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1 Introduction

Newton opens his introduction to the first edition of the Principia Mathematica with

the following passage:

Cum veteres mechanicam (uti auctor est Pappus) in rerum natural-
ium investigatione maximi fecerint; & recentiores, missis formis substan-
tialibus &5 qualitatibus occultis, phaenomena naturae ad leges mathemat-
icas revocare aggressi sint: Visum est in hoc tractatu mathesin excolere,
quatenus ea ad philosophiam spectat. Mechanicam vero duplicem veteres
constituerunt: rationalem, quae per demonstrationes accurate procedit, &g
practicam. Ad practicam spectant artes omnes manuales, a quibus utique

. 1
mechanica nomen mutuata est.

These statements, made in the introduction to the work that would revolutionise and
establish the science of mechanics, reflecting on the foundations upon which Newton’s
work is built, seem to be a legitimate starting point for investigation into ancient me-
chanics. This area, now oft-referred to as being ‘the Cinderella of ancient science™ after
Fraser’s description of the field, is a significant collection of texts in itself, though the

extant corpus is substantially smaller than the extant work on other subjects such as

"Newton 1972, p. 15
*Fraser 1972, p- 425
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mathematics or medicine. Newton’s assertion that there was a theoretical and practi-
cal aspect of mechanics is one that has been lifted directly from the work of Pappus,
and is one that would seem to hold when compared with the content of the extant me-
chanical corpus, though this claim will be examined in far greater depth in chapter 2.
It must be said, however, that our own viewpoint on the field is so strongly informed
by the work of Newton and other modern scientists, and this interpretation of Pappus
so closely reflects a modern viewpoint, that it is easy to assume that the ancient defini-
tion of theoretical mechanics is the same as our own. After all, we understand a clear
division between the theoretical work of the physicist and the practical work of the en-
gineer, and it is tempting to see this division in the audiences for ancient mechanical
texts.

While we may see the division between theoretical and practical reflected to an ex-
tent in the ancient world, the field of ancient mechanics is such a disparate and diverse
area that there is an inevitable breakdown in the similarity. Simply put, the aim of this
thesis is to establish what the extent, and nature, of theoretical mechanics is in the an-
cient world. The basic outline of this thesis is as follows:

Chapter 2 deals with the scope of ancient mechanics in the ancient world by provid-
ing a chronological overview of the work of the main figures of the field. The subject
matter of these works is summarised in an attempt to determine the sub-fields of ancient
mechanics.

Chapter 3 looks at the definition and perception of mechanics in the ancient world
by examining the way in which mechanics is represented in both mechanical texts and
other ancient sources.

These two chapters should provide wider context for the remaining investigation

into a number of topics that have been identified as being representative of the state
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of ancient mechanics in the ancient world. While the two chapters just mentioned will
examine a wide variety of sources, these chapters will focus on the contents of a number
of texts that have seemed to provide the most theoretical content. These are the Pseudo-
Aristotelean Mechanica, Archimedes’ De Planorum Aequilibriis, Heron’s Mechanica,
and the final book of Pappus’ Synagoge

Chapter 4 discusses the principal mechanical theory that underpins the discussion
in the Pseudo-Aristotelean Mechanica, that comes to subsequently play a significant
role in the ancient theory of mechanics.

Chapter 5 examines the exploration of equilibrium found in Archimedes De Plano-
rum Aequilibris, along with the axiomatic methodology it employs.

Chapter 6 analyses the quintessentially mathematical Delian problem in the context
of ancient mechanics.

Chapter 7 examines examines the simple machines, with the exclusion of the lever,
as outlined in Heron’s Mechanica.

Chapter 8 examines the approach found in Heron’s Mechanica and Pappus’ Syna-

goge to force, friction and the inclined plane.



2 Scope

There is a certain difficulty in attempting to define a field such as mechanics in the an-
cient world. The relative paucity of extant textual evidence often makes definite state-
ments on the field at a given point reliant upon a single text, which normally covers
only a limited subsection of the field. To provide context for subsequent definitions
of the field and examination of theoretical mechanics, I will in this chapter, provide a
chronological account of the figures associated with mechanics in the period of time be-
ing covered in this thesis, roughly from the tail end of the fifth century Bc till the fifth
century AD. While the exact scope of the field across some nine hundred or so years was
almost certainly not static, an overview of who was working on what, and when they
were doing it, can provide us with some insight before attempting a definition of the
entire field. Having completed this survey, some general comments will be made about
the main fields that we have seen in the works of the extant mechanical authors, taken
in tandem with the definition of the field found in the work of Pappus and Proclus,

establishing the extent to which their accounts are accurate.

2.1 Archytas

Archytas of Tarentum, a statesman and philosopher of the fifth to fourth centuries

BC, is generally attributed with the foundation of the field of mechanics in the ancient
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world.! There is, however, no real surviving work by him on the subject, and the attri-
bution may have far more to do with the trend in the ancient doxographical tradition of
attempting to find the ‘first founders’ of a field rather than the composition of a work
that could be considered a Mechanica® The main mechanical association in the work
of Archytas seems to be his solution to the problem of finding the two mean propor-
tionals, a topic that will be explored in depth in chapter 6. This essentially geometrical
problem does not have an immediate association for us with mechanics, but it does be-
come a significant element in other ancient works on the subject, and would certainly
seem to be the main reason for Archytas’ importance to mechanics. I will explore this

attribution further in the following chapter.

2.2 Pseudo-Aristotelean Mechanica

The pseudo-Aristotelean Mechanica is the earliest extant, and, indeed, attested text on
the subject of mechanics. The work examines a series of thirty-five problems deemed to
be mechanical, proceeding with a question and answer structure that is familiar from
the Aristotelean Problemara. The Mechanica, however, begins by exploring the un-
derlying principles by means of which these mechanical phenomena can be explained,
which is the subject of chapter 4. The focus of this text is entirely upon what we would
now consider the field of statics, and is principally concerned with explaining mechani-
cal phenomena, rather than providing descriptions of the construction of devices, which
forms such a large part of the work of later mechanical authors. Authorship of this text

has been attributed to Aristotle in the ancient world and early modern period, but it

"Diogenes Laertius and Plutarch cast Archytas in this role when talking about mechanics: see
D.L. 8.83 and Plut. Marc. 14.5-6. Huffman provides much more extensive commentary on the subject,
see Huffman 200s, pp. 77-83.

*Zhmud 2006, p- 176 and Berryman 2009, p. 88
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is most likely to be the work of another peripatetic author.” For our purposes the fact
that it was composed in this miliex is far more significant than ascribing authorship to
one particular individual, as we will explore in the subsequent chapter.

A definition of the field of mechanics as a whole is not found in this text, but
rather a more general statement about the content of this work; mepiéxerar d¢ T
dmopovuévawr év T¢ yéver TouTw Ta mept Tov pmoxAdv.' This association of me-
chanical problems back to the lever describes the vast majority of questions found in
the Mechanica, but does not preclude the existence of other aspects of mechanics. In-
deed, seems to suggest that the problems being dealt with in this text only constitute a
subset of problems from a wider field. This particular text had a significant influence
upon later work on mechanics, which can certainly be seen in the work of Heron, and

certainly on later medieval work on the subject.S

2.3 Euclid

There are several medieval Latin texts on statics that are attributed to Euclid, which have
titles such as De levi et ponderoso, De gravi et levi, De ponderibus or De canonio.® Some
of these Latin texts are translations from Arabic texts, though De canonio is presumed

to be a translation from a Greek source.” It is difficult to come to any conclusions as to

*Heath does not venture a suggestion as to the identity of the author, but does discuss the difference
in terminology in the Mechanica from that of Aristotle, and the similarity of the terminology to Euclid
(T. Heath 1921, p. 344). The authorship of the work is mentioned by Ross, who hesitantly ascribes the
work to ‘Strato or one of his pupils’ (Ross 1995, p. 6) which is echoed by Drachmann (Drachmann 1963b,
p- 10). Krafft cites a number of other authors who discuss Strato as the author, but he himself would
rather ascribe authorship to Aristotle (Krafft 1970, p. 18). Winter has recently argued for Archytas as the
author of the work, dismissing Ross’ assertions as attribution by convenience before proceeding to do
exactly the same thing himself (Winter 2007).

*Arist. Mech. 847bu

*Clagett 1959, pp. 3-4

*Pauly. Euclid

"Moody and Clagett 1960, pp. 58-59
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whether these texts are representative of genuine works by Euclid on mechanics. There
are no references in other Greek texts to any such works by Euclid,’ and, at least as far
as Heath is concerned, the conception of specific gravity found in De levi et ponderoso
could not pre-date the work of Archimedes.” The lack of any definite conclusions about
the date and source of these texts somewhat precludes their use as a source for ancient

mechanics, and so they are certainly more useful as a source for medieval mechanics.

2.4 Ctesibius

There are no surviving works by the mathematician Ctesibius, who was working in
Alexandria around 270 Bc. He is, however, repeatedly mentioned by later mechanical
authors, and it seems that these mechanicians owe a considerable debt to him, with
all those who subsequently documented the construction of artillery devices citing his
work."® While from this it can be established that he produced significant work on
belopoeitics, he is also known to have produced some of the early work on pneumatics.
His anaphoric water clock'' and his keyboard-driven water organ'” are both reported

manifestations of his work on this subject.

2.5 Archimedes

Archimedes is, almost certainly, the first name that would come to mind when think-
ing of ancient mechanics. This association follows from, for most of us, the apocryphal

stories recounted in later sources about his life. His exposed exit from the bathtub ex-

*Clagett 1959, p. 28

T.L. Heath 1956, p. 18, and as Clagett points out, the nature of the Arabic On the Balance is
Archimedean rather than Aristotelean.

*“Marsden 1971, p. 2

"Oleson 2008, pp. 340-341

Vitr. De Arch. 10.8, Hero. Spir. 76
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claiming eipnka is the first introduction that many have to hydrostatics,"* while the
statement 80s pol mob 0T® Kal Kwe TV yijv has become the maxim by which the
power of the lever is expressed, though it is far more likely a statement on mechanics
more generally."* This Syracusan mathematician lived during the third century, and is
famously reputed to have died at the hands of a Roman soldier during the fall of the
city.15

Of his extant works, the only two notable texts on mechanics are the De planorum
aequilibriis and De corporibus fluitantibus, which deal respectively with statics and hy-
drostatics. There is no evidence to be found within these texts for Archimedes’ own def-
inition of mechanics; indeed, they begin without any introduction, and plunge straight
into the Archimedean structure of postulates and propositions. Archimedes’ .Ad Er-
atosthenem methodus, conventionally known as “The Method’, is a work that would
initially seem to be, by its reputation and the terminology used, one that deals with
mechanics. However, it deals instead with the application of mechanical principles to
solving the mathematical problem of calculating the area of given geometrical shape.
The work on statics that is found in De planorum aequilibriis is discussed in greater
depth in chapter s.

Pappus, quoting Carpus of Antioch, mentions that Archimedes only produced one
work on mechanics, which dealt with the construction of spheres (ept oparpomoiias)
, that is, astrolabes and devices that recreated astronomical phenomena,'® however, he

does later mention that Archimedes had produced a wept {uydyv,'” and a kevrpoBapikd

"*For the original account see Vitr.9.10

"*We are familiar with the statement recorded by Pappus (see Pappus.Collectio.8.10: 1060) but the
story exists in a variety of forms. See Dijksterhuis 1987, pp. 14-21 a fuller exploration of these two tales
and the biographical tradition about Archimedes.

“Dijksterhuis 1987, pp. 30-32

"“Papp. 1026

"Papp. 1068
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is mentioned by Simplicius.18 Drachmann has argued that extracts of these two texts,
along with another, perhaps titled On Uprights, are to be found in Heron’s Mechan-
ica.”” Itis the opinion of Heath that they are the missing works that would fully explain

the material in De planorum aequilibriis.*

2.6 Biton

Biton is the author of a short text on siege equipment, who, given that he dedicated
the work to a King Attalus, was likely in the employ of one of the Attalid dynasty. An
association that dates him to between 230 Bcand 133 Bc,” though Marsden considers
it most likely that he produced the work at some point in the middle of this period.”
The work is therefore the earliest extant text on artillery construction, a field that forms
a significant portion of extant ancient mechanical texts. The text is notable in as far as

it describes the construction of catapults that do not use torsion engines.

2.7 Philon

Of the Hellenistic mechanical authors, Philon is the earliest for whom a substantial
amount of writing is extant. He is reputed to have lived very shortly after Ctesibius,
so is likely to have been active at the beginning of the second century Bc. He was the

author of a Mechanike syntaxis consisting of nine books;

1. Isagoge — Introduction

2. Mochlica — On Levers

*Simp. In Cael. s08a30
YDrachmann 1963a

**T. L. Heath 1897, pp. xxxvii-xxxviii
*' Pauly s.v. Biton

*Marsden 1971, p. 61
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3. Limenopoeica — On Harbour Construction
4. Belopoeica — The Artillery Manual

s. Pneumatica — Pneumatics

6. Automatopoeica — On Automata Making
7. Parasceuastica — Siege Preparations

8. Poliorcetica — Siegecraft

9. Peri Epistolon — On Strategems™

Of these nine original texts, the Belopoeica, Parascenastica and Poliorcetica are all extant
in Greek, while the Prneumatica is extant in Latin and in an Arabic translation. That
he had produced a collection consisting of a number of books on different mechanical
subjects is itself notable as this seems to have been the first work of this kind. Many of
the subjects included in the work of Philon were later covered, and, if we are to believe
him, improved by Heron. Itis likely that this is because these topics represented in this
text are typical of those worked on by mechanicians rather than Philon having produced

a text that significantly influenced the course of writing on mechanics.

2.8 Athenaeus Mechanicus

Very little isknown about the Athenaeus who composed the relatively short Peri Mechane-
maton. He dedicates the text to a Marcellus, who is likely to be the nephew and prospec-
tive heir of Augustus, dating him to the first century Bc/ap.** The work once again

deals with weapons of war, detailing the construction of a variety of siege machinery

*Marsden 1971, p. 156, which cites Orinsky, Neugebauer and Drachmann’s entry on Philon in the
Realencyclopiidie der Classischen Altertumswissenschaft
*Whitehead and Blyth 2004, p. 18-19
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such as siege towers and rams. He cites a number of other mechanical authors where he

considers their descriptions of devices sufficient rather than his own.”

2.9 Vitruvius

The sole Latin author who produced work on the field of mechanics is the famous ar-
chitect Marcus Vitruvius Pollio. Born in the early first century Bc, the ten books of his
De Architectura were likely published at some point between 30 and 20 Bc.”® The ten
books all deal with architecture and related fields, included in which is the tenth book
which deals with the construction of machines from the perspective of the Roman ar-
chitect. This work discusses the fundamentals of the construction of machines (rather
than the fundamentals of mechanics), the construction of cranes and weight lifting de-
vices, water based devices (including the aforementioned water organ and water pump

of Ctesibius) as well as the construction of siege machinery and catapults.

2.10 Heron

The extant corpus of Heron of Alexandria is fairly substantial, and includes the largest
surviving group of works on mechanics by a single author in the ancient world. Heron,
who is now generally accepted to be living and working in the first century Bc,” is al-
most certainly most famous for his record of the acolipile, a simple steam-engine, in the
Pneumatica, the longest of his extant mechanical works. This text describes over seventy

different devices, all of which work on some kind of water or compressed air power. As

*Tt is worth noting here that there are a number of other mechanical authors cited in this manner,
not only in the work of Athenaeus but in other mechanical authors. I have not included them in this
discussion as little can be gain from their names alone.

*Rowland and Howe 2002, p. 2

*’Neugebauer 1938
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Berryman has noted, to call this topic pneumatics in English does not strictly describe
the extent of the field, which deals with more than just compressed gases, it is, however,
a descriptive enough name for the topic.”® Heron’s Antomatopoeitica, a work on au-
tomata making is, by his own account, an improvement on the homonymous work by
Philon, and seems to deal with the same devices. This text describes the construction
of mobile and stationary automata, going into significant detail, especially when com-
pared with the Prneunmatica, on the exact mechanisms that should be utilised to gener-
ate specific effects, along with some explanation of the underlying theoretical basis for
the choice of these mechanisms. There are two extant works, of very different char-
acter, by Heron on the subject of artillery construction. His Belopoeica discusses the
construction, in some detail, of a number of different artillery weapons that use tor-
sion engines to drive the missile. He introduces the text with some comments on the
importance and history of the field, and includes some historical comment through-
out. The final sections of the text deal with scaling torsion engines, and the theorem
of the two mean proportionals, which will be discussed further in chapter 6. The text
is titled "Hpwros KmouBiov Behomouka, which perhaps indicates, though it is by no
means certain, that the text is building upon the work of Ctesibius. The similarities it
shares with Philon’s Belopoeica, are explained by Marsden as being due to the reliance
of both authors on the work of Ctesibius.”’His Cheiroballistra adopts a different and
much drier tone, providing only a listing of the components that make up the device,
along with their dimensions. Marsden has taken this as indicating that the work was
intended for a more technical audience, perhaps describing a device that was a new de-

sign.30 Finally, there is a Mechanica by Heron, of which only some sections are extant

28Berryman 2009, p. 155
*Marsden 1971, pp. 12
**Marsden 1971, pp. 2-3
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in Greek, with the rest surviving in an Arabic translation produced by Qusté ibn Ltqa
at some point between 862 AD and 866 ap.”* The text begins with a description of
a barulkos, an device for lifting heavy weights, which utilises a geared transmission to
generate mechanical advantage. This description is also found in Heron’s Dioptra,™ a
text that deals with surveying instruments, an appearance as incongruous as at the start
of the Mechanica. Although related to the material later in the Mechanica it is gener-
ally accepted that this passage is from another work and has been added to these two
texts at some point in the tradition.’ The rest of the first book deals with a more gen-
eralised theory of mechanics and force (discussed in greater depth in chapter 8), while
the second is where we first find the concept of the five simple machines (or powers) in
mechanical literature.** The final book describes more complex devices that are related

to the five simple machines.

2.1 Pappus of Alexandria

The mathematician Pappus of Alexandria can be positively dated to the fourth century
AD by asolar eclipse that he mentions in his commentary on Ptolemy’s /4/magest, which
was identified by Rome as occurring in 320 AD.”” Pappus is also the author of a com-
mentary on Euclid’s Elements, but his magnum opus is his Synagoge, a collection of eight
books on a variety of mathematical topics. The majority of this text is extant, with only
the first book and the beginning of the second entirely missing. The remaining books

deal with geometry, arithmetical and astronomical problems, but it is the eighth book,

*'Drachmann 1963b, p. 21 I am relying on the English translation of Drachmann, and the German
translation of Nix and W. Schmidt when dealing with the material in Arabic.

**Hero. Dioptr. 37

*Berryman 2009, pp. 134-135 and Drachmann 1963b, pp. 27-32

*While these devices appear in earlier texts, such as the Pseudo-Aristotelean Mechanica, this is the
first point they are grouped and described as the fundamental building blocks of all mechanisms.

*Rome 1931, pp- x-xiii, see also Cuomo 2000, pp. 5-6
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dealing with the subject of mechanics, which is of interest to us. Pappus does not de-
vote much of this work to the construction of devices, describing only a weight lifting
device, but instead focusses on three problem areas: the inclined plane, the duplica-
tion of a cube (the problem of the two mean proportionals) and matching cog wheels
of given numbers of teeth. The inclined plane and the problem of the two mean pro-
portionals had previously been covered in Heron’s Mechanica, and the problem of the
cog wheels has similarities with the problems presented in Heron’s description of the
barulkos.*® However, Pappus’ lengthy introduction to this book, with its provisioning
of a definition of the field of mechanics, and a description of its sub-fields, provides us
with a great deal of insight into the subject.

Pappus defines mechanics as follows:

OTAoEwS Yap Kal popds CwUATwY Kal TS KATG TOTOV KWTOEWS €V
~ e/ \ 4 \ \ ’ \ 7
Tols S\ows Jewpnuatiky Tvyxdvovoa Ta uev Kwouuera Kata Guow

> ~ \ b > 4 \ 7 b4 ~ > 14 ’
atToloyet, Ta 8 avaykalovoa mapa puow €€w TV olkelwy TOTWY
> > 14 ’ /7 > / \ ~ > > ~
els evavtias kwioes pelioTnow émunyavwuévy da TV €€ avTijs
~ e/ < ’ 3 ~ 4 ~ \ ~ \
7S UAns dmommTovTwy avti] Oewpnudtwv. Tis ¢ unxavikis 1o
\ o \ \ \ \ e \ \ e \
pev elvar Aoywkov 70 8¢ xepovpywkov ot mept Tov “Hpwva pnyavucol
A€éyovow Kal TO UEV AOYIKOV OUVECTAVAL UEPOS €K TE YEWUETPLAS
\ > ~ \ > 14 \ ~ ~ ’ \ \
kal aplunTikijs Kal doTPOVOulas Kal TV GUOKDY ASywv, TO O€
XELPOUPYLKOV €K T€ XAAKEUTLKT]S KOl OLKODOMULKT]S KOl TEKTOVIKT]S Kal

{wypadikijs kal Tijs év TovTOIS KATA XEPa doKTjOEWS

Ascribing the idea that there is a division between the practical and theoretical as-

pects of mechanics to the followers of Heron, he describes the disciplines that constitute

**Cuomo 2000, p- 109
*Papp. 10221024
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each side of this dichotomy. Geometry, arithmetic and physics have all played a clear
role in the earlier works on mechanics, astronomy has not featured in other texts, but
this may be explained by the mention of sphaeropoetics later in the introduction. The
division he makes here between the theoretical and the practical is not one between
different types of mechanical texts, but rather between the theory underpinning the
design, and the art of constructing the devices themselves.

Pappus’ book on mechanics is unique amongst ancient sources on mechanics as it
is intended to serve as a compendium of the most significant aspects of previous work
on the field. It should then provide an overview of the field of mechanics that is not
found in other extant works, and give a suitable indication of the constituent parts of
the greater whole. Pappus describes the key sub fields of mechanics later in the intro-

duction:

Mahwora 8¢ mavTwy dvaykaidTaTar TéExval TUyXAvovow TPos TV

~ 14 14 \ / ~ > ~ ¢/
700 Blov xpelav [unxavik) mponyovuévn Tijs dpxiTexTovikijs] 1 Te
TOV payyavaplwy, UnXavik®v Kal aOTOV KaTa ToUS dpXalovs Aeyouévwy

4 \ G ’ \ ~ \ 4 > 4 > 4

(ueydAa yap odrol Bapn dua unxavdv mapd dpiow eis tifos dvdyovow
3 4 4 ~ \ ¢ ~ > ~ ~ \ \
éNdTTovt duvduel KwodvTes), Kal 1) TAOV SpyavoToLdY TAV TPOS TOV

’ > 4 ’ \ \ > ~ ~ 4
mONeuov dvaykaimy, kalovuévwv 8¢ kai adTdv unxavikdv (Bény

\ \ 7/, \ ~ \ \ 4 ’ > /4
yap kat A\llwa kat owdnpd kat Ta wapamAijoia TovTois e€amooTéNAeTaL
€ls Larpov 630D wiKos Tols VT avTOY ywouévols 6pydrols KaTamaATuols),

\ \ ’ € ~ > /’ ’ /’ ~ >

mpos 8¢ TavTais 1) TOV Blws mTAAw kalovuévwr unyavomowny (éx

4 \ ~ ¢ > 7 > 4 \ ~ > ~
Babovs yap moANoD Udwp eDkOADTEPOY AVdyeTaL Ol TV AVTANUATIKDVY
> ’ ® ) \ ’ ~ \ \ e
dpydvawv dwv aitol kataokevdlovow). kalodor d¢ unyavikovs ol

\ \ \ \ T ¢ \ \ ’ ~

malawol katl Tovs Bavpaotovpyovs, v ot uev dta TVEVUAT WY GLAOTEXVOTOW,

e e/ ~ e \ \ / \ 4 > 4
ws "Hpwv mvevpatkols, ot 0¢ dia vevpiwy kal omdpTwy eufiyxwy
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’ ~ ~ ¢ e/ 3 4 \ 7 k24
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Proclus, living a generation after Pappus, in the fifth century AD”’ produced a very
similar listing of the fields of mechanics in his commentary on the first book of Euclid. It
is useful to view this passage in tandem with that of Pappus, as the similarities between

the two lists indicate the wider codification and acceptance of these definitions:
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**Papp. 1024-1026
*’8 February 412 AD- 17 April 485 AD
*Procl. in Euc. 41-42 (Friedlein)
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While this passage likely demonstrates Proclus’ familiarity with the work of Pap-
pus, that it is echoed without criticism demonstrates that this conception of the field
of mechanics is a common one at this point. The difficulty with overt reliance on these
definitions of the sub-fields of mechanics is that these sources are very late in the tradi-
tion of ancient mechanical writing. A field such as this is not static, certainly not over
the course of some thousand years.

Of course, the question then is, do these definitions of the field of mechanics match
what we find in the earlier sources? The ample extant sources on the creation of artillery
and siege equipment certainly supports the inclusion of this field in both of these pas-
sages. Both sources talk of the construction of ‘marvellous devices’,* the description
of which matches the Preumatica of both Heron and Philon, as well as Heron’s .4#-
tomatopoeitica. Although there are a wide range of different techniques and mecha-
nisms used to implement the devices described in these texts, the commonality is cer-
tainly the nature of these devices, in that they mostly seem to serve as objects for enter-
tainment or amusement rather than any practical purpose.”” ‘Sphere construction” is
not a field that is represented in the other mechanical texts,” however, as these devices
are astrolabes and other astronomical tools, we might count the Antikythera mecha-
nism as physical evidence of this field of mechanics.* Krafft has equated the devices for
water lifting mentioned in Pappus listing with irrigation.45 Aside from this, the other
subjects mentioned, that is, centres of gravity, equilibrium and the lifting of weights all

match the subject matter of the Pseudo-Aristotelean Mechanica, Heron’s Mechanica

Havparomouky) and favpaciovpyods.

“See Tybjerg 2003 for an alternate perspective on the purpose of automata-making.

“Ptolemy does mention it, so it is not unknown outside of these mentions of it, see Ptol. Hyp. 2.70

*See Freeth, Bitsakis, et al. 2006 and Freeth, Jones, et al. 2008 for the proposed functions of the An-
tikythera mechanism.

* Panly. s.v. Mechanics
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and Archimedes’ De Planorum Aequilibris.

Itis clear that from early in the tradition the construction of artillery and siege ma-
chinery was one of the principal sub-fields of mechanics. Otherwise we have mention
of Pneumatics and Automaton-making, and all of these things can help confirm the
taxonomic classifications made in Proclus’ description of mechanics. Although this is
a much later source on the subject, although attributed by Proclus to Geminus, a first
century BC mathematician, it, along with the passage in Pappus, are the only sources of
this kind we have.

From the evidence we have, it certainly seems that the extent of the field of me-
chanics was not particularly well defined in the ancient world. The work of Philon and
Heron seems to have played some part in establishing the scope of the field, and the se-
lection of topics that appear in their work seems to have played a partin the codification

of the field that appear in the later texts.
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3 Perception

The analysis of the extant mechanical sources in the previous chapter suggest the areas
of knowledge that can be considered to be the constituent parts of mechanics as a field.
It is this classification itself that has subsumed these distinct outputs under one topic
heading rather than by virtue of a shard conceptual background. For example, we can-
not say that every area of ancient mechanics has a conceptual reliance on mechanical
advantage. However, this still leads to the question, what is this overarching classifica-
tion that is mechanics?

In this chapter I will examine the internal and external representations of the field of
mechanics to try and gain some insight into the way in which the field is perceived in the
ancient world. Internal representations are those which we find in the mechanical texts,
while the external representations are those which occur in other ancient philosophical
and biographical texts. As the perception of mechanics in the ancient world is explored,
the biases of both these sets of sources will be considered to ensure the clearest view of
the nature of the field.

The introduction the Pseudo-Aristotelean Mechanica opens with an overarching

statement on the nature of mechanics:

Oavudlerar TV puev kata pvow ovuBawdvTwy, owy ayvoelTatr TO
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This characterisation of mechanics could easily accompany the discussion of other sim-
ilar subjects, and says more about the relationship between Téxvn and ¢vois than me-
chanics specifically. It does, however, distinguish mechanics as a 7éxvn), a statement that
provides substantial information on the status of the field. There has been some debate
over the exact meaning of the statement that mechanics produces effects mapa ¢vow.
Krafft has stated that rapa ¢vow means ‘contrary to nature’, and that the goal of an-
cient mechanics was to ‘trick nature’;” however, Schiefsky has made a strong argument
for the interpretation of this phrase as meaning ‘beyond nature’, and that mechanics
accomplishes through 7éyvn that which would be otherwise impossible.” This defini-
tion certainly seems more likely, as, although there is perhaps a tendency for other later
mechanical authors to present mechanical effects as marvellous or supernatural, this
text does not feature anything other than the exploration of observable, natural phe-
nomena, and the presentation of them as being mechanical in nature. Alongside this
there is an absence in this text of any laudatory comments on the subject matter in the
introduction. The author is not attempting to convince us of the utility of anything

in the text; it is merely being presented, and the explanatory, rather than instructive,

! Arist. Mech.847a11-21
*Uberlistung der Natur’, Krafft 1970, p. 27
*M.]. Schiefsky 2007, pp. 67-70
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nature of the text reflects this. The very fact that this text seems to be serving a more
investigative role may explain the absence of laudatory comments, as there is simply no
need to boast of the importance of the subject matter when it is just one topic being
investigated amongst many.

Outside of the Pseudo-Aristotelean Mechanica, we can see reference made to me-
chanics in contemporary philosophical texts. Aristotle, in hisPosterior Analytics, men-
tions mechanics as part of a hierarchical classification of fields of knowledge. His dis-
cussion is focused around the relationship between field of knowledge that are, to an

extent, entirely rational, and those that depend upon observation.
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Mechanics is classed here as being subordinate (elvar darepov vmo Garepov) to stere-

ometry (solid geometry).” Barnes, in his commentary on the Posterior Analytics, pro-

*Arist..4Po.78b34-79as
*At Apo. 76a24 we find it as subordinate to geometry, but this term can include stereometry.
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vides alist of the general relations that Aristotle states exist between these pairs of fields,’
and from this we can make a series of statements on the relationship expressed by Aris-

totle between mechanics and solid geometry. These are that:

* Mechanics is proven through solid geometry.
* The fact belongs to mechanics, the reason why to solid geometry.
* Mechanics is like particular knowledge, solid geometry like universal knowledge.

* Mechanics is studied by empirical scientists, solid geometry by mathematical sci-

entists.
* Mechanics uses forms and solid geometry is about forms.

Although these statements of relationship are intended to apply to a number of fields
in the original text, this focused list serves to highlight the Aristotelean conception of
mechanics, defined as an empirical science in relation to the rational field of stereometry.
Elsewhere in the Aristotelean corpus we find that he is of the opinion that mechanics
is among a group that is the ‘more mathematical of the natural sciences’.” Berryman
has argued that it is exactly this which counteracts the claims that rapa ¢vow in any
way means ‘against nature’, highlighting that this particular interpretation of the term
is one that is heavily influenced by the mechanical tradition which Galileo is refuting in
his work.®

Given Archimedes reputation as a mechanician in the ancient world, we might well
expect some kind of comment on the field in his work. Unfortunately, in the two extant

works of his that we might consider to be mechanical, that is, De planorum aequilibriis

°Barnes 1994, pp. 158-159
"Barnes 1994, p. 159, see Arist. Ph. 194a10, Metaph. 997bis-21

*Berryman 2009, pp. 44-45
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and De corporibus fluitantibus, which cover statics and hydrostatics respectively, there
is no evidence to be found for Archimedes own perception of mechanics; indeed, they
begin without any introduction, and plunge straight into the Archimedean structure
of postulates and propositions. This itself is not typical of the work of Archimedes, as
many of the other texts in his extant corpus have introductions consisting of letters to
named correspondents. Rather than there being anything different about these texts,
it seems rather that any introduction to these two texts has been lost in transmission. I
will talk about the particular, axiomatic, form of these texts in chapter s.

His ‘. Ad Eratosthenem methodus , conventionally known as “The Method’, isa work
that would initially seem to be, by its reputation and the terminology used, one that
deals with mechanics. However, it deals instead with the application of mechanical
principles to solving the mathematical problem of calculating the area of a given geo-
metrical shape. This work does come with introductory material, and it is from this
that we gain some insight into the utility of the mechanical methodology that will be

set forth. Archimedes says:
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®Archim. Eratosth. 83.17-28
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The attitude expressed here has some similarities with the Aristotelean classifica-
tion of the relationships that we have previously examined. The mechanical method
which he will describe can provide the facts of the problem. That s, that it can discover,
through an empirical method, the area of a geometrical shape. It does not, however, es-
tablish a geometrical demonstration of the theorem, which must be supplied upon the
basis of the results of the mechanical method. The aim of this text is to describe this
specific mechanical method, and not to develop any more widely applicable mechani-
cal theory. This is mechanics as it applies to mathematics rather than mathematics as
it applies to natural phenomena. Extant testimonia on Archimedes offers a more in-
structive view of ancient attitudes and criticisms of mechanics than the perception of
in what little of Archimedes work mentions such things. He is inevitably mentioned
in Plutarch’s Marcellus for the role that he played in the siege of Syracuse, where the
deployment of war machines which he had constructed are said to have delayed the fall

of the city. Plutarch says of these machines:
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These mechanical devices are here presented as a mere by-product of Archimedes’

mathematical output, and he has to be coaxed into using his knowledge to construct

Plu. Marc. 14.7-9
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these devices for the defence of the city. This portrayal of Archimedes as regarding

the field of mechanics as banausic, and unworthy of serious attention, is explained by

Plutarch as he goes on with further discussion of mechanics:
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I am not really convinced that this can be used as reasoning for the apparent lack of

written work by Archimedes on the more practical aspects of mechanics, nor for his at-

titudes towards the field, despite this account’s popularity. His attitude to the mechan-

ical method, as we have seen, is not at all dismissive, but rather presented as something

of great utility to a student of mathematics. Identifying Plutarch’s own philosophical
viewpoint as a Platonist is one of the key issues when attempting to evaluate this pas-

sage as reliable testimonia on the attitudes of Plato and Archimedes. There is a dismissal

YPlu. Marc. 9-12
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of the corporeal in Platonic thought, which engenders the criticism of Téyvn in these
comments on mechanics. Much of the criticism of mechanics as a science can be traced
to this philosophical viewpoint, which, following the theory of forms, is dependent
on rationalism rather than empiricism. This view may also be seen to an extent in the
mention of mechanics in the Posterior Analytics, in its relative positioning with solid
geometry. However, as I have mentioned, this text is concerned with documenting sci-
entific methodology rather than making value judgements on the fields.

Within the many extant texts on the construction of war-machines we find a num-
ber of comments, particularly in the introductions to these works, which are illustrative
of the attitude of Hellenistic mechanicians towards mechanics. Within these we may
begin to detect the presence of a tradition of writing on the subject. This is a notable
move away from the previous authors discussed, whose work by and large stands in
isolation. In the introduction to his Belopoeica, Philon explains the reasons for dealing

with the particular topics found in the text:
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Ph. Bel. 49
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Philon is here both acknowledging that his work is building upon the work of pre-
decessors, but also presenting the approach he is adopting as an improvement upon the
previous texts on the subjects. In contrast with the work of Archimedes, or the Pseudo-
Aristotelean Mechanica, this text is being placed in the context of a tradition of literary
work on the subject. This acknowledgement of tradition usually features the dismissal
of the work of predecessors, and the emphasis on the idea that an improved approach
to the subject will be found in a given text, and frequently appears in the introductory
material of mechanical texts, particularly in the work of Heron. Rather than presen-
tation of a static body of knowledge, the field is presented as an ongoing and evolving
science. Philon’s justification for writing the work, and updating the previous material
on the subject is that previous authors have not expressed, or understood, the key the-
oretical underpinnings of the construction of siege-machinery, namely the application
of the doubling of the cube.

When Plutarch mentioned 70 mept dvo péoas dva Adyov mpdBAnua’® in the
previous extract, it was to this problem he was referring. In another telling of the same
story, Plutarch states that the solutions to this problem were found through 6pyavikas
kal pmxavikas kataokevas . Huffman explores criticism of Archytas’ solution to
the Delian problem at great length, examining all the different manners in which his
working, ‘dazzlingly abstract’”’ in its mathematical content, could be construed as me-
chanical. Ultimately, as a reason for this, he settles on the criticism stemming from the
fact that the problems originated, and had applications, in the physical world.'® Thereis

another quick and practical method of deriving the mean proportionals using a sliding

UPlu.Vit. Marcis.s

“Plu.Mor.Quaest.conv.718¢

“Huffman 200s, p. 356, See chapter 6 for his solution.
**Huffman 2005, pp. 384-385
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ruler, which, ironically, has been passed down attached to Plato. This solution to the
problem can easily be conceived of as mechanical, and is another good example of the
mechanical methodology previously discussed in its use of an intermediate mechanis-
tic device to arrive at the result. Archytas’ work on this particular problem is probably
the root of the frequent references to him as the founder of the field of mechanics. In
addition to this, Huffmann sees the split between Plato and Archytas on this subject as
an etiological myth to explain the separation of mechanics from geometry, with each of
these figures as an idealogical figurehead."”

This material on mechanical methodology is all very abstract, and there is a no-
ticeable split in the character of the extant texts on mechanics between that which is
practical and that which is theoretical. In a work dedicated to Marcellus, nephew of

Augustus,”® the author Athenaeus writes the following:
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Although these criticism of earlier authors serves a number of purposes, it’s princi-
ple role is in establishing that this text will be useful, in that it will provide actual plans

and methods for the construction of this war machinery rather than conceptual me-

Huffman 200s, p. 379
"*Whitehead and Blyth 2004, pp. 18-19
Y Ath.Mech. 4-5
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chanical discussion. If the text was to serve as a manual on siege machinery for a young
Marcellus accompanying Augustus on campaign, as Whitehead and Blythe argue, then
the emphasis would rightly be on the practical benefits of the text in real life scenarios
rather than general educational benefits. Athenaeus may well be attempting to flatter
the boy with emphasis on the action he will undertake. The mention of these names
also serves to establish Athenaeus’ familiarity with the intellectual basis of the field, to
establish himself as a well-read authority on the subject, able to analyse and dismiss what
is irrelevant. The material discussed is very similar to material on war-machines found
in Vitruvius, and it is likely that both are derived from another, earlier source.
Another, radically different reasoning for the importance of the construction of war

machines occurs in the introduction of Heron’s Belopoieca, where he begins by saying:
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This apparently paradoxical statement is merely an early occurrence of a modified

form of the adage si vis pacem, para bellum,”* which can otherwise be found in Book

*Hero. Bel.1.1
*Marsden 1971, p. 44
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Seven of Thucydidesn, or in the introduction to the work of Aeneas Tacticus.” It is
not a particularly radical statement in this respect, save for this particular emphasis on
machinery. However, the claim that mechanics will step in where philosophy has failed
is a far more contentious sentiment. It serves to both elevate the importance of me-
chanics, and associate it with the intellectual heights of philosophical study. There is
also here a criticism of the rejection of 7éyvn, and the contemporary attitude that it is
banausic and unworthy of proper attention. By presenting the benefits of the study
of the field, which are otherwise unavailable, Heron is making a case, through reason,
for the appreciation of mechanics as a field on par with others for serious research and
study.

The presentation of mechanics in the sole Latin source on the subject takes a differ-
ent, yet apparently widespread, approach to the subject, whereby it is presented as the
final area of knowledge necessary for a student of architecture. Vitruvius’ De Architec-
tura, itself anomalous as a work on architecture, is anomalous in its presentation of the
mastery of a technical field as requiring a well-rounded education in the ‘liberal arts’, as
well as knowledge of the field itself. Vitruvius sees architecture as a taking in both the
built and mechanical environment, with proper practice requiring mastery of many ar-
eas of theoretical and practical knowledge.** For mechanics this is expressed when he

states:

in his vero opus est prudentia diligens et ingenii doctissimi cogitata, quod

nihil eorum perficitur sine machinatione studiorumgque vario ac sollerti vig-

2
ore.”’

?Th. 7.92.4

*Aen. Tact. praef.

*Rowland and Howe 2002, p. 13
»Vitr. De Arch. 10.pref.3
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Vitruvius provides a basic description of the qualities of a machine, saying:

Machina est continens e materia coniunctio maximas ad onerum motus
habens virtutes. ea movetur ex arte circulorum rotundationibus, quam

Graeci kukAikny kivmow appellant.*

Although concerned with the nature of machines rather than mechanics, this statement
allows us insight into his conception of the basic nature of mechanics, as machina does
not have a specific meaning in Latin, so we do not need to consider this description to
be one of a specific machine. This focus on rotational movement and the weight-lifting
properties of mechanisms can also be seen in the emphasis on the circle in the Pseudo-
Aristotelean Mechanica, and in the Mechanica of Heron, which deals, at least in part,
with geared weight-lifting devices. Furthermore, as Vitruvius is writing in the context of
architecture, the machine most associated with this field would be weight-lifting devices
which the architect was also obliged to produce as part of their commission. Vitruvius

also interestingly makes a distinction between different kinds of machines:

Ex bis sunt quae umxavikws, alia opyavikws moventur. inter machinas
et organa id videtur esse discrimen, quod machinae pluribus operis vel vi
maiore coguntur effectus habere, uti ballistae torculariorumque prela; or-
gana autem unius operae prudenti tactu perficiunt quod est propositum, uti

. . . . 27
SCOVPZO}’ZM seu dﬂlJOCyCZOV%WZ versationes.

This distinction and division of mechanisms seems to be based on the scale and number
of people required to operate the device, rather than the particular function or mech-

anisms employed in the device. This particular division does not occur in other texts,

*Vitr. De Arch. 10.1.1
*Vitr. De Arch. 10.1.3
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though we might consider it analogous to the division between different fields of me-
chanics made by Pappus and Proclus, as seen in the previous chapter.
Finally, Vitruvius here expresses his view on the relationship between nature and

mechanics, stating:

Omnis autem est machinatio rerum natura procreata ac praeceptrice et

magistra mundi versatione instituta.”®

If thisisa statement that mechanics is devised from the observation of nature, itis unlike
those which we have seen from other authors on the character of mechanics as being
‘beyond nature’, or in some way distinct from it. In this example mechanical effects
are an innate part of the workings of the universe, though it may be that what is being
suggested is inspiration from the workings of nature rather than a direct imitation.
Other extant works by Heron can give us insight into the perception of two other
fields of mechanics that have not yet been discussed, pneumatics and automaton-building.

Heron introduces his Preumatica in the following fashion:

THs mvevpatikijs mpaypateias omovdijs Néwwuévns TpoOs TOV TAAALDY
7 \ ~ ~ \ ~ \ 4 > ~
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avaykatov vrapyew voulloper kal avTol Ta mapadolévTa Vo TV

> ’ > /’ > ~ e < ~ \ ’ > /4
apxaiwy eis Talw ayaye, kal o Nuels O Tpooevpkauey elobéoba

¢/ \ \ \ ~ > ~ ’ kd ’ ’
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wpeletobar ovuBioerar”’

Again we see in this passage an association being made between mechanics and philos-

ophy. However, unlike the more negative parallels that are drawn in Athenaeus, the

Vitr. De Arch. 10.1.4
*Hero Spir. 1.1
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presentation of the relationship here is harmonious, and in line with the Aristotelean
conception of the relationship between empirical and rational science described earlier.
The exchange between these two specialisms on the subject of pneumatics is evident
in the development of atomic theory and the importance of 7wvedpa in philosophical
works. Later in the Prneumatica, Heron uses the phrase ‘rapa ¢vow’ to describe the
actions of pneumatics, both in creating a vacuum, and compressing gases. The work
clearly demonstrates the use and manipulation of pneumatic effects through the tools
and devices that are being described, and so agrees with the definition of wapa ¢vow
discussed earlier. Pneumatics also seems to be the furthest removed theoretically from
the other areas of mechanics that appear ancient technical texts. However, if mechan-
ics as a field is conceived in the way Heron describes, pneumatics can be placed in the
same category as other aspects of ancient mechanics. While Heron’s Automatatopoetike

begins as follows:

THs avroparomomrikijs mpayuatelas VO TOV TPOTEPOY ATOBOXT]S
3> /’ 4 \ 7 ~ > 3 ~ 14 \ \ \
Néwwpévns dud Te€ TO TowkiNov THS €v avTy) dnuovpyias kal Owa TO
b4 ~ /’ b4 4 e /7 > -~ ~ 14

ékmAnkTov Tijs Qewplas. €oTi ydp, ws oVVENOVTL elmely, AV UEPOS
T1S UNXAVIKT]S €V aUT]) Tf] avTopaTomomTik]] mapalauBavduevor dua

~ \ ’ > 3 A~ 3 ’ 30
TV KATA UEPOS €V QUT]) ETLTENOUUEVWV.

Again we find an emphasis on this text as part of a tradition of writing on mechanics,
along with specific laudatory comments about this particular topic within the field of
mechanics. The emphasis on the complexity of automaton making, and the idea that it
utilises all aspects of the field of ancient mechanics are particularly interesting, though

within the textitself, we do not find any particular fields of mechanics thatare not found

*Hero Aut. 1.1
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elsewhere. That each aspect of mechanics is not an endpoint in itself, but could be
incorporated as a component for different purposes within a device, is perhaps reflective
of what has already been seen of mechanics, where the mechanician would be expected
to produce a variety of devices.

Finally, we find comments on the nature of mechanics in the introduction to the
eighth book of Pappus Synagoge, where he introduces the field to Hermodorus, to

whom this book is addressed:

‘H unxaviky Oewpla, téxvov ‘Epuddwpe, mpos mola kal peydala
~ > ~ 14 ’ € ’ 14 5> /’ > ~
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3 7 \ ~ ’ \ ~ ~ > \ ~ 4
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Where the attribution of interest in pneumatics to philosophers was understandable in
Heron’s introduction to the Pneumatica, this attribution of interest in the field of me-
chanics as a whole is a fairly radical change in viewpoint from that expressed in earlier
texts. The expansion to include mathematicians among the interested parties is perhaps
telling of the way in which the field is regarded at this later date. Pappus has included it
as part of a compendium of mechanical knowledge, and the subject matter dealt with in
this book is far more mathematical than that found elsewhere in earlier mechanical lit-
erature. In the section immediately after this, quoted in the previous chapter, we again
find mention of the idea that mechanics is something that is rapa ¢vow. In addition,
we here do not find the strict hierarchical division between fields of knowledge that is

being enforced by Aristotle in his Posterior Analytics. The division between theoreti-

31Papp. 1022,
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cal and practical aspects of mechanics includes geometry as one of the disciplines that
make up the theoretical aspects of mechanics. This could in part reflect a less specific
definition of mechanics, which incorporates more heavily the particular skills required
of someone practising in the field, rather than a specific definition of the field of knowl-
edge. While this, along with other differences from other mechanical texts, could reflect
that the text is intended as a training manual for students of architecture®®, that is, hav-
ing a broader focus than just mechanics. However, it may just be that Pappus is less
concerned with the strict divisions between fields of knowledge that are found in Aris-
totle, and more interested in all aspects of mathematics, among which we can count
mechanics.

I think we can, therefore, make a number of general conclusions about the per-
ception of mechanics in the ancient world. Firstly, with regards to the general nature
of the field; In the Pseudo-Aristotelean Mechanica we find the idea that mechanics is
mapa ¢pvow in its character, and that all aspects of mechanical motion can be related
to the circle. Aristotle, in the Posterior Analytics, sees it as being defined by its subor-
dinate relationship to solid geometry. These two defining aspects are seen in some way
or another in most of the mechanical texts from the middle of the chronological range,
that is Philon, Athenaeus, Vitruvius and Heron.

Secondly, with regards to the praise directed at the field; The majority of the works
examined, from Philon onwards, have introductions that make some kind of case for
the worth of mechanics or the sub-field being discussed. These make a variety of ar-
guments, which can take the form of an advertisement of the benefits of the field, or
a dismissal of previous work on the subject. Frequently the work is defined in rela-

tion to philosophy, using it as a reference point to validate the legitimacy of mechanics,

“Downey 1948
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or a straight declaration of superiority to it. The criticism visible in the passage from
Plutarch, aside from the general sentiment that mechanics is in some way menial, and
not an elevated area of study, is focused around Plato, and his criticism of the use of a
mechanical methodology.

There will be an introductory chapter here that discusses the problems associated
with defining the theoretical in ancient mechanics. It will lay out the scope of the fol-
lowing chapters and the reasons for focusing on the particular problems and theories
discussed in the texts. It will discuss why these particular texts have been chosen as the
focus for analysis.

When considering these aspects of ancient mechanics, the key question is not ”is this
correct”, though I will mention if it is not, but rather “how is this being understood”
or “why is this methodology used”. The question of what mechanics is, particulary of
what theoretical mechanics is, is not so much about the results, but about the method.

There is the conflict between empiricism and rationalism that is inherent in these
works, and this is the issue when considering much of ancient science. The law of the
lever, which much of the first two chapters here are concerned with, is of interest not so
much for having been discerned, but rather for having been explained. Itis the rationale
that makes the theory, not the existence of the rule. We could conduct experiments
with millions of combinations of arm lengths and weights to develop and demonstrate
the law of the lever, but an attempt to describe the reasons for it and construct general

principles of explain it.



4 Aristotelean Mechanics

The perpatetic Mechanica constitutes the genesis of theoretical mechanics, at least as far
as the extant textual tradition is concerned. It was attributed to Aristotle in antiquity
and transmitted as part of the Aristotelean corpus. The structure of the text is the same
as that of the Problemata, another pseudo-Aristotelean text that consists of thirty-eight
books on a wide variety of topics such as medicine, bodily functions, moral qualities
and botany. The material found in the Mechanica consists of the examination of a
series of problems deemed to be mechanical, proceeding with a question and answer
structure. While this aspect of the textis the same as the Problemata, there is a significant
difference in the relationship between the questions. In the Mechanica, the text begins
by describing the mechanical principle to which the mechanical phenomena described
in the problems can all be related.

Itis this theoretical basis that I wish to explore in this chapter, considering these con-
cepts in particular to constitute Aristotelean mechanics, in contrast to the Archimedean
mechanics that will be investigated in the following chapter. Itis worth noting here that
there is other material in the Aristotelean corpus that we might deem to be mechanical,
such as the treatment of dynamics that can be found in works such as the Physica. This
material is not, however, described as being mechanics by Aristotle, and so cannot be

included when discussing the ancient conception of the field of mechanics.

38
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The theoretical aspects of the work begins in the relation of mechanical problems

to the lever, and the attribution of the power of the lever to the circle.
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It is this relationship with the circle that is dissected in the subsequent chapters. The
expansion on the marvellous nature of the circle that occurs between 847b and 848a
serves to emphasise the extent to which this form has properties that are conducive to
explaining the extraordinary or mapa ¢uvow nature of the lever. The author expands on
this further, by examining a ritual device that uses circles that turn each other like gears.
The key point is that circle can be used to explain the balance, the balance can explain
the lever, and the lever can be used to explain the majority of mechanical phenomena.2

The phenomena associated with levers and balances being explored in the early parts
of the text is normally described in modern terms as ‘the law of the lever’. While the

analysis of the balance that we find in Archimedes is, as we will see in the next chapter,

' Arist. Mech. 847bm-21

*1a pév odv mepl Tov {uydv ywdueva els TOV KUKkAov dvdyeTal, TG O& Tepl TOV OXAOV €ls
Tov {uydr, Ta & dA\\a mdvTa oxedov TA TepL TAS KWIOELS TAS UNXAVIKAS €S TOV LOXAOV.
Arist.Mech.848a. See page 72 for a notable failure of this analytical model.
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much closer to our own conception of the machine, the principles that are being ex-
plored in the Aristotelean Mechanica are basically the same. The lever is composed of
two fundamental parts: a rigid object serving as the lever itself, and a fulcrum around
which it can pivot. The importance of this particular machine is the way in which it can
serve as a model for the amplification of force found in machines more generally. This
amplification of force, when quantified, is called the mechanical advantage of the device.
The law of the lever describes the relationship between a force acting upon a lever, and
the distance of that application of force from the fulcrum. We understand this chiefly
through a statical model, where the system is in a state of equilibrium. The most basic
expression of this is a balance upon which equal forces at equal distances are acting on
opposing sides of the fulcrum. However, the key aspect of the relationship between the
distance from the fulcrum and the force acting upon the lever is not expressed through
this symmetrical system. It almost seems to be intuitively understood that if one of the
two aforementioned forces acting upon the lever were to be increased, or the distance
from the fulcrum increased, that side of the lever would descend. Essential in the im-
portance of the lever is the fact that for the system to remain in equilibrium, it is not
necessary for the force or distance to be increased in a symmetrically proportional way
on the opposite side of the fulcrum. There is an inversely proportional relationship be-
tween force and distance on the opposite side of the fulcrum, that is, if the force acting
upon on one side of the lever is increased, the distance from the fulcrum on the other
side can be increased by an amount proportional to the increase in force, and the system
will return to a state of equilibrium. It is this relationship that is being explored when
we are discussing the law of the lever, and this is what the author of the Mechanica is
attempting to explain.

The link between the balance and the circle is not immediately obvious. If we are
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at all familiar with a modern theoretical construct of the lever then we might imagine
the lever placed across the fulcrum, with some demonstration of the forces acting upon
either end. We are not encouraged to imagine the movement of thelever, nor to imagine
the path that a point on the lever will trace when moving. Nor do either of these things
play a part in standard analytical models of the lever. This, however, is what the author
of the Mechanica goes on to do, or at least to explain circular motion, relating it back

to the lever. The question is framed as the following:
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Like the rest of the mechanical problems in this Mechanica, the starting point of the
investigation is resolutely physical and familiar. The phenomena is of course a generic
one, the differing accuracy of balances has the same root cause as the force magnifying
effects of a lever. That said, it seems that this example has been selected in particular
because it is easily comprehensible by means of, and conformable to, the circular model
that the author of the Mechanicais developing. Having established the specific instance
of the problem, the author then goes on to develop the general theory, first of all estab-
lishing a general theory of compound motion, before he goes on to deal specifically with

circular motion:
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This is the earliest expression of the idea of a parallelogram of forces," a concept nor-
mally closely related with the field of kinematics, as it deals with the movement of a
body, rather than the cause of the movement. This can be attributed to the ‘simple pro-
portionality between force and velocity that characterises the Peripatetic dynamics.” Or
rather as Duhem tells it, ‘Aristotle admits in principle that the power of a weight sus-
pended from a lever is proportional to the velocity at which this weight moves when

the lever is turned.” For the author of this text, the proportionality of force to veloc-

*Arist. Mech. 848b1o-26, ‘Now if the two displacements of a body are in any fixed proportion, the
resulting displacement must necessarily be a straight line, and this line is the diagonal of the figure, made
by the lines drawn in the proportion. Let the proportion of the two displacements be as AB to AC,
and let A be brought to B, and the line AB to E; then if the proportion of the two displacements be
maintained, AD must necessarily have the same proportion to AE as AB to AC. Therefore the small
parallelogram is similar to the greater, and their diagonal is the same so that A will be at F. In the same
way it can be shown, at whatever points the displacement be arrested, that the point A will in all cases be
on the diagonal. Thus it is plain that, if a point be moved along the diagonal by two displacements, it is
necessarily moved according to the proportion of the sides of the parallelogram; for otherwise it will not
be moved along the diagonal.” Barnes 1984, pp. 1300-1

“For a clear explanation of the parallelogram of forces see Asimov 1966, pp. 40-1.

*Benvenuto 198s, p. 101

*Duhem 1991, p. 55 & Duhem 1905, p. 72
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ity allows these two different physical quantities to function interchangeably. So this
quintessentially kinematic conception of motion can provide a demonstration of both
the component velocities of an object’s movement, and the constituent forces that act
upon an object. Once this has been established, it is easier to conceive of how motion
can form the basis of the approach to a statical problem.

Having established this relationship for the component forces and velocities present
in linear motion, the author then returns to the circle, considering how this approach
to forces can be applied to circular motion. The author reasons that two component
forces (popa) must also be presentin circular motion, as the point on the circumference,
at the end of the radius describing the circle, moves from a point vertically above the
centre of the circle, to one horizontal to the centre of the circle. This transition of the
point from one place to another could be described by a parallelogram of forces, except
that the movement does not occur in a fixed ratio with regards to each vector of the

parallelogram. The author describes the two forces that are in action as follows:
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KEVTPOU TOU QUTIOTTAVTOS KPATELTAL LAANOV.

The author then proceeds to make a fairly complex geometrical demonstration that
purports to show the influence of the ‘unnatural’ force that causes points closer to the
centre move slower than those further away. Two chords of equal length are drawn in
each of the concentric circles, centred on, and perpendicular to, the same radial line. The
distance between the intersection of the chord and the radial line and the intersection
of the circle and the radial line is found to be greater in the smaller circle than the larger
circle. As these two lengths can be considered the vertices of parallelograms of force that
describe the arcs of the respective circles, the greater distance should effectively prove
that the larger circle is moving faster than the smaller circle, and so the ‘unnatural’ force
is having a greater effect on the smaller circle.

The main issue with the conception of circular motion that exists in the text is thatit
relies upon a flawed understanding of circular motion as it relates to the lever or balance.
As Heath points out (though he is perhaps being generous towards the anonymous
peripatetic), there seems to be some conflation of free circular motion and constrained
circular motion.® The forces at work in constrained circular motion, as exemplified by
the lever and balance, are the motive force and the constraining centripetal force, gener-
ating motion that is always tangential and perpendicular to the radius. For two compo-
nent velocities to describe a circle the ratio between the two would have to be constantly

changing. However, the author of the Mechanica does recognise this, stating that éav

7 Arist. Mech. 84929-16 “...if one of two displacements caused by the same forces is more interfered
with and the other less, it is reasonable to suppose that the motion more interfered with will be slower
than the motion less interfered with; which seems to happen in the case of the greater and less of the radii
of circles. For on account of the extremity of the lesser radius being nearer the stationary centre than that
of the greater, being as it were pulled in a contrary direction, towards the middle, the extremity of the
lesser move more slowly. This is the case with every radius, and it moves in a curve, naturally along the
tangent, and unnaturally towards the centre. And the lesser radius is always moved more in respect of its
unnatural motion; for being nearer to the retarding centre it is more constrained.” Barnes 1984, p. 1301

*T. Heath 1949, p. 230
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3¢ €v undevt Aéyw pépnrar dvo ¢opas kata undéva xpovov, adivarov evleiav
elvar Tjv popdv,” but, the distinction that the theory of equilibrium and the theory
of motion are governed by separate principles is not made in this work. '* Equilibrium
involves the absence of movement rather than merely the balancing of forces.

For Schiefsky the analysis undertaken in the text, involving the reduction of the me-
chanical problems down to three analytical models, the circle, the lever and the balance,
represents something of an inversion of an axiomatic model. Rather than progressing
from the simple to the complex, the analysis of these mechanical problems explains the
complex through these simpler fundamental models.”" This is in contrast to the strict
axiomatic method which we will see in the following chapter employed by Archimedes.
The method of exploring the theory developed in the Pseudo-Aristotelean Mechanica
applies the solution to observable phenomena.

The importance of this text for the field of ancient mechanics does not rely upon
the efficacy of the analytical model, but rather the fact that an analytical model has been
developed for the working of the lever. The expression of the relationship between the
circle, the balance, and the lever, as well as the realisation that the lever can act as an
exemplar for the working of all machines is the earliest theory of mechanics. Duhem
said it best, ‘Had Aristotle formulated only this single idea, he would deservedly have
to be celebrated as the father of rational mechanics.”** The material found in this text
would go on to be one of the main sources for later medieval work on the subject,13
and this Aristotelean conception of the law of the lever would, unfortunately, be much

more influential than that of Archimedes.

’rist. Mech. 848b
*Duhem 1991, p. 11

""M. Schiefsky 2009, p. 53
“Duhem 1991, p. 13
“Clagett 1959, pp. xxiii-xxiv



s Archimedean Mechanics

Despite this close association with mechanics, the extant Archimedean texts are more
representative of the work of a pure mathematician than a mechanician. The works De
sphaera et cylindro, De conoidibus et sphaeroidibus and De lineis spiralibus constitute
the vast majority of his extant corpus, and deal with the volumes of different solids and
other geometrical constructions. What Aristotelean work that we have on mechanics is
represented by three extant texts. Two of these texts deal with statics and hydrostatics
respectively, and the third is a mathematical work demonstrating the application of me-
chanical thought to problems such as calculating the area or volume of a given geomet-
rical form. While De Planorum Aequilibris, as the extant work by Archimedes on stat-
ics, will be explored at length in this chapter, it is worth giving a brief overview of both
De corporibus fluitantibus and Ad Eratosthenem methodus. The notable thing about
these mechanical works of Archimedes is their engagement with the physical world.
As is apparent from Plutarch’s account of the mathematician, a disregard for the tan-
gible aspects of his research was one of the main characteristics latterly attributed to
Archimedes.” The field of hydrostatics did not offer quite the same universal range of
applications as statics for an ancient audience.

The most significant text by Archimedes on mechanics is De Planorum Aequilibris.

"Plut. Marc.14.3-6

46
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This text develops and explores from first principles the theory of equilibrium. Intro-
duced in this text is not only a new methodological approach to the field of mechanics,
but also a new theoretical approach to area of statics. These two changes represent a
significant departure from the earlier work on the subject found in the Aristotelean
Mechanica.

While the Mechanica uses a dynamic model of circular motion to develop a theory
of thelever, the approach found in De Planorum Aequilibrisis concerned with develop-
ing a static model for the behaviour of the lever, based on the study of this fundamental
machine while in a state of equilibrium. The Aristotelean work did carry out a math-
ematisation of the problem, as we have seen in the preceding chapter. However, the
approach taken by Archimedes is much closer to our expectations of what would con-
stitute a mathematical approach to a physical phenomenon. Primarily, this is because
he applied what became the principle means of mathematical deduction and proof, the
codification of which by Euclid may be dated to the generation before Archimedes,
namely, the axiomatic method.” An axiomatic method is one which follows a line of de-
ductive reasoning, proceeding from a series of primitive statements known as axioms.’
If a theorem is derived through a deductive system such as this, the axioms from which
they are derived must be sufficient to provide proof of the theorem. As this method is
being applied by Archimedes to the field of mechanics, it is to define it in strictly ratio-
nal rather than empirical terms, and the success of this is largely hinged upon the quality
of the initial axioms defined for the system. The postulates that Archimedes provides

in De Planorum Aequilibris are as follows:

> ’ \ v 14 > \ v 14 > ~ \ \
a . Airodueba Ta toa Bapea amo lowv paxéwv looppomely, Ta O

*T.L. Heath 1956, pp. 12
*This definition of an axiom is essentially a modern one, the
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*Arch. Aequil. 2.80-81 Dijksterhuis translates the postulates as:
1. We postulate that equal weights at equal distances are in equilibrium, and that equal weights at unequal
distances are not in equilibrium, but incline towards the weight which is at the greater distance.
2. Thatif, when weights at certain distances are in equilibrium, something be added to one of the weights,
they are not in equilibrium, but incline towards that weight to which something has been added.
3. Similarly that, if anything be taken away from one of the weights, they are not in equilibrium, but
incline towards that weight from which nothing has been taken away.
4. When equal and similar figures are made to coincide, their centres of gravity likewise coincide.
5. In figures which are unequal, but similar, the centres of gravity will be similarly situated. We say that
points are similarly situated in relation to similar figures if straight lines drawn from these points to the
equal angles make equal angles with the homologous sides.
6. If magnitudes at certain distances be in equilibrium, other [magnitudes] equal to them will also be in
equilibrium at the same distances.
7. In any figure whose perimeter is concave in the same direction the centre of gravity must be within the

figure.
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Of these seven postulates, the first three and the sixth can be considered as being
related to the balance, and the remaining three postulates as being related to the explo-
ration of the centres of gravity in plane figures, the subject of the latter half of this work.
These four postulates must, then, provide a basis from which it is possible derive the
theory of the lever and equilibrium. However, there has been debate over whether or
not these postulates can adequately do this, prompted by Mach’s criticism of the for-
mal methodology found in the work. This criticism was focused on the first postulate;
specifically, the extent to which it relies upon the readers existing knowledge or experi-
ence of the working of alever or balance. Mach highlights the breadth of factors external
to those stated by Archimedes in this postulate that may theoretically impinge upon the
behaviour of a balance.” These examples, such as the colour of the opposite sides of the
balance, obviously do not have an effect, but it is exactly this that leads both Mach, and
Goe,’ to the conclusion that the ‘equal arms’ axiom is dependent upon a pre-existing
understanding of the behaviour of the lever and balance beam.

Goe relates the first postulate of Archimedes to Euclid’s fifth postulate,” stating that
Mach errs in ascribing to Archimedes the assertion that that the ‘equal arms’ axiom
is self-evident.® Euclid’s Fifth postulate is here used as an example of another notable
example of an axiom that is necessary for the foundations of the work, but is not easily

proven using the other provided axioms.

Dijksterhuis 1987, pp. 287-7

"Mach 1893, pp. 9-10

*Goe 1972, p- 330

7Also known as the parallel postulate, which states °...if a straight line falling on two straight lines
make the interior angles on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles less than the two right angles.”T.L. Heath 1956,
p- 202. Although the defining axiom for what we think of as ‘Euclidean Geometry’, the fact that it could
not be readily solved using Euclid’s previous four postulates has led to much debate over its status as a
postulate or theorem, as well as many attempts at a proof. For a concise examination of the postulate and
the tradition surrounding it, see T.L. Heath 1956, pp. 202-220.

*Goe 1972, p. 330
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In accordance with this criteria, De Planorum Aequilibris’s postulates need only
serve as basis for the exploration of the subject in the terms defined. In the same way
that the non-convergence of parallel lines is a defining feature of what is now known as
Euclidean geometry, the ‘proper’ axioms defined by Archimedes serve only as the basis
for this particular demonstration of the principle of equilibrium. In essence this is what
divides the theoretical from the actual, a system is established that models the physical to
some degree, and from this we can draw some conclusion or effect some demonstration.
The system need only be internally consistent rather than consistent with all physical
actualities. If this were to be taken as a more universal mechanical work, criticism may
also be levelled at the absence of a plane and fulcrum upon which the two equal weights
are placed in the first postulate. Mach has had to supply ‘from their point of support’
in his rendering of the postulates,10 and the fact that this is included in the described

system is only apparent from the propositions. Mechanics is a physical science, and it is

?Arist. APo. 76b11-200f the items used in the demonstrative sciences some are proper to each science
and others common — but common by analogy, since they are only useful in so far as they bear on the
kind under the science. Proper: e.g. that a line is such-and-such, and straight so-and-so. Common: e.g.
that if equals are removed from equals, the remainders are equal. It is sufficient to assume each of these
in so far as it bears on the kind; for it will produce the same results even if it is assumed as holding not of
everything but only for magnitudes (or, for arithmeticians, for numbers). Barnes 1994, p. 15

"“Mach 1893, pp. 8-9
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perhaps not surprising that the foundations of the textare, atleast to some extent, based
upon empirical or casual observation. That there has been some reliance upon pre-
existing knowledge, and that the theory of equilibrium has not been been developed
ab initio, perhaps leaves some ambiguities in the system. However, this does not mean
that it cannot serve as appropriate grounds upon which the theory of equilibrium can
be explored.

While the postulates form the basis of the work, the propositions build upon this
to define the theory of equilibrium that can be developed from them. The abstract pos-
tulates are applied to scenarios developed to test and explore them. This is where the
balance becomes the proving ground for the development of this theory of equilibrium.
It is undoubtedly used because it is the most fundamental and readily comprehensible
model for the theory. The theory of equilibrium is, of course, one which is applica-
ble far more universally than is explored in this text. However, the importance of the
balance, and the lever as its theoretical forebear, as has been seen in the Aristotelean AMe-
chanica, is that the behaviour of all other weight-lifting machinery can be derived from
the theory of equilibrium. More importantly, as has already been mentioned, much
of the understanding of equilibrium and the law of the lever must have been derived
from the observation of the balance. The early propositions in the work all deal with
various states of equilibrium that bodies may be in, such as two equal weights at equal
distances from one another, and these are proven through reasoning based upon the
first four postulates. The sixth and seventh propositions are of considerably greater
interest to us, as it is here that the law of the lever is most readily encapsulated. This
is achieved through the exploration and proof of the fact that unequal weights are in
equilibrium on a balance at a distance to the fulcrum that is inversely proportional to

their weight. The seventh proposition deals with the proof of this for magnitudes that
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are irrational, but it is the sixth that deals with rational numbers that will be focused

upon here. The sixth proposition is as follows:
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" Arch. Aequil. 85-86 Dijkesterhuis translates this passage as:
Proposition 6.
Commensurable magnitudes are in equilibrium at distances reciprocally proportional to the weights.
Let the commensurable magnitudes be A and B, of which A and B are the centres, and let EA be a given
distance, and let the distance AT be to the distance I'E as A to B. It has to be proved that the centre of
gravity of the magnitude composed of A and BisT".
Since A and B are commensurable, so are AT and T'E.
Let N be a common measure of these two distances. Make AH=AK=EI" and EA=AT". Apparently EH is
also equal to AT'. Since HA=2.AT" and HK=2.ET', we also have
A:B=AH:HK.

Now let the magnitude Z be contained as many times in A as the distance N in AH, whence also as many
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Archimedes here is drawing upon the earlier propositions, which had proved that
the centre of gravity of two equal weights will occur at a point equidistant between
the centres of gravity of the two individual weights, to provide a proof of the sixth
proposition. The more complex problem of unequal weights at unequal distances is
transmuted to the simpler problem of equal weights at equal distances. In comparison
with the approach found in the Aristotelean Mechanica we here have a simple, elegant,
and most importantly, quantifiable proof of the law of the lever. There is however an-
other issue to be found with these postulates and this proof, which again formed part
of Mach’s criticism of the work, namely that a concrete definition of what is meant by
‘centre of gravity’** is not found in this work.

Given that this concept occupies such a central position in the development of the
theories discussed both here and later in the work when plane figures are discussed it
seems to be a rather troubling omission. The significance of the concept to the sixth
proposition is that in this model the effect that a weight suspended upon a balance has
is entirely dependent upon its centre of gravity, and that the proof of the theory is re-
liant upon the ability to replace this weight with a number of others with the same

centre of gravity. Two differing theories have been proposed for the absence of this

times in B in N in HK. Divide AH and HK each into equal parts N, A and B each into equal parts Z.
Place on each of the line segments N a magnitude Z, so that in each case the centre of gravity of Z is the
middle point of N, then the centre of gravity of all the magnitudes Z placed on the parts of AH will be
the point E, while in the same way the centre of gravity of all the magnitudes Z placed on the parts of HK
will be the point A. Now therefore A will be at E and B at A. There will now be equal magnitudes on a
straight line, the centres of gravity of which are equidistant from one another and the number of which
is even. Itis now obvious that of the magnitude composed of all the magnitudes the middle point of the
straight line bounded by the centres of the middle magnitudes will be the centre of gravity. So that the
centre of gravity of the magnitude composed of all the magnitudes is the point I'. If therefore A is at E
and B at A, they will be in equilibrium about I’ Dijksterhuis 1987, p.289-90 Although T. L. Heath 1897
is the classic translation of the work of Archimedes, and by rendering large parts of the propositions in
modern notion he renders the text more readily comprehensible, I have preferred the translation found
in Dijksterhuis due to its stricter adherence to the original text.
Prévrpov Tod Bdpeos
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definition from the work, and both have been thoroughly examined by Dijksterhuis.
The first is that the concept of centres of gravity is a familiar one, either from the other
work by Archimedes, or as a more commonly defined term that was generally known.
Alternatively, the definition of the centres of gravity is intended to be implicit from the
postulates of this work. The fact that implicit definitions of terms are not present in
Euclid’s Elements is highlighted by Dijksterhuis as evidence that it is unlikely that an
ambiguous approach such as this would have been adopted by Archimedes. He rea-
sons that the model for our understanding of these ideas of equilibrium, inclination
and weight is the observation of the lever and balance. That rather than there being an
implicit definition of these concepts in the postulates, there is the implicit understand-
ing that these things are comprehensible from observation and prior knowledge of their
working."”® The notion of centres of balance is not as intuitive, and so it remains that
the concept had been explored in another work on mechanics or statics by Archimedes.

A number of other works on mechanics have been attributed to Archimedes in an-
tiquity, and itis in these that the concept of a centre of gravity may have been established
theoretically initially. An ‘Elements of Mechanics’ is referred to in De corporibus flui-
tantibus,**, as well as a ‘Mechanica’ in On the Quadrature of the Parabola®®. We also
have reference to an ‘Equilibria’ which is likely the same work, if not on a similar sub-
ject.”® Dijksterhuis believes De Planorum Aequilibris was a constituent part of a larger

Mechanica that may be what these works refer to."” Drachmann has carried out a fairly

“Dijksterhuis 1987, pp. 295298

“Xrowela TV upxavikdv in Archim. Fluit. 2.2.

¥ Archim. Quad. Parab. 6 & 10

S Archim. Fluit. 2.2., but also at Meth.1. as 7d Tooppomikd.

"Dijksterhuis 1987, pp. 47-48 For completeness it is worth mentioning that there are a couple of other
titles attributed to Archimedes that were undoubtedly mechanical in nature. Pappus refers to a work
titled ‘On Balances’, (mep! {vy@v in Papp. 1068.) while Heron refers to a work ‘On Supports’ (Hero.
Mech. 1.25, extant in Arabic only, translated by Nix as ‘Buch der Stiitzen” Nix and W. Schmidt 1976,
p- 70). For more on both of these see the latter two sections of Drachmann 1963a, pp. 114-143.
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extensive survey of these works while pursuing the thesis that some of Heron’s Mechan-
icaare excerpts of a lost Archimedean work."® The conclusions of both of these authors
has been that De Planorum Aequilibris is likely the second section of a larger work, the
first part of which would have explored and defined the concept of centres of gravity.

This does not, unfortunately, bring us any closer to a solid answer for the absence
a definition of this concept in the work. In the apparent absence of any other work
on Mechanics of the same era or earlier it seems that the concept must indeed be at-
tributed to Archimedes. The texts attributed to him form a more likely list than some
of the devices that make up the catalogue of his attested achievements as an inventor,
and certainly the mode of analysis and approach taken by Archimedes in De Planorum
Aequilibris and his other works would suggest that some definition of the centre of
gravity would appear elsewhere in his work. The theoretical gaps have been covered by
Drachmann and Dijksterhuis, and in addition to this Olaf Schmidt has undertaken the
task of producing a complete proof of the theory of equilibrium and centres of gravity
using the Archimedean methodology.”

Although we might not consider De Planorum Aequilibris to represent a complete
mathematisation of the theory of equilibrium, it is, nevertheless, a far more elegant and
definitive approach to the problem than had previously been undertaken. It may be
important to note here that the conclusions of this Archimedean work are no differ-
ent to those found in the Aristotelean work, the real difference is in the static rather
semi-dynamic method used in the proof. It is safe to say that the law of the lever was
understood long before either of these authors set out to explain it theoretically. The

approach taken by Archimedes, although abstract, allows us to immediately relate the

¥Drachmann 1963a
0. Schmidt 1975
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geometrical lines and magnitudes to a balance with weights suspended upon it. This
is an attestation in itself of its efficacy. The fact that there is no real connection made
with a physical object in De Planorum Aequilibris, that it is an entirely mathematical
abstraction of the problem, places it in a unique position among ancient texts on ‘the-
oretical mechanics’. It is the only text that neither sets out to apply itself in any way to
practical applications, nor to serve to directly explain physical phenomena.

Without an introductory letter explaining it, as is found accompanying some of the
other works of Archimedes, it seems that the motivation for this research is somewhat
obscure. Drachmann has made a compelling argument for the root of Archimedes in-
vestigations into equilibrium. Using the material found in Ad Eratosthenem methodus
he has explored the idea that Archimedes’ investigations into statics and equilibrium
were the result of his use of mechanical techniques to explore mathematical problems.*
The utility of the lever for exploring the areas and volumes of geometrical figures as
described in the method seems like an obvious and attractive reason for the investiga-
tion and codification of this subject by Archimedes. There is one particularly telling
comment from .4d Eratosthenem methodus that illustrates the relationship between
Archimedes” mechanical and mathematical investigation, where he says in his introduc-

tion to the work:

Kat ydp Twa tav mpdtepov por pavévtwy unyxavikds voTepov
~ > ’ \ \ \ 5 ’ 5 \ \ ’
yempeTpikws amederxln dua 70 ywpls amodeiews elvar Ty da ToUTOU

~ ’ ’ 21
TOV TPOTTOV Hewpcav

As Archimedes has developed a specific mechanical methodology for the study of vol-

ume and area it seems that this is a much more likely source for the codification of the

**Drachmann 1967, pp. 5-7
* Archim. Mezh. 1
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study of these subjects than the understanding of the mechanical phenomenon alone.
Although he cannot admit these methods as formal mathematical proof, this does not
preclude their use in the investigation of these mathematical problems. While a full un-
derstanding of the law of the lever does lend itself to the use of the device as a physical
tool, the kind of mathematical abstraction undertaken by Archimedes in De Planorum
Aequilibris enables it to be fully utilised as a rational tool. A heuristic approach to these
mathematical problems could be adopted, and one which could be carried out upon a
solid theoretical basis. The work is, as Drachmann has succinctly put it, the mathemat-
ical proof of mechanical perception which was necessitated by the need to define the
act of Weighing.22 As far as the mechanician is concerned, Duhem may well have been
correct when he said that the theories expressed in De Planorum Aequilibris ‘do not
reveal any novel insight into questions of importance to him”.* This is certainly true
in that they do not represent some new development in the practice of mechanics. The
thorough approach taken did, however, leave a lasting impact on the theory of the field.
This is visible from Heron’s referencing of Archimedes and attestation that his work on

the centre of gravity gives a ‘more precise definition’ of the concept.24

*Drachmann 1967, but see also Knorr 1978, who has come to a similar conclusion that Archimedes’
‘mechanical’ works have been produced with little or no interest in mechanics itself.

*Duhem 1991, p. 14

**Hero. Mech. 1.24, Drachmann 1963a, p. 100



6 The Delian Problem

In the introduction to the eighth book of his Collection, which deals with mechanics,
Pappus sets out a programme for the material he will cover on mechanics, emphasising
three theorems in particular which he states are the most essential for the movement of

weights.1 Among these we find the following description of a theorem:

’ ~ 3 ~ > 7 ’ /4 > ’ < ~ > ~
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This problem appears frequently in ancient texts, described in a number of different
ways, and is of particular importance in the history of ancient mathematics. It is com-
monly referred to as the Delian problem, and deals with doubling the size of a cube.
I will explore in this chapter how this mathematical problem becomes so closely asso-
ciated with mechanics, with which it does not seem to have an immediately obvious

relationship.

1l > ’ \ \ ~ ~ ’ »
avaykaoTaTa mepL TV TAY Papdy kivnow” Papp.1028

*Papp. 1028, ‘Given two unequal straight lines to find two mean proportionals in continued propor-
tion. By this theorem every solid figure may be augmented or decreased in any given ratio.’Cohen and
Drabkin 1948, p. 185
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Along with squaring the circle and trisecting a given angle, the Delian problem is
one of the three classical problems of ancient mathematics.” These three problems are
characterised by being unsolvable using only compass and straightedge construction,
which was the primary means of calculating non-integer values in antiquity, and the
most practical way of deriving meaningful results from such calculations.” Thereisa re-
lationship between the problem of doubling the cube and doubling the square, famous
from Socrates’ didactic demonstration in the Meno’ but while the former presents some
difficulty, the latter is easily derived with a compass.°

The Delian problem itself can be simply stated as follows: given a cube with side

x, where the volume V' = 23

, construct another cube of 2V. While this may initially
seem to be relatively straightforward, we would quickly find ourselves in a far greater
quandary than the anonymous ats of the Socratic dialogue when asked to calculate
the exact length of the cube’s sides, as their lengths are equal to /2, a value far more
difficult to calculate than for the square. The name of the problem comes from its re-
puted origin; the story goes that the Delians had consulted the oracle of Apollo as to
how they might escape from a plague, and had been told that they must construct an
altar of double the size of their previous one. In some sources they make a variety of
different attempts at doubling the size of the altar, including constructing an identical

altar and placing it on top of the first,” or doubling each of the sides of the altar.® The

story itself, and these attempted solutions, are really focused around Plato rather than

*Although the construction of a regular heptagon is also frequently included as a fourth problem in
the set.

*Russo 2004, pp. 41-2. The fact that a solution cannot be derived by compass and straight edge con-
struction was not proven till 1837 by Wantzel (see Dérrie 1965, pp. 174-7 for a proof in English).

*Pl. Meno.82b9-85b7, Huffman 200s, p. 360.

®The diagonal of the original square is, of course, equal to the sides of a square of twice the size.

7Philoponus, On the Posterior Analytics - CAG XI111.3 102.12-22.

*Plut. De gen. Socr. s79b-d
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the problem, serving, as Zhmud puts it, to cast him as “the hero of ‘historico-scientific’
legends”, reflecting the fact that he is regarded in the ancient tradition as “an ‘architect
of mathémata’.” The story far more likely represents the point, rather than the circum-
stances in which, the problem became a subject of investigation. Nevertheless, the fact
that there is a creation myth associated with the Delian problem at all is indicative of
the wider importance of the problem. The sheer number of solutions to the problem,
reproduced in works by, or attributed to, many ancient mathematicians also attests to
its status as one of the key problems of ancient mathematics. It is far beyond the scope
of this chapter to attempt any real discussion of the solutions to the problem and the
evolution of the approaches taken to it."’

However, the problem is not typically referred to as ‘the Delian Problem’ (70 ApAwakov
mpofAnua) in the vast majority of its appearances in the technical corpus, nor indeed
is the problem of doubling a cube typically found as the main subject of discussion or
proof. Instead what we find discussed are methods of ‘finding the two mean propor-
tionals’ (8vo péoas avaloyov), which can be used to allow for the scaling up and down
of solid forms, a much more useful generalisation of the problem that became the main
focus of work on the subject. The reduction of the problem to these terms is attributed
to Hippocrates of Chios, though as Eratosthenes points out in his account of the prob-
lem, it does not make the problem an simpler to deal with."! Finding the two mean
proportionals can be described as follows; Given two numbers, the two mean propor-
tionals are two values that exist in continued proportion between these numbers. The

relationship between them can be describedasa : * = x : y = y : b, where x and y are

*Zhmud 2006, p- 83

'®An overview of the problem can be found in T. Heath 1921, pp. 244-270, but the best account can
be found in the exhaustive chapter in Huffman 200s, pp. 342-401.

"dote 76 dmdpnpa adTd els €Tepov ovk ENacoov dmdpnua katéoTpeper Heiberg 1913, p. 88
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the mean proportionals between the lengths a and b. This is reducible to the expression

‘;—i =% which demonstrates that since b = 2a, the length x is that of the side of a cube
of double the size of a. With this value it is either possible to use it as a scaling factor for
all sides of the solid that is being doubled, that is, multiply each side by N (1.259),
or with a easily reproducible methodology, geometrically derive the lengths of each side
from the original lengths.

A solution to the problem of the two mean proportionals appears in two different
works on mechanics by Heron of Alexandria, his Mechanica and his Belopoeica. The
version of the solution that is present in the Mechanica is also found in the third book
of Pappus’ Collection, and the substantial similarities between the extant Arabic text of
the Mechanica and the Greek text of Pappus indicates that the Mechanica, rather than
the Belopoeica was the source used by Pappus.” However, the differences between these

two versions are in wording rather than the actual method used. The solution provided

in the Belopoeica is as follows:

Qs 3¢ det, dvo dobewowv evlewwv, dvo uéoas ava Adyov Aafeiv, é&ijs
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70 ABT'A mapaAN\dypappov. kai émelebyOwoav ai AT, BA. kat
exPefAolwoar at AT, AA kai mapakeiolw mapa 70 B onuetov
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v AB, BI' edfeidv at péoar ava A\oyov etov at AZ, TH kat mpwytys

PKnorr 1989, pp- 11-13 & Heiberg 1913, 59 n.1
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ovons 7ijs AB, devrépa pev éotar ) AZ, tpity de  TH, Terapn de
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ton éotv ) AE ) EA kat duvjkrac ) EZ, 76 dpa vmo AZA pera Ttod
<amo> AE loov éotwv 7 amo 1ot EZ. dwa 7a avra 8 kat 76 vmo
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dpa AB, BI" 8%0 péoar dva Adyov elow ai AZ, TH.”

An almost identical method of calculating the two mean proportionals appears in
Philon’s Belopoeica, which I will not reproduce here as it adds little to the solution we
have already seen from Heron." Beyond these three works we find mean proportion-
als being mentioned in passing by Vitruvius in the tenth book of his De Architectura,
where, rather than providing the means for the reader to calculate the required values,

he instead provides tables of values derived from these calculations. What is really no-

“*Hero. Bel. 33-34, Marsden’s translation of the passage reads: We shall now explain how you must find
the two mean proportionals between two straight lines. Set two given straight lines AB and BT at right
angles. It is required to find the two mean proportionals between these. Complete the rectangle ABT'A.
Join AT, BA; extend AT, AA. Lay a ruler through point B, crossing these extensions, and move the ruler
around point B undil lines joining E to the points of intersection are equal to each other. Suppose the
ruler has asssumed the position represented by the straight line ZBH. The other straight lines are EZ,
EH. I affirm that the two mean proportionals (of AB, BI') are AZ, I'H. If AB is first, second will be AZ,
third I'H, fourth BT". Since AE equals EA and EZ has been drawn, the product of AZ times ZA plus the
square on AE equals the square on EZ. Similarly, the product of AH times HI" with the square on T'E
equals the square on EH. And AE is equal to EI', EZ to EH. Therefore, AZ times ZA will equal AH times
HI'. AsHA isto AZ, so is AZ to HI". But HA is to AZ as AB to AZ, ZA to I'H and HT to I'B;therefore,
BA will be to AZ as HI' to I'B; therefore, the two mean proportionals of AB and BT are AZ and I'H.
Marsden 1971, pp. 41-43

See T. Heath 1921, pp. 262-4 for an overview and comparison of Philon, Heron and Apollonius’
solutions.
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table about this particular method of calculating the two mean proportionals is that it
is simple to effect using just a compass and a straight edge, though there is something of
a trade-off in the lack of accuracy, as the fact that it involves some estimation precludes
it from being considered a mathematical proof.

We might contrast this with the other approaches that have been taken to calculat-
ing a solution to the problem. Archytas’ method, ostensibly criticised by Plato for its
mechanical nature (see chapter 3) is far more difficult to utilise in any practical context.
This method involves finding the intersection, in three dimensional space, of the sur-
faces of a right cone, a cylinder and a torus with an inner product of zero,"” something
that was not easily or quickly done. This was only one of a number of proposed solu-
tions to this problem, though the only other that had potentially the same ease of use
as that found in the mechanical texts is one attributed to Plato by Eutocius which uses
a tool, similar to a steel square except with an additional adjustable arm forming a U
shape, to generate the mean proportionals for a given shape.16

Why then is this particular mathematical problem included in such a significant
number of the extant sources on mechanics? It is easy to appreciate how the ability to
increase and decrease the sized of a solid in a fixed ratio is useful, but the reason that
this was of such singular importance for the field of mechanics is not as immediately
obvious to the modern audience. Philon recounts the reason near the beginning of the

Belopoieca:

€mel pap TAOV apxalwy Twes NUPLOKOV OTOLXELOV VTTAPXOV KAl APXTV
Kal WETPOV TTS TV OPYAVWY KATAOKEVTS TNV TOD TP1LATOS OLAUET POV

TavTyv O €der un amo TUXMS unde ey Aaufaveclal, pedddw Oé

“See T. Heath 1921, pp. 246-247 and Huffman 200s, pp. 349-360
'*See Knorr 1986, pp. 58-60
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The point at which it was discovered that the size of the hole (76 7pfjua) in which
the spring of the torsion engine was mounted was the determining factor in the efficacy
of these pieces of artillery is not known, but this became one of the key principles of
artillery construction. For example, it was known that a stone thrower with holes with
a diameter of eleven dactyls could effectively throw a missile weighing ten minae.'® The
discovery of these guiding principles of artillery construction is stated by Philon and
Heron as having occurred through experimentation. Given that the size of this compo-
nent is the determining factor in the success of one of these machines, this was the part
by which the rest of the machine was scaled. This allowed for a process of experimental
design, where scale models of artillery could be built and tested, and those designs which
were the most successful could then be scaled up to full size. By first scaling up the size
of the hole for the torsion engine, using the theorem of the two mean proportionals,
the rest of the machine could be scaled up in the same proportions as this component.

Given that we have already seen the importance that artillery construction had in
the field of ancient mechanics, it is not at all surprising that this particular theorem
that is so important for the effective design of artillery is included in these mechanical
texts. That all three texts mentioned, that is, Philon’s Belopoeica, Philon’s Belopoeica
and Pappus’ Synagoge, all describe the same method of determining the two mean pro-
portionals is, I think, easily explicable. The simplicity of this particular technique makes
it a very practical solution for the practising ancient mechanician, given that it allows a

suitably accurate value to be calculated from real world measurements without much

Philo Bel. 50.14-17
"*Philo Bel. s1 The mina was a measure of weight varying between around 430g and 654g, see
Pauly Mina
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hassle. This in particular would have been the defining factor in the codification of this
method in works on mechanics. The practical application of this particular theory was
far more important than mathematical correctness of the results, as the resulting mea-
surements would certainly be good enough for this purpose, and could be quickly and

easily calculated there and then.



7 The Simple Machines

The simple machines are a collection of mechanical devices that, on their most basic
level, change the direction, or the magnitude of a force applied to them. The nature of
the simple machines is ostensibly such that their working cannot be broken down into
simpler machines, they serve as usable devices in their own right, but also as a series of
building blocks from which other more complex machines can be created.’

The simple machines are first introduced as a conceptual collection in Heron’s Me-
chanica. While they appear individually in the Pseudo-Aristotelean Mechanica, they are
primarily utilised in that text as examples of the application of the law of the lever to ex-
plain other mechanical devices. The majority of the second book of Heron’s Mechanica
is concerned with the five simple machines, beginning with descriptions of each of the
machines and the basics of their construction, before investigating their theoretical un-
derpinnings more fully, dealing with both issues arising from each of the five machines,
and undertaking analysis of their working using the Archimedean statical model. They

are introduced in the following passage:

[Tévre Tolvvv ovody duvduewr 8 wv 0 dobev Bdpos 17 dobelon Bia
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"For an elegant and straightforward description of the simple machines see Asimov 1966, p. 83, which
is far better than those found in mechanical textbooks.
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The concept being expressed in this passage is a significant one, that these five ma-
chines are all governed by the same principles and share the same basic nature. Although
not a step away from the Aristotelean position that all these devices could potentially
be explained by means of the lever, it does represent a classification of machines that
distils their working down to their base principles. The significance of this was stated
by Reuleaux: ‘In the history of machine-development the simple machines formed the
first experiment at a scientific arrangement of existing material; the same train of ideas
which governed its phenomena as a whole repeated itself upon a smaller scale in the
early attempts at the scientific explanation of what had been empirically determined.”

The idea that the five simple machines represent the reduction of mechanisms to
their most elemental components was one that was seized upon during the renaissance,
and became the basis of much later work on mechanics. The inclined plane, which
will be discussed at length in the following chapter, is not considered a simple machine
itself in the ancient texts, but was subsequently included among the simple machines

by later scholars. This remained the fundamental means of mechanistic analysis until

*This fragment of the Greek text is found in Pappus 1116.7-15, it can however, be considered to be
very close to Hero. Mech. 2.1 as it closely echoes the extant Arabic translation of the text. Drachmann’s
translation of the Arabic reads ‘Since the powers by which a given burden is moved by a given power are
five, we must of necessity present their form and their theory and their names, because these powers are
all related to the same natural principle, though they are very different in form; and as for their names
they are as follows: the axle going through a wheel (the windlass), the lever, the pulley, the wedge, the
screw.” Drachmann 1963b, p. so

*Reuleaux 1876, p. 282
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the seminal work of Franz Reuleaux in the late nineteenth century in developing the
field of kinematics.”

We must also consider what purpose the listing and categorisation of the simple
machines served; Heron is concerned with combining them into more complex mech-
anisms that would serve a useful purpose in lifting weights. What is notable about the
presentation of the five simple machines in this text is that there is not an assessment of
the relative merits or uses of these machines with regards to the situations in which they
are useful or applicable. It does seem however that these five devices are included here
can easily be appreciated as being machines, but also are not reductions of the concept
to such a point that they do not serve a practical purpose.

I will proceed through some of these simple machines, examining the descriptions
of the devices found in the extant Greek text, and the theoretical underpinnings de-
scribed in the Arabic text. I will not examine the lever as it appears in Heron, because
any exploration of this device can add little to what we have already seen in the earlier

chapters discussing Aristotelean and Archimedean mechanics.

7.1 The Wheel and Axle

The wheel and axle, also known as the windlass when listed with the other simple ma-
chines, is the first of the machines mentioned in Herons list. Before proceeding to the
discussion of the use of the wheel and axle, Heron begins with the construction of the
machine, recounting a generic method of construction and describing the general form

of the wheel and axle assembly.

*Reuleaux sees the three important simple machines as being the lever, the inclined plane and the
screw, which he categorises as being representative of three lower-pair kinematic linkages (R-type (revo-
lute), P-type (prismatic) and S-type (spherical) respectively), with the pulley representative of a higher
pair linkage (R, T').
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The use of the wheel and axle is obviously presented with practical applications in
mind, and the mention of the purpose of the machine as being ueydia Bapn rkweiv
e\dooovt Siq, is an obvious indicator of this. It is notable, as we will see, that Heron
avoids making any mention of specific uses of the machines, or any assessment of the
relative advantages and disadvantages of the five machines for the purpose of lifting
weights, for which they are obviously intended.

There is not a distinct theoretical explanation of the working of the wheel and axle
in chapters 7-19 of the Arabic text, as these begin, naturally enough, with the theory
of the lever. There is however discussion of the relationship between the wheel and
axle sizes in chapter 22, which discusses the use of a series of wheels and axles to effect
a transmission. Although the principles discussed here also deal with a gear chain, the
nature of the wheel and axle assembly is such that it is always going to deal with the ratio
between the point at which the force is being applied and the point at which the force
is being expressed. The general conception of the wheel and axle is one that seems to be

subsumed in Heron’s Mechanica into this more general idea surrounding gear trains,

*Hero Mech. 2.1
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that is utilised to great effect in the barulkos.

7.2 The Wedge

Of all the mechanical devices explored in ancient mechanical texts, the wedge is the ma-
chine which has been manufactured for the longest period of time, and thus the earliest
machine for which we have evidence. Initially utilised in the form of stone choppers
and biface tools from around 1.9 million years ago®, the wedge is the machine at work
in all bladed cutting and splitting tools. The study of these common tools does not
seemed to have formed a significant portion of the work on mechanics in the ancient
world, but analysis of the wedge in various forms does appear in a few of the extant
mechanical texts.

As discussed about, the wedge (0 o¢mv) was included by Heron of Alexandria in
his list of the five simple machines.” The wedge is not however strictly irreducible, as
it is a compound machine consisting of two inclined planes.® The wedge is generally
triangular in cross-section, with two the faces functioning as inclined planes and a third
as the point of application of force. Force applied to to the wedge will be transformed
into forces perpendicular to the angle of the two inclined planes. For example, in the
case of a splitting wedge, a vertical force applied to the wedge will be transformed into
lateral force, splitting the wood. Besides cutting and splitting, the wedge is also used to
lift weights or hold objects in place.

The wedge forms part of the investigation carried out by the author of the Aristote-
lean Mechanica, where is is analysed using the law of the lever established earlier in the

text:

°See Leakey 1971, p. 258 for date, 262-75 for tools.
7Pappus m6, Hero. Mech. 2.1
*Asimov 1966, p. 88
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The author continues to adhere to the analytical model that is developed in the text,
despite the difficulty in using the lever to explain the forces present in the wedge. The
problem in attempting to understand the working of the wedge by means of the lever is
that in the conception of the machine that the author puts forward, the two sides of the
wedge which are imagined as functioning in the same way as levers cannot move, and
cannot be conceived of as moving. This may seem like a minor point, but I don’t think
that it is merely a failure to understand the nature of the model. The triangular and
immutable shape of the wedge is such that the distance between two points on the lines
AB and BI' will not change as force is applied to the wedge. Attempts to understand the
wedge by means of the lever fail as it is not a comparison of like with like. In modern
terms, thatis, when considered as kinematic pairs, the wedge is an example of a prismatic

joint, as is the inclined plane, and the lever is an example of a revolute palir.10 Although

® Arist. Mech. 853b20-31
"“Hartenberg and Denavit 1964, pp. 33-34
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both pairs operate with a single degree of freedom, they embody two fundamentally
different kinds of movement.*!

The introduction to the wedge that Heron gives as part of his list of five simple
machines does not shed much light on his understanding of the machine. It outlines the
main applications of the wedge, focusing upon its use in quarrying blocks of stone."”
He emphasises that the characteristic that makes the wedge useful for this purpose is
that force does not need to be constantly applied to the machine for it to exert force.”
Heron displays understanding of the relationship between the angle of the wedge and
the mechanical advantage of the wedge, though this is expressed in terms of the force
required to operate the wedge rather than force exerted by the wedge. ™

As with the other simple machines that Heron lists in his Mechanica, the examina-
tion of the theory of the wedge, that is, exploration of the cause of the mechanical effect

seen in the device," takes place separately, and is extant only in Arabic.

As for the wedge, the blow must move it during a given time, for there
can be no movement without time, and this blow works by a mere touch,
which does not stay with the wedge, not even [for] the shortest time. And
it is evident to us from this that the wedge moves on after the blow has
stopped. And we learn this also in another way: during a certain time

after the blow there comes from the wedge noises and splinters from the

Tt is worth noting that although the law of the lever may be considered the model for calculations of
the mechanical advantage of a machine, the comparison discussed here is not the same as this. Mechanical
advantage represents a quantification of the effect of the machine, rather than a description of the mode
of operation.

YHero.Mech. 2.4

BGreek

14 o 5 e ~ 5 > > -
Sow & av 1) 7ol opnros ywvia ENdoowY YvTaL, TOOOUT® EVXEPEOTEPOV EVEPYEL, TOUTEOTV
O éldooovos TANYTS

15¢¢ __7 ’ > < s/ v e s e 7 5 A ’ ’ ~ ~ ’
Tis 8¢ éoTtw 1) airla, 8 N O ékdoTns avTAV peydha Bdpn kwelTar pikpd TavTdmact

duvdpuer...” Hero. Mech. 2.7
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splitting by its edge.16

Heron goes on to compare the wedge to an arrow flung by a bow, or a stone thrown
by hand, in that the duration of the initial impulse is short, but the effect of the impulse
continues for some time after it occurs. This analogy is correct, as Drachmann points
out,” but the rationale for this conclusion betrays that Heron has incorrectly inter-
preted the behaviour of the wedge that he has observed. The noises and splinters he
describes as coming from the wedge after the initial impulse are not evidence of con-
tinued movement of the wedge (in the direction of the applied force), but rather the
exertion of the force that has been transformed by the wedge.

Heron moves from this statement to attempt a geometrical demonstration of the
relationship between the force applied to the wedge, the distance that the wedge will be

moved by this force, and the angle of the wedge.

Let us imagine a wedge whose edge is at the sign A, and let its head be the
line DM. And let the blow that moves it be BG, and let its distance be AD.
And let it be possible to move by a slight blow, and let us take away from
the blow BG a blow that is the blow BH, and this is less than all known
blows. Then I say that the blow BH by itself will drive in a certain part
of the wedge. The proof this is that the blow BG moves the distance AD,
and HG moves a distance less than AD, let it move the distance AZ, and
then, if the blow BH is added, the distance will be AD, which is moved by
the blow BG. And thus the blow BH by itself moves the distance DZ.

...four wedges, whose edges are at the point A, and their heads are the lines

MF, FQ, QR, RD, and each of them is moved by a blow equal to the blow

*Drachmann 1963b, p. 72
"Drachmann 1963b, p. 72
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BH a distance equal to the line AD, and it is the same if we say that the
blow BH drives the whole wedge the distance DZ...
...the smaller is the angle of the wedge, the further will the wedge penetrate

by a smaller power than the power that drives in the whole Wedge.18

Heron goes on at some length establishing the Br M
working of the theory, and the above represents Hf F N
only about a quarter of this chapter. Heismostly H| Q S
establishing a set of conditions whereby the rela- L &
tionship between the force applied to the wedge, v T ——
G-D ~Z T

the angle of the wedge, and the distance the wedge
will be moved by this blow is easily quantifiable.
This chapter functions as a demonstration of the Draés
relationship rather than offering a means of calculating the values that could be derived
from the relationship. A significant constraint upon investigation of these issues for
an ancient author is that there is an absence of a defined concept of force, and no real
means of giving a value to the force that is being applied. Heron’s geometrical proof
functions within these constraints by representing the value of the force as a whole that
has a direct and equal relationship with the other aspects under consideration in the
wedge.

While the considerations of his working, namely the distance the wedge is driven
by a given force, are different from what we would expect in modern problems related
to the wedge, the theory that he espouses is correct. Heron demonstrates an under-

standing that there is a proportional relationship between the angle of the wedge and

the force required to move the wedge, or, in modern terms, a proportional relationship

**Drachmann 1963b, pp. 72-3

Figure 7.1: The Wedge - Diagram illustrating the
theory of the wedge outlined in 2.15, modified from
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between the angle of the wedge and its mechanical advantage.

There does not seem to me to be a situation where the understanding of this par-
ticular working of the wedge would be anything other than an intellectual concern. I
do not believe that there would have been a situation where the architect of a project
would be called upon to calculate the exact size of wedge needed for a task. The par-
ticular size and shape of a wedge used would be based on experience, rather than any
rational approach utilising the mathematical techniques found in these texts. As much
as there are issues with calculations involving the wedge, it is this lack of necessity that
prevents extrapolation of methods of deriving values from the theories found in the
Aristotelean Mechanica and Heron’s Mechanica. These texts present reasons for the

working of the wedge rather than methods to calculate real-world examples.



8 The Inclined Plane

It may appear on first inspection that the inclined plane is a concept so basic and in-
tuitively understood that it does not require any explanation. It seems obvious to us
that the longer, shallower route up a hill will be easier to climb than the shorter, steeper
route. Conceptually the inclined plane would appear to be a degree simpler again than
other simple machines, even although analysis would reveal that it is performing the
same basic function. It is the realisation that the inclined plane constitutes a machine,
and the appearance of analysis of the inclined plane, that perhaps most succinctly demon-
strates the arrival of the mathematisation of the mechanics and the deepening under-
standing of the field.

The most fundamental definition of the inclined plane is 4 plane which lies at an
angle relative ro the horizontal. That s, a plane at an angle greater than 0° and less than
90° above the horizontal, with a body on a plane at 0° being at rest, and a body upon a
plane at 90° being in free fall. Between these two extremes the inclined plane will fulfil
the basic function of a machine by converting vertical force to horizontal force, and vice
versa. The physical implementation of this machine is typically a ramp between higher
and lower levels or a gradient cut into an elevation to allow for the raising and lowering
of loads.

There is no mention of the inclined plane in the Aristotelean Mechanica, nor is it a

77
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topic that Archimedes devotes any time to analysis of. The inclined plane makes its first
appearance in Heron’s Mechanica, where its inclusion is characterised by Drachmann
as representing a ‘theory of mechanics in general’.! While this description is perhaps
a little more prescriptive than is warranted, these chapters do constitute an approach
to the inclined plane that is more expansive than one that deals solely with the use of
the inclined plane as a simple machine. The inclined plane is really a specific subset
of circumstances that can be subsumed in more general considerations of planes and
forces, and, in ancient terms, the moving of weights.

Heron begins exploring the issue by attempting to describe the ‘force’ or ‘power’2

required to move a weight placed upon a level plane.

“So let us explain that burdens placed in the way described are moved by a
power smaller than any known power, and we shall explain why this is not
evidentin practice. Let us imagine a burden lying flat, and let it be regular,
smooth and let its parts be coherent with each other. And let the surface
on which the burden lies be able to be inclined to both sides, I mean to the
right and the left. And let it be inclined first towards the right. Then it is
evident to us that the supposed burden will incline towards the right side,
because the nature of the burdens is to move downwards, if nothing holds
them and hinders them from movement; and again if the inclined side is
lifted to a horizontal position and comes into equilibrium, the burden will
come to rest in this position. ... And the burden that s ready to go to every

side, how can it fail to need to move it a very small power of the size of

"Drachmann 1963b, p. 46

*As these chapters are extant only in Arabic, these are the translations of the Mechanica found in
Cohen and Drabkin and Drachmann, which should not be considered to directly reflect either the Greek
term, nor to correspond exactly with a modern conception of ‘force’.
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the power that will incline it? And so the burden in moved by any small

power.”?

The plane thus conceptualised may constitute the earliest expression of the idea that
the force required to move a given weight upon a horizontal plane is minimal. I would
specifically avoid any interpretation of this passage as demonstrating a conception of the
idea of a ‘frictionless plane’, as we would expect in modern conceptual models. Russo,
through misrepresentation of this quote and explicatory comment, would have us be-
lieve that this statement of Heron’s represents an appreciable understanding of friction
which would contribute to a heretofore unknown ancient understanding of inertia.*
Heron’s discussion of the problem is rooted in empiricism; while setting out the pa-
rameters of his hypothetical plane in the passage above, his conception of the circum-
stances is obviously rooted in an idealised set of those circumstances that would reduce
friction in reality. If his conception was of a frictionless plane, or perhaps if he had fully
understood the implications of a frictionless plane, then he would have concluded that
the inclination of the plane at any angle greater 0° would cause the weight to move.” I
think that it is safe to say, despite the problems with the transmission of this text, that
Heron does not here quite make the leap to a full rationalisation of the problem, in-
deed, it is not until an early work of Galileo, the De moru, that we find a frictionless

plane as the basis for a mathematical approach to the inclined plane.6

*Drachmann 1963b, p. 46 I have preferred this translation to the one found in Cohen and Drabkin
1948, as it is directly from the Arabic, rather than adapted from the German translation of Nix and W.
Schmidt 1976.

*Russo 2004, p. 289 and also 352, where he quotes this statement as, “We demonstrate that a weight
in this situation [that is, on a horizontal, frictionless plane] can be moved by a force less than any given
force.” In no other translation from the Arabic is this a complete sentence, nor do we find an editorial
comment that the environment is ‘frictionless’ cf. Nix and W. Schmidt 1976, p. 54, Cohen and Drabkin
1948, p. 197 & Drachmann 1963b, p. 46.

*See Cohen and Drabkin 1948, 198 n.1 for further explanation of Heron’s model.

°Drake 1973, p. 293, the passage he is referencing reads: ‘Quge omnia si ita disposita fuerint, quod-
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In the following chapter Heron goes on to expand further upon the role that fric-
tion plays in maintaining a weight on the plane in position. He uses water as an example
of a substance that is apparently not affected by friction as ‘its parts are not strongly co-
hesive but are easily separable.”” He describes the surfaces of solids as being like ‘teeth’
which mesh with one another and require a great power to move over one another. He
once again demonstrates his interest in the practical solutions to the problem of fric-
tion by describing a variety of methods that are used to reduce its effects. It is, however,
obvious that the presence, or absence, of friction does not play a part in any analytical
model created by Heron for dealing with the problem of the inclined plane.

Heron is again specifically concerned with the force required to move the weight
on the inclined plane rather than other associated problems.8 This is of course a statical
problem, and Heron approaches it as such, first of all establishing the force required to
raise a weight vertically. This is done by imagining two equal weights suspended upon
either end of a rope which has been passed over a pulley. Heron states that they will
remain in a state of equilibrium, or rather, specifically that neither of the weights will
‘overcome’ the other, nor will the pulley ‘incline to either side’.” This state will change
if one of the two weights is added to, causing the other weight to be drawn upwards.
Heron presents this as being proof of the idea that a weight requires a power equal to
it to raise it above its current position.

Having reiterated this conceptual cornerstone of the field of statics, Heron then

goes on to examine the case of a cylinder on the inclined plane as a proof of the afore-

cunque mobile super planum horizonti aequidistans a minima vi movebitur, imo et a vi minori quam
quaevis alia vis.” Galilei 1890, p. 299

’Cohen and Drabkin 1948, p. 198

*Such as either the mechanical advantage of the plane or the motion of a body down a inclined plane.
The latter famously being the central point of investigation in the writings of Galileo.

’Drachmann 1963b, p. 47
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mentioned statement on the required power to raise a weight:

So that our explanation may be proved to be true, we will explain it for
a given cylinder. Because the cylinder does not touch the ground with a
great part of itself, it is its nature to roll downwards. Now let us imagine
a plane going through the line that touches the surface and at right angles
to that surface, and it is evident to us that the plane will pass through the
axis of the cylinder and divide it into two halves, because if there is a circle
and a line touches it and a line is drawn from the point of touch at right
angles, then this line will go through the centre of the circle; and we will
also draw through this line, I mean the line on the cylinder, another plane
at right angles to the horizon, and this will not be the plane first drawn,
and it will divide the cylinder into two unequal parts, of which the smaller
will be towards the upper part, and the greater towards the lower part,
and the greater will overcome the smaller part since it is greater than the
other, and the cylinder will roll. But if we imagine on the other side of the
intersecting plane that is at right angles to the horizon that there is taken
away from the greater part as much as its excess over the smaller part, then
the two parts will be in equilibrium, and the whole burden will be at rest
on the line that touches the ground and it will not incline to either side,
I mean neither upwards nor downwards. So we need a power equivalent
to this to withstand it, and if a small increase is added to this power, it will

overcome the burden.™®

This specifically geometrical demonstration of the theory represents an almost com-

"°Cohen and Drabkin 1948, p. 48
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pletely mathematical approach to the issue. It is divorced from the actual business of
calculating the force required to maintain a given body at rest upon a given plane, and
thus the force required to raise the body to a higher point on the plane. This demonstra-
tion relies upon deriving a lenticular form from the portion of the circular cross section
of the cylinder that lies directly above the point of intersection of the circle and the
plane (See fig.8.1). The idea being that this lenticular form represents the portion of the
cylinder that could considered to be in a state of equilibrium resting upon this point,
and so can be discounted from any consideration of the force required to maintain the
body at rest. The force required to maintain the position of the cylinder is, therefore,
derived from the remaining area of the circular cross section once the lenticular form
has been subtracted.™

While we find later in Heron’s Mechanica the

first mention of the simple machines as a concep-

tual grouping, he deals with it as he would a cylin-
der upon a horizontal plane. Thatis, he only deals
with the vertical force acting upon the weight,

rather than the horizontal force also.

The other extant work which deals with the Figure 8.1: The Inclined Plane - Heron’s geometrical

demonstration from Book 1.23 of the Mechanica.

inclined plane is Book 8 of Pappus’ Collection,
where it is cited in the introduction as one of the most important mechanical theo-
rems."” Pappus proceeds from a fundamentally different premise than Heron, in that

his initial definition of the problem is that Bapovs do0évros vmro dobelons ayouévov

"This area can be found via the formula A = 7r® — r*(6 - sinf) with area 4, radius », and central angle 6.
For a complete formulation of how to derive the required force in modern terms from Heron’s theory see
Cohen and Drabkin 1948, 200 n.1, though this is an explicatory extrapolation from the basis of Heron’s
theory rather than reflecting the content of the text.

“Pappus 1028, cross-reference
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Suvduews év T mapa Tov opillovra émmédw..."” Thatis, in direct contrast to Heron,
he assumes that the force required to move a body on a plane is directly proportional
to the weight of the body. This conception of the issue is not an innovation on Pap-
pus’ part. Heron acknowledged this viewpoint in introducing his theory of the inclined
plane, saying “There are those that think that burdens lying flat are moved by an equal
power [only], wherein they hold wrong opinions.”* Pappus is therefore making an ap-
parently retrograde step in using this as the basis of his analysis of the inclined plane,
and has actively decided to adopt this approach rather than Heron’s. Pappus divides
his discussion of the inclined plane into two components, a mathematical demonstra-
tion of the issue, then a demonstration of the application of the theory to a specific
example. Cuomo sees the mechanics of Pappus as operating ‘within a mathemati-
cal universe of reference’ whereas Heron’s mechanics is ‘seen against a physical back-
ground’.”” Although Cuomo is not strictly setting the two authors up as having con-
trasting paradigms for analysis, it is important to recognise that they are not in oppo-
sition. Both are attempting a rationalisation of the problem, although both are taking
slightly different approaches. When Heron attempts to remove friction as far as pos-
sible from his consideration of the problem, it involves a description that calls upon
experiential knowledge to fully explain the details of the scenario. Pappus instead sub-
sumes friction into a more generalised idea of a ‘given force’, which does not play a
specific part in his model, but is allowed for in a general formula for the inclined plane
that can be applied to real-world scenarios.

Pappus’ initial mathematical exploration of the inclined plane not only begins from

“*Papp. 1054 ‘A given force is needed to draw a given weight along a horizontal plane.” Cohen and
Drabkin 1948, p. 194

“Drachmann 1963b, p. 46

Cuomo 2000, p- 116
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a different basis than Heron, but also proceeds to use a very different, but still classically

statical, method to determine the force required to raise the weight.
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The approach adopted here by Pappus to derive the force required to move a given
weight, where that weight is movable upon a horizontal plane with a given force, up

a given inclined plane, is to construct a geometrical balance. This balance can be used

"“Papp. 1054-1056 ‘It is required to the find the force needed to draw the weight up another plane
inclined at a given angle to the horizontal plane. Let the horizontal plane pass through MN, and let the
plane inclined to the horizontal at the given angle, KMN, pass through MK. Let A be the weight and C
the force required to move it over the horizontal plane. Consider a sphere with center E and weight equal
to that of A. Place this sphere on the inclined plane passing through M and K. The sphere will be tangent
to the plane at L, as is shown in the third theorem of the Spherics. EL will therefore be perpendicular to
the plane (for this is also shown in the Spherics, Theorem IV), and also to KM. Pass a plane through KM
and EL cutting the sphere in circle LHX. Draw ET through center E parallel to MN, and draw LZ, from
L, perpendicular to ET. Now since the angle ETL is given (for it is equal to the given angle KMN), the
angle ELZ is also given, for the angle ELZ is equal to the angle ETL (since triangles ETL and ELZ are
similar). Therefore the triangle ELZ is given in form. Hence the ratio EL:EZ, that is EH:EZ, is known, as
is also(EH - EZ):EZ, that is ZH:EZ. Let weight A be to weight B and force C to force D, as HZ is to ZE.
Now Cis the force required to move A. Therefore the force required to move B on the same plane will
be D. Since weight A : weight B is equal to HZ:ZE it follows that if E and H are the centers of gravity of
weights A and B, respectively, the weights will be in equilibrium if balanced at point Z. But weight A has
its center of gravity at E (for the sphere represents A). Therefore, if weight B is placed so that its center is
at H, it will so balance the sphere that the latter will not move down because of the slope of the plane,
but will remain unmoved, as if it were on the horizontal plane. But weight A required force C to move it
in the horizontal plane. Therefore, to be moved up the inclined plane it will require a force which is the
sum of the forces C and D, where D is the force required to move the weight B in the horizontal plane.
Force D, moreover, is given.” Cohen and Drabkin 1948, pp. 194-6
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with the law of the lever and the given values to calculate a motive force that is propor-
tional to the angle of inclination of the plane. The fulcrum of the conceptual balance is
above the point intersection of the sphere and the plane, and the beam of this balance
extends horizontally from the centre of gravity of the sphere, representing the weight
to be moved, to the point of intersection with the edge of the sphere, on the opposite
side of the fulcrum. Since the length of the balance beam on either side of the fulcrum
can be found, and the beam is considered to be in a state of equilibrium, then the ra-
tio of these two lengths will be the same as the ratio of the two weights, and thus the
ratio of the forces required to move the weights. Therefore, the motive force that is
derived from this calculation is equal to the sum of the force required to maintain the
position of the weight on the inclined plane and the force required to move the weight
upon a horizontal plane. The problem has been stated, in terms that are understood,
as a statical problem. Pappus has created a construct whereby force can be calculated
by means of a known methodology rather than developing a new one that explores the
problem as one that is distinct from other mechanical problems. However, Pappus’
concern is not purely theoretical, and he goes on to provide an example (mapadelyua)

of an application of this theory in what would seem to be a real-world scenario.
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"Papp. 1056-1058 “The geometrical solution of the problem has been indicated. However, to set forth
the method and proof in a typical case, let weight A be, say, 200 talents, and let the moving force, C,
required to draw the weight in a horizontal plane be equal to the force of 40 men. Let the angle KMN
(that is, the angle ETL), be % of a right angle. The angle ZLT is therefore % of a right angle and, since
the angle ELT is a right angle, the angle ELZ is also % of a right angle. Of the 360 equal parts into which
four right angles are divided the angle ELZ contains 6o. Therefore, if a circle be circumscribed about
the right angled triangle EZL, the arc subtended by chord EZ will contain 120 of the 360 parts of the
circumference, and chord EZ will itself be almost 104/120 of EL, the diameter of that circle. This is clear
from the table of chords in the first book of the Mathematica of Ptolemy. Therefore EL/EZ = EH/EZ =
120/104’ and HZ/ZE = 16/104 = weight A/weight B = force C/force D. But weight A is 200 talents, and
the moving force, C, 40 men. Therefore weight B will be 1300 talents, and moving force, D, 260 men
(for 16:104 = 200:1300 = 40:260). Hence if 40 men are required to move a weight, A, of 200 talents on a
plane parallel to the horizon, it follows that the sum of 40 and 260, that is, 300 men, will be required to
move the same weight up a plane inclined to the horizon at angle KMN, % of a right angle.” Cohen and
Drabkin 1948, p. 196
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This example provides a contrast with the

rather abstract and mathematical approach found

in Heron’s Mechanica. If it were used for the same

purpose it would rely upon finding the area of a

lune to derive the force required to maintain the
q

position of the weight upon the inclined plane.

On the other hand, the method described by Pap-

pus provides a means of calculating the force re-

Figure 8.2: The Inclined Plane - Pappus’
geometrical demonstration from Book 8 of the
Collection.

quired to draw a given weight that is relatively fea-
sible and usable for the sorts of calculations he describes in this demonstration. This is
probably more of a reflection of the concerns of the two authors than anything else.
Heron seems to be specifically exploring this underlying aspect of mechanical theory,
and so it is not necessary for the passage to provide a practical application of the ability
to calculate the force required to hold the weight in place on the slope. Heron is once
again pointing out that he is correcting an error that is prevalant in earlier authors, the
correcting of such an error does not necessarily require a corrected method of applying
the theory. Pappus on the other hand is later in the tradition, and the application of
the theory that he describes may represent the exact tradition that Heron was criticis-
ing. However, if taken from another source in the earlier mechanical tradition, it could

be that its utility won out over the theory expressed.



9 Conclusion

In analysing theoretical mechanics in the preceding chapters an overarching, etic view
of the field has been adopted. I've focused on the four main texts that deal with the ele-
ments of mechanics that we would expect to be considered theoretical in a modern text
dealing with the field. However, there is a danger that when selecting texts in this man-
ner, with the aim of investigating the status of a specific subject in the ancient world,
that the selection will reflect an anachronistic notion of that subject that closely aligns
with our own preconceived conception of the field rather than an emic reading of the
materials. The main concern of this thesis has been to examine whether or not theoret-
ical mechanics exists as a distinct aspect of mechanics in the ancient world, and while
the texts that have been examined in the preceding chapters; the Pseudo-Aristotelean
Mechanica, Archimedes’ De Planorum Aequilibriis, Heron’s Mechanica, and the final
book of Pappus’ Synagoge, have been selected with that aim, it does not follow that
these particular texts are themselves separate and purely theoretical from an ancient
viewpoint.

The commonality of these four texts is their dealings with the elements of mechan-
ics that are, at least to some degree, divorced from the practicalities of the construction
of actual mechanical devices. Heron’s Mechanica is the closest of these texts to actu-

ally describing the construction of devices, and even then, the theoretical elements exist

89
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alongside these practical descriptions.1 All of these texts discuss problems related to me-
chanical advantage to some degree. These texts can be contrasted with the majority of
other ancient texts on mechanics, which deal with descriptions of mechanical devices
and guides to their construction. The question that then arises is; Are these texts deal-
ing with ancient, rather than modern, theoretical mechanics?

To answer this, we must first have some kind of idea about what ancient theoretical
mechanics is. There is perhaps no one strict definition that we could apply to the en-
tire chronological range of the texts that have been examined, but there is not the need
for this kind of analysis. The concept of theory in contrast with practice is one that is
receptive to a range of different practices that are not strictly limited to grand unifying
theories that cover all aspects of a field. While we may wish to accommodate such a
concept to fit with the rhetoric surrounding modern science, we find even there that
theory does not need to be universal to be useful. Modern physics can encompass clas-
sical, quantum and relativistic mechanics, which are all applicable in their own specific
domains. We should not be thinking so much of ‘theoretical mechanics’ in the ancient
world, but rather theory which applies to mechanics in the ancient world.

What has become clear from these texts is that when examining theory in ancient
mechanical texts is that we must be willing to accommodate more than our own rela-
tively narrow definition of theoretical mechanics. The distinction that we find in Pap-
pus between theoretical and practical aspects of mechanics allows for the inclusion of
a number of different fields under the ‘theoretical’ umbrella, that may not seem to im-
mediately belong.

All of these texts discuss problems related to mechanical advantage. The Mechan-

'Although, it is debatable whether or not the description of the barulkos should even be included as
part of the Mechanica: See Drachmann 1963b, p. 22
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ica of the ancient world is not a work that deals with a wide range of mechanical topics,
but one that is fairly narrowly focused on statics, rather than covering any other related
fields that we may expect in a modern work such as dynamics and kinematics. Com-
mon to all these works is the tangibility of the subject matter. While each author is
either expounding a new theoretical basis for a particular mechanical phenomena, or
following one that had previously been described. The mechanical effects that are be-
ing investigated are demonstrable, and so could be observed and all would be familiar
to the reader. That is, there is not extrapolation from the grounds that are established
in these theories, mechanics in the ancient world is a process of explanation rather than
discovery. Mathematics is the mode of explanation being utilised, both due to the light
that the it can shed upon this material, as well as a rhetorical tool that can be used to
convince the audience of the validity of these particular explanations. The real linking
factor between the four texts is not that they explore the basis for mechanical phenom-
ena and the workings of mechanical devices, but rather the utilisation in all of these texts
of an analytical paradigm which involves the application of a mathematical deductive
approach to mechanics.

This is a field of human knowledge that does not exist in isolation. The unifying
factor in all the theoretical aspects of mechanics that have been examined is that they
have their roots in the practical applications which they aid. Ancient mechanics is a
field where theory is driven by application. These authors recognise that they are engag-
ing with a pre-existing tradition where these techniques are applied to these particular
problems.

‘wQa
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