Un1ver51ty
Qf Glasgow

Hamilton, Gregg (2014) Distributed virtual machine migration for cloud
data centre environments. MSc(R) thesis.

http://theses.gla.ac.uk/5077/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Glasgow Theses Service
http://theses.qgla.ac.uk/
theses@gla.ac.uk

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/5077/

DISTRIBUTED VIRTUAL MACHINE

MIGRATION FORCLOUD DATA CENTRE

ENVIRONMENTS

GREGGHAMILTON

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF
Master of Science by Research

SCHOOL OFCOMPUTING SCIENCE

COLLEGE OFSCIENCE AND ENGINEERING
UNIVERSITY OF GLASGOW

MARCH 2014

(© GREGGHAMILTON

Abstract

Virtualisation of computing resources has been an inacngasicommon practice in recent
years, especially in data centre environments. This hasetieh the rise of cloud comput-
ing, where data centre operators can over-subscribe thesiqal servers through the use of
virtual machines in order to maximise the return on invesiinh@r their infrastructure. Sim-
ilarly, the network topologies in cloud data centres are hkavily over-subscribed, with the
links in the core layers of the network being the most ovédasstibed and congested of all,
yet also being the most expensive to upgrade. Thereforatmgpemust find alternative, less
costly ways to recover their initial investment in the netkwog infrastructure.

The unconstrained placement of virtual machines in a dateseand changes in data centre
traffic over time, can cause the expensive core links of thear& to become heavily con-
gested. In this thesis, S-CORE, a distributed, network-logt@ virtual machine migration
scheme is presented that is capable of reducing the ovenalintinication cost of a data
centre network.

An implementation of S-CORE on the Xen hypervisor is preseatad discussed, along
with simulations and a testbed evaluation. The results@ttlaluation show that S-CORE
is capable of operating on a network with traffic comparableeported data centre traffic
characteristics, with minimal impact on the virtual maasrior which it monitors network
traffic and makes migration decisions on behalf of. The satmorh results also show that
S-CORE is capable of efficiently and quickly reducing commaitian across the links at
the core layers of the network.

Acknowledgements

I would like to thank my supervisor, Dr. Dimitrios Pezaras, lhis continual encouragement,
support and guidance throughout my studies. | also thankCblin Perkins, for helping me
gain new insights into my research and acting as my secorstgervisor.

Conducting research can be a lonely experience, so | extertdanks to all those | shared
an office with, those who participated in lively lunchtimeclissions, and those who played
the occasional game of table tennis. In alphabetical orffierion Jouet, Magnus Morton,
Yashar Moshfeghi, Robbie Simpson, Posco Tso, David Whiteg Kyhite.

Table of Contents

1

Introduction 1
1.1 Thesis Statement
1.2 Motivation
1.3 Contributions
1.4 Publications
15 Outline e
Background and Related Work 5
2.1 Data Centre Network Architectures. 5
2.2 Data Centre Traffic Characteristics 7
2.3 Traffic EngineeringforDataCentres 9
2.4 Virtual Machine Migration o 11
2.4.1 Models of Virtual Machine Migration 12
2.5 System Control Using Virtual Machine Migration 13
2.6 Network Control Using Virtual Machine Migration 14
2.7 DISCUSSION o
The S-CORE Algorithm 16
3.1 A \Virtual Machine Migration Algorithm 16
Implementation of a Distributed Virutal Machine Migration A Igorithm 19
41 TokenPolicies. e
4.2 ImplementationSetup 23
4.2.1 Implementationin VM vs Hypervisor 23

4.2.2 FlowMonitoring e 24
42.3 TokenPassing 25
424 XenWrapper e e e 26
425 MigrationDecision L Lo 27
5 Evaluation 30
51 Simulations 30
5.1.1 TrafficGeneration 31
5.1.2 GlobalOptimalValues 31
5.1.3 SimulationResults oo 32
514 VMstability 34
5.2 Testbed Evaluation 4 3
521 TestbedSetup 34
5.2.2 Module Evaluation 36
5.2.3 NetworklImpact 39
5.2.4 Impact of Network Load on Migration 40
5.3 DISCUSSION 42
6 Conclusions 45
6.1 Thesis Statement 45
6.2 Future Work 46
6.2.1 Incorporation of System-Side Metrics 47
6.2.2 Using History to Forecast Future Migration Decisions a7
6.2.3 Implementation in a Lower-Level Programming Languag. . . . 47
6.3 Summary & Conclusions 48
Bibliography 49

List of Tables

3.1 Listof notations for S-CORE. 71

List of Figures

3.1

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

5.10 Virtual machine migration time.

5.11 Downtime under various network load conditions.

A typical network architecture for data centres.

The token message structure.

The S-CORE architecture.

Normalised traffic matrix between top-of-rack switches
Communication cost reduction with data centre flows.
Ratio of communication cost reduction with the distrdalitoken policy. . .
Normalised traffic matrix between top-of-rack switchéier 5 iterations.
Testbed topology.
Flow table memoryusage.

Flow table operation times for up to 1 million unique flows

CPU utilisation when updating flow table at varying pdlintervals.

PDF of migrated bytes per migration.

..5 3

Chapter 1
Introduction

The use of cloud computing has been steadily increasinganteyears for tasks from host-
ing websites to performing business processing tasks. Rdsgesulted in a great change
in the way that data centres are architected and operateddag-to-day basis. With the
costs of setting up and running a data centre requiring & laigal outlay, operators must
ensure that they can recoup the expense and maximise thbeifiore they must update their
infrastructure with another outlay for expensive hardware

Traditional ISP networks are typically sparse and mostlrguovisioned along their back-
bone, as profits for an ISP network come from their ability tovide a desired speed to the
end user. However, as cloud data centre operators turn &miafarily from the computing
resources they can provide to customers, operators anegdadb provide as many servers as
possible to maximise the number of virtual machines (VMsytban host on them. The cost
for interconnecting all these servers within a data cewtigdvide a network with capacity
great enough to allow all-to-all communication can be podively expensive.

Achieving a sensible cost-to-profit ratio from a data cersti@ebalancing act, requiring oper-

ators to make decisions about the initial network infrasttrice to ensure they see a return on
their investment. This often results in the use of Clos faétstyle topologies that are tree-
like architectures with link capacities becoming more araterconstrained and potentially

over-subscribed towards the root of the tree.

Most over-subscribed topologies, such as fat-tree, peosidficient link capacity for VMs
at lower-level links towards the leaf of the tree, such abmwitacks. However, as data centre
traffic operates at short timescales and often has long-temmnedictability, a substantial
amount of traffic could be transmitted across over-subedriietwork links.

Approaches to deal with link over-subscription in cloudedegntre networks often consist of
routing schemes that are non-programmable and pseudosmarad through the migration
of VMs to new locations within a data centre to reduce linkgestion. Routing solutions

1.1. Thesis Statement 2

are often statically configured and do not directly targetpghoblem of reducing congested
links, while migration solutions are often centrally cantied and can be time consuming to
come up with a near optimal solution for a new VM placemenesu.

1.1 Thesis Statement

| assert that a distributed, network-aware VM migratioroalipm exploiting network moni-
toring instrumentation in end-systems can reduce corgyeatiross heavily over-subscribed
links under realistic data centre traffic loads, with miniro@erhead on the data centre in-
frastructure. | will demonstrate this by:

¢ Providing an implementation of a distributed VM migratidgaithm that is capable
of operating within the bounds of existing data centre nebtvaochitectures and traffic.

e Enabling a hypervisor to conduct network monitoring for YHds it hosts, as well as
making migration decisions on behalf of the VMs.

e Defining a mechanism able to identify the location of a ren\k within a data
centre.

e Evaluating the properties of the algorithm and its impletagon over realistic data
centre workloads within simulation and testbed environsieshowing that it can ef-
ficiently reduce network congestion, with minimal operatiboverhead on the infras-
tructure on which it runs.

1.2 Motivation

With the pervasive nature of cloud computing in today’s d&tatres, and the related resource
over-subscription that comes with it, data centre opesatequire new techniques to make
better use of the limited, but expensive, resources theg.Haparticular, they have to ensure
they make the maximum return possible on their investmetftair infrastructure [1].

Studies have concentrated on the efficient placement, tdason and migration of VMSs,
but have typically focused on how to maximise only the sesige resources [2, 3]. How-
ever, server-side metrics do not account for the resultaffi¢ dynamics in an over-subscribed
network, which can negatively impact the performance of momication between VMs [4,
5].

Experiments in Amazon’s EC2 revealed that a marginal 100 mdditional latency resulted
in a 1% drop in sales, while Google’s revenues dropped by 2084ala 500 msec increase in

1.3. Contributions 3

search response time [6]. It is therefore apparent that fongeneeds to be done to improve
the performance of the underlying network by reducing thegestion across it while still
maintaining the efficiency of server resource usage.

Some VM migration works have considered how to improve di/eetwork performance
as the aim of migration schemes [7, 8]. However, such worksancerned with balancing
load across the network, rather than actively removing estign from over-subscribed and
expensive links in the network, and often operate in a cks#h manner. This leaves a
research gap for a distributed VM migration scheme that lis tthactively target the links
most likely to experience congestion in a network, and iiezly remove traffic causing the
congestion to other, less congested and less over-subddrilis.

This thesis presents such a distributed VM migration schameed at reducing not just the
cost to the operator for running the data centre by makingenefficient use of resources,
but also reducing congestion from core links to lower theraveommunication cost in the
network.

1.3 Contributions

The contributions of this work are as follows:

e The implementation of a distributed VM migration schemesviius studies have fo-
cused on centrally-controlled migration algorithms thandt operate on information
local to each VM.

e A hypervisor-based network throughput monitoring modutiat tis able to monitor
flow-level network throughput for individual VMs running ap it. Existing works
typically instrument VMs themselves, or can achieve onlgragate monitoring of
overall network throughput for each VM.

e A scheme to identify the physical location of a VM within awetk topology, in order
to allow for proximity-based weightings in cost calculatso As VMs carry configura-
tion information with them when they migrate, they do notdawy location-specific
information. The scheme for location discovery here presid method of identifying
VM locations, and proximities, without the need to consutkatral placement table.

¢ An evaluation of the performance that the distributed VM raigpn scheme should be
able to achieve, in terms of migration times, and the impadhe systems on which
it runs.

1.4. Publications 4

1.4 Publications

The work in this thesis has been presented in the followirdipation:

¢ “Implementing Scalable, Network-Aware Virtual Machine Mitjoa for Cloud Data
Centers’,
F.P. Tso, G. Hamilton, K. Oikonomou, and D.P. Pezaros,
in IEEE CLOUD 2013, June 2013

1.5 Outline

The remainder of this thesis is structured as follows:

e Chapter 2 presents an overview existing work on data centveonlearchitectures and
their control schemes. There is a discussion of common dsttrecarchitectures and
the control loop mechanisms used to maintain network perdoce.

e Chapter 3 provides a description of the distributed migratigorithm upon which
this work is based.

e Chapter 4 describes a working implementation of the schersedban the algorithm
described in Chapter 3. The individual components requioedhe successful im-
plementation of a distributed migration scheme with antagshypervisor are intro-
duced.

e Chapter 5 details an evaluation of the distributed migragilgorithm in both simula-
tion and testbed environments.

e Chapter 6 summarises the findings and contributions of thi&kwand discusses the
potential for expansion into future work.

Chapter 2
Background and Related Work

This chapter presents a background on data centre archigeciand the properties of the
traffic that operate over them. Control loops for managindpalgerformance within data
centres are then discussed, from routing algorithms toahar systems.

2.1 Data Centre Network Architectures

The backbone of any data centre is its data network. Withadaf ho machine is able to
communicate with any other machine, or the outside world.da& centres are densely
packed with servers, the cost of providing a network betwadeservers is a major initial
outlay for operators [1] in terms of networking equipmerguieed.

To limit the outlay required for putting a network infrastture in place, a compromise often
has to be reached between performance and cost, such asutngeribing the network at its
core links.

Due to the highly interconnected nature of data centregrakscalable mesh architectures
have been designed to provide networks of high capacitygvéht fault tolerance. DCell [9]
is a scalable and fault-tolerant mesh network that movgsaaket routing duties to servers,
and relies upon its own routing protocol. BCube [10] is anofhelt-tolerant mesh network
architecture designed for use in sealed shipping conwiercomponents fail over time, the
network within the shipping container exhibits a gracefeitfprmance degradation. BCube
makes use of commodity switches for packet forwarding, besd’t yet scale above a single
shipping container, making it unsuitable for current daate environments.

While mesh networks can provide scalable performance boasidse networks grow, the
wiring schemes for mesh networks are often complex, whichnsake future maintenance
and fault-finding a non-trivial task. The high redundancylioks in mesh networks that

2.1. Data Centre Network Architectures 6

happens to allow for good fault tolerance also increasesfhastructure setup cost due to
the volume of networking hardware required.

The more commonly used alternative to mesh networks in tkee centre are multi-tiered
tree networks. The root of the tree, which is the core of thevokk, has switches or routers
that provide a path between any two points within a data eefrom the root, the network
branches out to edge, or leaf, interconnects that link iddad servers into the network. In
a multi-rooted tree, there are often two or more tiers ofemiproviding several levels of
aggregation, or locality, within which shorter paths maytdleen, without the need for all
packets to pass through the core of the network. Multi-tiérees are also often multi-rooted
trees, providing redundant paths among any two points iméteork, while still requiring
less wiring and less network hardware than mesh networks.

The most often used architecture in data centres is a slayidtion of a multi-tiered tree,
known as a fat tree, which is based upon a communicationtaothre used to interconnect
processors for parallel computation [11]. Instead of hgwinks of equal capacity within
every layer of the tree, bandwidth capacity is increasethis move away from edges and
get closer to the core, or root, of the tree. Having increasgxhcity as we move towards
the core of the tree can ensure that intra-data centre tth#ftanay have to traverse higher-
level links has enough capacity for flows between many seneeoccur without significant
congestion.

The costs of housing, running and cooling data centres rooesi to rise, while the cost
of commodity hardware, such as consumer-level networkersutnd switches, continues
to drop. Data centre operators have not been blind to thishame adapted multi-rooted
fat tree topologies to make use of cheap, commodity Etheswéthes that can provide
equal or better bandwidth performance than hierarchigadltmies using expensive high-
end switches [12].

A typical configuration for a fat tree network is to provide b3 links to each server, and
1 Gbps links from each top of rack switch to aggregation dveisc Further layers up to the
core then provide links of 10 Gbps, increasing capacityrgdfic which may have to traverse
the core of the network. Amazon is known to use such an aathite [13].

Tree-like networks are typically over-subscribed fromasf 1:2.5 to 1:8 [12], which can

result in serious congestion hotspots in core links. VLZ [ids been developed in order
to achieve uniform traffic distribution and avoid traffic Bpbts by scaling out the network.
Rather than make use of hierarchical trees, VL2 advocatésgthe network out horizon-

tally, providing more interconnects between aggregatéersyand more routes for packets
to traverse. A traffic study in [14] found data centre traffattprns to change quickly and
be highly unpredictable. In order to fully utilise their hr@cture with those findings, they
made use of valiant load balancing, which makes use of threased number of available

2.2. Data Centre Traffic Characteristics 7

paths through the network by having switches randomly fodvs&w flows across symmetric
paths.

While some data centre architecture works attempt to exppod axisting network topol-
ogy designs, PortLand [15] attempts to improve existingrize-style topologies. PortLand
is a forwarding and routing protocol designed to make theaims and management of a
dynamic network, such as a cloud data centre network, whkte May be continually join-
ing and leaving the network, more straightforward. It cetssof a central store of network
configuration information and location discovery, as wallthe ability to migrate a VM
transparently without breaking connectivity to the resthaf hosts within the network. The
transparent VM migration is achieved by forcing switchesnt@lidate routing paths and
update hosts communicating with that VM, and forwardingkess already in transit to the
new location of the migrated VM. PortLand merely adaptstexgsarchitectures to provide
a plug-and-play infrastructure, rather than attemptingigrove performance in any serious
way. This is revealed through the evaluation, which meaktire number of ARP messages
required for communication with the central network mamamgenponent as the number of
hosts grows, rather than evaluating the protocol underivg@pplication traffic loads.

Multi-rooted tree architectures are currently the mosdusehitecture for data centre net-
works but they do have problems with high over-subscriptaiios. While studies such as
VL2 have further adapted multi-rooted tree architectutiesy still do not completely over-
come the over-subscription issue, requiring other, magetad action to be taken.

2.2 Data Centre Traffic Characteristics

Several data centre traffic studies have been produced. sfothe VL2 work, a study
of a 1,500 server cluster was performed over two months [T4E findings of the traffic
study were that 99% of flows were smaller than 100 MB, but witko98f the data being
transferred in flows between 100MB and 1GB. The break at 100 $1&oivn to the file
system storing files in 100 MB-sized chunks. In terms of flols, &average machine has
around 10 concurrent flows for 50% of the time, but will haverenthan 80 concurrent
flows at least 5% of the time, with rarely more than 100 corentrflows. The ratio of traffic
within the data centre to traffic outside the data centrelis terms of traffic predictability,
they take a snapshot of the traffic matrix every 100s, findiag the traffic pattern changes
constantly, with no periodicity to help in predictions ofdue traffic. To summarise, the VL2
study reveals that the majority of flows consist of shortshutraffic, with the majority of
data carried in less than 1% of the flows, and most machinesdraund 10 flows for 50%
of the time, and the traffic changes rapidly and is unprebietay nature.

Other studies reinforce the fact that data centre traffiarsty and unpredictable [16, 17].

2.2. Data Centre Traffic Characteristics 8

Kandula et al. [16] performed a study into the propertiesraffic on a cluster of 1,500
machines runningdlapReducd18]. Their findings on communication patterns show that
the probability of pairs of servers within a rack exchangmagtraffic is 89% and 99.5% for
server pairs in different racks. A server within a rack wilaeither talk to almost all other
servers within a rack, or fewer than 25%, and will either @tk to any server outside the
rack, or talk to 1-10% of them. In terms of actual numberstleelian communication for a
server is two servers within a rack and four servers outsgdeack. In terms of congestion,
86% of links experience congestion lasting over 10 secar$15% experience congestion
lasting over 100 seconds, with 90% of congestion eventstasietween 1 to 2 seconds.
Flow duration is less than 10 seconds for 80% of flows, wit®®df flows lasting for more
than 200 seconds, and most data is transferred in flowsdasino 25 seconds, rather than
in the long-lived flows. Overall, Kandula et al. have revealeat very few machines in the
data centre actually communicate, the traffic changes quiiekly with many short-lived
flows, and even flow inter-arrivals are bursty.

A study of SNMP data from 19 production data centres has aso lbindertaken [17]. The

findings are that, in tree-like topologies, the core linkesthe most heavily loaded, with edge
links (within racks) being the least loaded. The averagé&giasize is around 850 bytes, with
peaks around 40 bytes and 1500 bytes, and 40% of links arednwith the actual set of

links continuously changing. The observation is also méd¢ packets arrive in a bursty
ON/OFF fashion, which is consistent with the general finding other studies revealing
bursty and unpredictable traffic loads [14, 16].

A more in-depth study of traffic properties has been providgd9]. SNMP statistics from
10 data centres were used. The results of the study are timgt alada centres (both private
and university) have a diverse range of applications tréttisign data across the network,
such as LDAP, HTTP, MapReduce and other custom applicatiémsprivate data centres,
the flow inter-arrival times are less than 1 ms for 80% of flowsh 80% of the flows also
smaller than 10KB and 80% also lasting less than 11 secontist{ve majority of bytes in
the top 10% of large flows). Packet sizes are also groupechdreither 200 bytes and 1400
bytes and packet arrivals exhibited ON/OFF behaviour, Wiécore of the network having
the most congested links, 25% of which are congested at amg; S8imilar to the findings
in [17]. With regard to communication patterns, 75% of taififound to be confined within
racks.

The data centre traffic studies discussed in this sectios Bvevealed that the majority
of data centre traffic is composed of short flows lasting orfigvaseconds, with flow inter-
arrival times of less than 1 ms for the majority of flows, andkms with bursty inter-arrival
rates. The core links of the network are the most congesteddtan centres, even although
75% of traffic is kept within racks. All these facts can be swanised to conclude that
data centre traffic changes rapidly and is bursty and ungisale by nature, with highly

2.3. Traffic Engineering for Data Centres 9

congested core links.

2.3 Traffic Engineering for Data Centres

In order to alleviate some of the congestion that can occtlr mghly unpredictable intra-
data centre traffic several control loop schemes have begsede The majority of control
loops available nowadays are for scheduling the routingdifidual flows to avoid, or limit,
congested paths.

Multi-rooted tree architectures provide at least two id=dtpaths of equal cost between
any two points in the network. To take advantage of this rddnoyEqual-Cost Multi-Path
(ECMP)routing [20] was developed. In ECMP, a hash is taken over pddader fields that
identify a flow, and this hash is used by routers to deternfia@ext hop a packet should take.
By splitting a network and using a hash as a key to routingeifiit hashes will be assigned
to different paths, limiting the number of flows sharing alpa®A benefit of the hashing
scheme is that TCP flows will not be disrupted or re-routedrdytineir lifetime. However,
ECMP only splits by flow hashes, and does not take into accberdize of flows. Therefore,
two or more large flows could end up causing congestion ongdespath. Similarly, hashing
collisions can occur, which can result in two large flows sigathe same path.

Valiant Load Balancing (VLB)used in VL2 [14], is a similar scheme to ECMP. However,
rather than computing a hash on a flow, flows are bounced offoraty assigned interme-
diate routers. While the approach may more easily balances flagvit uses pseudo-random
flow assignments rather than hash-based assignmentspitaayymore intuitive than ECMP.
By not targeting the problem of unpredictable traffic, andeherandomising the paths for
flows, link congestion can still occur.

While the works discussed above make unintuitive decisibosiarouting flows in the data
centre, there has been a move towards works that dynammad#ipt to the actual traffic
characteristics.

Hedera[21] is a flow scheduling system designed to provide highdtise bandwidth on
fat tree networks. Built upon PortLand and ECMP, it uses adatheduling to identify
large flows that have been in existence for some length of tifter identifying large flows,

it uses simulated annealing to schedule paths for flows teeaettlose-to-optimal bisec-
tion bandwidth. Their evaluations found that a simple filtsgpproach for assigning large
flows beat ECMP, and their simulated annealing approach lmatt CMP and the first-fit
approach. However, as they did not have access to data ¢taftietraces, they evaluated
their algorithms upon synthetic traffic patterns desigredttess the network, rather than
attempting to generate synthetic traffic patterns usingnted data centre traffic character-
istics.

2.3. Traffic Engineering for Data Centres 10

MicroTE [22] makes use of short-term predictability to schedule fidar data centres.
ECMP and Hedera both achieve 15-20% below the optimal rootirggcanonical tree topol-
ogy, with VL2 being 20% below optimal with real data centraces [22]. While studies
have shown data centre traffic to be bursty and unpredictglperiods of 150 seconds or
more [16, 17], the authors of MicroTE state that 60% of topamikrto top of rack traffic is
predictable on the short timescales of between 1.6 and 2dhds, on average, in cloud data
centres. The cause of this is said to be duringréticestep in MapReduce, when clients
transfer the results of calculations back to a master nodediiferent rack. MicroTE is
implemented using th®penFlow[23] protocol that is based on a centralised controller for
all switches within a network. When a new flow arrives at a switcchecks its flow table
for arule. If no rule exists for that flow, it contacts a singntral OpenFlow controller that
then installs the appropriate rule in a switch. In MicroTEn@rs send their average traffic
matrix to the central OpenFlow controller at a periodicit2seconds, where aggregate top
of rack to top of rack matrices are calculated. Predictailiéi¢ flows (flows whose average
and instantaneous traffic are within 20% of each other) ane placked onto paths and the re-
maining unpredictable flows are placed using a weighted trBECMP, based upon remain-
ing bandwidth on available paths after predictable flowsehaeen assigned. By re-running
the data centre traces, it is shown that MicroTE achievehtiyi better performance than
ECMP for predictable traffic. However, for traffic that is uagictable, MicroTE actually
performs worse than ECMP. An evaluation of the scalabilitiafroTE reveals that the net-
work overhead for control and flow installation messaget&B and 50MB, respectively,
for a data centre of 10,000 servers, and new network pathBeeaomputed and installed in
under 1 second. While MicroTE does rely on some predictgbpitiprovides minimal im-
provement over ECMP and can provide poorer flow scheduling #@MP when there is no
predictability, and also has a greater network overhead B@2MP, making it unsuitable for
data centres where traffic really is unpredictable and ne¢thapon MapReduce operations.

Another flow scheduler iBeTail [24]. It tackles variable packet latency and long flow com-
pletion time tails in data centres for deadlines in servimp\wages. Link-layer-flow-control
(LLFC) is the primary mechanism used to allow switches to nwwriheir buffer occupancy
and inform switches preceding it on a path, using Ethernes@drames, to delay packet
transmissions to reduce packet losses and retransmidsiangesult in longer flow com-
pletion times. Individual packets are routed through lighdaded ports in switches using
packet-level adaptive load balancing (ALB). As TCP interpiedcket reordering as packet
loss, reordering buffers are implemented at end-hostsallgirDeTail uses flow priorities
for deadline-sensitive flows by employinigain bytecounters for each egress queue. Simu-
lations and testbed experiments show that DeTail is ablehgeae shorter flow completion
times than flow control and priority queues alone under aetsaf data centre workloads,
such as bursty and mixed traffic. Unlike ECMP and VLB, DeTail@dao traffic in the net-

2.4. Virtual Machine Migration 11

work and schedules individual packets based on congestther than performing unbal-
anced pseudo-random scheduling. However, DeTail pusheslegic to both the switches
and end-hosts, rather than tackling the problem of placémiehosts within the network
infrastructure to achieve efficient communication.

The works above have discussed control loops in data ceatveorks that are focused on
traffic manipulation, typically through flow scheduling nhenisms. However, there are
ways to engineer and control data centre networks otherliananipulating traffic alone.
The following sections discuss VM migration, and how it canused by data centre opera-
tors to improve the performance and efficiency of their nekso

2.4 Virtual Machine Migration

Given the need for data centre operators to recover the ¢dsieanitial outlay for the
hardware in their infrastructures, it is in their intere&idry and maximise the use of the
resources they hold.

To meet the need to recover outlay costs, hardware viratalis has become commonplace
in data centres. Offerings such as VMware’s vSphere [25] thedXen hypervisor [26]
provide hardware virtualisation support, allowing mangigiing systems to run on a single
server, in the form of &irtual machine (VM)Hypervisors and VMs operate on the basis of
transparency A hypervisor abstracts away from the bare hardware, angrexy through
which VMs access physical resources. However, the VMs teams, which contain an
operating system image and other image-specific applitaand data, should not have to
be aware that they are running on a virtualised platform,etaiie hypervisor. Similarly,
with many VMs sharing a server, the VMs should not be awaretleérovVMs sharing the
same resources.

Xen, the most common open source hypervisor, operates amcajgpof domains. Domains
are logically isolated areas in which operating systems Mis\\nay run. The main, and
always-present, domain @&mQ domO is the Xen control domain, and an operating system,
such as Ubuntu Linux [27], runs in this domain, allowing ecohof the underlying Xen hy-
pervisor and direct access to the physical hardware. Iniaddo domO0, new guest domains,
referred to aslomU can be started. Each domU can host a guest operating sysidrthea
guest operating system need not know that it is running uparwelised platform. All calls

to the hardware, such as network access, from a domU guespasssthrough domoO.

As domO controls hardware access for all domU guests, it prastde a means for shar-
ing access to networking hardware. This is achieved thrahghuse of a network bridge,
either via a standard Linux virtual bridge, or via a more ambe bridge such as the Open
vSwitch [28] virtual switch. Open vSwitch provides a compaity mode for standard Linux

2.4. Virtual Machine Migration 12

virtual bridges, allowing it to be used as a drop-in replaestior use with Xen. With a vir-
tual bridge in place in Xen’s domO, packets from hosts rugmmdomU domains can then
traverse the bridge, allowing communication between VMs$hansame server, or commu-
nication with hosts outside the hypervisor.

With the solutions above, instead of running services oriadtio with servers, data centre
operators can instead run many services, or VMs, on a sieglers increasing the utilisation
of the servers. With many-core processors now the norm,imgmmany VMs on a server

can make better use of CPU resources, so that, rather thaimguagset of services that may
not be optimisable for parallelised operations, many VMd ather diverse and logically

separated services can be run on a single server.

In a modern data centre running VMSs, it can be the case that,towe, as more VMs are
instantiated in the data centre, the varying workloads earse competition for both server
and network resources. A potential solution to this is VMelmwigration [29]. Migration
allows the moving of servers around the data centre, esdlgrghuffling the placement of
the VMs, and can be informed by an external process or algorib better balance the use
of resources in a data centre for diverse workloads [2].

VM migration involves moving the memory state of the VM fromeophysical server to
another. To copy the memory of the VM requires stopping eteawf the VM and reini-
tialising execution once the migration is complete. Howelree migration improves the
situation by performing a “pre-copy” phase, where it sttotsopy the memory pages of the
VM to a new destination without halting the VM itself [29]. iBrallows the VM to continue
execution and limit the downtime during migration. The meyrstate is iteratively copied,
and any memory pages modified, or “dirtied”, during the capgyare then re-copied. This
process repeats until all the memory pages have been capigtich point the VM is halted
and any remaining state copied to and reinitialised on tesever. If memory is dirtied
at a high rate, requiring large amounts of re-copying, the WiNMbe halted and copied in a
“stop-and-copy” phase.

The remaining sections of this chapter will focus on variagpects of VM migration, in-
cluding models of migration, and a variety of VM migratiorgatithms, identifying their
benefits and shortcomings.

2.4.1 Models of Virtual Machine Migration

While VM migration can be used to better balance VMs acrossattadlable physical re-
sources of a data centre [2], VM migration does incur its owerlbead on the data centre
network, which cannot be ignored.

2.5. System Control Using Virtual Machine Migration 13

It has been shown that VM downtime during migration can bé&eable and can negatively
impact service level agreements (SLAs) [30]. The setup usé¢lde aforementioned work
was a testbed running the Apache web server, with varyingsstfached to various tasks
such as the responsiveness of a website home page, or tlabaigiof user login function-
ality. The testbed was evaluated using a workload genesatba single VM migration, with
the finding that it is possible to have a 3 second downtimeudohs workload. This result
reveals that migration can have a definite impact on theabiéity of a VM, and migration
is a task whose impact, in addition to the benefit gain aftegration, must be taken into
consideration.

As VM migration carries its own cost in terms of data transdracross the network and
the downtime of a VM itself, a method for considering the ircipa to generate models for
VM migration. [31] shows that the two most important factarsVM migration are link
bandwidth and page dirty rate of the VM memory. It derives tnadels for migration: an
averagepage dirty rate antistory-basegage dirty rate. The models were evaluated against
a variety of workloads including CPU-bound and web servekioads, with the finding that
their models are accurate in 90% of actual migrations. Thsvs that migration impact can
be successfully predicted in the majority of cases, and msaafe/M migration have been
used in studies of migration algorithms [3, 7].

2.5 System Control Using Virtual Machine Migration

VM migration has typically been used to improve system-giddormance, such as CPU
availability and RAM capacity, or minimising the risk of SLAolations, by performing
migrations to balance workloads throughout data centre3, [22, 33].

SandPiper [2] monitors system-side metrics including CPilisation and memory occu-
pancy to determine if the resources of a server or individiddlor application are becoming
overloaded and require VMs to be migrated. SandPiper alasiders network I/O in its
monitoring metrics, but this can only be used to greedilyrionp network 1/O for the VM
itself, rather than improving performance across the wioblde network, or reducing the
cost of communication across the network. Mistral [32]rafiés to optimise VM migration
as a combinatorial optimisation problem, considering paveage for servers and other met-
rics related to the cost of migration itself but it does néglept to improve the performance
of the data centre network infrastructure. A compliment td ¥igration is, if servers are
under-utilised, making better use of the server resourcaitable by increasing the system
resources available to VMs using then, max andshar es parameters available in many
hypervisors [34] to increase the share of CPU and memory ressavailable to the VMs.

A wide area of concern for which VM migration is seen as a sofuis maintaining SLAS

2.6. Network Control Using Virtual Machine Migration 14

and avoiding any SLA violations [33, 35], or avoiding SLA lations during migration [3].
Such works make use of workload predictability [33] and raigm models to achieve their
goals [3]. Workload forecasting has also been used to ciolagelVMs onto servers while
still ensuring SLAs are met [36, 37].

However, these works again make no attempt to improve tHernpeance of the underlying
network, which is the fundamental backbone for efficient samication among networked
workloads.

2.6 Network Control Using Virtual Machine Migration

The works discussed above in Section 2.5 make no attemptget tanproving the perfor-
mance of the core of the network through VM migration. Thistea will identify works
that specifically address the problem of maintaining or maprg network performance.

Studies have attempted to use VM placement to improve thealbdata centre network
cost matrix [38, 39]. VM placement is the task of initiallyaping a VM within the data
centre, and is a one time task. Migration can be formulatezhaterative initial placement
problem, which is the situation in [39]. However, initialagement does not consider the
previous state of the data centre, so formulating migra®iterative placement can cause
large amounts of re-arranging, or shuffling, of VMs in theade¢ntre, which can greatly
increase VM downtime and have a negative impact on the nkfwae to the large number
of VMs being moved.

Network-aware migration work has considered how to migvédis such that network switches
can be powered down, increasing locality and network perémrice, while reducing energy
costs [40]. However, the work can potentially penalise oekwerformance for the sake of
reducing energy costs if many more VMs are instantiated amnd be placed near to their
communicating neighbours due to networking equipmentdpowered down.

Remedy7] is an OpenFlow-based controller that migrates VMs depanupon bandwidth
utilisation statistics collected from intermediate sWwiés to reduce network hotspots and
balance network usage. However, Remedy is geared towardidllancing across the data
centre network, rather than routing traffic over lower lewld lower cost links in the net-
work to improve pairwise locality for VMs.

Starling [8] is a distributed network migration system designed ttuce network commu-

nication cost between pairs of VMs and makes use of a migratieeshold to ensure costly
migrations with little benefit to outweigh the disruptionroifgration are not carried out. Star-
ling makes use of local monitoring at VMs to achieve its dlistted nature. It can achieve
up to an 85% reduction in network communication cost, aljiilne evaluation has a strong

2.7. Discussion 15

focus on evaluating running time for applications, rattamntassessing the improvement in
network cost. While Starling is novel and aims to improve rekperformance, it does not
make use of network topology information, such as hops kbetwéMs, to identify traffic
passing over expensive, over-subscribed network pathsarsoot actively target the act of
reducing communication cost from high layer, heavily ccstgd links..

2.7 Discussion

In this chapter | have introduced data centre network agchites and various network con-
trol mechanisms. | discussed how resource virtualisatimmgugh VM migration, is now
commonplace in data centres, and how VM migration can be tesgdprove system-side
performance for VMs, or how load can be better balanced a¢hesnetwork through strate-
gic VM migration.

However, all the VM migration works in this chapter have ndtieessed the fundamen-
tal problem of actively targeting and removing congestiamt over-subscribed core links
within data centre networks. The remainder of this thediisattempt to address this problem
by presenting a VM migration scheme for distributed mignatio reduce the overall com-
munication cost in the network, through a discussion of thglémentation of the scheme
and simulation and testbed evaluations of the scheme.

16

Chapter 3

The S-CORE Algorithm

As has been identified in Chapter 2, existing VM migration athpas do not actively con-
sider the layout of the underlying network when making migradecisions, nor do they
actively attempt to reduce traffic on the most over-subscritietwork links.

This chapter summarises a distributed VM migration alhonitS-CORE which considers
the cost of traffic travelling over various layers in a datatoe topology where each layer
can have an increasing link cost towards increasingly subscribed links at the the core of
the network. The aim of the algorithm in S-CORE is to iterafive&duce pairwise commu-
nication costs between VMs by removing traffic from the masitly links.

The theoretical basis behind S-CORE has previously beenmiessia [41] and the full theo-
retical formulation and proof behind S-CORE can be found i, [dBich can be referenced
for the full details of the algorithm. A summary of the impamt aspects of the S-CORE
algorithm, required for the work presented in this thesisliscussed here.

3.1 A Virtual Machine Migration Algorithm

Modern data centre network architectures are multi-lay¢rees with multiple redundant
links [4, 12]. An illustration of such a tree is provided irgkre 3.1, from [43].

Let V be the set of VMs in a data centre, hosted by the set of all sefyesuch that every
VM u € V and every servet € S. Each VMu in the data centre is unique and it is assigned
a unique identifietD,,.

Each VM is hosted by a particular server andAetlenote arallocationof VMs to servers
within the data centre. Leét*(u) be the server that hosts VMfor allocationA, v € V and
4(u) € S. LetV, denote the set of VMs that exchange data with ¥M

The data centre network topology dictates the switchingranting algorithms employed
in the data centre, and the topology in Figure 3.1 is usedch®purposes of illustrating the

3.1. AVirtual Machine Migration Algorithm

17

CR: Core Router

AR: Access Router

AS: Aggregate Switch
S: Switch

ToR: Top of Rack Switd

. |ToR

Server:

Serversg

Server:

Server:

=

Figure 3.1: A typical network architecture for data centres

algorithm presented here. However, the S-CORE algorithmplcgble to any data centre
topology, so the algorithm presented here is not specifioyamae topology.

As shown in Figure 3.1, the topology has multiple layers,emels, which network com-

munication can travel over. At the highest and most ovesstibed level are a set of core
routers. At the level below are access routers, which ioterect the core router and ag-
gregate switches from the level below. The aggregate sestee, in turn, connected to
switches which then connect to the top of rack switches.

Network links that connect top of rack switches to switchekWw the aggregate switches
will be referred to hereafter aslevel links and those between the switches and aggregate
switches a2-level links and so on.

Table 3.1: List of notations for S-CORE.

Notation | Description
\Y Set of all VMs in the data centre
Va Set of VMs that communicate with VM
A Allocation of VMs to servers
Aqpe | Optimal allocation
A._; | New allocation after migration — =
(“A(u,v) | Communication level between VMsand VM v
Ci Link weight for ai-level link
A(u,v) | Traffic load between VM: and VM v per time unit
C4(u) | Communication cost for VM for allocation.A
cA Overall communication cost for allocatiof
u — & | Migration of VM u to a new servet:
Crm Migration cost

Due to the cost of the equipment, the capacity at differergléeas we progress up the tree
is typically increasingly over-subscribed, with the gesstitover-subscription at the highest

3.1. AVirtual Machine Migration Algorithm 18

levels of the tree.

When a packet traverses the network between two VMs, it walliira communication cost
(in terms of resource usage, which is the shared bandwidtheohetwork), which will
increase as the packet travels through many differentdesethe topology hierarchy, due
to varying over-subscription ratios [12]. When moving upnirthe lowest levels to highest
levels of the hierarchy, the communication caestwill increase, i.e.¢; < ¢ < ¢3 < ¢4. The
value of link weights can be determined by data centre opesaly taking into account their
operational costs for setting up the different layers ofrttepology (i.e., more expensive
networking hardware at the core of the network than at theg€dgr by using other factors
such as the over-subscription ratio of the different leiretheir network hierarchy.

The problem of communication cost reduction and the colscep¥M allocation, com-
munication level, and link weights, with important notaisoare formalised and listed in
Table 3.1.

The overall communication cogor all VM communications over the data centre is defined
as the aggregate traffie,(u, v), for all communicating VM pairs and all communication
levels,4(u, v), multiplied by their corresponding link weight.

A (u,w)
CA = Z Z AMu,v) Z c;. (3.1)

YueV YveV,,

Let A, denote amptimal allocation such thatCAe»t < CA, for any possibled. Itis shown

in [42] that this problem is of high complexity and is NP-cdetp, so there exists no possi-
ble polynomial time solution for centralised optimisatidtven if there was, the centralised
approach would require global knowledge of traffic dynanwdsch can be prohibitively
expensive to obtain in a highly dynamic and large scale enuient like a data centre.

This calls for a scalable and efficient alternative, and the$ave formulated the following
S-CORE distributed migration polidgr VMs: A VM « migrates from a server to another
serverz, provided that Equation 3.2 is satisfied, i.e., given theeolesd amount of aggregate
traffic, a VM individually tests the candidate servers (for new placejraard migrates only
when the benefit outweighs any cost incurred during mignatio As noted above, [42] can
be referred to for the full definition and proof of the S-COREesutle.

A (2,u) Az (z,u)

2 Z Az, u) Z ci — Z c | >cem, (3.2)

VzeV, i=1

19

Chapter 4

Implementation of a Distributed
Virutal Machine Migration Algorithm

Given the S-CORE algorithm presented in Chapter 3, a realisafithis algorithm must
be developed in order to evaluate its real-world perforreaemed to overcome any imple-
mentation issues not covered by the theoretical algoriguoh as determining the location
between two VMs in a data centre.

This chapter describes an implementation of the S-CORE VMatimr system, incorporat-
ing the S-CORE algorithm, and addresses the rationale befménigniplementation choices,
as well as addressing the practical problems posed by ®diaya centres on how such a
distributed algorithm may successfully and efficiently ige.

4.1 Token Policies

One of the main tasks in any VM migration algorithm is the erglewhich to migrate

VMs. As S-CORE operates in a distributed manner and is not @itedrthrough a central
mechanism, VMs must explicitly know when they are allowednigrate. This is achieved
in this implementation through the use of a token that isg@ssnong VMs. A basic token
contains slots, with each slot containing a VM ID and a comication level for each VM.

The structure of the basic token is shown in Figure 4.1. Ireotd make use of the token
policy, each VM in a data centre is assumed to have a uniquifiee, which is already the

Q(!VI - 1)

Vg VoD 1 Vo

Figure 4.1: The token message structure.

4.1. Token Policies 20

case in data centres (and computer networks in general)séensy would not be uniquely
reachable otherwise.

When a VM holds the token, it is able to make a migration denis itself based upon
its current communication cost and the communication dastrigrates elsewhere. It may
also update communication cost values for other VMs it compates with. For example,
if VM « holds the token, them, can update its own token entry, as ViMis aware of its
own highest communication levéf'. VM w is also aware of the communication level of
those VMs it communicates with (i.e:,c V,,), and can updatg, if the new communication
cost, /4 (u,v), is higher than the existing recorded communication cogiténtoken. After
deciding whether to migrate, the VM holding the token camtpass it to the next VM listed
in the token, dependent upon the token passing policy ireplac

Given the generality of S-CORE, token policies can be basedwmdber of heuristics, and
can even be calculated using metrics that are gatheredattgrdr in a distributed manner.
The token can also be extended to provide extra informatidimirweach slot, such as the
cost of migration itself for a particular VM.

This section discusses only the operational details of éalkdén passing policy, and not
necessarily the details of initial token construction facle policy.

Four token policies were implemented for this work:

e Round-robin
e Global
e Distributed

e Load-aware

The round-robintoken policy is a simplistic policy wherein a token is consted and it

is passed from VM to VM in strict token slot order (i.e., the&ler in which the token was
constructed, which could be ordered by VM ID). This policyymot be the most efficient,
as it cannot skip passing the token to VMs that will not be wtigd, resulting in migration
iterations potentially being wasted.

The centralisedlobal token policy gathers communication statistics over a timgoa and
centrally computes communication costs and a migratioerodépendent on the greatest
pairwise communication cost reductions for VM pairs. Thas de potentially costly in
terms of the time required to perform a central migrationroation calculation on a data
centre consisting of tens or hundreds of thousands of VMsrg&shommunication cost data
may go stale quickly. It also has the potential to greatlyactghe performance of all VMs in
the data centre as the data is transmitted to and gatherezkemtial location, which is not a

4.1. Token Policies 21

desirable trait for an algorithm meant to improve the nekymmarformance or communication
efficiency of VMs.

The distributedtoken policy does not require a centrally calculated toKestead, it starts
passing the token among VMs for whom network communicatassps through the highest-
layer links in the network. As the highest layer core links tire most costly, and most over-
subscribed, it is a reasonable assumption to make that tioigrat this level is most likely
to take place over communication at lower levels, as thex&igher gains to be achieved by
migrating VMs away from using high-level links.

The highest communication level for each VM is initialisedzero. The token starts by
being passed to a VM with communication passing through itedst layer and with the
lowest VM ID of all VMs communicating over that layer (whiclarc be achieved through
a leader election algorithm in which VMs participate, buhat discussed here). This VM
updates the token with its own communication cost, and gisates the communication cost
of any neighbouring VM, if required. After making its own magion decision, the token
is passed to the next VM communicating at that layer in tha dantre. If no other VM is
available at that layer, or no other VM at that layer remalad still has to make a migration
decision, the token is passed to a VM communicating acrassext-highest layer. When
all VMs and layers have been exhausted, the policy restartsthe beginning, with the VM
communicating at the highest layer with the lowest VM ID.

The details of the distributed token policy are presentedgorithm 1.

A feature of the distributed token policy is the ability fow# to determine communication
costs for VMs it communicates with. This is discussed in llete§ion 4.2.5.

The final token passing policy to be introduced is the loadfawwoken policy. It is a vari-
ant of the distributed token policy and considers aggregateork load of incoming and
outgoing traffic for each VM. Unlike the distributed tokenlipy, which passes the token to
VMs at the same communication level in VM ID order, the loackee policy passes the to-
ken among VMs at the same communication level, starting teithe VM with the highest
aggregate load in that level first. This requires a small remub comparisons before the
token is passed to the VM with the next-highest aggregat (oathe VM with the highest
aggregate load in the next communication level). Howevemaration is expected to be
most likely to happen at the higher layers, and the greatsttreductions can be expected
from migrations at higher layers at the core of the netwdris tould allow for a more effi-
cient migration phase, and allow the state of all VM placetn@mthe data centre to reach
close-to-optimal sooner than in the distributed tokengyolUnlike the global token policy,
which requires central aggregation of statistics and arakewlculation, which can be costly
and unscalable, the load-aware token policy is able to mag®fistatistics available locally
at VMs.

4.1. Token Policies 22

Algorithm 1 Distributed Token Policy

1: cl <« 1, > c1 maintains the current value of,
2. found <+ FALSE > Flag regarding next VM
3: for Vv € V,, do > Update VMs connected @
4: if 1, < ¢4(u,v) then

5: 1, « (Au,v)

6: end if

7: end for

8 z+udl > Pick the next VM aftem

9: while c1 > 0 && !found do
10: while 1, # cl1 do

11: 24231 > Pick the following VM
12: end while

13: if 1, < clthen

14: found <+ TRUE > Next node is found
15: else > Next node is not found at this level
16: cl+cl-—-1 > Go to a lower level
17: 24— Vg > and start from the beginning
18: end if

19: end while

20: if ! found then > No unchecked VMs are left
21: Pick VM z : mingp {Vx € V: 1, = maxy,ev(1,)}

22: end if

23: Sendtoken to VM 2z

4.2. Implementation Setup 23

The four token policies discussed above have been impledes part of the S-CORE
migration system, the implementation details of which are mtroduced.

4.2 Implementation Setup

This section discusses the implementation-specific dedaitl problems that had to be over-
come to provide a real-world implementation for the S-COREratign scheme.

S-CORE was implemented on top of the Xen [44] hypervisor, mgpridbuntu 12.04 as
domO (domain zero, the control domain started by Xen on baad, which controls all
guest domain VMs). In order to communicate with and contrehXwe used th&m [45]
management interface. xm is written in Python and contibMM duties within Xen, such
as VM instantiation, migration and probing of VM informatiand state.

To allow for easy communication with the functions of xm reqd for S-CORE, and given
the distributed and periodic nature of the algorithm whehg@ervisor must make a migra-
tion decision only when a co-located VM receives the toke@CHRE has been implemented
in Python.

To enable network communication between co-located VMs sereer, as well as between
VMs and the outside world, a network bridge is created in dahmGugh which the net-
work traffic to and from all VMs on a physical host passes. Whiike basic Linux bridge
utilities offer limited capabilities and do not allow aceds individual flow statistics, Open
vSwitch [28] can be used as a drop-in replacement with Limidge compatibility enabled.
Open vSwitch provides flow-level access and manipulaticentable flow-level monitoring
at the hypervisor level for all local VMs, rather than on a W&t basis.

4.2.1 Implementation in VM vs Hypervisor

The S-CORE algorithm expects VMs to pass the token amongsstiees and make their
own migration decisions. However, this is unsuitable incpca. In system virtualisation,
the general paradigm is that virtualised hosts should natage that they are running within
a VM. Therefore, the hypervisor should be transparent t&/tfieand a VM should have no
direct control communication to the hypervisor on whichuis.

As the hypervisor initiates and performs VM migration, ttisates a problem if a VM itself,
which is not aware of the hypervisor, wishes to migrate. Einglor adding any such ability
to VMs would violate the fundamental transparency betwebtsnd their hypervisor.

Since the hypervisor can monitor all network traffic to arahfreach VM it hosts, the above
problem was avoided by implementing S-CORE within domO of tle& Kypervisor itself,

4.2. Implementation Setup 24

domU domU domU domU

bridges

Open vSwitch

Flow Monitoring Migration

Token Passing Decision

S-CORE domO

Xen

Figure 4.2: The S-CORE architecture.

instead of within VMs. The modular architecture of S-CORE isveh in Figure 4.2. The
benefit of such a modular architecture is not only to keepsparency intact but also to make
the system easily upgradable.

As the hypervisor is transparent to resident VMs, VMs cauwiireictly instantiate or conduct
their own migration. By opting to run S-CORE within domO, takengnigration decision at
the level of domO greatly simplifies the implementation af #igorithm. New communica-
tion channels between the VM and hypervisor do not have toipéeimented to allow VMs
to initiate migration, so the transparent view that VMs hai/the platform they are running
on does not need to be broken.

While some works do follow the path of removing the aspect ah$parency from the
VM [2], there are other benefits to be gained by not instrumgn¥Ms themselves. With
many public cloud providers in existence enabling usersrdheir own VMs, instrumenting
the VMs becomes impossible, unless providers wish to supgdys with their own restricted
VM images. While there are also many private cloud data centmrening VMs, it can still be
difficult to instrument VMs themselves, as many differenpavate teams may work within
the same data centre and have different requirements hcgtii@m to result to rolling their
own VM images.

4.2.2 Flow Monitoring

To enable an accurate measure of the aggregate throughegdmecommunicating VMs
some form of continual gathering of statistics for flows igueed. Open vSwitch provides
per-flow statistics, however, it only maintains flows for@asd as they are active and discards
any inactive flows after 5 seconds, hindering the accunaraif any long-term history. To

4.2. Implementation Setup 25

overcome this limitation, a custom flow table for storing flmvel statistics was developed.
For the purposes of S-CORE, the flow table must support thedipoperations:

Fast addition of new flows

Updating existing flows

Retrieval of a subset of flows, by IP address

Access to the number of bytes transmitted per flow

Access to flow duration, for calculation of throughput

The flow table will be periodically updated through pollingéh vSwitch for datapath statis-
tics, allowing for the accumulation of flow statistics for lasg as is required. Flows are
stored from when they start until a migration decision is enéat a VM. As the most fre-
guent operations on S-CORE'’s flow table is the addition of newdlor the updating of
existing flow counters, we require the ability to easily a@avrflows, and to also perform
quick lookups and updates of existing flows. To achieve thesuse a hash table structure
to store flow data. Each entry stores the MAC address assdaiath a particular source IP
and a hash table for quick lookup of the destination flow dadayg the source IP address as
a key. Each destination hash table is keyed by destinatj@ntPstores protocol type, source
and destination ports, the number of bytes transmittedanftbow, and a timestamp of when
the flow was started. Open vSwitch identifiggtapathsas a flow in a single direction, so
bidirectional flows are composed of two individual datagatfio address this, two of our
flow table data structures are used, with the second stoasgndtion IP addresses as the
main key, allowing fast and easy lookup of bidirectional fow

Storing both the source and destination flow data struciitews quick addition of, quick
retrieval of, and quick updating of flows by both source anstidation addresses. In partic-
ular, it allows quick and easy retrieval of flows by IP addressthat all flows belonging to
a VM can be retrieved, and the aggregate of those flows to dklsrcan be calculated.

4.2.3 Token Passing

S-CORE is a distributed migration system, requiring the usetoken passed between VMs
in order to allow the localized migration decisions to takecp. As discussed in Section 4.1,
many token policies can be defined, which determine how tkents passed between VMs,
and how each VM must decide whether or not it should migrate h&e implemented four

token passing policies, and the underlying details of hasvttken passing mechanism is
implemented in S-CORE will be discussed in this section.

As a recap, the token passing policies implemented are:

4.2. Implementation Setup 26

e Round-robin
e Global
e Distributed

e Load-aware

When a VM receives a token for which its VM ID is the next enthg toncerned VM needs
to evaluate the overall communication cost between itsalfal neighbors it communicates
with.It must then evaluate if it can achieve a lower overalhenunication cost by migrating
to a different physical host (or hypervisor). If a lower coomtation cost is achievable and
the destination host has available resources, then nogratiould take place.

As each host in a network must be accessible via a unique Ifesgldhe IPv4 address of a
VM has been used as a 32-bit VM ID carried within each tokeh &lsing the IPv4 address
as the VM index also provides the benefit of allowing the tokelne sent directly next to the
VM ID of the next VM, rather than having to perform some formbfto-address mapping.

To efficiently pack the token for network transmission, gigred and transmitted as a block
of slots of 32-bit and 8-bit unsigned integers, where that&tbsigned integer holds the
communication level for a VM.

Since the implementation stores IP addresses as VM IDs asgkpdhe token to each IP
address in turn, a question arises: How does the domO of {herigor acquire the token?
Instead of running a token listening server on each VM, aridiggening server runs on a
known port in domO of each hypervisor. For the token servaeteive the token, a NAT
redirect is installed in domQ’ptables redirecting messages for a particular port to domO
itself. When domO holds the token for a VM it hosts, it is thetedb conduct the migration
decision process on behalf of the VM by accessing the flonetédsl the VM'’s flows and
performing the cost reduction calculation, before forvimgdhe token along.

Failure recovery when the token is lost (due to a process mnumication failure) can be
addressed by an algorithm such as the classic Gallager, lduartal Spira distributed leader
election algorithm [46] wherein a minimum-weight spanninge with a single leader is
constructed using only the local knowledge initially aghie at nodes.

4.2.4 Xen Wrapper

While it may seem straightfoward for domO to migrate a VM aftreiving the token con-
taining the VM’s IP address and deciding that the VM shouldnigrated, the process is not
as simple as that.

4.2. Implementation Setup 27

It is only possible to retrieve the MAC addresses of VMs uding xm tools as them
management interface for Xen (or ratheend the control daemon that xm communicates
with) does not store information about the IP addressesadf rmining VM. The xm toolkit

is itself written in Python, which allowed the creation oftRgn wrappers around most of
the functions concerned with listing VMs, retrieving netldetails of a VM, and migrating

a VM.

Given that IP addresses are passed in the token, and xm camvedhe MAC addresses
of individual VMs, how can these be mapped to each other tatikyea particular VM
that should be migrated? As discussed in Section 4.2.2, dhetélble also stores a MAC
address alongside each IP address. This allows domO to dikaddor the MAC address
associated with the IP address in the token it has receinethe&n make calls to xm to find
the particular VM that matches that MAC address, and performgration, if necessary.

If there is no entry in the flow table that maps the IP addressNAC address, this means
there has been no communication from that particular VM tp @her VM, and therefore
there is no benefit for that VM to gain from being migrated tg ather location.

4.2.5 Migration Decision

With Xen’s domO now able to monitor the flows for all VMs, andeto receive and send the
token on behalf of a VM, and map the ID in the token to a paricMM, it must also be able
to make a migration decision for the given VM. This sectiotads the final components that
make up the actual migration decision process.

Aggregate Throughput Calculation

When domO receives the token for a co-located VM, the firstistepcalculate the aggregate
load between that VM and all the neighbours it communicatigls. wlhis is achieved by
looking up S-CORE'’s flow table for the source and destinatiowdlassociated with that
IP address, and calculating the total number of bytes tratesin As each flow stores a
timestamp of when it was started, these timestamps can kbeaiseduce the length of time
for which the flow statistics have been gathered since lasgleared, allowing calculation
of the aggregate throughput in the form of bytes-per-second

Communication Cost

Once the aggregate throughput to each communicating naigtiias been calculated, the
communication cost must be evaluated. The communicatisni€the number of links over

4.2. Implementation Setup 28

which packets from the VM must traverse to communicate witbtlaer VM, with each level
of links in the topology having an increasing cost value.

In real terms, the communication cost can be derived frormtimaber of hops between a
VM and any neighbour that it is communicating with. This abbk achieved by a network
diagnostics tool such d@saceroute but layer 2 switches would not show up as hops in this
case. Another alternative would be a a VM ID lookup servistirig the cost for any VM to
communicate with another. However, VM IP addresses are asddeir VM ID, and VMs
carry their IP addresses when they migrate, which rendéssritethod unusable in a data
centre with a dynamically changing VM allocation.

On the contrary, the physical servers and the hypervisarsing on them, do not move
around within the data centre (unless for some form of maaree). This makes a reliable
lookup service based on the addresses of physical servesgf® and is the option chosen
for S-CORE. As a flow table of the IP addresses each VM commusoaith is stored,
neighbouring VMs can be probed to find out the IP address af ttoen0. Similar to the
token passing method, we can send a cuditmeation requespacket to the IP address of
each communicating VM. A NAT redirect in domO of each hypsoviwill then capture this
packet and pass it to domO0, which can serldaation responseontaining domO0’s static
address back to the VM.

With that information, the domO currently holding the tokean make a lookup into a pre-
computed location cost mapping with its own IP address ardRhaddress of each un-
derlying domO of communicating VMs. The location cost focled/M is then combined

with each aggregate throughput value to produce an ovesathwunication cost for each
neighbouring VM, as well as a total cost for its current aitban.

With a total cost for its allocation, the VM can then considfat would be beneficial to
migrate to another location, if a such a suitable locaticavaslable.

Migration Target

When deciding if migration would be a beneficial move for a VMpérvisors suitable to
move the VM to must be identified. As our algorithm is disttdml, and we do not store a
central list of all the hypervisors (or the underlying sesyewe must take an alternative ap-
proach to identifying potential hypervisors as the desiomeof a migrated VM. An intuitive
way to consider this is that, logically, the biggest cosuimn gains could be achieved by
moving a VM to the same hypervisor as the VM that it has the égglcommunication cost
with.

As the IP addresses of each hypervisor can be determineth@edmmunication cost then
probed, neighbouring VMs can be ordered from highest to $bwemmunication levels and

4.2. Implementation Setup 29

each hypervisor probed to see if it has sufficient serverurees to host the current VM.
A customcapacity requespacket is sent to the hypervisor of the neighbouring VM with
the highest communication cost, which responds with a cusi@pacity responseacket,
detailing how many more VMs it is able to host, and the amofiRRAM it has available (to
account for VMs with heterogeneous RAM requirements).

The capacity request and response packets are text-bas@sucications of the form:

e hypervi sor capaci ty_request

e hypervi sor capacity_response <avail dons> <avail nmenp

Due to the limited types of data required in the requesttese packet pair for capacity
information, use of text-based exchanges is sufficient. él@n were the request/response
packets to be extended further (e.g., to include average GRgel), aype-length-value
(TLV) encoding could be adopted.

If the hypervisor has the capacity to host the additional \theé domO holding the token
will then calculate the overall communication cost for thil W it were to migrate to that
hypervisor. It will migrate there if the communication castreduced, and not migrate
otherwise. If the hypervisor hosting the neighbouring VMhathe highest communication
cost does not have the capacity to host the VM for which migmais being considered,
the hypervisor of the VM with the next-highest communicataost will be subsequently
considered. This operation is repeated until a hypervistr available capacity is found,
the overall communication cost of moving to that hypervisareduced, and a migration is
conducted. If no suitable hypervisor is found, this stepteates and the token is passed on
to the next VM ID for the next iteration of the migration prese

This completes the discussion of the modules that make upniplementation of S-CORE.
Both simulations of S-CORE'’s performance and the performahtteeamplementation pre-
sented here, and its impact, on a testbed setup are presedbdpter 5.

30

Chapter 5
Evaluation

S-CORE has been evaluated using both a simulation setup astbadesnvironment. The
purpose of these evaluations are to determine the feagibil5-CORE in a real-world envi-
ronment by assessing its scalability properties and itsh@ael. This chapter presents simu-
lation results of the S-CORE algorithm to show its communazatost reduction properties
and testbed results to show the performance and overhead ohplementation presented
in this thesis.

5.1 Simulations

S-CORE’s communication cost reduction with has been evaluateoss the four different
token policies over a layered data centre topology, usiag$h3network simulator [47].

The simulated network topology is comprised of 2560 hos28 ¢bp of rack switches, 20
hosts per rack), which can sufficiently capture the hieriaedhink over-subscription ratio at
aggregate and core links found in data centres [4]. In om@enddel a typical data centre
server environment, each host can accommodate at most 16agslsming 2 VMSs per core,
with each occupying 1GB of RAM. Increasing a VM'’s resourceuisgments is equivalent
to combining, for example, two or more VMSs’ resources inte.on

A single VM is modelled as a socket application which commates with one or more

other VMs in the network. Similar to actual virtualisati@ach server has a VM hypervisor
network application to manage a collection of VMs, supp@ytmigration into and away

from each server.

Links costs are setas = €, c; = ¢!, c3 = €3 andc, = ¢° for each layer in the topology
hierarchy. VM migration carries its own cost in terms of netkwbandwidth for moving a
VM’s memory contents and VM downtime, which can negativdfge other VMs commu-
nicating across the network. To account for this in the satoihs, a migration overhead

5.1. Simulations 31

cost,c,,,, is introduced. The migration overhead cost is initiallyteezero to allow for a fair
comparison among the centralised approach and S-CORE. Howawe a data centre op-
erator may wish to limit the number of migrations a VM undketsover a temporal interval,
different values associated with the cost of migration cansed. For example, an operator
may wish to limit the number of migrations within a time petjdo limit the overall negative
impact on its network. Simulation results for various valoéc,, which are presented later
in Section 5.1.3.

5.1.1 Traffic Generation

A data centre traffic generator to test S-CORE under realiati centre-style loads was also
used in the simulations, as data centre traffic charadterisve been reported in a number
of measurement studies [4, 16, 48, 49].

The traffic generator maintains 10 active flows, on average MM [4, 49]. Most flows
(90%) are smaller than 10 KB, modelling metadata commurminatir queries, and the
remaining 10% of flows have a mode of 128MB (a common chunk sfzelapReduce
jobs) [16, 4, 50]. Among all generated flows, 80% of the flovey stithin the rack whereas
20% of them leave the rack [16, 49]. The traffic generator rf®odely 20% of top of rack
switches as hotspots because this is the case in real ddtas;eand even the hotspot top
of rack switches end up exchanging much of their data witly anlew other top of rack
switches [48, 16, 49].

The sample of a 10s traffic matrix of all top of rack switchegiigen in Figure 5.1, which
exhibits identical traffic matrix properties with those eited in [48].

As can be seen in Figure 5.1, the traffic matrix in data censr@sdeed sparse and only a
handful of top of rack switches become hotspots. Howevelgrafeant fraction of traffic
amongst hotspots has to be routed over upper layers in tiodotpphierarchy, resulting in
episodes of congestion and high communication cost.

5.1.2 Global Optimal Values

To have a baseline against which to compare the performdr®8€®RE, an optimal value
of the placement of VMs within the data centre, based on comication cost, is required.
However, minimising the overall communication cost for tbpology is an NP-complete
problem, and an exhaustive search across all permutationilwe prohibitively time con-
suming. For example, assuming communication within a raskzero cost, with6 x 20=320

VMs per rack, a centralised algorithm would need to expldteast(s;) combinations.

5.1. Simulations 32

As a benchmark, the centralised optimal values are instpptbgimated using a genetic
algorithm. The genetic algorithm starts with a populatioemgisting of1, 000 individuals
representing densely-packed VM distributions in a dataregeand stops when there is no
significant improvement in communication cost reductieni{%) in 10 consecutive genera-
tions. The crossover operator has been implemented usgegyassembly crossover (EAX)
to generate a new child from two parent distributions andrdpdacement of individuals is
based on tournament selection. Mutation happens by swgprandom number of VMs
between racks.

Execution time over a medium-load simulation setup is atri@dours using a system with
8GB RAM and a 2.66GHz quad-core CPU.

5.1.3 Simulation Results

The results in Figure 5.2 show that, despite the dynamiaintisttion of new traffic flows

(i.e., small spikes along the curves), S-CORE can still adagtanverge quickly to ap-
proximation of optimal network-wide VM allocations calatéd by the genetic algorithm,
which is computed using the traffic matrix given in Figure tadall scenarios. This optimal
approximation is only used for reference here and shoulg eaer time due to fluctuating
traffic dynamics.

In all four scenarios, thglobaltoken policy constantly exhibits best performance in teois
communication cost reduction speed and proximity to thentgdtcost. However, it requires
global knowledge of the traffic dynamics and can thereforgimibitively expensive to
implement in practice, even under a distributed migratigoe@thm. The basicound-robin
policy exhibits the slowest cost reduction and largestatewn from the approximate optimal
amongst all four token passing policies. The less experdisteibuted and load-aware
token passing policies produce highly comparable perfageao the global one. All token
policies converge and stabilise when the VM distributiongiderably reduces the overall
communication cost.

To reflect the fact that,, is often non-zero due to VM migration overhead on the network
simulations were run with differemnt,, threshold values.

Figure 5.3 shows that i, is increased to 10% of the overall communication cost, a pro-
nounced communication cost reduction can still be seen.rdi@ of communication cost
reduction plunges sharply if,, is further increased to 20% or more. This phenomenon
demonstrates that S-CORE will work well by setting reasonaflealues according to the
policies of a particular data centre operator. For exampéa operator wishes to limit mi-
gration to ensure that the impact upon other tenants in i centre, they may choose to
increase the migration cost.

5.1. Simulations

33

Figure 5.1: Normalised traffic matrix between top-of-ragktshes.

Figure 5.2: Communication cost reduction with data centredlo

To ToR Switch

From ToR Switch

Ratio of Communication Cost

= e e
R

—=—Global
—— Distributed

“eRound Robin|

~~-Load Aware

O'_l

100 200 300
Time(s)

©
P

o
fe)

Ratio of Comm. Cost Reduction
o
N

o
~

o

0

0.2 04 06 08
Normalized Migration Cost (cm)

7

Figure 5.3: Ratio of communication cost reduction with thetritbuted token policy.

5.2. Testbed Evaluation 34

Figure 5.4 reveals that after VMs migrate, the number of fajpck hotspots is significantly
reduced. Even though there are still top of rack hotspoesehop of rack switches are in
close physical proximity, which means that inter-top ofkr&raffic flows remain within the
lower levels of the topology hierarchy. An obvious advaetad the locality property of
S-CORE is that these idle servers can be powered down to relde@@nérgy consumption
of the data centre, addressing the aims of studies on patitlown of servers or network
elements [3, 40].

5.1.4 VM stability

VM stability is crucial for dynamic VM migration algorithimess unstable VM migrations can
themselves potentially have a big impact on the network angess. VM placement instabil-

ity can occur due to oscillations, where VMs will periodigglmp between two placements
in the expectation of gaining some improvement from the niawgment, while gaining no

real long-term improvement as it will later decide to reverits previous placement or move
elsewhere, incurring migration overhead in terms of VM dbme and migration cost.

Whilst no dynamic algorithm can completely eliminate thegploiity of VM oscillations,
S-CORE can minimise short-term oscillations due to two reaséirst, S-CORE uses the
average rate of data exchanged between VM pairs over arcéirta window, which can
be set suitably long to capture the dynamism of the enviroimile not responding to
instantaneous traffic bursts. Second, VMs do not migratérarity nor do they measure
individual flow arrivals and completion. Rather, they onlynsmer migration periodically,
when they receive the migration token, and their computataderive a migration decision
is based on aggregate traffic load over that period. Thezglioe short-term effects of sudden
arrivals of small flows are cancelled out when averaged overiteration of the algorithm.

5.2 Testbed Evaluation

5.2.1 Testbed Setup

To test the implementation of S-CORE, rather than just itsrétezal properties as were
tested above, an evaluation was performed on a testbedemant.

The testbed, as shown in Figure 5.5, consisted of six 8-pgabg switches and four servers
interconnected by 1 Gbps links. The switches are arrangiedrtoa typical 3-tier data centre
topology. The servers in the testbed consisted of Intel P4ZB&&rvers each with 2GB RAM
running Xen 4.1 with Ubuntu Server 12.04 operating as domte domU guest VMs are
Ubuntu 10.04 images, with 196MB RAM allocated for each guest he experiments

5.2. Testbed Evaluation 35

To ToR Switch

From ToR Switch

Figure 5.4: Normalised traffic matrix between top-of-rasktshes after 5 iterations.

Core
Aggregation

Edge

Figure 5.5: Testbed topology.

5.2. Testbed Evaluation 36

started with two VMs initially located on each server. Ead¥l Wosts a HTTP server as well
as aniperf [51] server and client.

Live migration requires that VM images reside on sharedagt@y rather on hypervisor
servers themselves, to allow for migration among diffefieypervisors to take place. A
Network File System (NFS) server was set up to host VM images.

While the testbed is limited in terms of scalability up to daentre-sized topologies for
full testbed experiments, the distributed nature of S-COR&valthe evaluation of module
components and their scalability in isolation, or the estibn of properties such as VM live
migration times that should not be negatively impacted leysize of the testbed.

5.2.2 Module Evaluation

The implementation of S-CORE is built into several moduledyesking the various aspects
of the distributed operation of S-CORE. As with any such masltih@t run on end-hosts, it
is important to assess the impact that these modules hawgstansresources, in terms of
memory and processor time consumption. It is also impottakhow how the distributed
performance of the modules impacts the network as a whole sHttion aims to address
the system-side performance of S-CORE’s modules.

Given that S-CORE modules run within the hypervisor rathem thahe VMs themselves, it
Is imperative that S-CORE can suitably monitor and perfornratign decisions for all the
VMs a hypervisor hosts while consuming minimum hypervissaurces, thus leaving the
majority of resources available to the actual VMs. While a hanof studies have revealed
that server and network resources are mostly under-utjlidee aim is to stress test the
implementation to ensure that S-CORE will not misbehave irstvcaise scenarios.

The first main module in S-CORE is the flow table, which stores TGP W@DP flow data
for the VMs running on the hypervisor. It implements the riegments of adding new flows,
updating the number of bytes transferred for existing floesieving flow data, and clearing
old flows. In order to stress test the resource consumpti@uading flows to the flow table,
experiments were conducted where up to 1 million flows weregded and added to the
table, even though a realistic typical load is only 10 actioe's per VM [4, 16, 48, 49], so 1
million flows are used merely to stress the implementation.

Two different sets of flows were defined: The first set is 1 wnillflows with all source IP
addresses being unique (type 1). This results in a new entnglereated at the root of the
flow table for each flow. The other set is 1 million unique flowkere groups of 1000 flows
originate from the same source IP address (type 2).

To test the memory consumption of adding flows to the flow tabhaillion flows from each
of the two flowsets described above were generated and thefsihe table was iteratively

5.2. Testbed Evaluation 37

measured after each flow was added, by readingth®izeparameter for the process from
within Linux. The results of this can be found in Figure 5.6.

The size of the flow table scales sub-linearly. With 10,00@$lahe flow table has a memory
footprint of only 4MB and 16MB for type 2 and type 1 flows, resppeely; with 100,000
flows, the corresponding footprint is 46MB and 91MB.

The substantially different memory usage values are dowhestructure of the flow table.
As there will be a limited number of VMs running on a serveg flow table stores entries
grouped by IP address at the root of the table. When 1 millionsflavith unique source
addresses are used, this results in 1 million entries beddgdto the root of the underly-
ing data structure. However, when there are 1 million flowgag across 1000 source IP
addresses, only 1000 entries are added to the root of thes taibh the remaining flow data
added to nested structures associated with these 100Gessnirees.

However, a number of studies have reported that the totabeurof concurrently active

flows between VMs is much more contained: in a productiontelusf 1,500 servers, the
median number of active correspondents for a server are ther servers within its rack

and four servers outside the rack. A busy server can talk sealers in its rack or 1-10%

outside the rack [16]. At the same time, in a large-scalectidata centre, the number of
concurrent flows going in and out of a machine is still almastar more than 100 [4]. With

a more realistic scenario where every virtual server caectily sends or receives 10 flows,
with 100 in the worst case, it is anticipated that actual mgmeonsumption of the flow table

will be between 24.75 KB — 186.47 KB for a hypervisor hostigg\VIVs.

To understand the time taken to perform the different opmraton the flow table, the time
taken to add, lookup and delete flows has been measured, sgrtimitimes over the number
of flows, for the same sets of flows. Figure 5.7 shows the tinpetéorm various flow table

operations with differing numbers of flows in a single operat From Figure 5.7 it can be
seen that flow addition, lookup and deletion operationsegjuire less time on a flow table
with a type 2 flow set (i.e., few VMs on a hypervisor, each witany flows). Nevertheless,
addition, lookup and deletion operations should not neecertftan 100ms for a realistic
data centre production workload of 100 concurrent flows.

The flow operation times reveal that all the flow operatioredessub-linearly. For inserting
100, 1000, 10,000 and 100,000 flows, the times are 0s, 0s1€.0007s and 0.94s, respec-
tively. The Os values are a result of the granularity of Pgihitime functions.

As flows are only periodically updated, these times have l@ffect on the overall running
of the system. Further, assuming 16 VMs each with 20 indadidlows, as above, it would
take only a fraction of a second to add or update that many fIMeseover, flow lookup and
deletion are only performed when a VM migration is being edesed, and only 1 source IP
address will be retrieved for those operations, as only tivesfto and from a single VM are

5.2. Testbed Evaluation

38

800 —Type 1 - 1 src, 1 dst

= ~Type 2 = 1 src, 1000 dst
=

o 600}

(@]

©

3

= 400¢

o

5

s 200;

10° 10° 10* 10°
No. of Flows

Figure 5.6: Flow table memory usage.

10 ‘
—Add - Type 1
87— Lookup - Type 1
—Delete - Type 1
% 6f|... Add - Type 2
g |l Lookup - Type 2
=
“““ Delete — Type 2
ol
200 10° 10" 10°

No. of Flows

Figure 5.7: Flow table operation times for up to 1 million gune flows.

5.2. Testbed Evaluation 39

considered.

While memory usage and time taken are useful metrics in miegsiaotprint on the hyper-
visor's domO, they reveal little about what effect they maydnr on the actual operation of
domO. Memory can be provisioned for in advance, and timentalees not tell us how it
is likely to affect the processing capacity of the physiealver on which the hypervisor is
running.

In order to evaluate the run-time impact on the processipgluitity of the physical servers,
the CPU usage of flow table operations in the normal backgroumaing state of the flow
table was measured. The experiment consisted of runningaaate thread maintaining the
flow table which periodically updates itself with new flow anfmation from Open vSwitch,
adding an increasing number of new flows each time. This wasdraver update periods
from 1 to 5 seconds. The CPU clock time for adding each flow wassored and calculated
as a percentage of CPU utilisation, as shown in Figure 5.8 eltident that the performance
impact for adding up to 10,000 flows is negligible for any puajlinterval accounting for
less than 5% CPU utilisation. In the best case for 10,000 flalded or updated each time,
CPU utilisation was only around 1% at a polling rate of 5 sespudhile the worst case CPU
utilisation was 3.6% at a polling rate of 1 second. For a meadistic load of 1,000 flows,
the best and worst cases are 0.002% and 0.01%, respectively.

When a domO holds the token for a particular VM, it must retiéve flows for that VM,
calculate the aggregate throughput of the flows to each heiging VM, retrieve the cost
of the links between them, and derive an overall commuraoatost for each neighbouring
VM, and an overall allocation cost for the placement of theegiVM.

To evaluate the impact of both flow table lookup size and thation lookup cost, an exper-
iment was conducted in which the number of VMs (and hencentineber of flows) that the

VM under consideration for migration communicated with wased. The results revealed
that for a VM with 10 communicating neighbours, the runtimenly 0.32s. The runtime

linearly increments to 2.97s and 30.54s for a VM with 100 a@@iQLneighbours, respec-
tively. This reveals that, for a VM with a reasonable amournt@mmunicating neighbours
(< 100), the runtime of the communication cost calculation loolaipegligible.

5.2.3 Network Impact

Similar to other data centre management schemes, S-COREexitably impose control
overhead on the network. An improperly designed controésehmay overwhelm the net-
work with additional load due to control packets, but how muwerhead will S-CORE
create?

5.2. Testbed Evaluation 40

S-CORE uses a token, which is exchanged between VMs and oka&82-bit ID and an
8-bit communication level for each VM to facilitate and cahsynchronous VM migration.
The size of the token is therefore proportional to the totahber of VMs in the data centre.
A typical production data centre has 100,000-500,000 sgrue which case the token size
will merely be between 500KB — 2.5MB.

Live migration requires VM images to reside on shared s®r@gyg., using the network
file system (NFS)). As the actual file system is on the sham@@ge, and mounted on the
servers, only the VM’s memory state will be copied from oneveeto another over the
network. However, the copying of the memory state from as®gerver to a destination
server can also be attributed as a network overhead.

During the memory migration, in particular the iterativefmopy stage [29], the hypervisor
copies all memory pages from the source to destination séfg@me memory pages change
(become “dirty”) during this process, they will be re-capietil some pre-defined threshold
has been reached, at which point the VM will be stopped angeaihining memory pages
copied without risk of dirtying. Therefore, the actual ambaf data being copied over the
network is largely dictated by the page dirty rate since aigage dirty rates result in more
data being transferred over the network. Figure 5.9 showgtbbability density function

(PDF) of the number of migrated bytes for each VM migratioptaged in the experiments.

The spread appears flat and wide due to the highly varying medidy rate at the time
when a VM is being migrated. However, with a minimal Ubuntu4lUM image and a few
lightweight test services running inside, i.e., a HTTP seand SSH server, the VM memory
sizes to migrate are all below 150MB. The mean and standardtaev of migrated bytes
are 127MB and 11MB respectively. However, given the linkamafy in today’s cloud data
centre networks, this additional control load is negligifil second’s worth of transmission
time over a 1 Gb/s link). Even a typical highly loaded comnaneeb server can have about
800MB memory usage [29], which is still an affordable netkvoverhead for an infrequent
migration schedule, such as once every few days, or evey tax@rours, in line with our
iterative, distributed token policy. In addition, as S-CORKjmation is intended to lower
overall communication cost, the network overhead of penfog a one-off or infrequent
migration for such a service may result in a lower overall ommication cost in the long
term, which is beneficial to data centre operators.

5.2.4 Impact of Network Load on Migration

When a VM is being migrated over a highly utilised path, the natign time could be in-
creased which could, in turn, increase the downtime anchpiatly violate any service level
agreements (SLAS) between the data centre operator andvhenant.

5.2. Testbed Evaluation 41

——1s polling interval
—— 2s polling interval
| |——3s polling interval
—e—4s polling interval
200 —=—5s polling interval

CPU Usage (%)

10t

10 10 10° 10° 10 10°
No. of Flows

Figure 5.8: CPU utilisation when updating flow table at vagypolling intervals.

0.06
L
0 0.04
a

0.02

110 120 130 140 150
Migrated Bytes (MB)

Figure 5.9: PDF of migrated bytes per migration.

5.3. Discussion 42

To determine how VM migration could be impacted by networkdpan experiment was
run in which two servers (i.e., domO of two hypervisors) gated a constant bit-rate UDP
stream as background traffic while migrating a VM from oneveeto the other. The migra-
tion packets were captured witbpdump[52] and the total migration time was calculated
by taking the time difference between the first and the laskgis received. As migration
time does not equate directly to downtime for live migratias part of the memory image is
copied while the VM is still running, further measuremerasl o be taken to determine the
downtime of the VM. The downtime of a VM was determined by pngithe migrating VM
with high precision pingfping [53], with the interval between pings set to 1ms.

Figure 5.10 and Figure 5.11 illustrate the distribution ®f Yhigration time and downtime,
respectively, for the migrated bytes shown in Figure 5.9eunérying background traffic
on their local links. As depicted from Figure 5.10, the meataltmigration time increases
from 2.94s for no background traffic to 4.29s with 100Mb/s atkground traffic. With a
background traffic load between 100Mb/s and 1Gb/s, migndtioe increases sub-linearly
from 4.29s to 9.34s. Migration time shows a larger spreadifghly utilised links ¢70% of
link capacity utilised) due to transferring the large sprebmigrated memory size, as shown
in Figure 5.9, over the limited amount of available link ceipa In particular, TCP’s con-
gestion control may be triggered in some cases, causingga&inin migration completion
time.

Most importantly, in data centre environments, the seregrrdime is more often measured
by the period of time that the VM is unable to service user estg This happens in the
stop-and-copytage [29] of the live migration process where a VM on a seis/stopped,
and its CPU state and any remaining memory pages are theffetraasto another server.
As shown in Figure 5.11, downtime is an order of magnituddieméan the migration time
and only increases mildly from 16.38ms to 32.63ms with iasesl background traffic on the
link.

This implies that while higher link utilisation does haversimpact on VM migration time

and migration downtime, this does not cause significantieemisruption as the amount
of data transferred during this stage is often minimal andtwa finished quickly over the
network (most data having been migrated in the previousppg-stage [29]), and the total
actual downtime of the VM (which is what data centre tenaatg @bout), is minimal.

5.3 Discussion

This chapter has presented an evaluation of the S-CORE naigrayistem through both
simulations and a testbed environment. The results of thluatrons have shown that the

5.3. Discussion

117‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ %—

10r _]

9 S H
58 A
g o - =
= 6 - =

5 o7

A n

3=

0 010.20.304050.60.70.80.9 1
Background Network Load

Figure 5.10: Virtual machine migration time.

40t |
535— .
§3o i Bég TB
gzsp‘iégkk i*if
Q20 1 [/ H < :
155 c

10

"0 01020304050.6070809 1
Background Network Load

Figure 5.11: Downtime under various network load condgion

5.3. Discussion 44

theoretical basis of S-CORE’s migration algorithm can susfodly reduce the overall com-
munication cost for VMs in a data centre across a variety kériopassing policies, with
the distributed load-aware token passing policy havinggtieatest improvement in overall
communication cost.

The testbed evaluation showed the performance of S-CORESugamodules and their
impact on the systems they execute on, as well assessingigfaet on migration caused
by varying network traffic loads. The results from this shdwieat, for normal data centre
traffic loads and VM distributions, the time, memory usagej &PU usage, for adding,
updating and deleting flows were minimal for a migration egstsuch as S-CORE that
operates periodically, as were the times for performingratign calculations. In assessing
migration downtime under varying traffic loads, it was alsarid that downtimes can be
minimised to the order of milliseconds, with all migratioovehtimes in the evaluation being
less than 1 second.

45

Chapter 6
Conclusions

Virtualisation has been an increasingly popular mechamsmcent years to make better use
of powerful hardware resources. In particular, VMs haveegathe way for cloud comput-
ing, where operators can reap the benefits of over-subsgritardware resources including
servers and networking resources. With data centres lplkgins of thousands, or even
hundreds of thousands, of intercommunicating VMs, paewi# traffic can cause a large
degree of congestion, especially in the highly over-subsdrcore links of the network.

Chapter 3 summarised an existing distributed migrationrélga, S-CORE, designed to
reduce network communication from costly core links at tighHayers of the network
topology, to less costly lower layers.

In this thesis | have discussed an implementation of the S-C@Rfation scheme, and
presented an extensive evaluation of S-CORE through botHations and testbed experi-
ments.

The remainder of this chapter will revisit my thesis statatmmand how this thesis has ad-
dressed it, along with the contributions made in this thasid future work than can be
undertaken to extend the work presented.

6.1 Thesis Statement

The thesis statement is repeated here for reference:

| assert that a distributed, network-aware VM migratioroaltpm exploiting network moni-
toring instrumentation in end-systems can reduce corgyeatiross heavily over-subscribed
links under realistic data centre traffic loads, with miniroeerhead on the data centre in-
frastructure. | will demonstrate this by:

6.2. Future Work 46

e Providing an implementation of a distributed VM migratidgaithm that is capable
of operating within the bounds of existing data centre nekvaochitectures and traffic.

e Enabling a hypervisor to conduct network monitoring for YHds it hosts, as well as
making migration decisions on behalf of the VMs.

e Defining a mechanism able to identify the location of a reméké within a data
centre.

e Evaluating the properties of the algorithm and its impletagon over realistic data
centre workloads within simulation and testbed environtsieshowing that it can ef-
ficiently reduce network congestion, with minimal operatiboverhead on the infras-
tructure on which it runs.

To show that | have addressed the statement above, | will sursethe work undertaken in
this thesis, and the results of that work.

I implemented the distributed S-CORE migration system on fapeoXen hypervisor in the
Python programming language, and have shown its perforenamgact is negligable on a
testbed setup, under data centre traffic characterisficstexl in other studies.

The S-CORE modules were implemented within the control dorfdomO) of the Xen hy-
pervisor, and are able to perform network monitoring andratign decision duties on behalf
of the VMs hosted, partially through the use of packet irgpton to allow the hypervisor
to receive control packets sent to VMs.

S-CORE is able to successfully identify the location of a reaxdM by using the IP ad-

dresses of VMs as VM IDs, and having the underlying hypena$a VM capture a location

request packet sent to a VM it hosts, with the hypervisoraedmg with the address of the
physical server. As physical servers do not move, a statyping of the topology can be
created in advance, and this can be consulted when a locatjoest is made.

Finally, the S-CORE scheme has been evaluated in simulatmhsraa testbed environment,
using data centre traffic characteristics, with the reslitsving that S-CORE can monitor
such traffic with minimal impact on the CPU or memory of the pbagkservers. S-CORE is
also able to make timely migration decisions and can gréabyove network performance
in a scalable fashion using its many token passing poligiggrticular its load-aware token
passing policy.

6.2 Future Work

This thesis has presented a distributed VM migration pdhey is able to remove congestion
from the over-subscribed core links of data centre netweéimksugh pairwise migration.

6.2. Future Work 47

There are several future paths that this work can followcWlaire discussed in this section.

6.2.1 Incorporation of System-Side Metrics

There are many works that focus solely on system-side rsef2ic34] or network-based
metrics [7, 8], but few do both.

Currently, S-CORE only checks that the destination server fgration has a slot available
for a VM and has sufficient memory capacity to host the souldeuvider consideration for

migration. However, S-CORE could be extended to balancersysige resources so that,
say, two competing VM workloads are not placed on the samegef possible.

This could be formulated as a combinatorial optimisatioobpem that considers the com-
munication cost reduction as well as system-side worklggd {i.e., CPU usage, memory
requirements). To simplify the problem, it could insteadiB@ghted so that communication
cost reduction is prioritised and that VMs within the sanekrare then balanced based upon
system-side resource requirements.

6.2.2 Using History to Forecast Future Migration Decisions

Some attempts have been made at using workload forecastiagltin migration deci-
sions [36, 37]. Using history can help make stable VM plageisieand reduce the risk
of oscillations in the migration process, where a VM may egpdly jump between two
servers.

While S-CORE currently uses network throughput metrics asra farhistory for making
informed migration decisions, it does not store historyudtibe migrations that have taken
place. Therefore, there is the possibility that a VM coultline to a previous placement
location during a migration phase. Storing migration hgtoould help mitigate any such
risk, however unlikely.

6.2.3 Implementation in a Lower-Level Programming Language

Xen’s management interfacemis implemented in Python. S-CORE’s modules were im-
plemented in Python for the reasons of ease of communicaditbrthe xm interface and the
periodic operation of the modules. The the evaluation in @ephas shown that the impact
on servers and on S-CORE'’s performance with this implememtagiminimal.

However, should the benefits of a lower-level programmimglege such as C be desired,
there are tools out there that allow for translating, or citimgy the Python modules into

6.3. Summary & Conclusions 48

C code, which could save performing a full rewrite of the mledun another language.
PyPy [54] and Cython [55] are two such tools.

6.3 Summary & Conclusions

This thesis has presented the implementation of a dis&éibutM migration scheme known
asS-CORES-CORE is capable of performing local monitoring of VM netlwtmaffic using
modules written to interact with the Xen hypervisor. The med are able to operate within
the hypervisor to make migration decisions on behalf of VMajntaining transparency for
VMs from the platform on which they are running.

The S-CORE scheme is able to iteratively reduce congestion freavily over-subscribed
core links in the network and reduce the overall commurocatbst across the network, un-
like existing migration works, through its distributed magjon algorithm and token passing
policies. Simulations and testbed experiments have shbamnthe implementation of S-
CORE is capable of operating under typical data centre traffidd in reasonable timescales
with minimal impact on the servers it operates on, or on thes\tMhares a server with.

BIBLIOGRAPHY 49

Bibliography

[1]

[2]

[3]

A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “Tdust of a cloud: research
problems in data center networkSIGCOMM Comput. Commun. Rexol. 39, no. 1,
pp. 68-73, December 2008.

T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Bddmox and gray-box strate-
gies for virtual machine migration,” ifroceedings of the 4th USENIX conference on
Networked systems design & implementation (NSDI,’8p)il 2007.

A. Verma, P. Ahuja, and A. Neogi, “pMapper: power and naifpn cost aware appli-
cation placement in virtualized systems,Rroceedings of the 9th ACM/IFIP/USENIX
International Conference on Middleware (Middleware '0Becember 2008, pp. 243—
264.

[4] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. KimL&hiri, D. A. Maltz,

[5]

[6]

P. Patel, and S. Sengupta, “VL2: a scalable and flexible datgecnetwork,” inProc.
ACM SIGCOMM’092009, pp. 51-62.

G. Wang and T. S. E. Ng, “The impact of virtualization ontwerk performance of
Amazon EC2 data center,” ifroceedings of the 29th conference on Information com-
munications (INFOCOM '1Q)March 2010, pp. 1163-1171.

R. Kohavi, R. M. Henne, and D. Sommerfield, “Practical guidecontrolled exper-
iments on the web: listen to your customers not to the hipppoProceedings of the
13th ACM SIGKDD international conference on Knowledge disgpaad data mining
(KDD ’'07), August 2007, pp. 959-967.

[7] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya, Fdddar, and A. lyer,

“Remedy: Network-aware steady state VM management for datéers,” inNET-
WORKING 2012ser. Lecture Notes in Computer Science, 2012, vol. 72891 9p-
204.

[8] J. Sonnek, J. Greensky, R. Reutiman, and A. Chandra, “SgarMinimizing com-

munication overhead in virtualized computing platformsigsdecentralized affinity-

Bibliography 50

aware migration,” inrParallel Processing (ICPP), 2010 39th International Confese
on, September 2010, pp. 228 -237.

[9] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “DCell: a ltde and fault-
tolerant network structure for data centers,’Rroceedings of the ACM SIGCOMM
2008 conference on Data communicatidwugust 2008, pp. 75-86.

[10] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zharand S. Lu, “BCube:
a high performance, server-centric network architectarenfodular data centers,” in
Proceedings of the ACM SIGCOMM 2009 conference on Data coneation, August
2009, pp. 63-74.

[11] C.E. Leiserson, “Fat-trees: universal networks fodwaare-efficient supercomputing,”
IEEE Trans. Computyvol. 34, no. 10, pp. 892-901, October 1985.

[12] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalablenamodity data center network
architecture,SIGCOMM Comput. Commun. Rexol. 38, pp. 63—74, August 2008.

[13] C. Raiciu, M. lonescu, and D. Niculescu, “Opening up bldxk networks with
CloudTalk,” in Proceedings of the 4th USENIX conference on Hot Topics in Cloud
Computing (HotCloud’12)June 2012, pp. 6-6.

[14] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. KimL.&hiri, D. A. Maltz,
P. Patel, and S. Sengupta, “VL2: a scalable and flexible dattecnetwork,” inPro-
ceedings of the ACM SIGCOMM 2009 conference on Data commignca#ugust
2009, pp. 51-62.

[15] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. HugRgMiri, S. Radhakrishnan,
V. Subramanya, and A. Vahdat, “Portland: a scalable faldrant layer 2 data cen-
ter network fabric,” inProceedings of the ACM SIGCOMM 2009 conference on Data
communicationAugust.

[16] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and Rk&haThe nature of data
center traffic. measurements & analysis,’Rroceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference (IMG ®&)tember 2009, pp. 202—
208.

[17] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understangddata center traffic
characteristics,SIGCOMM Comput. Commun. Rexol. 40, no. 1, pp. 92-99, January
2010.

[18] J. Dean and S. Ghemawat, “MapReduce: simplified datagssicg on large clusters,”
Commun. ACMvol. 51, no. 1, pp. 107-113, January 2008.

Bibliography 51

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

T. Benson, A. Akella, and D. A. Maltz, “Network traffic ctacteristics of data cen-
ters in the wild,” inProceedings of the 10th ACM SIGCOMM conference on Internet
measurement (IMC "10November 2010, pp. 267-280.

C. Hopps, “Analysis of an Equal-Cost Multi-Path Algomntti RFC 2992
(Informational), Internet Engineering Task Force, NovO@0[Online]. Available:
http://lwww.ietf.org/rfc/rfc2992.txt

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, andhAdat, “Hedera: dy-
namic flow scheduling for data center networks,’Hroceedings of the 7th USENIX
conference on Networked systems design and implementati@n (NG, April 2010,
pp. 19-19.

T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: dirgrained traffic en-
gineering for data centers,” iRroceedings of the Seventh COnference on emerging
Networking EXperiments and Technologies (CoNEXT,’2Q)1, pp. 8:1-8:12.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,Reterson, J. Rexford,
S. Shenker, and J. Turner, “Openflow: enabling innovatioceimpus networks SI1G-
COMM Comput. Commun. Revol. 38, no. 2, pp. 6974, March 2008.

D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “Detaducing the flow com-
pletion time tail in datacenter networks,” Rroceedings of the ACM SIGCOMM 2012
conference on Applications, technologies, architectusesl protocols for computer
communicatiopnAugust 2012, pp. 139-150.

“WMware vSphere,” accessed: 12 September 2012. [@hliAvailable: http:
Ilivww.vmware.com/uk/products/datacenter-virtuai@atvsphere/overview.htmi

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A, RoNeugebauer, I. Pratt,
and A. Warfield, “Xen and the art of virtualization,” ifroceedings of the nineteenth
ACM symposium on Operating systems principles (SOSP@3&pber 2003, pp. 164—
177.

“Ubuntu,” accessed: 29 October 2012. [Online]. Avli&a http://www.ubuntu.com/

“Open vSwitch,” accessed: 26 November 2012. [Onlindjailable: http:
/lopenvswitch.org/

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limplaéhatt, and A. Warfield,
“Live migration of virtual machines,” ilProceedings of the 2nd conference on Sympo-
sium on Networked Systems Design & Implementation - VolumeR2I (B%), October
2005, pp. 273-286.

Bibliography 52

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cdstiual machine live
migration in clouds: A performance evaluation,” @oud Computingser. Lecture
Notes in Computer Science, 2009, vol. 5931, pp. 254-265.

S. Akoush, R. Sohan, A. Rice, A. Moore, and A. Hopper, “Rotilg the perfor-
mance of virtual machine migration,” iModeling, Analysis Simulation of Computer
and Telecommunication Systems (MASCOTS), 2010 IEEE ItimabSymposium gn
August 2010, pp. 37 —46.

G. Jung, M. Hiltunen, K. Joshi, R. Schlichting, and C. Rdjstral: Dynamically man-
aging power, performance, and adaptation cost in cloudsitructures,” irDistributed

Computing Systems (ICDCS), 2010 IEEE 30th International CenteronJune 2010,
pp. 62 —73.

A. Stage and T. Setzer, “Network-aware migration coinéand scheduling of differ-
entiated virtual machine workloads,” ifroceedings of the 2009 ICSE Workshop on
Software Engineering Challenges of Cloud Computing (CLOUD, 'Dgjy.

M. Cardosa, M. Korupolu, and A. Singh, “Shares and ugitbased power consolida-
tion in virtualized server environments,” integrated Network Management, 2009. IM
'09. IFIP/IEEE International Symposium pdune 2009, pp. 327 —334.

D. Breitgand and A. Epstein, “SLA-aware placement of tiruktual machine elastic
services in compute clouds,” Integrated Network Management (IM), 2011 IFIP/IEEE
International Symposium oiiay 2011, pp. 161 —168.

S. Mehta and A. Neogi, “Recon: A tool to recommend dynaseic/er consolidation in
multi-cluster data centers,” Network Operations and Management Symposium, 2008.
NOMS 2008. IEEEApril 2008, pp. 363 —370.

N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement wftual machines for
managing SLA violations,” inntegrated Network Management, 2007. IM '07. 10th
IFIP/IEEE International Symposium piMay 2007, pp. 119 —128.

D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, |. Whally, &d®nible, “Improving per-
formance and availability of services hosted on laaS cloutis structural constraint-
aware virtual machine placement,” 8ervices Computing (SCC), 2011 IEEE Interna-
tional Conference anJuly 2011, pp. 72 -79.

X. Meng, V. Pappas, and L. Zhang, “Improving the scdlgbof data center networks
with traffic-aware virtual machine placement,” INFOCOM, 2010 Proceedings IEEE
March 2010, pp. 1 -9.

Bibliography 53

[40] V. Mann, A. Kumar, P. Dutta, and S. Kalyanaraman, “VMFld_everaging vm mobil-
ity to reduce network power costs in data centersNET'WORKING 201,1ser. Lecture
Notes in Computer Science, 2011, vol. 6640, pp. 198-211.

[41] F. P. Tso, G. Hamilton, K. Oikonomou, and D. P. Pezards\ptementing scalable,
network-aware virtual machine migration for cloud datateesy” in Cloud Computing
(CLOUD), 2013 IEEE 6th International Conference, dane 2013, pp. 557-564.

[42] F. P. Tso, K. Oikonomou, E. Kavvadia, G. Hamilton, andM Pezaros, “S-CORE:
Scalable communication cost reduction in data center emmients,” School of Com-
puting Science, University of Glasgow, Tech. Rep. TR-2018;2813.

[43] Cisco, “Data center: Load balancing data center sesyi@904.
[44] “Xen hypervisor,” accessed: 6 November 2012. [Onlidejilable: http://xen.org/

[45] “Xen management user interface,” accessed: 28 NoveliE2. [Online]. Available:
http://wiki.xen.org/wiki/XM/

[46] R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distitié&d algorithm for minimum-
weight spanning treesACM Trans. Program. Lang. Syswol. 5, no. 1, pp. 66-77,
January 1983.

[47] “The ns-3 network simulator.” [Online]. Available: tipt//www.nsnam.org/

[48] S. Kandula, J. Padhye, and P. Bahi, “Flyways to de-candgs center networks,” in
Proc. ACM HotNetsNovember 2009.

[49] T. Benson, A. Akella, and D. A. Maltz, “Network traffic crecteristics of data centers
in the wild,” in Proc. ACM SIGCOMM Internet Measurement Conf. (IMC’12010,
pp. 267-280.

[50] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,&rRer, and I. Stoica, “Job
scheduling for multi-user MapReduce clusters,” EECS DepamtpUniversity of Cal-
ifornia, Berkeley, Tech. Rep., April 2009.

[51] “Iperf,” accessed: 18 October 2012. [Online]. Availbhttp://iperf.sourceforge.net/
[52] “tcpdump,” accessed: 18 October 2012. [Online]. Aadié: http://www.tcpdump.org/
[53] “fping,” accessed: 9 January 2013. [Online]. Avaikabhttp://fping.sourceforge.net/
[54] “PyPy,” accessed: 17 January 2013. [Online]. Avagaltittp://pypy.org/

[55] “Cython,” accessed: 17 January 2013. [Online]. Avd#alttp://www.cython.org/

