2007).  Intellectual interest in divergence between populations is common in areas 

such as anthropology, in the case of humans, where quantitative measures are used to aid 

understanding and further knowledge of the processes responsible for the observed variation.  

Demographic history (i.e. historic population sizes and migration patterns) is also important 

in elucidating patterns of genetic variation.  For a group of populations it may be of interest to 

quantify the genetic distance between populations but also to infer the historical evolutionary 

path such populations have taken.  For example, knowledge of the relationships between 

sampled populations and the most recent common ancestral population (MRCAP) is of 

obvious relevance to scientists interested in the history of such populations.  Where humans 

are concerned, language or phenotypic differences may be used to classify populations and 

distinguish between them.  Thus qualitative estimates of differentiation can be obtained.  

However over the last 30 years, advances in biotechnology, leading to the availability of 

DNA sequence data, have permitted the development of methods to quantify genetic diversity 

and differentiation.  The assessment of populations at the DNA level leads to a much broader 

perspective than would be gained through simple qualitative methods.  Human populations 

have been studied extensively since the advent of genetic sequencing techniques and are the 

focus of this study.  

Humans are diploid organisms; that is, their genome consists of pairs of chromosomes, of 

which there are 23.  In every pair of chromosomes one is maternally inherited and the other 

paternally, and so offspring contain a sample of genetic material from their parents.  Single 

chromosomes have a double helix structure (see Figure 1-1) where each strand contains a 

DNA (deoxyribonucleic acid) sequence complementary to the sequence on the corresponding 



 

strand; a phenomenon known as base

sequence consists of four basic molecules

thymine (T), cytosine (C), and it is the precise linear order of these chemicals along the 

chromosomes that comprise an

‘locus’, on a chromosome pair

of chromosomes.  If the two bases are the same the individual is said to be homozygous at 

that locus, and if they are different the individual is heterozygous at the given locus.

in mind the complementary relationship between strands of DNA w

chromosome, it is useful while referring to 

strand, let’s say the red strand in both of the chromosomes.  

pair at the highlighted locus a 

individual from whom this sample was taken would

locus.  The variants found at a locus are known 

alleles in populations that are used to describe differences between and within

populations (Lewin, 2004).  This concept can be extended to genes where a locus is no longer 

a single base position but the location of a gene,

reasons that become clear in the following description of SNP

the location of a single base.  

genotype at that SNP and the process of determining the genotype is called genotyping.

 

 

 

 

 

 

Figure 1-1 A section of a pair of chromosomes. Highlighted is an example of a SNP

It has recently become economically feasible to genotype individuals at a large number of 

SNP loci, which are then used to study genetic variation in populations.

existence stems from an error in the DNA copying process at some time in the past

a mutation.  It is generally the case, and will be assumed throughout, that SNPs only exhibit 
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a phenomenon known as base-pairing, critical in replication processes.  

four basic molecules called nucleotides: adenine (A), guanine (G), 

cytosine (C), and it is the precise linear order of these chemicals along the 

an individual’s genetic constituent.  At any given position, or 

pair in an individual there are two ‘bases’, one on each of the

If the two bases are the same the individual is said to be homozygous at 

that locus, and if they are different the individual is heterozygous at the given locus.

in mind the complementary relationship between strands of DNA w

useful while referring to Figure 1-1 to focus attention on a particular 

s say the red strand in both of the chromosomes.  In the first chromosome of the 

at the highlighted locus a ‘C’ is found whereas in the second a ‘

om whom this sample was taken would then be heterozygous at the highlighted 

The variants found at a locus are known as alleles and it is the frequency of such 

that are used to describe differences between and within

.  This concept can be extended to genes where a locus is no longer 

location of a gene, which has specified functions

he following description of SNPs, we will consider a locus to be 

  The two bases present at a SNP in an individual are called the 

genotype at that SNP and the process of determining the genotype is called genotyping.

section of a pair of chromosomes. Highlighted is an example of a SNP. 

It has recently become economically feasible to genotype individuals at a large number of 

SNP loci, which are then used to study genetic variation in populations.

stems from an error in the DNA copying process at some time in the past

a mutation.  It is generally the case, and will be assumed throughout, that SNPs only exhibit 

  

critical in replication processes.  A DNA 

adenine (A), guanine (G), 

cytosine (C), and it is the precise linear order of these chemicals along the 

At any given position, or 

, one on each of the pair 

If the two bases are the same the individual is said to be homozygous at 

that locus, and if they are different the individual is heterozygous at the given locus. Bearing 

in mind the complementary relationship between strands of DNA within the same 

to focus attention on a particular 

the first chromosome of the 

‘T’ is found.  The 

then be heterozygous at the highlighted 

as alleles and it is the frequency of such 

that are used to describe differences between and within those 

.  This concept can be extended to genes where a locus is no longer 

which has specified functions.  However, for 

we will consider a locus to be 

The two bases present at a SNP in an individual are called the 

genotype at that SNP and the process of determining the genotype is called genotyping.  

It has recently become economically feasible to genotype individuals at a large number of 

SNP loci, which are then used to study genetic variation in populations.  Each SNP’s 

stems from an error in the DNA copying process at some time in the past, known as 

a mutation.  It is generally the case, and will be assumed throughout, that SNPs only exhibit 
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two variants: in the jargon they are bi-allelic.  Such locations are found during small-scale 

identification or ascertainment studies after which it would be typical to genotype a sample of 

individuals at a number of SNP loci.  Previously unseen levels of data are becoming available 

through projects such as the International HapMap Project (http://www.hapmap.org/) and the 

Human Genome Diversity Project (HGDP) 

(http://www.stanford.edu/group/morrinst/hgdp.html), both international collaborations 

between scientists with the aim of providing publicly-available resources to aid the 

understanding of human genetic diversity.   

A particular collaboration between the Human Genome Diversity Panel and CEPH (Centre 

d’Etude du Polymorphism Humain, translated as Human Polymorphism Study Center) in 

Paris, has resulted in a collection of DNA samples from 1050 individuals in 51 world 

populations being banked and subsequently the availability of genotype data at 650,000 SNP 

loci for the 1050 individuals.  Not only the remarkable volume of data available but also the 

geographic area covered by the sampled populations makes these data well suited for studies 

of human diversity.      

Current technology provides the means to genotype an individual at a huge number of loci 

simultaneously.  Many different SNP genotyping techniques are currently in use but in 

general they can be categorised into hybridisation-based and enzyme-based methods.  Both 

rely on the base-pairing property of DNA alluded to above where adenine (A) pairs with 

thymine (T) and guanine (G) pairs with cytosine (C).  Hybridisation methods use two short 

pieces of synthetic DNA for each SNP called primers, designed to complement the target 

sequence.  A heating process breaks the weak hydrogen bonds between the two strands of the 

double-helix and the primers are then exposed to the denatured DNA.  If the sample DNA 

contains the allele of interest then the complementary relationship between the two will form 

a hybrid segment.  Hybridisation can then be assessed using various visualisation techniques.  

Enzyme-based methods cover a wide variety of different techniques, commonly using either 

DNA ligase, DNA nucleases or DNA polymerase to catalyse specific reactions designed to 

yield detectable mutations at specific sites on a DNA sequence (Ye et al., 2001).  
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Table 1.  Format of SNP data collected on P populations at L SNPs. 

 SNP Locus (Reference Nucleotide) 

    Population              j=1 (A)            j=2 (G)                 j=3 (C)                …              j=L (C) 

          

i=1 

   

     n11 = 110   

     x11 = 75   

    

  n12 = 100  

 x12 = 43 

    

     n13 = 120 

     x13 = 100       

 

       

 

  n1L = 100  

  x1L = 90        

   

   …
 

            

        

  …
 

 

      …
 

  

   …
 

     . 

        . 

   

     …
 

 

         

       i=P 

   

     nP1 = 114   

     xP1 = 80   

    

  nP2 = 110  

  xP2= 0 

    

     nP3 =100 

     xP3 = 100       

 

        …               nPL = 110 

                         xPL = 75        

 

Table 1 illustrates some SNP data from P populations at L SNPs where nij is twice the number 

of individuals typed in population i at SNP j, as we are dealing with diploid individuals; and 

xij is the number of copies of the randomly chosen reference nucleotide at SNP j in population 

i, shown bracketed in Table 1.  Therefore xij / nij is the sample allele frequency of the 

reference nucleotide in population i at SNP j.  The raw data consists of the genotype of each 

individual at each SNP locus; so table 1 is a compact version of the tallied genotype data.  It 

is also worth reiterating that the reference nucleotide is chosen at random from two possible 

candidates as SNPs are assumed to be bi-allelic.   

The information contained across many independent SNP loci can lead to accurate inferences 

about demographic characteristics and the historical and contemporary relationships between 

populations.  As is so often the case in a statistical analysis, it is advantageous for 

observations, in this case SNPs, to be independent, as the mathematical manipulation 

becomes more difficult if this property cannot be assumed.  For the independence assumption 

to hold it must be the case that the transmission of genetic information from parent to child at 

a particular SNP locus has no bearing on the probability of inheritance of the information at 

another SNP locus.  If alleles at different SNP loci tend to be co-inherited from the same 

parent then independence would be violated.  During meiosis, the production of sex cells 

called gametes, the closer loci are positioned in relation to one another on the chromosome 

the more likely they are to be co-inherited.  On the other hand, if loci are sufficiently distant 

from one another, recombination, the shuffling of genes during meiosis, allows independence 

to be assumed.  
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The majority of positions on the genome are identical across individuals and so SNPs are a 

more cost effective way of studying variation.  The alternative would be to sequence stretches 

of DNA, most of which are not variable.  However, the efficiency of SNPs comes with a 

penalty.  Generally speaking, the more polymorphic a locus is (i.e the closer the allele 

frequencies are to 0.5) the more likely it is to be discovered in the ascertainment process, 

which brings with it the possibility of biased estimates.  Researchers have included in their 

modelling procedure the effect of SNP ascertainment, with differing conclusions.  Nicholson 

et al. (2002) found that estimates were not sensitive to the inclusion of an ascertainment 

effect whereas Balding & Nichols (1995) and M. Sharif (2007) found that it was important to 

model ascertainment in their analysis in certain circumstances.  The difficulty in modelling 

such an effect is the variation in ascertainment procedures carried out and it is unlikely that 

any particular method to account for ascertainment is appropriate for all ascertainment 

schemes (Nielson, 2004).  To formulate a meaningful probability expression one must have 

available the details of the procedure which can be difficult to obtain and not always reliably 

stated.    Nevertheless it seems appropriate to model this effect whenever possible.  

Genetic differentiation simply means that allele frequencies among populations are different 

(Hartl and Clark, 2007) and implies some population structure.  This can be due to 

differences in the frequencies of founder individuals of the populations, chance fluctuations 

caused by the sampling involved in reproduction, known as random genetic drift, or selection 

favouring different alleles within sub-populations, perhaps corresponding to variable 

environmental conditions.  Traditional measures of differentiation are based around the 

fixation index or FST, proposed by Sewall Wright in the 1920’s, which gives a single 

quantitative measure of the proportion of the overall genetic variability ascribable to a certain 

level of population sub-division.  Formal definitions of FST have evolved and multiplied since 

its inception. However definitions tend to rely on arguments relating to heterozygosity, one 

being the reduction in heterozygosity expected with random mating at any one level of a 

population hierarchy relative to another, more inclusive level of the hierarchy (Hartl and 

Clark, 2007).  Heterozygosity is a measure of the genetic variability of a population and is the 

frequency of heterozygotes averaged over the tested loci (Falconer, 1989).  The definition of 

FST makes intuitive sense as levels of heterozygosity decrease in the presence of population 

sub-division, relative to a randomly mating population.  A common mathematical description 

is  
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                  [1] 

In words Equation [1] is the difference in total heterozygosity and that of a given level of 

sub-structuring  relative to the total .   

FST is limited as an estimator of divergence as it is an average over all populations.  Thus 

estimates of population-wise divergence, characteristic of the model proposed below, offer 

more insight into diversity.  An analogy can be made with the ANOVA procedure where one 

may be investigating the effectiveness of a group of treatments.  The first stage would involve 

an analysis of the overall treatment effect; however if this was found to be statistically 

significant the natural continuation would be to carry out some comparisons to find where the 

differences occur.  In our setting the FST value could act, loosely speaking, as an indicator of 

overall sub-division from which we can proceed to investigate more precisely, using 

population-wise parameters, the patterns of differentiation.     

Probabilistic gene frequency models have been developed using population genetics theory, 

inherently statistical in nature, in an attempt to quantify differentiation between populations 

(Gillespie, 2004).  Nicholson et al. (2002) proposed a Bayesian hierarchical model for SNP 

data to describe differentiation using population-specific parameters, closely analogous to 

FST.  Such parameters appear in the variance structure of the imposed normal distributions 

characterising allele frequencies at a given SNP in a given population.  Population genetics 

interpretations and justifications are given and will be discussed in later sections.  Since 

frequencies are necessarily on [0, 1], the normal distribution used to model them has to be 

truncated at 0 and 1, by placing point masses there.  This implies a mixed distribution so that 

in (0, 1) the distribution is continuous (and so densities are evaluated) whereas at the 

boundaries the distribution is discrete and hence mass is evaluated.  The advantage of using 

such a distribution is that it mirrors the feature of allele frequencies in a population called 

fixation.  This occurs when an allele is lost and without mutation cannot return to the gene 

pool, an inevitable event in a pure-drift setting (see below) over a large number of 

generations.  The use of normal distributions also permits the assessment of model fit, a rarity 

in population genetics, using various residual diagnostic plots.   

Underlying the Nicholson et al. (ND) model is an assumption about demographic history; the 

sampled populations diverged simultaneously from an ancestral population some time in the 

.
T

ST
ST

H

HH
F

−
=

)( ST HH − )( TH
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past and have continued to evolve independently.  This implies that gene flow is not 

occurring between populations or its effect is small and so negligible, a setting sometimes 

called pure drift.  An alternative approach, proposed by Balding and Nichols (BN) (1995) and 

widely used in forensic DNA profiling, assumes that equilibrium has been reached through 

the contributions of both migration (gene flow) and random drift such that the levels of 

variation between populations are constant, and uses beta distributions to characterise allele 

frequencies.  The BN approach accounts for the effect of gene-flow though assumes that 

differentiation has been and continues to be constant through time.  The question is then to 

consider the context and hence the more useful model.  In our case the BN model does not 

give an idea of the history of the sampled populations and since one of the aims of this thesis 

is to develop a new model for representing alternative evolutionary histories of sampled 

populations, the ND model is more attractive. 

To make any practical sense a model must be related to or derived from a physical process.  

The formal assumption in the ND model which stipulates an ancestral population splitting 

into descendant populations can be related to a historical event where members of a 

population migrated to another location but were then unable to return, perhaps due to a 

geographical barrier.  These populations would then have evolved through time 

independently as the exchange of genes between populations was impossible.  As the earth’s 

landscape has changed dramatically over time this type of event is plausible. 

 

 

 

 

 

 

Figure 1-2 (a) Evolutionary pattern inferred by ND model for 4 populations.  Notice the single ancestral population splitting 

simultaneously into four and evolving over time until the present.  (b)  BN model.  Notice that distance between populations 

is constant through time.  The single arrows represent the direction of time and the dashes reflect that the process has been 

occurring indefinitely over time.  The double-headed arrows represent gene-flow. 

 

(a) (b) 

sampled population 

theoretical proto-population 

MRCAP 
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If populations split relatively cleanly, with little subsequent gene flow between sub-

populations, then a tree is an accurate representation of the relationships between populations 

and their historical path, as in Figures 1-2(a) and 1-3.  Figures 1-2(a) and 1.2(b) illustrate the 

ND and BN models respectively.    It is important to note that in Figure 1-2, both depictions 

are of populations evolving over time.  This is distinct from another situation that can be 

represented using this tree format: to represent the relationships between a group of 

individuals.  We will call the representation in Figure 1-3 (a) a topology.  A topology defines 

the history of a set of populations (or individuals) without specific labelling. Figure 1-3(b) 

illustrates a labelled history, which is a topology with a specific labelling.  Within a topology, 

any proto-population is the most recent common ancestral population (MRCAP) of any 

populations below it on the tree.  The MRCAP of all sampled populations is called the root of 

the tree and represents the single population from which all the sampled contemporary 

populations are descended.  

 

 Figure 1-3 (a) A topology with distinction between sampled and theoretical populations.  (b)  A labelled history; 

populations 1-4 represent sampled populations, 5-7 represent theoretical populations.  The arrows represent the 

direction of time. 

Tree representations are useful as they display the hierarchical structure of models such as the 

ND model.  Figure 1-3(b) illustrates the historical relationships of the sampled populations 

but we can also state that population 1 is more closely related to population 2 than 

populations 3 or 4 are to 1 or 2 and a similar relationship is evident between populations 3 

and 4.  The tree structures in Figure 1-3 are bifurcating which means that any proto-

population splits into two populations.  This is important as we will only be considering 

bifurcating trees when specifying more complex models.  It may well be the case that a 

bifurcating tree is not the correct representation of the sampled populations, but since a 

bifurcating tree can give a good approximation to other topologies, for example a trifurcating 

theoretical proto-population 

sampled population 

1 2 3 4 

5 6 

7 

    

  

  

 

(a) (b) 

MRCAP MRCAP 
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tree, using very small intermediate branches, and the possible number of trees can become 

unmanageable if not handled sensibly, it is for our purposes a practical necessity.  

Many of the developments in population genetics in recent years have been the consequence 

of increasing computing power, allowing researchers to use models with large numbers of 

parameters, in an attempt to reflect the complex processes influencing the data.  Taking a 

Bayesian statistical approach and utilising Markov Chain Monte Carlo (MCMC) simulation 

methods offers the potential for a large number of parameters, with inter-dependency, to be 

handled in a practical manner such, that meaningful conclusions can be drawn (Beaumont 

and Rannala, 2004).  

Within a Bayesian framework parameters are considered random quantities and inference is 

based on the marginal probability distribution of the parameters of interest conditional on the 

observed data, called the marginal posterior distribution.  Basic summaries of these 

distributions such as means and variances are used to make inferential statements and draw 

conclusions.  A probability model is specified according to some notion of the underlying 

process and prior distributions are used to quantify what is known about the parameters a 

priori, i.e. before the new data is taken into account.  The assignment of prior distributions is 

the primary concern for the critics of Bayesian methodology as it is a fundamental 

requirement, whether or not cogent prior knowledge is available.  However under such 

circumstances one can test the sensitivity of results to the prior thus gaining insight into the 

influence of this distribution.     

The essence of Bayesian analysis is Bayes’ rule (Bayes, 1763), 

                                              [2] 

where  is the set of model parameters and y is the data.  Therefore the posterior distribution 

of , , i.e. conditional on y, is proportional to the product of the prior distribution of  

, , and the distribution of y given , , commonly called the likelihood.  The 

intermediate step in calculating  in equation [2] is the term  which is the joint 

distribution of  and y.  This represents the full probability model which is developed using 

relevant knowledge and theory from the field of study.  The term p(y) does not depend on  

,
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and with fixed data can be considered a constant, yielding the un-normalised posterior 

distribution 

   
                                                           [3] 

Various techniques can then be employed to attain .  MCMC methods have been used 

extensively over the last 10 years in studies of genetic variation, particularly for Bayesian 

hierarchical models, to take samples from .
 
   

MCMC methods refer to the use of Monte Carlo integration using Markov chains.  Iterative 

in nature, the objective of MCMC is to sample from the posterior distribution of quantities of 

interest by repeated sampling over the parameter space.  This is achieved by defining a 

Markov chain which has as its stationary distribution the required posterior density and 

running the algorithm for a sufficient length of time.  At each stage in the process values of 

 are drawn from approximate distributions and then corrected so that those draws are a 

better approximation of the posterior density (Gelman et al., 2004a).  Inference is then based 

on simple summaries of the posterior distribution such as the mean and variance, after 

removing the initial period before convergence of the chain known as burn-in.  Many 

algorithms have been proposed to carry out this task but most are similar to or special cases 

of the Metropolis-Hastings algorithm (Metropolis et al. 1953, Hastings 1970), the details of 

which will be discussed in the next chapter.     
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1.2  Aims 

 

I propose to fulfil the aims set out in this section. 

• Develop an MCMC algorithm to fit the ND model of SNP allele frequencies to 

simulated and real data sets.  

• Assess the fit of the ND model for both simulated data and newly available real data 

using residual and population-removal diagnostic techniques, highlighting situations 

where the model does and does not fit the data.    

• Develop an extension to the ND model which allows flexibility in the evolutionary 

histories of contemporary populations, implemented again using MCMC methods. 

• Assess the fit of the new model for real and simulated data sets and investigate 

whether there is information in the data to infer the most appropriate labelled history 

for a set of populations, using residual diagnostic techniques. 
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Chapter 2  

Methods 

 

The first step in any Bayesian statistical analysis is the formulation of a probability model 

which effectively represents the processes responsible for variation observed in the data.  In 

our context this refers to a model to describe variation in allele frequencies at many 

independent SNP loci for a set of populations. The ND model proposed by Nicholson et al. 

(2002) is defined below, specifically the probabilistic structure of the model with statistical 

and population-genetics justifications.   

 

2.1  ND Model for SNP Allele Frequencies 

 

This model was proposed to describe SNP allele frequencies for structured populations while 

simultaneously estimating population-wise parameters aiming to capture historical 

differences between populations.  In this setting a population is simply a breeding unit, 

meaning that only within the population can an individual find a mate to produce offspring.  

Mating is also considered to be random with respect to genotype, a standard assumption in 

population genetics.  That is, mates are not chosen directly or indirectly for their genotype.   

Suppose we have a sample of SNP data collected from P populations at L SNPs.  Then let nij 

be the number of chromosomes typed in the ith population at the jth SNP which corresponds 

to twice the number of individuals typed.  As mentioned in section 1.1 an arbitrarily selected 

nucleotide is chosen for every SNP and the number of copies of the chosen allele in 

population i at SNP j is xij, 0 ≤ xij ≤ nij.  The unobserved frequency of the chosen allele in the 

ith population at the jth SNP is denoted by αij, 0 ≤ αij ≤ 1.  For ease of representation the 
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omission of subscripts will denote the entire collection of quantities; so, for example, x will 

represent the set of all xij , i = 1, 2, . . . , P, j = 1, 2, . . . , L.     

At the lowest level of the hierarchical model, we have binomial data: conditional on n and α, 

 

As we have taken a sample from the whole population α is unknown and so assigned a 

probability distribution.  It is worth noting that the maximum likelihood estimate of α is x / n 

from the properties of binomial random variables.   The population allele frequency αij is then 

modelled as 

 

The distributional expression in [5] is the basis of the ND model and will be justified in detail 

in what follows.  The introduction of the unobserved quantities π and c can be explained by 

reference to the Wright-Fisher model of evolution in an idealized population.  At present it is 

sufficient to define πj as (0 < πj < 1) the allele frequency at SNP j in the population ancestral 

to all sampled populations.  Note that πj has no population index as the model assumes a 

single ancestral population split into P populations at some time in the past.  For simplicity it 

is also assumed that there was variation in the ancestral population at every SNP.  If this was 

not assumed then conceptually without mutation or migration no variation would be present 

at that SNP.  Since mutation and migration are not assumed to be present or their effects 

negligible then it is necessary to stipulate that πj ≠ 0 or 1.  This is probably a reasonable 

assumption since most SNPs are variable in most populations and SNP mutation rates are 

known to be low (International HapMap Consortium, 2005), so a mutation arising in many 

populations independently has a low probability.        

The population-wise parameters ci are those which we aim to estimate and describe the 

amount of genetic drift population i has been subjected to since splitting from its ancestral 

population.  In a statistical sense, c governs the amount, in terms of variance, the 

contemporary population allele frequencies tend to be different from typical values 

(Nicholson et al., 2002).  Its relation to the variance of the allele frequencies leads to the 

stipulation that c is strictly non-negative.    
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To complete the hierarchy, we place independent prior distributions on π and c: 

π1 , . . . , πL  are independent and identically distributed with density f ;   [6] 

c1 , . . . , cP  are independent and identically distributed with density g.                     [7] 

A discussion of particular prior distributions will follow in section 2.1.2.4 but for now the 

general statements in [6] and [7] will suffice. 

 

 

 

 

 

 

 

 

Figure 2-1  The phylogenetic structure of the ND model for a single SNP j, for P = 4.  

Figure 2-1 is a useful representation of the ND model as the phylogenetic structure is 

apparent; for a   If we take a prospective approach to describe the model, then, at some time 

in the past, a single population split simultaneously into four populations.  The plausibility of 

such an event was discussed in section 1.1.  If the populations evolve to the present day in the 

manner to be discussed in this section, in subsequent isolation and also if SNPs are not under 

selective pressure, then the ND model is an accurate representation.  So not only is it 

desirable to assure that the SNPs to be analysed under the ND model are independent, but 

also that they are chosen from a region which is thought to be of no functional value to the 

individual, to avoid, as much as possible, the effects of selection.  In fact most of the genome 

likely evolves without selection (Kimura, 1983).  The assumption of populations evolving 

independently of one another, or, in population genetic terms, without migration, is of greater 

concern to the legitimacy of the modelling assumptions.  If correlations between populations 

are present then it can be difficult to unravel the underlying forces affecting parameter values.  

α1j α2j α3j α4j 

πj 

c1 

c2 c3 

c4 

x1j x2j x3j x4j 
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For example, a large estimate of c could be the due to the long period of isolation since 

splitting from the ancestral population but it could also be due to gene flow between other 

sampled populations which in turn exaggerates the isolation of the population in question.  

However, it is the possibility and potential capture of such correlations between populations 

which motivates the extension of the ND model proposed in the latter part of this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2  A directed acyclic graph (DAG) of the ND model for four populations. 

The DAG in Figure 2-2 illustrates the probabilistic relationships between the parameters and 

the random variables defined in the ND model.  In this format circles represent parameters; 

rectangles represent random variables (i.e. the data) and double rectangles represent 

quantities assumed fixed by design (i.e. sample sizes).  The direction of an arrow specifies the 
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condition that a quantity below the arrow is conditionally independent given the quantity at 

the top of the arrow.  This equates to saying that the random variables are conditionally 

independent given the parameters that characterise their distribution.   In this particular DAG, 

θf is the set of parameters characterising the distribution f (prior on the π’s) and θs is the set of 

parameters characterising the distribution g (prior on the c’s).  Repetitive structures, of SNPs 

within populations, are shown as stacked “sheets”.    

 Another feature of the ND model is the mixed distribution in expression [5].  This means that 

continuous distributions will be specified for quantities within the range (0, 1), with atoms at 

0 and 1, whose size is the total mass of the relevant distribution on (-∞, 0] and [1, ∞), 

respectively.  Figure 2-3 illustrates a standard normal mixed distribution.  The distribution is 

continuous on (-1, 1) and has point masses at -1 and 1 equal to the “missing” tails of the 

normal distribution tales discrete on (-∞, -1] and [1, ∞).  The mass at both atoms -1 and 1 is 

0.1592, calculated from the standard normal cumulative distribution function. 

 

Figure 2-3  A mixed standard normal distribution, i.e. µ = 0, �� = �.  Within the range (-1, 1) the distribution is continuous; 

point masses of 0.1592 are found at atoms -1 and 1, calculated from the tails of the normal distribution. 

The use of a mixed distribution for allele frequencies reflects the need to handle 

probabilistically the situation where αij = 0 or 1, called fixation, where an allele is lost and 

therefore only a single allele remains, given that we are referring to bi-allelic SNPs.    

The model defined above does not include an ascertainment effect as mentioned in section 

1.1.  The decision to leave out this aspect of the sampling procedure reflects the aims set out 

in section 1.2.  The primary concern is to develop a new model to account for uncertainty in 

��� = 0.1592 �� = 0.1592 
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the topology, not necessarily to acquire unbiased estimates using the new model at this stage.  

However with the correct information regarding the ascertainment procedure, particularly the 

size of the panel used in the SNP discovery process and the population the individuals were 

sampled from, it would be possible to include the effect into the model and it is suggested at 

least to explore this possibility in any future analysis.  The difficulty lies in obtaining the 

relevant information and providing an adequate characterization of the process.  The 

ascertainment protocol used for the HapMap data is extremely complex and it would be 

impossible to model such a process mathematically (Clark et al., 2005).  In any further 

analyses using these data, where an ascertainment correction is sought, a simplified version 

of the SNP discovery process should be modelled. 

 

2.1.1 The Wright - Fisher Model 

 

The binomial distribution in expression [4] reflects the sampling process involved when using 

SNP data.  However, binomial sampling is also a feature of the evolution of allele frequencies 

over time in an idealized population.  Consider a population comprising 2N chromosomes 

with two alleles at a given locus.  Then assume that the population size is constant through 

time, that generations are non-overlapping, meaning that parents do not survive into the 

offspring generation and mating between individuals is random with respect to genotype.  

Deviations from the assumption of random mating could be due to differential reproductive 

fitness of particular genotypes, inbreeding or age-structured populations where the fertility of 

an individual is a function of age; however populations under random mating are often 

assumed in population genetics models due to their mathematical tractability.  If mutation and 

recombination cannot introduce new alleles and new genotypes respectively and there exists 

no differential reproductive fitness between the two alleles, then the evolution of allele 

frequencies can be described by a Markov chain and this model is known as the Wright–

Fisher model of evolution under genetic drift (Fisher, 1930; Wright, 1931).  The total number 

of the reference allele in a given generation specifies the state of the chain and it follows that 

the allele frequency is easily calculated given the state.  In our example, the state St at time t 

can take the values 0, . . . , 2N.  Note that time in this context is discrete as we are dealing 

with non-overlapping generations.  There are probabilities associated with every possible 

transition from any state at time t to any state at time t + 1 known as the transition 
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probabilities and these are calculated using the binomial formula.  If St = j where j = 1, . . . , 

2N and k = 0, . . . , 2N, then  
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Under these idealized conditions the changes in allele frequency are purely stochastic since 

the genes in the offspring generation are a random sample from the parent generation.  This 

stochastic change in allele frequency is known as random genetic drift and is the evolutionary 

force we focus on in this thesis.  The c parameters in expression [5] reflect the amount of drift 

a population has undergone since splitting from the MRCAP.  Of the parameters estimable 

within the ND model, the c’s are the most informative in our context; the allele frequencies at 

particular SNPs do not provide any practical information and are in effect treated as nuisance 

parameters. 

The inherent binomial property of evolution under the Wright-Fisher model leads us to the 

parameterization of the variance in expression [5].  From the properties of binomial random 

variables, if , then the natural estimator of θ is ,/ˆ nz=θ  and ( )
n

)1(ˆVar
θθ

θ
−

= , 

which has the same form as the variance component in [5] with π in place of θ and c = 1/n.  

Since the effect of genetic drift is inversely proportional to population size, such that, in a 

small population drift is more pronounced, compared to a large population where it has a 

minor effect, the c’s are consistent with this property.   

In this simplified situation binomial sampling is present at every generational step.  However 

even with such simplifications and the known relationship from generation to generation, to 

derive the mathematical properties of the Wright-Fisher model through many generations is 

an extremely demanding task as the random fluctuations between every generation must be 

captured.  However a result exists, although not proved here due to the highly involved 

mathematics of diffusion equations, which approximates the allele frequency after many 

generations using a normal distribution (Kimura, 1983).  The result is derived assuming the 

population size is large, and in practice works well as long as some of the populations are not 

very small.  The c parameters are also proportional to time, since the amount of genetic drift 

increases over time, so large values of c suggest a longer time since splitting from the 

MRCAP and vice versa. This result also mirrors the approximation of the binomial 

distribution by the normal distribution, a well-known statistical property. 

)Bi(n,~ θz



    

20 

2.1.2 Markov-Chain Monte-Carlo Methods 

 

Markov-Chain Monte-Carlo (MCMC) methods are used to sample from distributions of 

interest when direct sampling is not possible.  These situations occur frequently in a Bayesian 

setting as models tend to involve large numbers of parameters with non-standard marginal 

posterior distributions.  The Metropolis-Hastings algorithm is an iterative procedure closely 

related to a random walk used to sample from posterior distributions.  The algorithm relies on 

the Markov property, which states that the future state of the chain only depends on the 

present state.  Hence at every step in the algorithm a draw is made from a proposal 

distribution depending only on the current state and evaluated using an acceptance/rejection 

criterion.  The proposal distribution and the acceptance/rejection rule are carefully 

constructed such that the stationary distribution of the Markov chain is the posterior 

distribution of interest, the idea being that if the algorithm is run for a sufficient length of 

time the draws will be from the target distribution.  Inference is then based on summarising 

the marginal posterior distributions of interest using moments and appropriate plots (Gelman 

et al., 2004a).   

The output from an MCMC chain is often thinned (only every n draws are kept, where n is 

typically around 10) to reduce the correlation between samples, this correlation often being 

assessed via autocorrelation plots (e.g. the acf() function in R).  In this case it was not done as 

a matter of course, since (i) independent samples are not essential to compute summaries of 

the posterior distribution (they just lead to somewhat more stable estimates) and, in any case, 

(ii) in most examples there were not any notable cases of strong correlation effects, after 

appropriate tuning of the proposal distribution.  

 

2.1.2.1 Metropolis-Hastings Algorithm 

 

The Metropolis-Hastings algorithm was employed to sample from posterior distributions of 

interest.  Other strategies could have been employed, such as the Gibbs sampler; however, the 

Metropolis–Hastings algorithm is simpler to implement since it does not require the 

calculation of and sampling from full conditional distributions.   
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 The general algorithm proceeds as follows: 

1. Choose a vector of starting values θ0, for all parameters in the model. 

2. For t = 1, 2, 3, . . . ,  

(a) Sample a proposal θ
*
 from a proposal distribution at time t, ).( 1−∗ t

tJ θθ  

(b) Calculate the ratio of the densities,   

 

  where  is the posterior density.  

(c) Set  

             

 

 The factor  is used in the calculation of r to account for a non-

symmetric proposal distribution.  If  is symmetric i.e. , the factor 

reduces to unity.  Note also that if the proposed value is rejected, such that θ
t
 = θ

t-1
, this 

counts as an iteration in the chain. 

 

2.1.2.2  Implementation 

 

In this section the Metropolis-Hastings algorithm implemented in our analysis is described in 

detail referring back to the general form in the previous section.  The updating strategy 

employed updates “batches” of parameters sequentially, using the appropriate formula for 

calculating r (see (b) below), since each of the three groups of parameter, π, α and c, has a 

unique formula.   
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1. The starting values  are chosen using approximate values of the 

parameters taken from simple estimators, for example, FST for the c parameters.  It is 

crucial that samples from the chain eventually become independent of the starting 

values.  That is to say, regardless of the starting values the chain should converge to 

the target distribution, on a reasonable time scale.  Therefore multiple simulations 

using starting values dispersed throughout the parameter space are considered.  If it 

appears that the chain has not converged on the target distribution then more iterations 

may be needed.   

2. (a)  Gelman et al. (2004) suggest the following criteria for choosing the proposal    

distribution at a given t. 

• For any θ, it is easy to sample from   

Since updates are performed in groups, each of the parameter sets has a unique 

proposal distribution. Using normal proposal distributions for and c ensures 

that the above property is satisfied and it is also clear that the assumption of a 

symmetric proposal distribution is upheld.  See the section 2.1.2.3 for a further 

discussion of particular proposal distributions. 

• It is easy to compute the ratio r 

See below (b). 

• Each jump goes a reasonable distance in the parameter space (otherwise the 

random walk moves too slowly).  

• The jumps are not rejected too frequently (otherwise the random walk wastes 

too much time standing still). 

The last two conditions can be grouped together as they both refer to the ‘mixing’ 

of the chain.  To achieve satisfactory mixing, a balance between jumping a 

sufficient amount and not jumping too far must be made, for example, by 

adjusting the standard deviation of the proposal distribution.   
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(b)  Some useful simplifications can be made when calculating                                                   

the ratio of densities r depending on which type of parameter is being updated that 

greatly increase the efficiency of the algorithm.  

Note that 
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are hyper-parameters indexed by the prior distribution they          

parameterise.  This is (up to a constant that depends only on the data) the full joint posterior 

distribution of the ND model expressed in terms of known conditional distributions. 

When updating ci (i = 1, 2, . . . , P),  

  

where is the proposed value and ci is the current value.  

When updating πj (j = 1, 2, . . . , L), 

 

where is the proposed value and πj is the current value.   

When updating αij (i = 1, 2, . . . , P; j = 1, 2, . . . , L), 

 

where  is the proposed value and is the current value.   
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(c)  The acceptance/rejection condition is considered using the ratio r.  The simple case is 

where r ≥ 1 then the proposed value is accepted, since it is at least as probable as the current 

value.  If  r < 1 then the proposed value is accepted if r > s, where s is a draw from a Un(0, 1) 

distribution.  That is, the proposal is accepted with probability r.  It is also worth mentioning 

that when calculating r, sums and differences of log probabilities are used and then 

exponentiated at the end (to avoid over or under-flow during computation). 

 

2.1.2.3 Proposal Distributions 

 

The use of a mixed distribution to describe contemporary allele frequencies poses 

complications when drawing values from the proposal distribution.  When drawing from a 

normal proposal distribution for α, it does not suffice to simply reject values outwith the 

range as the distribution has mass at the boundaries 0 and 1.  To overcome this problem the 

following re-parameterisation of the ND model was used.  First we define a function  

such that, 

  

Then introduce the quantity  (i = 1, . . . , P, j = 1, . . . , L) such that and  

                                                [8] 

Expression [1] can now be written 

                            [9] 

Therefore the contemporary allele frequencies are expressed in terms of β whose parameter 

space spans the real line.  The function  is required in expression [9] since β can 

potentially be < 0 or > 1 in which case the expression becomes invalid.  If we were interested 

in inferring α then the function  would be used to transform back to the α scale and hence 

valid allele frequencies.  
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With no restrictions on the parameter space of βij, normal distributions can be used for all of 

the proposal distributions, effectively implementing random walks through each of the 

parameter spaces (Gelman et al., 2004a).  However there are some other issues which must be 

dealt with to ensure adherence to the modelling assumptions.  Firstly, proposed values of π 

outwith the range (0, 1) are immediately rejected under the ND model.  Also, since c is 

strictly non-negative, a transformation onto the log-scale was used to enable the use of a 

normal proposal distribution which is on the preferred real line scale.   

Formally, the proposal distributions  at iteration t for π, β and lnc are,  

                                                                                             [10] 
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Characterising the variance in the proposal distributions are the parameters , 

which affect the efficiency of the algorithm and are adjusted accordingly (see section 2.3).  

 

2.1.2.4 Prior Distributions 

 

Prior distributions represent knowledge about parameters before considering the data.  There 

are two useful ways of conceptualising a prior distribution: the first being the probabilistic 

characterisation of the investigator’s knowledge about the parameter(s), maybe drawing on 

results from previous studies; the second supposes that the current parameter value is a draw 

from a population of possible values, which the prior distribution reflects (Gelman et al., 

2004b).  Both standpoints are equally valid in their respective contexts, however, regardless 

of interpretation, a prior distribution must have within its range the possible values of the 

parameter it describes and also it must quantify the uncertainty in the knowledge about the 

parameter.  The distinction between a prior distribution whose form highlights more probable 

parameter values and one in which all values are equally probable is an important one; the 

latter being a non-informative prior and the former informative.  Both are used in our analysis 
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and the particular distributions used will be illustrated in this section.  In choosing a sensible 

prior distribution an informed judgement has been made, drawing on relevant information 

when available, in the context of the particular problem, while also testing the influence of 

particular assignments on estimates.             

Two prior distributions f and g, characterising π and c respectively, are specified in the ND 

model (see [6] and [7]).  Let’s consider the prior distribution of π, with density f.  Recall that 

πj is the allele frequency of the SNP j in the ancestral population and it is assumed that 

variation was present at SNP j in the ancestral population therefore πj ≠ 0 or 1.  So the prior 

on π must be on the range (0, 1).  Both the Beta and the Un(0, 1) distribution have this 

property (in fact, the Uniform is a special case of the Beta) and so both are considered in our 

analyses.  It is a consequence of the way in which SNPs are discovered that loci with more 

variation tend to be found.  Since an allele frequency value of 0.5 represents the maximum 

amount of polymorphism, a Beta(2, 2) distribution is a useful way of reflecting this property 

in the prior distribution of π (see Figure 2.4).   

 

 

Figure 2-4  Probability density function of Beta(2, 2) distribution.   

We can incorporate, if appropriate, prior information about the drift parameters into the prior 

distribution using estimates such as FST.  Our degree of uncertainty in such an estimate is 

quantified in the variance of the prior distribution.  Throughout the analyses this has been set 

at values corresponding to large variation, representing our uncertainty as well as ensuring 

that undue influence is not placed on the posterior distribution by the prior.  A log-normal 
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prior distribution was used for c meaning that the natural logarithm of c is normally 

distributed.  As the proposal distribution of c is on the log-scale, it was decided that a prior 

distribution on log-scale should be sought.  The normal distribution is a standard prior for 

parameters on the real-line and was therefore a natural choice.  

 

2.1.3  Assessment of Model Fit 

 

The use of normal distributions in the ND model allows for an assessment of fit, using 

standard residual analysis, giving a useful way of highlighting possible discrepancies in the 

modelling assumptions.   

Given that       

    ,  

then 

                            

[13] 

 

are taken as the set of standardised residuals (where  and  denote the posterior mean of 

πj and ci, respectively) (Nicholson et al., 2002).  The formula in [13] has been modified 

slightly in relation to the conventional form of standardised residuals by the inclusion of the 

estimated value of αij, .  If αij were known then [13] would be 
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If the normal assumptions are reasonable the standardised residuals ought to resemble a 

sample from a standard normal distribution.  A Q-Q plot is used to assess this feature of the 

residuals by plotting them against theoretical quantiles of the standard normal distribution 

and the variance structure can be analysed by plotting the residuals against the fitted π’s.  The 

robustness of the estimates can also be checked by removing a population from the data set 

and re-fitting the model to see whether the estimates are stable.  Nicholson et al. (2002) 

observed that estimates were highly unstable in certain situations, particularly when 

populations were analysed whose evolutionary history was not represented well by the ND 

model, given current understanding.  For example, a data set including African, Melanesian, 

European and Chinese populations showed high instability under the leave-one-out 

diagnostic.  It is highly unlikely that the ND model represents these populations effectively, 

as regards evolutionary history, since it is widely accepted that modern humans evolved in 

Africa, therefore the simultaneous diverging of populations assumed under the ND model 

does not hold.  It may then be possible to use the residual and population removal diagnostics 

to highlight problems with the ND model.  If these analyses show discrepancies it may be the 

case that the model does not sufficiently represent correlations between populations, possibly 

resultant of more complex historical relationships, in which case an extension to the model 

could help to elucidate these relationships.  

 

2.2 Simulation Methods 

 

Using simulated data is an invaluable way to test the performance of an MCMC algorithm 

and, in our context, highlight potential improvements or inconsistencies in the model when 

used in conjunction with the diagnostics proposed in section 2.1.3.  A probability model is 

used to generate data under different scenarios by specifying particular values of parameters 

designed to answer particular questions.  As in many statistical analyses, there are many 

questions potentially answerable and no attempt is made in our simulation studies to be 

exhaustive; rather particular parameter configurations under differing models of evolution 

have been selected to best illustrate discrepancies with the ND model.  In this section an 

extension to the ND model is tentatively proposed in the form of a data simulation procedure 

which gives flexibility in specifying the labelled history, the rationale being that if data 
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simulated under an alternative evolutionary setting were analysed under the ND model, then 

discrepancies with the model ought to be detectable.        

Let’s consider a set of populations and the evolutionary path they may have taken through 

time.  The assumptions underlying the ND model imply a simultaneous divergence from an 

ancestral population and subsequent independent evolution due to genetic drift (see Figure 

2-1).  This historical picture is plausible but by no means the only possibility.  Figure 2-5 

displays the two possible topologies for four populations given that the tree must be 

bifurcating.  If correlations between populations exist and there is reason to believe that the 

source of the correlation is due to shared ancestry, with subsequent isolated evolution, then 

the topologies in Figure 2-5 can be used to represent such relationships. 

To model either of the topologies in Figure 2-5 using the probability structure under the ND 

model another layer must be added to the hierarchy, to incorporate the theoretical proto-

populations found en route from the MRCAP to the contemporary populations.     

  

 

Figure 2-5  Two bifurcating tree topologies for four populations.  

Two data simulation procedures are now proposed.  The first method simulates under the ND 

model whereas the second uses the probabilistic assumptions of the ND model while 

allowing for different topologies and thus labelled histories to be specified.  Note that all the 

simulations were performed in R. 

ND Model Simulation Procedure 

Let P = number of populations  L = number of SNPs.  Note that ci and nij are fixed in advance. 
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1. Draw πj independently from a Be(2, 2) where j = 1, . . . , L. 

2.  

3.  

 

ND Model + Topology Simulation Procedure 

First we stipulate a method for labelling any given bifurcating tree with P contemporary 

populations.  Contemporary populations are labelled from 1, . . . , P, proto-populations are 

labelled from P+1, . . . , 2P–2 and the MRCAP is labelled 2P–1.  Figure 2- illustrates 

examples of the labelling method.  Then we introduce a vector a of length 2P–1, given that 

the tree is bifurcating, whose kth element is the population ancestral to population k where k 

= 1, . . . , 2P–1.   

 

 

 

 

 

 

 

Figure 2-6  Two labelled histories for four populations under an alternative evolutionary topology with corresponding a 

vectors which specify the ancestral relationships. 

Figure 2-6 shows two labelled histories for four populations along with the corresponding a 

vectors.  Both labelled histories represent the same model only with different labelling.  

Populations 5 and 6 are theoretical populations and so the labelling is arbitrary; the only 

stipulation is that these populations are labelled P+1, . . . , 2P–2, irrespective of order.  The 

MRCAP is population 2P–1 and so a(2P–1) is defined to be zero.    

( ) . , . . . ,1 ; , . . . ,1  where)1(,Normal a fromtly independen , Draw LjPicc jjijijij ==−ππππβ

( ) . , . . . ,1 ; , . . . ,1  where)(,Binomial a fromtly independen , Draw LjPitnnx ijijijijij ==ββ

1 2 3 4 

5 

6 

7 

a = (5, 5, 6, 7, 6, 7, 0) 

1 2 3 4 

6 

5 

7 

a = (6, 6, 5, 7, 7, 5, 0) 
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In terms of notation, a distinction between allele frequencies in the sampled populations and 

in the MRCAP was made in the ND model, the former being labelled π and the latter α.  

Within the new simulation procedure, a common parameter α is defined and the labelling 

method described above is used to distinguish between sampled populations, intermediate 

populations and the MRCAP.  The re-parameterisation discussed in section 2.1.2.3 is again 

used to transform α onto the real-line, and using the function t(x) to define the relationship α 

= t(β). 

The simulation procedure is as follows: 

1. Draw βij independently from Beta(2, 2) where i = 2P–1 and j = 1, . . . , L.   

2. Draw  independently from Normal ( )( ))(1)(),( ),(),(),( jiajiaijia ttct βββ −                

where i = 1, . . . , 2P–2. 

3.  

There is an issue with the order of simulation in step 2 above as the order depends on the tree 

configuration.  For example, in the left of Figure 2-6, populations 4 and 6 would be simulated 

first followed by populations 3 and 5 and finally populations 1 and 2.  This has been handled 

accordingly when producing simulated data under this model.   

 

2.3 MCMC Estimation – Some Properties 

 

In this section some simulated data will be analysed using the MCMC algorithm discussed in 

previous sections with the intention of highlighting characteristics of the estimation 

procedure affected by choices made prior to the analysis, namely the variance of the proposal 

distribution and its effect on mixing, and data volume on the precision of estimates.  

Properties of the estimates of parameters describing allele frequencies (π, β) are also 

illustrated and discussed.  These examples are merely illustrative, although representative 

examples were chosen.  

       

ijiaij c,),(ββ

( ) . , . . . ,1 ; , . . . ,1  where)(,Binomial a fromtly independen , Draw LjPitnnx ijijijijij ==ββ
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Example 1 

These examples illustrate the effect of the proposal variance on efficiency.  Data were 

simulated under the ND model from P = 4 populations at L = 100 SNPs with sample size nij = 

100 chromosome copies per population.  The c parameters were set to distinct values, where 

c1 = 0.05,  c2 = 0.10,  c3 = 0.15 and  c4  = 0.20.  The algorithm was run for 5000 iterations 

with a burn-in period of 500.  The starting values of π and α were set to their true values 

whereas the c’s were all started from the true mean of all the populations, 0.12, which is 

essentially FST.  This same value was used for the prior mean on ln(c), so that µc = ln(0.12) =      

-2.1 and  specifying a distribution with large variation, in effect a very uninformative 

prior.  A uniform(0,1) prior on π was used throughout these examples.  Note that only the 

estimates of the c parameters have been considered in these examples as they are the 

parameters we focus on.  Trace plots are a useful way of diagnosing any problems regarding 

the mixing of the chain and have been used in this section.   

The draws in Figure 2-7 appear to be quite strongly correlated, especially for c1, the 

consequence of a proposal variance that is too small.  When the proposal variance is too 

small, proposed values tend to be very close to the current value and so are more likely to be 

accepted.  This is undesirable since the chain moves around slowly making small steps each 

time.  Eventually the chain should converge to the target distribution but in a far from 

efficient manner.  The acceptance rates in Table 2 for the proposal variance  = 0.05 are far 

too high at around 90%.  Gelman (2004a) suggest an acceptance rate of around 40% when 

parameters are updated in batches; however this is rule of thumb and should be interpreted 

with caution.  The opposite is true of the draws in Figure 2-8.    The proposal variance is too 

high resulting in very low acceptance rates (≈ 6%,Table 2).  The trace plot is stationary on the 

c-axis for long periods then large jumps are made when a proposal is accepted.  This is again 

undesirable as an unsatisfactory portion of the c-space is covered by the chain casting doubt 

over the representation of the posterior distribution by the simulation draws. 

,82 =cσ

2

3σ
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Figure 2-7  Trace plots of an MCMC run of 5000 iterations without removing burn-in, P=4, L=100, n=100, with a proposal 

variance = 0.05. 

 

Figure 2-8  Trace plot of an MCMC run of 5000 iterations without removing burn-in, P=4, L=100, with a proposal variance 

= 3.  Only the chain for c1 is shown.   

An ideal proposal variance would strike a balance between the two extremes shown so far.  

Figure 2-9 illustrates the properties of a simulation where the proposal variance is set at a 
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suitable value.  The trace plots are stable in that they do not tend to make regular large jumps, 

the draws cover a sufficient portion of the parameter space, and proposed values are accepted 

around 40% of the time (Table 2).  Note that finding such a value is essentially a trial and 

error exercise.  Methods have been developed, generally known as adaptive MCMC (Roberts 

and Rosenthal, 2009), to make the choice of proposal variance (or tuning parameters using 

their terminology) an automatic process.  Table 2 displays the results from the three runs 

discussed.  To summarise these simulations, means after discarding burn-in, acceptance rates 

for single parameters and 90% credible regions were used.  The credible regions were 

calculated using the 5% and 95% quantiles of the draws not including burn-in.  The main 

point to note is that all the credible regions contain the true value which is reassuring.  In fact 

all the point estimates are close to the true value.  Therefore in the two examples where the 

proposal variance was unsuitable, the location of the inferred posterior distribution was not 

skewed.  However the draws may not have been representative of the shape of the 

distribution given the same number of iterations compared to the example using a better 

proposal variance. 

 

Figure 2-9  Trace plots of an MCMC run of 5000 iterations without removing burn-in, P=4, L=100, with a  proposal 

variance = 0.4. 
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Table 2  MCMC results from independent runs varying the proposal variance of the drift parameters.  

Parameter 
Actual 

Value 
 = 0.05 = 0.4 = 3 

  Mean 
Acc. 

Rate 

90% Cred. 

Reg 
Mean 

Acc. 

Rate 

90% Cred. 

Reg 
Mean 

Acc. 

Rate 

90% Cred. 

Reg 

c1 0.05 0.0438 0.8866 
(0.0226, 
0.0708) 

0.0452 0.4038 
(0.0192, 
0.0745) 

0.0426 0.0538 
(0.0215, 
0.0710) 

c2 0.10 0.1093 0.8914 
(0.0747, 

0.1513) 
0.1113 0.3876 

(0.0766, 

0.1565) 
0.1135 0.0588 

(0.0827, 

0.1536) 

c3 0.15 0.1678 0.8936 
(0.1242, 

0.2244) 
0.1733 0.3912 

(0.1285, 

0.2316) 
0.1755 0.0622 

(0.1234, 

0.2304) 

c4 0.20 0.1826 0.8938 
(0.1355, 

0.2378) 
0.1873 0.3974 

(0.1347, 

0.2574) 
0.1900 0.0624 

(0.1334, 

0.2664) 

Note: 5000 simulations – 500 burn-in, P = 4, L = 100, nij= 100. is the variance of the normal proposal distribution for c.   

Example 2  

The second set of examples highlights the effect of data volume on the precision of estimates.  

Data volume can be varied in the number of SNPs used and the number of individuals in each 

population.  The location and variability of posterior distributions are summarised 

numerically by the mean and posterior standard deviation (p.s.d) respectively, excluding 

burn-in and graphically using posterior density plots. 

(a)  To illustrate the effect of the number of SNPs used, data were simulated under the ND 

model from P = 4 populations at L = 5, 15, 25, 50, 100, 200 SNPs with sample size nij = 100 

chromosome copies per population.  The c parameters were again set to unique values where 

c1 = 0.05, c2 = 0.10, c3 = 0.15 and c4 = 0.20.  The algorithm was run for 5000 iterations with 

a burn-in period of 500.  The same configurations of priors and initial values used in the 

previous example were used again. 

Table 3 shows the results of the three runs with L = 5, 15, 25.  The first thing to note is the 

poor performance of the estimation procedure when L = 5 or 15.  When L = 5 the p.s.d’s are 

extremely large resulting in wide credible regions, although in some cases the credible 

regions do not include the true value.  When L = 15 the situation is slightly improved, 

however, estimates are still fairly poor with p.s.d’s that are too large.  There is a marked 

improvement when L = 25 as all credible regions include the true value and the p.s.d’s are 

between 0.02 and 0.08. 

 

2
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Table 3  MCMC results from independent runs varying SNP volume. 

Note: 5000 simulations – 500 burn-in, P = 4, L = number of  SNPs = 5, 15, 25,  nij= 100.   

 

Figure 2-10  Posterior density plots estimated by an MCMC run of 5000 iterations and a burn-in of 500 where P=4, L=5 and 

nij = 100.  Dot indicates the true value. 

Parameter 
Actual 

Value 
L = 5  L = 15 L = 25 

  Mean p.s.d 
90% 

Cred.Reg 
Mean p.s.d 

90% 

Cred.Reg 
Mean p.s.d 

90% 

Cred.Reg 

c1 0.05 0.0966 0.2118 
(1.5×10-7, 

0.0401) 0.0331 0.0432 
(2.0×10-5, 

0.0128) 
0.0170 0.0257 

(1.4×10-5, 

0.0775) 

c2 0.10 0.2804 0.5994 
(2.1×10-5, 
1.1682) 

0.2636 0.1365 
(0.1018, 
0.5293) 

0.1082 0.0520 
(0.0414, 
0.1980) 

c3 0.15 0.2483 0.6939 
(0.0007, 

0.8004) 
0.0773 0.0554 

(0.0120, 

0.1809) 
0.1363 0.0544 

(0.0678, 

0.2318) 

c4 0.20 0.2687 0.3889 
(3.2×10-5, 
0.0904) 

0.4271 0.2186 
(0.1708, 
0.8345) 

0.2069 0.0815 
(0.1090, 
0.3559) 
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Figure 2-11  Posterior density plots estimated by an MCMC run of 5000 iterations and a burn-in of 500 where P=4, L=15 

and nij = 100.  Dot indicates the true value. 

The density plots in Figure 2-10 (when L = 5) are highly skewed with extremely large 

variation.  In fact the ranges of c2 and c3 reach values greater than 10, despite their true values 

being 0.10 and 0.15 respectively.  Again it is observed that the posterior means are quite 

distant from their true value for all of the c’s.  In Figure 2-11(when L = 15) the range of 

values of the c’s are less extreme than when L = 5, but there is still a tendency for the chain 

to reach values distant from the true value and this is reflected in the skewness of the density 

plots and the large p.s.d’s.  Overall there is a definite improvement when L is increased from 

5 to 25.   

The estimated posterior distributions in Figure 2-12 (when L = 25) show much less skewness 

and extreme values are not found.  The means of the distributions are also close to their true 

values highlighting the improvement made when increasing the number of SNPs to 25.  In 

contrast with Table 3, the p.s.d’s in Table 4 (L = 50, 100, 200) are smaller.  As we would 

hope, the credible regions do contain the true values in all cases and most estimates are close 

to the true value.  Also worth noting is that there is still an increase in precision as SNP 

volume is increased, albeit by smaller increments than with the smaller data sets summarised 

in Table 3. 
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Figure 2-12  Posterior density plots estimated by an MCMC run of 5000 iterations and a burn-in of 500 where P=4, L=25 

and nij = 100.  Dot indicates the true value.  

 

 

Table 4  MCMC results from independent runs varying SNP volume. 

Parameter 
Actual 

Value 
L = 50  L = 100 L = 200 

  Mean p.s.d 
90% 

Cred.Reg 
Mean p.s.d 

90% 

Cred.Reg 
Mean p.s.d 

90% 

Cred.Reg 

c1 0.05 0.0368 0.0180 
(0.0129, 

0.0716) 
0.0602 0.0166 

(0.0360, 

0.0906) 
0.0576 0.0119 

(0.0394, 

0.0781) 

c2 0.10 0.0874 0.0263 
(0.0507, 
0.1377) 

0.0755 0.0173 
(0.0516, 
0.1066) 

0.1072 0.0175 
(0.0810, 
0.1380) 

c3 0.15 0.1599 0.0425 
(0.1016, 

0.2377) 
0.1480 0.0284 

(0.1052, 

0.1987) 
0.1507 0.0216 

(0.1183, 

0.1870) 

c4 0.20 0.2207 0.0625 
(0.1399, 
0.3396) 

0.2178 0.0417 
(0.1570, 
0.2912) 

0.2323 0.0330 
(0.1841, 
0.2909) 

Note: 5000 simulations – 500 burn-in, P = 4, L = number of  SNPs = 50, 100, 200,  nij= 100.   
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Figure 2-13  Posterior density plots estimated by an MCMC run of 5000 iterations and a burn-in of 500 where P=4, L=100 

and nij = 100.  Dot represents the true value.  

Only a single example of the characteristics of posterior distributions estimated using a 

sufficient number of SNPs is shown (Figure 2-13, L = 100).  All the distributions resemble 

the normal curve but exhibit less variation as the number of SNPs increase.  Overall, when 

SNP volume is very small, estimated posterior distributions are skewed with high variability 

and point estimates of location are unreliable.  On the other hand, if the number of SNPs 

exceeds approximately 50, then estimates are likely to be reliable and posterior distributions 

without extreme variation should be inferred.   

(b)  In this example the effect of sample size on precision is explored by altering nij.  Note 

that since individuals have pairs of chromosomes, nij must be an even number.  SNP data 

were simulated under the ND model from P = 4 populations at L = 100 SNPs, with sample 

size nij = 10, 26, 50 chromosome copies.  All other parameters were as before.   

In Table 5 the first point to note is that when nij = 10 the point estimates are in some cases 

very distant from the true value although having reasonably small p.s.d’s.  This is 

unsurprising since, in a simulation setting, when nij is small, this corresponds to drawing from 

a binomial distribution with large variability such that the proportion xij / nij is potentially less 

representative of the population proportion αij (for fixed nij).  The observation that the 

standard errors are fairly small is due to the adequate number of SNPs included in the 
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simulation.  There is a marked improvement when nij is increased to 26 in both the location 

and spread of the posterior distribution, and again when nij = 50, as all the credible regions are 

centred near the true value.  There is a slight discrepancy in that the standard error for c1 is 

smaller when nij = 10 than when nij = 26 and 50.  This is due to the tendency, when the true c 

is small and the sample size is not sufficient, of the chain to get stuck at very small values 

without moving very often, resulting in a reduced standard error while the point estimate is 

deflated from its true value.  This property is reflected in the skewed distribution for c1 in 

Figure 2-14, and is an example of poor mixing. 

Table 5  MCMC results from independent runs varying sample size. 

Parameter 
Actual 

Value 
nij = 10 nij = 26 nij = 50 

  Mean p.s.d 
90%   

Cred. Reg 
Mean p.s.d 

90% 

Cred. Reg 
Mean p.s.d 

90%      

Cred. Reg 

c1 0.05 0.0154 0.0208 
(0.0004, 

0.0562) 
0.0631 0.0259 

(0.0286, 

0.1036) 
0.0704 0.0217 

(0.0402, 

0.1115) 

c2 0.10 0.2891 0.0834 
(0.1721, 
0.4460) 

0.0926 0.0286 
(0.0514, 
0.1457) 

0.1037 0.0256 
(0.0681, 
0.1495) 

c3 0.15 0.2063 0.0618 
(0.1166, 

0.3133) 
0.1548 0.0372 

(0.1006, 

0.2238) 
0.1242 0.0264 

(0.0873, 

0.1708) 

c4 0.20 0.0781 0.0554 
(0.0962, 
0.2733) 

0.2044 0.0442 
(0.1424, 
0.2876) 

0.1902 0.0395 
(0.1354, 
0.2603) 

Note: 5000 simulations – 500 burn-in, P = 4, nij = chromosome copies per population = 10, 26, 50, L = 100.   

Again one can see in the plots in Figure 2-14 that the posterior distributions do not have 

excessive variation but the location of the distributions is not satisfactory.  However, as 

pointed out earlier, there is a definite improvement when the sample size is increased to 26 

and then 50 in both the location and the variability of the estimated posterior distributions, as 

reflected in Figures 2-15 and 2-16. 
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Figure 2-14  Posterior density plots estimated by an MCMC run of 5000 iterations and a burn-in of 500 where P=4, L=100 

and nij = 10.  Dot represents the true value. 

   

 

Figure 2-15  Posterior density plots estimated by an MCMC run of 5000 iterations and a burn-in of 500 where P=4, L=100 

and nij = 26.  Dot represents the true value. 
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Figure 2-16  Posterior density plots estimated by an MCMC run of 5000 iterations and a burn-in of 500 where P=4, L=100 

and nij = 50.  Dot represents the true value. 

 

Table 6  MCMC results from independent runs varying sample size. 

Parameter 
Actual 

Value 
nij = 100 nij = 150 nij =200 

  Mean p.s.d 
90%   

Cred. Reg 
Mean p.s.d 

90% 

Cred. Reg 
Mean p.s.d 

90%      

Cred. Reg 

c1 0.05 0.0537 0.0158 
(0.0303, 

0.0816) 
0.0415 0.0131 

(0.0215, 

0.0646) 
0.0447 0.0128 

(0.0258, 

0.0680) 

c2 0.10 0.1108 0.0243 
(0.0754, 

0.1548) 
0.0736 0.0166 

(0.0500, 

0.1040) 
0.0995 0.0198 

(0.0700, 

0.1366) 

c3 0.15 0.1688 0.0327 
(0.1203,  

0.2280) 
0.1646 0.0321 

(0.1172, 

0.2238) 
0.1491 0.0273 

(0.1079, 

0.1973) 

c4 0.20 0.2400 0.0451 
(0.1737,  
0.3211) 

0.2319 0.0431 
(0.1703, 
0.3088) 

0.2399 0.0450 
(0.1785, 
0.3201) 

Note: 5000 simulations – 500 burn-in, P = 4, nij = chromosome copies per population = 100, 150, 200, L = 100.   

Another set of analyses are summarised in Table 6 (n = 100, 150, 200) to highlight the 

plateau reached in precision when the sample is increased to large values.  Notice that there is 

not a clear decreasing trend in p.s.d’s for the three runs in Table 6.  Of course, if many 

simulated data sets were analysed and aggregated one would expect to see an increase in 

precision as the sample size increases but the effect is not pronounced.  The plateau in the 
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improvement of precision is simply because most of the information about c is retrieved from 

the allele frequencies across SNPs.  Therefore, once the β’s are sufficiently estimated by the 

sample frequencies, very little extra information is extracted by increasing the sample size 

further.   

Example 3 

In this example data simulated under the ND model from P = 4 populations at L = 100 SNPs 

with sample size nij = 100 chromosome copies per population were analysed and a single 

SNP was chosen to illustrate properties of the MCMC algorithm when estimating π and β.  

The same starting configurations were used as in the previous examples. 

Table 7  MCMC results for π and β from a single SNP j 

Parameter Actual Value Mean p.s.d 90% Cred. Reg. Acc. Rate 

πj 0.4581 0.4106 0.0791 (0.2792, 0.5419) 0.3744 

β1j 0.4241 0.3844 0.0474 (0.3068, 0.4653) 0.4116 

β2j 0.4661 0.4654 0.0473 (0.3868, 0.5439) 0.4608 

β3j 0.4104 0.4320 0.0481 (0.3442, 0.5141) 0.4804 

β4j 0.2365 0.2417 0.0408 (0.1780, 0.3121) 0.4576 

Note: 5000 simulations – 500 burn-in, P = 4, L = 100, nij = 100. 

From Table 7 notice that βij (i = 1, 2, 3, 4) is estimated with greater precision than πj i.e. the 

estimates have a smaller standard error.  This is since βij is estimated well by xij / nij, whereas 

information about πj comes from the βij’s, of which there are only four in this case, and these 

are estimated themselves.  This property is also mirrored in the density plots in Figure 2-17 as 

the distribution for πj has slightly more variability than those of the βij’s.  Also notice that the 

estimation procedure does rather well when estimating both the πj and the βij’s since all the 

distributions are centred on the true values. 
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Figure 2-17  Posterior density plots for πj and βij (i = 1, . . 4) for a single SNP j  estimated by an MCMC run of 5000 

iterations and a burn-in of 500 where P=4, L=100 and nij = 100.  Dot represents the true value. 

 

2.4   ND Model Extension 

 

Likely deviations from the modelling assumptions of the ND model in real data are due to 

gene-flow or shared ancestry among populations manifest in correlations between population 

allele frequencies (conditional on π) (Nicholson et al., 2002).  If there is reason to believe that 

correlations are due to shared ancestry, with subsequent isolated evolution, then the 

topologies in Figure 2- represent some possible historical relationships between 

contemporary populations.  The following extension to the ND model assumes the same 

probabilistic distributions, for the unobserved population allele frequencies and the observed 

SNP allele counts, as the ND model, while the hierarchical structure can be varied to capture 

ancestral relationships between populations.  

Consider an equivalent scenario as proposed in section 2.1 where we have a sample of SNP 

data collected from P populations at L SNPs.  Then let nij be the number of chromosomes 

typed in the ith population at the jth SNP (i = 1, . . . , P; j = 1, . . . , L).  The number of copies 

of the chosen allele in population i at SNP j is xij, 0 ≤ xij ≤ nij (i = 1, . . . , P; j = 1, . . . , L).  
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The unobserved frequency of the chosen allele in the ith population at the jth SNP is denoted 

by αij, 0 ≤ αij ≤ 1.  However i = 1, . . . , 2P-1; j = 1, . . . , L since α contains contemporary 

populations, proto-populations and the MRCAP.  It follows that 0 < α2P-1,j < 1 since the 

MRCAP is assumed to be polymorphic at every SNP. 

As in the ND model given nij and αij (i = 1, . . . , P; j = 1, . . . , L), xij is binomially distributed 

(see equation [4]).  Then we introduce a vector a of length 2P–1, given that the topologies 

considered are bifurcating, whose kth element is the population ancestral to population k, 

where k = 1, . . . , 2P–1.  We also introduce two further vectors o1 and o2 both of length 2P–1 

where the kth element of o1 is the first descendant population of population k and the kth 

element of o2 is the second descendant population of population k.  Since the sampled 

populations have no descendants, oi(j) = 0 where i = 1, 2; j = 1 , . . . , P.  Note that o1 and o2 

are not unique since corresponding elements can be exchanged. 

The allele frequency of populations other than the MRCAP at a given SNP are modelled as 

           αij ~ Normal������,�, �������,��1 − �����,��� ,          � = 1, … ,2� − 2;  =  1, … , !,      [14] 

           independently ∀ i, j. 

  

As in the ND model the normal distribution has point masses at the boundaries α = 0, 1.   

To complete the hierarchy we place independent priors on α2P-1,j  and ci : 

         α2P-1,1 . . . , α2P-1,L  are independent and identically distributed with density f ;            [15] 

         c1 , . . . , c2P-2 are independent and identically distributed with density g.                    [16] 

Figure 2-18 gives an example of the hierarchical relationships between four sampled 

populations within the new model for a particular ancestral configuration.  Notice that the c 

parameters are labelled by the population index at the bottom of a branch.   
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Figure 2-18  A diagrammatic representation of the new model for four populations for a given labelled history with 

corresponding a, o1, o2 vectors at a single SNP j. 

 

2.4.1   Implementation 

 

The Metropolis-Hastings algorithm was employed to sample from posterior distributions.  

The general form of the algorithm can be found in section 2.1.2; only properties relevant to 

the new model are discussed here.  The prior distributions used are identical to those used for 

the ND model (see section 2.1.2.4 for details and discussion.) 

As before, when calculating the ratio of densities r, useful simplifications can be made to 

improve the efficiency of the algorithm.  Updates are again made in groups of parameters and 

within these groups the simplifications are made.  First note that the full posterior 

distribution, up to a constant only depending on the data, factored into known conditional 

distribution is: 

a = (5, 5, 6, 7, 6, 7, 0) 

o1 = (0, 0, 0, 0, 1, 3, 4) 

o2 = (0, 0, 0, 0, 2, 5, 6) 

α4j α1j α2j α3j 

α5j 

α6j 

α7j 

  x1j   x2j   x3j   x4j 

c6 

c5 

c1 
c2 

c3 

c4 
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When updating ci (i = 1, . . . , 2P-2), 

 

where  is the proposed value and  is the current value.  The parameters in α can be split 

into three groups: the MRCAP, the remaining proto-populations and contemporary 

populations.   

When updating αk,j, k = 2P–1 (MRCAP), 
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where  is the proposed value and  is the current value.   

When updating αkj (k =1, . . . , P, contemporary populations),  

 

where  is the proposed value and  is the current value. 

Under the ND model and consequently the new model, when an allele is lost within a 

population it cannot then return, as mutations are not permitted.  Another assumption of the 

ND model is that the ancestral population was polymorphic for a given SNP.  Therefore a 

situation could not arise when an ancestral population exhibited no variation at a given SNP.  

However under the new model, ancestral populations other than the MRCAP can drift to 

fixation meaning that all descendant populations must be monomorphic at that particular 
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SNP.  To deal with these complexities, the modelling assumptions are altered and a set of 

conditions are added to the MCMC algorithm when updating ancestral populations other than 

the MRCAP, to reflect these changes. 

We introduce the quantity  (i = 1, . . . , 2P − 2, j = 1, . . . , L) such that   

    
             [17] 

and 

     
                [18] 

Now suppose βij  (i = P+1, . . . , 2P – 2; j = 1, . . . , L) is being updated, with a proposal to 

move to
 

We introduce the following additional conditions to ensure that invalid 

parameter configurations cannot occur: 

1.  

2.  

3.  

4.  

 

2.4.2   Proposal Distributions 

 

In this section the particular proposal distributions used to draw new values in the MCMC 

algorithm are defined.  A detailed discussion of the effect proposal distributions have on the 

MCMC algorithm can be found in section 2.1.2.3 and illustrations can be found in section 2.3 

The proposal distributions  at iteration t for β and ln(c) are:  
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                         [19] 

               
                      [20]  

                                                       [21] 

                                                              [22] 

 

Notice that an additional distribution is used for ancestral populations other than the MRCAP, 

as the new model contains three groups of β parameters.  
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Chapter 3  

Results 

In this section both simulated and real SNP data will be analysed under the ND model of SNP 

allele frequencies and under the newly developed model discussed in section 2.4.  What 

follows may be split into two parts. In the first part, data will be analysed under the ND 

model in both situations where it is an accurate and an inaccurate representation of the 

process responsible for the data.  Informal diagnostics will then be used to highlight whether 

the ND model fits the data well in both situations.  The second part focuses on the new 

model, discussing the difficulties one encounters when fitting the model and the proposed 

solutions to such problems. Finally, simulated and real data are analysed with the aim of 

retrieving information regarding the most appropriate tree topology for a set of populations.   

 

3.1   Simulation under ND Model 

 

As previously mentioned, Nicholson et al. (2002) found that in some situations, the estimates 

of the c’s in the ND model were unstable when a population was removed and the model re-

fitted.  This is clearly an undesirable property and so in this section we investigate whether it 

is inherent in the ND model in the case where the modelling assumptions are fulfilled.  This 

exercise is effectively a preliminary to what follows but necessary to ensure that the 

population removal strategy can be used to highlight departures from the modelling 

assumptions.   

In order to assess whether estimates of c were stable under the ND model, 100 independent 

data sets were analysed under the ND model and then re-analysed, removing an arbitrary 

population from the data set.  It was of interest to see whether estimates of the c’s differed 

significantly when the full data set was considered compared to the reduced data set.  The 
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comparisons were made by calculating the difference between the draws from the two 

analyses at every step in the chain for corresponding c parameters, excluding burn-in, and 

computing 90% credible regions for the differences.  This process was repeated twice, 

removing a different population each time.  A significant difference was declared if a credible 

region did not contain zero.  Since we were keen only to flag potential violation of the model, 

a large nominal Type I error rate was chosen (10%), thus increasing the power.    

On inspection, one would be surprised to see the estimates of the c’s affected by a population 

being removed, given that the modelling assumptions are valid under simulation, since the 

majority of the information in the data regarding ci comes from the variation across SNPs 

within population i.  Therefore removing a single population j (j ≠ i) from the data should not 

significantly affect the estimate of ci. 

 

3.1.1  Analysis  

 

First we simulated 100 independent SNP data sets under the ND model, each data set 

containing P=4 populations, typed at L=100 SNPs with sample sizes nij=100.  Adhering to 

the simulation procedure for the ND model outlined in section 2.2, each of the 100 sets was 

simulated as follows: 

1. Draw πj from a Be(2, 2) where j = 1, . . . , 100. 

( )( )
0.20). 0.15, 0.10, ,05.0(    

; , . . . ,1 ; , . . . ,1  where1,Normal a from , Draw  .2

=

==−

c

LjPicc jjijijij ππππβ
  

                                                                                                 

                  
 

The particular choice of c was made to reflect a situation where all populations show 

differing amounts of genetic drift.  To put the numbers into context, a value of c = 0.05 is 

similar to estimates for European populations, whereas c = 0.20 would correspond to African 

populations (Nicholson et al., 2002).   

For all MCMC analyses discussed in this section the initial values of the c’s, π’s and β’s were 

set to their true values.  An uninformative prior on the π’s was used, namely the Un(0, 1) 

( ) . , . . . ,1 ; , . . . ,1   where)(,Binomial a from , Draw  3. LjPitnnx ijijijijij ==ββ
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distribution, with a log-normal prior on the c’s.  Each chain was run for 10000 iterations with 

a burn-in of 1000. 

The first analysis compares estimates of c when population 4, the most differentiated, was 

removed to corresponding estimates from the full data set.  Therefore 3 sets of 100 intervals 

are calculated and are illustrated in Figure 3-1, 3-2 and 3-3.  Out of the 300 credible regions 

in Figure 3-1, 3-2 and 3-3, only one does not contain zero, found in Figure 3-1 (one interval 

in Figure 3-2 only just contains zero).  Therefore none of the estimates of c appear to be 

significantly affected by the removal of population 4 from the data set, as one would hope.  

This result is rather surprising since the test should, on average, reject the null hypothesis 

10% of the time (given a type I error rate of 0.1), suggesting that the test may not be 

particularly powerful, or is not particularly well calibrated.   

 

 

Figure 3-1  100 90% credible regions for the difference between draws of two separate MCMC analyses; one with full data 

set, one with population four removed from the data set.  Each interval compares the estimates c1 between the two analyses. 
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Figure 3-2  100 90% credible regions for the difference between draws of two separate MCMC analyses; one with full data 

set, one with population four removed from the data set.  Each interval compares the estimates of c2 = 0.10 between the two 

analyses. 

 

Figure 3-3  100 90% credible regions for the difference between draws of two separate MCMC analyses; one with full data 

set, one with population four removed from the data set.  Each interval compares the estimate of c3 = 0.15 between the two 

analyses. 
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In the second analysis population 1, the least differentiated, was removed from the data set 

and then the data re-analysed, making the appropriate comparisons.  All of the credible 

regions in Figure 3-4, 3-5 and 3-6 contain zero and so again there is evidence to suggest that 

estimates of c are stable under the ND model when populations are removed from the data.  

When both analyses are considered in conjunction it can be concluded that estimates are 

robust to population removal under the ND model when the modelling assumptions are 

satisfied.  This is particularly satisfying as it provides an informal way of testing the 

adequacy of the ND model.   

 

 

Figure 3-4  100 90% credible regions for the difference between draws of two separate MCMC analyses; one with full data 

set, one with population one removed from the data set.  Each interval compares the estimate of c2 = 0.20 between the two 

analyses. 
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Figure 3-5  100 90% credible regions for the difference between draws of two separate MCMC analyses; one with full data 

set, one with population one removed from the data set.  Each interval compares the estimate of c3 = 0.15 between the two 

analyses. 

 

Figure 3-6  100 90% credible regions for the difference between draws of two separate MCMC analyses; one with full data 

set, one with population one removed from the data set. Each interval compares the estimate of c4 = 0.20 between the two 

analyses. 
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Another tool available to assess the fit of the model is the set of standardised residuals (see 

equation [13]), used to validate the assumption of normality and to assess the variance 

structure (see expression [8]).  For each SNP there are P residuals and these are plotted 

against the fitted values of π to give the plot in Figure 3-7 (a).  Note that the illustrated 

residuals were calculated using estimates from a single but representative analysis on the full 

data set.  The residuals suggest that both constant variance and zero mean are reasonable 

assumptions regarding the standardised noise term.  The residuals appear to be, at least 

approximately, normally distributed with zero mean and unit variance, as shown in Figure 

3-7 (b).  The residual distribution is slightly light-tailed, although not to an extent where 

normality is implausible.    

 

Figure 3-7  (a) Standardised residuals vs fitted π  (b) Normal Q-Q plot - ordered standardised residuals vs theoretical 

quantiles from a standard normal distribution. 

In summary, when data are simulated under the ND model, estimates are robust to data 

removal and the residual analysis plots suggest that the model fits the data well, as ought to 

be the case when using simulated data.   
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3.2  European Populations 

 

Here a SNP data set is presented and analysed from the Human Genome Diversity Panel 

(HGDP-CEPH), sampled from four European populations: a French, an Italian, a Russian and 

a Scottish population.  The French sample was from a Basque population found in the south-

west of France, the Italian sample from Sardinia in the Mediterranean Sea, the Russian 

sample from a location north-east of Moscow (GR 61N, 39-41E) and the Scottish sample 

from the Orkney Isles.  The four populations were assessed at 194 SNP loci under the ND 

model.  SNPs were sampled at widely spaced intervals along an arbitrary chromosome to 

ensure independence.  Samples sizes from the French, Italian, Russian and Scottish 

populations are 24, 28, 25 and 16 individuals, respectively.    

 

Figure 3-8  Sample allele frequencies at every SNP for all pair-wise population combinations.   

Studies of human genetic diversity have found that Europe is the most genetically 

homogeneous of all the continents (Cavalli-Sforza, 1993), for reasons that are not fully 

understood, but may be related to continuous gene flow between populations.  The plots in 

Figure 3-8 show highly correlated frequencies for all pairs of populations which suggests 

little differentiation has occurred between populations, corresponding to small values of c.  

The French-Basque and Sardinian allele frequencies have the highest sample correlation 
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coefficient and the Sardinian and Russian frequencies are the least correlated, as might be 

expected based on geographical separation. 

An MCMC analysis was performed on the European data set with a run length of 10000 

iterations.  βij was started from its corresponding xij/nij, initial πj’s were drawn from a Beta(2, 

2) distribution and the ci’s were started from FST = 0.0069, calculated using all populations 

(Consortium, 2005).  The same prior distributions were used as in section 3.1.  

 

Figure 3-9  Trace plots of c parameters from an MCMC run with 10000 iterations for the European data set.  

From the trace plots in Figure 3-9 we can see that the chain settles down after around 2000 

iterations and so a burn-in period of 2000 was used.  The acceptance rates, after adjusting the 

proposal standard deviation, also seem to suggest that the chain is mixing sufficiently.  Since 

mixing is difficult to see clearly in Figure 3-9, a chain was plotted with the burn-in period 

removed (Figure 3-10).  This confirms that the chain is moving around the parameter space in 

a satisfactory manner.  
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Figure 3-10  Trace plot of c for the Russian population after removing burn-in. 

 

Table 8  Summaries from MCMC Results for European Data 

Population Parameter Mean 

Posterior 

Standard 

Deviation 

90% Credible 

Region 
Acceptance  Rate 

French-Basque c1 0.0025 0.0039 (8.2×10-5, 0.0097) 0.4401 

Sardinian c2 0.0220 0.0050 (0.0148, 0.0308) 0.4355 

Russian c3 0.0249 0.0053 (0.0169, 0.0342) 0.4295 

Orcadian c4 0.0103 0.0067 (0.0009, 0.0222) 0.4340 

 

Overall the results in Table 8 suggest that very little differentiation has occurred between 

these populations, the French-Basque population having undergone the least genetic drift by 

some margin, and the Russian and Sardinian populations showing the most genetic drift, 

almost equal in fact.  That the French-Basque population is the least differentiated may be 

due to other populations being sampled from either remote parts of Europe (Russian) or 

islands (Orkney, Sardinia) but this is far from clear.  Also, for these data, it appears that FST 

gives a fairly good idea of the magnitude of single-population differentiation.          
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Figure 3-11  Posterior density plots of the c parameters for the European data. 

The posterior density plots in Figure 3-11 for the French-Basque and Orcadian drift 

parameters show positive skew in both cases, with the French-Basque being more skewed.  

The posterior density plots for the Sardinian and Russian populations both resemble the bell-

curve of the normal distribution.  In all cases the distributions do not have large amounts of 

variation suggesting that the drift parameters are estimated quite well.  

The residual plots in Figure 3-12 do not indicate any problems with the assumptions 

regarding normality and variance structure of the population allele frequencies; in fact it 

appears that the ND model fits the data rather well.  Table 9 shows credible regions, 

calculated as before, where every population has been removed and the estimates compared 

to those from the full data set.  Of the 12 intervals, one does not contain zero, when the 

Sardinian population is removed.  Any suggestion regarding the cause of this discrepancy 

would be speculative, but it at least flags a potential underlying lack of fit.   
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Figure 3-12  (a) Standardised residuals vs fitted π’s  (b) Normal Q-Q plot - ordered standardised residuals vs theoretical 

quantiles from a standard normal distribution. 

 

Table 9  90% Credible regions for differences between estimates from full and reduced data sets.  

Population Parameter Removed Population 

  French-Basque Sardinian Russian Orcadian 

French-Basque c1 - (-0.0893, -0.0020) (-0.1221, 0.0065) (-0.0949, 0.0070) 

Sardinian 

 

c2 

 

(-0.1057, 0.0039) - (-0.1069, 0.0130) (-0.106, 0.0129) 

Russian c3 (-0.0991, 0.0138) (-0.0857, 0.0156) - (-0.0930,  0.0034) 

Orcadian c4 (-0.0999, 0.0168) (-0.0893, 0.0129) (-0.1138, 0.0074) - 

Note: differences calculated after removing burn-in. 

The estimates of c for the European populations in this analysis are consistent with the 

consensus that Europe is the most genetically homogeneous continent, since all estimates 

suggest very little differentiation.  The distributional assumption of normal population allele 

frequencies appears to hold and the variance structure defined in expression [5] seems to be 

realistic for these data.  It is probably the case that gene flow has occurred between the 
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sampled populations and so the assumption of independent evolution of populations is not 

likely to hold here.  However, in general, regardless of whether the assumptions underlying it 

are entirely valid, a statistical model that fits some data well remains a useful tool.  In our 

context a model for the joint distribution of allele frequencies across populations can be 

useful in association studies for common human diseases (Nicholson et al., 2002).  Therefore 

the most notable observation from this analysis is that the ND model appears to fit the data 

remarkably well.    

 

3.3  Simulation under New Tree Model 

 

In section 3.1 estimates of c were shown to be stable when using simulated data under the ND 

model and the residual diagnostics reflected that the model fitted the data well, as would be 

expected.  It is of interest to see whether the same diagnostics highlight lack of fit and 

instability when data resulting from more complex patterns of ancestry are analysed under the 

ND model.  One would expect to see lack of fit manifest in the residuals when using the 

incorrect model to analyse the data.  However the property of instability also offers insight 

since Nicholson et al. (2002) reported extremely unstable estimates of c when highly 

correlated populations were included in the sample.   

To answer these questions 100 independent data sets were simulated using the new model for 

a given ancestral configuration and analysed using the ND model.  In assessing stability the 

same approach was taken as before where an arbitrary population was removed and estimates 

compared by computing credible regions of differences at every step of the chain after 

removing burn-in.  The process was again repeated twice, removing a different population 

each time.   

 

3.3.1   Analysis 

 

First we simulated 100 independent SNP data sets under the new model using the ancestor 

vector a to define a common evolutionary history, with each data set containing P=4 
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populations, typed at L=100 SNPs, with sample sizes nij=100.  Adhering to the simulation 

procedure for the new model outlined in section 2.2, each of the 100 data sets were simulated 

as follows: 

1. Draw βij from Beta(2, 2) where i = 2P–1 and j = 1, . . . , L.   

2.  Draw  from Normal ( )( ))(1)(),( ),(),(),( jiajiaijia ttct βββ −  where                      

i = 1, . . . , 2P–2, c = (0.40, 0.32, 0.02, 0.02, 0.18, 0.20), a = (7, 6, 5, 5, 6, 7, 0).  

3. Draw  

The c’s were configured in this way in an attempt to represent a real data set including 

Europeans and some other populations continentally separated from Europe. 
 

 

 

 

 

 

 

 

 

 

Figure 3-13  A diagrammatic representation of the model used to simulate the data for a single SNP j.  

For all MCMC analyses discussed in this section the prior configurations were exactly the 

same as those used in section 3.1.1.  The 100 simulated data sets were analysed under the ND 

model for four populations for the full data sets and three populations for the reduced data 

sets and the estimates compared using the method previously described.  In the first analysis 

population 1 was removed, the data re-analysed and corresponding c estimates were 

compared.  Referring to Figure 3-13 it is difficult to make any prior judgement as to the 
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results of this analysis other than it seems likely that estimates will be unstable given that the 

data are analysed under the incorrect model.   

 

Figure 3-14  100 90% credible regions for the difference between draws of two separate MCMC analyses under the ND 

model; one with the full data set, one with population 1 removed from the data set.  Comparison 1 refers to the difference 

between the estimate of c2 for the full data and c1 for the reduced data set. 

All the intervals in Figure 3-14 (where population 1 is removed) contain zero, although most 

are not centred on zero but on negative values, suggesting that it is more likely that the 

estimate is larger when using the reduced data set compared to the full data set, given the sign 

of the difference.  But since all of the intervals contain zero it must be concluded that the 

estimates appear to be stable in this case.  Looking at Figure 3-15, many more of the intervals 

do not contain zero suggesting that these estimates are unstable.  In fact, of the 100 intervals, 

12 do not contain zero.  Another observation is that many of the intervals only just contain 

zero and all are centred on positive values.  Therefore estimates tend to be larger when the 

full data set is considered (significantly so for 12% of the data sets).  Figure 3-16 is much the 

same as Figure 3-15, only out of the 100 intervals, 19 do not contain zero this time.   
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Figure 3-15  100 90% credible regions for the difference between draws of two separate MCMC analyses under the ND 

model; one with full data set, one with population 1 removed from the data set.  Comparison 2 refers to the difference 

between the estimate of c3 for the full data and c2 for the reduced data set. 

 

Figure 3-16  100 90% credible regions for the difference between draws of two separate MCMC analyses under the ND 

model; one with full data set, one with population 1 removed from the data set.  Comparison 3 refers to the difference 

between the estimate of c4 for the full data and c3 for the reduced data set. 
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From these analyses it is observed that estimates of c are not robust to population removal (in 

this case the population connected to the MRCAP) when using data simulated under a given 

bifurcating tree topology and then subsequently analysed under the ND model. 

In the second analysis population 4 was removed from the data set, the data re-analysed and 

corresponding c estimates were compared.  Once again, one would expect to see instability in 

the estimates since the incorrect model is used to analyse these data. 

 

 

Figure 3-17  100 90% credible regions for the difference between draws of two separate MCMC analyses under the ND 

model; one with full data set, one with population one removed from the data set.  Comparison 1 refers to the difference 

between the estimate of c1 for the full data and c1 for the reduced data set. 

When population 4 is removed from the data set c1 is extremely unstable, as illustrated in 

Figure 3-17.  Of the 100 intervals, 67 did not contain zero.  The intervals tend to be wholly 

positive, revealing the tendency of the estimate of c1 from the full data set to be larger than c1 

from the reduced data set.  Looking at Figure 3-18, the estimates of c2 are again unstable 

although less so than for c1.  Of the 100 intervals, 35 do not contain zero.  Figure 3-19 

exhibits the most intervals that do not contain zero, at 95 out of 100.  These simulations 

highlight the definite instability in the estimates of c when populations are removed.   
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Figure 3-18  100 90% credible regions for the difference between draws of two separate MCMC analyses under the ND 

model; one with full data set, one with population one removed from the data set. Comparison 2 refers to the difference 

between the estimate of c2 for the full data and c2 for the reduced data set. 

 

Figure 3-19  100 90% credible regions for the difference between draws of two separate MCMC analyses under the ND 

model; one with full data set, one with population one removed from the data set.  Comparison 3 refers to the difference 

between the estimate of c3 for the full data and c3 for the reduced data set. 
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Figure 3-20  (a) Standardised residuals vs fitted π  (b) Normal Q-Q Plot - ordered standardised residuals vs theoretical 

quantiles from a standard normal distribution.  Note that the residuals were calculated using estimates from a single but 

representative analysis on the full data set under the ND model using data simulated under the new model. 

Looking at the residual diagnostics in Figure 3-20, there is evidence that the model does not 

fit the data well.  The assumption of constant variance appears to be violated as the variation 

in the residuals tends to be greater for values of π near the extremes.  The assumption of 

normality also appears to be strongly violated for these data. 

This example demonstrates that if a bifurcating tree topology is the correct representation of 

the evolutionary history of a set of populations, then the inadequacy of the ND model can be 

highlighted using the residual and population-removal diagnostics.  This result is encouraging 

since the extension to the ND model was used to simulate these data, while Nicholson et al. 

(2002) found similar results when using real data.  In the next section the fit of the ND model 

will be explored for data whose topology likely deviates from the ND model.     
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3.4 Global Populations 1 

 

Here a SNP data set is presented and analysed from the HGDP-CEPH panel for four 

populations sampled from Africa, Cambodia and Mexico.  The data set includes a North 

African Mozabite population, a Biaka Pygmy population from sub-Saharan Africa, a 

Cambodian population and a Native American Pima population from Mexico.  The four 

populations were assessed at the same 194 SNP loci as in the previous example (section 3.2).  

Samples sizes of the Biaka, Mozabite, Cambodian and Pima populations are 32, 30, 11 and 

25 individuals, respectively.    

For these data, the assumption of independent evolution is more plausible than for the 

European data set due to the geographical distances between populations; however the 

simultaneous divergence of all sampled populations assumed under the ND model is unlikely 

to hold here.  It was shown in section 3.3 that both the residual and population removal 

diagnostics can be used to highlight departures from the simple topology under the ND 

model.  If it is the case that the populations under examination do in fact have a more 

complex evolutionary history, as seems likely, then one would expect lack of fit when the 

data are analysed under the ND model.  

Of the relationships illustrated in Figure 3-21, that the Mozabite and Biaka populations are 

fairly strongly correlated (Pearson correlation coefficient, P.C.C = 0.7469) is the least 

surprising since both are African populations, albeit rather geographically separated.  The 

highest sample correlation is between the Pima and Cambodian populations (P.C.C = 0.7688, 

Figure 3-21).  Given the geographic distance between these two populations a strong 

relationship does not seem to make intuitive sense.  However it is generally accepted that the 

Americas were populated by East Asians during the last ice age (Atkinson, Gray and 

Drummond, 2008), when it was possible to travel from Siberia to Alaska on foot, due to the 

ice coverage (Olson, 2002).  With this in mind, the association between the Pima and 

Cambodian populations is much less puzzling.  There is also a fairly strong relationship 

between the Mozabite and Cambodian populations (P.C.C = 0.7463, Figure 3-21) although 

no obvious interpretation presents itself.   
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Figure 3-21  Sample allele frequencies at every SNP for all pair-wise population combinations with corresponding sample 

Pearson correlation coefficients. 

An MCMC analysis was performed with a run length of 10000 iterations.  βij was started 

from its corresponding xij/nij, initial πj’s were randomly drawn from a Beta(2, 2) distribution 

and the ci’s were started from FST = 0.0594, calculated using all populations.  The same prior 

distributions were used as in previous sections.   

 

Figure 3-22  Trace plots of c parameters from an MCMC run with 10000 iterations for the World 1 data set. 
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Looking at Figure 3-22, the chains appear to settle to the target distribution after around 1000 

iterations, possibly quicker than this.  The proceeding results are presented after removing a 

burn-in of 1000.  The chains also show satisfactory mixing resulting in acceptance rates of 

approximately 40%. 

Table 10  Summaries of MCMC Results for World 1 Data Set 

Population Parameter Mean 

Posterior 

Standard 

Deviation 

90% Credible 

Region 
Acceptance  Rate 

Biaka c1 0.2151 0.0310 (0.1662, 0.2690) 0.4367 

Mozabite c2 0.0479 0.0149 (0.0271, 0.0747) 0.4373 

Cambodian c3 0.2420 0.0433 (0.1762, 0.3164) 0.4347 

Pima c4 0.6792 0.1181 (0.5109, 0.8886) 0.4342 

 

 

Figure 3-23  Posterior density plots of the c parameters for Global data set 1. 

The population with the largest value of c is the Pima population (  = 0.6792, Table 10).  

This is possibly due to the small numbers of immigrants thought to have populated the 

Americas from East Asia (Atkinson et al., 2008); recall that c is inversely proportional to 

population size.  An alternative explanation is that the large c represents an old population, 

4ĉ
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since genetic drift is proportional to time.  However, Native Americans are not thought to be 

particularly old populations, and so the population size interpretation seems more feasible.  

The Mozabite population has the smallest value of c (  = 0.0479, Table 10), a likely 

reflection of common origin with Europeans.  In fact, if one considers Europeans and North 

Africans they tend to resemble one another in many phenotypes.  The estimates of c for the 

remaining two populations, the Biaka pygmies and the Cambodians, are more challenging to 

interpret.  The Biaka pygmies are thought to be a very old population which would suggest a 

higher value of c, although population size may have contributed to its relatively moderate 

value (  = 0.2151, Table 10).  The value of c for the Cambodians (  = 0.2420, Table 10) is 

higher than one might expect for an East Asian population (Nicholson et al., 2002).  It is 

notable that this sample is the smallest studied and may not be representative.  It is also worth 

highlighting the discrepancy between FST and the estimates of c for these data.  FST = 0.0594 

suggests that approximately 6% of the overall variation in allele frequencies is between-

population variation, whereas the estimates of c for single populations suggest relatively large 

differentiation for all populations. 

 

Figure 3-24  (a) Standardised residuals vs fitted π’s  (b) Normal Q-Q plot - ordered standardised residuals vs theoretical 

quantiles from a standard normal distribution. 

The residual plots in Figure 3-24 highlight that the ND model does not fit these data at all 

well.  The noise does not appear to have constant variance since the range of the residuals is 

2ĉ
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not constant across all the fitted values of π.  Also the distribution of the residuals does not 

appear to resemble a standard normal since there is skewness suggested in Figure 3-24 (b). 

Table 11  90% Credible Regions for Differences between Estimates from Full and Reduced Data Sets.  

Population Parameter Removed Population 

  Biaka Mozabite Cambodian Pima 

Biaka c1 - (-0.1797, 0.0452) (-0.0360, 0.1202) (-0.0712, 0.0896) 

Mozabite 

 

c2 

 

(-0.1011, 0.0059) - (-0.0452, 0.0313) (-0.0226, 0.0387) 

Cambodian c3 (-0.0011, 0.1871) (-0.0468, 0.1490) - (-0.1385, 0.0674) 

Pima c4 (-0.0712, 0.3960) (-0.0925, 0.4033) (-0.4672, 0.1243) - 

Note: differences calculated after removing burn-in. 

The intervals in Table 11 are somewhat surprising since they all contain zero, suggesting that 

the estimates are robust to population removal.  The estimates of the amount of genetic drift 

for the Pima population appear to change the most when a population is removed since the 

intervals are centred on values quite distant from zero, but again stability must be concluded.  

It may be the case that increasing the number of SNPs yields significant differences, but this 

avenue has not been pursued here.  This example highlights that the leave-one-out diagnostic 

is not infallible, since it does not highlight any discrepancies for these data when it is likely 

that the ND model is not an accurate representation.  Nevertheless, there is evidence from the 

residual analysis that the ND model does not represent these data adequately, and the tree 

topology under the ND model may be the source of the disagreement.     

 

3.5   Global Populations 2 

 

Here another data set taken from the HGDP-CEPH panel is presented and analysed.  These 

data include two populations from sub-Saharan Africa: Mbuti pygmies and Mandenka; and 

two from Europe: a French and a Tuscan population.  The four populations were assessed at 

194 SNP loci under the ND model.  Samples sizes of the Mandenka, Mbuti, French and 

Tuscan populations are 24, 15, 29 and 8 individuals, respectively.    
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As with the populations analysed in section 3.4, the populations comprising this data set are 

not likely to be represented well by the ND model, as regards their evolutionary past, and 

therefore it should be the case that a lack of fit be manifest in the diagnostics.  The analysis in 

section 3.3.1 showed that the diagnostics are able to detect departures from the ND model 

given that the data reflect an alternative model, and so similar results in the proceeding 

analysis would provide evidence that these populations are described by the model in section 

3.3.1, or a model of similar structure.  

As would be expected, the European populations are highly correlated (P.C.C = 0.9305, 

Figure 3-25), which reflects the genetic homogeneity found in European populations.  The 

African populations are also exhibit a strong correlation (P.C.C = 0.8381, Figure 3-25) 

probably due to being in fairly close geographic proximity.  The Mandenka appear to be more 

closely related to the two European populations than the Mbuties are to the Europeans, 

although there is not an obvious interpretation for this relationship. 

 

Figure 3-25  Sample allele frequencies at every SNP for all pair-wise population combinations with corresponding sample 

Pearson correlation coefficients. 
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Figure 3-26  Trace plots of c parameters from an MCMC run with 10000 iterations for the World 2 data set. 

An MCMC analysis was performed on these data, using identical initial configurations as 

were used in section 3.2 and 3.4, with FST = 0.0425.  The chains from this analysis, presented 

in Figure 3-26, do not highlight any problems with mixing and the acceptance rates are all 

approximately 40%.  The chains for the European populations appear to move around the 

parameter space in smaller steps, which appears to be a feature of estimation procedure when 

the c’s are small, but this does not present any immediate problems. 

Both of the African populations have large estimates of c (Mandenka,  = 0.3160; Mbuti,  

= 0.4962; Table 12) which may be reflecting the age of these populations relative to the 

Europeans.  The Mbuti having a considerably larger value may be a consequence of a smaller 

population size or that they are in fact older.  The Europeans again have small values of c 

(French,  = 0.0250; Tuscan, = 0.0300; Table 12) reflecting a relatively small amount of 

genetic drift.  Again, when compared to the estimates of c, FST appears to under-estimate the 

proportion of between-population variation relative to the total variation, since FST is 

essentially the mean of the c’s.   
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Table 12  Summaries of MCMC results for global data set 2. 

Population Parameter Mean 

Posterior 

Standard 

Deviation 

90% Credible 

Region 
Acceptance  Rate 

Mandenka c1 0.3160 0.0531 (0.2338, 0.4071) 0.4408 

Mbuti c2 0.4962 0.0833 (0.3764, 0.6434) 0.4345 

French c3 0.0250 0.0108 (0.0092, 0.0427) 0.4401 

Tuscan c4 0.0300 0.0150 (0.0101, 0.0580) 0.4340 

 

 

Figure 3-27  Posterior density plots of the c parameters for the Global data set 2. 

The plot in Figure 3-28 (a) suggests that the noise does not have constant variance, since the 

range of the residuals is not constant across the fitted values of π.  The assumption of 

normality also appears to be violated in this case.  The leave-one-out diagnostic also suggests 

a lack of fit since half of the intervals in Table 13 do not contain zero.  These instances occur 

when either of the European populations is removed from the data set.  This is particularly 

interesting since instability was found in section 3.3.1 when populations with small values of 

c, located below the most recent population split, were removed.  As previously discussed, 

either of the topologies in Figure 2- is likely to be fairly accurate for these data.  The fact that 
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both diagnostics suggest that the ND model does not fit the data well in this instance is 

evidence that the source of the discrepancy is the incorrect topology of the ND model. 

 

Figure 3-28  (a) Standardised residuals vs fitted π’s  (b) Normal Q-Q plot - ordered standardised residuals vs theoretical 

quantiles from a standard normal distribution. 

 

Table 13  90 % Credible regions for differences between estimates from full and reduced data sets. 

Population Parameter Removed Population 

  Mandenka Mbuti French Tuscan 

Mandenka c1 - (-0.2252, 0.0301) (0.1772, 0.3505) (0.1746, 0.3448) 

Mbuti 

 

c2 

 

(-0.3527, 0.0469) - (0.2305, 0.5043) (0.2194, 0.4970) 

French c3 (-0.0024, 0.0352) (-0.0021, 0.0335) - (-0.3101, -0.1701) 

Tuscan c4 (-0.0010, 0.0469) (-0.0137, 0.0393) (-0.4625, -0.2458) - 

Note: differences calculated after removing burn-in. 
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3.6   Identifiability 

 

When fitting the new model there arises an issue with identifiability, particularly with the c’s, 

meaning that there is insufficient information in the data to estimate parameters 

independently.  To illustrate the problem, some data were simulated under the new model 

(see section 2.2 for details) for a labelled history defined by a = (7, 6, 5, 5, 6, 7, 0) and c = 

(0.1, 0.1, 0.1, 0.1, 0.1, 0.1).  An MCMC analysis was performed under the new model, 

specifying the correct labelled history, with a run length of 5000 iterations and prior 

distributions identical to those used in previous analyses. 

 

Figure 3-29  Trace plots of an MCMC run of 5000 iterations without removing burn-in, P=4, L=100, n=100, c = (0.1, 0.1, 

0.1, 0.1, 0.1, 0.1), a = (7, 6, 5, 5, 6, 7, 0). 

The chains for the c’s in Figure 3-29 are clearly unsatisfactory.  Previous analyses have 

yielded values no greater than 0.7 for a highly differentiated population.  That the chains 

reach values in the order 10
2
, and in one case 10

3
, suggests that there might be an issue with 

identifiability.  Note also that many simulated data sets were considered under various 

topologies and using different configurations of c, with similar results.  

To investigate the source of the problem it is helpful to consider a simple example.  Since the 

new model is, under any given topology, a series of bifurcating branches, let us consider the 
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simplest case of two populations.  Note that for two populations, the new model is exactly the 

ND model with P = 2.  To motivate the concept of identifiability in a similar, but not 

identical, context to the two population model, consider two random walks, Xn and Yn, with 

variance σ
2 

and τ
2 

respectively,  and with identical initial values such that Xo = Yo .  Then 

further suppose that both processes follow Brownian motion.  In relation to our model, the 

initial value corresponds to the ancestral frequency π at a single SNP locus; the random walk 

reflects the Markov chain used to derive the probabilistic properties of ND model under the 

Wright-Fisher model; Brownian motion reflects the Normal distributions used to characterise 

allele frequencies and the variance terms are simplified such that they do not depend on the 

mean.  The theory of Brownian motion then states that after time t, Xn ~ Normal(Xo, nσ
2
) and 

Yn ~ Normal(Yo, nτ
2
).  To then make an inference about the individual variance terms, a first 

step might be to compute the difference between Xn and Yn and one could then proceed with a 

likelihood-based argument, using the result that Xn − Yn ~ Normal(0, n(σ
2 

+ τ
2
)).  Without 

following through the mathematics of a likelihood argument, it is still clear that independent 

estimates of σ
2 

and τ
2
 cannot be found in this case; only their sum is identifiable.  This would 

still be the case if any number of independent pairs of random walks were considered, 

allowing the initial values of each pair to vary, which corresponds to sampling at numerous 

SNP loci.  However the situation is slightly different when using the two population model, 

since differences between allele frequencies are not directly calculated.  There is some 

information about ci in the variation of the distribution of allele frequencies in population i 

across all SNP loci.     

Figure 3-30 shows the chains from an analysis on two populations where the c’s are identical 

and relatively small at 0.01.  In this case there is insufficient information in the distribution of 

allele frequencies and the chains for the individuals c’s do not behave at all well, even though 

point estimates are fairly accurate.  Notice the negative correlation between the chains for c1 

and c2, reflected in the individual chains and also in the plot of c2 against c1.  The most 

interesting observation is that the behaviour of the chains mirror the properties suggested in 

the identifiability example; namely that the chain for the sum of the c’s is well determined but 

not individually and that the relationship between c1 and c2 is described well by the line c1 + 

c2 = k, where k is a constant.  This suggests that differences between allele frequencies are 

implicitly considered during the MCMC estimation procedure under the ND and the new 

model.  However, the identifiability issue does not arise in all cases, particularly when the c’s 

are large.  For example in Figure 3-31 the chains mix well in both cases for c’s of 0.1 and 0.5. 
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Figure 3-30  Trace plots from an MCMC analysis for two populations, with a run length of 5000 iterations.  Red dots 

indicate true values (c1 = c2 = 0.01). 

 

Figure 3-31  Trace plots from two MCMC analyses for two populations, with run lengths of 5000 iterations.  Red dots 

indicate true values (c1 = c2 = 0.5 and c1 = c2 = 0.1) 
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Returning to the new model and the cause of the identifiability, it is clear that the example 

highlights a contributing factor, since the new model is a series of bifurcating branches.  

However the model for two populations is formally identifiable, only there is very little 

information in the data to estimate the c’s, particularly when there is low variation across 

SNPs. This means that there must be further causes of non-identifiability in the new model. 

The novelty of the new model is its use of ancestral populations other than MRCAP, called 

internal nodes, whose allele frequency can be zero or one.  Using such theoretical populations 

potentially offers a more realistic model in a historical sense than the ND model, but this 

added complexity appears to be more of a burden, since the difficulties that arise and the 

methods used to facilitate them seem to render the model non-identifiable.  The most likely 

reason for the difficulties one encounters when fitting the new model is that the variance of βij 

is dependent on the mean, βa(i), j.  This is only a problem because the internal node 

frequencies are allowed to vary on the real line.  The factor of βa(i), j (1− βa(i), j) in the variance 

means that βa(i), j must be in the range (0, 1) to avoid a negative variance.  The truncation 

function facilitates this requirement, but in doing so distributions with zero variance are 

frequently considered in the likelihood calculations.  The set of conditions in section 2.4.1 

ensure that undefined quantities do not occur when calculating r.  In short, the conditions 

make sure that any descendant of a population, whose frequency at a given SNP is zero or 

one, is also zero or one at that SNP.  This must be the case as mutation and migration are not 

permitted.  The result is that at some SNP loci, allele frequency distributions occur with 

infinite spikes at the boundaries.  Remembering that information about ci comes from the 

distribution of β across SNPs in population i, and that frequencies will tend to reach the 

boundaries when the c’s are large, there appears to be a contradiction, since the c’s being 

large will tend to move the frequencies towards the boundaries, which in turn will produce 

distributions of the β’s with infinitely small variation at a particular boundary value.  In the 

previous example for two populations, identifiability was an issue when the c’s were small; in 

this case a contradiction occurs when the c’s are large.  Taken in conjunction, these examples 

suggest some possibilities as to the cause of the problems when fitting the new model. 

As a solution and also to clarify the cause of the non-identifiability, it was decided to simplify 

the new model such that the variance of the distribution of allele frequencies does not depend 

on the mean.  Although the accuracy of the model, in a population genetics sense, may suffer, 

it was considered worthwhile, since the fit of various models can be assessed, given that the 

simpler model is identifiable.  
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To define the simplified version of the new model, expressions [15], [16] and [18] remain 

unchanged, but expression [17] is reduced to 

                          [23] 

Since the variance term in expression [23] does not depend on , the truncation function 

is not needed to ensure negative variances do not occur.  This model is not only easier to 

implement using MCMC, but information is not lost when using the truncation function.  A 

similar model is implemented and fitted using restricted maximum likelihood (REML) using 

the CONML option within the phylogenetic package PHYLIP (Felsenstein, 1993), which can 

also be used to construct trees. 

When fitting the simplified model using MCMC, particularly the Metropolis-Hastings 

algorithm, identical simplifications can be made when calculating the ratio r as were made 

for the full extension to the ND model (see section 2.4.1 for details); only the distribution in 

[23] is substituted where appropriate.  The model is more straightforward to fit since the 

conditions in section 2.4.1 are not implemented and it is also hoped that removing such 

restrictions ameliorates the identifiability issue.  

 

3.7   Simplified Model – An Example  

 

Presented in this section are some graphical summaries from an MCMC analysis under the 

simplified model using simulated data.   Data were simulated from four populations at 100 

SNP loci under the simplified model as follows: 

1. Draw βij from Beta(2, 2) where i = 2P–1 and j = 1, . . . , L.   

2.  Draw  from  where i = 1, . . . , 2P–2, j = 1, . . . , L,          

c = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1), a = (5, 5, 6, 6, 7, 7, 0). 

3. Draw  
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Figure 3-32  Trace plots of the c’s from the simplified model fitted using MCMC, without removing burn-in with a run 

length 5000.  Red dots indicate true values.   

 

Figure 3-33  Posterior density plots of the c’s from the simplified model fitted using MCMC, without removing burn-in with 

a run length of 5000.  Red dots indicate true values. 

An MCMC analysis was performed with a run length of 5000 using the standard initial 

configurations and prior distributions. From the plots in Figure 3-32 it appears the problems 

that arose when fitting the new model are not encountered for the simplified model.  All the 

chains for the c’s mix sufficiently and extreme values are not accepted.  It is also clear from 

Figure 3-33 that the MCMC estimation procedure does rather well as regards the location of 

the estimated posterior distribution, since the true values are well within an acceptable range 

from the centre of the estimated distributions. 
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The plots in Figures 3-34 and 3-35 indicate that the allele frequency parameters are estimated 

well and the chains for the individual parameters mix well.  Another characteristic of the β’s 

is the increased precision when estimating contemporary frequencies, relative to ancestral 

frequencies; a property observed when fitting the ND model (see section 2.3, example 3). 

 

Figure 3-34  Trace plots and posterior densities of the ancestral allele frequencies (β5, β6, β7) from an arbitrarily chosen SNP 

under the simplified model.  Model fitted using MCMC, with a run length of 5000 without removing burn-in.  The red dots 

indicate true values.  

 

 

Figure 3-35  Trace plots and posterior density plots of the contemporary allele frequencies (β1, β2, β3, β4) from an arbitrarily 

chosen SNP under the simplified model. Model fitted using MCMC, with a run length 5000 without removing burn-in.  Red 

dots indicate true values. 
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From the analysis reported in this section and numerous others performed under the 

simplified model, it can be concluded that identifiability is not an issue.  This presents an 

opportunity to fit various topologies and labelled histories and investigate which is the most 

appropriate using residual diagnostics.  These tasks constitute the remainder of this thesis. 

 

3.8   Simulation under Simplified Model 

 

In this section, the potential for inferring the most likely labelled history for a set of 

populations using residual diagnostics is explored.  The leave-one-out diagnostic is unsuitable 

when considering bifurcating topologies of more than two populations, since in most 

instances the interpretation of a particular branch changes when a population is removed, and 

so one would expect to see instability in parameter estimates, even when the correct labelled 

history is specified.  For this reason it was decided to rely solely on residuals for making 

judgements.  Although this method does not provide a quantitative model selection criterion, 

its simplicity over methods such as Bayes factors made it appealing for our purposes.  

The hierarchical structure of the ND model stipulates P populations descending from a single 

ancestral population and is reflected in the set of standardised residuals (see expression [13]).  

The generic form of a residual is the difference between some true value and the estimate of 

the true value provided by fitting the model, standardised by the standard deviation of the 

estimate.  In the case of the ND model, the true values are the contemporary allele 

frequencies and the estimates are the corresponding ancestral frequencies.  But since the 

contemporary frequencies are themselves estimated, albeit relatively well, the standardisation 

factor must be inflated to account for the added uncertainty (see proof in Appendix A).  The 

situation becomes more complex when bifurcating topologies are considered, since internal 

proto-populations are both ancestral to some populations and descendants of other proto-

populations.  

 For the simulation studies in this section, the set of standardised residuals are defined by: 

                                           #�� − #$����,�

%�̂�
; � = 1, … ,2� − 2;  = 1, … , !.                                        '24) 
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Two important points must be made in relation to the formula in expression [24].  In the 

following simulation analyses, the contemporary allele frequencies are considered fixed and 

known.  This is reasonable since given a large enough sample, the contemporary allele 

frequencies are well estimated by the sample frequencies.   Therefore the binomial sampling 

step in the hierarchy is removed, meaning that an inflated variance is not needed in the 

denominator of the residual formula.  The second point only applies to the residuals for the 

internal nodes.  It is clear that the allele frequencies at internal nodes are estimated during the 

MCMC procedure but using expression [24], are considered known; a similar situation as in 

the ND model.  It was decided to substitute the mean of the appropriate chain from the 

MCMC analysis for the true ancestral frequencies, bearing in mind when making any 

judgements, that the standard deviations of the residuals from the internal nodes have 

probably been under-estimated. 

All simulated data sets in this section include four populations and have been simulated under 

the topology shown in Figure 3-36, where there are two pairs of populations with shared 

ancestry.  Under this particular topology there are three possible labelled histories, which 

allows a sufficient but manageable number of model comparisons to be made.  The 

alternative topology has 12 potential labelled histories (4 MRCAPs × 3 orderings for each 

MRCAP) and so only the topology in Figure 3-36 was considered.  This topology is by no 

means the most accurate and it is potentially more interesting to infer the most likely 

topology.  However it was decided that the capability of the model selection process must be 

assessed first, using the most practically convenient topology, before proceeding with more 

detailed analyses.    

The first data set was simulated under the new simplified model (see section 3.6) with a 

labelled history defined by a = (5, 5, 6, 6, 7, 7, 0) and c = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1).  Three 

MCMC analyses were performed using the same data set; only changing the labelled history. 

Each analysis corresponds to a particular labelled history from  

Figure 3-36, with a run length of 10000 iterations and prior distributions identical to those 

used in previous analyses. 
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Figure 3-36  Labelled histories of the three MCMC analyses.  The data were simulated under (a), and subsequently analysed 

under all three topologies. 

To investigate whether there is sufficient information in the data to infer the correct labelled 

history (a) out of (a), (b) and (c) (Figure 3-36), residuals were compared between the three 

analyses; the rationale being that given that the data were simulated under (a) the residuals 

for the incorrect models (b) and (c), should show lack of fit, or at least a worse fit than (a).  

As a preliminary to the residual analysis, the performance of the model was checked for each 

of the analyses.  Figure 3-37 does not indicate any problems when fitting the model using the 

correct labelled history, since all the chains appear to mix well and the estimated posterior 

densities all contain the true value.  Figures 3-38 and 3-39 highlight the effects of specifying 

the incorrect labelled history.  When populations are re-arranged, the model attempts to 

accommodate this by adjusting the estimates of the c’s.  The c’s corresponding to outer 

branches (1-4) are over-estimated, since the data are congruent with population 1 and 2 and 

populations 3 and 4 being closely related.  The c’s for the internal branches (5-6) are under-

estimated for exactly the same reason; the model is attempting to reduce the distance between 

population pairs 1 and 2, and 3 and 4.  Ultimately, the model does not manage to compensate 

for the alternative labelled histories and the actual distances between populations are not 

recovered.  The question is then: can the residuals recover these discrepancies and distinguish 

the correct labelling?  It is also worth noting that the re-arrangements do not affect the 

performance of the MCMC algorithm, since the chains still appear to mix adequately.  

7 

1 4 

5 6 

2 3 

7 

1 4 

5 6 

3 2 

7 

1 2 

5 6 

4 3 

(a) (b) (c) 



    

89 

 

       

     

 

Figure 3-37  Graphical summaries from MCMC analysis under the correct labelled history (a) (Figure 3-36).  Note that 

SNPs 1 and 10 were arbitrary choices. 
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Figure 3-38  Graphical summaries from MCMC analysis under incorrect labelled history (b) (Figure 3-36).  Note that SNPs 

1 and 10 were arbitrary choices. 
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Figure 3-39  Graphical summaries from MCMC analysis under incorrect labelled history (c) (Figure 3-36).  Note that SNPs 

1 and 10 were arbitrary choices. 

Looking at the plots in Figure 3-40, the first point to note is that, for all three analyses, the 

residuals appear to have mean zero.  However there is a suggestion that constant variance is 

violated in all three cases. The sample Pearson correlation between the residuals and fitted 

values for analyses (a), (b) and (c) are 0.3836, 0.3842 and 0.3797 respectively, suggesting 

slight positive correlation.  Importantly, all are very similar meaning that without knowing 

which residuals correspond to the correct analysis, it would be very difficult to make any 

definite assertions as to the correct labelled history.  The same can be said for the QQ plots in 

Figure 3-41, that the correct labelled history is not distinguishable.  In all three cases 

normally distributed noise does not seem implausible. 
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Figure 3-40  Residual plots from three MCMC analyses on the same data set.  The residuals in (a) are from the analysis 

using the correct labelled history; (b) and (c) are both from analyses under incorrect labelled histories. 

 

Figure 3-41  Normal QQ plots using residuals from three MCMC analyses on the same data set.  The residuals used in (a) 

are from the analysis using the correct labelled history; (b) and (c) are both from analyses under incorrect labelled histories.   

This example suggests that the residuals are not informative when attempting to choose the 

correct labelled history.  This may well reflect the inability of the residuals in general to 

recover the required information or it may be due to the rather unrealistic c configuration 

used in this example.  When all the c’s are equal, re-arranging the labelling does have an 

effect on the estimates of the c’s but not a particularly profound one.  To investigate a more 
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realistic scenario, data were simulated under the same topology but the c’s were allowed to 

vary throughout the tree.      

The second data set was simulated under the new simplified model with the same labelled 

history as before, only this time c = (0.05, 0.05, 0.3, 0.3, 0.1, 0.1).  Three MCMC analyses 

were performed as before, changing the labelled history, and with the same prior 

distributions. 

 

Figure 3-42  Graphical summaries from MCMC analysis under correct labelled history (a) (Figure 3-36). 
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Figure 3-43  Graphical summaries from MCMC analysis under incorrect labelled history (b) (Figure 3-36).  
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Figure 3-44  Graphical summaries from MCMC analysis under incorrect labelled history (c) (Figure 3-36).   

As in the previous example, the MCMC algorithm appears to perform well when using the 

correct labelled history, as indicated by the plots in Figure 3-42.  The estimates of the c’s 

again undergo adaptation to the re-arrangement of populations.  In the previous example the 

variation of allele frequencies across SNPs was the same in every population since the c’s 

were all the same.  Therefore, when the labelled history was changed, the model implicitly 

used differences between population allele frequencies to recover information.  If this wasn’t 

the case, the estimates would not have changed since the variation does not change, just the 

labelling.  In this example, the c’s are different throughout the tree so the data carries 

additional information.  This becomes clear when the labelled history is changed.  The value 

of c2 in Figure 3-43 is very over-estimated, simply because, given the particular labelling, the 

data reflects a population with much higher variation in allele frequencies (population 3, c = 

0.3).  The opposite occurs for the estimate of c3 since population 2 has been assigned in its 

place, which has a small c (population 2, c = 0.05) and therefore very little variation in allele 
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frequencies across SNPs.  These same properties can be seen in Figure 3-44.  The values of 

the internal c’s (c5 and c6) are also under-estimated in both incorrect analyses, which is likely 

a compromise made to minimise the discrepancies between the differences between 

population frequencies, resulting from the re-arrangement of populations.    

Considering the residual plots in Figure 3-45, the analysis under the correct labelled history 

does appear to produce residuals more consistent with the modelling assumptions than those 

from the incorrect analyses.  Plots (b) and (c) suggest some positive correlation between the 

residuals and the fitted frequencies; although not particularly strong correlations, clearly 

stronger than in plot (a).  Sample Pearson correlations of 0.0393, 0.2777, 0.2921 for analyses 

(a), (b) and (c) respectively, confirm this.  The QQ plots in Figure 3-46 are less encouraging 

since all three plots are fairly similar, and all indicate that normality is not implausible.  

 

Figure 3-45  Residual plots from three MCMC analyses on the same data set.  The residuals in (a) are from the analysis 

using the correct labelled history; (b) and (c) are both from analyses under incorrect labelled histories. 

 



    

97 

 

Figure 3-46  Normal QQ plots using residuals from three MCMC analyses on the same data set.  The residuals used in (a) 

are from the analysis using the correct labelled history; (b) and (c) are both from analyses under incorrect labelled histories. 

This second example is much more encouraging than the first and suggests that not only is 

there information in the data to infer the correct labelled history, but that residuals are capable 

of recovering it.   

 

3.9   Global Data Set 1 - Analysis under Simplified Model 

 

In this section the data set analysed in section 3.4 under the ND model is re-analysed under 

the new simplified model in an attempt to infer the most likely labelled history for these 

populations.  As a reminder, global data set 1 included a Biaka pygmy population, a North 

African Mozabite population, a Cambodian population and a Native American Pima 

population.  Figure 3-47 shows the three possible labelled histories using the balanced 

topology.  One might expect the African populations to be grouped together, with the 

Cambodian and Pima populations forming the other group (Figure 3-47 (a)) due to the close 

geographic proximity of the Africans and the aforementioned settlement of the Americas 

from South East Asia.  These groupings are supported by the correlations in Figure 3-21, but 

the correlation between the Mozabite and Cambodian populations may affect the inference.  

The balanced topology was used for purely practical reasons as it provides a more 
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manageable number of groupings, as compared to the unbalanced alternative, but is not a 

priori a more accurate description. 

Each model in Figure 3-47 was fitted to global data set 1.  As in previous analyses a log-

normal prior on the c’s and a uniform prior on (0, 1) on the MRCAP frequencies was used.  

The c’s were started from FST = 0.0594, the frequencies at the tips of the tree (β1, β2, β3 and 

β4) from the sample frequencies and the ancestral frequencies (β5, β6 and β7) at 0.5.  Each 

MCMC chain was run for 25000 iterations and an appropriate burn-in removed.    

 

 

 

 

 

 

 

Figure 3-47  Three labelled histories used under the new simplified model fitted to global data set 1. 

The three sets of residuals in Figure 3-48 are calculated using the formula in [25], which is 

slightly different from expression [24], since the sample frequencies are used instead of the 

population frequencies.  Formally, the denominator should then contain a factor to inflate the 

variance, but since the sample frequencies are approximately the population frequencies, this 

formula is sufficient.   

                                   *��/,�� − #$����,�

%�̂�
; � = 1, … ,2� − 2;  = 1, … , !.                                        '25) 

The residual plots in Figure 3-48 seem to suggest that the model using labelled history (a) 

from Figure 3-47 fits the data best.  Plots (b) and (c) exhibit less variance towards the 

boundary values of the fitted β’s, which violates the assumption of constant variance.  This 

feature is also found in plot (a) but to a lesser extent.  Sample Pearson correlations between 

the residuals and fitted values from analyses (a), (b) and (c) are 0.0600, 0.0977 and 0.1048 

Cambodian 

(a) (b) (c) 

Biaka Pima Mozabite Cambodian Pima Biaka Cambodian Mozabite Biaka Pima Mozabite 
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respectively, which again suggests that analysis (a) produces residuals most consistent with 

the modelling assumptions.  The QQ plots in Figure 3-49 do not appear to offer any insight 

into the most appropriate labelled history since all are fairly similar.  In all three cases 

normality does not seem plausible.  Therefore from Figure 3-48 and the sample correlations, 

labelled history (a), which groups the African populations and the Cambodian and Pima 

populations together, appears to be the most likely of the three for these data.  Although the 

signal in the residuals is not particularly strong, it is satisfying that a rather informal model 

selection procedure produces results consistent with current knowledge for a real data set. 

 

Figure 3-48  Residual plots from three MCMC analyses on global data set 1.  The labels (a), (b) and (c) refer to the labelled 

histories in Figure 3-47. 
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Figure 3-49  Normal QQ plots using residuals from three MCMC analyses on global data set 1.  The labels (a), (b) and (c) 

refer to the labelled histories in Figure 3-47. 

Another interesting comparison between the residuals from the analysis under the ND model 

(section 3.4) and analysis (a) from the current section is shown in Figure 3-50.  It is difficult 

to draw any conclusions from Figure 3-50 since both plots highlight issues with constant 

variance.  Sample Pearson correlation for (a) is 0.0994 and for (b) is 0.0600 which suggests 

that the new model produces a better fit to the data.  The normal QQ plots in Figure 3-51 also 

suggest that the new model yields a superior fit since plot (a) indicates a lack of symmetry, 

which is a defining characteristic of the normal distribution.  Plot (b), on the other hand, 

indicates that the distribution of the standardised residuals has rather light tails but is still 

symmetric about the mean.      

 

Figure 3-50  Standardised residuals vs fitted values plots for analysis of global data set 1 under (a) ND model and (b) new 

simplified model. 
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Figure 3-51  Normal QQ  plots for analysis of global data set 1 under (a) ND model and (b) new simplified model. 

Figures 3-52 and 3-53 show some graphical output regarding the c’s from the MCMC 

analysis using labelled history (a).  The trace plots show that the chain appears to mix well 

enough for all the c’s and the estimated posterior distributions are all uni-modal and well-

behaved.  The estimates of the c’s from the branches directly above the contemporary 

populations are interesting.  The Pima population is still the most differentiated from its most 

recent common ancestor (with the Cambodians) but its value has decreased by a factor of 

approximately ten (  = 0.0723, Table 14), which still coincides with the explanation given 

previously since it is still the largest c of all the populations.  The branch above the Mozabite 

population still has a small c (  = 0.0074, Table 14) probably reflecting its shared ancestry 

with Europeans.  The c above the Cambodian population is also a lot smaller under the new 

model (  = 0.0195, Table 14) compared with the estimate using the ND model (  = 0.2420, 

Table 10), which seems more likely value for a south East Asian population (Nicholson et al., 

2002).  However, the estimate of c above the Biaka population does seem slightly small for 

Sub-Saharan Africa (  = 0.0385, Table 14). 
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2ĉ

3ĉ 3ĉ
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Figure 3-52  Chains for the c’s from the analysis under labelled history (a) Figure 3-47.  Chains thinned by a factor of 25. 

 

 

Table 14  Summaries of MCMC results for global data set 1. 

Parameter Mean Posterior Standard Deviation 90% Credible Region 

c1 0.0385 0.0056 (0.0303, 0.0478) 

c2 0.0074 0.0029 (0.0041,0.0109) 

c3 0.0195 0.0054 (0.0126, 0.0278) 

c4 0.0723 0.0119 (0.0547, 0.0940) 

c5 0.0099 0.0038 (0.0051, 0.0158) 

c6 0.0414 0.0084 (0.0289, 0.0561) 
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Figure 3-53  Estimated posterior density plots with means and p.s.d’s for the c’s using labelled history (a) Figure 3-47. 

In this section the residual diagnostics have been used to infer the most likely labelled history 

for global data set 1, given that the balanced topology is correct.  The groupings suggested 

seem plausible since the African populations reside on one side of the tree and the 

Cambodians and Pima on the other.  Using the new model also yields very different 

magnitudes for the values of the c’s, although the ordering of magnitude remains unchanged.  

When attempting to interpret the values of c under the simplified model one must remain 

sceptical since the simplifications made in order to be able to fit the model are not well 

justified by any population genetics theory.  Nevertheless the model should still represent a 

close approximation to the more accurate but non-identifiable model, and the improvement it 

provides over the ND model is encouraging.    

 

3.10  Global Data Set 2 – Analysis under Simplified Model 

 

Here the second global data set is re-analysed under the new simplified model in an attempt 

to infer the most likely labelled history for these populations.  Global data set 2 included a 

sample from an African Mandenka population, an Mbuti pygmy population, a French 
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population and a Tuscan population.  Figure 3-54 shows the three possible labelled histories 

using the balanced topology.  The most obvious grouping would be the two African 

populations together and the two Europeans together (Figure 3-54 (a)), and these groupings 

are supported in the pairwise allele frequency plots in Figure 3-25. 

 

 

 

 

 

 

Figure 3-54  Three labelled histories used under the new simplified model fitted to global data set 2. 

Each model in Figure 3-54 was fitted to global data set 2.  The same prior distributions and 

starting values as in section 3.9 were used, except that FST = 0.0425 for these data. 

The residuals plots in Figure 3-55 are all fairly consistent with the modelling assumption of 

constant variance, particularly plots (b) and (c).  What is clear though is that the residuals are 

not informative about the most appropriate labelled history for these data since plots (b) and 

(c) are very similar.  In fact the most obvious grouping mentioned before, from analysis (a), 

appears to yield the worst fit of the three analyses, which is very surprising.  Even if one were 

to reject labelled history (a), which does not seem sensible, the best fit is still not clear.  The 

sample Pearson correlations for analyses (a), (b) and (c) between the standardised residuals 

and the fitted values are 0.0967, 0.0498 and 0.0483 respectively.  Again notice the similarity 

between (b) and (c).  The QQ plots in Figure 3-56 suggest that labelled history (a) fits the 

data the best. 

Mandenka Tuscan Mbuti French Tuscan Mandenka French Mbuti Mandenka Tuscan Mbuti French 

(a) (b) (c) 
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Figure 3-55  Residual plots from three MCMC analyses on global data set 2.  The labels (a), (b) and (c) refer to the labelled 

histories in Figure 3-54. 

 

Figure 3-56  Normal QQ plots using residuals from three MCMC analyses on global data set 2.  The labels (a), (b) and (c) 

refer to the labelled histories in Figure 3-54. 

The results of this analysis are rather disappointing since the residuals fail to establish the 

labelled history that provides the best fit and also the most plausible grouping of populations 

is rejected.  That the residuals were not able to distinguish between competing models is 

probably a reflection of the informal nature of this method of inference.  It is likely the case 

that a more rigorous approach to model selection is needed for these data in particular, but 

also in general.  This point will be discussed in more detail in the concluding chapter of this 
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thesis.       It is also worth noting that the fit provided by the new model under labelled 

histories (b) and (c) do clearly provide a better fit than the ND model (see Figure 3-28 (a)).     

The analyses carried out in this section and the previous section show that residual 

diagnostics can be used to determine the labelled history of a group of populations for real 

data but also that such a method of inference has limitations.  Another important point is the 

improvement in model fit when using the new simplified model as opposed to the ND model 

for both the real data sets.  As previously argued, a statistical model that fits the data well can 

be a useful tool and the simplified model does seem to provide a better fit for both global data 

sets.  However the improvement is not entirely clear and since the ND model is theoretically 

justified and is simpler to implement, it is still appealing as a statistical model.    
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Chapter 4  

Conclusions and Discussion 

 

This chapter includes a summary of the conclusions of this thesis, using direct reference to 

the aims set out in section 1.2.  It also includes a discussion of the limitations, possible 

improvements and implications of the new model and the potential for future research.   

   

4.1   Conclusions 

 

The Bayesian hierarchical model proposed by Nicholson et al. (2002) provides a way of 

investigating population differentiation using SNP data.  The initial aim was to develop an 

MCMC algorithm to sample from posterior distributions of parameters in the ND model 

using simulated and real data sets.  This was accomplished using the R programming 

software (R Development Core Team, 2008) to implement the Metropolis-Hastings algorithm 

(see section 2.1.2.1).  To increase the efficiency of the algorithm simplifications were made 

when calculating r for each group of parameters (π, α, c) and the variance of the proposal 

distributions were adjusted for each group to ensure that the chains moved through the 

parameter space in an adequate manner.  Two re-parameterisations were used to simplify the 

implementation.  The β’s were introduced, whose parameter space spans the real line, to 

allow Normal proposal distributions without rejecting values out with [0, 1].  The truncation 

function t(x) was also introduced to transform the β’s back to the α’s remembering that t(β) = 

α.  The c’s were also transformed onto the log scale, again to allow the use of Normal  

proposal distributions, since the c’s are strictly non-negative due to their relationship with the 
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variance of the α’s.  A Un(0, 1) prior distribution on the π’s was used throughout the analyses 

which represents an uninformative prior.  The other potential prior was a Beta(2, 2) which 

reflects the tendency of SNP discovery process to find more polymorphic loci.  It was 

decided to use the most conservative prior distribution, the Un(0, 1). The natural choice of 

prior distribution for the re-parameterised c’s was the log-normal prior since the c’s were 

transformed onto the log-scale. 

The second aim was to assess the fit of the ND model for both simulated and real data sets.  

Model fit was assessed using residual diagnostic plots, and also by removing a population 

from the data, re-fitting the model and checking the stability of the estimates of the c’s.  

Stability was assessed by calculating the difference between the draws from the two analyses 

at every step in the chain for corresponding c parameters, excluding burn-in, and computing 

90% credible regions for the differences.  If a credible region did not contain zero, then a 

significant difference was declared for that particular parameter.   

As a preliminary, 100 independent data sets each including four populations were simulated 

and analysed under the ND model, in order to check that instability reported by Nicholson et 

al. (2002) for some data sets was not an unfortunate feature of the model.  For each data set 

there were three credible regions, since removing a single population leaves three remaining 

populations and hence three c parameters to compare, giving 300 credible regions in total for 

one population removal.  Two arbitrary populations were removed in turn yielding 600 

credible regions, of which only one did not contain zero.  This is a surprising result since one 

might expect some more non-zero intervals by chance alone, but it is no doubt evidence that 

estimates are not inherently unstable.  The residuals also indicated a good fit as would be 

expected.   

Then a set of four European populations were analysed from the HGDP-CEPH database 

under the ND model.  The residuals from this analysis indicated a good fit, the estimates were 

stable under population removal and the estimates of the c’s were consistent with the 

consensus that Europeans are the most genetically homogeneous continent.  This result 

provides evidence that variation in SNP allele frequencies for European populations is well  

represented by the ND model.             

It was then necessary to formulate a simulation procedure that allowed one to simulate SNP 

data under alternative bifurcating topologies and labelled histories, since this gave the 

opportunity to investigate in a simulation setting, the fit of the ND model when using data 
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reflecting an alternative topology.  The essence of the simulation procedure was the extension 

to the ND model used in later analyses.   

100 independent data sets were simulated from four populations under a bifurcating topology 

(see Figure 3-13) and for each data set two separate groups of three comparisons were made: 

each group corresponding to a different population being removed.  Again there were 600 

intervals in total, but it is advantageous to summarise them in two groups of 300.  When the 

first population was removed, 15.5% of the 300 credible regions did not contain zero; a 

sizeable proportion.  When the second population was removed, 69% of the credible regions 

did not contain zero, in this case the majority.   This result was particularly interesting since 

instability was reported by Nicholson et al. (2002) for some data sets whose evolutionary 

topology was likely to be different from the simple topology under the ND model.  It has 

therefore been shown that the same instability is present when the topology is definitely 

incorrect and so it may be the case that the lack of robustness found in real data sets is due the 

incorrect topology.  This result motivated the extension to the ND model defined in section 

2.4, which allows alternative topologies to be specified.  

Two more real data sets taken from the HGDP-CEPH database, each including populations 

dispersed throughout the globe, were analysed under the ND model.  The first data set 

included Biaka pygmies, North African Mozabites, Cambodians and Native American Pima 

from Mexico.  The estimates of the c’s from this analysis were rather surprising for some 

populations and were discussed in detail in section 3.4.  The crucial result from this analysis 

was that the residuals suggested a lack of fit, since both the constant variance and normal 

distribution assumptions seem to be violated for these data.  However the estimates were all 

stable under population removal.  The second data set included two sub-Saharan African 

populations, Mbuti pygmies and the Mandenka, and two European populations: French and 

Tuscan.  The estimates of the c’s were as would be expected for these populations, with the 

Europeans having small values relative to the Africans.  Importantly, the residuals again 

showed a lack of fit but also instability in parameter estimates 

The simulation analyses show that given the data are the result of a more complex topology, 

the diagnostics are able to highlight the discrepancy. The three analyses performed on real 

data highlight instances where the ND model appears to fit the data well and also when lack 

of fit is present.  It may be the case that the data sets not well represented by the ND model 

may be better represented by a model with an alternative topology.    
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The third aim of this thesis was to develop an extension to the ND model which allows 

flexibility in the topology and labelled history of sampled populations.  This was motivated 

by the poor performance of the ND model in certain situations, particularly when it was likely 

that the simple topology under the ND model was inadequate.   

It was decided that only bifurcating topologies would be considered to limit the number of 

potential trees.  The first model to be developed had the same probabilistic assumptions as the 

ND model. A set of indicator vectors were used to specify the ancestor and two offspring 

populations of each node, which completely defines the labelled history.  This method relies 

on the particular labelling of the tree discussed in section 2.2.  The implementation required 

an extra level in the hierarchy for internal nodes, corresponding to ancestral populations other 

than the MRCAP.  The internal nodes were allowed to be fixed for a single allele and so it 

follows that since mutation or migration are not assumed to be present; all descendant 

populations at SNPs that are fixed for a single allele must also be fixed.  A set of conditions 

were devised to ensure these properties were adhered to.  When fitting this model it appeared 

that parameters were non-identifiable since the chains were very unstable and extremely large 

values were accepted.  The reason for the problem is unclear and there is likely not a single 

cause.  Some suggestions were offered in section 3.6, but it was decided that a simplification 

to the model was necessary.  One potential simplification was to remove the dependence of 

the variance on the mean for the distribution of allele frequencies since this was suggested as 

a possible contributor to the non-identifiability.  Although less well motivated by population-

genetic theory, this step ameliorated the problem of identifiability and provided a model 

which could be fitted to data and its fit to the data assessed. 

The final aim was to assess the fit of the newly developed model under different labelled 

histories for real and simulated data sets in an attempt to infer the most appropriate labelled 

history for a set of populations.  The population removal diagnostic is not useful when using 

complex topologies since more often than not the role of a particular branch changes when a 

population is removed so instability would be expected, even under the correct model.  The 

final analyses can be split up into two sections relating to the type of data used: simulated and 

real. 

The two simulated data sets that were analysed produced differing results.  For each analysis 

data were simulated under a particular labelled history and c configuration and analysed 

under the correct and two incorrect labelled histories.  The first analysis used a c 
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configuration where all c’s equalled 0.1.  Residuals were then calculated and compared 

between the three analyses.  Unfortunately, the residuals were not able to distinguish the 

correct labelled history in this situation.  Then, a more realistic data set was simulated where 

c = (0.05, 0.05, 0.3, 0.3, 0.1, 0.1).  In the second scenario the residuals were informative 

about the labelled history and did in fact suggest the correct labelled history.   

The global data sets analysed under the ND model were also analysed under the new model 

using the three potential labelled histories, given the specific topology being used.  The 

residuals from the three analyses using global data set 1 suggested that the two African 

populations (Biaka and Mozabites) be grouped together, leaving the Cambodians and the 

Pima as the remaining group.  This labelled history does seem the most obvious but the signal 

in the residuals was far from convincing.  Another interesting comparison was between the 

residuals from the earlier analysis using the ND model and the analysis using the new model.  

Again the differences were very slight but there did seem to be an improvement in model fit 

when using the new model, particularly in the normal QQ plots.  When assessing global data 

set 2 the residuals were unable to provide any information about the most likely labelled 

history since the residuals from two analyses were very similar.  Rather disappointingly the 

labelled history that made the most intuitive sense (African and European groupings) 

produced the worst fit to the data. 

 

4.2   Discussion 

 

An important aspect of this thesis was to review an existing statistical model which describes 

variation in SNP allele frequencies.  This review consisted of numerous analyses using 

simulated and real data to assess the applicability of the ND model in various scenarios.  The 

recent explosion of publicly available human SNP data sets motivates a more rigorous 

investigation of the capability of the ND model by utilising the large volumes of genetic data 

now available, since an exhaustive review would have provided a much clearer perspective 

than is presented here.  

 Another important feature of the data now available is the coverage across the genome.  The 

particular database used in this thesis was the HGDP-CEPH databank, which includes 1050 
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individuals typed at 650,000 SNPs distributed across the genome.  Throughout the analyses 

on real data sets in this thesis, only 194 SNPs were used from a single chromosome; a small 

fraction of the available SNPs.  The issue with using many SNPs is the computational 

efficiency needed to produce manageable running times for the MCMC simulations.  The 

programming language used does not pertain to the type of methods involved in an MCMC 

analysis and so although the algorithm was efficient within the context of R, an alternative 

programming language such as C or Fortran would be needed if one were interested in 

analysing individuals at many more SNPs.  

The decision not to model the ascertainment process when using SNP data was taken with the 

aims set out in section 1.2 in mind.  However, this process is potentially important and it 

would be sensible to include it in any future investigations, since greater accuracy is clearly 

desirable.      

The model proposed in section 2.4 attempted to comply with the probabilistic reasoning of 

the ND model but also to account for additional uncertainty in topology by using indicator 

vectors to define the ancestral relationships of the sampled populations.  The causes of the 

identifiability issues encountered when fitting the model are unclear, however, removing the 

dependence of the variance of allele frequencies on the mean provided a model whose 

parameters were identifiable.  This simplification was implemented with practical reasons in 

mind, since it allowed various labelled histories to be fitted to the data and the fit of each 

model assessed using residual diagnostics.  Whether or not the simplified model is accurate 

for SNP data is debatable and it would be advantageous to seek and rectify the problems with 

the potentially more accurate model as a future task.   

The method used to infer the most likely labelled history lacked a quantitative element 

present in most model selection procedures, such as Bayes factors, or likelihood ratio tests in 

a frequentist setting, and the sometimes ambiguous results reflected this.  In any future 

enquiry a formal approach to model selection should be sought, which in addition to the 

residual approach, may provide more precise inference.  A more optimistic approach would 

be to consider the labelled history a discrete parameter in the model and formulate an 

algorithm to automatically update the current tree by randomly selecting and relocating a 

branch at each step in the chain. The ratio of the joint conditional posterior densities for the 

current tree and the new tree could then be calculated and the move accepted or rejected 

using the standard criteria.  Initial investigations into this method found that randomly 
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choosing and relocating a branch caused problems with mixing since most moves are so 

unlikely relative to the current tree that they are repeatedly rejected.  A branch removal 

algorithm which only provides moves that are not too unlikely may resolve this problem, 

since the posterior probability of any labelled history would be available, and could be 

pursued in the future.  

An interesting comparison was also made between the fit of the ND model and the new 

simplified model using real data, again using residuals.  These comparisons were not 

conclusive since it was not entirely clear whether the new model did provide a better fit.  It 

must be taken into account that the distributional assumptions of the simplified model are not 

entirely justified by population genetics theory and although in one particular instance there 

was a suggestion that there was an improvement in fit when using simplified model, the ND 

model still performed relatively well.  Again one must consider the rather subjective method 

used to compare the models, reflecting that an improved model selection procedure would 

provide a better comparison.   

In conclusion, based on these analyses, it is not clear whether the new model does provide an 

improvement upon the ND model.  But since only two real data sets were compared, using a 

small portion of the available SNPs, and inference was based on the informal assessment of 

residuals; future analyses, with the improvements that have been suggested, will undoubtedly 

provide more insight. 
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