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Abstract

This thesis is concerned with properties of pointed Hopf algebras: that is, Hopf algebras

whose coradicals are the group algebras of their grouplike elements. These have been

fruitfully studied via their associated graded Hopf algebras with respect to the coradical

filtration. In fact, the associated graded Hopf algebra grH of a pointed Hopf algebra H

can be decomposed into a braided graded Hopf algebra of coinvariants adjoined to a group

algebra by a process called bosonisation.

Chapter 1 consists of background material, which fully explains the process outlined

above.

In Chapter 2, we outline and discuss the main results of Kharchenko in [32], which gives

a PBW-basis for a certain class of associated graded Hopf algebras grH of pointed Hopf

algebras H. The hypotheses on grH are that its grouplikes form an abelian group that acts

on the braided Hopf algebra of coinvariants diagonalisably - that is, by multiplication by

scalars, which are called the braiding coefficients. In Theorem 2.4.1, we give an expanded

proof of [32, Corollary 5].

This provides a tool which we use in Chapter 3 to show that the ordering of the PBW-

generators in Kharchenko’s PBW-basis for grH may be permuted in the case where there

are only a finite number of generators. We then use this in order to prove that grH, and

hence H, satisfy certain homological properties.

In Chapter 4, we prove a result giving sufficient conditions on the braiding coefficients

for the braided Hopf algebra of coinvariants to be a free algebra, thus answering a question

of Andruskiewitsch and Schneider in [2].

Chapter 5 switches the focus to a type of skew-polynomial algebras called ambiskew

polynomial algebras, defined over a base algebra R. We drop the hypothesis that R is

commutative, which was generally assumed in previous work on these algebras. We then

give necessary and sufficient conditions for a Hopf algebra structure on R to be extended

i



ii

to a Hopf algebra structure on the ambiskew polynomial algebra, generalising work of

Hartwig in [22]. We also calculate explicitly their coradical filtration, which gives as a

corollary some theorems of Montgomery [43] and Boca [11] on the coradical filtration of

Uq(sl2). Finally, we consider some homological and ring-theoretic properties of ambiskew

polynomial algebras.



Acknowledgements

I would like to thank my supervisor, Ken Brown, for his invaluable advice and encourage-

ment throughout my studies. This thesis would not have been possible without his help

and patience. I am also grateful to the EPSRC for providing financial support and to

the University of Glasgow Mathematics department for funding my attendance at several

conferences.

There are many people who have made my time at the Mathematics department such

a pleasure. They include Uli Krähmer, for his helpful comments on my work, and Marjory

Macleod, for her assistance on numerous occasions. Thanks are also due to my fellow

postgraduates, especially my office-mates: Susan, Robert, Ehsan, Yunfei and Stephen, for

providing welcome distractions.

My special thanks go to my family - Mum, Dad and Gavin - and to Craig, for their

constant love and support.

iii



Statement

This thesis is submitted in accordance with the regulations for the degree of Doctor of

Philosophy at the University of Glasgow.

Chapters 1 and 2 cover background material and known results. The results in later

chapters are the author’s own work, with the exception of results which are explicitly

referenced.

iv



Contents

1 Introduction 1

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Notation and conventions . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Filtrations and gradings of Hopf algebras . . . . . . . . . . . . . . . 2

1.1.3 Skew (Laurent) polynomial rings . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Skew group rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Quantised enveloping algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Gaussian binomial coefficients . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 The definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Pointed Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Braided vector spaces and Yetter-Drinfeld modules . . . . . . . . . . 9

1.3.3 Braided Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.4 Bosonisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.5 Decomposition of pointed Hopf algebras . . . . . . . . . . . . . . . . 13

2 A PBW-basis for diagonal Nichols algebras 16

2.1 Lyndon words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Brackets in the free algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 General definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Skew-commutators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Constructing the PBW-basis . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 A condition ensuring that H is noetherian . . . . . . . . . . . . . . . . . . . 29

3 Homological properties of pointed Hopf algebras 38

3.1 Re-ordering the PBW-basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



CONTENTS vi

3.1.1 Some technical lemmas about hard super-letters . . . . . . . . . . . 39

3.1.2 Proof of the theorem: transposition case . . . . . . . . . . . . . . . . 41

3.1.3 Proof of the theorem: general case . . . . . . . . . . . . . . . . . . . 42

3.2 Homological and other properties . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Global dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 GK dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 The Auslander-Gorenstein property . . . . . . . . . . . . . . . . . . 51

3.2.4 The Cohen-Macaulay property . . . . . . . . . . . . . . . . . . . . . 53

3.2.5 AS-Gorenstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.6 Values for global and injective dimensions . . . . . . . . . . . . . . . 56

3.2.7 Application to pointed Hopf algebras . . . . . . . . . . . . . . . . . . 57

4 Diagonal Nichols algebras 59

4.1 Nichols algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Skew-derivations of graded coalgebras . . . . . . . . . . . . . . . . . . . . . 61

4.3 Skew-derivations in the diagonal braiding case . . . . . . . . . . . . . . . . . 65

4.4 Conditions implying B(V ) ∼= T (V ) . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.2 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Ambiskew Hopf algebras 79

5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Hopf algebra structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 The main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Coradical filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Comultiplication formulas . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.2 The filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Properties of ambiskew polynomial algebras . . . . . . . . . . . . . . . . . . 103

5.4.1 Homological properties . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.2 Polynomial identity . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

References 115



Chapter 1

Introduction

We start by introducing some background material which will feature prominently through-

out this thesis. In particular, we focus on pointed Hopf algebras, which are studied using

filtered and graded techniques. The coradical filtration of a pointed Hopf algebra H is a

Hopf algebra filtration, and the associated graded Hopf algebra grH can be described as

a bosonisation between a subalgebra of coinvariants and a group algebra. This technique

greatly simplifies the problem of classifying pointed Hopf algebras.

1.1 Preliminaries

1.1.1 Notation and conventions

Throughout, k will denote a field and k∗ will denote k \ {0}. All algebras, coalgebras and

Hopf algebras are k-vector spaces, and the unadorned tensor product ⊗ denotes the tensor

product over k.

If A is an algebra, we sometimes write A = (A,m, u), where m : A ⊗ A → A is the

multiplication map and u : k → A is the unit map. We usually omit explicit labels for these

maps, instead denoting m(a ⊗ b) by ab for all a, b ∈ A. For any coalgebra C = (C,∆, ε),

∆: C → C⊗C and ε : C → k denote the comultiplication (or coproduct) and counit maps

for C, respectively. We denote the grouplike elements of C by G(C) and the primitive

elements of C by P (C). Similarly, if H = (H,m, u,∆, ε, S) is a Hopf algebra, then m, u,

∆ and ε retain their meanings above and S : H → H denotes the antipode of H. Again,

we usually do not give a label to the multiplication or unit maps of H. We write G(H),

P (H) for the grouplikes and primitives of H, respectively.

Sweedler notation is used for elements in the image of ∆ as follows: for h ∈ H, we

1



CHAPTER 1. INTRODUCTION 2

write

∆(h) =
∑

h1 ⊗ h2 ∈ H ⊗H.

If V is a left H-comodule, with coaction δ : V → H ⊗ V , we write

δ(v) :=
∑

v−1 ⊗ v0 ∈ H ⊗ V.

The left adjoint action of H on itself is given by

adl(h)(a) :=
∑

h1aS(h2),

and the right adjoint action is given by

adr(h)(a) :=
∑

S(h1)ah2,

for all a, h ∈ H.

1.1.2 Filtrations and gradings of Hopf algebras

When studying an algebraic structure, a common technique is to filter it and then consider

the associated graded structure. The advantage of this approach is that the resulting object

is often more straightforward to understand, but nevertheless retains many of the algebraic

properties of the original structure without losing the key information. Here, we develop

this technique for algebras, coalgebras and Hopf algebras.

Algebra filtrations and gradings

Definition 1.1.1. (i) LetA be an algebra. An algebra filtration ofA is a family {An : n ≥ 0}

of subspaces of A such that

(a) An ⊆ An+1 for all n ≥ 0,

(b) AmAn ⊆ Am+n for all m,n ≥ 0,

(c)
⋃
n≥0An = A.

Due to (c), this is sometimes known as an exhaustive algebra filtation.

(ii) A graded algebra is an algebra A together with a family {An : n ≥ 0} of subspaces

of A such that

(a) AmAn ⊆ Am+n for all m,n ≥ 0,

(b) A =
⊕

n≥0An as a vector space.
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If A is an algebra with filtration {An}, we can construct a graded algebra from A in a

natural way. Define a family of vector spaces {An} by

An :=

 A0 n = 0

An/An−1 n > 0.

The associated graded algebra of A is defined to be

grA :=
⊕
n≥0

An.

The multiplication in grA works as follows. For a ∈ An\An−1, the degree of a is said to be

n, and we write ā := a+An−1 ∈ An. If c ∈ A has degree m, then c̄ := c+Am−1 ∈ Am and

we define āc̄ := ac + Am+n−1 ∈ Am+n. Note that if āc̄ ∈ Am+n−1 then āc̄ = 0; otherwise

āc̄ = ac.

Definition 1.1.2. A graded algebra A =
⊕

n≥0An is connected if A0 = k.

Coalgebra filtrations and gradings

Definition 1.1.3. (i) Let C = (C,∆, ε) be a coalgebra. A coalgebra filtration of C is a

family {Cn : n ≥ 0} of subspaces of C such that

(a) Cn ⊆ Cn+1 for all n ≥ 0,

(b) ∆(Cn) ⊆
∑n

i=0Ci ⊗ Cn−i for all n ≥ 0,

(c)
⋃
n≥0Cn = C.

(ii) A graded coalgebra is a coalgebra C = (C,∆, ε) together with a family {Cn : n ≥ 0}

of subspaces of C such that

(a) ∆(Cn) ⊆
∑n

i=0Ci ⊗ Cn−i,

(b) C =
⊕

n≥0Cn as a vector space.

If C is a coalgebra with filtration {Cn}, we can construct a graded coalgebra from

C. Analogously to the process for algebras, we define a family {Cn} of vector spaces by

setting

Cn :=

 C0 n = 0

Cn/Cn−1 n > 0.

The associated graded coalgebra of C is

grC :=
⊕
n≥0

Cn,
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which, by [49, Exercise 11.1(1)], is a graded coalgebra with the following definitions for

the coproduct ∆: grC → grC ⊗ grC and counit ε : grC → k. The restriction of the

coproduct

∆|Cn : Cn →
n∑
i=0

Ci ⊗ Cn−i

is the unique map that makes the following diagram, from [49, §11.1], commute:

Cn

f

��

∆|Cn //
∑n

i=0Ci ⊗ Cn−i
g

��

Cn
h //

∆|Cn **TTTTTTTTTTTTTTTTTTTT
∑n

i=0(Ci ⊗ Cn−i)/
∑n−1

j=0 (Cj ⊗ Cn−1−j)

i
��∑n

i=0Ci ⊗ Cn−i

In the diagram, f and g are the canonical quotient maps, while h is induced by ∆|Cn and

is well-defined by Definition 1.1.3 (i)(b). The map i writes ¯ over each tensorand of a coset

representative in its domain; it is well-defined by the definition of this operation.

The restriction of the counit ε|Cn : Cn → k is defined by

ε|Cn =

 ε|C0 n = 0

0 n > 0.

Recall that a simple coalgebra is a coalgebra with no proper subcoalgebras, and that the

coradical of a coalgebra is the sum of all its simple subcoalgebras. An important example

of a coalgebra filtration of a coalgebra C is the coradical filtration . This is defined by

taking C0 to be the coradical of C, and, for all n ≥ 0,

Cn+1 := {c ∈ C : ∆(c) ∈ Cn ⊗ C + C ⊗ C0}.

It is a coalgebra filtration by [42, Theorem 5.2.2].

Hopf algebra filtrations and gradings

Definition 1.1.4. (i) Let H be a Hopf algebra. A Hopf algebra filtration of H is a family

{Hn : n ≥ 0} of subspaces of H such that

(a) {Hn} is an algebra filtration of H,

(b) {Hn} is a coalgebra filtration of H,

(c) S(Hn) ⊆ Hn for all n ≥ 0.
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(ii) A graded Hopf algebra is a Hopf algebra H := (H,∆, ε, S) together with a family

{Hn : n ≥ 0} of subspaces of H such that

(a) {Hn} is an algebra grading for H,

(b) {Hn} is a coalgebra grading for H,

(c) S(Hn) ⊆ Hn for all n ≥ 0.

Let H be a Hopf algebra with Hopf algebra filtration {Hn}. Obviously, the associated

graded algebra and coalgebra of H coincide; in fact,

grH =
⊕
n≥0

Hn

is the associated graded Hopf algebra of H. The antipode S : grH → grH is defined by

S(h̄) := S(h) +Hn−1,

for h̄ = h+Hn−1. It is well-defined by Definition 1.1.4 (i)(c).

For any Hopf algebra H, we can consider the coradical filtration of H, which in general

is only a coalgebra filtration. We are able to state exactly when this filtration is, in fact,

a Hopf algebra filtration:

Lemma 1.1.5. [42, Lemma 5.2.8] Let {Hn} be the coradical filtration of H. Then {Hn}

is a Hopf algebra filtration if and only if H0 is a Hopf subalgebra of H.

1.1.3 Skew (Laurent) polynomial rings

Roughly speaking, a skew polynomial ring consists of polynomials in a variable X, with

coefficients in a ring R, where multiplication of X with the elements of R is not necessarily

commutative.

Definition 1.1.6. Let R be a ring, let σ be a ring automorphism of R and let δ : R → R

be a (σ, id)-derivation of R: that is, δ satisfies

δ(rs) = σ(r)δ(s) + δ(r)s,

for all r, s ∈ R. The skew polynomial ring R[X;σ, δ] is the ring generated by R and the

indeterminate X that satisfies the following properties:

(i) R[X;σ, δ] is a free left R-module, with basis {1, X,X2, . . .},

(ii) Xr = σ(r)X + δ(r), for all r ∈ R.
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If σ = id, we write R[X; δ] and if δ = 0, we write R[X;σ].

We also have the notion of a skew Laurent polynomial ring:

Definition 1.1.7. Let R be a ring and let σ be a ring automorphism of R. The skew Laurent

polynomial ring R[X±1;σ] is the ring generated by R andX±1, whereX−1X = XX−1 = 1,

that satisfies the following properties:

(i) R[X±1;σ] is a free left R-module, with basis {. . . , X−2, X−1, 1, X,X2, . . .},

(ii) Xr = σ(r)X, for all r ∈ R.

An alternative way to think about a skew Laurent polynomial ring is as a localisation

of a skew-polynomial ring: R[X±1;σ] ∼= R[X;σ][X]−1.

1.1.4 Skew group rings

Let R be a ring and let G be a group. The group ring RG is the free left R-module with

the elements of G as its basis and multiplication arising from the multiplication in R and

G: (rg)(sh) = (rs)(gh), for all r, s ∈ R, g, h ∈ G, extended linearly to all of RG. In

particular, this means that gr = (1Rg)(r1G) = rg, for all r ∈ R, g ∈ G. There is a more

general notion of a group ring that allows for noncommutativity between elements of G

and R:

Definition 1.1.8. Let R be a ring and let G be a group acting on R via ring automorphisms,

which we write as g · r := g(r) for all r ∈ R and g ∈ G. The skew group ring R ∗ G is

the free left R-module with the elements of G as its basis and multiplication defined by

(rg)(sh) = (rg(s))(gh). In particular, we have gr = (1Rg)(r1G) = g(r)g.

1.2 Quantised enveloping algebras

Quantised enveloping algebras were discovered in the 1980s by Drinfel’d [17] and Jimbo

[24], and have their origins in mathematical physics, with applications to many other areas

of mathematics. They will appear as examples throughout this thesis.

1.2.1 Gaussian binomial coefficients

Let 0 6= q ∈ k. For any integer n > 0, let

(n)q := 1 + . . .+ qn−1 =
qn − 1

q − 1
.
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The q-factorial is defined by setting (0)!q := 1 and

(n)!q := (1)q(2)q · · · (n)q =
(q − 1)(q2 − 1) · · · (qn − 1)

(q − 1)n
.

In fact, (n)!q is a polynomial in q with integer coefficients; when q = 1, it is equal to

the ordinary factorial n!. For 0 ≤ i ≤ n, we define the Gaussian binomial coefficient or

q-binomial coefficient by (
n

i

)
q

=
(n)!q

(i)!q(n− i)!q
.

This is also a polynomial in q with integer coefficients whose evaluation at q = 1 is equal

to the usual binomial coefficient
(
n
i

)
[31, Proposition IV.2.1(a)]. There are analogues of

the identities for binomial coefficients [31, Proposition IV.2.1(c)]:(
n

i

)
q

=

(
n− i
i

)
q

+ qn−i
(
n− 1

i− 1

)
q

=

(
n− 1

q − 1

)
q

+ qi
(
n− 1

i

)
q

. (1.1)

If q is a primitive nth root of unity, then(
n

i

)
q

= 0, for all 1 ≤ i ≤ n− 1. (1.2)

There is an alternative type of q-binomial coefficient that is more convenient when studying

quantised enveloping algebras. For integers 0 ≤ i ≤ n, define

[n]q :=
qn − q−n

q − q−1
,

[n]!q := [1]q[2]q · · · [n]q,[
n

i

]
q

:=
[n]!q

[i]!q[n− i]!q
.

The following equation shows the relationship between the two types of q-binomial coeffi-

cients [13, I.6.1(1)]: [
n

i

]
q

= qi(i−n)

(
n

i

)
q2
.

1.2.2 The definition

Let g be a simple Lie algebra over C of rank n and let C := (aij) be its Cartan ma-

trix. There are integers d1, . . . , dn ∈ {1, 2, 3} such that diaij = djaji; that is (diaij) is a

symmetric matrix. Let q ∈ k∗, set qi := qdi for all 1 ≤ i ≤ n and suppose that qi
2 6= 1.

The quantised enveloping algebra of g, denoted Uq(g), is a k-algebra whose construction

depends on the above choices of C and q. It is the k-algebra with generators E1, . . . , En,
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F1, . . . , Fn and K1
±1, . . . ,Kn

±1, and relations

KiEjKi
−1 = qi

aijEj , KiFjKi
−1 = qi

−aijFj ,

KiKj = KjKi, EiFj − FjEi = δij
Ki −Ki

−1

qi − qi−1
,

1−aij∑
l=0

(−1)l
[

1− aij
l

]
qi

Ei
1−aij−lEjEi

l = 0 (i 6= j),

1−aij∑
l=0

(−1)l
[

1− aij
l

]
qi

Fi
1−aij−lFjFi

l = 0 (i 6= j).

There is a free abelian group G of rank n contained in Uq(g):

G = 〈Ki
±1 : 1 ≤ i ≤ n〉. (1.3)

The following definitions make Uq(g) into a Hopf algebra: for all 1 ≤ i ≤ n,

∆(Ki) = Ki ⊗Ki, ε(Ki) = 0, S(Ki) = Ki
−1,

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ε(Ei) = 0, S(Ei) = −Ki
−1Ei,

∆(Fi) = Fi ⊗Ki
−1 + 1⊗ Fi, ε(Fi) = 0, S(Fi) = −FiKi.

There are Hopf subalgebras of Uq(g) which can be viewed as quantisations of the positive

and negative Borel Lie subalgebras of g. These are U≥0
q (g), which is the Hopf subalgebra

generated by the Ki
±1 and the Ei, 1 ≤ i ≤ n, and U≤0

q (g), which is generated by the Ki
±1

and the Fi, 1 ≤ i ≤ n.

1.3 Pointed Hopf algebras

1.3.1 Definition and examples

Definition 1.3.1. A pointed coalgebra is a coalgebra C with the property that every simple

subcoalgebra of C is one-dimensional.

Since a subcoalgebra is closed under comultiplication, a one-dimensional subcoalgebra

must be of the form kg, for some g ∈ G(C). Therefore, C is pointed if and only if

C0 = kG(C), where C0 is the coradical of C.

Some examples of pointed coalgebras are as follows. Note that, in each case, the

coalgebra involved is, in fact, a Hopf algebra. Hopf algebras generated by grouplikes and

skew-primitives are pointed, and the following examples are of this type.
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Examples 1.3.2. (i) Let G be a group. The coradical of the group algebra kG is kG

itself, so kG is pointed.

(ii) Let g be a Lie algebra. The coradical of the universal enveloping algebra U(g) is

k [42, Example 5.1.6], so U(g) is pointed.

(iii) Let g be a semisimple Lie algebra and let 0 6= q ∈ k. By [43, Theorem 2.2], the

coradical of Uq(g) is kG, where G is as in (1.3). Hence, Uq(g) is pointed.

1.3.2 Braided vector spaces and Yetter-Drinfeld modules

We leave aside pointed Hopf algebras in this section and the next, in order to introduce

some concepts involving braidings.

Definition 1.3.3. A braided vector space is a vector space V with an automorphism c of

V ⊗ V that satisfies the braid equation, that is,

(c⊗ idV )(idV ⊗c)(c⊗ idV ) = (idV ⊗c)(c⊗ idV )(idV ⊗c).

Some important examples of braided vector spaces come from the category H
HYD of

Yetter-Drinfeld modules over a Hopf algebra H.

Definition 1.3.4. Let H be a Hopf algebra. A left Yetter-Drinfeld module V over H is

a k-vector space which is both a left H-module and a left H-comodule and satisfies the

compatibility condition

δ(h · v) =
∑

h1v−1S(h3)⊗ h2 · v0,

for all h ∈ H and v ∈ V .

The tensor product of two Yetter-Drinfeld modules over H is also a Yetter-Drinfeld

module, with the standard action as in [42, Definition 1.8.1] and coaction as in [42, Defi-

nition 1.8.2]. Morphisms in H
HYD are k-linear maps that preserve the action and coaction

by H.

If V,W ∈ H
HYD, then we can define a linear map cV,W : V ⊗W →W ⊗ V by

cV,W (v ⊗ w) =
∑

(v−1 · w)⊗ v0.

The map cV,V makes V into a braided vector space.
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We will mainly be concerned with the case when H = kG, where G is a group. In

this situation, a vector space V is an H-comodule if and only if it is a G-graded vector

space [42, Example 1.6.7]. That is,

V =
⊕
g∈G

Vg, (1.4)

where Vg = {v ∈ V : δ(v) = g ⊗ v}. We will denote kG
kGYD by G

GYD.

Remarks 1.3.5. [2, Remark 1.4] Let G be a group and V a G-graded vector space that is

a left kG-module. Define a linear automorphism c : V ⊗ V → V ⊗ V by

c(x⊗ y) = (g · y)⊗ x,

for all x ∈ Vg, y ∈ V . Then

(i) It follows immediately from the compatibility condition for Yetter-Drinfeld modules

that V ∈ G
GYD if and only if gVh ⊆ Vghg−1 for all g, h ∈ G.

(ii) If V ∈ G
GYD, then (V, c) is a braided vector space.

Now, let G be abelian with Ĝ = Hom(G, k). The Yetter-Drinfeld condition simplifies,

so that V ∈ G
GYD if and only if V is aG-gradedG-module, whose homogeneous components

are G-submodules. We call the action of G on V diagonalisable if

V =
⊕

g∈G,χ∈Ĝ

V χ
g ,

where

V χ
g = {v ∈ V : δ(v) = g ⊗ v, h · v = χ(h)v for all h ∈ G}.

In particular, if G is finite with |G|−1 ∈ k and such that k contains a primitive |G|th root

of unity, then every V in G
GYD is diagonalisable.

Suppose that V is a finite-dimensional vector space of dimension θ and that V is a

diagonalisable member of G
GYD. Pick a basis x1, . . . , xθ of V , where xi ∈ V χi

gi for not

necessarily distinct members χ1, . . . , χθ of Ĝ and g1, . . . , gθ of G, so that

c(xi ⊗ xj) = χj(gi)xj ⊗ xi, (1.5)

for all 1 ≤ i, j ≤ θ. Denote χj(gi) by rij , for convenience.
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Definition 1.3.6. A finite-dimensional braided vector space (V, c) is of diagonal type if V

has a basis x1, . . . , xθ such that

c(xi ⊗ xj) = rijxj ⊗ xi,

for some rij ∈ k∗, 1 ≤ i, j ≤ θ.

Clearly, when G is an abelian group acting diagonalisably on V , (V, c) is of diagonal

type. Conversely, any finite-dimensional braided vector V space of diagonal type can be

realised as a Yetter-Drinfeld module over an abelian group G acting diagonalisably on V :

with V as in the definition above, let g1, . . . , gθ ∈ GL(V ) be defined by gi(xj) = rijxj and

take G to be the group generated by g1, . . . gθ.

1.3.3 Braided Hopf algebras

The majority of the material in this section is taken from [2, §1.3]. Let H be a Hopf

algebra. We can define algebras in H
HYD in the usual way. That is, R ∈ H

HYD is an algebra

in H
HYD if there are maps mR : R⊗R→ R and uR : k → R, which are morphisms in H

HYD

and make R into an associative algebra. Similarly, R ∈ H
HYD is a coalgebra if there are

maps ∆R : R → R ⊗ R and εR : R ⊗ k, which are morphisms in H
HYD and make R into a

coassociative coalgebra.

If R, T are algebras in H
HYD, then we can define a “twisted” version of the usual algebra

R⊗ T , which we denote R⊗T . Let c := cR,T and define the product in R⊗T by

mR⊗T = (mR ⊗mT )(id⊗c⊗ id).

Definition 1.3.7. [2, Definition 1.7]

(i) R = (R,mR, uR,∆R, εR) is a braided bialgebra in H
HYD if the following hold:

(a) (R,mR, uR) is an algebra in H
HYD,

(b) (R,∆R, εR) is a coalgebra in H
HYD,

(c) ∆R : R→ R⊗R and εR : R→ k are morphisms of algebras.

(ii) R = (R,mR, uR,∆R, εR, SR) is a braided Hopf algebra in H
HYD if (R,mR, uR,∆R, εR)

is a braided bialgebra and id ∈ End(R) is convolution invertible with inverse SR.

(iii) A graded braided Hopf algebra is a braided Hopf algebraR = (R,mR, uR,∆R, εR, SR) ∈
H
HYD together with a family {Rn : n ≥ 0} of subspaces of R, such that



CHAPTER 1. INTRODUCTION 12

(a) R =
⊕

n≥0Rn as a vector space;

(b) RmRn ⊆ Rm+n for all m,n ≥ 0,

(c) ∆R(Rn) ⊆
∑n

i=0Ri ⊗Rn−i for all n ≥ 0,

(d) SR(Rn) ⊆ Rn for all n ≥ 0.

The following map is used extensively in Chapter 4. When c is the “flip” map, this

gives the left adjoint action.

Definition 1.3.8. Let R be a braided Hopf algebra in H
HYD and let c := cR,R : R ⊗ R →

R⊗R, with c(r⊗ t) :=
∑

(r−1 · t)⊗ r0 for all r, t ∈ R. The braided adjoint representation

of R is the map adc : R→ End(R) defined by

adc(x)(y) = m(m⊗ S)(id⊗c)(∆⊗ id)(x⊗ y),

for all x, y ∈ R.

Note that if x is primitive, then, for all y ∈ R,

adc(x)(y) = m(id−c)(x⊗ y).

1.3.4 Bosonisation

Let H = (H,∆H , εH , SH) be a Hopf algebra, and let R = (R,∆R, εR, SR) be a braided

Hopf algebra in H
HYD. We change the usual Sweedler notation for ∆R slightly by writing

∆R(r) =
∑

r1 ⊗ r2,

in order to emphasise that R is a braided Hopf algebra.

We now consider a new Hopf algebra formed from R and H by a process called boson-

isation, which was first studied by Radford in [46] and then rediscovered by Majid in [39].

Definition 1.3.9. The bosonisation of R by H is a (non-braided) Hopf algebra, denoted

R#H, with underlying vector space R ⊗H. We write r#h for the element r ⊗ h, where

r ∈ R, h ∈ H. The multiplication, comultiplication, counit and antipode in R#H are

defined as follows:

(r#h)(s#l) :=
∑

r(h1 · s)#h2l,

∆(r#h) :=
∑

r1#(r2)−1h1 ⊗ (r2)0#h2,

ε(r#h) := εR(r)εH(h),

S(r#h) :=
∑

(1#SH(r−1h))(SR(r0)#1).
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Proofs that these definitions satisfy the necessary axioms for R#H to be a Hopf algebra

can be found in [46].

Suppose that H = kG, where G is a group, and that G acts on R via automorphisms.

Then the rule for multiplication in R#kG reduces to the multiplication in the skew group

ring R ∗G. Hence, as algebras, R#kG ∼= R ∗G via r#g 7→ rg.

1.3.5 Decomposition of pointed Hopf algebras

We now return to pointed Hopf algebras, and use the tools developed in the previous

sections to obtain a description of the associated graded Hopf algebra of a pointed Hopf

algebra as a bosonisation.

Let H be a pointed Hopf algebra, with coradical filtration {Hn : n ≥ 0}. Then H0 =

kG, where G := G(H). By Lemma 1.1.5, this means that {Hn} is a Hopf algebra filtration

of H. We can therefore form the associated graded Hopf algebra of H with respect to this

filtration. We write grH = (grH,m, u,∆, ε, S), with grH =
⊕

n≥0Hn.

Define the Hopf algebra projection π : grH → H0 in the obvious way. The algebra of

coinvariants with respect to π is

B := (grH)coπ = {h ∈ grH : (id⊗π)∆(h) = h⊗ 1}.

Then, by [46, Theorem 3], B is a braided Hopf algebra in G
GYD in the following way:

• The action of kG on B is the restriction of the left adjoint action of grH on B,

• The coaction is (π ⊗ id)∆|B : B → kG⊗B,

• B is a subalgebra of grH,

• The comultiplication ∆B, counit εB and antipode SB in B are given by

∆B := (m⊗ id)(id⊗π ◦ S ⊗ id)(id⊗∆)∆|B : B → B ⊗B

εB := ε|B : B → k,

SB := m(π ⊗ S)∆|B : B → B.

Furthermore, B has a Hopf algebra grading with the simplest possible structure for

the degree 0 and 1 components.

Corollary 1.3.10. (i) B has a Hopf algebra grading {Bn} inherited from grH in a

natural way: Bn := B ∩Hn,
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(ii) B0 = k,

(iii) B1 = P (B).

Proof. (i) The coradical filtration of grH coincides with the standard ascending filtra-

tion {(grH)n : n ≥ 0} of grH, where (grH)n :=
⊕

0≤m≤nHm. By [42, Lemma

5.2.12], the coradical filtration of B is therefore given by {B ∩ (grH)n : n ≥ 0}.

Filtering B in this way and taking the associated graded Hopf algebra results in a

graded Hopf algebra with grading {B ∩ Hn : n ≥ 0}. This graded Hopf algebra is

isomorphic to B, by [40, 1.6.4] and [49, §11.1].

(ii) Let b =
∑t

i=1 αigi ∈ B0, where αi ∈ k and gi ∈ G are distinct, 1 ≤ i ≤ t. Then

(id⊗π)∆(b) =
∑t

i=1 αigi⊗gi =
∑t

i=1 αigi⊗1. Since G⊗G is a k-basis for kG⊗kG,

this can happen if and only if t = 1 and g1 = 1, which means b ∈ k.

(iii) This is clear by (ii).

Let V := B1; the subalgebra of B generated by B1 is a Nichols algebra , which we

denote by B(V ). Therefore, B is a Nichols algebra if and only if B = k〈B1〉. We will

provide a formal definition of Nichols algebras in Chapter 4.

Recall from Definition 1.3.9 that the bosonisation B#kG is a Hopf algebra. By [46,

Theorem 3], there is a Hopf algebra isomorphism B#kG ∼= grH with b#g 7→ bg. The

inverse Hopf algebra isomorphism grH ∼= B#kG is given by

h 7→
∑

h1(π ◦ S)(h2)#π(h3),

for h ∈ grH [21, Theorem 3.3].

Therefore, studying the structure and properties of B#kG can provide us with infor-

mation about the pointed Hopf algebra H, through lifting properties from grH to H. The

survey article [2] divides the classification problem of pointed Hopf algebras into three

steps:

(i) Determining the structure of the Nichols algebras B(V ),

(ii) Investigating the properties of the pointed Hopf algebras H, with G := G(H), such

that grH ∼= B(V )#kG,

(iii) Determining which pointed Hopf algebrasH satisfy grH ∼= B(V )#kG. This is equiv-

alent to determining which pointed Hopf algebras are generated by grouplike and
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skew-primitive elements. [2, Conjecture 5.7] suggests that finite-dimensional pointed

Hopf algebras over algebraically closed fields of characteristic zero satisfy this con-

dition. However, this is known to be false for infinite-dimensional pointed Hopf

algebras and for finite-dimensional pointed Hopf algebras over a field of positive

characteristic.



Chapter 2

A PBW-basis for diagonal Nichols

algebras

This chapter is mainly drawn from [32], which employs some unusual terminology. We

provide more explanation where needed and simplify some of the definitions and their

consequences. This enables us to state the main results, Theorems 2.2.11 and 2.3.7, and

goes a little way towards their outline proofs, which gives context for later results in

Chapters 3 and 4. However, we expand the proof of Theorem 2.4.1 from that in [32], since

the technique from it is used in Chapter 3.

We start with an alphabet of n letters and introduce some combinatorial definitions

on words in these letters. We then show a way of constructing certain polynomials from

words in non-commuting variables, which can be multiplied together in a particular order

to give a PBW-basis for a free algebra in n variables. From this basis, we obtain a PBW-

basis for the Hopf algebra bosonisation of a Hopf algebra generated by skew-primitive

elements and a group algebra, when the skew-primitives commute with the group elements

up to multiplication by scalars. Finally, as an application of the basis, we show that the

bosonisation Hopf algebra is noetherian if there is only a finite number of PBW-generators.

2.1 Lyndon words

Let X = {x1, . . . , xn} be a finite, totally ordered set with ordering

x1 < x2 < · · · < xn,

16
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and let X be the set of words in the elements of X. The empty word is denoted 1, and

the length l(u) of a word u ∈ X is the number of letters in u. The structure of u is

(m1, . . . ,mn) ∈ Z≥0
n, where u contains mi occurrences of xi, for 1 ≤ i ≤ n. To each xi,

associate a positive integer di; define the degree of u by deg(u) := m1d1 + . . .+mndn.

The lexicographic order on X is the total order defined by u < v if and only if either

• v = uu′ for some u′ ∈ X, that is, u is the beginning of v, or

• u = wxiu
′, v = wxjv

′ for some w, u′, v′ ∈ X and i < j. That is, by moving from

left to right in u and v until the occurrence of the first distinct letters, xi and xj

respectively, we have i < j.

This is the ordering that is found in dictionaries. For example, the set of words of length

two or less in two letters is ordered as follows:

x1 < x1
2 < x1x2 < x2 < x2x1 < x2

2.

The ordering is preserved by left multiplication, but not always by right multiplication.

For example, x1 < x1
2, but x1

2x2 < x1x2. However, if u < v and u is not the beginning

of v, then the ordering is preserved by right multiplication, even right multiplication by

different words. In particular, this holds when l(u) = l(v).

Consequently, we can always “cancel” words from orderings on the left: wu < wv

implies u < v. However, if uw < vw, we can only cancel on the right when u is not the

beginning of v. Again, this holds when l(u) = l(v).

Definition 2.1.1. A non-empty word u ∈ X is called a Lyndon word (standard word in

[32]) if u is less than any of its proper endings. That is, u 6= 1 and for every possible

decomposition u = vw, with v, w ∈ X non-empty, then u < w.

There is an alternative condition for checking whether a word is Lyndon:

Lemma 2.1.2. [32, Lemma 2] A non-empty word u is Lyndon if and only if, for every

decomposition u = vw where v, w ∈ X are non-empty, then u < wv.

Proof. If u = vw is Lyndon, with v, w ∈ X non-empty, then u < w by definition. Clearly, u

is not the beginning of w and so the ordering u < w is preserved under right multiplication

of either side by any word. Right-multiplying by v on the right hand side gives u < wv,

as required.
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For the converse, suppose u is such that for every decomposition u = vw, where

v, w ∈ X are non-empty, we have u < wv. For any such decomposition u = vw, it is clear

that u 6= w, since l(u) > l(v), so either u < w or u > w. Suppose u > w; we show that

this leads to a contradiction and the lemma follows. Since u < wv, we must have that w

is the beginning of u and so u = ww′ for some non-empty w′ ∈ X. By hypothesis,

u = ww′ < wv and u = vw < w′w.

Since l(v) = l(w′), we can cancel the w’s, which gives both w′ < v and v < w′, a

contradiction.

The simplest non-trivial examples of Lyndon words are those defined on an alphabet

of two letters.

Example 2.1.3. The Lyndon words of length five or less in two letters are as follows:

x1, x2, x1x2, x1
2x2, x1x2

2, x1
3x2, x1

2x2
2, x1x2

3,

x1
4x2, x1

3x2
2, x1

2x2x1x2, x1
2x2

3, x1x2x1x2
2, x1x2

4.

We note in passing, since it is not required later, that the Lyndon words in two letters are

x2 and

x1
m1x2

n1 · · ·x1
mtx2

nt , mi > 0 ∀ i, nj > 0 ∀ j < t, nt ≥ 0, (2.1)

such that for all 0 ≤ i ≤ t, ∃ k ≥ 0 such that ∀ 0 ≤ j < k,

m1+j = mi+j , n1+j = ni+j

and either

m1+k > mi+k

or

m1+k = mi+k and n1+k < ni+k.

Evidently, for any X, there is an infinite number of Lyndon words, and it is difficult,

even for |X| = 2, to write down an explicit description of them. However, there is an

algorithm that gives a unique way of decomposing a Lyndon word into Lyndon words of

smaller length:

Theorem 2.1.4. [51, Theorem 13] Every non-empty Lyndon word u ∈ X \X has a fixed

decomposition u = u′u′′, with u′ and u′′ non-empty Lyndon words such that either u′ ∈ X

or the decomposition of u′ is u′ = vw with w ≥ u′′.
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This decomposition is called the Shirshov decomposition of u and is obtained induc-

tively by choosing u′′ to be the longest proper ending of u that is a Lyndon word.

2.2 Brackets in the free algebra

2.2.1 General definition

Let k〈X〉 denote the free k-algebra generated by X. Any element of k〈X〉 is a linear

combination of words in X, so we will sometimes refer to it as a polynomial, even though

the letters do not commute and so, for example, x1x2x1 is not equal to x1
2x2. We can

equally well think of k〈X〉 as the monoid algebra kX, or as the tensor algebra T (V ), where

V is the vector space with basis X.

For f ∈ k〈X〉, the leading word f of f is the lexicographically smallest word occurring

with nonzero coefficient in f . For example, if f = 2x1 + x1x2 + 5x2 + 2x2x1, then f = x1.

In general, fg 6= fg. For example, if f = x1 + x1x2 and g = x3 then

fg = x1x2x3 6= x1x3 = fg.

However, if f is not the beginning of any other word in f then

fg = fg. (2.2)

In particular, if f and g are homogeneous polynomials, the above equation holds.

Definition 2.2.1. Let [ , ] : k〈X〉 × k〈X〉 → k〈X〉 be a bilinear operation. The set of

nonassociative words is defined inductively as follows:

(i) the empty word 1 and all letters x ∈ X are nonassociative words;

(ii) a ∈ k〈X〉\X is a nonassociative word if and only if a = [b, c] for some nonassociative

words b, c ∈ k〈X〉.

Note that, despite the name, in general a nonassociative word is not a member of X

but rather a linear combination of words in X.

Let a = [b, c] ∈ k〈X〉 be a nonassociative word and suppose b /∈ X. Then b = [d, e]

for some d, e ∈ k〈X〉. Likewise, we can replace c with [f, g] if c /∈ X. We can then

repeat the process with d, e, f, g, etc., until the only subwords that appear are letters. For

example, [[x1, x2], x1] and [x1, [x2, x1]] are nonassociative words written in this form. Both

polynomials arise by inserting brackets into the word x1x2x1 in a particular way. Clearly,
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there is more than one possible outcome. However, if u is a Lyndon word, we can define

a unique method for inserting brackets into the word u. We will denote the resulting

nonassociative word by [u] and define it inductively as follows:

Definition 2.2.2. The set

{[u] ∈ k〈X〉 : u a Lyndon word}

is called the set of nonassociative Lyndon words, where

(i) for u ∈ X, [u] = u;

(ii) for l(u) > 1, let u = u′u′′ be the Shirshov decomposition of u. Then

[u] = [[u′], [u′′]].

The uniqueness of the definition of [u] follows by the uniqueness of the Shirshov decom-

position in Theorem 2.1.4. Therefore, there is a bijective correspondence between Lyndon

words and nonassociative Lyndon words, given by u 7→ [u].

Examples 2.2.3. (i) Let u = x1x2
n, where n ≥ 1. Then

[u] = [[x1x2
n−1], x2]

= [[[x1x2
n−2], x2], x2]

...

= [· · · [[x1, x2], x2], · · · , x2].

(ii) Let u = x1
2x2x1x2

2. Then

[u] = [x1, [x1x2x1x2
2]]

= [x1, [[x1x2], [x1x2
2]]]

= [x1, [[x1, x2], [[x1x2], x2]]]

= [x1, [[x1, x2], [[x1, x2], x2]]].

(iii) Let u = x1x2
2x3x2x3

2. Then

[u] = [x1, [x2
2x3x2x3

2]]

= [x1, [x2, [x2x3x2x3
2]]]

= [x1, [x2, [[x2x3], [x2x3
2]]]]

= [x1, [x2, [[x2, x3], [x2, [x3
2]]]]]

= [x1, [x2, [[x2, x3], [x2, [x3, x3]]]].
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2.2.2 Skew-commutators

We will now define a particular type of bilinear map [ , ] : k〈X〉 ⊗ k〈X〉 → k〈X〉, which

we will adopt for the rest of this chapter.

Let G be an abelian group and associate every xi ∈ X with gi ∈ G and a character

χi : G → k \ {0}. For a word u = xi1 · · ·xit , let gu := gi1 · · · git . Similarly, we define the

character χu := χi1 · · ·χit . For u, v ∈ X, let pu,v = χu(gv). It is easy to check the following

equalities:

puu1,v = pu,vpu1,v, pu,vv1 = pu,vpu,v1 . (2.3)

We now define

[ , ] : X⊗ X→ k〈X〉, [u, v] = uv − pu,vvu, (2.4)

for u, v ∈ X. When either term is a product of words, we have the following formulas:

[u, vw] = [u, v]w + pu,vv[u,w] (2.5)

[uv,w] = pv,w[u,w]v + u[v, w]. (2.6)

By specifying that [ , ] should be bilinear, we can extend it uniquely to produce a

map, which we also denote by [ , ]:

[ , ] : k〈X〉 ⊗ k〈X〉 → k〈X〉.

Example 2.2.4. (i) The “trivial” example. Let X = {x1, . . . , xn} and let G = {1}.

Consequently, χ is the trivial character, and [xi, xj ] = xixj−xjxi for all 1 ≤ i, j ≤ n.

Even this case is, in fact, highly non-trivial. It yields, as a special case of Theorem

2.2.11, the famous theorem of Jacobson on the enveloping algebra of free Lie algebras

[23, Theorem V.7], as will be explained at the end of §2.2.2.

(ii) This will be a recurring example, which we revisit in Examples 2.3.1, 2.3.4 and 2.3.8.

It leads to a PBW-basis for U≥0
q (sl3), the quantised enveloping algebra of the positive

Borel Lie subalgebra of sl3, introduced in §1.2.2. Let X = {x1, x2} with x1 < x2.

Let G be the group Z × Z and let g1, g2 together generate G. Fix q ∈ k \ {0} and

define characters χ1, χ2 : G→ k \ {0} by

χ1(g1) = q−2, χ1(g2) = q,

χ2(g1) = q, χ2(g2) = q−2.
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We associate x1 with g1 and x2 with g2. Following the procedure above, we have a

bilinear operation [ , ] : k〈X〉 × k〈X〉 → k〈X〉, where, for example,

[x1, x2] = x1x2 − χ1(g2)x2x1 = x1x2 − qx2x1,

[x1, [x1, x2]] = [x1, x1x2 − qx2x1]

= x1
2x2 − (χ1(g1)χ1(g2) + q)x1x2x1 + qχ1(g2)χ1(g1)x2x1

2

= x1
2x2 − (q−1 + q)x1x2x1 + x2x1

2. (2.7)

This definition behaves nicely with respect to the Lyndon nonassociative words.

Lemma 2.2.5. Let u ∈ X be a Lyndon word, with corresponding nonassociative Lyndon

word [u].

(i) If [u] = [[v], [w]] then [u] = [v][w]− pv,w[w][v].

(ii) The polynomial [u] has degree l(u), is homogeneous in the letters of u (with the same

multiplicities) and has leading word u with coefficient 1.

Proof. First, note that if l(u) = 1, then [u] = u is a polynomial of degree l(u) which is

homogeneous in u. We now prove by induction on l(u) > 1 that if [u] = [[v], [w]] then

[u] = [v][w]− pv,w[w][v], and that the first two claims in (ii) are true.

We have l(v) < l(u), l(w) < l(u) and we can write [v] and [w] as sums of words with

coefficients from k:

[v] =
∑
i

αivi, [w] =
∑
j

βjwj

for some αi, βj ∈ k and vi, wj ∈ X. By induction, [v] is a polynomial of degree l(v) which

is homogeneous in the letters of v. Hence, for all i, vi is a monomial of degree l(v) which

is equal to a permutation of the letters of v. The obvious analogous conditions hold for

[w], and for wj for all j. By (2.3), pvi,wj = pv,w for all i, j. Therefore, using the bilinearity

of [ , ],

[u] = [[v], [w]] =
∑
i,j

αiβj [vi, wj ]

=
∑
i,j

αiβj(viwj − pvi,wjwjvi)

=
∑
i,j

αiβj(viwj − pv,wwjvi)

= [v][w]− pv,w[w][v].
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This proves (i) for u. Moreover, since u = vw, it is clear that [u] is a polynomial of degree

l(u) which is homogeneous in the letters of u.

It only remains to prove that the leading word of [u] is u with coefficient 1. Again, we

induct on l(u). If l(u) = 1, the statement is trivial. If l(u) > 1,

[u] = [[v], [w]] = [v][w]− pv,w[w][v]

for some nonassociative Lyndon words [v] and [w]. By (2.2) and induction, the leading

word of [v][w] is vw with coefficient 1; the leading word of [w][v] is wv and u = vw < wv,

by Lemma 2.1.2.

Definition 2.2.6. Let u ∈ X be a Lyndon word. Then [u], the corresponding nonassociative

Lyndon word, is called a super-letter .

As for the general definition of [ , ], there is a bijective correspondence between Lyn-

don words and super-letters, defined by u 7→ [u]. Therefore, we can define an order on the

set of super-letters by

[u] < [v]⇔ u < v. (2.8)

Using this total ordering, we can consider the set of super-letters as an alphabet and make

the obvious definition of a “super-word”.

Definition 2.2.7. (i) A word [u] in super-letters is called a super-word .

(ii) Let [u] := [u1] · · · [ut], where [u1], . . . , [ut] are super-letters. The super-word [u] is

monotonic if, in the ordering (2.8), [u1] ≥ · · · ≥ [ut].

Recall from the start of §2.1 the definitions of the structure and degree of a word u ∈ X.

By Lemma 2.2.5, super-letters, and hence super-words, are homogeneous in each xi, so

their structures and degrees can be defined in the obvious way. This notion of the degree

of a super-letter or super-word should not be confused with the polynomial degree of the

polynomial in xi it defines. Since G is commutative, gu and χu are the same for words of

the same structure and hence for super-letters and super-words of the same structure.

It turns out that the ordering on monotonic super-words works in exactly the way we

would expect:

Lemma 2.2.8. [32, Lemma 5] Let

V = [v1][v2] · · · [vm], W = [w1][w2] · · · [wn]



CHAPTER 2. A PBW-BASIS FOR DIAGONAL NICHOLS ALGEBRAS 24

be monotonic super-words, so [v1], . . . , [vm] and [w1], . . . , [wn] are super-letters, with v1 ≥

v2 ≥ . . . ≥ vm and w1 ≥ w2 ≥ . . . ≥ wn. Let

v := v1v2 · · · vm, w := w1w2 · · ·wn.

Then, with the lexicographic ordering on super-words, defined using the ordering on super-

letters defined in (2.8), V < W if and only if v < w. Moreover, the leading word of V is

v with coefficient 1.

We also have the following lemma about the representation of non-Lyndon nonasso-

ciative words as a linear combination of super-words:

Lemma 2.2.9. [32, Lemma 6] Let u and u1 be Lyndon words with u < u1. Then [[u], [u1]]

is a linear combination of super-words W , where

W = [w1] · · · [wt], [wi] super-letters

such that [u] < [wi] < [u1] for all i, and such that uu1 ≤ wi for all i. The degree of every

super-word W in the variables x1, . . . , xn is equal to that of uu1.

We provide a full proof of the following lemma, since a similar technique will be used

later in the chapter and in Chapter 3.

Lemma 2.2.10. [32, Lemma 7] Let W be a non-monotonic super-word. Then W is a lin-

ear combination of lexicographically greater monotonic super-words of the same structure,

whose super-letters lie between (not strictly) the greatest and least super-letters of W .

Proof. We induct on the polynomial degree of the polynomial defined by W , which is the

same as the length of the underlying word of W . When W is of degree 1, W must be

a letter, which is monotonic, so there is nothing to prove. Now assume that the lemma

holds for super-words of polynomial degree less than m and let m be the degree of the

polynomial defined by W .

Let the structure of W be (m1, . . . ,mn), where m1 + · · ·+mn = m. Consider the finite

set S of super-words with the same structure as W . The lexicographically greatest such

super-word is

[xn]mn [xn−1]mn−1 · · · [x1]m1 ,

which is monotonic. We suppose that

W is the lexicographically greatest super-word in S such that the lemma fails (2.9)
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and aim for a contradiction.

If W is a super-letter, then it is monotonic and there is nothing to prove. Therefore, let

W = UU1U2 · · ·Ut, where t ≥ 1, U,U1, U2, . . . , Ut are super-letters and deg(U1 · · ·Ut) < m.

If U1 · · ·Ut is non-monotonic, by the induction hypothesis it is a linear combination of

lexicographically greater monotonic super-words of the same structure. Therefore, without

loss of generality, we can assume that U1 · · ·Ut is monotonic: that is,

U1 ≥ U2 ≥ · · · ≥ Ut.

If U ≥ U1, then W is monotonic and there is nothing to prove, so suppose U < U1.

Then by Lemma 2.2.5,

W = [U,U1]U2 · · ·Ut + pu,u1U1UU2 · · ·Ut, (2.10)

where U = [u] and U1 = [u1]. Consider the second summand in the above equation:

U1UU2 · · ·Ut is a member of S and is lexicographically greater than W , since U1 > U .

Therefore, by our assumption (2.9), the second summand satisfies the lemma. Now con-

sider the first summand in (2.10). By Lemma 2.2.9,

[U,U1] =
∑
i

αi
∏
j

[wij ],

where for all i, j, αi ∈ k and [wij ] is a super-letter with [wij ] > U . Consequently,∏
j [wij ]U2 · · ·Us > W . Using assumption (2.9), the first summand of (2.10), and hence

W , can be written in the required form.

The importance of the monotonic super-words can be seen in the following theorem:

Theorem 2.2.11. [32, Theorem 1] The set of all monotonic super-words is a basis for

k〈X〉.

Consider the special case where G is the trivial group, so χ = 1. Let g be the free

Lie algebra on {x1, . . . , xn}. The theorem reduces to [23, Theorem V.7], which states that

U(g) ∼= k〈X〉.

2.3 Constructing the PBW-basis

Let H be a Hopf algebra generated by an abelian group G = G(H) of grouplike elements

and by skew-primitive elements a1, . . . an, where each ai is associated with an element
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gi ∈ G, such that

∆(ai) = ai ⊗ 1 + gi ⊗ ai,

and a character χi : G→ k \ {0}. In addition, we assume the following commutation rule

holds:

aig = χi(g) · gai, (2.11)

for all g ∈ G. In other words, G acts diagonalisably on the vector space spanned by the

ai, 1 ≤ i ≤ n. There could, of course, be relations among the ai, 1 ≤ i ≤ n, and the g ∈ G.

However, we will construct H as a quotient of a free algebra acted on by a group algebra,

which provides a way to apply the theory from the previous section to H.

Let x1, . . . , xn be indeterminates, and let k〈x1, . . . , xn〉 denote the free algebra on

{x1, . . . , xn}. Let G act as k-algebra automorphisms of k〈x1, . . . , xn〉 by setting

g(xi) := χi(g)xi, (2.12)

for g ∈ G and 1 ≤ i ≤ n, and form the skew group algebra

T := k〈x1, . . . , xn〉 ∗G.

Define ∆: T → T ⊗ T by

∆(g) = g ⊗ g, ∆(xi) = xi ⊗ 1 + gi ⊗ xi,

for g ∈ G and 1 ≤ i ≤ n. If T is to be a Hopf algebra with comultiplication ∆, this

uniquely determines the counit ε : T → k and antipode S : T → T by

ε(g) = 1, ε(xi) = 0

S(g) = g−1, S(xi) = −gxi−1xi,

for g ∈ G and 1 ≤ i ≤ n. In fact, it can be easily checked that these maps make T into

a Hopf algebra, with G = G(T ). Then, clearly, there is an epimorphism of Hopf algebras

T → H, defined by π(xi) = ai, 1 ≤ i ≤ n, and π(g) = g for all g ∈ G. It restricts to a

Hopf algebra epimorphism

π : k〈x1, . . . , xn〉� k〈a1, . . . , an〉 ⊂ H.

Using G and χ, T can be endowed with a skew-commutator, as in (2.4).
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Example 2.3.1. Suppose X, G, χ1 and χ2 are as in Examples 2.2.4 (ii). We construct the

Hopf algebras T as above. We have T = k〈X〉 ∗G, where the relations are

g1x1 = q−2x1g1, g2x1 = qx1g2, g1x2 = qx2g1, g2x2 = q−2x2g2.

The Hopf algebra structure on T is obtained by making all g ∈ G grouplike, and setting

∆(x1) = x1 ⊗ 1 + g1 ⊗ x1, ε(x1) = 0, S(x1) = −g1
−1x1,

∆(x2) = x2 ⊗ 1 + g2 ⊗ x2, ε(x1) = 0, S(x1) = −g1
−1x1.

Keeping the same G, χ1 and χ2, let H be a Hopf algebra generated by G = G(H) together

with skew-primitive elements a1, a2, associated to g1, χ
1 and g2, χ

2, respectively, such that

(2.12) holds, with the additional relations

ai
2aj − (q + q−1)aiajai + ajai

2 = 0,

for i, j ∈ {1, 2} with i 6= j. Then there is an obvious Hopf algebra epimorphism T → H,

which restricts to a Hopf algebra epimorphism

k〈x1, x2〉�
k〈a1, a2〉

〈ai2aj − (q + q−1)aiajai + ajai2 : i 6= j〉
.

The map π enables us to translate the definitions and results from the previous section

and those above to H. When we speak of, for example, a super-letter in H, this means an

element of H that is equal to π([u]) for some super-letter [u] ∈ T . Similarly, we can define

super-words and monotonic super-words in H.

Definition 2.3.2. (i) A G-super-word is a product in T of the form gW , where g ∈ G

and W ∈ T is a super-word.

(ii) A monotonic G-super-word is a G-super-word gW such that W is a monotonic

superword.

By (2.12) every product of a super-word and a grouplike is a G-super-word of the

same structure. It is a consequence of Theorem 2.2.11 and the construction of T that T

is spanned by the monotonic G-superwords.

Recall the definition of structure and degree of super-words and super-letters in T .

Since the relations in H may not respect the degree in T , the deg function is not well-

defined on H. This forms the basis for the following definition.

Definition 2.3.3. A super-letter π([u]) ∈ H is hard if it is not a linear combination of the

following elements of H:
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• super-words π(W ) with deg(W ) = deg([u]) such that if

W = [u1] · · · [un], [u1], . . . , [un] super-letters,

then [ui] > [u] for 1 ≤ i ≤ n;

• G-super-words gπ(V ) such that deg(V ) < deg([u]).

Example 2.3.4. Let H and T be as in Example 2.3.1. Then [x1
2x2] is a super-letter in T ,

but π([x1
2x2]) is not a hard super-letter in H, since, using (2.7),

π([x1
2x2]) = π(x1

2x2 − (q + q−1)x1x2x1 + x2x1
2)

= a1
2a2 − (q + q−1)a1a2a1 + a2a1

2

= 0.

In fact, it can be shown that the only hard super-letters in H are π(x1) = a1, π(x2) = a2

and π([x1x2]) = a1a2 − qa2a1.

Definition 2.3.5. The height h(π([u])) of a super-letter π([u]) ∈ H of degree d is the least

natural number with the following properties:

(i) pu,u is a primitive tth root of unity for some t ≥ 1 and either h = t or h = tlm, where

l = char k > 0 and m is a non-negative integer.

(ii) the super-word π([u]h) is a linear combination of the following elements of H:

• super-words of degree hd in lexicographically greater super-letters than [u];

• G-super-words of a lesser degree than [u].

If no such natural number h(π([u])) exists, we say h =∞.

Definition 2.3.6. A monotonic G-super-word in H,

gπ(W ) = gπ([u1]k1 · · · [un]kn), [u1] > [u2] > · · · > [un]

is restricted if ki < h(π([ui])) for all 1 ≤ i ≤ n.

We are now able to state the theorem giving a PBW-basis for H.

Theorem 2.3.7. [32, Theorem 2] The set of monotonic restricted G-super-words in hard

super-letters forms a basis for H.
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A motivating example to illustrate the application of this theorem is the Borel Hopf

subalgebra Uq
≥0(g) of Uq(g), for a semisimple Lie algebra g. A PBW-basis for Uq

≥0(g)

can be found in [16, Theorem 9.3(i)]. We consider the simplest non-trivial case: g = sl3

and show that it is a Hopf algebra of the form of H:

Example 2.3.8. Uq
≥0(sl3(k)) is the k-algebra with generators E1, E2,K

±1
1 ,K±1

2 , and rela-

tions, for i, j ∈ {1, 2}:

KiKj = KjKi

KiEjKi
−1 = q2Ej (i = j), KiEjKi

−1 = q−1Ej (i 6= j),

Ei
2Ej − (q + q−1)EiEjEi + EjEi

2 = 0 (i 6= j).

There is a Hopf algebra structure on Uq
≥0(sl3(k)) determined by the following:

∆(Ki) = Ki ⊗Ki, ε(Ki) = 1, S(Ki) = Ki
−1,

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ε(Ei) = 0, S(Ei) = −Ki
−1Ei.

Let H be as in Example 2.3.1. Then, as Hopf algebras, H ∼= Uq
≥0(sl3) via

a1 7→ E1, a2 7→ E2, g1 7→ K1, g2 7→ K2.

Therefore, the above theorem gives a PBW basis for Uq
≥0(sl3):

{K1
pK2

qE2
i(E1E2 − qE2E1)jE1

l : i, j, l ∈ Z≥0, p, q ∈ Z}.

2.4 A condition ensuring that H is noetherian

Throughout §2.4, we keep the assumptions on H from §2.3, including (2.11) and (2.12).

In addition, we assume that

H has only finitely many hard super-letters. (2.13)

Theorem 2.4.1. [32, Corollary 5] If (2.13) holds and G is finitely generated, then H is

left and right noetherian.

In order to prove Theorem 2.4.1, we construct a filtration on H such that the associated

graded algebra grH is noetherian.
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The filtration

Let R be the set of all words in k〈a1, . . . an〉 whose degree is at most Dĥ, where

D = max {degree of a hard super-letter in H}

and

ĥ = max {2, max {h : h is height of a hard super-letter in H of finite height}}.

For a word u ∈ R, let

L(u) = {u′ ∈ R : u′ ≥ u}

and define

n(u) = |L(u)|.

Since a1 is the lexicographically smallest word in R, we have L := n(a1) = |R|. We choose

M ∈ N such that M is greater than the maximum length of any word in R.

Definition 2.4.2. (i) The filtration degree on hard super-letters π([u]) ∈ H is defined by

Deg(π([u])) = ML+1 deg(u) +Mn(u). (2.14)

(ii) The filtration degree of a PBW-basis element gπ(W ) ∈ H is the sum of the filtration

degrees of the super-letters of π(W ). That is, if

W = [w1][w2] · · · [wt], [w1] ≥ [w2] ≥ . . . ≥ [wt]

where π([wi]) is a hard super-letter for all i, and π(W ) is restricted, then

Deg(gπ(W )) = Deg(π([w1])) + Deg(π([w2])) + · · ·+ Deg(π([wt])).

(iii) The filtration degree of any element h ∈ H is the maximal filtration degree of the

basis elements occurring in its PBW-basis decomposition. That is, if h has PBW-

basis decomposition

h =
∑
i

αiπ(giWi),

where αi ∈ k and giWi are PBW-basis elements for all i, then

Deg(h) = max{Deg(π(giWi)}.
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Lemma 2.4.3. [32, Lemma 14] If (2.13) holds , then the function Deg defines a filtration

on H, with

H0 = kG, Hk = {T ∈ H : Deg(T ) ≤ k}. (2.15)

Proof. All that needs to be shown is that HkHs ⊂ Hk+s. That is, we must show that, for

elements T1 and T2 of H, that

Deg(T1T2) ≤ Deg T1 + Deg T2. (2.16)

To do this, we construct another degree D′ associated to linear combinations of G-

superwords - in other words, elements of H that are not necessarily written in the form

of their PBW-basis decomposition. For h ∈ H, D′(h) will depend not only on h, but on

the particular way in which h is expressed as a linear combination of G-super-words, so

D′ is not a well-defined function. To avoid cumbersome notation, we will suppress the

particular expression of h when we write D′(h), if the expression is clear from the context.

Definition 2.4.4. (i) The D′ degree of any super-letter π([u]) ∈ H, which we do not

assume to be necessarily hard, is given by formula (2.14).

(ii) The D′-degree of a product of super-letters is the sum of D′-degrees of its factors.

That is, if U ∈ R with

U = gπ([u1][u2] · · · [ut]),

where g ∈ G, and, for all i, π[ui] is a super-letter, which we do not assume to be

necessarily hard, then

D′(U) = D′(π([u1])) +D′(π([u2])) + · · ·+D′(π([ut])).

(iii) The D′-degree of an element h ∈ H is the maximum D′-degree of its summands.

That is, if

h =
∑
i

αiπ(giUi),

where αi ∈ k and giUi is a G-super-word, which we do not assume to be necessarily

monotonic, restricted, or a word in hard super-letters, then

D′(h) = max{D′(π(giUi)}.
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We shall prove below that,

if h ∈ H is written as any possible linear combination of the image of

G-super-words under π, then D′(h) does not increase when h is expressed (2.17)

as a linear combination of PBW-basis elements.

Before doing this, we note that (2.16) would then follow. For, when h ∈ H is written in

its PBW-basis decomposition form, we have, by the definition of D′,

D′(h) = Deg(h). (2.18)

Let T1 and T2 be given in their PBW-basis form and consider the form of T1T2 given by

simply juxtaposing the linear combinations of PBW-basis elements defining T1 and T2.

Then

Deg(T1T2) ≤ D′(T1T2) = Deg T1 + Deg T2,

where the inequality follows from (2.18) and (2.17), and the equality from (ii) of Definition

2.4.4 and (2.18).

We now prove (2.17). Note that expressing any element of H as a linear combination

of PBW-basis elements requires the following operations:

(i) Replacing any non-hard super-letter by a linear combination of super-words of the

same degree in lexicographically greater super-letters plus a linear combination of

G-super-words of lesser degree. We can do this by Definition 2.3.3, the definition of

“hard”.

(ii) Replacing instances of π([u]h), where π([u]) is a hard super-letter and h = h(π([u])),

by a linear combination of super-words of the same degree in lexicographically greater

super-letters plus a linear combination of the image of G-super-words under π of

lesser degree. We can do this by Definition 2.3.5, the definition of “height”.

(iii) Replacing any non-monotonic super-word with a linear combination of monotonic

super-words of the same degree in lexicographically greater super-letters. We can do

this by Lemma 2.2.10.

These three operations are then repeated, if necessary. This process must lead to the

PBW-basis decomposition, since it can only be carried out a finite number of times. This

is because each step replaces a super-letter or super-word with a linear combination of
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super-words, each super-word either having strictly smaller degree, or having the same

degree but being lexicographically bigger, and there are only finitely many super-words

satisfying these conditions. We consider each of these operations separately and show that

carrying out each of them does not increase D′.

(i) Let π([u]) ∈ R be a non-hard super-letter. Then we can write π([u]) as follows:

π([u]) =
∑
i

αi

m(i)∏
j=1

π([wij ]) +
∑
s

βsgs

m′(s)∏
t=1

π([vst]). (2.19)

In (2.19), αi, βj ∈ k for all i, j; gs ∈ G for all s; and π([wij ]) and π([vst]) are

super-letters for all i, j, s, t; such that

• [wij ] > [u] for all i, j,

•
∑

j degwij = deg u for all i, j,

•
∑

t deg vst ≤ deg u− 1.

By definition of R, all wij , all products
∏m(i)
j wij , all vst and all products

∏m′(s)
t vst

belong to R. Therefore, their lengths are less than M and so the number of factors

m(i),m′(s) in every summand is less than M . Hence

D′
(m(i)∏

j

π([wij ])
)

=
∑
j

ML+1 degwij +
∑
j

Mn(wij)

= ML+1 deg u+
∑
j

Mn(wij)

< ML+1 deg u+M ·Mn(u)−1

= ML+1 deg u+Mn(u) = D′(π([u])).

Similarly,

D′
(m′(s)∏

t

π([vst])
)

=
∑
s

ML+1 deg vst +
∑
s

Mn(vst)

< ML+1(deg u− 1) +M ·ML

= ML+1 deg u

= D′(π([u]))−Mn(u) < D′(π([u])).

Therefore,

D′(
∑
i

αi

m(i)∏
j=1

π([wij ]) +
∑
s

βsgs

m′(s)∏
t=1

π([vst])) < D′(π([u])).
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(ii) The argument is exactly the same when π([u]h) is replaced with

∑
i

αi

m(i)∏
j=1

π([wij ]) +
∑
s

βsgs

m′(s)∏
t=1

π([vst]).

(iii) We now use the process of Lemma 2.2.10 to replace non-monotonic super-words.

Let W be a non-monotonic super-word. By Lemma 2.2.10, W can be written as a

linear combination of monotonic super-words of the same degree. We induct on the

degree of the polynomial defined by W to prove that D′(π(W )) is unincreased.

If the degree of the polynomial defined by W is 1, W is trivially always monotonic.

If the polynomial degree is 2, since W is non-monotonic, we have

W = [u][u1], u < u1,

where u, u1 ∈ X. By Lemma 2.2.5,

W = [u, u1] + pu,u1 [u1][u].

For the second summand,

D′(π(pu,u1 [u1][u])) = D′(π(W )),

since it is just a scalar multiple of a rearrangement of the super-letters of W . We

now calculate a bound for the first summand. By Lemma 2.2.9,

[u, u1] =
∑
i

∏
j

[wij ],

where [wij ] > [u] and
∏
j [wij ] has the same degree as W , for all i, j. Hence, wij ∈ R,

so n(wij) ≤ n(w) − 1. Also, the number of factors in
∏
j [wij ] is less than M .

Therefore,

D′(
∏
j

π([wij ])) =
∑
j

ML+1 deg(wij) +
∑
j

Mn(wij)

= ML+1 degw +
∑
j

Mn(wij)

< ML+1 degw +M ·Mn(w)−1

= ML+1 degw +Mn(w) = D′(π(W )).

So we have

π(W ) =
∑
i

∏
j

π([wij ]) + π(pu,u1 [u1][u]),
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where the RHS is a linear combination of monotonic super-words, as required. We

have just shown that both summands have D′-degree less than or equal to D′(π(W )),

so the polynomial degree 2 case is proved.

Now for the induction step. Suppose the polynomial degree is n ≥ 2 and let W =

UU1 · · ·Ut be non-monotonic. Then from (2.10) in the proof of Lemma 2.2.10, W =∑
k UWi, such that

UWk = [U, V1]V2 · · ·Vs + pu,v1V1UV2 · · ·Vs, V1 ≥ V2 ≥ · · · ≥ Vs.

The second summand has D′-degree equal to that of W , since it is just a scalar

multiple of a rearrangement of the super-letters of W . By Lemma 2.2.9, we can

write the first summand as

[U, V1]V2 · · ·Vs =
∑
i

∏
j

[wij ]V2 · · ·Vs,

where [wij ] > U and
∏
j [wij ] has the same structure as UV1, for all i, j. The exact

same calculation as for the polynomial degree 2 case shows that

D′(
∑
i

∏
j

π([wij ])) < D′(π(UV1)). (2.20)

Hence, we have

D′(
∑
i

∏
j

π([wij ]V2 · · ·Vs)) < D′(π(UV1V2 · · ·Vs)) = D′(π(W )).

So we can write π(W ) as a linear combination of monotonic super-words such that

the D′-degree of every summand is less than or equal to D′(π(W )). Thus, the lemma

is proved.

Note that for hard super-letters π([u]), π([v]) with [u] < [v] and h = h(π[u]), we have

the following inequalities:

Deg(π([u][v]− pu,v[v][u])) < Deg(π([u])) + Deg(π([v])) (2.21)

and similarly

Deg(π([u]h)) < hDeg(π([u])). (2.22)

Proof. For (2.21), since π([u]), π([v]) are hard, we have

D′(π([u][v])) = Deg(π([u][v])) = Deg(π([u])) + Deg(π([v])).
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Therefore, (2.21) follows from (2.20) in part (iii) of the process described in the above

proof, when we take [u] = U and [v] = V1.

For (2.22), note that D′(π([u]h)) = hDeg(π([u])), since π([u]) is hard. Therefore,

(2.22) follows from part (ii) of the above process.

Associated graded algebra

Let the finitely many hard super-letters of H be denoted

[u1] < [u2] < . . . < [us].

To each hard super-letter [ui], we associate a new variable xui . For 1 ≤ m ≤ s, let

Hm
∗ = k〈xu1 , . . . , xum〉/Jm,

where Jm is the ideal of Hm
∗ generated by all elements of the form

xuixuj − pui,ujxujxui , (2.23)

for all 1 ≤ i < j ≤ m. Let the action of G on Hi
∗ be given by g · xui = χui(g) · xui , for all

1 ≤ i ≤ s. We may thus form the skew group algebra Hm
∗ ∗G. Let H∗ := Hs

∗ and let

S = (H∗ ∗G)/〈xuh : [u] of finite height h〉.

Theorem 2.4.5. [32, Theorem 3] If (2.13) holds, then grH, the associated graded algebra

of H with respect to the Deg-filtration, is isomorphic to S.

Proof. The algebra on the right hand side of the isomorphism can be expressed as the

quotient of the free algebra on the set

{xu : [u] a hard super-letter} ∪ {gi : 1 ≤ i ≤ t},

where t is the number of generators of G, subject to the relations

• the defining relations for G;

• g · xui = χui(g) · xui , for all 1 ≤ i ≤ s;

• the relations (2.23).

Since grH has a generating set of the same cardinality (say labelled by xu
′ and gu

′), for

which all of the above relations hold, thanks to (2.21) and (2.22), there is an algebra

epimorphism from S to grH, sending xu to xu
′. That this is injective follows from the

facts that
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(i) S has a PBW-basis,

(ii) grH has a PBW-basis,

both exactly the same.

We can now finish the proof of Theorem 2.4.1. Clearly, H1
∗ = k[xu1 ], which is noethe-

rian by [20, Theorem 1.9]. For all 1 ≤ m ≤ s, Hm+1
∗ is a factor of a skew polynomial ring

over Hm
∗:

Hm+1
∗ = Hm

∗[xum+1 ;σm],

where σm is the automorphism of Hm
∗ defined by σm(xui) := pui,um+1xui . Therefore,

H∗ = Hs
∗ is noetherian by inductive application of [40, Theorem 1.2.9]. Furthermore,

H∗ ∗G is noetherian by [40, Theorem 1.5.2]. By Theorem 2.4.5,

grH ∼= (H∗ ∗G)/〈xuh : [u] of finite height h〉,

and so grH is also noetherian. Finally, H is noetherian by [40, Theorem 1.6.9].



Chapter 3

Homological properties of pointed

Hopf algebras

This chapter involves the application of the tools developed in the previous chapter, namely

the PBW-basis for a Nichols algebra of a diagonally braided vector space, and its Deg fil-

tration when there are only a finite number of PBW-generators. Throughout this chapter,

let H be a Hopf algebra as in §2.3; that is, H is generated by an abelian group G = G(H)

of group-like elements and by skew-primitive semi-invariant elements a1, . . . an, such that

(2.11) holds. Suppose that H has a finite number of hard super-letters, denoted

U1 < U2 < . . . < Um.

Firstly, we prove that the order of the PBW-generators in the basis may be permuted, with

the resulting set of ordered monomials remaining a basis. Next, we use this to determine

various homological properties satisfied by the Nichols algebra of a diagonally braided

vector space, under certain conditions.

3.1 Re-ordering the PBW-basis

Theorem 2.3.7 gives the PBW-basis of H as

{U1
k1U2

k2 · · ·Umkm : 0 ≤ ki < h(Ui) ∀ i}. (3.1)

The ordering of the PBW-generators in the super-words constituting the basis elements

is determined by the lexicographic ordering of U1, . . . , Um. However, we could impose a

different ordering on U1, . . . , Um and consider super-words of the same form as the PBW-

basis with respect to this new ordering. That is, there is an action of the symmetric group

38
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Sm on the set (3.1) which permutes the ordering of the hard super-letters in the following

way. For all W := U1
k1U2

k2 · · ·Umkm , with 0 ≤ ki < h(Ui) for all 1 ≤ i ≤ m, and for all

σ ∈ Sm, define

σ−1 ·W := Uσ(1)
kσ(1)Uσ(2)

kσ(2) · · ·Uσ(m)
kσ(m) .

The section is concerned with the proof of the following theorem.

Theorem 3.1.1. Let σ ∈ Sm, the symmetric group on m letters. Then

S := {Uσ(1)
kσ(1)Uσ(2)

kσ(2) · · ·Uσ(m)
kσ(m) : 0 ≤ ki < h(Ui) ∀ i}

is a PBW-basis for H.

Remark. On first glance, it might be thought that the ability to permute the hard super-

letters, or PBW-basis generators, is a straightforward consequence of reordering the al-

phabet {x1, . . . , xn} with which we started Chapter 2. However, doing so gives a new set

of Lyndon words and so a different set of hard super-letters, rather than a rearrangement

of the original set. For example, swapping the ordering of x1 and x2 in Example 2.2.4

leads to a PBW-basis for Uq(sl3) of the form

{K1
pK2

qE1
i(E2E1 − qE1E2)jE2

l : i, j, l ∈ Z≥0, p, q ∈ Z}.

Here, we obtain a new hard super-letter E2E1 − qE1E2, rather than E1E2 − qE2E1, as

previously. In this case, there is only a small difference between “new” and “old” hard

super-letters, but in a more complex example with a greater number of hard super-letters,

it may be more pronounced.

3.1.1 Some technical lemmas about hard super-letters

First, we need the following lemma, which extends Lemma 2.2.5.

Lemma 3.1.2. Let V = [v],W = [w] be super-letters. Then, for k, l ≥ 1,

[V k,W l] = V kW l − pvk,wlW lV k.

Proof. We do a double induction on k, l. If k = l = 1, this is just Lemma 2.2.5. Now

suppose k > 1, and l = 1. Then

[V k,W ] = [V k−1V,W ] = pv,w[V k−1,W ]V + V k−1[V,W ]

= pv,w(V k−1WV − pvk−1,wWV k) + V k−1(VW − pv,wWV )

= V kW − pvk,wWV k,
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where the first line follows by (2.6), the second by induction and Lemma 2.2.5, and the

third by (2.3).

Now suppose k > 1 and l > 1. Then

[V k,W l] = [V k,WW l−1] = [V k,W ]W l−1 + pvk,wW [V k,W l−1]

= (V kW − pvk,wWV k)W l−1 + pvk,wW (V kW l−1 − pvk,wl−1W l−1V k)

= V kW l − pvk,wlW lV k,

where the first line follows by (2.5), the second by the previous paragraph and by induction,

and the third by (2.3).

The following lemma extends (2.21).

Lemma 3.1.3. Let V > W be hard super-letters. Then, for k, l ≥ 1,

Deg([W l, V k]) < kDeg V + lDegW.

Proof. With an obvious abuse of notation, in grH, WV = pw,vVW . Hence, still in grH,

W lV k = (pw,v)
k+lV kW l = pwl,vkV

kW l,

by (2.3). Therefore, by Lemma 3.1.2,

Deg([W l, V k]) = Deg(W lV k − pwl,vkV kW l)

< Deg V k + DegW l

= kDeg V + lDegW. (3.2)

Lemma 3.1.4. Let σ ∈ Sm and let

W := Uσ(1)
kσ(1)Uσ(2)

kσ(2) · · ·Uσ(m)
kσ(m) , 0 ≤ ki < h(Ui) ∀ i.

Then

Deg(W ) = k1 Deg(U1) + · · ·+ km Deg(Um).

Proof. Let Ŵ be a super-word in the hard super-letters U1, . . . , Um, with exactly ki oc-

currences of Ui, where 0 ≤ ki < h(Ui) for 1 ≤ i ≤ m. We prove a slightly stronger result

than in the statement of the lemma: namely, that

Deg(Ŵ ) = k1 Deg(U1) + · · ·+ km Deg(Um). (3.3)
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Let S be the set of super-words in U1, . . . , Um with the same structure as Ŵ . If Ŵ is

the lexicographically biggest super-word in this set, then

Ŵ = Um
km · · ·U1

k1 .

Therefore, Ŵ is a PBW-basis element, and (3.3) certainly holds, by Definition 2.4.2 (ii).

We now induct on the lexicographic ordering of the elements of S. Suppose Ŵ is not

the lexicographically biggest super-word in S. Then Ŵ = W ′UpUp+qW
′′ for some words

W ′,W ′′ in U1, . . . , Um, some 1 ≤ p ≤ m and some 0 < q ≤ m− p. Therefore,

Ŵ = W ′[Up, Up+q]W
′′ + pup,up+qW

′Up+qUpW
′′ (3.4)

It can be seen from (2.21) that

D′([Up, Up+q]) < D′(UpUp+q). (3.5)

Therefore,

Deg(W ′[Up, Up+q]W
′′) ≤ D′(W ′[Up, Up+q]W ′′) < D′(Ŵ ),

where the first inequality arises from (2.17) and the second from (3.5). By induction,

Deg(pup,up+qW
′Up+qUpW

′′) = k1 Deg(U1) + · · ·+ km Deg(Um) = D′(Ŵ ),

and so

Deg(W ′[Up, Up+q]W
′′) < Deg(pup,up+qW

′Up+qUpW
′′).

Applying this fact, together with Definition 2.4.2 (iii), to (3.4), completes the proof.

3.1.2 Proof of the theorem: transposition case

We can now take a step towards proving Theorem 3.1.1 in the easiest case: when σ is a

simple transposition.

Lemma 3.1.5. Let σ ∈ Sm be a simple transposition, so σ = (i, i + 1) for some 1 ≤ i ≤

m− 1. Then the monomials of the form

U1
k1 · · ·Ui−1

ki−1Ui+1
ki+1Ui

kiUi+2
ki+2 · · ·Umkm , 0 ≤ ki < h(Ui) ∀ i, (3.6)

span H.
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Proof. We need to show that any element

B := U1
l1U2

l2 · · ·Umlm , 0 ≤ li < h(Ui) ∀ i,

of the usual PBW-basis of H is a linear combination of elements of the form of (3.6). We

induct on Deg(B). Suppose Deg(B) = c, where

c := min{Deg(Uj) : 1 ≤ j ≤ m}.

Then B = Uj for some 1 ≤ j ≤ m, which is of the same form as (3.6). Now suppose

Deg(B) = d and that any PBW-basis element with Deg-value less than d is a linear

combination of elements of the form of (3.6). We have, by Lemma 3.1.2,

B = (pui+1
li+1 ,uili

)−1U1
l1 · · ·Ui−1

li−1 [Ui+1
li+1 , Ui

li ]Ui+2
li+2 · · ·Umlm

+ (pui+1
li+1 ,uili

)−1U1
l1 · · ·Ui−1

li−1Ui+1
li+1Ui

liUi+2
li+2 · · ·Umlm .

The second summand is of the same form as (3.6). Consider the first summand. We have

Deg(U1
l1 · · ·Ui−1

li−1 [Ui+1
li+1 , Ui

li ]Ui+2
li+2 · · ·Umlm)

≤ Deg(U1
l1 · · ·Ui−1

li−1) + Deg([Ui+1
li+1 , Ui

li ]) + Deg(Ui+2
li+2 · · ·Umlm) by (2.16)

< Deg(U1
l1 · · ·Ui−1

li−1) + li Deg(Ui) + li+1 Deg(Ui+1)

+ Deg(Ui+2
li+2 · · ·Umlm) by Lemma 3.1.3

= Deg(B) = d by Definition 2.4.2 (ii).

Hence, by induction, U1
l1 · · ·Ui−1

li−1 [Ui+1
li+1 , Ui

li ]Ui+2
li+2 · · ·Umlm is a linear combination

of elements of the form of (3.6), as required. Therefore, so is B.

3.1.3 Proof of the theorem: general case

The previous lemma enables us to prove the spanning part of Theorem 3.1.1.

Lemma 3.1.6. Let σ ∈ Sm. Then the monomials of the form

Uσ(1)
kσ(1)Uσ(2)

kσ(2) · · ·Uσ(m)
kσ(m) , 0 ≤ ki < h(Ui) ∀ i,

span H.

Proof. σ−1 can be expressed as a product of simple transpositions:

σ−1 = (it, it + 1)(it−1, it−1 + 1) · · · (i1, i1 + 1).
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We will induct on t. If t = 1, this is just Lemma 3.1.5. Now suppose t > 1 and let

σ′
−1

= (it−1, it−1 + 1) · · · (i1, i1 + 1).

By induction, if B is one of the usual PBW-basis elements of H, then B is a linear

combination of elements of the form

Uσ′(1)
lσ′(1)Uσ′(2)

lσ′(2) · · ·Uσ′(m)
lσ′(m) , 0 ≤ li < h(Ui) ∀ i. (3.7)

Let j := it. Since σ−1 = (j, j + 1)σ′−1, we also have σ′(j, j + 1) = σ and it is enough to

show that an element C of the form of (3.7) can be expressed as a linear combination of

elements of the form

Uσ′(1)
kσ′(1)Uσ′(2)

kσ′(2) · · ·Uσ′(j+1)
kσ′(j+1)Uσ′(j)

kσ′(j)Uσ′(j+2)
kσ′(j+2) · · ·Uσ′(m)

kσ′(m) , (3.8)

where 0 ≤ ki < h(Ui) for all 1 ≤ i ≤ m. We induct on Deg(C). Let Deg(C) = c, where

c := min{Deg(Uj) : 1 ≤ j ≤ m}.

Then C = Uj for some 1 ≤ j ≤ m, which is of the form of (3.8).

Now let Deg(C) = d and suppose the lemma holds for elements of the form of (3.7)

with Deg-value less than d. First, suppose Uσ′(j) < Uσ′(j+1). We have

C = Uσ′(1)
lσ′(1) · · ·Uσ′(j−1)

lσ′(j−1) [Uσ′(j)
lσ′(j) , Uσ′(j+1)

lσ′(j+1) ] (3.9)

· Uσ′(j+2)
lσ′(j+2) · · ·Uσ′(m)

lσ′(m)

+ pUσ′(1)
lσ′(1) · · ·Uσ′(j−1)

lσ′(j−1)Uσ′(j+1)
lσ′(j+1)Uσ′(j)

lσ′(j)

· Uσ′(j+2)
lσ′(j+2) · · ·Uσ′(m)

lσ′(m) ,

where

p = p
uσ′(j)

lσ′(j) ,uσ′(j+1)

lσ′(j+1)
.

The second summand of (3.9) is of the form of (3.8). Consider the first summand. By

Lemma 3.1.3,

Deg([Uσ′(j)
lσ′(j) , Uσ′(j+1)

lσ′(j+1) ]) < lσ′(j) Deg(Uσ′(j)) + lσ′(j+1) Deg(Uσ′(j+1)).
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Hence,

Deg(Uσ′(1)
lσ′(1) · · ·Uσ′(j−1)

lσ′(j−1) [Uσ′(j)
lσ′(j) , Uσ′(j+1)

lσ′(j+1) ]Uσ′(j+2)
lσ′(j+2) · · ·Uσ′(m)

lσ′(m))

≤ Deg(Uσ′(1)
lσ′(1) · · ·Uσ′(j−1)

lσ′(j−1)) + Deg([Uσ′(j)
lσ′(j) , Uσ′(j+1)

lσ′(j+1) ])

+ Deg(Uσ′(j+2)
lσ′(j+2) · · ·Uσ′(m)

lσ′(m)) by (2.16)

< Deg(Uσ′(1)
lσ′(1) · · ·Uσ′(j−1)

lσ′(j−1)) + lσ′(j) Deg(Uσ′(j)) + lσ′(j+1) Deg(Uσ′(j+1))

+ Deg(Uσ′(j+2)
lσ′(j+2) · · ·Uσ′(m)

lσ′(m)) by Lemma 3.1.3

= Deg(C) = d by Lemma 3.1.4.

So, by induction, the first summand of (3.9) is a linear combination of elements of the

form of (3.8), and hence so is C.

Now suppose Uσ′(j+1) < Uσ′(j). Then

C = p−1Uσ′(1)
lσ′(1)Uσ′(2)

lσ′(2) · · · [Uσ′(j+1)
lσ′(j+1) , Uσ′(j)

lσ′(j) ]

+ p−1Uσ′(1)
lσ′(1)Uσ′(2)

lσ′(2) · · ·Uσ′(j+1)
lσ′(j+1)Uσ′(j)

lσ′(j) ,

where

p = p
uσ′(j+1)

lσ′(j+1) ,uσ′(j)
lσ′(j) .

The second summand is of the form of (3.8). The calculation to show that the first

summand has Deg-value less than Deg(C) is almost identical to that of the previous case.

Thus, the lemma is proved.

We are now in a position to prove Theorem 3.1.1.

Proof. Lemma 3.1.6 proves that S spans H, and so it only remains to prove that S is

linearly independent over k. It can be seen in the proof of Lemma 3.1.6 that

Sq := {s ∈ S : Deg(s) ≤ q}

spans

Hq := {h ∈ H : Deg(h) ≤ q}.

By Lemma 3.1.4, Hq is also spanned by the usual PBW-basis elements with Deg-value less

than or equal to m, which are obviously linearly independent. Since |Sq| = dimkHq, Sq is

linearly independent for all q, and hence so is S.
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3.2 Homological and other properties

We continue to assume that H is a Hopf algebra as in §2.3; that is, H is generated by

an abelian group G = G(H) of group-like elements and by skew-primitive semi-invariant

elements a1, . . . an, such that (2.11) holds, and that H has a finite number of hard super-

letters, denoted

U1 < U2 < . . . < Um.

By Theorem 2.4.5,

grH ∼= (H∗ ∗G)/J,

where

H∗ = k[x1;σ1] . . . [xm;σm], J := 〈xihi : Ui of finite height hi〉,

where σi is the automorphism of k[x1;σ1] · · · [xi−1;σi−1] defined by σi(xj) := pui,ujxj for all

1 ≤ j < i. This enables us to determine certain properties of grH, a more straightforward

ring than H, and then lift these properties back to H.

It is sometimes helpful to work with different formulations of grH. Using [45, Lemma

1.4], we also have

grH ∼= (H∗/I) ∗G, (3.10)

where I := J ∩H∗ �H∗.

In addition, by the fundamental theorem of finitely generated abelian groups, we can

write G := Zt ⊕ F , where F is a finite group and t ≥ 0. By [40, Lemma 1.5.9],

grH ∼= (H∗/I) ∗G ∼= (· · · ((H∗/I ∗ F ) ∗ Z) ∗ · · · ) ∗ Z, (3.11)

where t copies of Z appear. Therefore, we can apply [40, Proposition 1.5.11], which shows

that

grH ∼= (H∗/I) ∗G ∼= ((H∗/I) ∗ F )[y1, y
−1
1 ; τ1] · · · [yt, yt−1; τt]. (3.12)

For all 1 ≤ i ≤ t, the automorphism sends a generator of the ith copy of Z in (3.11)

to yi, and τi is the automorphism of ((H∗/I) ∗ F )[y1, y
−1
1 ; τ1] · · · [yi−1, yi−1

−1; τi−1] which

conjugates by yi.

Alternatively, we can replace the skew-Laurent polynomial rings above with localisa-

tions of skew-polynomial rings:

grH ∼= (H∗/I) ∗G ∼= ((H∗/I) ∗ F )[y1; τ1][y1]−1 · · · [yt; τt][yt]−1. (3.13)
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3.2.1 Global dimension

Definition 3.2.1. Let R be a ring. The right global dimension of R, r gldR, is defined by

r gldR = sup{pdM : M a right R-module}

= sup{idM : M a right R-module},

where pd and id denote, respectively, projective dimension and injective dimension. The

second equality follows from [47, Theorem 9.10]. The left global dimension of R, l gldR, is

defined in the obvious way. By [47, Corollary 9.23], l gldR = r gldR when R is noetherian,

and we denote the common value by gldR.

We will prove the following proposition:

Proposition 3.2.2. H has finite global dimension if and only if both of the following

conditions hold:

(i) no hard super-letter has finite height

(ii) either char k = 0 or char k = p > 0 and G has no elements of order p.

Backwards direction

Global dimension behaves nicely over certain types of ring extensions. Let R be a ring

with finite global dimension d. The global dimension of a skew-polynomial ring R[x;σ]

is d + 1 [40, Theorem 7.5.3] and the global dimension of R ∗ F is d, where F is a finite

group acting on R via automorphisms and |F |−1 ∈ R [40, Theorem 7.5.6]. In addition,

global dimension does not increase when passing from an associated graded ring back to

the original filtered ring [40, Corollary 7.6.18(i)].

The following lemma is a slight generalisation of [40, Corollary 7.5.6(ii)]:

Lemma 3.2.3. Let R be a noetherian k-algebra with gldR < ∞ and G a finitely gener-

ated abelian group with torsion-free rank t, which acts on R via automorphisms. Then if

char k = 0 or if G contains no elements of order p when char k = p > 0, then

r gld(R ∗G) ≤ r gldR+ t.

Proof. Let G = F ⊕N , where N ∼= Zt and F = ⊕qi=1Z/pitiZ, for non-negative integers t

and q, distinct primes pi and positive integers ti, 1 ≤ i ≤ q. By [40, Lemma 1.5.9],

R ∗G ∼= (R ∗N) ∗ F.
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[40, Corollary 7.5.6(i)] shows that r gldR ∗ N ≤ r gldR + h. When char k = 0, |F | is

obviously a unit in R ∗N . Now suppose char k = p > 0. Then G contains no elements of

order p, so pi 6= p, 1 ≤ i ≤ q. Hence, |F | =
∏q
i=1 pi

ti is a unit in R ∗ N . This means we

can apply [40, Theorem 7.5.6], so

r gld(R ∗G) = r gld((R ∗N) ∗ F ) = r gld(R ∗N) ≤ r gldR+ t.

So we can now prove the backwards direction of Proposition 3.2.2.

Proposition 3.2.4. Suppose no hard super-letter of H has finite height, and either char k =

0 or G contains no elements of order p when char k = p > 0. Then H has finite global

dimension.

Proof. Since no hard super-letter has finite height, grH = H∗ ∗G, where H∗ is an iterated

skew polynomial ring in m indeterminates over k. By [40, Theorem 7.5.3], gldH∗ = m

and then by Lemma 3.2.3,

gld(grH) ≤ gldH∗ + t = m+ t,

where t is the torsion-free rank of G. Then, by [40, Corollary 7.6.18],

gldH ≤ gld(grH) ≤ m+ t.

Forwards direction

First, we prove a couple of lemmas concerning modules with infinite global dimension.

Lemma 3.2.5. Let S ⊂ R be rings such that R is a projective left S-module and, for some

left R-module M , pdS(M) =∞. Then l gld(R) =∞.

Proof. We will show that pdR(M) =∞; the lemma follows.

Suppose there is a finite projective resolution

0→ Pn → · · · → P0 →M → 0

of M as a left R-module. Then for 0 ≤ i ≤ n, Pi is a direct summand of a free left

R-module. Since R is a projective left S-module, we have R is a direct summand of a free

left S-module, and this implies that Pi is a direct summand of a free left S-module. Hence,

Pi is a projective left S-module. Thus, we have constructed a finite projective resolution

of M as a left S-module, contradicting our hypothesis. Therefore, pdR(M) =∞.
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Lemma 3.2.6. Let k be a field and let h > 1. Then k[x]/〈xh〉 has infinite global dimension.

Proof. Write R for k[x]/〈xh〉. The trivial R-module k has an infinite projective resolution:

0

##FF
FF

FF
FF

F 0

xh−1R

##FF
FF

FF
FF

F

;;xxxxxxxxx

· · · //

!!DD
DD

DD
DD R

ψ
;;xxxxxxxxx

// R
φ

!!B
BB

BB
BB

B
// R

θ // k // 0

xR

==||||||||

!!B
BB

BB
BB

B xR

==||||||||

!!B
BB

BB
BB

B

0

==zzzzzzzz
0 0

==||||||||
0

which repeats itself. The maps labelled above are defined by θ : 1+〈xh〉 7→ 1, φ : 1+〈xh〉 7→

x + 〈xh〉 and ψ : 1 + 〈xh〉 7→ xh−1 + 〈xh〉. Furthermore, the resolution cannot terminate.

For, suppose first that xR is projective. Then the short exact sequence

0 // xh−1R // R
φ // xR // 0

splits, so

R = xh−1R⊕A,

for some ideal A of R isomorphic to xR. But then xh−1R is both idempotently generated

and nilpotent, which is impossible. If xh−1R is projective, the proof is similar. This

proves that there is no finite length projective resolution of k by the generalised version

of Schanuel’s lemma [47, Exercise 3.37].

We can now prove the forwards direction of Proposition 3.2.2.

Proposition 3.2.7. H has infinite global dimension if either of the following hold:

(i) H has a hard super-letter with finite height;

(ii) char k = p > 0 and G has an element of order p.

Proof. (i) Suppose H has a hard super-letter Ui of finite height h. Then by Theorem

3.1.1, H is a free left and right k[Ui] module that is annihilated by Ui
h, so H is a free

left and right k[Ui]/Ui
h-module. However, by Lemma 3.2.6, the trivial k[Ui]/Ui

h-

module k has infinite projective dimension. Since H is free over k[Ui]/Ui
h, and k is

also an H-module, Lemma 3.2.5 tells us that gld(H) =∞.
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(ii) H is free over kCp, where Cp is the cyclic group of order p. We have

kCp ∼= k[x]/〈xp〉,

where the isomorphism is defined by sending a generator of Cp to x+ 1. By Lemma

3.2.6, the trivial k[x]/〈xp〉-module k has infinite global dimension. Therefore, so does

the kCp-module k. Since k is also an H-module, it follows from Lemma 3.2.5 that

gld(H) =∞.

3.2.2 GK dimension

Gelfand-Kirillov dimension, or GK dimension for short, is a measure of the rate of growth

of an affine algebra with respect to a generating subspace.

Definition 3.2.8. (i) Let f : N → R≥1. Then f has polynomially bounded growth if, for

some t ∈ R, f(a) ≤ at for a� 0, and then we define

γ(f) := inf {t : f(a) ≤ at for a� 0}.

Otherwise, γ(f) =∞.

(ii) Let R be an affine k-algebra with finite-dimensional generating subspace V and

suppose that 1 ∈ V . Then R has filtration {Rn : n ≥ 0} with R0 = k and Rn = V n.

The GK dimension of R, denoted by GKdim(R), is γ(a 7→ dimk Ra).

(iii) If S is a (not necessarily affine) k-algebra, then

GKdim(S) := sup{GKdim(R) : R an affine subalgebra of S}.

(iv) Let M be a finitely generated R-module and let M0 be a finite-dimensional subspace

of M such that RM0 = M . For n ≥ 0, define Mn := RnM0. The GK dimension of

RM is γ(a 7→ dimkMa).

For further details, see for example [40, Chapter 8]. Note that GKdim(R) is inde-

pendent of the choice of generating subspace V by [40, Lemma 8.1.10]. In addition,

GKdim(R) = GKdim(R∗F ), where F is a finite group acting on R via automorphisms [40,

Proposition 8.2.9], and GK dimension remains constant when passing from an associated

graded ring to the original filtered ring [40, Lemma 8.6.5].

The following lemma will be needed later.
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Lemma 3.2.9. Let R be a k-algebra and let σ be an automorphism of R. Then, for all

t ≥ 1,

GKdim(R[x;σ]/〈xt〉) = GKdim(R).

Proof. Let T := R[x;σ]/〈xt〉 and let R′ := {r+ 〈xt〉}, a subalgebra of T that is isomorphic

to R. Then T is a finitely generated left R′-module, generated by

1 + 〈xt〉, x+ 〈xt〉, . . . , xt−1 + 〈xt〉.

Hence, GKdim(R) = GKdim(R′) = GKdim(T ), where the second equality follows from

[40, Proposition 8.2.9(ii)].

A key step in determining the GK dimension of H involves locally algebraic maps.

An endomorphism σ of an algebra R is locally algebraic if, for every finite-dimensional

k-subspace V ⊂ R, then V ⊂ W , where W is a σ-stable finite-dimensional k-subspace.

Clearly, σ is locally algebraic if R is spanned by elements {r : r ∈ R} such that σ(r) = αrr

for all r ∈ R, where αr ∈ k.

Proposition 3.2.10. [34, Proposition 1] Let R be an algebra and let σ be a locally algebraic

automorphism of R. Then

GKdim(R[x, x−1;σ]) = GKdim(R[x;σ]) = GKdim(R) + 1.

We now calculate the GK dimension of H∗/I, where H∗/I is as in (3.10).

Lemma 3.2.11. Let the number of hard super-letters of finite height be denoted by f .

Then

GKdim(H∗/I) = m− f.

Proof. For 1 ≤ t ≤ m, let At be the subalgebra of H∗ generated by x1, . . . , xt and let It be

the ideal of At generated by xi
hi , where 1 ≤ i ≤ t and Ui has finite height hi. We prove by

induction on t that GKdim(At/It) = t − ft, where ft is the number of hard super-letters

Ui, 1 ≤ i ≤ t, with finite height. Since Am = H∗ and Im = I, the lemma follows.

For t = 1, A1 = k[x1] and GKdim(A1) = 1 by [40, Proposition 8.1.15(i)]. If U1 has

infinite height, then I1 = {0} and GKdim(A1/I1) = GKdim(A1) = 1. If U1 has finite

height h1, then by Lemma 3.2.9, GKdim(A1/I1) = GKdim(k) = 0. Therefore, the claim

holds for t = 1.
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Now suppose GKdim(At−1/It−1) = t− 1− ft−1. We have At = At−1[xt;σt], and so

At/It ∼=
(At−1/It−1)[xt;σt]

K
,

where σt is the automorphism of At−1/It−1 with σt(a+ It−1) := σt(a) + It−1, and K is the

ideal of (At−1/It−1)[xt;σt] defined by

K :=

 {0} if Ut has infinite height,

〈xtht〉 if Ut has finite height ht.

To see this, note that every element of At/It is expressible as
∑q

i=0 aixt
i + It, for some

0 ≤ q ≤ t− 1 and some ai ∈ At−1, 0 ≤ ai ≤ m. Define the isomorphism

θ : At/It →
At−1/It−1[xt;σt]

K
, θ(

q∑
i=0

aixt
i + It) :=

q∑
i=0

(ai + It−1)Xt
i +K.

Suppose K = 0. Then, since σt is locally algebraic, we may apply Proposition 3.2.10,

which shows that

GKdim(At/It) = GKdim(At−1/It−1) + 1 = t− 1− ft−1 + 1 = t− ft.

If K = 〈xtht〉, then applying Lemma 3.2.9 gives

GKdim(At/It) = GKdim(At−1/It−1) = t− 1− ft−1 = t− (ft−1 + 1) = t− ft,

as required.

It is now straightforward to calculate the GK dimension of H.

Proposition 3.2.12. GKdimH = m− f + t, where f is the number of hard super-letters

of finite height and t is the torsion-free rank of G.

Proof. By Lemma 3.2.11, GKdim(H∗/I) = m− f , and by [40, Proposition 8.2.9],

GKdim((H∗/I) ∗F ) = m− f . (3.12) shows that grH is an iterated skew Laurent polyno-

mial ring over (H∗/I)∗F . SinceG is abelian and acts onH∗/I by multiplication by a scalar,

all the maps τi are locally algebraic. We may therefore apply [34, Proposition 1], which

gives GKdim(grH) = m−f+t. Finally, by [40, Lemma 8.6.5], GKdim(H) = m−f+t.

3.2.3 The Auslander-Gorenstein property

We now study a class of noetherian rings whose modules satisfy a homological condition

introduced by Auslander, involving the vanishing of certain Ext groups.
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Definition 3.2.13. Let R be a noetherian ring. A finitely generated left or right R-

module M satisfies the Auslander condition if, for all j ≥ 0 and for all submodules N

of ExtjR(M,R), we have ExtiR(N,R) = 0 for all i < j. If id(RR) < ∞ and every such M

satisfies the Auslander condition, we say that R is Auslander-Gorenstein. If, in addition,

gld(R) <∞, R is said to be Auslander-regular .

Note that [54, Lemma A] shows that id(RR) = id(RR) when R is noetherian.

Examples of Auslander-Gorenstein rings include quasi-Frobenius rings [15] and the

Weyl algebras over a field of characteristic 0 [9, §2.7]. A commutative noetherian ring

is Auslander-Gorenstein if and only if it has finite injective dimension [5]; such rings are

called Gorenstein. If R is an Auslander-Gorenstein ring, then the Auslander-Gorenstein

property is retained by skew-polynomial rings R[x;σ] [18, Theorem 4.2], by R ∗ F , where

F is a finite group acting by automorphisms on R [53, Proposition 3.9], by a localisation

of R at a multiplicatively closed set of regular elements [1, Proposition 2.1], and, in the

case where R :=
⊕

n≥0Rn is a graded ring, by factoring out by a normal regular element

in Rn [37, Theorem 3.6].

We now consider a special type of filtration. Extend the notion of filtrations indexed

by N in Definition 1.1.1 (i) to filtrations indexed by Z in the obvious way. That is, a ring

R has a Z-filtration if there is a family of additive subgroups {Rn : n ∈ Z} of R such that,

for all m,n ≥ 0, Rn ⊆ Rn+1, RmRn ⊆ Rm+n, and R =
⋃
n∈ZRn.

Let R be a Z-filtered ring with
⋂
n∈Z Rn = 0 and 1 ∈ R0. We take the following

definitions from [10, §2]. The filtered topology on R is constructed using the distance

function, which for r, s ∈ R is defined by

d(r, s) = 2n, where r − s ∈ Rn \Rn−1.

The filtration satisfies the strong closure condition if, for every r1, . . . , rt ∈ R and n1, . . . , nt ∈

Z, it follows that

Rn1r1 + . . .+Rntrt, r1Rn1 + . . .+ rtRnt

are closed subsets of R in the filtered topology. If grR is noetherian and the strong closure

condition holds, we say that the filtration on R is Zariskian.

If A is a filtered algebra in the sense of Definition 1.1.1 (i), then A has a Z-filtration

{An : n ∈ Z} by setting An := 0 for n < 0. Suppose 1 ∈ A0. Then the filtered topology on

A is discrete and so every subset of A is closed. In particular, the strong closure condition

holds. Hence, if grA is noetherian, then the filtration is Zariskian.
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This type of filtration appears in the following theorem from [10]. Its statement here

includes the remark immediately after the theorem.

Theorem 3.2.14. [10, Theorem 3.9] Let R be a noetherian ring with a Zariskian filtration

and suppose grR is Auslander-Gorenstein (respectively, Auslander-regular). Then R is

Auslander-Gorenstein (respectively, Auslander-regular).

We apply this theorem in the following proposition.

Proposition 3.2.15. H is Auslander-Gorenstein. Furthermore, H is Auslander-regular

if and only if no hard super-letter has finite height and G has no elements of order p if

chark = p > 0.

Proof. We have grH ∼= (H∗/I) ∗ G. It is easy to see that k is Auslander-Gorenstein;

since H∗ is an iterated skew polynomial ring over k, we can apply [18, Theorem 4.2] to

show that H∗ is Auslander-Gorenstein. For 1 ≤ i ≤ n such that Ui has finite height hi,

xi
hi is a normal regular homogeneous element of the graded ring H∗. Therefore, we can

apply [37, Theorem 3.6], which shows that H∗/I is Auslander-Gorenstein.

As previously, let G = Zt⊕F , where F is a finite group and t ≥ 1. Then (H∗/I) ∗F is

Auslander-Gorenstein by [53, Proposition 3.9]. Consider the description of grH in (3.13).

By [18, Theorem 4.2], ((H∗/I)∗F )[y1;σ1] is Auslander-Gorenstein, and by [1, Proposition

2.1] so is ((H∗/I) ∗ F )[y1, y1
−1;σ1] ∼= ((H∗/I) ∗ F )[y1;σ1][y1]−1. Iterated application of

these theorems shows that (H∗/I) ∗G is Auslander-Gorenstein.

Clearly, grH is a noetherian ring and arises from an N-filtration on H. Therefore, the

filtration on H is Zariskian and so H is Auslander-Gorenstein by Theorem 3.2.14.

Finally, H is Auslander-regular if and only if no hard super-letter has finite height and

G has no elements of order p when char k = p > 0 by Theorem 3.2.2.

3.2.4 The Cohen-Macaulay property

The Cohen-Macaulay property comes from algebraic geometry and was originally defined

only for commutative rings, where it involves Krull dimension. There have been various

attempts to generalise this property to noncommutative rings using other dimension func-

tions; we will use the following definition, which applies to noncommutative noetherian

algebras and involves GK dimension:
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Definition 3.2.16. Let R be a noetherian ring and M a finitely generated R-module. Then

the grade of M is defined by

j(M) = inf{i ≥ 0: ExtiR(M,R) 6= 0},

or j(M) = ∞ if no i exists with ExtiR(M,R) 6= 0. A noetherian algebra R is Cohen-

Macaulay if

j(M) + GKdim(M) = GKdim(R) <∞

for every nonzero finitely generated left or right R-module M .

Every commutative affine algebra of finite injective dimension is Auslander-Gorenstein

and Cohen-Macaulay. This is also true of connected graded noetherian polynomial iden-

tity algebras of finite injective dimension [48, Theorem 1.1]. However, in general the

Cohen-Macaulay condition is stricter for noncommutative rings: there are noncommuta-

tive Auslander-regular rings that are not Cohen-Macaulay, an example being the ring of

2 × 2 upper triangular matrices over k [15, §3].

The Cohen-Macaulay property is preserved when passing from an associated graded

ring back to the original filtered ring, in the case where the original ring is noetherian [25,

Theorem 1.2] (an amalgamation of results from [18] and [37]). In addition, every localisa-

tion of an Auslander-Gorenstein, Cohen-Macaulay ring at a multiplicatively closed set of

normal elements is Cohen-Macaulay [1, Theorem 2.4]. The following lemmas give condi-

tions under which the Cohen-Macaulay property, together with the Auslander-Gorenstein

property, is preserved:

Lemma 3.2.17. [36, Lemma, p.184] Let S = R[x;σ, δ] be a skew polynomial ring over

an Auslander-regular, Cohen-Macaulay noetherian ring R. If R is a connected, graded

algebra, and σ(Ri) = Ri for all graded components Ri, then S is Cohen-Macaulay.

Theorem 3.2.18. [37, Theorem 5.10] Let R = ⊕n≥0Rn be a finitely generated graded

k-algebra with dimk R0 < ∞. Suppose x ∈ Rd is a normal non-zero-divisor in R. Then

S = R/xR is Auslander-Gorenstein, Cohen-Macaulay and every finitely generated graded

S-module has finite GK dimension if and only if the same is true for R.

We need the following lemma, which must be well-known, but for which we could not

find a suitable reference.
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Lemma 3.2.19. Let R be a ring, let F be a finite group acting on R by automorphisms

and let T := R ∗ F . Let M be a finitely generated T -module. Then

GKdim(RM) = GKdim(TM).

Proof. Let V be a finite dimensional generating subspace of R. Since F acts on R via finite

order automorphisms, without loss of generality we may assume that V is F -invariant,

since we can enlarge V if necessary. We may also assume that 1 ∈ V , so that setting

Rn := kV n gives a filtration {Rn} of R. Let W = V G be the vector subspace of T with

basis {vf : v ∈ V, f ∈ F}. Then setting Tn := kWn gives a filtration {Tn} of T and in fact

Tn has basis {rf : r ∈ Rn, f ∈ F}.

Let M have finite dimensional generating subspace M0 as a T -module. Then, again by

enlarging M0 if necessary, we may assume that M0 is F -invariant. Clearly, M0 is also a

generating space for M as an R-module. Let Mn := TnM0. Then, since M0 is F -invariant,

we also have Mn = RnM0. Therefore, GKdim(RM) = γ(a 7→ dimkMa) = GKdim(TM),

as required.

We apply these in proving the following proposition:

Proposition 3.2.20. H is Cohen-Macaulay.

Proof. It is easy to see that the field k is Cohen-Macaulay. Furthermore, H∗ satisfies the

conditions needed for a repeated application of Lemma 3.2.17 and so is Cohen-Macaulay.

By Theorem 3.2.18, H∗/I is Cohen-Macaulay, since H∗ is Auslander-regular and has finite

GK dimension.

We now show that grH is Cohen-Macaulay. As before, let G = F⊕Zt for a finite group

F and some t ≥ 1. First, we show directly that R := (H∗/I) ∗ F is Cohen-Macaulay. Let

M be a finitely generated R-module. Then M is also a finitely generated H∗/I-module,

and

j(H∗/IM) + GKdim(H∗/IM) = GKdim(H∗/I),

since H∗/I is Cohen-Macaulay. By [4, Lemma 5.4], j(H∗/IM) = j(RM), by [40, Proposi-

tion 8.2.9], GKdim(R) = GKdim(H∗/I), and by Lemma 3.2.19, GKdim(RM) = GKdim(A/IM).

Hence, R is Cohen-Macaulay. Consider the formulation of grH in (3.13) as an iterated

series of localisations of skew-polynomial rings over R. Lemma 3.2.17 takes care of the

skew-polynomial ring part, while [1, Proposition 2.4] deals with the localisations. There-

fore, iterated application of both results shows that grH is Cohen-Macaulay.
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Finally, since grH is Cohen-Macaulay, so is H by [25, Theorem 1.2]

3.2.5 AS-Gorenstein

We take our definition of AS-Gorenstein from [12, Definition 1.2]. Recall that an augmented

algebra R is an algebra equipped with an algebra map R → k called an augmentation.

Since A/ ker ε ∼= k, this makes k into a right and left R-module. One obvious example

of an augmented algebra is a Hopf algebra with its counit map. Another example is

a connected graded algebra R =
⊕

n≥0Rn; here R0 = k and the augmentation is the

canonical surjection R→ R0.

Definition 3.2.21. Let R be an augmented algebra with augmentation ε : R→ k. Then R

is Artin-Schelter-Gorenstein, or AS-Gorenstein if the following conditions hold:

(i) id(RR) = d <∞,

(ii) dimk ExtdA(Ak,AA) = 1 and ExtiA(Ak,AA) = 0 for i 6= d,

(iii) The corresponding right module versions of (i) and (ii) also hold.

If, in addition, gldA = d, we say that A is Artin-Schelter-regular or AS-regular .

Lemma 3.2.22. [12, Lemma 6.1] Let R be a noetherian Hopf algebra with finite GK-

dimension. If R is Auslander-Gorenstein (respectively, Auslander-regular) and Cohen-

Macaulay, then R is AS-Gorenstein (respectively, AS-regular).

The above lemma, together with Propositions 3.2.2, 3.2.15 and 3.2.20, prove:

Proposition 3.2.23. H is AS-Gorenstein. Furthermore, H is AS-regular if and only if

no hard super-letter has finite height and G contains no elements of order p when char k =

p > 0.

3.2.6 Values for global and injective dimensions

We can use the Cohen-Macaulay property together with Proposition 3.2.12 to calculate

values for the global and injective dimensions of H. This relies on the fact that if R is a

ring and M is a non-zero finitely generated R-module, then j(M) ≤ pd(M) ≤ gld(R) [47,

Exercise 9.6] and if R is noetherian then j(M) ≤ id(R) [37, Remark 2.2(1)].

Theorem 3.2.24. Let f be the number of hard super-letters of finite height and let t be

the torsion-free rank of G. Then
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(i) H has finite global dimension equal to m + t if and only if both of the following

conditions hold:

(a) no hard super-letter has finite height

(b) either char k = 0 or char k = p > 0 and G has no elements of order p.

(ii) H has finite injective dimension equal to m− f + t.

Proof. Consider the trivial H-module k. Clearly, GKdim(Hk) = 0, so by the Cohen-

Macaulay property and Proposition 3.2.12,

j(Hk) = GKdim(H) = m− f + t,

where f is the number of hard super-letters of finite height and t is the torsion-free rank

of G.

(i) By Proposition 3.2.2, H has finite global dimension if and only if the conditions in the

statement of this theorem hold, and its proof shows that in this case gld(H) ≤ m+ t.

When H has finite global dimension, f = 0 and so j(Hk) = m + t ≤ pd(Hk). Thus

pd(Hk) = gld(Hk) = m+ t.

(ii) The previous part shows that id(H∗ ∗ G) ≤ m + t. Since H∗ ∗ G is Auslander-

Gorenstein, [37, Theorem 3.6] shows that id(grH) ≤ m − f + t. By [10, Theorem

3.9], id(H) ≤ m − f + t. As in the previous part, j(Hk) = m − f + t ≤ id(H), and

so id(Hk) = id(H) = m− f + t.

3.2.7 Application to pointed Hopf algebras

Let P be a pointed Hopf algebra and let grP be the associated graded Hopf algebra of

P with respect to the coradical filtration. As in §1.3.5, we have grP ∼= B#kG, where

G := G(P ) is a group and B ∈ G
GYD is a braided Hopf algebra. Therefore, when G is

finitely generated, abelian and acts diagonalisably on B, grP is of the form of the Hopf

algebra H, which we studied in Chapter 2. However, our work in Chapter 3 has depended

upon H having a finite number of hard super-letters, in order to be able to define the Deg-

filtration on H from §2.4. If we knew that grP had a finite number of hard super-letters,

we would be able to lift back to P the properties we have considered in this chapter. As

it stands, we can only be certain that these properties hold for a class P of Hopf algebras

defined by P ∈ P if and only if P is a pointed Hopf algebra with G := G(P ) finitely
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generated, abelian and acting diagonalisably on B, and grP has a finite number of hard

super-letters. This last condition makes it an unwieldy class to work with, but P does

provide further evidence for the conjecture of Brown [14, Question E] that all noetherian

Hopf algebras are AS-Gorenstein.

It is not clear if there are conditions on P that would enable us to determine if grP

has only a finite number of hard super-letters. A first guess would be the following.

Conjecture 3.2.25. Let P be a pointed Hopf algebra, where G := G(P ) is finitely gen-

erated, abelian and acts diagonalisably on B, the subalgebra of coinvariants. Then the

following conditions are equivalent:

(i) P has a finite number of hard super-letters,

(ii) P is noetherian,

(iii) P has finite GK-dimension.

Clearly, (i)⇒ (ii) is Theorem 2.4.1, and (i)⇒ (iii) is Proposition 3.2.12. We have been

unable to prove the backwards directions of these implications. For example, if we assume

that P has an infinite number of hard super-letters and try to construct a strictly ascending

infinite chain of right or left ideals, we run into difficulties associated with manipulating

an infinite set of hard super-letters. The root of the problem is that any finite subset of

the hard super-letters is not necessarily closed under multiplication.



Chapter 4

Diagonal Nichols algebras

A Nichols algebra, denoted B(V ), is a certain braided graded Hopf algebra in H
HYD, the

category of Yetter-Drinfeld modules over a Hopf algebra H, characterised up to isomor-

phism by its degree 1 graded component V , which is also the k-vector space spanned by

its primitive elements and generates B(V ) as a k-algebra. For any braided vector space

V , B(V ) is the quotient of the tensor algebra T (V ) by its largest biideal generated by

homogeneous primitive elements of degree 2 or more. As we saw in §1.3.4, the bosoni-

sation B(V )#H is a (non-braided) Hopf algebra, and it was in this context that Nichols

algebras first arose under the name “bialgebras of type 1”, in the thesis [44] of Nichols,

who considered the case where H = kΓ for a group Γ.

The vector space V is a Yetter-Drinfeld submodule of B(V ) endowed with a braiding

c : V ⊗ V → V ⊗ V . This braiding is the key to determining the structure of B(V ). For a

given pair (V, c), it can be complicated to calculate the homogeneous primitives of degree

2 or more in order to write down B(V ) explicitly as a quotient of T (V ). Furthermore, it is

usually difficult to verify whether such primitive elements actually exist; if there are none,

then clearly B(V ) ∼= T (V ).

In this chapter, we consider the case where H = kΓ, for an abelian group Γ acting

diagonalisably on V . That is, there exists a basis of V such that, for all xi and xj in the

basis, we have

c(xi ⊗ xj) = rijxj ⊗ xi,

for some rij ∈ k∗. The main theorem establishes conditions on the scalars rij that are

sufficient to give B(V ) ∼= T (V ).

59
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4.1 Nichols algebras

Definition 4.1.1. Let V ∈ H
HYD, with associated braiding c. The Nichols algebra of (V, c)

is a braided graded Hopf algebra B(V ) =
⊕

n≥0Bn ∈ H
HYD with

(i) B0
∼= k and B1

∼= V in H
HYD,

(ii) B1 = P (B(V )), the primitive elements of B(V ),

(iii) B(V ) = k〈B1〉, i.e. B(V ) is generated as an algebra by the elements of B1.

We can show the existence of B(V ) and obtain a more concrete description of it, as

follows. The tensor algebra T (V ) =
⊕

n≥0 T
n(V ) is a graded Hopf algebra in H

HYD, where

∆: T (V )→ T (V )⊗T (V ) is defined by

∆(v) = v ⊗ 1 + 1⊗ v

for all v ∈ V ; see [3, §2.1]. The existence of an antipode follows from [42, Lemma 5.2.10],

which also shows that all braided bialgebra quotients of T (V ) are braided Hopf algebras

in H
HYD.

Recall that a biideal of a bialgebra is a subset that is both an ideal and a coideal. Let

S be the set of all biideals of T (V ) that are generated by homogeneous elements of degree

greater than or equal to 2. Let

I(V ) =
∑
I∈S

I,

so I(V ) is the largest element of S. Then we have the following proposition proving the

existence and uniqueness of B(V ), up to isomorphism:

Proposition 4.1.2. [2, Proposition 2.2], [41, Lemma 2.1] Let V be a braided vector space,

let S be as above and let I ∈ S. Then the following are equivalent:

(i) I = I(V ),

(ii) V = P (T (V )/I),

(iii) B(V ) = T (V )/I(V ).

Proof. (i) ⇒ (ii): Let n ≥ 2 and consider the inverse image X ⊆ Tn(V ) of the primitive

elements of degree n in T (V )/I(V ). Then X is a coideal of T (V ) and 〈X, I(V )〉 ∈ S, so

〈X, I(V )〉 ⊆ I(V ) since I(V ) is maximal in S. Hence X 7→ 0 and the claim is proven since

the primitive elements of T (V )/I(V ) form a graded submodule.
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(ii) ⇒ (i): We can apply [42, Lemma 5.3.3] to the surjective map f : T (V )/I →

T (V )/I(V ), since the coradical of T (V )/I is k and f is injective on P (T (V )/I). Hence, f

is injective and so I = I(V ).

(ii) ⇒ (iii): Follows by definition of B(V ).

Define In(V ) := I(V ) ∩ Tn(V ). Then, it is clear that

B(V ) =
⊕
n≥0

Tn(V )/In(V ). (4.1)

4.2 Skew-derivations of graded coalgebras

Let R =
⊕

n≥0Rn be a connected, graded coalgebra and let πn : R→ Rn be the canonical

projection map, for all n ≥ 0. Define, for all i, j ≥ 0,

∆i,j : Ri+j
∆ // R⊗R

πi⊗πj// Ri ⊗Rj .

By Definition 1.1.3 (ii)(a),

∆|Rn =
n∑
i=0

∆i,n−i.

Since R is connected, if n ≥ 0 and x ∈ Rn, then it is easy to see that

∆0,n(x) = 1⊗ x, ∆n,0(x) = x⊗ 1. (4.2)

More generally, we can define a map ∆k : R → R⊗k+1, where k ≥ 1, by ∆0 = idR,

∆1 = ∆ and

∆k = (idR⊗k−1 ⊗∆)∆k−1. (4.3)

Now, for all k ≥ 1 and for all non-negative integers i1, . . . , ik, let

∆i1,...,ik : Ri1+···ik → Ri1 ⊗ · · · ⊗Rik ,

be the composition

(πi1 ⊗ · · · ⊗ πik) ◦∆k−1.

Using (4.3) and the definition of a graded coalgebra, it’s easy to see by induction on k that

∆k−1(Rn) ⊆
n∑

i1=0

n−i1∑
i2=0

· · ·
n−(i1+···+ik−2)∑

ik−1=0

Ri1 ⊗Ri2 · · · ⊗Rik−1
⊗Rn−(i1+···+ik−1). (4.4)

By (4.4), if x ∈ Rn, then ∆k−1(x) can have a nonzero summand in R1
⊗k only when

i1 = i2 = · · · = ik−1 = 1, n = i1 + · · · ik−1 + 1 = k.
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Therefore,

∆k−1(x) has no nonzero summand in R1
⊗k when n 6= k. (4.5)

Lemma 4.2.1. [41, Lemma 2.3] The following are equivalent:

(i) P (R) = R1.

(ii) For all n ≥ 2, ∆1,...,1 : Rn → R1
⊗n is injective.

(iii) For all n ≥ 2 and for all 1 ≤ i ≤ n− 1, ∆i,n−i : Rn → Ri ⊗Rn−i is injective.

(iv) For all n ≥ 2, ∆n−1,1 is injective.

Proof. For all n ≥ 1, define Φn : R→ R1
⊗n to be the composition

Φn : R
∆n−1

// R⊗n
π1⊗n // R1

⊗n.

Clearly, ∆1,...1 : Rn → R1
⊗n is the restriction of Φn to Rn. Note that for all i ≥ 0, j ≥ 0,

(∆i ⊗∆j)∆ = ∆i+j+1, (4.6)

(this is just an easy double induction on i and j using the coassociativity property).

Therefore, we see that, for 1 ≤ i ≤ n− 1,

(Φi ⊗ Φn−i)∆ = ((π1
⊗i ◦∆i−1)⊗ (π1

⊗n−i ◦∆n−i−1))∆

= π1
⊗n(∆i−1 ⊗∆n−i−1)∆

= π1
⊗n ◦∆n−1 by (4.6)

= Φn. (4.7)

Now, let x ∈ Rn and write ∆(x) =
∑n

j=0 yj , where

yj = ∆j,n−j(x) = zj ⊗ zj ′ ∈ Rj ⊗Rn−j (4.8)

for all 0 ≤ j ≤ n. Strictly speaking, we should write yj =
∑
zj ⊗ zj ′, but we suppress the

summation sign, as in some variants of Sweedler notation.

Therefore, for all 1 ≤ i ≤ n− 1,

Φn(x) = (Φi ⊗ Φn−i)∆(x) by (4.7)

=
n∑
j=0

π1
⊗i∆i−1(zj)⊗ π1

⊗n−i∆n−i−1(zj
′) using (4.8)

= π1
⊗i∆i−1(zi)⊗ π1

⊗n−i∆n−i−1(zi
′) by applying (4.5) to zj , z

′
j

= Φi(zi)⊗ Φn−i(zi
′) (4.9)

= (Φi ⊗ Φn−i)(yi). (4.10)
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To prove (i) ⇒ (ii), we induct on n ≥ 2. Suppose (i), and let x ∈ Rn as above. For

n = 2, by (4.2),

∆(x) = ∆0,2(x) + ∆1,1(x) + ∆2,0(x)

= 1⊗ x+ ∆1,1(x) + x⊗ 1,

and since x /∈ P (R), ∆1,1(x) 6= 0. Now, let n > 2 and suppose that (ii) has been proved

for the domain Ri, for 2 ≤ i < n. (4.10) shows that

∆1, . . . , 1︸ ︷︷ ︸
n

(x) = (∆1, . . . , 1︸ ︷︷ ︸
i

⊗∆1, . . . , 1︸ ︷︷ ︸
n−i

)(yi).

By induction, both the maps ∆1, . . . , 1︸ ︷︷ ︸
i

and ∆1, . . . , 1︸ ︷︷ ︸
n−i

are injective and so it is easy to

see that ∆1, . . . , 1︸ ︷︷ ︸
i

⊗∆1, . . . , 1︸ ︷︷ ︸
n−i

is injective. Thus, if ∆1, . . . , 1︸ ︷︷ ︸
n

(x) = 0, then yi = 0 for all

1 ≤ i ≤ n− 1, so that x ∈ P (R) by (4.2). By (i), we must have x = 0.

(ii) ⇒ (iii): Assume (ii), fix n ≥ 2 and i, where 1 ≤ i ≤ n − 1. Let x ∈ Rn. Then by

(4.10),

∆1,...,1(x) = Φn(x) = (Φi ⊗ Φn−i)∆i,n−i(x).

Since ∆1,...,1 is injective, so is ∆i,n−i.

(iii)⇒ (iv) is trivial. For (iv)⇒ (i), note that (iv) implies P (R)∩Rn = 0. Since every

primitive element of a graded coalgebra is a sum of homogeneous primitive elements, (i)

follows.

We have the following corollary to Lemma 4.2.1:

Corollary 4.2.2. Let n ≥ 2 and suppose that P (Rm) = 0 for 1 < m < n. Then, for all

1 ≤ i ≤ n− 1,

ker ∆i,n−i =

n−1∑
j=1

ker ∆j,n−j =

n−1⋂
j=1

ker ∆j,n−j = P (Rn).

Proof. Fix i, with 1 ≤ i ≤ n − 1. We prove that ker ∆i,n−i is equal to each of the other

subspaces above. Let x ∈ ker ∆i,n−i and write ∆(x) =
∑n

j=0 yj , where yj ∈ Rj ⊗ Rn−j .

Clearly, yi = 0. By (4.10),

0 = (Φi ⊗ Φn−i)(yi) = Φn(x) = (Φj ⊗ Φn−j)(yj),

for all 1 ≤ j ≤ n−1. The proof of Lemma 4.2.1 shows that for 2 ≤ m < n, the maps Φj and

Φn−j are injective, for all 1 ≤ j ≤ n− 1. Hence, we must have yj = 0 for all 1 ≤ i ≤ n− 1.

The first two equalities follow immediately; the third follows from (4.2).
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Now, let H be a Hopf algebra, let V ∈HH YD be finite dimensional as a vector space

and let R = T (V )/I for some I ∈ S. In order to determine whether R = B(V ), we

must determine whether there are any primitive elements in Rn for n ≥ 2. If we know

that there are no primitives in the graded components of degree less than n, the above

corollary reduces the problem to determining ker ∆i,n−i for any 1 ≤ i ≤ n− 1. In the case

where H = kΓ for a group Γ, there is a convenient tool for calculating primitives in R,

which exploits this fact for i = n− 1. It was originally introduced by Nichols in [44, 3.3];

see also [41].

Since V is a Γ-graded Γ-module by the Yetter-Drinfeld condition, we may pick a basis

x1, . . . , xθ of V , where xi ∈ Vgi as defined in (1.4), for not necessarily distinct members

g1, . . . , gθ of Γ. Define algebra automorphisms σi : R → R by x 7→ gi · x for all x ∈ R.

For 1 ≤ i ≤ θ, let Di : R → R be a k-linear map with Di(1) := 0; for a ∈ Rn, define

Di(a) ∈ Rn−1 by

∆n−1,1(a) :=
θ∑
i=1

Di(a)⊗ xi.

We have the following proposition:

Proposition 4.2.3. Let Γ be a group, let V ∈Γ
Γ YD and let R = T (V )/I for some I ∈ S.

Then

(i) [41, Proposition 2.4(i)] For all 1 ≤ i ≤ θ, Di : R → R is the unique (id, σi)-

derivation of R such that Di(xj) = δi,j, where δi,j denotes the Kronecker delta.

(ii) [41, Proposition 2.4(ii)] R = B(V ) if and only if K :=
⋂

θ
i=1 kerDi = k.

(iii) Fix n ≥ 1, and suppose Bm = Rm for all 0 ≤ m < n. Then, as a vector space,

Bn ∼= Rn/(K ∩Rn).

Proof. (i) Let a ∈ Rn, b ∈ Rm for some m,n ≥ 1. Then, for a suitable choice of element
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z ∈
∑m+n−2

h=0 Rh ⊗Rm+n−h,

∆(ab) = ∆(a)∆(b) =

 n∑
j=0

∆j,n−j(a)

( m∑
k=0

∆k,m−k(b)

)

=

a⊗ 1 +
θ∑
i=1

Di(a)⊗ xi +
n−2∑
j=0

∆j,n−j(a)


·

(
b⊗ 1 +

θ∑
l=1

Dl(b)⊗ xl +
n−2∑
k=0

∆k,n−k(b)

)

= ab⊗ 1 +
θ∑
l=1

aDl(b)⊗ xl +
θ∑
i=1

Di(a)(gi · b)⊗ xi + z

= ab⊗ 1 +

θ∑
i=1

(Di(a)σi(b) + aDi(b))⊗ xi + z.

Therefore,

Di(ab) = Di(a)σi(b) + aDi(b),

so Di is an (id, σi)-derivation. Furthermore, since xj is primitive for all 1 ≤ j ≤ θ,

we have Di(xj) = δi,j . Since R is generated by x1, . . . , xθ, Di is uniquely determined.

(ii) By Proposition 4.1.2, R = B(V ) if and only if I = I(V ) if and only if P (R) = R1.

Since K ∩Rn = ker ∆n−1,1, the claim follows from the equivalence of (i) and (iv) in

Lemma 4.2.1.

(iii) By Corollary 4.2.2, K ∩Rn = In(V ).

4.3 Skew-derivations in the diagonal braiding case

For the rest of this chapter, let Γ be a group and set H = kΓ. Let V ∈ Γ
ΓYD be finite

dimensional and diagonalisable. It follows that, when describing the braiding induced by

the action of Γ on V as in (1.5), we can, without loss of generality, assume that Γ is

finitely generated torsion-free abelian of rank at most θ. As in (1.5), we may choose a

basis x1, . . . , xθ of V with xi ∈ V χi
gi , so c : V ⊗ V → V ⊗ V is defined by

c(xi ⊗ xj) = χj(gi)xj ⊗ xi := rijxj ⊗ xi, (4.11)

for 1 ≤ i, j ≤ θ.

Setting R = T (V ) in Proposition 4.2.3 gives maps Di : T (V ) → T (V ), which restrict

to linear maps Di,n : Tn(V )→ Tn−1(V ). This section establishes some lemmas concerning

the kernels of these maps. First, we make a definition.
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Definition 4.3.1. (i) (a) Let Z≥0
θ denote the θ-fold direct product of the non-negative

integers. For any positive integer i, we will define

i := (0, . . . , 1, . . . , 0) ∈ Z≥0
θ,

with 1 in the ith component and all other entries 0.

(b) Given t = (t1, . . . , tθ) ∈ Z≥0
θ, let L(t) :=

∑θ
j=1 tj .

(c) For any t ∈ Z≥0
θ write n := L(t) and let ωnt (V ) be the subspace of Tn(V )

spanned by all the monomials with exactly tj xj ’s for all j. For convenience,

we define ω0
0(V ) := k, and we extend the definition to t ∈ Zθ as follows: if

t ∈ Zθ \ Z≥0
θ, define

ωnt (V ) := 0.

(ii) Let m ∈ Tn(V ) be a monomial. The left xj-index of m is the integer p ≥ 0, which

equals n if m = xj
n; otherwise it is defined by

m = xj
pxlm

′, (4.12)

where p < n, l 6= j, and m′ is a monomial in Tn−p−1(V ). There is the obvious

corresponding definition of right xj-index.

(iii) Let a =
∑m

i=1 λiai ∈ Tn(V ), where λi ∈ k∗ and the ai are distinct monomials. The

left xj-index of a is

p := min{pi := leftxj-index of ai : 1 ≤ i ≤ m}.

There is the obvious corresponding definition of right xj-index.

Recall Definition 1.3.8, which gives a map adc : T (V )→ End(T (V )).

Lemma 4.3.2. Let n be a positive integer and let i be an integer, 1 ≤ i ≤ θ. Then

(i) For all t with L(t) = n,

Di,n(ωnt (V )) ⊆ ωn−1
t−i (V ).

(ii) kerDi,n is an H-submodule of Tn(V ).

(iii) adc(xl)(kerDi,n−1) ⊆ kerDi,n, for all l, 1 ≤ l ≤ θ.

(iv) adc(xl)(kerDi,n−1) is an H-submodule of Tn(V ), for all l, 1 ≤ l ≤ θ.
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Proof. (i) The proof is by induction on n. When n = 1, tl = 1 for some l and ti = 0 for

all i 6= l, meaning that

ω1
t (V ) = kxl.

Since

Di,1(kxl) =

 k = ω0
0(V ) i = l,

0 i 6= l,

the claim holds for n = 1. Now, consider n > 1 and let m be a monomial in ωnt (V ).

It’s enough to prove that

Di,n(m) ∈ ωn−1
t−i (V ).

First, suppose that m = xim
′ for some m′ ∈ ωn−1

t−i (V ). By induction Di,n−1(m′) ∈

ωn−2
t−2i(V ). Thus, since Γ acts diagonalisably on V , and therefore m′ is an eigenvector

for gi,

Di,n(m) = Di,1(xi)(gi ·m′) + xiDi,n−1(m′)

∈ ωn−1
t−i (V ) + xiω

n−2
t−2i(V )

⊆ ωn−1
t−i (V )).

Next, suppose that m = xlm
′′, for some m′′ ∈ ωn−1

t−l (V )) with i 6= l. Then, by

induction Di,n−1(m′′) ∈ ωn−2
t−l−i(V )), and so

Di,n(m) = Di,1(xl)(gi ·m′′) + xlDi,n−1(m′′) = xlDi,n−1(m′′)

∈ xlωn−2
t−l−i(V )) ⊆ ωn−1

t−i (V )).

(ii) It is enough to show that kerDi,n is gj-invariant, for all 1 ≤ j ≤ θ. Let tn := {t ∈

Z≥0
θ : L(t) = n}. Note that Tn(V ) =

⊕
t∈tn ω

n
t (V ), and Tn−1(V ) =

⊕
t∈tn−1

ωn−1
t (V ).

Thus, in view of (i),

kerDi,n =
⊕
t∈tn

(ωnt (V ) ∩ kerDi,n). (4.13)

But, for a fixed t ∈ tn, ωnt (V ) is contained in the gj-eigenspace of Tn(V ) with

eigenvalue rj1
t1 · · · rjθtθ . So, clearly, ωnt (V ) ∩ kerDi,n is gj-invariant, and the result

follows from (4.13).

(iii) If l 6= i, this is obvious, so suppose l = i. By (4.13), and since adc(xi)(ω
n−1
t (V )) ⊆

ωnt+i(V ), it is enough to prove that, for every t ∈ tn−1, adc(xi)(β) ∈ kerDi,n when

β ∈ ωn−1
t (V ) ∩ kerDi,n−1. Then, for such a β,

gi · β = ri1
t1 · · · riθtθβ := λββ,
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for some λβ ∈ k∗, and

Di,n(adc(xi)(β)) = Di,n(xiβ − λββxi)

= Di,1(xi)(gi · β) + xiDi,n−1(β)

− λβDi,n−1(β)(gi · xi)− λββDi,1(xi)

= λββ + 0− 0− λββ

= 0,

as required.

(iv) It is enough to show that adc(xl)(kerDi,n−1) is gj-invariant for all 1 ≤ j ≤ θ. By

(iii),

adc(xl)(ω
n−1
t (V ) ∩ kerDi,n−1) ⊆ ωnt+l(V ) ∩ kerDi,n.

Therefore, as in (ii),

adc(xl)(kerDi,n−1) =
⊕
t∈tn

ωnt (V ) ∩ (adc(xl)(kerDi,n−1), (4.14)

and, since ωnt (V ) is contained in the gj-eigenspace of Tn(V ) with eigenvalue rj1
t1 · · · rjθtθ ,

the summands on the right hand side of (4.14) are gj-invariant for 1 ≤ j ≤ θ and

the result follows.

Lemma 4.3.3. Let n be a positive integer, let 1 ≤ i ≤ θ and suppose that rii
k 6= 1 for any

k, 1 < k ≤ n. Then

(i) Di,n has image Tn−1(V ).

(ii) dimk(ker(Di,n)) = θn−1(θ − 1).

Proof. (i) It is enough to show that each monomial m ∈ Tn−1(V ) is in imDi,n, and this

follows by induction on n. When n = 1, m ∈ k and so Di,1(mxi) = m. Now, for a

given n > 1, we argue by a sub-induction on the left xi-index of m.

Suppose first that the left xi-index of m is 0, so

m = xlm
′,

where l 6= i and m′ ∈ Tn−2(V ). Then m′ = Di,n−1(β) for some β ∈ Tn−1(V ), by

induction on n. Therefore,

Di,n(xlβ) = Di,1(xl)(gi · β) + xlDi,n−1(β) = xlm
′ = m,
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and so m ∈ imDi,n.

Now suppose that the left xi-index of m is p > 0, and that monomials in Tn−1(V )

with left xi-index less than p are in imDi,n. If m = xi
n−1, then

Di,n(xi
n) = (1 + rii + · · ·+ rii

n−1)xi
n−1

= (1 + rii + · · ·+ rii
n−1)m,

and we get m ∈ imDi,n, since rii is not a non-identity nth root of unity. Otherwise,

m ∈ ωn−1
t (V ) for some t ∈ tn−1, with t 6= (n− 1)i, and

m = xi
pxlm

′,

for some l with 1 ≤ l ≤ θ, l 6= i and m′ ∈ Tn−p−2(V ). By our induction on the degree

of the graded components of T (V ), m′ = Di,n−p−1(β) for some β ∈ Tn−p−1(V ).

Therefore,

xlm
′ = xlDi,n−p−1(β) = Di,n−p(xlβ).

We have xlm
′ ∈ ωn−p−1

t−pi (V ), and by Lemma 4.3.2 (i), β ∈ ωn−p−1
t−(p−1)i−l(V ). Thus

giβ = λββ for some λβ ∈ k∗. Then

Di,n(xi
pxlβ) = (1 + rii + · · ·+ rii

p−1)rilλβxi
p−1xlβ + xi

pDi,n−p(xlβ)

= (1 + rii + · · ·+ rii
p−1)rilλβxi

p−1xlβ + xi
pxlm

′.

Now xi
p−1xlβ ∈ Tn−1(V ), with left xi-index p− 1. Hence, by induction on p, there

exists α ∈ Tn(V ) with

Dn(α) = xi
p−1xlβ.

Thus,

Di,n(xi
pxlβ − (1 + rii + · · ·+ rii

p−1)rilλβα) = xi
pxlm

′ = m,

and the induction step is proved.

(ii) This follows from (i), since dimk T
n(V ) = θn for all n.

We also need the following lemma.

Lemma 4.3.4. The linear map adc(xj) : Tn(V )→ Tn+1(V ) has

• kernel 0 if rjj
n 6= 1;

• kernel kxj
n if rjj

n = 1.
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Proof. Since adc(xj)(xj
n) = (1− rjjn)xj

n+1, it is clear that

ker adc(xj)|kxjn =

 {0} if rjj
n 6= 1

kxj
n if rjj

n = 1.

Observe also that, for all t ∈ tn, adc(xj)(ω
n
t (V )) ⊆ ωn+1

t+j (V ). So the lemma follows if we

show that, for all t 6= nj,

adc(xj)|ωnt (V ) is a monomorphism.

So suppose t 6= nj and let 0 6= β ∈ ωnt (V ), so β is a gj-eigenvector with eigenvalue λβ ∈ k∗.

Let p be the left xj-index of β, and notice that, since t 6= nj and β ∈ ωnt (V ), p < n. Then,

suppose

0 = adc(xj)(β) = xjβ − λββxj .

That is,

xjβ = λββxj . (4.15)

But the left xj-index of xjβ is p + 1, whereas the left xj-index of λββxj is p. (For the

second part of the last sentence, it is crucial that p < n, so that some xl with l 6= j does

appear at the left hand end of m in at least one monomial xj
pm in the support of β.)

Therefore, (4.15) is impossible, and we have a contradiction.

4.4 Conditions implying B(V ) ∼= T (V )

4.4.1 Notation

For n ≥ 2, let Bn denote the usual monomial basis of Tn(V ). For t = (t1, . . . , tθ) ∈

Z≥0
θ with L(t) = n, let Bn,t ⊆ Bn denote the monomial basis of ωnt (V ) and let bt :=

x1
t1 · · ·xθtθ ∈ Bn,t. For all 1 ≤ j ≤ n, we define functions βj , εj : Bn → Bj by

βj(m) = mb, m = mbm
′, mb ∈ Bj , m′ ∈ Bn−j ,

εj(m) = me, m = m′′me, me ∈ Bj , m′′ ∈ Bn−j .

That is, βj returns the j letters at the beginning, while εj returns the j letters at the end.

Clearly,

m = β1(m)εn−1(m) = βn−1(m)ε1(m). (4.16)

Let Sn denote the symmetric group on n letters and let Cn := 〈τ〉 be the cyclic subgroup

of Sn generated by the permutation

τ := (1 2 · · · n).
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Sn acts on the elements of Bn,t by permuting indices. That is, if σ ∈ Sn and b =

xi1xi2 · · ·xin ∈ Bn,t, then σ · b is the monomial with xij in the σ(j) position. Clearly,

this action is transitive; indeed every member of Bn,t equals σ · bt, for some σ ∈ Sn. For

example, when θ = 2, n = 3 and t = (2, 1), we have bt = x1
2x2 and

x1x2x1 = (2 3) · bt.

As a vector space, Bn,t then splits as a direct sum of orbits under the action of Cn. For

example, when θ = 2, n = 4 and t = (2, 2), the orbits are

{bt = x1
2x2

2, τ · bt = x2x1
2x2, τ2 · bt = x2

2x1
2, τ3 · bt = x1x2

2x1},

and

{(2 3) · bt = x1x2x1x2, τ · (2 3) · bt = x2x1x2x1},

An orbit of size n, like the first orbit above, is said to be a long orbit, while an orbit of

size less than n, like the second orbit above, is called a short orbit.

For all b ∈ Bn, clearly we have βn−1(b) = εn−1(τ · b), which gives

βn−1(τk−1 · b) = εn−1(τk · b), (4.17)

for all k ≥ 1.

For b = xi1 · · ·xin ∈ Bn, define γ(b) :=
∏n
j=2 ri1ij . Let Ob denote the orbit of Cn

applied to b and let

γ(Ob) :=
∏
a∈Ob

γ(a).

4.4.2 Main theorem

This section is devoted to proving the following theorem:

Theorem 4.4.1. Let Γ be a group and let V ∈ Γ
ΓYD be finite dimensional and diagonal-

isable, with basis x1, . . . , xθ and braiding map c : V ⊗ V → V ⊗ V as in (4.11). Suppose

that for all n ≥ 2 and for all b ∈ Bn, we have γ(Ob) 6= 1. Then B(V ) ∼= T (V ).

In fact, the theorem follows easily from the following proposition, using Proposition

4.2.3 (ii).

Proposition 4.4.2. Let Γ be a group and let V ∈ Γ
ΓYD be finite dimensional and diag-

onalisable, with basis x1, . . . , xθ and braiding map c : V ⊗ V → V ⊗ V as in (4.11). Let

m ≥ 2 and suppose that

γ(Ob) 6= 1 for any b ∈ Bi with 2 ≤ i ≤ m. (4.18)
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Then

(i) for 1 ≤ j ≤ θ,

kerDj,m =

θ∑
l=1

adc(xl)(kerDj,m−1). (4.19)

(ii)
θ⋂
j=1

kerDj,m = 0. (4.20)

The proof is by induction on m ≥ 2. We first prove that (4.19) and (4.20) hold for

m = 2. In this case, (4.18) becomes rii 6= 1 and rijrji 6= 1 for any 1 ≤ i 6= j ≤ θ. Fix j,

1 ≤ j ≤ θ. In this case, (4.19) becomes

kerDj,2 =
θ∑
l=1

adc(xl)(kx1 ⊕ · · · ⊕ kxj−1 ⊕ kxj+1 ⊕ · · · ⊕ kxθ). (4.21)

By Lemma 4.3.2 (iii), the right hand side of (4.21) is contained in the left. For the reverse

containment, suppose αab ∈ k are such that

u =
θ∑

a=1

θ∑
b=1

αabxaxb ∈ kerDj,2,

where αab ∈ k, 1 ≤ a, b ≤ θ. Then

Dj,2(u) = αjj(1− rjj)xj

+ α1jx1 + · · ·+ α(j−1)jxj−1 + α(j+1)jxj+1 + · · ·+ αθjxθ

+ αj1rj1x1 + · · ·+ αj(j−1)rj(j−1)xj−1

+ αj(j+1)rj(j+1)xj+1 + · · ·+ αjθrjθxθ

= (α1j + rj1αj1)x1 + · · ·+ αjj(1− rjj)xjj + · · ·+ (αθj + rjθαjθ)xθ

= 0.

Therefore,

α1j = −rj1αj1, . . . , αjj = 0, . . . , αθj = −rjθαjθ.

Hence,

u = adc(xj)(αj1x1) + · · ·+ adc(xj)(0xj) + · · ·+ adc(xj)(αjθxθ)

+
∑
a6=j

∑
b 6=j

αabxaxb.
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Let 1 ≤ a, b ≤ θ with a 6= j, b 6= j. Then, since (4.18) holds,

xaxb = adc(xa)((1− rabrba)−1xb) + adc(xb)((1− rabrba)−1rabxa).

This proves that u is a linear combination of the required form, and so (4.19) holds when

m = 2. By Lemma 4.3.3 (ii), dimk kerDj,2 = θ(θ − 1), which is therefore equal to the

dimension of the space on the right hand side of (4.21). Therefore, the sum on the right

hand side of (4.21) is a direct sum. Using the fact that adc(xl) is a monomorphism,

θ⋂
j=1

kerDj,2 =
θ⋂
j=1

θ⊕
l=1

adc(xl)(kerDj,1)

=

θ⊕
l=1

 θ⋂
j=1

adc(xl)(kerDj,1)


=

θ⊕
l=1

adc(xl)

 θ⋂
j=1

kerDj,1


= 0,

so (4.20) holds when m = 2.

The following lemma is the instrumental step in the proof by induction of Proposition

4.4.2.

Lemma 4.4.3. Let Γ be a group and let V ∈ Γ
ΓYD be finite dimensional and diagonalisable,

with basis x1, . . . , xθ and braiding map c : V ⊗ V → V ⊗ V as in (4.11). Let n ≥ 2 and

suppose that (4.18) holds for m = n and that (4.19) and (4.20) hold for 2 ≤ m ≤ n − 1.

Then

Tn(V ) =

θ⊕
j=1

adc(xj)(T
n−1(V )).

Proof. Since (4.18) holds for m = n, taking b = xj
n shows that γ(b) = rjj

n−1 6= 1, for all

1 ≤ j ≤ θ. Therefore, by Lemma 4.3.4, it is enough to prove that the sum

θ∑
j=1

adc(xj)(T
n−1(V )) (4.22)

is a direct sum, since it would then have the same dimension as Tn(V ). Note that Tn(V ) =⊕n
t∈tn ω

n
t (V ), that ωnt (V ) is a kΓ-submodule of Tn(V ) contained in a single Γ-eigenspace

and that for fixed j with 1 ≤ j ≤ θ, adc(xj)(ω
n−1
t̂

(V )) ⊆ ωn
t̂+j

(V ) for all t̂ ∈ tn−1.
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Therefore,

θ∑
j=1

adc(xj)(T
n−1(V )) =

θ∑
j=1

⊕
t∈tn−1

adc(xj)(ω
n−1
t (V ))

=
θ∑
j=1

⊕
t∈tn

(
adc(xj)(T

n−1(V )) ∩ ωnt (V )
)

=
⊕
t∈tn

θ∑
j=1

(
adc(xj)(T

n−1(V )) ∩ ωnt (V )
)

=
⊕
t∈tn

θ∑
j=1

adc(xj)(ω
n−1
t−j (V )),

where we set ωmt (V ) = 0 if t ∈ Zθ \ Z≥0
θ. Let dn,t := dimk ω

n
t (V ). Then, if

a ∈
θ∑
j=1

adc(xj)(ω
n
t−j(V )),

we can write a as a linear combination in two ways: firstly, in terms of the bases Bn−1,t−j

for 1 ≤ j ≤ θ; secondly, since a ∈ ωnt (V ), in terms of the basis Bn,t. That is,

a =
θ∑
j=1

dn−1,t−j∑
k=1

αjk adc(xj)(bjk) (4.23)

=

dn,t∑
l=1

µlml (4.24)

where αjk, µl ∈ k, bjk ∈ Bn−1,t−j and ml ∈ Bn,t, for 1 ≤ j ≤ θ, 1 ≤ k ≤ dn−1,t−j,

1 ≤ l ≤ dn,t. The idea is to compare the coefficients of the monomials in (4.24) with those

in (4.23), and so write the µl in terms of the αjk. We then show that if a = 0, then αjk = 0

for all 1 ≤ j ≤ θ and 1 ≤ k ≤ dn−1,t−j, which is enough to prove that (4.22) is a direct

sum.

For convenience later on, if b = bjk ∈ Bn−1,t−j for some 1 ≤ j ≤ θ and 1 ≤ k ≤ dn−1,t−j,

we will write αb := αjk. Similarly, if m = ml ∈ Bn,t for some 1 ≤ l ≤ dn,t, we will write

µm := µl.

Let m := ml ∈ Bn,t for some l, 1 ≤ l ≤ dn,t and let q denote the size of the orbit of m

under Cn. Then, by (4.16), m is in the support of exactly two terms of (4.23), namely

adc(β1(m))(εn−1(m)) = m− γ(m)(τ q−1 ·m),

and

adc(ε1(m))(βn−1(m)) = τ ·m− γ(τ ·m)m.
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Hence,

µm = αεn−1(m) − γ(τ ·m)αβn−1(m).

Therefore, for any k ≥ 1, the coefficient of τk ·m is

µτk·m = αεn−1(τk·m) − γ(τk+1 ·m)αβn−1(τk·m)

= αβn−1(τk−1·m) − γ(τk+1 ·m)αβn−1(τk·m),

where the second equality follows from (4.17).

Now, suppose a = 0, so µm = 0. Then

αεn−1(m) = γ(τ ·m)αβn−1(m), (4.25)

and, since µτk·m = 0 for all k ≥ 1,

αβn−1(τk−1·m) = γ(τk+1 ·m)αβn−1(τk·m). (4.26)

Hence, we have

αεn−1(m) = γ(τ ·m)αβn−1(τ0·m) by (4.25)

= γ(τ ·m)γ(τ2 ·m)αβn−1(τ1·m) (4.27)

by applying (4.26) with k = 1

= γ(τ ·m)γ(τ2 ·m)γ(τ3 ·m)αβn−1(τ2·m) (4.28)

by applying (4.26) with k = 2

...

=

q∏
k=1

γ(τk ·m)αβn−1(τq−1·m) (4.29)

by applying (4.26) with k = q − 1.

However, since τ q ·m = m, we have

q∏
k=1

γ(τk ·m) =

q−1∏
k=0

γ(τk ·m) = γ(Om). (4.30)

Using (4.17) and the fact that τ q ·m = m, we see that

αβn−1(τq−1·m) = αεn−1(τq ·m)

= αεn−1(m). (4.31)
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Substituting (4.30) and (4.31) into (4.29) gives

αεn−1(m) = γ(Om)αεn−1(m).

Since γ(Om) 6= 1 by hypothesis, αεn−1(m) = 0.

It is easy to see that, for all 1 ≤ j ≤ θ and 1 ≤ k ≤ dn−1,t−j, αjk = αεn−1(m) for some

m ∈ ωn−1
t−j (V ) (just take m to be xlbjk for any 1 ≤ l ≤ θ). Therefore, αjk = 0, and the

lemma follows.

We can now finish the inductive proof of Proposition 4.4.2. We assume that (4.18)

holds for m = n and that (4.19) and (4.20) hold for 2 ≤ m ≤ n− 1.

Proof. (i) By Lemma 4.3.2 (iii), for all 1 ≤ j ≤ θ,

θ∑
l=1

adc(xl)(kerDj,n−1) ⊆ kerDj,n.

By Lemma 4.4.3, the above sum is direct. The hypothesis (4.18) implies that rii
k 6= 1

for any 1 ≤ k ≤ n−1. Therefore, by Lemma 4.3.3 (ii), dimk(kerDj,n−1) = θn−2(θ−1)

for 1 ≤ j ≤ θ. Hence, the dimension of the above sum is θn−1(θ− 1), which is equal

to the dimension of kerDj,n, meaning that the inclusion is an equality, as required

for (4.19).

(ii) By part (i), using the fact that the sum
∑θ

l=1 adc(xl)(kerDj,n−1) is direct, and that,

by Lemma 4.3.4, for 1 ≤ l ≤ θ, adc(xl) is a monomorphism,

θ⋂
j=1

kerDj,n =

θ⋂
j=1

(
θ⊕
l=1

adc(xl)(kerDj,n−1)

)

=

θ⊕
l=1

 θ⋂
j=1

adc(xl)(kerDj,n−1)


=

θ⊕
l=1

adc(xl)

 θ⋂
j=1

kerDj,n−1


= 0, by(4.20) with m = n− 1.

Theorem 4.4.1 gives sufficient conditions for B(V ) ∼= T (V ) in terms of the action of the

symmetric group. This condition is difficult to describe purely in terms of restrictions on

the scalars rij . However, the following corollary gives stronger conditions that are easier

to describe explicitly.
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Corollary 4.4.4. Let Γ be a group and let V ∈ Γ
ΓYD be finite dimensional and diagonal-

isable, with basis x1, . . . , xθ and braiding map c : V ⊗ V → V ⊗ V as in (4.11). Suppose

that there do not exist non-negative integers t1, . . . , tθ such that

• 2 ≤
∑θ

i=1 ti,

•
∏θ
i,j=1 r

kij
ij = 1, where kij = titj − δijti.

Then B(V ) ∼= T (V ).

Proof. Let γ =
∏θ
i,j=1 rij

kij . Let t := (t1, . . . , tθ) ∈ Z≥0 and let n :=
∑θ

i=1 ti. Then for all

m ∈ Bn,t with |Om| = q, we have (γ(Om))n/q = γ. To see this, first suppose that q = n;

that is, that Om is a long orbit. Then for all 1 ≤ i ≤ θ, xi occurs ti times at the start of

a monomial in Om. Each time this happens, there are ti − 1 instances of xi in last n− 1

letters of the monomial and tj instances of xj in the last n−1 letters for all 1 ≤ j 6= i ≤ θ.

This means that rii occurs ti(ti− 1) times and rij occurs titj times in γ(Om), as required.

Now suppose that Om is a short orbit. If we treated it as a long orbit, listing each member

with n/q repetitions, then the scalar associated with this orbit would be γ(Om)n/q. By

the same argument as for the long orbit case, this is equal to γ.

If γ 6= 1, then γ(Om) 6= 1. Therefore, we may apply Theorem 4.4.1, which shows that

B(V ) ∼= T (V ).

A corollary of Theorem 4.4.1 answers a question of Andruskiewitsch and Schneider [2,

Example 3.5]:

Corollary 4.4.5. Let Γ be a group and let V ∈ Γ
ΓYD be finite dimensional and diag-

onalisable, with a basis such that the braiding map c := rτ : V ⊗ V → V ⊗ V , where

τ : V ⊗ V → V ⊗ V is the “flip” map. Then B(V ) ∼= T (V ) if and only if either r = 1 or r

is not a root of unity.

Proof. Let x1, . . . , xθ be a basis of V . Suppose r 6= 1 and r is a primitive nth root of unity.

Then, for all 1 ≤ i ≤ θ, and for all 1 ≤ j ≤ θ with j 6= i, Dj,n(xi
n) = 0 and

Di,n(xi
n) = (1 + r + . . .+ rn−1)xi

n−1 = 0,

so xi
n ∈ I(V ) and hence B(V ) � T (V ). If r = 1, then the braiding of V is trivial and

clearly B(V ) ∼= T (V ). Conversely, if r 6= 1 and r is not a root of unity, then the conditions

of Theorem 4.4.1 are satisfied and hence B(V ) ∼= T (V ).
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Remark. An equivalent problem was previously studied by Frønsdal in [19], although

he does not express it in the language of Nichols algebras. He obtains a result that

is equivalent to Lemma 4.4.3, although his methods and presentation are different to the

above. It seems that Andruskiewitsch and Schneider were not aware of this when compiling

the survey article [2], since they do not reference [19] and consider [2, Example 3.5] to be

an open question.

The results here were originally obtained independently of [19], although in the form

of Corollary 4.4.4 rather than in the form of Theorem 4.4.1. After completing this work,

we adapted the technique of [19] involving the action of the symmetric group on the

monomials in order to sharpen our result.



Chapter 5

Ambiskew Hopf algebras

In this chapter, we consider a type of iterated skew polynomial ring called an ambiskew

polynomial algebra, which we denote by A. These algebras were first given this name

in [28], although they had appeared previously in the literature - for example, in [29].

They are closely related to down-up algebras [8] and to generalised Weyl algebras [6].

In previous work on these algebras, the base ring R has been a commutative affine

algebra. Here, we remove the commutativity assumption on R. In the case where R is a

Hopf algebra, we examine the conditions under which its Hopf structure extends to a Hopf

structure on A, with a certain assumption about the coproduct on the skew-polynomial

variables. We also calculate the coradical filtration of A when the coradical of R is a Hopf

algebra. Lastly, we consider some properties of A, including the conditions under which

A satisfies a polynomial identity.

5.1 Definition

Let k be an algebraically closed field of characteristic zero and let R be an affine k-

algebra. Let σ be an automorphism of R, let h ∈ Z(R) and let 0 6= ξ ∈ k. We define

A = A(R,X+, X−, σ, h, ξ) to be the k-algebra generated by R and two indeterminates, X+

and X−, subject to the relations

X±a = σ±1(a)X±, (5.1)

X+X− = h+ ξX−X+, (5.2)

for all a ∈ R. The algebra A is called an ambiskew polynomial algebra.

A has the structure of an iterated skew polynomial ring over R, as follows. The subring

79
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of A generated by R and X+ is just the skew polynomial ring R[X+, σ]. We can extend

σ−1 : R → R to a map which we continue to denote by σ−1 : R[X+, σ] → R[X+, σ] by

defining σ−1(X+) = ξ−1X+. Define the (σ−1, id)-derivation δ : R[X+, σ] → R[X+, σ] by

δ(R) = 0, δ(X+) = −ξ−1h. This is well-defined since h is central in R. Then

A = R[X+, σ][X−, σ
−1, δ].

Consequently, A is a free left and right R-module, with basis

{X+
mX−

n : m,n ≥ 0}. (5.3)

In addition, A⊗A is a free left and right R⊗R-module, with basis

{X−mX+
n ⊗X−pX+

q : m,n, p, q ≥ 0}. (5.4)

5.2 Hopf algebra structure

5.2.1 The main theorem

Let R be an affine k-algebra equipped with a Hopf structure. We will state and prove a

theorem giving conditions which are necessary and sufficient to ensure an extension of this

Hopf structure to A, with the proviso that

∆(X±) = X± ⊗ r± + l± ⊗X±, (5.5)

for some l±, r± ∈ R. This question was previously considered in [22, Theorem 3.1], where

R is assumed to be commutative. We obtain a generalisation of this theorem for not

necessarily commutative R.

Lemma 5.2.1. (i) Suppose R is equipped with a bialgebra structure, which extends to

a bialgebra structure on A := (A,m, u,∆, ε) such that (5.5) holds. Then

(a) r± and l± are grouplike,

(b) [r+, r−] = [l+, l−] = 0.

(ii) Suppose R is equipped with a Hopf algebra structure, which extends to a Hopf algebra

structure on A := (A,m, u,∆, ε, S) such that (5.5) holds. Let χ := ε ◦ σ : R → k.

Then

(a) σ(r±) = χ(r±)r± and σ(l±) = χ(l±)l±,
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(b) r+r− and l+l− are central in R.

Proof. In this proof, we suppose that ∆: A→ A⊗A and ε : A→ k are algebra homomor-

phisms extending, respectively, the coproduct and counit on R. We show that ∆ preserves

(5.1) and (5.2), and ∆ and ε satisfy, respectively, the coassociativity and counit axioms

if and only if certain conditions hold. This means that we prove slightly more than is

required, but for convenience later we will refer back to some of these calculations.

(i) (a) If ε : A → k is any algebra homomorphism extending the counit on R, then ε

satisfies the counit condition for A if and only if

m(id⊗ε)∆(X±) = X±ε(r±) + l±ε(X±) = X±,

m(ε⊗ id)∆(X±) = ε(X±)r± + ε(l±)X± = X±.

Rearranging gives

(1− ε(r±))X± = l±ε(X±)

(1− ε(l±))X± = ε(X±)r±.

By the fact that A is a free R-module with basis (5.3), both sides must be zero,

so ε satisfies the counit condition if and only if

ε(X±) = 0 and ε(l±) = ε(r±) = 1. (5.6)

Furthermore, if ∆: A → A ⊗ A is an algebra homomorphism extending the

coproduct on R, then the coassociativity condition for ∆ is equivalent to

(id⊗∆)∆(X±) = (∆⊗ id)∆(X±),

and this holds if and only if

X± ⊗ (∆(r±)− r± ⊗ r±) = (∆(l±)− l± ⊗ l±)⊗X±.

By the facts that A⊗A is a free R⊗R-module on basis (5.4) and that ∆(R) ⊆

R⊗R, both sides must be zero. Therefore, ∆ is coassociative if and only if

∆(l±) = l± ⊗ l± and ∆(r±) = r± ⊗ r±. (5.7)
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(b) ∆ preserves (5.2) if and only if

∆(X+)∆(X−) = ∆(h) + ξ∆(X−)∆(X+)

⇔ (h+ ξX−X+)⊗ r+r− + l+l− ⊗ (h+ ξX−X+)

−∆(h)− ξX−X+ ⊗ r−r+ − ξl−l+ ⊗X−X+

+ (σ(l−)⊗ r+ − ξl− ⊗ σ−1(r+))X+ ⊗X−

+ (l+ ⊗ σ(r−)− ξσ−1(l+)⊗ r−)X− ⊗X+ = 0

⇔ h⊗ r+r− + l+l− ⊗ h−∆(h)

+ (ξ ⊗ (r+r− − r−r+))X−X+ ⊗ 1

((l+l− − l−l+)⊗ ξ)1⊗X−X+

+ (σ(l−)⊗ r+ − ξl− ⊗ σ−1(r+))X+ ⊗X−

+ (l+ ⊗ σ(r−)− ξσ−1(l+)⊗ r−)X− ⊗X+ = 0

Using the linear independence of the R ⊗ R-basis (5.4) of A ⊗ A and the fact

that ξ 6= 0, this shows that ∆ preserves (5.2) if and only if

∆(h) = h⊗ r+r− + l+l− ⊗ h, (5.8)

[r+, r−] = [l+, l−] = 0, (5.9)

σ(l−)⊗ r+ = ξl− ⊗ σ−1(r+), (5.10)

l+ ⊗ σ(r−) = ξσ−1(l+)⊗ r−. (5.11)

(ii) (a) Note that if R is a Hopf algebra, the antipode condition implies that the group-

like elements r± and l± are invertible [42, Example 1.5.3].

For all a ∈ R, using (5.5) and (5.1),

∆(X±)∆(a) = (l± ⊗X± +X± ⊗ r±)
(∑

a1 ⊗ a2

)
=
∑

l±a1 ⊗X±a2 +X±a1 ⊗ r±a2

=
∑

l±a1 ⊗ σ±1(a2)X± + σ±1(a1)X± ⊗ r±a2. (5.12)

∆ preserves (5.1) if and only if, for all a ∈ R,

∆(X±)∆(a) = ∆(σ±1(a))∆(X±).

By (5.5) and (5.12), this is equivalent to∑
l±a1 ⊗ σ±1(a2)X± + σ±1(a1)X± ⊗ r±a2 = ∆(σ±1(a))(X± ⊗ r± + l± ⊗X±);
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that is, (∑
l±a1 ⊗ σ±1(a2)−∆(σ±1(a))(l± ⊗ 1)

)
(1⊗X±)

=
(∑

∆(σ±1(a))(1⊗ r±)− σ±1(a1)⊗ r±a2

)
(X± ⊗ 1).

Therefore, ∆ preserves (5.1) if and only if, for all a ∈ R,

(∆(σ±1(a))(l± ⊗ 1)− (l± ⊗ 1)(id⊗σ±1)∆(a))(1⊗X±)

+ (∆(σ±1(a))(1⊗ r±)− (1⊗ r±)(σ±1 ⊗ id)∆(a))(X± ⊗ 1) = 0.

Using the linear independence of the R⊗R-basis (5.4) of A⊗A, this is equivalent

to

∆(σ±1(a))(l± ⊗ 1) = (l± ⊗ 1)(id⊗σ±1)∆(a),

and

∆(σ±1(a))(1⊗ r±) = (1⊗ r±)(σ±1 ⊗ id)∆(a).

Since r± and l± are invertible, ∆ preserves (5.1) if and only if

∆(σ±1(a)) = (adl(l±)⊗ id)(id⊗σ±1)∆(a), (5.13)

and

∆(σ±1(a)) = (id⊗ adl(r±))(σ±1 ⊗ id)∆(a). (5.14)

Putting a = r± in (5.14) shows that

∆(σ±1(r±)) = σ±1(r±)⊗ r±.

Applying m(ε⊗ id) to both sides gives

σ±1(r±) = (ε ◦ σ±1)(r±)r±.

This gives the result as stated in (ii)(a) for σ(r+), and shows that

σ−1(r−) = (ε ◦ σ−1)(r−)r−.

Applying σ to both sides and rearranging gives

σ(r−) = ((ε ◦ σ−1)(r−))
−1
r−. (5.15)

Applying ε to both sides shows that

(ε ◦ σ)(r−) = ((ε ◦ σ−1)(r−))
−1
.

Substituting this into (5.15) gives the stated value in (ii)(a) for σ(r−). A similar

calculation leads to the corresponding result for σ(l±).
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(b) By (5.14), for all a, b ∈ R,

∆(σ(a)) =
∑

σ(a1)⊗ r+a2r+
−1

∆(σ−1(b)) =
∑

σ−1(b1)⊗ r−b2r−−1.

Taking b = σ(a) in the last equation shows that

∆(a) =
∑

a1 ⊗ r−r+a2r+
−1r−

−1.

Applying m(ε⊗ id) gives a = r−r+a(r−r+)−1 for all a ∈ R, so r−r+ is central

in R. By (5.9), r+r− is central in R. A similar argument using (5.13) shows

that l+l− is central in R.

Let R be a Hopf algebra, so that r± is invertible, by Lemma 5.2.1 (i)(a) and [42,

Example 1.5.3]. We can equally well think of A as the ambiskew polynomial algebra with

the variables X± replaced by X±r±
−1, with slight adjustments to σ, ξ and h, as follows:

Lemma 5.2.2. Let R be an affine Hopf algebra and let A = A(R,X+, X−, σ, ξ, h) be an

ambiskew algebra. Suppose r± ∈ R is invertible and set χ := ε ◦ σ : R→ k. Then we also

have

A = A(R,X+r+
−1, X−r−

−1, σ̂, ξ̂, ĥ),

where σ̂ = adl(r+) ◦ σ, ξ̂ = ξχ(r+r−)−1 and ĥ = χ(r+)−1h(r+r−)−1.

Proof. Since r± is invertible, both sets are the same. We only have to check the equivalence

of relations (5.1) and (5.2) with the ambiskew relations for our new ambiskew data: that

is, for all a ∈ R, we should have

(X±r±
−1)a = σ̂±1(a)(X±r±

−1), (5.16)

(X+r+
−1)(X−r−

−1) = ξ̂(X−r−
−1)(X+r+

−1) + ĥ. (5.17)

Since r± is a grouplike element in a Hopf algebra, adl(r±)(a) = r±ar±
−1 for all a ∈ R.

It is easy to check, using Lemma 5.2.1 (i)(b) and (ii)(a),(b), that σ̂−1 = adl(r−) ◦ σ−1.

Firstly, we show that (5.16) holds: for all a ∈ R,

(X±r±
−1)a = σ±1(r±

−1a)X±(r±r±
−1)

= χ(r±)∓1r±
−1σ±1(a)X±(r±r±

−1) by Lemma 5.2.1 (ii)(a)

= χ(r±)∓1r±
−1σ±1(a)σ±1(r±)(X±r±

−1) by (5.1)

= χ(r±)∓1χ(r±)±1r±
−1σ±1(a)r±(X±r±

−1) by Lemma 5.2.1 (ii)(a)

= σ̂±1(a)(X±r±
−1),
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as required. Secondly, we show (5.17) holds:

(X+r+
−1)(X−r−

−1) = X+X−σ(r+
−1)r−

−1

= χ(r+)−1X+X−r+
−1r−

−1 by Lemma 5.2.1 (ii)(a)

= χ(r+)−1(ξX−X+ + h)r+
−1r−

−1 by (5.2)

= χ(r+)−1ξX−σ(r−
−1)X+r+

−1 + ĥ by Lemma 5.2.1 (i)(b) and (5.1)

= χ(r+)−1χ(r−)−1ξ(X−r−
−1)(X+r+

−1) + ĥ by Lemma 5.2.1 (ii)(a)

= ξ̂(X−r−
−1)(X+r+

−1) + ĥ,

as required.

The previous lemma shows that we may adjust the ambiskew data and relabel our

variables if necessary to make X± skew-primitive. So, without loss of generality, we can

assume that

∆(X±) = X± ⊗ 1 + y± ⊗X±, (5.18)

for some y± ∈ R, which significantly simplifies our later calculations. Here our approach

differs from [22], which omits this step.

Let H be a Hopf algebra. Recall that Algk(H, k), the set of algebra homomorphisms

H → k, is a group under the convolution product [49, Theorem 4.0.5]. If φ ∈ Algk(H, k)

let φ−1 ∈ Algk(H, k) denote its convolution inverse. In fact, φ−1 = φ ◦ S. Recall also that

the left winding automorphism τ lφ : H → H is defined by

τ lφ(h) = m(φ⊗ id)∆(h) =
∑

φ(h1)h2,

and the right winding automorphism τ rφ : H → H is defined by

τ rφ(h) = m(id⊗φ)∆(h) =
∑

h1φ(h2).

It is easy to check that (τ lφ)−1 = τ lφ−1 and (τ rφ)−1 = τ rφ−1 .

Theorem 5.2.3. Suppose R is equipped with a Hopf algebra structure. Let χ := ε◦σ : R→

k. Then the Hopf algebra structure on R extends to a Hopf algebra structure on A, where

the coproduct ∆ satisfies (5.18), if and only if

• y± is grouplike. That is,

∆(y±) = y± ⊗ y±, (A)

ε(y±) = 1. (B)
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• y± satisfies

y+y− = y−y+ ∈ Z(R). (C)

• X± satisfies

ε(X±) = 0, (D)

S(X±) = −y±−1X±. (E)

• h satisfies

∆(h) = h⊗ 1 + y−y+ ⊗ h, (F)

ε(h) = 0, (G)

S(h) = −(y−y+)−1h. (H)

• σ satisfies the compatibility conditions

σ±1|R = τ lχ±1 , (I)

σ±1|R = adl(y±) ◦ τ rχ±1 , (J)

σ∓1 ◦ S|R = adr(y±) ◦ S ◦ σ±1|R, (K)

σ(y±) = ξy±. (L)

Proof. Under our assumption (5.18), A is a Hopf algebra if and only if the definitions of

∆, ε and S on X± satisfy, respectively, the coassociativity, counit and antipode conditions,

and are well-defined on relations (5.1) and (5.2).

Firstly, we consider ε. Assume for the moment that ∆ as defined is a k-algebra homo-

morphism from A to A ⊗ A. Then ε is a counit if and only if (5.6) holds with l± = y±

and r± = 1, which is equivalent to (B) and (D). Consequently, ε automatically preserves

(5.1). Using (D), we see that ε preserves (5.2) if and only if (G) holds.

Secondly, we consider ∆. ∆ is coassociative if and only if (5.7) holds, with l± = y±

and r± = 1, which is equivalent to (A). Furthermore, ∆ preserves (5.1) if and only if

(5.13) and (5.14) hold, with l± = y± and r± = 1, which are equivalent to

∆ ◦ σ|R±1 = (σ±1 ⊗ id) ◦∆|R, (5.19)

∆ ◦ σ|R±1 = (adl(y±)⊗ id)(id⊗σ±1) ◦∆|R. (5.20)
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Applying m(ε⊗ id) to the first equation and m(id⊗ε) to the second gives

σ±1|R = τ lχ± , (5.21)

σ±1|R = adl(y±) ◦ τ rχ± , (5.22)

where we set χ+ := χ and χ− := ε ◦ σ−1. Conversely, if (5.21) and (5.22) hold, it is easy

to check that (5.19) and (5.20) hold. We leave aside (5.21) and (5.22) momentarily, but

will presently show that they are equivalent to (I) and (J). ∆ preserves (5.2) if and only if

(5.8) to (5.11) hold, with l± = y± and r± = 1. (5.8) is equivalent to (F), (5.9) is equivalent

to (C) by Lemma 5.2.1 (ii)(b), and (5.10) and (5.11) are both equivalent to (L).

Lastly, we consider S. Assume first that S : A → A is an antihomomorphism. S has

the antipode property if and only if

0 = ε(X±) = X± + y±S(X±) = S(X±) + y±
−1X±,

which is equivalent to (E).

Now we examine the antihomomorphism property of S. S preserves (5.1) if and only

if, for all a ∈ R,

S(X±a) = S(σ±1(a)X±)

⇔ S(a)S(X±) = S(X±)S(σ±1(a))

⇔ S(a)y±
−1X± = y±

−1X±S(σ±1(a))

⇔ S(a)y±
−1X± = y±

−1σ±1(S(σ±1(a)))X±

⇔ S(a)y±
−1 = y±

−1σ±1(S(σ±1(a)))

S(a) = y±
−1σ±1(S(σ±1(a)))y±

⇔ σ∓1(S(a)) = σ∓(y±
−1)S(σ±1(a))σ∓(y±).

By (L), this is equivalent to (K). Consequently, it is easy to check that ε◦σ ◦S = ε◦σ−1 -

in other words, that ε ◦σ−1 = χ−1, the convolution inverse of χ in Algk(R, k). This shows

that (5.21) and (5.22) are equivalent to (I) and (J).
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S preserves (5.2) if and only if

S(X+X−) = S(h) + ξS(X−X+)

⇔ S(X−)S(X+) = S(h) + ξS(X+)S(X−)

⇔ y−
−1X−y+

−1X+ = S(h) + ξy+
−1X+y−

−1X−

⇔ y−
−1σ−1(y+

−1)X−X+ = S(h) + ξy+
−1σ(y−

−1)X+X−

⇔ ξy−
−1y+

−1X−X+ = S(h) + y+
−1y−

−1(h+ ξX−X+) by (5.2) and (L)

⇔ S(h) + y+
−1y−

−1h+ ξ(y+
−1y−

−1 − y−−1y+
−1)X−X+ = 0.

Using the linear independence of the R-basis (5.3) of A, this is equivalent to (H) and

(C).

Given a fixed Hopf algebra R whose structure extends to a Hopf algebra structure on

A with (5.18), we are interested in determining the interplay between the ambiskew data

- σ, h and ξ - and the data resulting from the Hopf algebra structure - y± and χ. The

following corollary clarifies this matter somewhat.

For g, h ∈ G(R), let

Pg,h(R) := {a ∈ R : ∆(a) = a⊗ g + h⊗ a}.

For all g, h ∈ G(R), Pg,h(R) is non-empty because it contains 0.

Corollary 5.2.4. Let R be a Hopf algebra and let y± ∈ G(R). Let χ : R→ k be an algebra

homomorphism such that the following hold:

(i) χ(y+) = χ(y−),

(ii) adl(y±) = τ lχ±1 ◦ τ rχ∓1.

Then there is an ambiskew Hopf algebra A = A(R,X+, X−, σ, ξ, h) extending the Hopf

algebra structure of R with (5.18), where we set σ := τ lχ and ξ := χ(y+), and choose h

to be any member of P1,y−y+(R) that is central in R. Furthermore, every ambiskew Hopf

algebra extending the Hopf algebra structure of R arises in this way.

Proof. Let y± ∈ G(R) and suppose that there exists an algebra homomorphism χ : R→ k

such that (i) and (ii) hold. Make the definitions for σ, ξ and h above. We must show that

A satisfies the conditions of Theorem 5.2.3. By hypothesis, (A) and (B) hold. Any left

winding automorphism commutes with any right winding automorphism. Therefore, (ii)
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shows that adl(y+) = τ rχ−1 ◦ τ lχ and adl(y−) = τ lχ−1 ◦ τ rχ. We also have (τ lχ)−1 = τ lχ−1 and

(τ rχ)−1 = τ rχ−1 , so considering the composition adl(y+) ◦ adl(y−) = adl(y+y−) shows that

adl(y+y−) = id, and hence y+y− is central in R. Consequently, (y+y−)y− = y−(y+y−)

and thus y−y+ = y+y−, so (C) holds. We can define ε(X±) and S(X±) as in (D) and

(E). By our choice of h, (F) - (H) hold. Using (ii) together with the definition of σ gives

(I) and (J). To check (K), note the following facts. Firstly, adl(y±) commutes with S

and adr(y±) ◦ adl(y±) = id. Secondly, since χ and χ−1 are convolution inverses, we have

χ±1 = χ∓ ◦ S. Thirdly, for all a ∈ R, the antihomomorphism property of S implies that

∆ ◦ S(a) =
∑
S(a2)⊗ S(a1). Therefore, for all a ∈ R,

adr(y±) ◦ S ◦ σ±1(a) = adr(y±) ◦ S ◦ adl(y±) ◦ τ rχ±1(a)

= adr(y±) ◦ adl(y±) ◦ S ◦ τ rχ±1(a)

= S ◦ τ rχ±1(a) = S
(∑

a1χ
±1(a2)

)
=
∑

χ±1(a2)S(a1) =
∑

χ∓1(S(a2))S(a1)

= τ lχ∓1 ◦ S(a) = σ∓1 ◦ S(a),

and so (K) holds. This shows that A is a Hopf algebra.

Now suppose that A = A(R,X+, X−, σ, ξ, h) is an ambiskew Hopf algebra such that

(5.18) holds and let χ := ε ◦ σ. Then (i) holds by Theorem 5.2.3 (L). Equating the

expressions for σ±1 in (I) and (J) gives (ii).

Therefore, the problem of studying ambiskew Hopf algebras with (5.18) reduces to

studying the possible choices of y± ∈ G(R) and algebra homomorphisms χ : R → k satis-

fying

χ(y+) = χ(y−) and adl(y±) = τ lχ±1 ◦ τ rχ∓1 . (5.23)

When A is a Hopf algebra, we can also describe in more detail the behaviour of certain

subspaces of R with respect to y± and σ.

Corollary 5.2.5. Suppose R is equipped with a Hopf algebra structure that extends to a

Hopf algebra structure on A such that (5.18) holds. Let σ := τ lχ, where χ : R → k. Then

the following conditions hold:

(i) Let τ : R ⊗ R → R ⊗ R denote the “flip” map. Then, for all a ∈ R such that

τ ◦∆(a) = ∆(a), we have y±a = ay±.

(ii) Let G := G(R). Then
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(a) σ|G : G→ G is defined by, for g ∈ G,

σ|G(g) = χ(g)g,

where χ(y±) = ξ,

(b) y± is central in G.

(iii) Let g := P (R), the Lie algebra of primitive elements of R. Then

(a) σ|g : g→ g + k is defined by, for x ∈ g,

σ|g(x) = x+ χ(x),

(b) y± commutes with all elements of g.

Proof. (i) Let a ∈ R satisfy τ ◦ ∆(a) = ∆(a). This implies that τ lχ±1(a) = τ rχ±1(a).

Therefore, Corollary 5.2.4 (ii) shows that

adl(y±)(a) = τ lχ±1 ◦ τ lχ∓1(a) = a,

and hence y± commutes with a.

(ii) (a) By Theorem 5.2.3 (I), for all g ∈ G, σ(g) = χ(g)g. Theorem 5.2.3 (L) shows

that χ(y±) = ξ.

(b) Theorem 5.2.3 (A) and (B) show that y± is grouplike, and (i) shows that y± ∈

Z(G).

(iii) (a) If x ∈ g, then x is primitive, so Theorem 5.2.3 (I) shows that σ(x) = x+ χ(x).

(b) This follows from (i).

5.2.2 Examples

The following list of examples can be found in [22, §4]. In each case, R is a commutative

algebra.

Examples 5.2.6. (i) U(sl2). Let R = k[H], with Hopf structure given by requiring that

H is primitive. Let σ : R→ R be defined by σ(H) = H − 1, ξ = y± = 1 and h = H.

Then A ∼= U(sl2).



CHAPTER 5. AMBISKEW HOPF ALGEBRAS 91

(ii) Uq(sl2), where q2 ∈ k \ {0,±1}. Let R = k[K±1], which has a Hopf structure given

by requiring K±1 to be grouplike. Let σ : R → R be defined by σ(K) = q−2K, let

ξ = q−2, let h = (K2 − 1)/(q − q−1) and let y± = K. Then A ∼= Uq(sl2) as Hopf

algebras via X+ 7→ E, X− 7→ FK.

(iii) U(h3). Let R = k[c], with Hopf structure given by requiring that c is primitive. Let

σ = idR : R → R, let ξ = y± = 1 and let h = c. Then A ∼= U(h3), the universal

enveloping algebra of the three dimensional Heisenberg Lie algebra.

We now consider special cases of Theorem 5.2.3 obtained by imposing further conditions

on R. We first consider the case when R is commutative, but after this we see the advantage

of dropping the commutativity assumption for R, because we can take R to be a group

algebra of a nonabelian group or an enveloping algebra of a nonabelian Lie algebra, for

example. By Corollary 5.2.4, we only have to consider any further conditions on y±

imposed by the structure of R and the resulting effect on (5.23).

R commutative

In this case, our result is an alternative presentation of [22, Theorem 3.1].

Proposition 5.2.7. Let R be a commutative Hopf algebra, let y± ∈ G(R) and let χ : R→ k

be central in Algk(R, k) with χ(y+) = χ(y−). Then there is an ambiskew Hopf algebra

A := A(R,X+, X−, σ, ξ, h) extending the Hopf algebra structure of R such that (5.18)

holds, with σ := τ lχ, ξ := χ(y+) and h ∈ P1,y+y−(R). Furthermore, every ambiskew Hopf

algebra extending the Hopf algebra structure of R with (5.18) arises in this way.

Proof. Since R is commutative, adl(y±) = id. Consequently, (5.23) holds if and only if

χ(y+) = χ(y−) and χ ∈ Z(Algk(R, k)). The result follows by Corollary 5.2.4.

R cocommutative

Proposition 5.2.8. Let R be a cocommutative Hopf algebra, let y± ∈ G(R) ∩ Z(R), let

χ : R→ k be an algebra homomorphism with χ(y+) = χ(y−) and let either of the following

hold:

(i) h ∈ k(1− y−y+),

(ii) h is central in R and primitive, χ(y+) = ±1 and y+ = y−
−1.
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Then there is an ambiskew Hopf algebra A := A(R,X+, X−, σ, ξ, h) extending the Hopf

algebra structure of R such that (5.18) holds, with σ := τ lχ and ξ := χ(y+). Furthermore,

every ambiskew Hopf algebra extending the Hopf algebra structure of R with (5.18) arises

in this way.

Proof. By Corollary 5.2.5 (i), for A to be a Hopf algebra, we must have y± ∈ Z(R), and

so adl(y±) = id. Then (5.23) holds if and only if χ(y+) = χ(y−) and χ ∈ Z(Algk(R, k)) =

Algk(R, k) by the fact that R is cocommutative. Corollary 5.2.4 shows that this defines an

ambiskew Hopf algebra and that every ambiskew Hopf algebra with (5.18) arises in this

way, with an arbitrary choice of h ∈ P1,y−y+(R)∩Z(R). We now consider the structure of

P1,y−y+(R).

Since R is a cocommutative Hopf algebra over the algebraically closed field k, R is

pointed. To see this, let C be a simple subcoalgebra of R. Then C is finite-dimensional by

[42, Corollary 5.1.2(1)], and its dual space C∗ is a finite dimensional commutative k-algebra

by [42, Lemma 1.2.2]. In addition, by [42, Lemma 5.1.4], C is a simple coalgebra if and

only if C∗ is a finite-dimensional commutative simple algebra. By the Artin-Wedderburn

theorem [7, Theorem 3.2.2], C∗ ∼= k. Therefore, we also have C ∼= k and so C is one-

dimensional.

Let G := G(R) and let g, h ∈ G. It is easy to check that k(g − h) is a vector subspace

of Pg,h(R); let P ′g,h(R) denote its vector space complement. That is, Pg,h(R) = k(g−h)⊕

P ′g,h(R). Since R is cocommutative, we have Pg,h = Ph,g and hence also

P ′g,h(R) = P ′h,g(R) (5.24)

for all g, h ∈ G.

Let {Rn : n ≥ 0} denote the coradical filtration of R. Then, by [50, Proposition 2],

R1 = kG⊕
⊕
g,h∈G

P ′g,h(R).

This implies that P ′g,h(R) ∩ P ′e,f (R) = {0} unless g = e and h = f . Consequently, (5.24)

forces P ′g,h(R) = {0} unless g = h, and so

Pg,h(R) =

 k(g − h) g 6= h,

P ′g,h(R) g = h.

The above shows that there are two possible scenarios for P1,y−y+ , and hence for h:

(i) h ∈ k(1− y−y+),
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(ii) y−y+ = 1, so h is primitive. In this case, χ(y+y−) = χ(y+)2 = 1.

Remark. Examples 5.2.6 covers both possibilities for the choice of h in the above propo-

sition. Examples (i) and (iii) are of the second type, while example (ii) is of the first

type.

R a group algebra

Proposition 5.2.9. Let G be a group and let R := kG. Let y± ∈ Z(G), let χ : G→ k be

a character of G with χ(y+) = χ(y−) and let h ∈ k(1− y−y+). Then there is an ambiskew

Hopf algebra A := A(R,X+, X−, σ, ξ, h) extending the Hopf algebra structure of R such

that (5.18) holds, with σ(g) := χ(g)g for all g ∈ G and ξ := χ(y+). Furthermore, every

ambiskew Hopf algebra extending the Hopf algebra structure of R with (5.18) arises in this

way.

Proof. This follows by Corollary 5.2.8, noting that by Corollary 5.2.5 (ii) σ(g) = χ(g)g for

all g ∈ G. Clearly, P1,y−y+(R) = k(1− y−y+) and this is a central subalgebra of R.

R an enveloping algebra of a Lie algebra

Proposition 5.2.10. Let R = U(g), for some Lie algebra g.

(i) Let y± = 1, let χ : U(g) → k be a character of U(g) and let h ∈ Z(g). Then there

is an ambiskew Hopf algebra A := A(R,X+, X−, σ, ξ, h) extending the Hopf algebra

structure of R such that (5.18) holds, with σ(x) := x+χ(x) for all x ∈ g and ξ := 1.

Furthermore, every ambiskew Hopf algebra extending the Hopf algebra structure of

R with (5.18) arises in this way.

(ii) Suppose R has a Hopf structure that extends to a Hopf structure on A with (5.18).

Then A ∼= U(hχ), where hχ := g ⊕ kX+ ⊕ kX− is a Lie algebra. Its Lie bracket

restricted to g is the same as the Lie bracket on g; we define, for all x ∈ g,

[x,X+] := −χ(x)X+,

[x,X−] := χ(x)X−,

[X+, X−] := h.

Proof. (i) By [42, Example 5.1.6], 1 is the only grouplike in U(g), so we must have

y± = 1 for A to be a Hopf algebra. Clearly the condition χ(y+) = χ(y−) holds. If
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x ∈ g, then x is primitive, so Corollary 5.2.5 (iii) shows that σ(x) = x + χ(x). In

addition, h is central in R and primitive and by [42, Proposition 5.5.3], the set of

primitive elements of U(g) is g. The result follows by Corollary 5.2.8.

(ii) To see that hχ is a Lie algebra, we only need to check that its Lie bracket as defined

satisfies the Jacobi identity. However, the commutator bracket on any associative

algebra satisfies this [40, §1.7.1]. Since A satisfies the same relations as U(hχ), there

is clearly an algebra epimorphism θ : U(hχ) � A. Moreover, U(hχ) and A have the

same vector space basis, and θ is bijective on the monomials forming the basis of

U(hχ). Therefore, θ is an isomorphism.

R the quantised enveloping algebra of sl2

In the cases where R is a cocommutative Hopf algebra, Proposition 5.2.8 shows that y±

has to be central. A natural question is whether this must always be the case for any Hopf

algebra R. In fact, the answer is no, as the case R = Uq(sl2) shows:

Example 5.2.11. Let R = Uq(sl2), where q ∈ k \ {0, 1} and q is a primitive 4nth root of

unity for some n > 1. Here we have

G(R) ∩ Z(R) = {K2mn : m ∈ Z}.

Define χ : R → k by χ(E) := −1, χ(F ) := 1 and χ(K) := −1, and let σ := τ lχ. Then

the Hopf algebra structure of R extends to a Hopf algebra structure on A with (5.18) by

making the following definitions, where y± are not central. Set

• y+ := Kmn, y− := Ktn for some odd integers m and t,

• ξ := (−1)mn,

• h ∈ k(1−K(m+t)n).

5.3 Coradical filtration

In this section, we continue to suppose that R is a Hopf algebra and that the Hopf structure

on R extends to a Hopf structure on A such that (5.18) holds. In the case when the

coradical of R is a Hopf algebra, we investigate the coradical filtration of A, which we

show depends on whether or not ξ is a root of unity.
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5.3.1 Comultiplication formulas

Recall the definition of Gaussian binomial coefficients from §1.2.1. These coefficients occur

in the image of the comultiplication map applied to powers of X±, with q := ξ±1:

Lemma 5.3.1. Let R have a Hopf algebra structure that extends to a Hopf algebra struc-

ture on A such that (5.18) holds. Then

(i) for all m ≥ 0,

∆(X±
m) =

m∑
j=0

(
m

j

)
ξ±1

y±
m−jX±

j ⊗X±m−j ,

(ii) for all m,n ≥ 0,

∆(X+
nX−

m) =

n∑
j=0

m∑
k=0

(
n

j

)
ξ

(
m

k

)
ξ−1

ξj(m−k)

y+
n−jy−

m−kX+
jX−

k ⊗X+
n−jX−

m−k.

Proof. (i) Induction on m. The m = 0 case is obvious. For the induction step, if the

formula holds for m, then

∆(X±
m+1) =

 m∑
j=0

(
m

j

)
ξ±1

y±
m−jX±

j ⊗X±m−j
 (y± ⊗X± +X± ⊗ 1)

=
m∑
j=0

(
m

j

)
ξ±1

(y±
m−jσ±j(y±)X±

j ⊗X±m+1−j + y±
m−jX±

j+1 ⊗X±m−j)

= y±
m+1(1⊗X±m+1)

+
m∑
j=1

((
m

j

)
ξ±1

ξ±j +

(
m

j − 1

)
ξ±1

)
y±

m+1−jX±
j ⊗X±m+1−j

+X±
m+1 ⊗ 1

=
m+1∑
j=0

(
m+ 1

j

)
ξ±1

y±
m+1−jX±

j ⊗X±m+1−j ,

as required, where the last equality uses (1.1).
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(ii) By the previous part,

∆(X+
nX−

m) =

 n∑
j=0

(
n

j

)
ξ

y+
n−jX+

j ⊗X+
n−j


·

(
m∑
k=0

(
m

k

)
ξ−1

y−
m−kX−

k ⊗X−m−k
)

=

n∑
j=0

m∑
k=0

(
n

j

)
ξ

(
m

k

)
ξ−1

y+
n−jσj(y−

m−k)

X+
jX−

k ⊗X+
n−jX−

m−k

=
n∑
j=0

m∑
k=0

(
n

j

)
ξ

(
m

k

)
ξ−1

ξj(m−k)y+
n−jy−

m−k

X+
jX−

k ⊗X+
n−jX−

m−k,

as required.

Suppose ξ is a primitive dth root of unity for some d > 1. For all non-negative integers

m, we define non-negative integers qm and rm, with 0 ≤ rm ≤ d− 1, by setting

m := dqm + rm.

If ξ = 1 or ξ is not a root of unity, for all non-negative integers m, set qm := m and

rm := 0.

Define a partial order ≺ on Z≥0 by p ≺ m if qp ≤ qm and rp ≤ rm, for any p,m ∈ Z≥0.

If ξ = 1 or ξ is not a non-trivial root of unity, then p ≺ m if and only if p ≤ m, for all

non-negative integers m and p.

Lemma 5.3.2. Let R have a Hopf algebra structure that extends to a Hopf algebra struc-

ture on A such that (5.18) holds. Then

(i) for all m ≥ 0,

∆(X±
m) =

∑
0≤p≺m

αpy±
m−pX±

p ⊗X±m−p,

where αp ∈ k∗ for all p ≺ m,

(ii) for all m,n ≥ 0,

∆(X+
nX−

m) =
∑
v≺n

∑
p≺m

βv,py+
n−vy−

m−pX+
vX−

p ⊗X+
n−vX−

m−p,

where βv,p ∈ k∗ for all v ≺ n and p ≺ m.
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Proof. (i) If ξ = 1 or ξ is not a non-trivial root of unity, then p ≺ m if and only

if 0 ≤ p ≤ m. Therefore, this is just Lemma 5.3.1 (i), with αp :=
(
m
p

)
ξ±1

for

all 0 ≤ p ≤ m. By the definition of Gaussian binomial coefficient, and with our

hypothesis on ξ, it is easy to see that αp 6= 0 for all p ≺ m.

Suppose now that ξ is a primitive dth root of unity. Using (1.2) we see that(
d

j

)
ξ±1

= 0, 0 < j < d.

Hence, the formula for ∆(X±
d) in Lemma 5.3.1 (i) becomes

∆(X±
d) = y±

d ⊗X±d +X±
d ⊗ 1.

Furthermore, by Theorem 5.2.3 (L), σ±1(y±
d) = ξ±dy±

d = y±
d, and so y±

d com-

mutes with X±. Therefore, for all integers q ≥ 0,

∆(X±
d)q =

q∑
i=0

(
q

i

)
y±

d(q−i)X±
di ⊗X±d(q−i),

where
(
q
i

)
denotes the ordinary binomial coefficient. Setting m := dqm + rm and

using the above equation together with Lemma 5.3.1 (i) gives

∆(X±
m) = ∆(X±

d)qm∆(X±
rm)

=

(
qm∑
i=0

(
qm
i

)
y±

d(qm−i)X±
di ⊗X±d(qm−i)

)

·

 rm∑
j=0

(
rm
j

)
ξ±1

y±
rm−jX±

j ⊗X±rm−j


=

qm∑
i=0

rm∑
j=0

(
qm
i

)(
rm
j

)
ξ±1

y±
d(qm−i)+rm−jX±

di+j ⊗X±d(qm−i)+rm−j

=

qm∑
i=0

rm∑
j=0

(
qm
i

)(
rm
j

)
ξ±1

y±
m−(di+j)X±

di+j ⊗X±m−(di+j)

=
∑

0≤p≺m
αpy±

m−pX±
p ⊗X±m−p,

where αp :=
(
qm
i

)(
rm
j

)
ξ±1

for p := di + j, with 0 ≤ i ≤ qm and 0 ≤ j ≤ rm ≤ d − 1.

By the fact that ξ is not a root of unity of order less than d, and by definition of the

Gausssian binomial coefficients,
(
rm
j

)
ξ±1
6= 0 for all 0 ≤ j ≤ rm ≤ d − 1. Therefore,

αp 6= 0, for all p ≺ m.



CHAPTER 5. AMBISKEW HOPF ALGEBRAS 98

(ii) Using (i), we have

∆(X+
nX−

m) =

(∑
v≺n

αvy+
n−vX+

v ⊗X+
n−v

)

·

(∑
p≺m

γpy−
m−pX−

p ⊗X−m−p
)

=
∑
v≺n

∑
p≺m

αvγpξ
v(m−p)y+

n−vy−
m−pX+

vX−
p ⊗X+

n−vX−
m−p

=
∑
v≺n

∑
p≺m

βv,py+
n−vy−

m−pX+
vX−

p ⊗X+
n−vX−

m−p,

where βv,p := αvγpξ
v(m−p) ∈ k∗, as required.

5.3.2 The filtration

Let {Rq : q ≥ 0} denote the coradical filtration of R and let {At : t ≥ 0} denote the

coradical filtration of A. We will calculate the coradical filtration of A in terms of the

coradical filtration of R.

For all non-negative integers m, we continue the notation qm, rm and ≺ from the

previous section. Set m̂ := qm + rm. We need the following elementary lemma:

Lemma 5.3.3. With the above notation, for all non-negative integers m, p with p ≺ m,

we have m̂− p = m̂− p̂.

Proof. If ξ = 1 or ξ is not a non-trivial root of unity, then this is immediate. Suppose that

ξ is a primitive dth root of unity for some d > 1. Then m = qmd + rm and p = qpd + rp,

where 0 ≤ qp ≤ qm and 0 ≤ rp ≤ rm ≤ d− 1. Therefore, m− p = (qm − qp)d+ (rm − rp)

where 0 ≤ rm − rp ≤ d− 1. Then

m̂− p = (qm − qp) + (rm − rp) = (qm + rm)− (qp + rp) = m̂− p̂,

as required.

Define a family {Ft : t ≥ 0} of subspaces of A by

Ft :=
∑

q+m̂+n̂≤t
RqX+

mX−
n.

Lemma 5.3.4. Suppose that R0 is a Hopf subalgebra of R. Then {Ft} as defined above is

a coalgebra filtration.
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Proof. It is clear that Ft ⊆ Ft+1 for all t ≥ 0 and that A =
⋃
t≥0 Ft, so all that remains

to be proven is that ∆(Ft) ⊆
∑t

i=0 Fi ⊗ Ft−i. Let rX+
nX−

m ∈ Ft, where r ∈ Rq and

q + m̂+ n̂ ≤ t. Lemma 5.3.2 (ii) shows that ∆(rX+
nX−

m) is a sum of terms of the form

βv,pr1y+
n−vy−

m−pX+
vX−

p ⊗ r2X+
n−vX−

m−p, (5.25)

where v ≺ n, p ≺ m, βv,p ∈ k∗. By definition of the coradical filtration of R, we have

∆(r) ∈
∑q

j=0Rj ⊗ Rq−j , so without loss of generality we can suppose that r1 ∈ Rj and

r2 ∈ Rq−j for some 0 ≤ j ≤ q. Also, since the coradical filtration of R is a Hopf algebra

filtration by Lemma 1.1.5 and y± ∈ R0, we have r1y+
n−vy−

m−p ∈ Rj . Therefore, (5.25) is

contained in Fu ⊗ Fw, where u = j + v̂ + p̂ and w = q − j + n̂− v + m̂− p. It is enough

to show that u+ w ≤ t. We have, using Lemma 5.3.3,

u+ w = q + v̂ + p̂+ n̂− v + m̂− p

= q + v̂ + p̂+ n̂− v̂ + m̂− p̂

= q + n̂+ m̂ ≤ t,

as required.

Theorem 5.3.5. Let R have a Hopf algebra structure that extends to a Hopf algebra

structure on A such that (5.18) holds and suppose that R0 is a Hopf subalgebra of R.

Then the coradical filtration of A is given by

At =
∑

q+m̂+n̂≤t
RqX+

mX−
n.

Proof. Let {At : t ≥ 0} denote the coradical filtration of A. As previously, let {Ft : t ≥ 0}

denote the subspaces of A defined by

Ft :=
∑

q+m̂+n̂≤t
RqX+

mX−
n.

We must show that Ft = At for all t ≥ 0.

Firstly, we prove that Ft ⊆ At for all t ≥ 0 by an easy induction on t. We have

R0 = A0∩R by [42, Lemma 5.2.12]. Therefore, F0 = R0 ⊆ A0. Now suppose that Ft ⊆ At
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for some t ≥ 0. Then, by induction and Lemma 5.3.4,

∆(Ft+1) ⊆
t+1∑
i=0

Fi ⊗ Ft+1−i

=

t∑
i=0

Fi ⊗ Ft+1−i + Ft+1 ⊗ F0

⊆ Ft ⊗A+A⊗ F0

⊆ At ⊗A+A⊗A0,

as required.

Secondly, we show that At ⊆ Ft for all t ≥ 0, again by induction on t. Lemma 5.3.4

shows that {Ft} is a coalgebra filtration of A, so we may apply [42, Lemma 5.3.4], which

proves the t = 0 case. Now suppose that At ⊆ Ft for some t ≥ 0; we will prove that

At+1 ⊆ Ft+1.

The formula in Lemma 5.3.2 shows that when the coproduct is applied to a member

of the R-basis (5.3) of A of the form X+
mX−

n, the powers of X+ and X− on either side

of the tensor sign add, respectively, to m and n. The fact that there is an R ⊗ R-basis

(5.4) of A⊗A means there is no cancellation of summands when the coproduct is applied

to an R-linear combination of the basis (5.3) of A. Therefore, when proving At+1 ⊆ Ft+1,

it is enough to consider an R-multiple of a member of the basis (5.3) in At+1 and prove

that it is contained in Ft+1.

Let rX+
nX−

m ∈ At+1; without loss of generality we can suppose that r ∈ Rq \ Rq−1

for some q ≥ 0 since R =
⋃
q≥0Rq. Lemma 5.3.2 (ii), together with the definition of the

coradical filtration and induction, gives

∆(rX+
mX−

n) = ∆(r)
∑
v≺n

∑
p≺m

βv,py+
n−vy−

m−pX+
vX−

p ⊗X+
n−vX−

m−p (5.26)

∈ At ⊗A+A⊗A0 ⊆ Ft ⊗A+A⊗ F0,

where βv,p ∈ k∗ for all v ≺ n and p ≺ m. By definition of the coradical filtration of R,

there is a summand x ⊗ z ∈ (Rq \ Rq−1) ⊗ R0 of ∆(r). By (5.26), ∆(rX+
mX−

n) has

summands∑
v≺n

∑
p≺m

βv,pxy+
n−vy−

m−pX+
vX−

p ⊗ zX+
n−vX−

m−p ∈ Ft ⊗A+A⊗ F0. (5.27)

A summand of (5.27) is contained in A ⊗ F0 if and only if v = n and p = m; all other

summands are contained in Ft ⊗A. By definition of Ft, we have

q + v̂ + p̂ ≤ t, (5.28)
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for all v ≺ n and p ≺ m.

We must prove that q + m̂ + n̂ ≤ t + 1, which we do by considering five cases. As

previously, in the cases where ξ is a primitive dth root of unity for some d > 1, write

m := qmd+ rm and n := qnd+ rn, where qm, qn ≥ 0 and 0 ≤ rm, rn ≤ d− 1. In addition,

if m = n = 0 then it is easy to see that q ≤ t+ 1. Therefore, we can suppose that at least

one of m,n is non-zero; without loss of generality suppose n ≥ 1.

(i) ξ = 1 or ξ is not a non-trivial root of unity. In this case, ≺ is the same as ≤ and we

may drop the ̂ notation. Consider the summand of (5.27) given by taking v := n−1

and p := m, which is contained in Ft⊗A. Then (5.28) implies that q+n−1+m ≤ t

and so we have q + n+m ≤ t+ 1.

(ii) ξ is a primitive dth root of unity for some d > 1 and rm = rn = 0. Therefore,

n = qnd and m = qmd for some qn ≥ 1 and some qm ≥ 0. Consider the summand

of (5.27) given by taking v := (qn − 1)d and p := m, which is contained in Ft ⊗ A.

Then v̂ = n̂− 1, and by (5.28), q + n̂− 1 + m̂ ≤ t, as required.

(iii) ξ is a primitive dth root of unity for some d > 1 and rm = 0 and rn ≥ 1. Consider

the summand of (5.27) given by taking v := n − 1 and p := m, which is contained

in Ft ⊗A. Then v̂ = n̂− 1 and (5.28) gives q + n̂− 1 + m̂ ≤ t, as required.

(iv) ξ is a primitive dth root of unity for some d > 1 and rm ≥ 1 and rn = 0. This is

very similar to the previous case: consider p := m− 1, v := n.

(v) ξ is a primitive dth root of unity for some d > 1 and rm, rn ≥ 1. This is similar to

the previous two cases: consider v := n− 1 and p := m.

All cases show that q + m̂+ n̂ ≤ t+ 1, which implies that At+1 ⊆ Ft+1 and completes the

proof.

Corollary 5.3.6. Let R have a Hopf algebra structure that extends to a Hopf algebra

structure on A such that (5.18) holds and suppose that R0 is a Hopf subalgebra of R.

Then

A1 =

 R1 ⊕R0X± ξ = 1 or ξ not a root of 1

R1 ⊕R0X± ⊕R0X±
d ξ a primitive dth root of 1.

Proof. The case ξ = 1 or ξ is not a root of unity is immediate. Suppose that ξ is a primitive

dth root of unity for d > 1 and let m be a non-negative integer with m := qmd+ rm. Then



CHAPTER 5. AMBISKEW HOPF ALGEBRAS 102

m̂ = qm + rm = 1 if and only if either qm = 1 and rm = 0, or qm = 0 and rm = 1. This

proves the root of unity case.

Example 5.3.7. By Examples 5.2.6 (ii), for q ∈ k \ {0,±1}, A := Uq(sl2) is an ambiskew

Hopf algebra with (5.18), where R := k[K±1], X+ := E, X− := FK and ξ := q−2. Since

R is a group algebra, its coradical filtration is given by Rn = R for all n ≥ 0.

When q is not a root of unity, Theorem 5.3.5 gives the coradical filtration {At} of

Uq(sl2) as

At =
∑

m+n≤t
RX+

nX−
m

=
∑

m+n≤t
k[K±1]En(FK)m

=
∑

m+n≤t
k[K±1]EnFm.

In other words, the coradical filtration is the filtration by degree, where we set deg(K) = 0

and deg(E) = deg(F ) = 1. Montgomery calculated the coradical filtration of Uq(sl2),

when q is not a root of unity, in [43, Theorem 2.7].

When q is a non-trivial root of unity, Theorem 5.3.5 shows that the coradical filtration

of Uq(sl2) depends upon the order of q2. Let d be the order of q2. Retaining our previous

notation, the coradical filtration {At} of Uq(sl2) is

At =
∑

m̂+n̂≤t
RX+

nX−
m

=
∑

m̂+n̂≤t
k[K±1]En(FK)m

=
∑

m̂+n̂≤t
k[K±1]EnFm.

Boca calculated the coradical filtration of Uq(sl2) in [11] when q is a root of unity.

Corollary 5.3.8. Suppose R is a Hopf algebra and the Hopf structure on R extends to a

Hopf structure on A such that (5.18) holds. Then R is pointed if and only if A is pointed.

Proof. Suppose A is pointed. Any simple subcoalgebra of R is a simple subcoalgebra of

A, and is therefore one-dimensional. Hence, R is pointed.

Conversely, suppose R is pointed. Then by Theorem 5.3.5, A0 = R0 = kG(R), so A is

pointed.
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5.4 Properties of ambiskew polynomial algebras

We now consider a range of properties and determine under which conditions they hold

for A.

5.4.1 Homological properties

We revisit many of the properties that were studied in Chapter 3 and consider whether A

satisfies them.

Proposition 5.4.1. (i) Let R be an affine algebra and A an ambiskew polynomial al-

gebra over R. Then

(a) R is right (left) noetherian if and only if A is right (left) noetherian.

(b) R is a domain if and only if A is a domain.

(c) If R is Auslander-Gorenstein, then so is A.

(ii) Suppose R is semiprime, noetherian and has a Hopf algebra structure that extends

to a Hopf algebra structure on A such that (5.18) holds. Then R has finite global

dimension if and only if A does, and in this case gldA = gldR+ 2.

Proof. (i) (a) We prove this for right noetherian; the proof for left noetherian is almost

identical. Let R be right noetherian. Then A is right noetherian by the skew-

polynomial ring structure of A over R and [40, Theorem 1.2.9 (iv)]. Conversely,

suppose A is right noetherian and let

I1 ⊂ I2 ⊂ · · ·

be an ascending chain of right ideals of R. Then

I1A ⊂ I2A ⊂ · · ·

is an ascending chain of right ideals of A, and so there exists an integer n such

that IjA = Ij+1A for all j ≥ n. Since A is a free left R-module, Ij = Ij+1 for

all j ≥ n and hence R is right noetherian.

(b) The backwards direction is trivial and the forwards direction follows from the

skew-polynomial ring structure of A over R and [40, Theorem 1.2.9 (i)].

(c) This follows from the skew-polynomial ring structure of A over R and [18,

Theorem 4.2].
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(ii) Suppose gldR <∞. Then S := R[X+;σ] is a Hopf subalgebra of A, gldS = gldR+1,

by [40, Theorem 7.5.3 (iii)], and S is semiprime by [40, Proposition 7.9.14]. Now the

trivial A-module k is also an S-module and pd Sk = gldS = gldR+1. This is because

gldH = pdHk for any Hopf algebra H; a proof of this can be found in [38, §2.4].

Therefore, [40, Corollary 7.9.18] shows that gldA = gldS + 1 = gldR+ 2.

Now suppose gldA < ∞. Since A has basis {X+
iX−

j : i, j ≥ 0} as a right and left

R-module,

A ∼=
⊕
i,j≥0

RX+
iX−

j = R⊕
⊕

i≥0,j≥0
i>0 or j>0

RX+
iX−

j

as an R-bimodule. Therefore, we can apply [40, Theorem 7.2.8 (i)], which gives

gldR ≤ gldA+ pdAR = gldA,

where the last equality follows from the fact that A is a free right R-module.

No example seems to be known at present of a noetherian Hopf algebra of finite global

dimension that is not semiprime. The most striking positive case is for rings satisfying a

polynomial identity (a property that we consider later, in §5.4.2) and is due to Wu and

Zhang [52], incorporating results of Stafford and Zhang [48]. This enables us to deduce

the following corollary:

Corollary 5.4.2. Suppose R is noetherian, satisfies a polynomial identity, and has a Hopf

algebra structure that extends to a Hopf algebra structure on A such that (5.18) holds. Then

R has finite global dimension if and only if A does, and in this case gldA = gldR+ 2.

We now consider the Cohen-Macaulay and AS-Gorenstein properties. In order to prove

these, we assume that R is a pointed Hopf algebra and its Hopf algebra structure extends

to a Hopf algebra structure on A such that (5.18) holds.

Lemma 5.4.3. With the above hypotheses, let {Rn : n ≥ 0} denote the coradical filtration

of R and let grR :=
⊕

n≥0Rn denote the associated graded algebra of R with respect to

this filtration. Then

(i) (a) σ(Rn) = Rn for all n ≥ 0,

(b) σ induces an algebra automorphism σ of grR with σ(Rn) = Rn for all n ≥ 0,

(ii) (a) R[X+;σ] has a Hopf algebra filtration {En : n ≥ 0}, defined by

En :=
∑
i+j≤n

RiX+
j ,
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(b) Let S denote the associated graded Hopf algebra of R[X+;σ] with respect to the

above filtration. Then S ∼= (grR)[X+;σ],

(iii) (a) A has a Hopf algebra filtration {Fn : n ≥ 0} defined by

Fn :=
∑
i+j≤n

EiX−
j ,

(b) Let T denote the associated graded Hopf algebra of A with respect to the above

filtration and extend σ to an automorphism of S by defining σ(X+) := ξX+.

Then T ∼= S[X−;σ−1].

Proof. (i) (a) By the definition of the coradical filtration and Theorem 5.2.3 (I), σ(Rn) ⊆

Rn, and σ−1(Rn) ⊆ Rn for all n ≥ 0. Applying σ to the second inclusion gives

Rn ⊆ σ(Rn), so σ(Rn) = Rn.

(b) Let r ∈ Rn and define σ(r + Rn−1) := σ(r) + Rn−1. By part (a), σ is well-

defined and bijective. It is an algebra homomorphism because it is induced by

the algebra homomorphism σ.

(ii) (a) Note that {Rn} is a Hopf algebra filtration of R by Lemma 1.1.5. Together with

(i)(a), this shows that {En} is an algebra filtration of R[X+;σ]. Furthermore,

by (5.18), ∆(X+) ∈ E1⊗E0 +E0⊗E1. Since {En} is an algebra filtration and

R[X+;σ] is generated by R and X+, this proves {En} is a coalgebra filtration.

Similarly, by Theorem 5.2.3 (E), {En} is a Hopf algebra filtration.

(b) grR is a Hopf algebra, and so is (grR)[X+;σ] when we set ∆(X+) := X+⊗ 1 +

y+ ⊗ X+, where y+ ∈ R0 is grouplike. (This can be seen by replacing R and

σ with grR and σ in Theorem 5.2.3 and taking the Hopf subalgebra generated

by grR and X+.) Furthermore, (grR)[X+;σ] :=
⊕

n≥0 V n is a graded Hopf

algebra, where V n :=
∑

i+j=nRiX+
j for n ≥ 0. Let S =

⊕
n≥0En, where

E0 = E0 and En := En/En−1 for n ≥ 1. The isomorphism follows by identifying

En with V n.

(iii) (a) By (ii)(a), {En} is a Hopf algebra filtration. Together with (i)(a) and the

definition σ−1(X+) := ξ−1X+, which shows that σ−1(EiX−
j) = EiX−

j for all

i, j ≥ 0, we see that {Fn} is an algebra filtration. It is easy to see it is a

coalgebra filtration using (5.18) and a Hopf algebra filtration using Theorem

5.2.3 (E).
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(b) Setting (5.18) makes S[X−;σ−1] into a Hopf algebra (use Theorem 5.2.3, replac-

ing R, σ and h with grR, σ and 0). Similarly to (ii)(b), we can give S[X−;σ−1]

the obvious Hopf algebra grading and identify it with T . Note that the relation

(5.2) in A becomes X+X− = ξX−X+ in T , because with respect to the filtra-

tion {Fn}, the degree of h is 0 or 1 whereas the degree of X+X− and ξX−X+

is 2.

If R is Cohen-Macaulay, or is AS-Gorenstein, we would like to be able to establish

whether or not A satisfies these properties. However, the Cohen-Macaulay property

involves GK-dimension, which in general does not behave well with respect to general

skew-polynomial algebras: note that Proposition 3.2.10 only applies to skew-polynomial

algebras where the automorphism is locally algebraic and the derivation map is zero. [40,

Example 8.2.6] shows that this fails when the locally algebraic hypothesis is removed;

there are also examples of skew-polynomial algebras S[X; id, δ] where GKdim(S) = 0

and GKdim(S[X; id, δ]) = ∞ [33, §3.9]. In addition, Lemma 3.2.17 only applies to skew-

polynomial algebras over connected graded algebras.

Therefore, we need to impose further conditions on R. We now assume that grR is

of the type we encountered in Chapter 3 - that is, that G := G(R) is a finitely generated

abelian group acting diagonalisably on its subalgebra of coinvariants and that grR has a

finite number of hard superletters.

Proposition 5.4.4. Let R be a pointed Hopf algebra with the above assumptions on grR

and suppose that the Hopf algebra structure on R extends to a Hopf algebra structure on

A such that (5.18) holds. Then

(i) A is Cohen-Macaulay.

(ii) A is AS-Gorenstein, and is AS-regular if and only if R has finite global dimension.

Proof. (i) By Lemma 5.4.3 (iii)(a) and (b), when A is given the filtration {Fn : n ≥ 0},

its associated graded Hopf algebra algebra T is isomorphic to (grR)[X+;σ][X−;σ−1].

By our assumptions, grR is a Hopf algebra of the same form as H in §2.3. In

fact, this means that so is (grR)[X+;σ][X−;σ−1]: we associate X± to y± ∈ G and

χX± := χ±1|G : G → k, where σ = τ lχ. It is clear that (2.11) holds for X±, since

Corollary 5.2.5 (ii)(a) shows that σ±1(g) = σ±1(g) = χX±(g)g for all g ∈ G. Let B

denote the PBW-basis of grR. Then a PBW-basis for (grR)[X+;σ][X−;σ−1] is given
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by the set {bX+
iX−

j : b ∈ B, i, j ≥ 0}, since X± are clearly hard super-letters and

there are no others. Hence, since grR has a finite number of PBW-generators, then

so does (grR)[X+;σ][X−;σ−1], which is isomorphic to T . Therefore, by Proposition

3.2.20, T is Cohen-Macaulay and [25, Theorem 1.2] shows that A is Cohen-Macaulay.

(ii) This follows by our assumptions, part (i), and Proposition 3.2.23. The AS-regularity

part is clear from Proposition 5.4.1 (ii).

5.4.2 Polynomial identity

We finish by looking at a ring-theoretic property: the question of when an ambiskew

algebra A satisfies a polynomial identity. Surprisingly, this does not seem to have been

considered in the literature. No Hopf algebra assumptions are used in this section.

Definition 5.4.5. Let S be a ring. Then S is a polynomial identity ring (P.I. ring) if there

is a monic polynomial f(X1, . . . , Xn) ∈ Z < X1, . . . , Xn > such that f(s1, . . . , sn) = 0 for

all s1, . . . , sn ∈ R. The P.I. degree of S is the least possible degree of any such polynomial

f .

Suppose σ : R→ R has finite order n ≥ 1. Then it is diagonalisable and its eigenvalues

are the nth roots of unity. Hence, as a vector space, R is a direct sum of its eigenspaces.

That is, for η a primitive nth root of unity,

R =

n−1⊕
i=0

Ri,

where Ri = {r ∈ R : σ(r) = ηir}. In fact, this decomposition is a k〈σ〉-module decompo-

sition. Since h ∈ R, we have

h =

n−1∑
k=0

hk, (5.29)

where hk ∈ Rk for all 0 ≤ k ≤ n− 1.

Suppose that ξ is a tth root of unity for some t ≥ 1, where t|n. Since ξ is then an nth

root of unity,

ξ = ηj (5.30)

for some η a primitive nth root of unity and 0 ≤ j ≤ n− 1.

We have a basic lemma about the relations in A:

Lemma 5.4.6. Let A = A(R,X+, X−, σ, h, ξ) be an ambiskew algebra.
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(i) For n ≥ 1,

X+
nX− = ξnX−X+

n +

(
n−1∑
i=0

ξn−i−1σi(h)

)
X+

n−1.

(ii) For n ≥ 1,

X−
nX+ = ξ−nX+X−

n −

(
n∑
i=1

ξ−iσ−(n−i)(h)

)
X−

n−1.

(iii) X+
n is central in A if and only if X−

n is central in A.

(iv) Suppose σ has order n ≥ 1 and ξ is a root of unity in k with order r for some r > 1,

where r does not divide n. Let m be the least common multiple of n and r. Then

X+
m and X−

m are central in A.

(v) Suppose σ has order n ≥ 1 and ξ is a root of unity in k that has order r for some

r > 1, where r divides n. Then X+
n and X−

n are central in A if and only if hj = 0,

where j is as in (5.30) and hj is as in (5.29).

Proof. (i) The formula clearly holds for n = 1. Now, suppose it holds up to n−1. Then

X+
nX− = X+

(
ξn−1X−X+

n−1 +

(
n−2∑
i=0

ξn−i−2σi(h)

)
X+

n−2

)

= ξn−1X+X−X+
n−1 +

(
n−2∑
i=0

ξn−i−2σi+1(h)

)
X+

n−1

= ξn−1(ξX−X+ + h)X+
n−1 +

(
n−1∑
i=1

ξn−i−1σi(h)

)
X+

n−1

= ξnX−X+
n +

(
n−1∑
i=0

ξn−i−1σi(h)X+
n−1

)
,

as required.

(ii) Similar to (i).

(iii) This follows immediately from parts (i) and (ii) and the fact that

n−1∑
i=0

ξn−i−1σi(h) = ξn−1σn

(
n∑
i=1

ξ−iσ−(n−i)(h)

)
.

(iv) Clearly, X+
m commutes with X+ and with elements of R. Let m = pn for some
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positive integer p. Using part (i), we see that

X+
mX− = ξmX−X+

m +

(
m−1∑
i=0

ξm−i−1σi(h)

)
X+

m−1

= X−X+
m +

n−1∑
i=0

p∑
j=1

ξnj−i−1σi(h)

X+
m−1 (5.31)

= X−X+
m +

n−1∑
i=0

ξn−i−1σi(h)

p∑
j=1

ξn(j−1)

X+
m−1

= X−X+
m +

n−1∑
i=0

ξn−i−1σi(h)

p−1∑
j=0

(ξn)j

X+
m−1

= X−X+
m, (5.32)

where (5.31) follows from the fact that the order of σ is n, and (5.32) follows from

the fact that
p−1∑
j=0

(ξn)j = 0,

since ξn is a primitive pth root of unity. Therefore, X+
m commutes with X− and so

is central in A. By part (iii), X−
m is also central in A.

(v) By part (i), since ξn = 1, we have

X+
nX− = X−X+

n +

(
n−1∑
i=0

ξn−i−1σi(h)

)
X+

n−1.

Consider the coefficient of the X+
n−1 in the above equation. We have

n−1∑
i=0

ξn−i−1σi(h) = ξn−1
n−1∑
i=0

ξ−i
n−1∑
k=0

σi(hk)

= ξn−1
n−1∑
i=0

ξ−i
n−1∑
k=0

ηikhk

= ξn−1
n−1∑
i=0

η−ij
n−1∑
k=0

ηikhk

= ξn−1
n−1∑
i=0

n−1∑
k=0

(η(k−j))
i
hk,

and X+
n is central if and only if this is zero. Equivalently, X+

n is central if and

only if, for all 0 ≤ k ≤ n− 1, either hk = 0 or

n−1∑
i=0

(η(k−j))
i

= 0. (5.33)
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Since η is a primitive nth root of unity, so is ηk−j for all k 6= j. Therefore, (5.33)

holds for all k 6= j; for k = j, the left hand side of (5.33) is n 6= 0. Therefore, X+
n

is central if and only if hj = 0. The same is true for X−
n because by part (iii) X−

n

is central if and only if X+
n is central.

Remark. A simple example illustrating part (v) of the above lemma is as follows. Set

R := k[Y ], σ(Y ) := −Y and ξ := −1. Then σ and ξ both have order 2, ξ = η and the

eigenspace decomposition of R in (5.30) is R := R0 ⊕ R1, where R0 = k[Y 2] and R1 has

basis consisting of the monomials in Y of odd degree. Part (i) of the lemma shows that

X+
2X− = X+X−

2 + (−h+ σ(h))X+.

It is easy to see that X+
2 is central if and only if h1 = 0; for example, setting h := Y gives

X+
2X− = X+X−

2 − 2Y X+.

We also have the following lemma:

Lemma 5.4.7. Let R be commutative and suppose that σ has order n ≥ 1. Then R is a

finitely generated module over Rσ.

Proof. We first show, by a well-known argument from invariant theory, that R is integral

over Rσ. Let x ∈ R and let

f(X) =

n−1∏
i=0

(X − σi(x)). (5.34)

Then f(x) = 0, since (5.34) evaluated at x has a factor x − σ0(x) = 0. Also, (5.34) is a

polynomial of the form

f(X) = Xn + cn−1X
n−1 + . . .+ c0,

where, for 0 ≤ j ≤ n − 1, the cj are symmetric polynomials in the σ-invariant set

{σi(x) : 0 ≤ i ≤ n − 1}. Since cj is symmetric, it is invariant under the action of σ,

so cj ∈ Rσ, as required.

We have that R is an affine k-algebra, so it is certainly an affine Rσ-algebra. We

can therefore apply [30, Proposition 16.3 B], which proves that R is a finitely generated

Rσ-module.

In order to determine when A satisfies a polynomial identity, we make use of the

following theorem, which is originally due to Jøndrup [27]. Note that an inner derivation
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of a ring S is a derivation δ : S → S such that there exists some a ∈ S with δ(s) = sa− as

for all s ∈ S. Recall that a prime P.I. ring S is (right and left) Goldie, by Posner’s

Theorem [40, Theorem 13.6.5], and so possesses a simple artinian classical ring of quotients,

Fract(S), by [20, Theorem 6.18].

Theorem 5.4.8. [13, Theorem I.4.1] Let S be a prime P.I. algebra over a field of char-

acteristic 0 and let T := S[X, τ, δ] be a skew-polynomial ring, with τ an automorphism of

S. Then

(i) If τ |Z(S) = id, then there exists a unit u ∈ Fract(S) such that τ is the map given by

conjugation by u, and T is P.I. if and only if

uδ is an inner derivation on Fract(S). (5.35)

(ii) If τ |Z(S) 6= id, then T is P.I. if and only if

τn|Z(S) = id (5.36)

for some n > 1.

Another theorem of Jøndrup determines the P.I. degree of certain skew-polynomial

rings over P.I. rings.

Theorem 5.4.9. [26] Let k be an algebraically closed field of characteristic 0. Let R be a

prime affine k-algebra of P.I. degree d, let σ be an automorphism of R of finite order and

let δ be a σ-derivation. Then if the skew-polynomial ring R[X,σ, δ] is a P.I. ring, its P.I.

degree is equal to dl, where l is the order of the restriction of σ to Z(R).

We can now consider the conditions under which A is a P.I. ring in the special case

where R is a commutative domain. In the commutative setting, being prime is the same

as being a domain.

Theorem 5.4.10. Suppose R is a commutative domain. Then the following are equivalent:

(i) A is P.I.

(ii) A is a finite module over its centre.

(iii) The following conditions hold:

(a) σ|R has finite order n ≥ 1;
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(b) ξ has finite order t ≥ 1;

(c) if t|n, then hj = 0, where j is as in (5.30) and hj is as in (5.29).

Proof. (ii) ⇒ (i): [40, Corollary 13.1.13(i)].

(i) ⇒ (iii): Suppose (i) holds. Then R[X+, σ] is a P.I. skew polynomial ring over R, so

Theorem 5.4.8 tells us that σ : R→ R has finite order n ≥ 1. We therefore have

Rσ[X+
n] ⊆ Z(R[X+, σ]),

and in fact this is an equality. For, suppose f =
∑m

i=0 riX+
i ∈ Z(R[X+, σ]). Then, for all

r ∈ R,
m∑
i=0

rriX+
i = rf = fr =

m∑
i=0

riσ
i(r)X+

i,

and, since R is a domain, we have either ri = 0 or σi = id. Therefore, ri 6= 0 only if i = np

for some p ≥ 0. Furthermore,

m∑
i=0

σ(ri)X+
i+1 = X+f = fX+ =

m∑
i=0

riX+
i+1,

and so ri ∈ Rσ, which gives f ∈ Rσ[X+
n]. So we have

Rσ[X+
n] = Z(R[X+, σ]) (5.37)

Since A is P.I., a second application of Theorem 5.4.8, this time taking S = R[X+, σ]

and τ = σ−1, shows that one of the following conditions must hold: either

σ−1|Rσ [X+
n] = id, and δ satisfies (5.35) (5.38)

or

σ−1|Rσ [X+
n] has finite order p > 1. (5.39)

If (5.38) holds, then

σ−1(X+
n) = ξ−nX+

n = X+
n,

so ξ has finite order t for some t ≥ 1, where t divides n. Furthermore, there exists a unit

u ∈ FractR[X+, σ] such that uδ is an inner derivation on FractR[X+, σ]. We have

Rσ[X+
n] ↪→ FractRσ[X+

n] ↪→ FractR[X+
n].

Since Rσ[X+
n] is central in FractR[X+

n], its only inner derivation is the zero map. Hence

uδ is zero on Rσ[X+
n], and in particular uδ(X+

n) = 0. Therefore, δ(X+
n) = 0. By

Lemma 5.4.6 (v), we have hj = 0.
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If (5.39) holds, then

σ−p(X+
n) = ξ−npX+

n = X+
n,

and so ξ has finite order t ≥ 1, where t divides np. However, the fact that σ−1|Rσ [X+] 6= id

means that t - n.

(iii) ⇒ (ii): Suppose (iii) holds. Then Rσ is central in A. Suppose t - n, so by Lemma

5.4.6 (iv), X+
m is central in A, where m = g.c.d.(n, t). Hence, by Lemma 5.4.6 (iii), so is

X−
m and the centre of A is

Z(A) := Rσ[X+
m, X−

m].

Clearly, A is finitely generated over R[X+
m, X−

m], with generators

{X+
iX−

j : 0 ≤ i, j ≤ m},

and by Lemma 5.4.7, R[X+
m, X−

m] is finitely generated over Z(A). Hence, (ii) holds in

this case.

Now suppose t|n. By hypothesis, hj = 0, so X±
n are central in A. Therefore, the

centre of A is

Z(A) := Rσ[X+
n, X−

n],

and, as in the case where t - n, A is a finitely generated module over Z(A), so (ii) holds.

Corollary 5.4.11. Let R be a commutative domain and suppose A is P.I.. Then the P.I.

degree of A is 2mn, where σ has order n ≥ 1, ξ has order t ≥ 1, and m = l.c.m.(n, t).

Proof. We have, as can be seen in the proof of Theorem 5.4.10,

Rσ[Xn
+, σ] = Z(R[X+, σ]).

R has P.I. degree 2, and R[X+;σ] has P.I. degree 2n by Corollary 5.4.9. A second appli-

cation of Corollary 5.4.9 shows that the P.I. degree of A is 2mn.

Remarks. (i) (a) Let S be a left or right noetherian ring. Then N(S), the prime radical

of S, is a nilpotent ideal [20, Theorem 3.11], and S is a P.I. ring if and only if

the factor ring S/N(S) is a P.I. ring [40, Lemma 13.1.7].

(b) Let A := A(R,X+, X−, σ, ξ, h) and suppose that R is left or right noetherian.

Let N := N(R). For all prime ideals P of R, σ±1(P ) is a prime ideal of R and

so is contained in N . Therefore, σ(N) = N . Furthermore, NA is a left ideal of
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A; by (5.1), it is a two-sided ideal of A. Let A := A(R,X+, X−, σ, ξ, h) be the

ambiskew polynomial algebra with ambiskew data as follows: R := R/N , σ is

the automorphism of R/N induced by σ and h := h + N . Then A/NA ∼= A

and NA is nilpotent. In fact, since A is an iterated skew-polynomial ring over a

semiprime right or left noetherian ring, it is semiprime [40, Proposition 7.9.14]

and so N(A) = NA.

(ii) By (i)(a) and (i)(b), for an ambiskew algebra A over a left or right noetherian ring

R, obtaining necessary and sufficient conditions for A to be P.I. also gives necessary

and sufficient conditions for A to be P.I., so we may reduce to the case where R is

semiprime. That is, if we could prove an analogue of Theorem 5.4.10 for left or right

noetherian semiprime rings, we would have the complete picture in the case when R

is left or right noetherian.

(iii) For a noetherian semiprime ring R, a partial answer to this question can be deduced

from [35, Proposition 3.2, Theorem 3.7]. Let S := R[X+;σ]. These results show

that A is P.I. if and only if R is P.I., σ|Z(R) has finite order and the centre of A

contains a non-constant polynomial in X− with coefficients in S and with regular

leading coefficient. However, this last condition is very abstract and it is not clear

how to state it explicitly in terms of conditions upon σ, ξ and h. With further work,

it may be possible to produce an analogue of Theorem 5.4.10 in this setting.
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