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Abstract

In finite dimensions, Hopf algebras have a very nice duality theory, as the vector space dual

of a finite-dimensional Hopf algebra is also a Hopf algebra in a canonical way. This breaks

down in the infinite-dimensional setting, as here the dual need not be a Hopf algebra.

Instead, one chooses a subalgebra of the vector space dual called the finite dual. This

subalgebra is always canonically a Hopf algebra.

In this thesis, we aim to better understand the finite dual by trying to understand how

the finite dual of a crossed product relates to the finite duals of its components.

We start by investigating what the assignment sending a Hopf algebra to its finite dual

does to functions. Unlike in the finite-dimensional case, this is no longer a contravariant

exact monoidal functor and might not even be a functor at all. However, many of the

results true thanks to this in finite dimensions still always hold, while we can find necessary

and sufficient conditions for others to hold as well as specific situations in which they are

always true.

Crossed products generalise the notion of a smash product, which can be viewed as

the Hopf algebra equivalent of the semidirect product. Many Hopf algebras of interest

can be written as crossed products. We study the finite dual of such a product and find

numerous results when assuming conditions such as one of the components being finite-

dimensional or the crossed product being a smash product. These can be combined for

strong statements about the finite dual under certain assumptions.

Finally, we consider Noetherian Hopf algebras which are finite modules over central

Hopf subalgebras. Many of these algebras decompose as crossed products, so that we can

use our previous results to study them. However, we also find results that are true without

assuming such a decomposition. This allows us to calculate the finite duals of numerous

examples, including a quantised enveloping algebra at a root of unity and all the prime

affine regular Hopf algebras of Gelfand-Kirillov dimension one with prime PI degree.
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Chapter 1

Introduction

1.1 Introduction

This thesis is about the finite duals of crossed products and of Noetherian Hopf algebras

which are finite over a central Hopf subalgebra.

Let k be any field. Hopf algebras are a type of unital associative k-algebra with extra

structure. We give the full definition in Section 1.2 along with classical examples of Hopf

algebras in Section 1.2.1. Hopf algebras are widely studied for their applications to other

areas as well as for their own sake.

The structure imposed on a Hopf algebra by the axioms gives rise to a number of

interesting properties and symmetries. In Section 1.3 we look at one of these properties

in particular, which is that when a Hopf algebra H is finite-dimensional, the vector space

dual H∗ consisting of the k-linear maps from H to k is also a Hopf algebra in a canonical

way. Moreover, we have (H∗)∗ ∼= H as Hopf algebras. This allows for a nice duality theory,

which is very useful for proving results in the finite-dimensional setting.

However, we are primarily interested in infinite-dimensional Hopf algebras, and here

this does not work out so nicely: the vector space dual H∗ of an infinite-dimensional Hopf

algebraH is not necessarily a Hopf algebra with respect to the structure we want. However,

there exists a canonical subspace H0 of H∗, consisting of those functions vanishing on an

ideal of finite codimension in H, which is always a Hopf algebra and is moreover maximal

in H∗ with respect to being one. This is known as the finite dual of H and seems to be

the obvious candidate to replace H∗ in infinite dimensions.

In Section 1.4, we look at several examples of Hopf algebras H and their finite duals

and what properties we can conclude the finite dual has. We find that H0 preserves far

8



CHAPTER 1. INTRODUCTION 9

fewer of the properties of H in comparison to the finite-dimensional case. For instance, we

see that
(
H0
)0 � H in general. We also see that H0 need not preserve the size of H, where

by size we refer to various different, related notions such as vector space, Gelfand-Kirillov

or global dimension along with properties such as being affine or Noetherian. This can go

in both directions: H0 can be smaller than H, as seen in an example where H is infinite-

dimensional but H0 is one-dimensional. H0 can however also be bigger than H. For

instance, we see that for H = k[x], H0 is not affine, not Noetherian and has infinite global

and Gelfand-Kirillov dimension as well as uncountable vector space dimension. Finally,

we see that taking duals need not preserve subalgebras in any sense: when A ⊆ H is a

subalgebra, even Hopf subalgebra, of H, A0 need not be either a subspace or a quotient

of H0.

All these facts are major obstructions if we want to generalise any finite-dimensional

results using the dual to infinite-dimensions. We would like to look further into what is

happening, what properties of H determine the size of H0 and whether we might be able

to find a subalgebra of H0 that better preserves the properties of H in cases where H0 is

too big.

The approach we take in this thesis is one inspired by category theory. We study how

functions between Hopf algebras transfer to the dual setting, among others addressing

the question of what happens to subalgebras under taking finite duals. Knowing what

happens to functions in the dual setting allows us to look into how the finite duals of Hopf

algebras that are products of algebras relate to their components (Chapter 4) or how the

finite dual of a Hopf algebra which is a finite module over some central Hopf subalgebra

relates to the dual of said Hopf subalgebra and canonical quotient Hopf algebra (Chapter

5) via for instance studying what happens to canonical embedding and projection maps.

The results we gain give us some feeling for what type of structure the finite dual preserves

and what it does not on the one hand, while allowing us to calculate the finite duals of

large classes of examples on the other.

In Chapter 2, we define the notion of a crossed product, give examples, and make note

of the exact setting we will be working in. Crossed products, introduced independently

by Blattner et al ( [4]) and Doi and Takeuchi ( [12]), are a way to combine an algebra

and a Hopf algebra acting on it to form a new algebra. This can be viewed as similar to

forming the semidirect product of groups, although we will see that crossed products are

more general as they incorporate additional twisting.
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Although the definition of a crossed product only gives us an algebra structure, and

indeed we will see that not all crossed products are Hopf algebras, many Hopf algebras we

are interested in arise in this way. Moreover, the crossed product structure on such a Hopf

algebra H often arises from a Hopf surjection on H. From this perspective the question

of when a Hopf algebra H can be written as a crossed product can be seen as a specific

case of the general question of when quotient objects give rise to decompositions. In the

case of Hopf algebras, there is an easy condition guaranteeing such a decomposition: the

existence of a convolution invertible right comodule map, known as a cleaving map, from

the quotient back to the original Hopf algebra.

In Chapter 3, we consider how functions transfer to the dual in the finite-dimensional

world and how far this generalises to finite duals. In Proposition 3.1, we record various

classical results about duality of functions in the finite-dimensional case: given a map

f : B → C there is a well-defined map f∗ : C∗ → B∗ which is injective if f is surjective

and vice versa, an algebra map if f is a coalgebra map and vice versa, and so on. We will

see that both the existence of such a map and it being surjective when the original map

is injective cannot be immediately generalised to finite duals, with examples showing how

this can fail. However, we find necessary and sufficient conditions on f which determine

exactly when these implications are true. Our main result in this chapter is Theorem 3.12,

which generalises Proposition 3.1 as far as possible. This means that among others we

have necessary and sufficient conditions describing when a subalgebra A ⊆ H gives rise to

a quotient map H0 → A0.

In Chapter 4, we use the results of Chapter 3 to study the finite dual of a crossed

product where the crossed product structure arises from a Hopf surjection. Although

we cannot say much in full generality, we find much stronger results when we impose

various common assumptions on the crossed product. The main results of interest here

are Theorems 4.9, 4.13 and 4.19. Moreover, because the assumptions we make on the Hopf

algebra for each of these theorems are relatively independent, the results can combine when

it satisfies several of them. We note some of these combinations in several corollaries and

discuss how one of these generalises work done by Donkin in [13]. We then give a complete

overview of what our results say about what type of crossed product in Table 4.1.

In Chapter 5, we look at a specific type of Hopf algebra that occurs frequently, namely

a Hopf algebra H containing a central Hopf subalgebra A ⊆ H such that H is finitely-

generated as an A-module, where the module action is given by multiplication in H. We
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restrict ourselves to the case where H is Noetherian, which still includes many examples

we are interested in such as quantised enveloping algebras at roots of unity.

Such algebras always have a canonical Hopf surjection from H to a finite-dimensional

quotient algebra, and it is an open question when this gives rise to a crossed product

decomposition of H, with a counterexample for k not algebraically closed on one hand

and various affirmative results and examples on the other. This means that we can apply

(and, in fact, slightly strengthen) the results of Chapter 4 in this situation. However,

we also find that under certain conditions on A and H, we can describe the finite dual

or certain Hopf subalgebras of the finite dual without needing to assume that H itself

decomposes as a crossed product. These results let us calculate the finite dual of the

quantised enveloping algebra Uε(sl2(k)) for ε a root of unity and form a conjecture for the

finite dual of Uε(g) for any finite-dimensional semisimple g and note a promising result in

this vein in the form of a canonical Hopf subalgebra of the dual.

In Chapter 6, we test our results on examples by turning our attention to the prime

affine regular Hopf algebra of Gelfand-Kirillov dimension one classified by Brown and

Zhang in [6]. Their work forms part of an effort to classify such Hopf algebras: Brown

and Zhang give a list of examples and show it contains all such Hopf algebras satisfying

another technical condition, a corollary of which says it contains all those with prime PI-

degree. Recent work by Wu, Liu and Ding ( [52]) completes this classification by defining

another family of Hopf algebras and proving that any prime affine regular Hopf algebra

with Gelfand-Kirillov dimension one is isomorphic to either one of their family or one

of those listed by Brown and Zhang. Due to the fact that this part of the thesis had

already been written when their work came out, we look only at those Hopf algebras listed

in [6]. These consist of the polynomial and Laurent polynomial algebra in one variable,

the group algebra of the dihedral group along with the two infinite families, namely the

infinite-dimensional Taft algebras and the generalised Liu algebras. We use the work of

Chapters 4 and 5 to calculate their finite duals.

Finally, Chapter 7 concludes the thesis by giving some additional motivation and poten-

tial application for our results by discussing the concept of a distinguished Hopf subalgebra

of the finite dual as well as possible applications, work that has already been done with

respect to this idea and how our results tie into this.

Chapters 1 and 2 focus on providing the definitions and explaining the setting that we

work in, and thus mainly consist of providing known results in our specific context and
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notation with little original work. Chapters 3, 4 and 5 primarily consist of original work

and contain the main results of the thesis, while 6 is partially a recap of known results

but mostly original. There are also sections at the end of each chapter explaining which

results stated in it are original work and which are not in more detail. When proofs are

given for material that is in one of these sections stated to already be known, they are

presented for clarity or because the result in question could not be located in the form

needed, not because the result is original.

1.2 Hopf algebras

Throughout, let k be a field.

Throughout the thesis, when we refer to a map we always assume it is linear unless

stated otherwise, and similarly all unadorned tensor products are over k. Moreover, by

algebra we mean a unital associative k-algebra unless stated otherwise.

In order to define a Hopf algebra, we need some preliminary definitions. First, a

coalgebra is the dual notion to an algebra.

Definition 1.1. A coalgebra C is a k-vector space along with two structure maps: a

comultiplication or coproduct ∆ : C → C ⊗ C and a counit ε : C → k, satisfying the

following axioms:

(id⊗∆) ◦∆ = (∆ ◦ id) ◦∆, (Coassociativity)

and

µ ◦ (ε⊗ id) ◦∆ = µ ◦ (id⊗ε) ◦∆ = id, (Counit)

where µ denotes the canonical vector space isomorphism given by scalar multiplication.

Remark 1.2. We can write ∆ explicitly as follows: given a coalgebra C and c ∈ C, there

exists n > 0 and ci1, c
i
2 ∈ C for 1 ≤ i ≤ n such that ∆(c) =

∑n
i=1 c

i
1 ⊗ ci2. For ease of

reading we omit the summation index, leaving

∆(c) =
∑

c1 ⊗ c2.

This is known as Sweedler notation and we will use it throughout.

Under Sweedler notation, the coassociativity axiom becomes

∑
(c1)1 ⊗ (c1)2 ⊗ c2 =

∑
c1 ⊗ (c2)1 ⊗ (c2)2 :=

∑
c1 ⊗ c2 ⊗ c3
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and the counit axiom becomes∑
ε(c1)c2 =

∑
c1ε(c2) = c

for c ∈ C.

Note that, similarly to the unit map in an algebra, the counit is unique.

Lemma 1.3. Let C be a coalgebra. Then the counit ε : C → k is unique: if there exists a

map ε′ : C → k also satisfying the counit axiom, then ε = ε′.

Proof. Suppose ε′ : C → k is another map satisfying the counit axiom. Then for all c ∈ C

we have

ε(c) = ε
(∑

ε′(c1)c2

)
= ε′

(∑
c1ε(c2)

)
= ε′(c)

as required, using linearity of ε and ε′.

A bialgebra is both an algebra and a coalgebra, with the two structures being compat-

ible:

Definition 1.4. A bialgebra is an algebra which is also a coalgebra such that the coproduct

and counit maps are algebra maps.

Remark 1.5. Any coalgebra C has a distinguished subspace of codimension one given by

the kernel of the counit map. When C is a bialgebra, this subspace is in fact an ideal,

called the augmentation ideal . We denote it by

C+ := ker ε.

A Hopf algebra is a bialgebra along with a specific map that translates between the

structures:

Definition 1.6. A Hopf algebra H is a bialgebra such that there exists a map S : H → H

satisfying

m ◦ (id⊗S) ◦∆ = m ◦ (S ⊗ id) ◦∆ = u ◦ ε, (Antipode)

where u : k → H is the unit map given by u(λ) = λ1H and m : H ⊗ H → H is the

multiplication map. In Sweedler notation, this means that for all h ∈ H,∑
S(h1)h2 =

∑
h1S(h2) = εH(h)1H .

We call the map S the antipode.
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The antipode is also unique, and is always an algebra and coalgebra antihomomor-

phism:

Lemma 1.7. Let H be a Hopf algebra. Then

(i) The antipode S is unique: if S′ : H → H is another map satisfying the antipode axiom,

then S = S′.

(ii) S is an algebra and a coalgebra antihomomorphism, that is,

S(hk) = S(k)S(h)
∑

S(h1)⊗ S(h2) =
∑

S(h)2 ⊗ S(h)1

S(1) = 1, ε ◦ S = ε

for all h, k ∈ H.

Proof. (i) Suppose S, S′ : H → H are two maps both satisfying the antipode axiom. Then

given h ∈ H, we have

S(x) =
∑

ε(x1)S(x2) =
∑

S′(x1)x2S(x3) =
∑

S′(x1)ε(x2) = S′(x)

So S = S′ as required.

(ii) This is by [1, Theorem 2.1.4].

Note that, similarly to dualising the notion of an algebra to obtain a coalgebra, we

can dualise notions such as algebra maps, ideals and modules to obtain coalgebra maps,

coideals and comodules, and furthermore combine them so that we can talk about bialgebra

and Hopf algebra maps or Hopf ideals. Although we do use these concepts throughout

the thesis, the definitions are not given here for reasons of space. We refer the reader

to [36, Chapter 1] in case they are unfamiliar.

1.2.1 Examples of Hopf algebras

The following are some classical examples of Hopf algebras we will be referring to through-

out. In each case, we state what the structure maps are and give a reference to where it

is verified that the axioms are satisfied.

Example 1.8. Let k be a field and G any group. The group algebra kG is the algebra

with vector space basis given by the elements of G and multiplication given by the group

multiplication, extended linearly. This is a Hopf algebra: given g ∈ G we define the

coproduct to be ∆(g) = g⊗g, the counit to be ε(g) = 1 and the antipode to be S(g) = g−1.
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The fact that the Hopf algebra axioms are satisfied follows immediately from the group

axioms: for instance, the antipode axiom is simply the condition that for all g ∈ G, g−1 is

a left and right inverse for g.

This example is reason for the following definition.

Definition 1.9. Given any Hopf algebra H, we call a nonzero element h ∈ H grouplike if

we have ∆H(h) = h⊗ h.

Note that the counit and antipode axioms mean that for any grouplike element h ∈ H

we must have εH(h) = 1 and h invertible with SH(h) = h−1.

Example 1.10. Let k be a field and g a finite-dimensional Lie algebra over k with Lie

bracket denoted by [−,−]. Suppose g has basis {x1, ..., xn}. The universal enveloping

algebra of g is

U(g) := k〈x1, ..., xn | xjxi − xixj = [xi, xj ]〉.

This is a Hopf algebra: given x ∈ g we define the coproduct as ∆(x) = x⊗1+1⊗x, counit

as ε(x) = 0 and antipode as S(x) = −x, extending each algebraically or anti-algebraically

as appropriate to define them on the whole of U(g). We refer to [1, Examples 2.5 and 2.7]

for the details.

A special case of this is when g is abelian, with [xi, xj ] = 0 for all i and j. Here we

have U(g) = k[x1, ..., xn], and thus we find the polynomial algebra is a Hopf algebra under

the coproduct, counit and antipode given above.

Definition 1.11. Given any Hopf algebra H, we call an element h ∈ H skew-primitive or

(g, g′)-primitive if there exist grouplike elements g, g′ ∈ H such that

∆(h) = h⊗ g + g′ ⊗ h.

If g = g′ = 1, we simply call h primitive.

Again, the counit and antipode axioms guarantee that any (g, g′)-primitive element h

satisfies ε(h) = 0 and S(h) = −(g′)−1hg−1.

Both group algebras and universal enveloping algebras are cocommutative, meaning

that the coproduct is preserved under tensor flip: in other words, given any element x of

the Hopf algebra, we have ∑
x1 ⊗ x2 =

∑
x2 ⊗ x1.

The following is an example of a family of Hopf algebras which are not cocommutative in

general.
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Example 1.12. Let k be a field and G ⊆ kn be an affine algebraic group. Then the

coordinate ring of G is given by

O(G) := k[X1, ..., Xn]/Z(G),

where Z(G) is the ideal given by those polynomial functions that vanish on G. We can

view O(G) as the algebra of polynomial functions on G. This is a Hopf algebra, where

given f ∈ O(G) and x, y ∈ G we set ε(f) = f(1G), S(f)(x) = f(x−1) and

∆(f) ∈ O(G)⊗O(G) ∼= O(G×G)

to be such that

∆(f)(x⊗ y) = f(xy).

Thus the coalgebra structure comes from the group structure on G.

As in the case of the group algebra, the fact that O(G) satisfies the axioms of a Hopf

algebra follows from the fact that G satisfies those of an affine algebraic group. For details,

see for instance [21, Section 7.6] or [47, Section 2.1.2].

Remark 1.13. Note that as coordinate rings are quotients of polynomial rings, they are

always commutative. In characteristic p, there exist other commutative Hopf algebras. For

instance, the group algebra kCp cannot be isomorphic to a coordinate ring as it contains

nilpotent elements such as x − 1, where x is the generating element of Cp, while O(G)

cannot contain nonzero nilpotent elements for any G as it is the quotient of an integral

domain by a semiprime ideal.

However, we are primarily interested in Hopf algebras over fields of characteristic zero.

Here, all affine commutative Hopf algebras arise through coordinate rings: there is a con-

travariant equivalence of categories between affine algebraic groups and commutative affine

Hopf algebras given by sending an algebraic group G to O(G) and sending a commutative

Hopf algebra H to Alg(H, k), the set of algebra maps from H to k. This equivalence is

described in detail in for instance [23, Section 2.3].

The following is an example of a family of Hopf algebras which are neither commutative

nor cocommutative:

Example 1.14. Let k be an algebraically closed field, n and t be integers with t ≥ 1,

n > t and gcd(n, t) = 1, and q be a primitive nth root of unity in k. Then we define the

finite-dimensional Taft algebra on those parameters by

Hf (n, t, q) ∼= k〈x, g | xg = qgx, gn = 1, xn = 0〉.
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This is a Hopf algebra, where the coproduct, counit and antipode are given by

∆(x) = x⊗ 1 + gt ⊗ x ε(x) = 0 S(x) = −g−tx = −gn−tx

∆(g) = g ⊗ g ε(g) = 1 S(g) = g−1 = gn−1,

so g is grouplike and x is (1, gt)-primitive. This family of Hopf algebras was first introduced

by Taft in [49] for t = 1, and the Hopf algebra axioms are verified there.

Lu, Wu and Zhang ( [32, Example 2.7]) extended this family to infinite dimensions,

without the assumption that gcd(n, t) = 1. The infinite-dimensional Taft algebra H(n, t, q)

is given by the same generators as Hf (n, t, q), the same coproduct, counit and antipode

on each generator, and the same relations except that we drop the relation that xn = 0.

So as an algebra, we have

H(n, t, q) ∼= k〈x, g | xg = qgx, gn = 1〉.

We note that when gcd(n, t) = 1, the finite-dimensional Taft algebra arises as the quotient

of H(n, t, q) by the Hopf ideal generated by xn. This will be discussed in more detail in

Example 2.12.

The Taft algebras are some of the simplest examples of noncommutative, noncocom-

mutative algebras and also satisfy certain other properties we are interested in. We will

therefore be using them as examples throughout the thesis and will learn more about their

structure as we do. For instance, in Examples 2.12, we will see that infinite-dimensional

Taft algebras can be described as crossed products (a notion defined in detail in Chapter

2), which among others gives us a vector space basis for them.

Remark 1.15. This last example shows us that Hopf algebras can be isomorphic as

algebras but not as bialgebras: since the parameter t only affects the coalgebra structure we

have H(n, t, q) ∼= H(n, t′, q) as algebras for any 0 ≤ t, t′ < n, yet these are not isomorphic

as bialgebras when t 6= t′. This is in contrast to the antipode, which by Lemma 1.7(i) is

uniquely determined by the bialgebra structure of H.

Further examples of noncommutative, noncocommutative Hopf algebras are provided

by quantised enveloping algebras and quantised coordinate rings. We do not define these

here, but they are studied for instance in [7] or [25] and we will look at quantised enveloping

algebras again in Chapter 5.
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1.3 Finite duals

Throughout, k is a field and H is a Hopf algebra.

Hopf algebras are objects which incorporate a great deal of structure and symmetry.

In the finite-dimensional case, this means that they admit a very nice duality: the vector

space dual H∗ consisting of the k-linear maps from H to k is also a Hopf algebra in a

canonical way, with the coalgebra structure of H defining the algebra structure of H∗ and

vice versa. Moreover, the canonical isomorphism (H∗)∗ ∼= H is in fact an isomorphism of

Hopf algebras.

However, we are primarily interested in infinite-dimensional Hopf algebras. And here

this breaks down: the dual H∗ of an infinite-dimensional Hopf algebra H is still an algebra

but no longer a coalgebra in general. Instead, we can find a subalgebra H0 ⊆ H∗ which

is a Hopf algebra and is moreover maximal in H∗ with respect to this. This subalgebra is

called the finite dual, and it is our primary object of study.

1.3.1 Finite dimensional duality

First we note that the dual of any coalgebra is an algebra.

Lemma 1.16. Let C be a coalgebra and C∗ = Homk(C, k) its dual. Then C∗ is an algebra

in the following way: given f, g ∈ C∗ and c ∈ C,

(f ∗ g)(c) :=
∑

f(c1)g(c2).

This multiplication is associative with identity element εC .

Proof. The associativity of the multiplication follows from the coassociativity axiom: given

f, g, h ∈ C∗ and c ∈ C, we have

((f ∗ g) ∗ h)(c) =
∑

(f ∗ g)(c1)h(c2)

=
∑

f(c1)g(c2)h(c3)

=
∑

f(c1)(g ∗ h)(c2) = (f ∗ (g ∗ h))(c).

Similarly, ε being the unit is simply the counit axiom.

Remark 1.17. The algebra structure given in Lemma 1.16 can be defined more generally

on Homk(C,A) for any coalgebra C and algebra A. This is called the convolution algebra

and the product is called the convolution product . We can now say that a map f : C → A
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is convolution invertible if it is invertible in the convolution algebra, meaning that there

exists some f ′ : C → A satisfying∑
f(c1)f ′(c2) =

∑
f ′(c1)f(c2) = εC(c)1A

for all c ∈ C. This concept will come into play again in later chapters. For now, we

simply note that the notion of the convolution algebra and convolution inverse provide an

alternative proof to Lemma 1.7(i), as an antipode for a Hopf algebra H is the same thing

as a convolution inverse for the identity map in Homk(H,H) and therefore must be unique

if it exists.

Moreover, the dual of any finite-dimensional algebra is a coalgebra:

Lemma 1.18. Suppose A is an algebra with dimk(A) < ∞. Then A∗ is a coalgebra as

follows:

(i) Given f ∈ A∗, the coproduct is given by ∆A∗(f) =
∑
f1 ⊗ f2 such that∑

f1(a)f2(b) = f(ab)

for all a, b ∈ A.

(ii) Given f ∈ A∗, the counit is given by evaluation at the identity element: εA∗(f) =

f(1A).

Proof. First we need to show that given f ∈ A∗, ∆(f) as described in the statement of

the lemma is a well-defined element of A∗⊗A∗. This follows because (A⊗A)∗ ∼= A∗⊗A∗

for finite-dimensional A:

Let φ : A∗ ⊗A∗ → (A⊗A)∗ be given by given by

φ(f ⊗ g)(a⊗ b) = f(a)g(b)

and extended linearly. First, we want to show that φ is injective.

Let α =
∑r

i=1 fi ⊗ gi ∈ A∗ ⊗A∗ satisfying φ(α) = 0. We can assume that the gi ∈ A∗

are all linearly independent. For all a, b ∈ A we have

0 = φ(α)(a⊗ b) =
r∑
i=1

fi(a)gi(b).

In particular, this means that
∑
fi(a)gi = 0 in A∗ for all a ∈ A. Since the gi are linearly

independent, this means that fi(a) = 0 for all 1 ≤ i ≤ r and a ∈ A. Hence α = 0, and so

φ is injective.
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Now recall that dimk(A) = n <∞ for some n. This means that dimk(A∗) = n and so

dimk(A∗ ⊗A∗) = dimk(A⊗A)∗ = n2.

Standard linear algebra tells us that φ must therefore be surjective as well as injective and

hence an isomorphism.

This means that we can indeed define ∆(f) ∈ A∗ ⊗A∗ by its values on A⊗A.

Coassociativity and counit axioms now follow from associativity and unit axioms in

A.

Corollary 1.19. Let H be a finite-dimensional Hopf algebra, f, g ∈ H∗ and h, h′ ∈ H.

Then H∗ is also a Hopf algebra with respect to the following structure maps:

(i) The multiplication is given by

(fg)(h) :=
∑

f(h1)g(h2),

(ii) The unit is given by εH ∈ H∗,

(iii) The comultiplication is given by ∆H∗(f) =
∑
f1 ⊗ f2 ∈ H∗ ⊗H∗ such that

∑
f1(h)f2(h′) = f(hh′),

(iv) The counit is given by

εH∗(f) := f(1H),

and

(v) The antipode is given by

SH∗(f) := f ◦ SH .

Proof. We know that H∗ is both an algebra and a coalgebra by Lemmas 1.16 and 1.18

with respect to precisely those structure maps. All that remains to check is that the

coproduct and counit are algebra maps and that the map SH∗ as defined satisfies the

antipode axiom, which follows straightforwardly from the fact that the coproduct and

counit in H are algebra maps and that SH satisfies the antipode axiom.

Example 1.20. Let k be an algebraically closed field, n be a positive integer coprime to

the characteristic of k, G = Cn be the cyclic group of order n and H := kCn its group
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algebra. Then kC∗n is a Hopf algebra as above. In fact it is self-dual, with kC∗n
∼= kCn as

Hopf algebras:

Set g ∈ Cn to be a generating element, q a primitive nth root of unity in k, and let

fi : kCn → k denote the algebra map given by fi(g) = qi for 0 ≤ i ≤ n − 1. We see that

these maps give a basis of kC∗n as follows:

Suppose we have λ0, ..., λn−1 ∈ k satisfying
∑n−1

i=0 λifi = 0. This means that for all

0 ≤ r < n− 1, we have
n−1∑
i=0

λifi(gr) =
n−1∑
i=0

λiq
ir = 0.

So if we let p(x) ∈ k[x] denote the polynomial given by p(x) =
∑n−1

i=0 λix
i, this must be

zero whenever x = qr for 0 ≤ r < n. However, these are n separate roots and p(x) is a

polynomial of degree at most n− 1. It follows that p(x) must be zero, and hence so is λi

for each i. So the fi are linearly independent and form a basis for kC∗n.

Now let φ : kCn → kC∗n denote the map sending gi to fi. This is bijective by the

above. It is an algebra map: we have

fifj(gr) = fi(gr)fj(gr) = qirqjr = q(i+j)r = q(i+j mod n)r = f(i+j mod n)(g
r),

and φ sends 1 = g0 to f0 = εH = 1H∗ . Moreover, each fi must be grouplike because it is

an algebra map and the definition of the coproduct in H∗ means that any algebra map is

grouplike. So φ is also a coalgebra map, and hence a bialgebra map. By [48, Lemma 4.0.4]

any bialgebra map between Hopf algebras is a Hopf algebra map. So φ is an isomorphism

of Hopf algebras.

In general, Hopf algebras are not self-dual. However, we do find that given a finite-

dimensional Hopf algebra H, the canonical vector space isomorphism (H∗)∗ ∼= H given by

evaluation at an element of h is in fact an isomorphism of Hopf algebras:

Lemma 1.21. Let H be a finite-dimensional Hopf algebra. Then

(H∗)∗ ∼= H

as Hopf algebras.

Proof. It is a well-known fact that for finite dimensional vector spaces, the map V → (V ∗)∗

given by sending an element v to the map evv : f 7→ f(v) is a linear isomorphism. So we

only need to check it preserves the Hopf structure.
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Let g, h ∈ H and f ∈ H∗. Then we have

(evg evh)(f) =
∑

evg(f1) evh(f2) =
∑

f1(g)f2(h) = f(gh) = evgh(f),

so evaluation preserves the multiplication. Similarly,

ev1(f) = f(1H) = εH∗(f),

so evaluation preserves the identity. Comultiplication and the counit are done analogously,

and by [48, Lemma 4.0.4] any bialgebra map between Hopf algebras is a Hopf algebra map,

giving us what we need.

1.3.2 Duality in infinite dimensions

Now we suppose that H is an infinite-dimensional Hopf algebra.

By Lemma 1.16 H∗ is always an algebra with respect to the same multiplication and

unit as in Corollary 1.19. However, the coproduct given there relies on the isomorphism

(V ⊗ V )∗ ∼= V ∗ ⊗ V ∗, which holds for finite-dimensional vector spaces V but not infinite-

dimensional. Instead, we consider a subspace of H, consisting of all the functions satisfying

the equivalent properties we record in Proposition 1.23.

First, we give a preliminary definition we need for one of the properties:

Definition 1.22. Let H be a Hopf algebra. Then the left and right actions of H on H∗

given by

(h ⇀ f)(h′) := f(h′h)

(f ↼ h)(h′) := f(hh′)

for h, h′ ∈ H, f ∈ H∗ are called the left and right hit actions of H on H∗.

These actions are in fact module actions of H on H∗ (see for instance [36, Example

1.6.6]). Moreover, the two of them together give a H-H-bimodule structure on H∗.

This gives us enough for the following statement:

Proposition 1.23. Let H be a Hopf algebra and f ∈ H∗. The following conditions are

equivalent:

(i) The kernel of f contains a left ideal of finite codimension in H.

(ii) The kernel of f contains a right ideal of finite codimension in H.
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(iii) The kernel of f contains a two-sided ideal of finite codimension in H.

(iv) The left H-submodule generated by f via the left hit action is finite-dimensional.

(v) The right H-submodule generated by f via the right hit action is finite-dimensional.

(vi) The H-subbimodule of H∗ generated by f via the hit actions is finite-dimensional.

(vii) There exists an integer n ≥ 1 and functions g1, ..., gn, h1, ..., hn ∈ H∗ such that

n∑
i=1

gi(x)hi(y) = f(xy)

for all x, y ∈ H.

Proof. See [36, Lemma 9.1.1].

Definition 1.24. Let H be a Hopf algebra. We call the set of functions satisfying the

equivalent conditions in Proposition 1.23 the finite dual of H, and write it as H0 ⊆ H∗.

In the finite-dimensional case, this is just the vector space dual:

Example 1.25. Let k be a field and H be a finite-dimensional Hopf algebra over k. Then

{0} is an ideal with finite codimension in H. Since {0} ⊆ ker f for all f ∈ H∗, this means

that H0 = H∗.

In the infinite-dimensional case, H0 is a subspace of H∗. In fact, H0 is a subalgebra

of H∗ that is also a Hopf algebra and is maximal with respect to this property:

Proposition 1.26. Let H be any Hopf algebra. Then

(i) H0 is a Hopf algebra, with the coproduct, counit and antipode as in Corollary 1.19.

(ii) H0 is the maximal subalgebra of H∗ that is a Hopf algebra with respect to this co-

product, counit and antipode.

Proof. (i) See [36, Theorem 9.1.3].

(ii) Suppose K ⊆ H∗ is a Hopf algebra with respect to the coproduct, counit and

antipode of Corollary 1.19 and let f ∈ K. Because K is a Hopf algebra, ∆(f) is well-

defined: there exists n > 0 and f1
1 , ..., f

n
1 , f

1
2 , ..., f

n
2 ∈ K satisfying

n∑
i=1

f i1(h)f i2(h′) = f(hh′)
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for all h, h′ ∈ H.

However, this means that f satisfies Proposition 1.23(vii) and hence all the equivalent

conditions, which means that f ∈ H0. So K ⊆ H0 as required.

The following example shows that in general, H0 is not the whole of H∗.

Example 1.27. Let k be a field of characteristic zero, g be a semisimple Lie algebra over

k and let H = U(g) be the universal enveloping algebra. By [20, Theorem 3.1] we find

that H0 ∼= O(G) as Hopf algebras, where G is the (unique up to isomorphism) simply

connected affine algebraic group satisfying LieG = g.

A dimension argument tells us that this need not be the whole of H∗:

Suppose k = C. Given x ∈ g and λ ∈ C, we can find fλ : H → C satisfying fλ(xi) = λi.

We first want to show that these fλ are linearly independent.

Suppose there exist λ1, ..., λn, α1, ..., αn ∈ C with λi 6= λj for i 6= j satisfying

n∑
i=1

αifλi
= 0.

This means that
∑
αifλi

(xj) = 0 for all j and so α := (α1, ..., αn) is a solution to the

system of linear equations given by

x1λ
i
1 + ...+ xnλ

i
n = 0 for i ≥ 0.

In particular, α is a solution to the equations for 1 ≤ i ≤ n. This means that we have

AαT = 0,

where A ∈ Mn(C) is the matrix whose (i, j)th entry is given by λji . However, classical

results of linear algebra tell us that this matrix, also known as the Vandermonde matrix,

has nonzero determinant whenever the λi are distinct. Thus the only vector v ∈ Cn

satisfying Av = 0 is the zero vector, and hence we have

α1 = ... = αn = 0

as required.

This means that we can extend the set {fλ | λ ∈ C} to form a basis for H∗. Thus we

have

dim(H∗) ≥ |{fλ | λ ∈ C}| = |C|.

In particular, H∗ must have uncountable dimension.
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However, H0 ∼= O(G) is the coordinate ring of an affine algebraic group and hence

itself affine, which means it must have countable dimension. This means that H0 6= H∗.

Overall, H0 seems to be the obvious replacement of H∗. However, as we will see in the

next section, H0 does not preserve the properties of H in the same way as H∗ does in the

finite-dimensional case.

1.4 Properties of the finite dual

Throughout, k is a field.

As discussed in Section 1.3.2, given an infinite-dimensional Hopf algebra H, we can

associate with it another Hopf algebra H0 which is a subalgebra of the dual algebra H∗.

When H is finite-dimensional, H0 is the whole of H∗, but this is not true in general.

An immediate question that arises is how far H0 preserves the properties of H, and

in particular whether it preserves the properties that H∗ does. For instance: is (H0)0

isomorphic to H in the same way we have (H∗)∗ ∼= H in the finite-dimensional case?

The following examples tell us that the answer is no. The problem is that taking finite

duals does not preserve size.

In the finite-dimensional case, vector space dimension gives us a canonical measure of

size, and the fact that dimk(V ) = dimk(V ∗) for any finite-dimensional vector space V is

well-known. In the infinite-dimensional case, vector space dimension - in particular, its

cardinality - still gives us some way of comparing the size of different Hopf algebras, but

it is much rougher and less useful. Instead, there are various classical algebraic notions

that are used instead, such as Gelfand-Kirillov dimension and global or other homological

dimensions, as well as properties such as being affine (meaning finitely generated as an

algebra) or being Noetherian.

The following example shows us that H0 can be too small.

Example 1.28. Let k be a field, K ) k be a field extension such that K is infinite,

and let H := kPSL2(K), the k-group algebra of the projective special linear group over

K. By [4, Lemma 2.7], we find that the only functions in H∗ which generate a finite-

dimensional left H-submodule of H∗ are those functions which are scalar multiples of the

counit. So we have

kPSL2(K)0 = kεH ∼= k.
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The Hopf algebra we started with was infinite-dimensional, but its finite dual is one-

dimensional. This also means that
(
H0
)0 � H, because the dual of a one-dimensional

structure is itself one-dimensional.

Remark 1.29. This example also tells us that taking finite duals does not preserve sub-

algebras, even Hopf subalgebras, either covariantly or contravariantly:

Let x ∈ PSL2(K) be any element with infinite order, and let A denote the subalgebra

it generates. A is not just a subalgebra but a Hopf subalgebra, as ∆(x) = x⊗ x ∈ A⊗ A

and S(x) = x−1 ∈ A, and we have A ∼= k[x±1] as algebras. Since H0 has dimension one

and εA ∈ A0, finding any map of A0 that is not a scalar multiple of the counit means

that dimk(A0) > dimk(H0), which in turn means that A0 cannot be either a subspace or

a quotient of H0.

Given λ ∈ k∗ with λ 6= 1, we can define the map fλ : A → k given by f(xi) = λi.

This is a member of A0 because it is an algebra map: ker fλ itself is an ideal, and since

it is the kernel of a map to a one-dimensional vector space it has codimension one in A.

Furthermore, fλ is clearly not a scalar multiple of the counit, which is given by ε(xi) = 1

for all i. So dimA0 > 1 and so A0 is neither a subspace nor a quotient of H0.

Note that there is a straightforward condition which guarantees that H0 is at least

dense in H∗, meaning that for every nonzero h ∈ H there exists an f ∈ H0 with f(h) 6= 0.

Lemma 1.30. Let H be a Hopf algebra. The following conditions are equivalent:

(i) The intersection of all ideals of finite codimension in H is zero.

(ii) For any nonzero h ∈ H, there exists a finite-dimensional left H-module M such that

h /∈ AnnH(M).

(iii) H0 is dense in H∗: for any nonzero h ∈ H, there exists an f ∈ H0 with f(h) 6= 0.

Proof. (i) ⇔ (iii): See [36, Proposition 9.2.10].

(i) ⇒ (ii): Suppose that there exists some h ∈ H such that h ∈ AnnH(M) for all

finite-dimensional modules M . This means that h ∈ AnnH(H/I) = I for any ideal I of

finite codimension. So h is in the intersection of all ideals of finite codimension: by (i),

this means that h = 0.

(ii) ⇒ (iii): Let h ∈ H be nonzero. By (ii), there exists some finite-dimensional left

H-module M such that h /∈ AnnH(M). So there must be m ∈ M such that h · m is
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nonzero. Extend h ·m to a basis of M , and let f ∈M∗ be the map that sends h ·m to 1k

and all other basis elements to 0.

We can define f̂ : H → k given by f̂(h′) = f(h′ ·m). This is nonzero on h by definition.

Moreover, f̂ is zero on AnnH(M), which is a left ideal of finite codimension in H. So we

have f̂ ∈ H0 by Proposition 1.23.

The condition in (i)-(iii) of the lemma is called being residually finite-dimensional.

Many Hopf algebras we are interested in are residually finite-dimensional. However,

even when we know that H0 is dense in H∗, we find that it can be too big.

The next example is one where H0 is not Noetherian and has uncountable dimension,

and as a consequence is also not affine. All of this stands in contrast to H.

Example 1.31. Let g be a solvable Lie algebra of dimension n, and let H := U(g).

Suppose g′ = [g, g] has dimension m. We have

U(g)0 ∼= k[X1, ...Xn]⊗ k((k,+)n−m)

as algebras (see [18, Section 6] and [19, p. 610], or [30, Proposition 1.3] for a summary).

Here (k,+) denotes the additive group of the underlying field, (k,+)n−m its (n − m)th

Cartesian product with itself and k((k,+)n−m) the group algebra of this structure.

Note that n −m > 0 always, because g is solvable and so g′ is a proper subspace of

g. So when k = C we find that C((C,+)n−m), which has basis indexed by Cn−m, has

uncountable dimension, which means that U(g)0 has uncountable dimension as well. This

means that U(g)0 cannot be affine, since any affine algebra must be spanned by the set

of words in its finitely many generators and this set is countable. Finally, U(g)0 is not

Noetherian as follows.

First note that since U(g)0 is isomorphic to a tensor product of a polynomial ring with

C(C,+)n−m as algebras, any infinite chain of ideals in C(C,+)n−m can be extended to

one in U(g)0 by tensoring with the polynomial ring. Therefore, it suffices to show that

C(C,+)n−m is not Noetherian.

Now note that we can define an infinite ascending chain of subgroups in (C,+) by

setting G1 := 〈1C〉 = Z and then noting that if Gn = 〈λ1, ..., λn〉 for some λ1, ..., λn ∈ C,

we have Gn = Zλ1 + ... + Zλn, which is strictly contained in C and therefore allows us

to pick λn+1 /∈ Gn to construct Gn+1. This means we can do the same in (C,+)n−m and

that this group is not Noetherian, which means its group algebra cannot be Noetherian

either (by [17, p. 421]). So C(C,+)n−m is not Noetherian as required.
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As a special case, take g to be the one-dimensional Lie algebra. Here g′ = 0 and

H := U(g) ∼= k[x]. So we find that

k[x]0 ∼= k[X]⊗ k(k,+)

as algebras.

Of note in the example of U(g)0 for g solvable is that there is a subalgebra k[X1, ..., Xn]

contained in U(g)0 which is affine Noetherian and satisfies all the size conditions we would

like. In fact, it is a Hopf subalgebra: it consists of those functions vanishing on some

power of the augmentation ideal, which is always a Hopf subalgebra of H0 by [36, Lemma

9.2.1]. This seems to indicate that under certain assumptions on H, we might be able to

find a Hopf subalgebra of H0 that preserves various properties. This and what it might

be useful for is discussed further in Chapter 7.

The problem with investigating this and other questions regarding the finite dual is

that we know relatively little about the finite dual and what determines its properties in

general. Moreover, we do not know many examples, in particular examples of H0 when

H is a noncommutative, noncocommutative Hopf algebra. Both commutative and cocom-

mutative Hopf algebras are special cases that satisfy properties which are not necessarily

true in the general case.

As a result, we would like to know how to calculate the finite dual of a type of Hopf

algebra which is very common and produces large classes of examples: a crossed product.

In the next chapter, we define the crossed product and give examples.

1.5 Originality

All results stated in this chapter are known.

The definition and basic theory of coalgebras, bialgebras and Hopf algebras described

in Section 1.2 is foundational and can be found in more detail in textbooks such as [1], [36]

or [48]. The finite-dimensional duality theory along with the notion of a finite dual and its

properties presented in Sections 1.3.1 and 1.4 are also developed there, see for instance [36,

Section 1.2] for a discussion of finite-dimensional duality and [36, Chapter 9] for one of

infinite-dimensional duality or [1, Section 2.3] for both. Condition (ii) of Lemma 1.30 is not

discussed there, but is part of a connection between the finite dual H0 of a Hopf algebra

H and its category of finite-dimensional modules which we do not expand on further here

but which is discussed in more detail in for instance [25, Section 1.4].
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The examples are also known: group algebras, universal enveloping algebras of Lie

algebras and coordinate rings of affine algebraic groups are classical examples of Hopf

algebras, while the finite-dimensional Taft algebras were introduced by Taft in [49] and

extended to infinite dimensions by Lu et al in [32]. Similarly, the finite dual of U(g) when g

is semisimple and when it is solvable is due to Hochschild ( [20] and [18], [19] respectively),

with the latter expanded on by Levasseur ( [30]). The fact that kPSL2(K)0 is trivial is

due to Blattner, Cohen and Montgomery ( [4]).



Chapter 2

Crossed products

2.1 Introduction

Throughout, k is a field.

Our eventual goal is to describe the finite dual of a crossed product. In this chapter,

we define a crossed product, give examples, and describe the particular type of crossed

product we will be considering in following chapters.

In general, whenever we study a specific type of structure a standard question to ask

is how we can form a “product” of two given structures, incorporating an action of one on

the other?

For instance, if we are working with groups, we might have a group N and another

group K that acts on N . The well-known construction of the semidirect product of groups

uses these to create a group G := N oK such that:

A. G ∼= N ×K as sets,

B. Under the natural embeddings deriving from the isomorphism in A., K is a subgroup

of G and N is a normal subgroup,

C. The multiplication in G encodes the action of K on N .

The analogous construction for Hopf algebras is that of a smash product. The smash

product is a way of using an algebra A and a Hopf algebra T such that T acts on A (where

we leave the details of what we mean by “acts on” aside for the moment) to construct an

algebra B := A#T such that

A. B ∼= A⊗ T as vector spaces,

30
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B. Under the natural embeddings deriving from the isomorphism in A., A and T are

both subalgebras of B,

C. The multiplication in B encodes the action of T on A.

However, we look at a more general construction: that of the crossed product.

The crossed product is defined much like the smash product, except that there is also a

“twisting” of the multiplication in T ∼= 1k ⊗T ⊆ B, given by a linear map σ : T ⊗T → A.

We write this as B = A#σT , and one of the consequences is that T no longer forms a

subalgebra of B in general. In the group setting, this is analogous to the case where we

have a normal subgroup N of G but the quotient G/N does not “lift” to a subgroup of G.

Indeed, in Example 2.10 we will see that in this case, the group algebra kG is isomorphic

to a crossed product of kN by kG/N .

There are many examples of crossed products, and they generalise classic constructions

such as skew group algebras (these are smash products where T = kG for some group G)

or differential operator rings (these are crossed products where T = U(g) for some finite-

dimensional Lie algebra g - see for instance [8, Section 2]).

In Section 2.2, we define crossed products, make note of how smash products are a

special case of this construction, and give examples.

An obvious issue that arises is that the definition of a crossed product B = A#σT solely

describes the algebra structure of B. It makes no reference to any coalgebra structure,

and indeed Example 2.14 is an example of a crossed product which is not a Hopf algebra.

Since we are solely interested in Hopf algebras, in Section 2.3 we look at a specific situation

in which we are guaranteed to have a Hopf structure: namely, at crossed products which

arise from surjective Hopf maps. This relates the question of when a given Hopf algebra

H can be written as a crossed product H ∼= A#σT to the question of when factor maps

give rise to decompositions. Moreover, Proposition 2.22 tells us that there is a simple

condition, involving the existence of a certain kind of map from T to H, which guarantees

such a decomposition.

Finally, in Section 2.4, we look at what canonical maps we get on a crossed product

of this type, what their properties are and how they connect to properties of the crossed

product.
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2.2 Definition

Throughout, k is a field.

Crossed products were independently introduced by Blattner, Cohen and Montgomery

( [4]) and Doi and Takeuchi ( [12]) in 1986 and have been much studied since. There

is some ambiguity regarding the exact definition of a crossed product in the literature.

Here, we follow the one given in [4]. We discuss the various definitions and our reason for

choosing the one we did in Remark 2.7.

In order to define a crossed product, we need a few preliminary definitions.

Definition 2.1. Let T be a Hopf algebra and A an algebra such that T acts linearly on

A, i.e. there is a linear map T ⊗A→ A denoted by t⊗ a 7→ t · a. We say that T measures

A if the following conditions hold.

1. For all t ∈ T we have

t · 1A = εT (t)1A.

2. Given t ∈ T , a, b ∈ A we have

t · (ab) =
∑

(t1 · a)(t2 · b).

We say T acts weakly on A if the following condition also holds:

3. For all a ∈ A,

1T · a = a.

Definition 2.2. Let T be a Hopf algebra, A an algebra on which it acts linearly and

σ : T ⊗ T → A some linear map that is convolution invertible: that is, there is σ−1 :

T ⊗ T → A such that for all s, t ∈ T ,∑
σ(t1, s1)σ−1(t2, s2) = εT (s)εT (t)1A.

We say A is a twisted T -module with respect to σ if

3. For all a ∈ A we have

1T · a = a.

4. Given s, t ∈ T , a ∈ A, the following equation holds:

s · (t · a) =
∑

σ(s1, t1)(s2t2 · a)σ−1(s3, t3). (2.1)
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Remark 2.3. Note that condition 3. of this definition is the same as condition 3. in

Definition 2.1.

Definition 2.4. Suppose T is a Hopf algebra, A an algebra, and σ : T ⊗ T → A is some

convolution invertible linear map. We say σ is a cocycle if we have

5. For all t ∈ T we have

σ(t, 1T ) = σ(1T , t) = εT (t)1A.

6. For all s, t, u ∈ T we have

∑
(s1 · σ(t1, u1))σ(s2, t2u2) =

∑
σ(s1, t1)σ(s2t2, u).

We call condition 6. on its own the cocycle condition.

This lets us define the crossed product of A and T :

Definition 2.5. Given an algebra A and a Hopf algebra T such that T acts weakly on A,

along with a cocycle σ : T ⊗ T → A such that A is a twisted T -module with respect to σ,

we can define the crossed product A#σT as follows:

(a) As a vector space, A#σT ∼= A⊗T , letting a#t denote the tensor of a and t in A#σT .

(b) Given a, b ∈ A, s, t ∈ T we define multiplication by

(a#s)(b#t) =
∑

a(s1 · b)σ(s2, t1)#s3t2. (2.2)

Crossed products are associative algebras with identity 1A#1T .

Lemma 2.6. Suppose A is an algebra, T a Hopf algebra acting weakly on A and σ :

T ⊗ T → A a cocycle such that A#σT is a crossed product. Then A#σT is an associative

algebra with identity 1A#1T .

Proof. This follows by [4, Lemma 4.4] and [4, Lemma 4.5].

Remark 2.7. The notion of a “crossed product”, in particular the question of which

conditions A, T and σ need to satisfy exactly for a space A#σT defined as in Definition

2.5 to be called one, is somewhat ambiguous in the literature. We have required all of

conditions 1. through 6. to be satisfied. Doi and Takeuchi ( [12]) only require that T

measures A (so conditions 1. and 2. are satisfied), and Agore ( [3]) as well as Agore and
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Militaru ( [2]) require that T acts weakly on A and that condition 5. is satisfied, in other

words that

σ(t, 1T ) = σ(1T , t) = εT (t) for all t ∈ T,

while Montgomery ( [36, Chapter 7]) at first only requires that T measures A (conditions 1.

and 2. are satisfied), but then restricts to the case where the multiplication is associative

with identity 1A#1T . The same condition is required by Blattner et al ( [4]).

In fact, it is well-known (see for instance [36, Lemma 7.1.2], [4, Lemma 4.4, Lemma 4.5]

or [12, Lemma 10]) that for all these varying definitions, a necessary and sufficient condition

for the multiplication to be associative with identity 1A#1T is for all of conditions 1.-6. to

hold. This means that not only is the definition given by Montgomery and Blattner et al

equivalent to ours, but so are all the other varying definitions under this extra assumption.

Moreover, as we are only interested in crossed products that are associative with identity

1A#1T this definition is the obvious one to use.

Remark 2.8. Note that what we have defined are technically left crossed products: an

analogous right version of this structure exists, where T acts weakly on A through a right

action rather than a left action and the following definitions are adjusted correspondingly.

This idea is discussed further in for instance [5, Remark 1.31]. We restrict ourselves to the

left crossed products defined above, following the treatment in [36], [4] and [12].

When the cocycle σ is trivial, crossed products are simply smash products:

Definition 2.9. Let A be an algebra, T a Hopf algebra acting weakly on A and σ :

T ⊗ T → A be trivial, so

σ(s, t) = εT (s)εT (t) for all s, t ∈ T.

Then we call the resulting crossed product a smash product and write it as A#T .

This agrees with the standard definition of a smash product as for instance given

in [36, Definition 4.1.3].

There are many examples of crossed products. For instance, the following shows how

any group algebra kG decomposes as a crossed product with respect to any normal sub-

group N CG. Note also that this justifies our description of a smash product as analogous

to a semidirect product of groups.
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Example 2.10. (See [36, Example 7.1.6]) Given a group G with some normal subgroup

N / G, we have

kG ∼= kN#σk(G/N),

where the action and cocycle are defined as follows: we define a map γ : G/N → G by

sending a coset x to some representative γ(x) with γ(1) = 1. Now given x ∈ G/N, n ∈ N

we have

x · n = γ(x)nγ(x)−1 ∈ N

and given x, y ∈ G/N ,

σ(x, y) = γ(x)γ(y)γ(xy)−1 ∈ N.

Here σ is trivial if and only if we can choose γ : G/N → G to be a group homomorphism,

so if and only if G/N embeds as a subgroup in G. This happens precisely when we can

write G as a semidirect product G ∼= G/N nN .

We can decompose the universal enveloping algebras of Lie algebras in a similar way:

Example 2.11. (See [36, Corollary 7.2.8]) Given a Lie algebra g with a Lie ideal h, then

U(g) ∼= U(h)#σU(g/h).

Again, the cocycle σ is trivial if there exists a Lie algebra embedding g/h→ g.

Note that crossed product structures need not be unique. It is sometimes possible to

describe one algebra as a crossed product in several ways.

Example 2.12. Let k be an algebraically closed field, n, t be integers with n > 1 and

0 ≤ t ≤ n − 1 and let q be a primitive nth root of unity. Let H = H(n, t, q) be the

infinite-dimensional Taft algebra on these parameters, as defined in Example 1.14. So as

algebras, we have

H(n, t, q) ∼= k〈x, g | xg = qgx, gn = 1〉.

This is a Hopf algebra, with g grouplike and x (1, gt)-primitive:

∆(x) = x⊗ 1 + gt ⊗ x.

We can find two crossed product structures that exist on H. First, we can write

H ∼= k[x]#σkCn,
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where, letting h denote the generating element of Cn, we have h · x = q−1x. Here σ is

trivial: σ(hi, hj) = 1 for all i, j. Thus H is a smash product.

On the other hand, we can also write

H ∼= k[xn]#τT,

where T is the finite-dimensional Taft algebra on (n, t, ξ). Note that xn commutes with

all elements of H and so k[xn] is central in H. In fact, when gcd(n, t) = 1 it is a Hopf

subalgebra of H. This follows because by standard results on skew-commuting variables

(see for instance [26, Proposition 2.2]),

∆H(xi) =
i∑

j=0

(
i

j

)
q−t

xi−jgtj ⊗ xj ,

where for ζ ∈ k∗, n ≥ 1, r ≥ 0 integers,
(
n
r

)
ζ

indicates the quantum binomial defined by

(
n

r

)
ζ

:=


(1−ζn)(1−ζn−1)...(1−ζn−r+1)

(1−ζ)(1−ζ2)...(1−ζr)
r ≤ n

0 r > n

.

By [15, 2.6 (iii)],
(
n
r

)
ζ

= 0 whenever ζ is a primitive nth root of unity and 1 ≤ r ≤ n− 1.

In particular, since q−t is a primitive nth root of unity xn is primitive.

As k[xn] is always central, the action is always trivial: we have xi · xn = 0 = εT (xi)xn

and gi · xn = xn = εT (gi)xn. However, the cocycle τ is not trivial: we have

τ(xigj , x`gm) =


xn if i+ ` = n

1 if i = ` = 0

0 otherwise

where 0 ≤ i, j, `,m < n.

Recall the notion of a coordinate ring from Example 1.12. When k is algebraically

closed, we can use crossed products to describe their finite duals.

Proposition 2.13. Suppose k is algebraically closed. Let G be an affine algebraic k-group

and O(G) its coordinate ring. Then

O(G)0 ∼= U(LieG)#kG,

where LieG denotes the Lie algebra of G. Here LieG consists of the primitive elements in

O(G)0 and G of the grouplike elements, so the algebra maps O(G)→ k.



CHAPTER 2. CROSSED PRODUCTS 37

Proof. See [36, Example 9.2.8].

This is a corollary of a general theorem regarding the structure of pointed cocommu-

tative Hopf algebras over algebraically closed fields due to Cartier, Gabriel and Kostant,

described for instance in [36, Corollary 5.6.4]. Note that the finite dual of k[x], as seen

in Example 1.31, is a special case of Proposition 2.13. Moreover, the group G ⊆ O(G)0,

which is given by the algebra maps O(G)→ k, allows us to recover the group G from its

coordinate ring.

Note finally that the definition of the crossed product makes no reference to a coalgebra

structure on it, and indeed the following example shows that crossed products need not

be Hopf algebras.

Example 2.14. Let λ ∈ k∗ be such that λ is not a root of unity, and let

H := k〈x±1, y±1 | xy = λyx〉.

This is not just a crossed product but a smash product: we have

H ∼= k[x±1]#k[y±1]

with y · x = λ−1x. However, by [24, Corollary 1.5], H is a simple ring: its only ideals are

{0} and H itself. In particular, H cannot be a Hopf algebra with respect to any coalgebra

structure because it contains no ideals of codimension one, meaning that there are no

algebra maps H → k and hence no counit map.

As a result, it makes sense to look at a particular situation where we have a guaranteed

Hopf structure on H.

2.3 Crossed products arising from Hopf surjections

Throughout, k is a field.

In the previous section, we defined the notion of a crossed product A#σT of an algebra

A and a Hopf algebra T acting on it with a twisting by a cocycle σ : T ⊗ T → A and gave

various examples. In particular, we noted that although the conditions we assumed on A,

T and σ were sufficient for A#σT to be an associative algebra with identity 1A#1T , there

was no need for this algebra to be a Hopf algebra - Example 2.14 being a case where a

crossed product was not a Hopf algebra.
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In this section, we look at a specific class of crossed products which have a guaranteed

Hopf structure: those arising from Hopf surjections.

First recall that, dual to the notion of invariants for an action, given a comodule

structure we can define the coinvariants of the coaction.

Definition 2.15. Let H be a Hopf algebra and M a right H-comodule, with the map

ρ : M →M ⊗H describing the coaction. Then the right coinvariants for the coaction are

given by

M coρ := {m ∈M | ρ(m) = m⊗ 1H}.

We may also write M coH for this set if the coaction ρ is understood.

Analogously, given a left H-comodule N with coaction described by ν, the left coin-

variants are defined by

coHN = coνN := {n ∈ N | ν(n) = 1H ⊗ n}.

The idea of coinvariants as dual to invariants is justified, as any H-comodule is also

an H∗-module in such a way that the coinvariants of the comodule coaction are the same

as the invariants of the module action:

Proposition 2.16. Let H be a Hopf algebra, M a right H-comodule and ρ : M →M ⊗H

the map describing the coaction, where for m ∈M we write

ρ(m) =
∑

m0 ⊗m1.

Define an action of H∗ on M by

(f ·m) =
∑

f(m1)m0

for m ∈M,f ∈ H∗. Then

(i) The action defines a left H∗-module structure on M .

(ii) The coinvariants of the H-coaction are equal to the invariants of the H∗-action:

M coH = H∗M = {m ∈M | f ·m = εH∗(f)m∀f ∈ H∗}.

Proof. (i) [36, Lemma 1.6.5 1)], recalling that by Lemma 1.16 H∗ is always an algebra.

(ii) [36, Lemma 1.7.2].
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We find that, as part of a larger, well-known theory on so-called cleft extensions, there

is a simple condition for a surjective Hopf map π : H → T to give rise to a decomposition

of H as H ∼= Hcoπ#σT , where (under minor abuse of notation) we write Hcoπ to denote

the coinvariants under the canonical coaction of T on H given by π which we describe

below. In this case H is always a Hopf algebra by assumption, so we always have a Hopf

structure on our crossed product.

First, we record the fact that any Hopf surjection π : H → T determines canonical left

and right T -comodule algebra structures on H, recalling that a left (right) T -comodule

algebra is an algebra which is also a left (right) T -comodule such that the comodule

coaction is an algebra map. This is a well-known result, discussed without proof in for

instance [36, Section 3.4]. We give a proof here.

Lemma 2.17. Let H and T be Hopf algebras and π : H → T a surjective Hopf map.

Then H is both a right and left T -comodule algebra, where the right comodule coaction

ρr : H → H ⊗ T is given by ρr := (idH ⊗π) ◦∆H , the left one by ρ` := (π ⊗ idH) ◦∆H .

Proof. We give a proof here for the right comodule coaction, setting ρ := ρr. The left

proof is analogous.

ρ defines a comodule coaction:

Recall that ρ : H → H ⊗ T is a comodule coaction if

(ρ⊗ idT ) ◦ ρ = (idH ⊗∆T ) ◦ ρ

and

µ ◦ (idH ⊗εT ) ◦ ρ = idH ,

where µ : H ⊗ k → H is simply the canonical isomorphism given by scalar multiplication.

We have

(ρ⊗ idT ) ◦ ρ = ((id⊗π) ◦∆H ⊗ idT ) ◦ (idH ⊗π) ◦∆H

= (idH ⊗π ⊗ π) ◦ (∆H ⊗ idH) ◦∆H

= (idH ⊗π ⊗ π) ◦ (idH ⊗∆H) ◦∆H

= (idH ⊗∆T )(idH ⊗π) ◦∆H

= (idH ⊗∆T ) ◦ ρ,
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which gives us the first condition. For the second, note that

µ ◦ (idH ⊗εT ) ◦ ρ = µ ◦ (idH ⊗εT ) ◦ (idH ⊗π) ◦∆H

= µ ◦ (idH ⊗εH) ◦∆H

= idH

by the counit axiom.

ρ is an algebra map:

This follows immediately from the definition of ρ, as it is given by composition of

algebra maps.

So given a Hopf surjection π : H → T we have not just a T -comodule but in fact a

T -comodule algebra structure on H. This in turn means that we can say more about the

coinvariants.

Proposition 2.18. Let π : H → T be a Hopf surjection and let A′ := coπH and A := Hcoπ

denote the left and right coinvariants of the corresponding coaction respectively. Then

(i) A and A′ are subalgebras of H.

(ii) SH(A) ⊆ A′ and SH(A′) ⊆ A, with equality holding if SH is bijective.

(iii) If A = A′, then A is a Hopf subalgebra of H.

Proof. (i) This follows from the fact that the comodule map ρ := (id⊗π)◦∆H is an algebra

map.

(ii), (iii) See [4, Proposition 4.19].

In particular, the fact that the right coinvariants form a subalgebra means that we can

meaningfully ask when H decomposes as a crossed product of Hcoπ and T . To find the

answer, we need to define the notion of a cleaving map.

Definition 2.19. Suppose H and T are Hopf algebras and π : H → T is a surjective

Hopf map. Suppose further that γ : T → H is a map of right T -comodules with respect

to the right T -comodule structure on H defined in Lemma 2.17. We call γ a cleaving map

if γ is convolution invertible, recalling from Remark 1.17 that this means that there exists

another linear map γ′ : T → H such that∑
γ(t1)γ′(t2) =

∑
γ′(t1)γ(t2) = εT (t)1H

for all t ∈ T .



CHAPTER 2. CROSSED PRODUCTS 41

One example of a cleaving map is a coalgebra splitting. In fact, any coalgebra map

γ : T → H will be a cleaving map precisely when it splits π.

Lemma 2.20. Suppose H and T are Hopf algebras and π : H → T is a surjective map

of Hopf algebras, and suppose further there is a coalgebra map γ : T → H. Then γ is a

cleaving map if and only if π ◦ γ = idT . If this holds, the convolution inverse is given by

γ−1 := SH ◦ γ.

Proof. ⇒: Suppose γ is a convolution invertible right T -comodule map. Then we have

(γ ⊗ π ◦ γ) ◦∆T = (idH ⊗π) ◦∆H ◦ γ = (γ ⊗ idT ) ◦∆T , (2.3)

using the fact that γ preserves the coproduct and that it is a right comodule map. Now

we apply µ ◦ (εH ⊗ idT ) to both sides of this equation, where µ denotes the canonical

isomorphism k ⊗ T ∼= T given by scalar multiplication. The RHS of (2.3) becomes

µ ◦ ((εH ◦ γ)⊗ idT ) ◦∆T = µ ◦ (εT ⊗ idT ) ◦∆T = idT ,

using the counit axiom and the fact that as γ is a coalgebra map, εH ◦ γ = εT . Similarly,

the LHS of (2.3) becomes

µ ◦ (εH ◦ γ ⊗ π ◦ γ) ◦∆T = π ◦ γ ◦ (µ ◦ (εT ⊗ idT ) ◦∆T ) = π ◦ γ,

using the same. So we get

π ◦ γ = idT

as required.

⇐: Suppose γ satisfies π ◦ γ = idT .

First we note that γ is a map of right T -comodules under the right T -comodule coaction

given in 2.17: we have

(id⊗π) ◦∆H ◦ γ = (γ ⊗ (π ◦ γ)) ◦∆T = (γ ⊗ idT ) ◦∆T

as required. So we only need to show that γ is convolution invertible with convolution

inverse as described.

For t ∈ T , we have ∑
γ(t1)γ−1(t2) =

∑
γ(t1)SH(γ(t2))

=
∑

γ(t)1SH(γ(t)2)

= εH(γ(t))1H = εT (t)1H ,
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so γ−1 is a right convolution inverse for γ. Showing it is a left inverse proceeds analogously.

We can assume without loss of generality that any cleaving map fixes the identity.

Lemma 2.21. Suppose H and T are Hopf algebras and π : H → T a Hopf surjection such

that there exists a cleaving map γ : T → H. Then there exists a cleaving map γ̂ : T → H

such that

γ̂(1T ) = 1H .

Proof. First note that γ is convolution invertible with inverse γ−1 and 1T is a grouplike

element of T , and so we have

γ(1T )γ−1(1T ) = 1H

from the axioms for a convolution inverse. In particular, γ(1T ) is a unit in H with inverse

γ(1T )−1 = γ−1(1T ).

Now define γ̂ : T → H by γ̂(t) := γ(1T )−1γ(t). This satisfies γ̂(1T ) = 1H because

γ−1(1T )γ(1T ) = 1H by the convolution invertibility axioms. We need to show that γ̂ is a

cleaving map, so a convolution invertible right T -comodule map.

Step 1: γ(1T )−1 ∈ HcoT .

Recall from Definition 2.15 that we need to show that

((id⊗π) ◦∆H)
(
γ(1T )−1

)
= γ(1T )−1 ⊗ 1H .

We know that γ is a right T -comodule map and so

γ(1T )⊗ 1T = ((γ ⊗ idT ) ◦∆T ) (1T ) = ρ(γ(1T )).

This means that γ(1T ) ∈ HcoT .

Now, since ρ is an algebra map we have

(γ(1T )⊗ 1T )ρ(γ(1T )−1) = ρ(γ(1T ))ρ(γ(1T )−1) = ρ(γ(1T )γ(1T )−1) = 1H ⊗ 1T .

Since multiplication in H ⊗ T is pointwise on simple tensors, this means that

ρ(γ(1T )−1) = γ(1T )−1 ⊗ 1T .

Therefore γ(1T )−1 ∈ HcoT as well.

Step 2: γ̂ is a right T -comodule map:
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Let t ∈ T . We have

ρ(γ̂(t)) = ρ(γ(1T )−1γ(t))

= ρ(γ(1T )−1)ρ(γ(t))

= (γ(1T )−1 ⊗ 1T )
(∑

γ(t1)⊗ t2
)

=
∑

γ(1T )−1γ(t1)⊗ t2

=
∑

γ̂(t1)⊗ t2

as required.

Step 3: γ̂ is convolution invertible:

Let γ′ : T → H be defined by γ′(t) := γ−1(t)γ(1T ) for t ∈ T . So we have∑
γ̂(t1)γ′(t2) =

∑
γ−1(1T )γ(t1)γ−1(t2)γ(1T )

= γ−1(1T )εT (t)1Hγ(1T )

= εT (t)1H .

So γ′ is the convolution inverse of γ̂ as required.

From now on, whenever we talk about a cleaving map, we will assume it fixes the

identity.

Proposition 2.22. Suppose H and T are Hopf algebras and π : H → T is a Hopf

surjection. Suppose further that there exists a cleaving map γ : T → H, with γ−1 denoting

the convolution inverse. Then the map

φ : A#σT → H (2.4)

given by φ(a#t) = aγ(t) is an algebra, left A-module and right T -comodule isomorphism.

Here A := HcoT , so is given by the coinvariants as defined in Definition 2.15, the weak

action of T on A is given by

t · a =
∑

γ(t1)aγ−1(t2) for a ∈ A, t ∈ T,

the cocycle σ is given by

σ(s, t) =
∑

γ(s1)γ(t1)γ−1(s2t2) for s, t ∈ T,

and the right T -comodule structure on A#σT is given by a#t 7→ a#t1 ⊗ t2 for a ∈ A,

t ∈ T .
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Proof. First note that all statements of the result follow from [12, Theorem 11] as well as

[36, Proposition 7.2.3] if H is a T -comodule algebra such that A is given by the coinvariants

of the comodule coaction. Now by Lemma 2.17, H is a T -comodule algebra with comodule

coaction given by ρ := (idH ⊗π) ◦ ∆H : H → H ⊗ T . The fact that A consists of the

coinvariants of this action is obvious from the definition.

The converse of this result is true as well, in that any crossed product has a cleaving

map.

Proposition 2.23. Suppose that A is an algebra and T a Hopf algebra such that there

exists some cocycle σ and action of T on A giving us a crossed product A#σT . Then

the map γ : T → A#σT given by t 7→ 1#t for t ∈ T is a convolution invertible right

T -comodule map with respect to the comodule structure given by a#t 7→ a#t1 ⊗ t2 for

a ∈ A, t ∈ T . The convolution inverse for γ is given by

γ−1(t) =
∑

σ−1(ST (t2), t3)#ST (t1).

Proof. See for instance [5, Lemma 1.5, Proposition 1.8] or [36, Proposition 7.5.7].

Remark 2.24. We frequently write aγ(t) for elements of A#σT rather than a#t, a nota-

tion which is justified as this is simply the image of a#t inH under the algebra isomorphism

described in Proposition 2.22. We do not write at when T is not necessarily a subalgebra

of H as this notation would be misleading.

Note that not all Hopf surjections give rise to a crossed product decomposition or

equivalently a cleaving map.

Example 2.25. Let k be an algebraically closed field of characteristic zero, and let

H := O(SL2(k)) ∼= k[a, b, c, d | ad− bc = 1].

There is a subgroup Z of SL2(k) given by the diagonal matrices:

Z =

{(
λ 0
0 λ−1

)
| λ ∈ k∗

}
,

so Z is isomorphic to k∗ as an algebraic group and we have T := O(Z) ∼= k[t±1]. So there

is an algebraic group embedding k∗ → SL2(k) given by sending λ ∈ k∗ to the diagonal

matrix with diagonal entries (λ, λ−1). By the equivalence of categories between algebraic
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groups and commutative Hopf algebras discussed in Remark 1.13, this gives rise to a Hopf

surjection π : H → k[t±1]. This map is given by π(b) = π(c) = 0, π(a) = t and π(d) = t−1.

However, π does not give rise to a crossed product structure on H. We can see this

via looking at the units of H:

Suppose for contradiction that H ∼= A#σk[t±1] for some A ⊆ H and cocycle σ. By

Proposition 2.22, this means the natural inclusion map γ : k[t±1]→ H is a cleaving map.

Since σ is convolution invertible by Definitions 2.5 and 2.2, there exists a map σ−1 :

T ⊗ T → A such that for all s, u ∈ T we have

∑
σ(s1, u1)σ−1(s2, u2) = εT (s)εT (u)1A.

Since T is isomorphic to a group algebra with each ti being grouplike, this equation becomes

σ(ti, tj)σ−1(ti, tj) = 1A for any i, j ∈ Z. (2.5)

Let i = 1, j = −1. Equation (2.5) tells us that σ(t, t−1) is a unit in H. Now there are

two possibilities: either σ(t, t−1) = λ1H for some λ ∈ k∗ or no such λ exists. If the former

holds, then by the crossed product axioms, we have

γ(t)γ(t−1) = σ(t, t−1)γ(tt−1) = λ1Aγ(1T ) = λ1H .

In particular, this means that γ(t) =
(
λ−1γ(t−1)

)−1, and thus γ(t) is also a unit in H. It

is nontrivial because γ is the inclusion map and hence injective, and so γ(t) is not a scalar

multiple of 1H = γ(1T ). In either case, H contains nontrivial units, meaning units which

are not scalar multiples of 1H .

Now note that by [27, Proposition 1.2], all the units in H are given by scalar multiples of

characters on SL2(k). Since the group multiplication is reflected in the coalgebra structure,

this means the only units in H are scalar multiples of grouplike elements. Identifying H

with U(sl2(k))0, as in Example 1.27, this means any unit in H corresponds to an algebra

map U(sl2(k))→ k. However, any algebra map must be zero on the ideal generated by the

derived subalgebra of sl2(k), which is simply the augmentation ideal U(sl2(k))+ as sl2(k)

is semisimple. So the only such map is the counit εU = 1H , the only units in H are scalar

multiples of the identity, and the above calculation is a contradiction.

We conclude that there is no cleaving map γ : T → H and hence no crossed product

decomposition of H coming from π.
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There has been work done on what conditions on the Hopf algebras H, T or factor

map π : H → T guarantee the existence of a cleaving map and hence a crossed product

decomposition of H. One result in particular we will make use of later follows.

Recall that the coradical H0 of a Hopf algebra H is the sum of its simple subcoalgebras.

Proposition 2.26. Let H and T be Hopf algebras and π : H → T a surjective map of

Hopf algebras. Suppose also that

(i) H is an injective right T -comodule under the canonical coaction, and

(ii) There is a coalgebra map f : T0 → H such that π ◦f : T0 → T is simply the inclusion

map.

Then there exists a cleaving map γ : T → H.

Proof. This is due to [42, Theorem 4.2].

This result has a lot of useful corollaries in the case where the factor map π is deter-

mined by a central Hopf subalgebra A of H. As this is the situation we study in Chapter

5, we will return to it there.

We note here that in other work looking at Hopf algebras which are crossed products

as algebras, it is frequently assumed that their coalgebra structure is trivial. By this we

mean that both A and T are subcoalgebras of H, giving us H ∼= A ⊗ T as coalgebras.

This is something we do not assume, nor does it follow from the crossed product structure

coming from a factor Hopf map. Indeed, the following example shows that neither A nor

T need be subcoalgebras of H in general.

Example 2.27. Let k be a field of characteristic zero and G = T (4, k) be the second

Heisenberg group. This means that G consists of the subgroup of SL4(k) given by upper

triangular matrices with all diagonal entries being 1k. As algebraic varieties, G ∼= k6, so

we have

H := O(G) ∼= k[X12, X13, X14, X23, X24, X34]

as algebras, where each Xij denotes the function sending a matrix to its (i, j)th entry.

Since the coproduct comes from matrix multiplication, we find that X12, X23 and X34 are
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primitive and

∆(X13) = X13 ⊗ 1H + 1H ⊗X13 +X12 ⊗X23,

∆(X24) = X24 ⊗ 1H + 1H ⊗X24 +X23 ⊗X34 and

∆(X14) = X14 ⊗ 1H + 1H ⊗X14 +X12 ⊗X24 +X13 ⊗X34.

Consider the subset D ⊆ G given by

D := {(aij) ∈ G | a14 = a23 = a24 = a34 = 0} =




1 a12 a13 0
0 1 0 0
0 0 1 0
0 0 0 1

 | a12, a13 ∈ k

 .

This is in fact a subgroup of T (4, k) and satisfies D ∼= (k,+)2 as algebraic groups, so by the

equivalence of categories between affine algebraic groups and commutative Hopf algebras

discussed in Remark 1.13 it gives rise to a Hopf surjection π : H → O(D) ∼= k[X12, X13].

The map π is given by factoring along the Hopf ideal 〈X14, X23, X24, X34〉. We want to

show that this map gives rise to a crossed product decomposition of H.

Let γ : T → H denote the algebra map given by

γ(X12
i
X13

j) = Xi
12X

j
13.

This is a right T -comodule map: on the generators of T , we can see this because both X12

and X12 are primitive and

((idH ⊗π) ◦∆H)(X13) = X13 ⊗ 1T + 1H ⊗X13 = (γ ⊗ idT ) ◦∆T (X13).

Now, because both (idH ⊗π)◦∆H ◦γ and (γ⊗ idT )◦∆T are compositions of algebra maps

and hence themselves algebra maps, the fact that they are equal on the generators means

they are equal on the whole of T .

Moreover, γ is convolution invertible, as the algebra map γ′ given by γ′(Xij) = −Xij

is a convolution inverse for γ. So by Proposition 2.22,

H ∼= Hcoπ#σk[X12, X13]. (2.6)

Now we want to show that the right coinvariants are simply given by the subalgebra

A := k[X14, X23, X24, X34]. We know that A ⊆ Hcoπ because X14, X23, X24, X34 are all

coinvariants and so by Proposition 2.18(i) the subalgebra they generate must be contained

in HcoT as well.
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To see that HcoT ⊆ A, recall that by Proposition 2.16, HcoT = HT∗, where the action

of T ∗ on H is given by

f · h =
∑

f(π(h2))h1 for f ∈ T ∗, h ∈ H.

Assume f is grouplike. Now note that we can view h ∈ H as a polynomial function on

T (4, k) whose comultiplication is defined by the group multiplication, and that there is a

correspondence between grouplike elements in T ∗ and the algebraic group D. Taking this

approach, we can view the action of T ∗ on H as follows: g ∈ T (4, k) and identifying f

with the element of D it corresponds to, we have

(f · h)(g) = h(gf).

Assume that h is an invariant of this action. This means that h(gf) = h(f) for all

g ∈ T (4, k), and particularly that h(f) = h(1) for all f ∈ D. The only elements of H for

which this is true are those contained in A.

Finally, the isomorphism between H and the crossed product is simply the obvious

one which sends Xij to Xij . So we find that Equation (2.6) is simply the canonical

decomposition

H ∼= A⊗ T = k[X14, X23, X24, X34]⊗ k[X12, X13]

as algebras.

Despite the fact that the crossed product structure is effectively trivial, neither A nor

T are subcoalgebras of H: we can see this because

∆(X13) = X13 ⊗ 1H + 1H ⊗X13 +X12 ⊗X23 /∈ T ⊗ T

and similarly ∆(X14) /∈ k[X14, X23, X24, X34]⊗2. In the world of algebraic groups, T not

being a subcoalgebra corresponds to the fact that although D is a subgroup of G, it is not

a normal one.

Note also that the cleaving map γ : T → H is a right T -comodule map but not a left

one:

ρ`(γ(X13)) = X13 ⊗ 1H + 1T ⊗X13 +X12 ⊗X23 6= (γ ⊗ idT )(∆T (X13)).

A consequence of this is that although all coalgebra splittings of π are cleaving maps

(Lemma 2.20), not all cleaving maps are coalgebra maps - as any such coalgebra map is

automatically both a left and right comodule map.
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Remark 2.28. We will see another example of a crossed product with a cleaving map

that is not a coalgebra map in Section 6.5. In fact, there we will see that for the family

of Hopf algebras known as the generalised Liu algebras defined there, no cleaving map

which is a coalgebra map can exist. Unlike the example of O(T (4, k)), these examples are

pointed, meaning that all simple subcoalgebras are one-dimensional.

2.4 Canonical maps on H, A and T

Throughout, k is a field.

Suppose that we are in the situation we described in Section 2.3: we have Hopf algebras

H and T along with a factor Hopf map π : H → T such that there is a cleaving map

γ : T → H. In other words, by Proposition 2.22 we have

H ∼= A#σT

for some action of T on A and cocycle σ.

Our approach in the next several chapters is to use canonical maps on H ∼= A#σT and

their behaviour in the dual setting to investigate the structure of H0. In this section, we

specify which maps we are interested in, and also introduce an extra assumption we will

need to make.

We already know that π : H → T is a Hopf surjection by assumption. We can also

find a surjective left A-module map Π : H → A given by factoring along Aγ(T+).

Lemma 2.29. Suppose H and T are Hopf algebras and π : H → T a Hopf factor map

such that there is a cleaving map γ : T → H. Let A := HcoT . Then the map Π : H → A

given by factoring along the left A-submodule Aγ(T+) of H is a surjective map of left

A-modules satisfying Π|A = idA, given by

Π(aγ(t)) = aεT (t) for a ∈ A, t ∈ T .

Proof. By Proposition 2.22, H ∼= A#σT for some cocycle σ and action of T on A, with

the isomorphism given by a#t 7→ aγ(t). So since T ∼= k1T ⊕ T+, as left A-modules there

is a decomposition

H ∼= Aγ(T ) ∼= Aγ(1T )⊕Aγ(T+).

Since by Lemma 2.21 we can assume that γ(1T ) = 1H = 1A, this turns into

H ∼= A⊕Aγ(T+).
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In this decomposition Π is simply the canonical projection map to A, and so is a surjective

left A-module map satisfying im Π = A and Π|A = idA.

The fact that Π is of the form described follows immediately from the definition.

We know that the cleaving map γ : T → H is a right T -comodule map, although

Example 2.27 tells us it need not be a left one in general and hence also need not be a

coalgebra map. The map Π lets us see that γ is an algebra map if and only if H is a smash

product.

Lemma 2.30. Given a crossed product H ∼= A#σT , the cleaving map γ is an algebra map

if and only if σ is trivial, so if and only if the product is a smash product.

Proof. First note that by definition of multiplication in a crossed product (defined in

Equation (2.2)) and using the identification of a#t with aγ(t) described in Remark 2.24,

for all s, t ∈ T we have

γ(s)γ(t) =
∑

σ(s1, t1)γ(s2t2). (2.7)

⇐: Suppose σ is trivial. This means that (2.7) turns into

γ(s)γ(t) =
∑

σ(s1, t1)γ(s2t2) =
∑

εT (s1)εT (t1)γ(s2t2) = γ(st),

and so γ preserves multiplication. Since by Lemma 2.21 we can assume without loss of

generality that γ(1T ) = 1H , this means that γ is an algebra map.

⇒: Suppose γ is an algebra map. Now (2.7) becomes

γ(st) = γ(s)γ(t) =
∑

σ(s1, t1)γ(s2t2),

and by the counit axiom this means

∑
εT (s1)εT (t1)γ(s2t2) =

∑
σ(s1, t1)γ(s2t2). (2.8)

By Lemma 2.29, there is a surjective map Π : H → A given by factoring along Aγ(T+).

Explicitly, given a ∈ A and t ∈ T we have Π(aγ(t)) = εT (t)a. We now apply Π to both

sides of (2.8). Using the counit axiom the equation becomes

σ(s, t) = εT (s)εT (t)1A,

which is exactly what we want.
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We have already seen in Example 2.27 that even when Lemma 2.30 holds, neither A

nor T need be Hopf subalgebras of H.

Note that Π itself is also not an algebra map in general. In fact, a necessary and

sufficient condition for it to be one is for the crossed product structure to be trivial. By

this we mean that both σ and the action of T on A are trivial, and thus H ∼= A ⊗ T as

algebras:

Lemma 2.31. Suppose π : H → T is some Hopf factor map and γ : T → H a cleaving

map. Let A := HcoT and Π : H → A be the map given by factoring along Aγ(T+). Then

the following are equivalent:

(i) Π is an algebra map.

(ii) Both σ and the action of T on A are trivial: we have

σ(s, t) = εT (s)εT (t) and t · a = εT (t)a

for all s, t ∈ T , a ∈ A.

(iii) H ∼= A⊗ T as algebras, where the isomorphism is given by

a⊗ t 7→ aγ(t).

Proof. (i) ⇒ (ii):

Suppose Π is an algebra map, and recall that on elements we have

Π(aγ(t)) = εT (t)a.

First we show that σ is trivial:

Let s, t ∈ T . By definition of the multiplication in a crossed product (Equation (2.2)),

we have

γ(s)γ(t) =
∑

σ(s1, t1)γ(s2t2) ∈ H.

Now consider Π applied to this. The RHS gives us

Π
(∑

σ(s1, t1)γ(s2t2)
)

=
∑

εT (s2t2)σ(s1, t1) = σ(s, t).

On the other hand, applying Π to the LHS gives us

Π(γ(s)γ(t)) = Π(γ(s))Π(γ(t)) = 1AεT (s)εT (t),
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using the fact that Π is an algebra map by assumption. Putting both of these results

together, we have

σ(s, t) = εT (s)εT (t)1A

for any s, t ∈ T . So σ is trivial.

Now we want to show the action of T on A is trivial. Let t ∈ T, a ∈ A. Again by the

definition of multiplication in a crossed product, we have γ(t)a = (t1 · a)γ(t2). Applying

Π to the LHS just gives us

Π(γ(t)a) = Π(γ(t))Π(a) = εT (t)a.

Applying Π to the RHS gives us

Π((t1 · a)γ(t2)) = εT (t2)(t1 · a) = t · a.

Combining the two tells us that t · a = εT (t)a. So the action is trivial as required.

(ii) ⇒ (iii):

By Equation (2.2), given a, b ∈ A, s, t ∈ T we have

aγ(s)bγ(t) =
∑

a(s1 · b)σ(s2, t1)γ(s3t2).

Now, because both action and σ are trivial, this becomes

aγ(s)bγ(t) =
∑

aεT (s1)bεT (s2)εT (t1)γ(s3t2),

which by the counit axiom simply gives us

aγ(s)bγ(t) = abγ(st).

Letting φ denote the canonical vector space isomorphism given by a ⊗ t 7→ aγ(t) from

Proposition 2.22, this means that we have

φ(a⊗ s)φ(b⊗ t) = aγ(s)bγ(t) = abγ(st) = φ(ab⊗ st) = φ((a⊗ s)(b⊗ t).

So φ is in fact an algebra isomorphism as required.

(iii) ⇒ (i):

Suppose that H ∼= A⊗T as algebras, where the isomorphism is given by a⊗ t 7→ aγ(t).

This means that γ is an algebra map and that A and γ(T ) commute.

This means that

HAγ(T+) = Aγ(T )Aγ(T+) ⊆ AAγ(T )γ(T+) ⊆ Aγ(TT+) = Aγ(T+),



CHAPTER 2. CROSSED PRODUCTS 53

meaning that Aγ(T+) is a left ideal. A similar argument gives Aγ(T+)H ⊆ Aγ(T+),

which means Aγ(T+) is a two-sided ideal. Now since the kernel of Π is an ideal, it is an

algebra map.

Similarly, Π is not a coalgebra map in general, as we can see in the following example.

Example 2.32. Let H = O(T, 3, k). We have H ∼= k[x, y, z] as algebras, where x and y

are primitive and ∆(z) = z ⊗ 1 + 1 ⊗ z + x ⊗ y. This decomposes as a crossed product

H ∼= k[x, y] ⊗ k[z] given by the Hopf surjection π : H → H/〈x, y〉 ∼= k[z]. Here k[x, y] is

a Hopf subalgebra, so the map ι : k[x, y] → H is a map of Hopf algebras. The cleaving

map γ : k[z] → H is given by zi 7→ zi. It is an algebra map and a map of both left and

right k[z]-comodules, but is not a coalgebra map. Finally, the factor map Π : H → k[x, y]

is given by the ideal 〈z〉. It is an algebra map, but is not a coalgebra map since Π(z) = 0

but (Π⊗Π)(∆H(z)) = x⊗ y 6= 0.

The last map that we will be working with is the canonical embedding map ι : A→ H.

By Proposition 2.18(i), A is always a subalgebra of H and so ι is an algebra map. We know

ι is not always a coalgebra map because it is not always the case that the coinvariants

form a subbialgebra: for instance, in Example 2.27 they do not.

So in summary, given a crossed product H ∼= A#σT which arises from a factor Hopf

map π : H → T , we have

A#σT

A T

Π π

ι γ

Here π is a surjective Hopf map, ι is an injective algebra map, γ is an injective right T -

comodule map that is an algebra map if and only if the cocycle σ is trivial, and Π : H → A

a surjective left A-module map satisfying Π ◦ ι = idA which is an algebra map if and only

if both σ and the action of T on A are trivial.

2.5 Originality

Crossed products as defined in Section 2.2 were independently introduced in [4] and [12]

and have been much studied since - an overview is available in [36, Chapter 7]. The

connection between the existence of a cleaving map γ : T → H and a crossed product
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decomposition H ∼= HcoT#σT discussed in Section 2.3 is studied in greater generality in

the latter two, while [4] restricts to the case where γ is a coalgebra splitting. None of the

results in these sections are original.

In Section 2.4, Lemma 2.30 is common knowledge but not generally stated in this form,

while Lemmas 2.29 and 2.31 are new as the quotient map Π : H → A which these refer to

is not generally studied.



Chapter 3

Duality of functions

3.1 Introduction

Our main purpose in this chapter is to prove Theorem 3.12, and to set it in the appropriate

context. Throughout, k is a field.

In order to compute finite duals, we pursue an approach that is inspired by category

theory: we study objects via studying the functions on them. If we can say something

about the (Hopf) subalgebras or factor (Hopf) algebras of H0, that tells us something

about its structure. This is particularly relevant to understanding the duals of crossed

products. As we saw in Section 2.4, a Hopf algebra that is a crossed product has certain

canonical maps on it, and moreover the existence of certain maps can guarantee a crossed

product structure on a given Hopf algebra. As a result, working out how these canonical

maps translate into the dual setting brings us closer to our ultimate aim: describing the

finite dual of certain crossed products as crossed products themselves.

As before, we try to generalise from the finite dimensional case. Here it is clear:

Proposition 3.1. Let B and C be finite-dimensional algebras and φ : B → C some linear

map between them.

(i) There is a linear map φ∗ : C∗ → B∗ given by composition with φ, and given any

finite-dimensional algebra D and any linear map ψ : C → D we have

(ψ ◦ φ)∗ = φ∗ ◦ ψ∗.

(ii) If φ is injective, φ∗ is surjective.

(iii) If φ is surjective, φ∗ is injective.

55
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(iv) If φ is an algebra map, φ∗ is a coalgebra map.

(v) Suppose B and C are both bialgebras. Then if φ is a coalgebra map, φ∗ is an algebra

map.

(vi) Suppose B and C are both Hopf algebras. Then if φ is a Hopf algebra map, so is φ∗.

These results are well-known. We do not give a reference here because we will see in

Section 3.4 that this follows as an immediate corollary of Theorem 3.12.

Remark 3.2. Looking at this in category theoretic terms, what (i)-(iii) are saying is that

(−)∗ is an exact contravariant functor from the category of finite-dimensional k-algebras

to that of finite-dimensional k-coalgebras, both with linear maps as morphisms, and (iv)-

(vi) follow from the functor preserving the monoidal structure. Although this is a useful

perspective, we do not approach the problem this way. The reason is because we find on

trying to generalise to the infinite-dimensional case that the question of what category we

should be working in, and in particular of what the morphisms should be, becomes rather

complicated.

We want to know how Proposition 3.1 generalises to the infinite-dimensional case. It

is tempting to simply generalise this result via replacing vector space duals by finite duals

and restricting maps appropriately:

Naive Conjecture. Let B and C be algebras and φ : B → C some linear map between

them. Then

(i) There is a linear map φ0 : C0 → B0 given by composition, and given an algebra D

and a linear map ψ : C → D we have

(ψ ◦ φ)0 = φ0 ◦ ψ0.

(ii) If φ is injective, φ0 is surjective.

(iii) If φ is surjective, φ0 is injective.

(iv) If φ is an algebra map, φ0 is a coalgebra map.

(v) If B and C are both bialgebras and φ is a coalgebra map, then φ0 is an algebra map.

(vi) If B and C are both Hopf algebras and φ is a Hopf algebra map, so is φ0.
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The next two sections show how this fails in two ways. In Section 3.2, we show that

(i) does not hold in general via looking at an example of a given B,C and map φ : B → C

where the image of the resulting map φ0 cannot lie in B0. Thus, in this case φ cannot give

rise to a well-defined map φ0 : C0 → B0. We then introduce a technical condition we call

being a finite overlay. In Lemma 3.5, we prove that φ being a finite overlay is a necessary

and sufficient condition for imφ0 to be contained in B0. Section 3.3 does the same with

condition (ii): we show that given a finite overlay φ : B → C which is injective, the dual

function φ0 is not always surjective by giving an example where it is not. We then define

a condition we call being reciprocal, and prove in Lemma 3.10 that this is necessary and

sufficient for φ0 to be surjective if φ is injective.

In Section 3.4, we show that these are the only two problems that occur. In particular,

Theorem 3.12, the main result of this chapter, fixes the Naive Conjecture and generalises

Proposition 3.1 as far as possible. Finally, Section 3.5 and in particular Lemma 3.16 look

at a specific situation in which the conditions of being a finite overlay and being reciprocal

hold.

3.2 The first problem: well-definedness

Throughout, k is a field.

As soon as we start looking into the Naive Conjecture in detail, we run into problems.

In particular, the first one we encounter is the question of whether φ0 is well-defined. Does

a map φ : B → C give rise to a map φ0 : C0 → B0?

In the finite-dimensional case, this is easy to see: any linear map composed with φ is

again a linear map, so if we set φ∗(f) := f ◦ φ for all f ∈ C∗, we have imφ∗ ⊆ B∗. In

the infinite-dimensional case, things become more complicated because we are no longer

working with C∗ and B∗ but instead C0 and B0, the spaces consisting of those maps

vanishing on some ideal of finite codimension. The same argument as before tells us that

if we start with f ∈ C0 and take φ0(f) := f ◦ φ, this will be an element of B∗ - but in

order to get φ0(f) ∈ B0 we also need it to vanish on some ideal J of finite codimension in

B.

The following example, an expansion on Remark 1.29, makes it clear this is not always

true.

Example 3.3. Let k = A be the algebraic numbers, K = C and B = kPSL2(K). We
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have seen in Example 1.28 that B0 = kεB, as the only proper ideals of B are {0} and the

augmentation ideal B+.

Let x ∈ PSL2(K) be any nonidentity element, and let C := k〈x〉. We can assume that

x has infinite order and thus C ∼= k[x]. As vector spaces, we have B ∼= C ⊕ X for some

vector space complement X of C. Now let φ : B → C be the projection along X.

If the Naive Conjecture held, we would have an injective linear map φ0 : C0 → B0.

However, this is impossible, because by Example 1.31, we have k[x]0 ∼= k[y] ⊗ k(k,+).

Hence dimC0 =∞ > 1 = dimB0.

So what goes wrong? We might assume composition with φ does still give us a linear

map φ0 : C0 → B0, simply one that is not injective, but by checking what the map does

on elements it becomes clear the problem is that imφ0 is not contained in B0:

Let f ∈ C0 be the algebra map given by f(xi) = λi for λ ∈ k∗ with λ 6= 1. Then

f ◦ φ : B → k satisfies (f ◦ φ)(x) = λ and (f ◦ φ)(1) = 1. So in particular, f ◦ φ is not a

scalar multiple of εB as this satisfies εB(x) = εB(1) = 1. Since B0 = kεB, this means that

f ◦ φ does not lie in B0.

Our choice of base fields shows that this is the case even when both fields in question

are algebraically closed of characteristic zero.

The problem lies in the fact that although we can always define a map φ∗ : C∗ → B∗

even in the infinite-dimensional case and define a map φ0 by restricting to C0, as this

example shows there is no guarantee that the image of this map lies in B0. In order to

guarantee this, we need a technical condition.

Definition 3.4. Suppose φ : B → C is a linear map such that for every ideal J of finite

codimension in C there exists some ideal I of finite codimension in B with φ(I) ⊆ J . In

this case we say φ is a finite overlay .

The next result tells us that this is a necessary and sufficient condition for φ0 : C0 → B∗

to have image in B0.

Lemma 3.5. Suppose B and C are algebras and φ : B → C is a linear map. Let

φ0 : C0 → B∗ denote the map on duals given by composition:

φ0(f) := f ◦ φ.

Then im(φ0) ⊆ B0 if and only φ is a finite overlay.
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Proof. ⇐: Suppose that φ is a finite overlay, and let f ∈ C0. Then there exists an ideal

J ⊆ ker f with finite codimension in C. By assumption, there exists some ideal I of finite

codimension in B with φ(I) ⊆ J . This means that φ0(f)(I) = f(φ(I)) = 0. This gives us

φ0(f) ∈ B0 as required.

⇒: Suppose imφ0 ⊆ B0, and let J ⊆ C be an ideal of finite codimension. Then we

can find maps f1, ..., fn ∈ C0 such that
n⋂
i=1

ker fi = J.

Since φ0(fi) ∈ B0 for each i, this means we can find ideals I1, .., In of finite codimension

in B such that Ii ⊆ kerφ0(fi). Set

I :=
n⋂
i=1

Ii.

This is also an ideal of finite codimension in B, and we have

fi(φ(I)) = φ0(fi)(I) = 0

for all i, giving us

φ(I) ⊆
n⋂
i=1

ker fi = J

as required.

Note that by Proposition 1.23, the proof of Lemma 3.5 works equally if we assume I

is a two-sided ideal, left ideal, or right ideal - hence all of these conditions are mutually

equivalent and equivalent to the notion of φ being a finite overlay.

One situation where a map is always a finite overlay is when it is an algebra map.

Corollary 3.6. Let B and C be algebras and φ : B → C an algebra map. Then φ is a

finite overlay.

Proof. Suppose J ⊆ C is an ideal of finite codimension. We want to show that there exists

some ideal of finite codimension I ⊆ B with φ(I) ⊆ J .

Let I := φ−1(J) ⊆ B. This is an ideal because φ is an algebra map, we have φ(I) ⊆ J

by definition and since φ induces an embedding of B/I into C/J it follows that I must

have finite codimension in B.

However, this is not the only case in which a finite overlay occurs. For example, it is

trivial to see that φ always gives a finite overlay when B is finite-dimensional - in this case,

we can always take I := {0}, which satisfies φ(I) ⊆ J for any ideal J in C. In Section
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3.5 we will discuss other situations which force the finite overlay condition to hold, with

particular focus on ones relevant to the crossed product setting.

Remark 3.7. We can put the notion of a map being a finite overlay into a wider context

as follows: any k-algebra can be given the structure of a topological ring by defining the

open neighbourhoods of zero to be the ideals of finite codimension (where we can consider

left, right, or two-sided ideals). This topology, known as the fc-topology, is studied for

instance in [40]. Viewed in this setting, saying a map is a finite overlay is simply saying it

is continuous with respect to this topology.

3.3 The second problem: surjectivity in the dual

Throughout, k is a field.

From now on, we suppose φ : B → C is a linear map which is a finite overlay, which

by Lemma 3.5 means we have a linear map φ0 : C0 → B0 given by composition with φ.

We want to see what happens to the Naive Conjecture we proposed in Section 3.1 once

we add in this extra assumption.

The next problem that arises is in part (ii) of the Naive Conjecture: we would like φ

being injective to guarantee that φ0 is surjective. The following example shows that this

is not always true.

Example 3.8. Suppose k an algebraically closed field that is not locally finite and set

C := kG, where G is the Heisenberg group given by

G = 〈x, y, z | [x, y] = z, z central〉.

Now set B := k[z±1], and let φ : B → C denote the natural inclusion map. Throughout,

we identify B with its image φ(B) in C. Since φ is an algebra embedding, these two spaces

are isomorphic as algebras. Also, φ being an algebra map means that by Corollary 3.6 it

is a finite overlay, and so we get a map φ0 : C0 → B0 given by restriction to B. We want

to show this map is not surjective. This follows from the next claim.

Claim. Suppose I ⊆ kG is an ideal of finite codimension. Then I ∩ B = fB for some

f ∈ B such that every irreducible factor of f has the form (z − λ) for some root of unity

λ ∈ k∗.

Proof. We know that some f ∈ B with I ∩ B = fB must exist because B is a principal

ideal domain, and we know that the irreducible elements of B look like (z − λ) for λ ∈ k∗
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because k is algebraically closed. So the only thing we need to show is that f contains no

irreducible factors of the form (z − µ) where µ is not a root of unity.

Suppose to the contrary that f = (z − µ)g for some such µ, where g ∈ B. Then we

have

((z − µ)kG)(gkG) = fkG ⊆ I

because (z − µ) is central in kG. However, we know that g /∈ I because I ∩ B = fB and

g does not contain f as a factor. So g + I is nonzero in the finite dimensional algebra

kG/I and has annihilator ideal P ( kG such that (z − µ)kG ⊆ P . This means we have a

canonical isomorphism of kG-modules

kG/P ∼= kG(g + I)/I.

Since kG(g + I)/I ⊆ kG/I is finite dimensional, showing that kG/P is not finite dimen-

sional suffices to give us a contradiction. We do this by showing that P = (z − µ)kG.

We have

Rµ :=
kG

(z − µ)kG
= k〈x±1, y±1 | xy = µyx〉.

This is infinite dimensional and arises by localising the quantum plane

Qµ = k〈x, y | xy = µyx〉

at the multiplicatively closed set consisting of all monomials in x and y. However, because

µ is not a root of unity this construction gives a simple ring (see Example 2.14.) The only

proper ideal of Rµ is the zero ideal. So (z − µ)kG is maximal in kG.

Since we know that (z − µ)kG ⊆ P by the above, this means that P = (z − µ)kG.

However, this does not have finite codimension in kG, which is a contradiction by the

above. Such µ cannot exist.

This proves the claim.

From the claim we can show that φ0 : C0 → B0 is not surjective as follows:

Let µ ∈ k∗ be given such that µ is not a root of unity. Define f : B → k to be the

algebra homomorphism given by f(z) = µ. We have f ∈ B0 because ker f = (z − µ)B,

which is an ideal of codimension 1 in B. Now suppose we have f̂ ∈ C0 such that φ0(f̂) = f .

By definition any f̂ ∈ C0 contains an ideal I ⊆ C of finite codimension in its kernel, and

because f̂ |B = f we have I ∩ B ⊆ ker f = (z − µ)B. Since B is a principal ideal domain,

we have I ∩ B = gB for some g ∈ B, where g 6= 0 since I ∩ B has finite codimension in



CHAPTER 3. DUALITY OF FUNCTIONS 62

B. Moreover, gB ⊆ (z − µ)B means that g has an irreducible factor of the form (z − µ).

This is a contradiction by the above claim, and so no such f̂ ∈ C0 can exist. So the map

φ0 : C0 → B0 is not surjective.

We need another technical condition.

Definition 3.9. Let φ : B → C be a finite overlay. We say that φ is reciprocal if whenever

I is an ideal of finite codimension in B, we can find an ideal J of finite codimension in C

with

J ∩ imφ ⊆ φ(I).

If φ : B → C is an injective finite overlay, it being reciprocal is equivalent to the dual

map φ0 : C0 → B0 being surjective:

Lemma 3.10. Suppose B and C are algebras and φ : B → C is an injective linear map

which is a finite overlay. Then φ0 : C0 → B0 is surjective if and only if φ is reciprocal.

Proof. ⇐: Suppose the stated condition holds, and suppose f ∈ B0. We want to show

there exists g ∈ C0 such that φ0(g) = f .

Since f ∈ B0, there exists some ideal I ⊆ ker f with finite codimension in B. By

assumption, we can find an ideal J ⊆ C of finite codimension such that J ∩ imφ ⊆ φ(I).

We want g(J) = 0, so we can define g on C/J . Now, we have

C/J ∼=
(imφ+ J)

J
⊕X

as vector spaces, where X is some vector space complement of (imφ+J)/J . Set g(X) = 0.

It remains to define g on (imφ+ J)/J ∼= imφ/(J ∩ imφ) - or, alternatively, to define

g on imφ in such a way that g(J ∩ imφ) = 0.

To do this, we note that since φ is injective, it is an isomorphism on its image: we have

an inverse map φ−1 : imφ→ B. We define g|imφ := f ◦ φ−1. This satisfies

g(J ∩ imφ) = f(φ−1(J ∩ imφ)) ⊆ f(φ−1(φ(I))) = f(I) = 0,

so it is well-defined. It is also obvious that this means we have φ0(g) = f .

⇒: Suppose we know that φ0 is surjective. Let I be an ideal of finite codimension in

B. Then we can find f1, ..., fn ∈ B0 such that

n⋂
i=1

ker fi = I.
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By the surjectivity of φ0, there exist g1, ..., gn ∈ C0 with φ0(gi) = fi. For each 1 ≤ i ≤

n, since gi ∈ C0 there exists an ideal Ji ⊆ ker gi such that Ji has finite codimension in C.

Set

J :=
n⋂
i=1

Ji.

We want to show that J ∩ imφ ⊆ φ(I).

Let h ∈ B. Since gi ◦ φ = fi, we have gi(φ(h)) = fi(h). In particular, gi(φ(h)) = 0 if

and only if fi(h) = 0, and so

ker gi ∩ imφ = φ(ker fi).

This means that

J ∩ imφ ⊆

(
n⋂
i=1

ker gi

)
∩ imφ

=
n⋂
i=1

(ker gi ∩ imφ)

=
n⋂
i=1

φ(ker fi)

= φ

(
n⋂
i=1

ker fi

)
because φ is injective

= φ(I)

as required.

This time, we find that any finite overlay φ : B → C is trivially reciprocal whenever C

is finite dimensional - in this case, we can just take J = {0}, which has finite codimension

in C by finite-dimensionality and obviously satisfies {0} = J ∩ imφ ⊆ φ(I) for any ideal

I in B. However, unlike in Section 3.2, we do not immediately see any “nice” properties

such as being an algebra map which guarantee that a map is reciprocal. In Example 3.8,

we saw that even an injective map which is the embedding of a central Hopf subalgebra is

not necessarily reciprocal. Again, in Section 3.5 we will look at a specific situation relevant

to the crossed product situation which guarantees reciprocity.

Remark 3.11. Just as in the case of finite overlays in Remark 3.7, we can also view

the notion of a reciprocal map in terms of the fc-topology on a k-algebra given by the

ideals of finite codimension. In this case, a map being reciprocal is equivalent to it being

a topological embedding: a continuous map that is a homeomorphism onto its image.
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3.4 The main result

Throughout, k is a field.

In Section 3.2, we encountered the first problem with the Naive Conjecture: given a

linear map φ : B → C, we needed to impose a technical condition which we called being

a finite overlay in order to be able to talk about a canonical map φ0 : C0 → B0 at all. In

Section 3.3, we saw the second problem: given an injective finite overlay φ : B → C, we

needed to impose another technical condition which we called being reciprocal in order to

have φ0 surjective. Now, we prove that these are the only two obstructions to the truth

of the Naive Conjecture.

Theorem 3.12. Suppose B and C are both algebras and φ : B → C is some linear map

between them which is a finite overlay. Then

(i) There is a well-defined map φ0 : C0 → B0 given by composition with φ, and given

any algebra D and finite overlay ψ : C → D, ψ ◦ φ is a finite overlay such that

(ψ ◦ φ)0 = φ0 ◦ ψ0.

(ii) Suppose φ is injective. Then φ0 is surjective if and only if φ is reciprocal.

(iii) If φ is surjective, φ0 is injective.

(iv) If φ is an algebra map, φ0 is a coalgebra map.

(v) Suppose B and C are bialgebras. Then if φ is a coalgebra map, φ0 is an algebra map.

(vi) Suppose B and C are Hopf algebras. Then if φ is a Hopf algebra map, so is φ0.

Proof. (i) For the first part, see Lemma 3.5. Now let D be an algebra and ψ : C → D be

some linear map which is a finite overlay. Let f ∈ D0. Then

(ψ ◦ φ)0(f) = f ◦ ψ ◦ φ = (φ0(f ◦ ψ)) = φ0 ◦ ψ0 ◦ f

and thus we have

(ψ ◦ φ)0 = φ0 ◦ ψ0.

The fact that ψ ◦ φ is a finite overlay follows from this: we have

(ψ ◦ φ)0(D0) = (φ0 ◦ ψ0)(D0) = φ0(ψ0(D0)) ⊆ φ0(C0) ⊆ B0
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because both φ and ψ are finite overlays. So im(ψ ◦φ)0 ⊆ B0, which by Lemma 3.5 means

that ψ ◦ φ is a finite overlay.

(ii) This is simply Lemma 3.10.

(iii) Suppose φ is surjective and φ0(f) = 0 for some f ∈ C0. Then f(φ(h)) = 0 for all

h ∈ B. Since φ is surjective, this means that f(h′) = 0 for all h′ ∈ C, and so f = 0. So φ0

is injective.

(iv) Suppose φ is an algebra map and let µ : k⊗k → k denote the scalar multiplication

map. The fact that the coalgebra structure on B0 is induced by the algebra structure on

B gives us what we need. In particular, assume f ∈ C0 and g, h ∈ B. Then we have

∆B0(φ0(f))(g ⊗ h) =
(∑

φ0(f)1 ⊗ φ0(f)2

)
(g ⊗ h)

= φ0(f)(gh)

= f(φ(gh))

= f(φ(g)φ(h))

=
∑

f1(φ(g))f2(φ(h))

= µ
((∑

φ0(f1)⊗ φ0(f2)
)

(g ⊗ h)
)

= µ
(
(φ0 ⊗ φ0)(∆C0(f))(g ⊗ h)

)
.

so φ0 preserves the coproduct. Similarly, we find that

εB0(φ0(f)) = φ0(f)(1B) = f(φ(1B)) = f(1C) = εC0(f)

and hence φ0 preserves the counit: it is a coalgebra map as required.

(v) Suppose φ is a coalgebra map. The algebra structure on B0 is induced by the

coalgebra structure on B, so if φ respects the coalgebra structure then for all f, g ∈ C0

and h ∈ B we have

(
φ0(f)φ0(g)

)
(h) =

∑
(f ◦ φ)(h1)(g ◦ φ)(h2)

=
∑

f(φ(h)1)g(φ(h)2)

= (fg)(φ(h)) = φ0(fg)(h).

Similarly, φ0(εC) = εC ◦ φ = εB, so φ0 preserves the identity. This means φ0 is an

algebra map.

(vi) Suppose φ is a Hopf algebra map. By (iv), this means that φ0 is a coalgebra map,

and by (v) it is also an algebra map. So we already know that φ0 : C0 → B0 is a bialgebra
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map. Now note that both C0 and B0 are Hopf algebras and by [48, Lemma 4.0.4], any

bialgebra map between Hopf algebras is a Hopf algebra map. Hence φ0 is a Hopf algebra

map as required.

Remark 3.13. Since the embedding B0 → B∗ is an algebra embedding, parts (iii) and

(v) of Theorem 3.12 also hold for the vector space dual: given any linear map φ : B → C,

the dual map φ∗ : C∗ → B∗ is still injective whenever φ surjective, and is still an algebra

map whenever B and C are bialgebras and φ is a coalgebra map.

Remark 3.14. Note that if we assume B and C finite-dimensional, B0 = B∗ and C0 = C∗,

and moreover φ is always trivially a reciprocal finite overlay. Thus under these assumptions

Theorem 3.12 gives us exactly Proposition 3.1, which we can therefore view as a corollary.

3.5 Subalgebras and projection maps arising from a direct

sum decomposition

Throughout, k is a field.

Recall the notion of a finite overlay from Definition 3.4 and that of it being reciprocal

from Definition 3.9.

These two conditions are quite difficult to check in practice. We want to find conditions

that imply them which are easier to check and tell us more about the structure of B or C.

In particular, we are interested in crossed products as defined in Chapter 2 and the maps

arising on those and so would like to find conditions relevant to that situation.

One situation that arises frequently is that we have some Hopf algebra H and subal-

gebra A ⊆ H along with a linear quotient map ψ : H → A with ψ|A = idA. For instance,

when H ∼= A#σT , we have a canonical subalgebra A ⊆ H along with a quotient map

Π : H → A given by factoring along A#T+. In this case, Π is not just a linear map but

also one of left A-modules.

Given such a subalgebra A and map ψ, we know that the canonical inclusion map

ι : A → H is a finite overlay by Corollary 3.6, but as we saw in Example 3.8 it need not

be reciprocal. Similarly, ψ : H → A need not be a finite overlay at all.

It turns out that these two conditions are related.

Lemma 3.15. Suppose H is an algebra and A ⊆ H is a subalgebra of H, with ι denoting

the inclusion map. Suppose also that we have a linear map ψ : H → A such that ι◦ψ = idA.
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If ψ is a finite overlay, then ι is reciprocal.

Proof. Suppose we are given A,H, ι and ψ as in the statement and suppose ψ is a finite

overlay. So for any ideal I of finite codimension in A there exists an ideal J with finite

codimension in H such that ψ(J) ⊆ I. By Corollary 3.6, ι being an algebra map means it

is a finite overlay. Now we want to show that ι is reciprocal. Since I was an arbitrary ideal

of finite codimension in A, this means we need to find some ideal K of finite codimension

in H with K ∩ im ι ⊆ ι(I). However, we can just take K := J , since we have

J ∩ im ι = J ∩A = ι ◦ ψ(J ∩A) ⊆ ι ◦ ψ(J) ⊆ ι(I).

This means ι is reciprocal.

As mentioned above, one situation where Lemma 3.15 applies is when H is a crossed

product, and in that case the projection map Π arises from a left A-module decomposition

H ∼= A⊕A#T+.

In that case, we can say something more:

Lemma 3.16. Suppose A and H are algebras, and suppose further that we have

H ∼= A⊕X

as A-modules, where the first summand A is a subalgebra of H and X is some left A-

module. If X is finitely-generated as an A-module, then the canonical projection map

ψ : H → A along X is a finite overlay and the inclusion map ι : A→ H is reciprocal.

Proof. Let ψ be as stated. In order to show that ψ is a finite overlay, we want to show

that given any ideal I of finite codimension in A there exists some left, right or two-sided

ideal J ⊆ H of finite codimension such that ψ(J) ⊆ I.

Define J := I ⊕ IX = IH. This is a right ideal in H, and we have ψ(J) = ψ(I) +

ψ(IX) = I since IX ⊆ X ⊆ kerψ. So we only need to check that J has finite codimension.

Note that dim(X/IX) <∞ because X/IX is a finitely-generated left A/I-module and

A/I is finite-dimensional. So J has finite codimension because

dim(H/J) = dim(A/I) + dim(X/IX) <∞,

and so ψ is a finite overlay.

The fact that ι is then reciprocal follows from Lemma 3.15.
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This result is particularly useful for the crossed product case.

Corollary 3.17. Suppose H and T are Hopf algebras and A is an algebra such that

H ∼= A#σT for some cocycle σ and action of T on H. Suppose further that T is finite-

dimensional. Then the canonical projection map Π : H → A given by Π(a#t) = εT (t)a

for a ∈ A, t ∈ T is a finite overlay, and the inclusion map ι : A→ H is reciprocal.

Proof. We can write H as

H ∼= A#1T ⊕A#T+.

This is a decomposition of left A-modules, and because T and hence T+ are finite-

dimensional, A#T+ is finitely generated as a left A-module. So Lemma 3.16 applies:

the projection map given by factoring along A#T+, which is precisely the one sending

a#t to εT (t)a , is a finite overlay and the inclusion map ι : A→ H is reciprocal.

An obvious question to ask is whether we can weaken the hypotheses of Lemma 3.16

at all. In particular, we would like to do away with the assumption that X is finitely

generated, thus allowing us to extend these results to all crossed products rather than

just those where T is finite-dimensional. The following example shows us that this is not

possible. Lemma 3.16 does not necessarily hold without that assumption, even when we

are working in “nice” situations such as one in which H is Noetherian and A is a central

Hopf subalgebra.

Example 3.18. Let G be the Heisenberg group defined in Example 3.8 and H its group

algebra. This means that

H = kG ∼= k〈x±1, y±1, z±1 | [x, y] = z, z central〉.

Let A = k[z±1] ⊆ H. We know that H ∼= A⊕X as left A-modules, where X is given by

X =
⊕
i,j∈Z

one of i,j 6=0

Axiyj .

However, X is not finitely generated as a left A-module.

Recall that in Example 3.8 we showed the inclusion map A→ H is not reciprocal. By

Lemma 3.15, this implies that the canonical projection from H to A along X cannot be

a finite overlay. Thus neither of the statements of Lemma 3.16 holds, although all of its

conditions hold save for X being finitely generated as a left A-module.

Moreover, in this case, A is a central Hopf subalgebra, and sinceG is polycyclic we know

by [17, Theorem 1 and following remarks] or [38, Corollary 10.2.8] that H is Noetherian.
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However, although we cannot drop X being finitely-generated from our conditions for

Lemma 3.16, at the same time it is not always a necessary condition. This follows from

Corollary 3.6, which says that in any case where ψ : H → A is an algebra map it is always

a finite overlay. One of the cases where this holds is when H is isomorphic to a tensor

product.

Example 3.19. Suppose that H ∼= A ⊗ T as Hopf algebras and suppose T is not finite-

dimensional. We have H ∼= A ⊕ AT+ as left A-modules, and X := AT+ is not finitely

generated as a left A-module. However, the map ψ : H → A given by factoring along X

is an algebra map and hence by Corollary 3.6 a finite overlay. By Lemma 3.15, this also

implies that the inclusion map ι : A→ H is reciprocal.

In the next chapter, we will use the results of this chapter to work out results about

the finite duals of crossed products.

3.6 Originality

Proposition 3.1 is classical knowledge, as is the extension to infinite dimensions in Theorem

3.12 (iii)-(v). However, the notions of finite overlay and reciprocity and their properties

introduced in Sections 3.2 and 3.3 are new in the context of Hopf algebras, as are Theorem

3.12(i)-(ii) and Section 3.5. Although there is some work on similar questions in [1, Theo-

rem 2.3.16], the approach taken there is asking what properties two algebras must satisfy

so that every injective algebra map between them becomes surjective in the dual and thus

different from ours.



Chapter 4

Duals of crossed products

4.1 Introduction

In Chapter 2, we looked at how functions between Hopf algebras translate to the world of

finite duals. This chapter, we endeavour to use these results to describe the finite dual of

a crossed product, in particular one arising from a Hopf surjection.

Throughout, k is a field, H and T are Hopf algebras over k and π : H → T is a

surjective Hopf map. We recall various results from Chapter 2:

H is always a right T -comodule algebra with comodule map given by (idH ⊗π) ◦∆H

(Lemma 2.17). Suppose there exists a convolution invertible right T -comodule map γ :

T → H. We call γ a cleaving map (Definition 2.19) and by Proposition 2.22 its existence

means that we have

H ∼= A#σT

for a given weak action of T on A and cocycle σ : T ⊗ T → A, where A := HcoT is given

by the coinvariants of the T -comodule action.

Recall from Definition 2.5 and Lemma 2.6 that this notation means that H ∼= A ⊗ T

as vector spaces, and moreover that H is an associative algebra with multiplication given

by

(a#t)(b#s) =
∑

a(t1 · b)σ(t2, s1)#t3s2,

where a, b ∈ A, s, t ∈ T and we write a#t for the element corresponding to a ⊗ t in the

description of H as a tensor product. In this notation, the multiplication also has idenity

1A#1T .

In this situation, we want to use our results from Chapter 3 to describe H0.

70
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Naively, we might think that

H0 ∼= A0#τT
0 (4.1)

as algebras for some cocycle τ . We will see that this fails to hold in a number of situations:

the main issues are that there need not be a canonical embedding A0 ⊆ H0 and that even

when we do have such an embedding, there may not exist an isomorphism such as the

above. However, we show that there are multiple similar, even some stronger results that

hold with some classical constraints on the structure, such as H being a smash product.

Remark 4.1. Another possible decomposition of H0 is

H0 ∼= T 0#τ ′A
0 (4.2)

for some cocycle τ ′. Indeed, this might even seem more natural than (4.1) at first glance

as we know the translation to the dual setting is in some sense contravariant and so we

would expect this kind of reversal. We do not consider the possibility here because in order

for (4.2) to hold, we would need both a Hopf algebra structure on A0 and for it to satisfy

various compatibility conditions regarding the structure of H0, and moreover the obvious

way to get such a structure would be through a Hopf algebra structure on A. However,

neither the definition of a crossed product nor the conditions we have assumed to get a

crossed product structure on H make any reference to a coalgebra structure on A, much

less a Hopf algebra structure compatible with H. Instead, we look at the possibility of

(4.2) in Chapter 5, where we study Hopf algebras that are finitely generated over central

Hopf subalgebras.

In Section 4.1.1, we record the precise assumptions we will be working with throughout

this chapter and the notation we will be using.

In Section 4.2, we recall the canonical left A-module map Π : H → A from Section 2.4

and define a subspace A0
Π of A0 which is the maximal subspace that gets mapped into H0

by the canonical map Π∗. We then define a linear embedding

ξ : A0
Π ⊗ T 0 → H0.

We do not know whether this embedding is always bijective, but in any case Example 4.8

shows it does not always give rise to an algebra isomorphism A0
Π#σT

0 ∼= H0. Lemma 4.4

gives a necessary and sufficient condition for A0
Π to be the whole of A0.

The map ξ does not tell us very much in the general case. However, in the next three

sections we look at what ξ tells us under certain extra conditions which arise frequently.
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In Section 4.3 we ask when ξ is bijective. Theorem 4.9 gives two conditions which,

together, are necessary and sufficient for ξ to be bijective: the conditions are that γ is

a finite overlay (as in Definition 3.4) and that im ι0 ⊆ A0
Π. Since these two conditions

are rather technical, two corollaries look at specific situations of interest in which they

both hold. In particular, Corollary 4.11 tells us that they always hold when T is finite-

dimensional, and Corollary 4.12 that they also hold when the action on A and cocycle are

trivial, which means that H ∼= A⊗ T as algebras.

In the next two sections, we impose a stronger hypothesis on γ, namely that it is a

coalgebra map.

Section 4.4 is concerned with smash products: what happens when the cocycle σ is

trivial? Theorem 4.13 tells us that here, ξ gives rise to an algebra isomorphism between

A0
Π#T 0 and H0. Then Section 4.5 considers the case where A is a Hopf subalgebra of H.

Here, Theorem 4.19 tells us that ξ is an algebra map.

Since all of these results concern the same function and are about relatively independent

conditions on H, they can combine. In Section 4.6, we summarise all our results in Table

4.1, which tells us what we can say about H0 under what assumptions on H.

4.1.1 Setting and notation

We recall the results of Section 2.4.

Throughout, k is a field and H and T are Hopf algebras, with π : H → T being

some Hopf surjection and γ : T → H a convolution invertible right T -comodule map. By

Proposition 2.22, this means that

H ∼= A#σT.

Here A := HcoT are the right T -coinvariants, forming a subalgebra of H by Proposition

2.18(i), while the action of T on A is given by

t · a =
∑

γ(t1)aγ−1(t2) for t ∈ T, a ∈ A

and σ is given by

σ(s, t) =
∑

γ(s1)γ(t1)γ−1(s2t2) for s, t ∈ T.

The isomorphism is given by a#t 7→ aγ(t).

In this setting, by Section 2.4, we have four canonical maps on H, A and T . There is

the canonical Hopf surjection π : H → T along with the cleaving map γ : T → H, which
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is a convolution invertible right T -comodule map where we can assume without loss of

generality that

γ(1T ) = 1H .

We also have the canonical algebra map which gives the embedding of A into H as a

subalgebra, which we call ι. Finally, there is a canonical left A-module map Π : H → A

given by factoring along the left A-module Aγ(T+). That is, for a ∈ A and t ∈ T ,

Π(aγ(t)) = aεT (t). (4.3)

As we saw in Section 2.4, γ is neither an algebra nor coalgebra map in general, and in

fact a necessary and sufficient condition for it to be an algebra map is for the cocycle σ to

be trivial (this is by Lemma 2.30). Similarly, Π is neither an algebra nor coalgebra map

in general.

As discussed in Remark 2.24, we write aγ(t) for the element of H given by mH ◦ (ι⊗

γ)(a⊗ t), which corresponds to a#t in the crossed product description of H. In particular,

we usually suppress ι in notation but do not suppress γ. The reason for this is that γ

is not generally an algebra map, so γ(s)γ(t) 6= γ(st) in general for s, t ∈ T . As a result,

suppressing γ would lead to our notation being ambiguous and misleading.

In Sections 4.4 and 4.5, we impose a stronger assumption on γ: namely, that it is a

coalgebra map. As we saw in Example 2.27, this condition need not always be true. We

will see in this chapter that γ is a coalgebra map in many examples of interest to us, such

as when H is a Taft algebra (Examples 4.16, 4.22). By Lemma 2.20, in this case we always

have π ◦ γ = idT .

4.2 General results

Throughout, k is a field.

Let H and T be Hopf algebras with a Hopf surjection π : H → T and a convolution

invertible right T -comodule map γ : T → H, so that by Proposition 2.22 we have

H ∼= A#σT

for some weak action of T on A and cocycle σ : T ⊗ T → A (recalling these definitions

from Chapter 2).

As discussed in the introduction, we want to find a way to express H0 in terms of A0

and T 0. In particular, our naive assumption might be that H0 ∼= A0#τT
0 for some action
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of T 0 on A0 and cocycle τ : T 0 ⊗ T 0 → A0. We begin this chapter by attempting to

construct a map that could provide such an isomorphism. However, in Example 4.2, we

find that there does not necessarily exist an embedding A0 → H0 satisfying the properties

we would like. So instead we switch to a subspace A0
Π ⊆ A0 which we know always embeds

into H0 and define a map ξ : A0
Π⊗T 0 → H0 which may give us a crossed product structure.

This map ξ will be our object of study in the rest of the chapter.

Retaining the notation and hypotheses of Section 4.1.1, we start off looking for a way

to define a canonical map A0 ⊗ T 0 → H0.

The logical approach seems to be to find two canonical embeddings A0 → H0 and

T 0 → H0, tensor these together and then compose with the multiplication on H0. Indeed,

for T 0 the first part of this works, as we now show.

First, recall the condition of a map φ : B → C being a finite overlay from Definition

3.4, in particular that by Lemma 3.5 this condition is necessary and sufficient for the image

of the map φ0 : C0 → B∗ given by composition with φ to be contained in B0. By Corollary

3.6, all algebra maps are finite overlays so the Hopf surjection π : H → T is certainly one.

So we have a well-defined map π0 : T 0 → H0, and moreover Theorem 3.12 (iii) and (vi)

tells us this map is an embedding of Hopf algebras.

However, we run into problems looking for a canonical embedding ψ : A0 → H0. We

would like it to be natural in some sense, for instance by having maps in A0 and their

images in H0 agree on A, so that given f ∈ A0 and a ∈ A we have

ψ(f)(a) = f(a). (4.4)

An obvious candidate here might be the map Π0: since Π|A = idA, the map on duals given

by composition with Π will satisfy (4.4). However, there seems to be no reason for Π to

be a finite overlay. Indeed, in the following example it is not. In fact, in the example no

ψ : A0 → H0 satisfying Equation (4.4) can exist.

Example 4.2. Let k be an algebraically closed field of characteristic zero, g := k{x, y |

[y, x] = x} be the nonabelian 2-dimensional Lie algebra, and H := U(g) its universal

enveloping algebra. We find that H is a smash product:

H ∼= k[x]#k[y],

where the action of k[y] on k[x] is given by y · x = x. Here, Π : H → k[x] is the map given

by factoring along the left k[x]-module
⊕

i≥1 k[x]yi, so that we have Π(xiyj) = δj0x
i.
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Recall from Example 1.31 that we have

H0 ∼= k[X,Y ]⊗ k(k,+).

By [30, 1.6], viewed as linear maps from H to k we have X(xiyj) = δi1δj0, Y (xiyj) = δi0δj1

and the map fλ ∈ (k,+) corresponding to a scalar λ ∈ k is given by fλ(xiyj) = δi0λ
j . In

other words, the fλ are the characters arising from k[y] viewed as the abelianisation of

U(g).

This means we are missing the characters coming from k[x]: by Example 1.31, we have

k[x]0 ∼= k[z]⊗ k(k,+),

where gλ ∈ k(k,+) is given by gλ(xi) = λi. When we go from k[x]0 to H0, although the

maps in k[z] lift to those in k[X], the characters in k(k,+) get “lost”.

We can see what is happening here by looking at U(g)-modules.

First, we note that every finite dimensional irreducible U(g)-module is one-dimensional

as a vector space (see for instance [10, Corollary 1.3.13]). Since [y, x] = x, this means that x

acts as zero on every finite dimensional irreducible U(g)-module. As any finite dimensional

U(g)-module has a composition series of finite length, this means that any such module

must be killed by a power of x. Since every ideal of finite codimension is the annihilator

of some finite-dimensional module, this means every such ideal contains some power of x,

and so given f ∈ U(g)0 we must have f(xn) = 0 for some n. In particular, this means that

f(xn) = 0 6= λn = gλ(xn)

for all λ ∈ k∗.

Since Π0(gλ)(xi) = λi, this means that Π0(gλ) /∈ U(g)0, and hence by Lemma 3.5 Π is

not a finite overlay. Moreover, the same applies to any map ψ : A0 → H∗ which satisfies

Equation (4.4).

This example shows us that the map Π0 : A0 → H∗ given by composition with the

canonical quotient map Π : H → A does not necessarily give us a well-defined map

A0 → H0. In fact, it shows that the same is true for any map A0 → H∗ that preserves

evaluation on A, even when (as in the example) A and H satisfy properties such as H

being a smash product or A being a Hopf subalgebra.

However, the example also shows that even when there is no such embedding, we might

be able to find an embedding of a subspace of A0. In the case of U(g) ∼= k[x]#k[y], we
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have H0 ∼= k[X]⊗ k[y]0. Here we can identify k[X] with Π0(k[z]), where

k[z] ⊆ k[z]⊗ k(k,+) ∼= k[x]0.

We can do something similar in the general case:

Definition 4.3. Under the notation and assumptions of Section 4.1.1, we define a subspace

A0
Π of A0 as follows:

A0
Π :=

(
Π0
)−1 (im Π0 ∩H0) = {f ∈ A0 | f ◦Π ∈ H0}.

Thus A0
Π is just the subspace of A0 consisting of those functions which get mapped into

H0 by Π0.

A0
Π is always a subspace of A0. It is easy to see the necessary and sufficient condition

for it being all of A0:

Lemma 4.4. A0
Π = A0 if and only if Π is a finite overlay.

Proof. This follows straight from the definition and from Lemma 3.5:

We know that A0
Π consists exactly of those functions in A0 which are mapped to H0

by Π0. This is going to be all of A0 if and only if im Π0 ⊆ H0, which by Lemma 3.5 is

true if and only if Π is a finite overlay.

In the case of Example 4.2, we have A0
Π = k[z].

In general, under the hypotheses of Section 4.1.1 we have a well-defined linear map

Π0|A0
Π

: A0
Π → H0,

since we know that Π0(A0
Π) ⊆ H0 by definition. For a ∈ A, t ∈ T and f ∈ A0

Π it satisfies

Π0(f)(aγ(t)) = (f ◦Π)(aγ(t)) = εT (t)f(a).

Moreover, it is an embedding: if Π0(f) = f ◦ Π = 0, the fact that Π is surjective implies

that f = 0.

Thus we define a linear map ξ : A0
Π ⊗ T 0 → H0 by

ξ := mH0 ◦ (Π0|A0
Π
⊗ π0). (4.5)

It turns out that viewed on elements, this map has a nice form:
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Lemma 4.5. Under the notation and assumptions of Section 4.1.1 and with A0
Π and ξ as

in Definition 4.3 and (4.5) respectively, take f ∈ A0
Π, g ∈ T 0, a ∈ A and t ∈ T . Then we

have

ξ(f ⊗ g)(aγ(t)) = f(a)g(t).

Proof. By (4.5) we have

ξ(f ⊗ g) = (f ⊗ g) ◦ (Π⊗ π) ◦∆H ,

so a sufficient condition to prove the lemma is to show that

((Π⊗ π) ◦∆H)(aγ(t)) = a⊗ t. (4.6)

That this is sufficient follows because what we want to show is just (f ⊗g) applied to both

sides of this equation.

Now note that

(Π⊗ π) ◦∆H = (Π⊗ idT ) ◦ (idH ⊗π) ◦∆H = (Π⊗ idT ) ◦ ρT ,

where ρT is the canonical right T -comodule structure of H. We know that ρT is an

algebra map and that A = HcoT with respect to ρT , and since a ∈ A this means that

ρT (a) = a⊗ 1T . Finally, we have

ρT ◦ γ = (γ ⊗ idT ) ◦∆T

because γ is a right T -comodule map.

Combining all of this we get

((Π⊗ π) ◦∆H)(aγ(t)) = (Π⊗ idT )(ρT (aγ(t)))

= (Π⊗ idT )ρT (a)ρT (γ(t))

= (Π⊗ idT )
(

(a⊗ 1T )
∑

(γ(t1)⊗ t2)
)

= (Π⊗ idT )
(∑

aγ(t1)⊗ t2
)

=
∑

a⊗ εT (t1)t2 = a⊗ t,

where we use the characterisation of Π given in (4.3) for the last equality. This gives us

Equation (4.6) as required.

Corollary 4.6. Under the notation and hypotheses of Section 4.1.1, with A0
Π and ξ as in

Definition 4.3 and Equation (4.5) respectively, the map ξ is injective.



CHAPTER 4. DUALS OF CROSSED PRODUCTS 78

Proof. Suppose α =
∑
fi ⊗ gi ∈ ker ξ for some fi ∈ A0

Π, gi ∈ T 0. We can assume without

loss of generality that the fi are linearly independent.

We have

0 = ξ
(∑

(fi ⊗ gi)
)

(aγ(t)) =
∑

fi(a)gi(t) =
(∑

gi(t)fi
)

(a)

by the linearity of ξ and by Lemma 4.5. As this is true for all a ∈ A, it means that

∑
gi(t)fi = 0 for all t ∈ T.

By the linear independence of the fis, this means that for every i we have gi(t) = 0 for all

t ∈ T and hence gi = 0. So α = 0 as required.

We find that ξ always gives rise to a Hopf algebra embedding on T 0.

Lemma 4.7. Under the notation and hypotheses of Section 4.1.1 and with ξ as in (4.5),

the map ξ|k⊗T 0 : T 0 → H0 is an embedding of Hopf algebras.

Proof. By the definition of ξ, we have ξ|k⊗T 0 = π0. We know that π is a surjective map of

Hopf algebras, so by Corollary 3.6 it is a finite overlay. So by Theorem 3.12 (iii) and (vi),

π0 is an injective map of Hopf algebras as required.

In general, however, we cannot say much more about ξ. Although we know ξ|T 0 is

always a Hopf embedding, the whole of ξ is neither an algebra map (Example 4.8) nor a

coalgebra map (see Example 4.22) in general, and it need not give rise to an isomorphism

H0 ∼= A0
Π#τT

0. The problem is that ξ|A0
Π

need not be an algebra map and the coinvariants

are always a subalgebra of H0. The following example shows how this can fail.

Example 4.8. Let k be an algebraically closed field of characteristic zero and G = T (3, k)

be the three-dimensional Heisenberg group, so the subgroup of M3(k) given by those upper

triangular matrices with all diagonal entries equal to 1k. Set H := O(G).

Of course, the finite duals of coordinate rings of affine algebraic groups are well-

understood and we discussed the general case in Proposition 2.13. In particular, we know

that

O(G)0 ∼= U(LieG)#kG,

where G ⊆ O(G)0 consists of the grouplike elements and LieG of the primitive elements.

Here, we put this aside and instead look at a particular decomposition of O(T (3, k)) to

show how ξ does not always give us a crossed product structure on H0.
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Since, as a variety, G is affine 3-space, we have H ∼= k[x, y, z] as algebras, setting

x = X12, y = X23 and z = X13, where Xij is the map that picks out the (i, j)th entry of

a matrix. Moreover, by the definition of the coproduct on coordinate rings we calculate

easily that x and y are primitive and

∆(z) = z ⊗ 1 + 1⊗ z + x⊗ y.

So we can write

H ∼= k[x̃, ỹ]⊗ k[z̃],

where the isomorphism from left to right sends x to x̃, y to ỹ and z to z̃.

This is a crossed product of Hopf algebras, arising from the factor map π : H → k[z̃]

given by factoring out by the Hopf ideal 〈x, y〉. The cleaving map is γ : k[z̃] → H given

by γ(z̃i) = zi. This satisfies π ◦ γ = idk[z̃]. Let A = k[x̃, ỹ] and T = k[z̃].

In this case, Π : H → A is the map given by factoring out by the ideal generated by

z. This map is an algebra map and hence a finite overlay by Corollary 3.6. Hence, by

Theorem 3.12 (iii) and (iv) we have a coalgebra embedding Π0 : A0 → H0. This in turn

means, by the definition of A0
Π in Definition 4.3, that we have

A0
Π = A0.

So we have an injective linear map

ξ : A0 ⊗ T 0 → H0.

By Lemma 4.5, it is given by

ξ(f ⊗ g)(xiyjzk) = f(xiyj)g(zk).

We want to show that ξ does not give rise to any algebra isomorphism H0 ∼= A0#σT
0.

We do this by showing that im Π0 = im ξ|A0⊗kεT
is not a subalgebra of H0.

First note that it is clear from the definition of Π that

im Π0 = {f ∈ H0 | f(xiyjzk) = 0 whenever k > 0}.

Let f be the character of H given by f(x) = 1, f(y) = 0, f(z) = 0 and g be the one

given by g(x) = 0, g(y) = 1, g(z) = 0. Because these are algebra maps, they are contained

in H0, and further are elements of im Π0 by the above. Now we have

fg(z) =
∑

f(z1)g(z2)

= f(z)g(1) + f(1)g(z) + f(x)g(y)

= 0 + 0 + 1 = 1
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So fg(z) 6= 0, meaning that fg /∈ im Π0. Hence im Π0 is not closed under multiplication

and is not a subalgebra.

4.3 A necessary and sufficient condition for ξ to be bijective

Throughout, we retain the notations and hypotheses of Sections 4.1.1, and recall the

definition of A0
Π from Definition 4.3 and that of ξ from Equation (4.5).

In the previous section, we defined a map ξ : A0
Π ⊗ T 0 → H0 which we aim to use to

describe H0 in terms of A0
Π and H0. We know by Corollary 4.6 that ξ is always injective.

In order to use ξ to determine the structure of H0, we need it to be an isomorphism. In

this section, we find a necessary and sufficient condition for ξ to be surjective in Theorem

4.9. The condition is quite technical, but Corollaries 4.11 and 4.12 show it holds in two

situations of interest: when T is finite-dimensional and when H ∼= A⊗ T as algebras.

Theorem 4.9. Recall the notation and assumptions of Section 4.1.1 and let A0
Π be as in

Definition 4.3 and ξ be as in (4.5). Then the following are equivalent:

(i) ξ is bijective.

(ii) γ is a finite overlay and im ι0 ⊆ A0
Π.

(iii) γ is a finite overlay and im ι0 = A0
Π.

Proof. (ii) ⇔ (iii):

The direction (iii) ⇒ (ii) is obvious. As for (ii) ⇒ (iii), all we need to do to show this

is that A0
Π ⊆ im ι0 always.

Let f ∈ A0
Π. This means that f ∈ A0 is a map such that f ◦Π ∈ H0. Since Π|A = idA,

or equivalently Π ◦ ι = idA, we have

ι0(f ◦Π) = f ◦Π ◦ ι = f,

and so f ∈ im ι0. This gives us what we need.

(i) ⇒ (ii):

Assume ξ is bijective. We want to show that γ is a finite overlay and im ι0 ⊆ A0
Π.

Choose f ∈ H0. Since ξ is bijective, there exists n ≥ 1 along with gi ∈ A0
Π and hi ∈ T 0

for each 1 ≤ i ≤ n such that

f = ξ

(
n∑
i=1

gi ⊗ hi

)
=

n∑
i=1

(gi ◦Π)(hi ◦ π).
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By Lemma 4.5, this means that given a ∈ A, t ∈ T we have

f(aγ(t)) =
∑

gi(a)hi(t). (4.7)

Now we want to show that γ is a finite overlay. By Lemma 3.5, this is equivalent to

showing im γ0 ⊆ T 0. So it sufficies to show that γ0(f) ∈ T 0.

Using Equation (4.7), we find that

γ0(f)(t) = f(γ(t)) =
∑

gi(1A)hi(t),

which means that γ0(f) is a linear combination of the hi. Since hi ∈ T 0, it follows that

γ0(f) ∈ T 0. So γ is a finite overlay as required.

Showing that im ι0 ⊆ A0
Π is similar: it suffices to show that given f ∈ H0 we have

ι0(f) ∈ A0
Π. Equation (4.7) tells us that given a ∈ A, we have

ι0(f)(a) = f(ι(a)) = f(aγ(1T )) =
∑

gi(a)hi(1T ).

Again, this means that ι0(f) is a linear combination of the gi, which are all in A0
Π by

assumption. Since A0
Π is a subspace of A0, ι0(f) ∈ A0

Π as required.

(ii) ⇒ (i):

(This proof is inspired by [13, Lemma 1.5.2].)

Assume γ is a finite overlay and im ι0 ⊆ A0
Π. We want to show that ξ is bijective. By

Corollary 4.6, ξ is injective. So all that remains to be shown is that ξ is surjective.

Given g ∈ H0, define gA := ι0(g) = g|A ∈ A∗ and gT := γ0(g) ∈ T ∗, so we have

gT (t) = g(γ(t)) for t ∈ T . We know that γ is a finite overlay by assumption, so by Lemma

3.5 gT ∈ T 0. Moreover, im ι0 ⊆ A0
Π by assumption, so gA ∈ A0

Π.

Now let f ∈ H0 be any map and consider the element

f̂ :=
∑

(f1)A ⊗ (f2)T .

This is in A0
Π ⊗ T 0 because H0 is a coalgebra and so f being in H0 implies that each

f1, f2 ∈ H0. So f̂ is in the domain of ξ. We want to show that ξ(f̂) = f .

By Lemma 4.5, given any a ∈ A and t ∈ T , we have

ξ(f̂)(aγ(t)) =
∑

mH0

(
(f1)A (a)⊗ (f2)T (t)

)
=
∑

f1(a)f2(γ(t)) = f(aγ(t)).

Thus ξ(f̂) = f , and so ξ is surjective as required.

Corollary 4.10. Keep the notation and assumptions of Section 4.1.1, and let ξ be as in

(4.5) and A0
Π be as in Definition 4.3. If ξ is bijective, then A0

Π is a subcoalgebra of A0.
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Proof. By Theorem 4.9 (iii), if ξ is bijective we have A0
Π = im ι0. We know that ι is an

algebra map, so by Corollary 3.6 it is a finite overlay. This means that by Theorem 3.12,

ι0 : H0 → A0 is a coalgebra map and hence im ι0 = A0
Π is a subcoalgebra of A0.

Although we have found necessary and sufficient conditions for ξ to be bijective, we

do not know if they are meaningful: we know of no example where they do not hold, so it

is unclear whether they are always satisfied. We record this in the following question.

Question 4.A. Is ξ always bijective?

Note that the condition that im ι0 ⊆ A0
Π is trivially true whenever Π is a finite overlay,

as in this case Lemma 4.4 tells us that A0
Π = A0. This gives rise to the following two

corollaries. We shall give a further case where Question 4.A has a positive answer in

Section 4.4.

Corollary 4.11. Using the notation and assumptions of Section 4.1.1, assume T is finite-

dimensional. Then ξ is bijective and A0
Π = A0.

Proof. By Lemma 4.4, A0
Π = A0 if and only if Π is a finite overlay, and in this case we

immediately have im ι0 ⊆ A0
Π. Thus Theorem 4.9 tells us that it suffices to show that Π

and γ are finite overlays.

Recalling that we have γ(1T ) = 1H , we have

H ∼= Aγ(1T )⊕Aγ(T+) = A⊕Aγ(T+)

as left A-modules. Since T is finite-dimensional Aγ(T+) is finitely-generated as an A-

module. So Lemma 3.16 tells us that the projection from H to A given by sending Aγ(T+)

to zero gives a finite overlay of A by H. This map is precisely Π by definition.

Now consider γ : T → H. This is a finite overlay of H because T is finite-dimensional:

given any ideal I ⊆ H of finite codimension, we have γ({0}) = {0} ⊆ I, and {0} is an

ideal of finite codimension in T .

Corollary 4.12. Using the notation and assumptions of Section 4.1.1, assume both σ and

the action of T on A are trivial, i.e.

H ∼= A⊗ T as algebras.

Then ξ is bijective and A0
Π = A0.
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Proof. By Lemma 4.4, A0
Π = A0 if and only if the map Π : H → A given by factoring

along Aγ(T+) is a finite overlay, and in this case we immediately have im ι0 ⊆ A0
Π. Thus

Theorem 4.9 tells us that it suffices to show that Π and γ are finite overlays.

We know that γ is an algebra map because it is just the canonical inclusion map and

T is a subalgebra of H. Furthermore, we know that Π is an algebra map by Lemma 2.31,

which states that this is a necessary and sufficient condition for σ and the action of T on

A to be trivial. So by Corollary 3.6, both γ and Π are finite overlays as required.

This is a less trivial situation than it might seem at first glance, because although

the algebra structure is trivial, we have made no extra assumptions about the coalgebra

structure on H. For instance, Example 4.8 falls into this category and we have seen that

its coalgebra structure is nontrivial.

We generalise the first part of this result - that ξ is bijective - to smash products in

the next section, working under the additional assumption that γ is a coalgebra map.

4.4 The case where σ is trivial

We retain the notation and hypotheses of Section 4.1.1, and let A0
Π be as in Definition 4.3

and ξ be as in (4.5). We also assume throughout that the cleaving map γ : T → H is a

coalgebra map. As seen in Example 2.32 this is a nontrivial assumption, and we will see

in Remark 4.14 that the results of this section do not hold without it.

In Section 4.3 we investigated the question of when ξ was bijective. What we have not

done so far is look at when ξ tells us something about the algebra structure of H0, which

is really what we are interested in.

In this section, we investigate the situation where H is a smash product. In other

words, σ is trivial, which by Lemma 2.30 is equivalent to γ being an algebra map. It

turns out that here ξ is always bijective, and further that the isomorphism it gives rise to

determines the algebra structure of H0. In particular, ξ tells us that H0 is itself not just

a crossed product but a smash product.

This result is somewhat surprising because as we will see, in the case where A0 has

a canonical algebra structure coming from A being a Hopf algebra, Π∗ and so ξ|A0
Π

need

not be an algebra map with respect to it. We will discuss this further in Remark 4.15 and

look at an example in Example 4.16. For now, this issue means we write ξ(A0
Π) instead of

A0
Π for the copy of A0

Π mapped to H0 by ξ in the theorem:
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Theorem 4.13. Keep the notation and assumptions of Section 4.1.1 with A0
Π be as in

Definition 4.3 and ξ as in Equation (4.5). Assume further that H is a smash product and

T is a Hopf subalgebra of H, meaning that

(1) γ is a coalgebra map.

(2) σ is trivial:

σ(s, t) = εT (s)εT (t) for all s, t ∈ T.

Then H0 is a smash product:

H0 ∼= ξ(A0
Π)#T 0,

where the isomorphism is one of algebras and given by ξ.

Proof. First, we show that there is a Hopf surjection H0 → T 0 given by γ0, and that there

is also a cleaving map T 0 → H0. By Proposition 2.22, this means we have an algebra

isomorphism

H0 ∼=
(
H0
)coT 0

#τT
0

for a given cocycle τ and action of T 0 on
(
H0
)coT 0

. Then we show that τ is trivial, that

the coinvariants of H0 are just ξ(A0
Π) and that the isomorphism thus constructed is just

ξ.

Throughout, when we derive a fact we will use later in the proof, we set it apart and

label it for easier reading and referring back.

Step 1: γ0 : H0 → T 0 is a surjective Hopf map:

First note that under the standard hypotheses of Section 4.1.1, π0 is always an embed-

ding of Hopf algebras. We can see this fact follows from the results in Chapter 3:

By Corollary 3.6,

π is a finite overlay. (A)

This means that by Theorem 3.12 (iii) and (vi), π0 is injective and a Hopf algebra map:

π0 : T 0 → H0 is an injective Hopf algebra map. (B)

The extra assumptions we have made tell us that γ and γ0 are both Hopf algebra maps.

To see this, we note that by assumption (1) γ is a coalgebra map and by assumption (2) σ

is trivial and so H is a smash product. By Lemma 2.30, the latter is equivalent to γ being
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an algebra map. Since T is a Hopf algebra, this means that γ : T → H is a bialgebra map

between Hopf algebras, and by [48, Lemma 4.0.4]

γ is a map of Hopf algebras. (C)

So again we see by Corollary 3.6 that

γ is a finite overlay. (D)

So by Theorem 3.12 (vi)

γ0 : H0 → T 0 is a Hopf algebra map. (E)

Finally, we want to show that γ0 is surjective. First, recall that γ is injective because it

is a cleaving map. Since by (C) γ is an algebra map, this means the hypotheses of Lemma

3.15 hold, and this along with π being a finite overlay ((A)) implies that γ is reciprocal.

As γ is a finite overlay ((D)), by Lemma 3.10 this means we have

γ0 : H0 → T 0 is surjective. (F)

Step 2: H0 is isomorphic to a crossed product.

By the above, we have a surjective Hopf epimorphism γ0 : H0 → T 0. By Proposition

2.22, this means that we only need to find a cleaving map, in other words a convolution

invertible right T 0-comodule map, from T 0 to H0 in order to gain a crossed product

structure on H0.

We see that π0 is a cleaving map as follows:

We know that π0 is an injective Hopf algebra map by (B), and moreover by Lemma

2.20 the fact that the cleaving map γ is a coalgebra map (assumption (1)) means that we

have π ◦ γ = idT , which in turn gives us

γ0 ◦ π0 = idT 0 .

Also by Lemma 2.20, any coalgebra splitting of γ0 provides a cleaving map, so

π0 : T 0 → H0 is a cleaving map for the extension
(
H0
)coγ0

⊆ H0. (G)

By Proposition 2.22, this means we have

H0 ∼=
(
H0
)coγ0

#τT
0.
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In fact, since by (B) the cleaving map π0 is an algebra map, by Lemma 2.30 τ must be

trivial. So as algebras, we have

H0 ∼=
(
H0
)coγ0

#T 0, (4.8)

a smash product of
(
H0
)coγ0

by the Hopf subalgebra T 0.

Step 3:
(
H0
)coγ0

= ξ(A0
Π)

Let f ∈ H0. Then f ∈
(
H0
)coγ0

if and only if

f ⊗ εT = ρ(f) := (idH0 ⊗γ0) ◦∆H0(f) =
∑

f1 ⊗ f2 ◦ γ (4.9)

In particular, given h = aγ(s) ∈ H for some a ∈ A and s ∈ T , and also given t ∈ T , the

RHS of (4.9) evaluated at h⊗ t becomes

ρ(f)(h⊗ t) =
∑

f1(h)f2(γ(t)) = f(hγ(t)) = f(aγ(s)γ(t)) = f(aγ(st)),

because γ is an algebra map by (C).

Moreover, the LHS of (4.9) evaluated at h⊗ t becomes

(f ⊗ εT )(h⊗ t) = f(h)εT (t) = f(aγ(s))εT (t).

So ρ(f) = f ⊗ εT if and only if for all a ∈ A and s, t ∈ T we have

f(aγ(st)) = f(aγ(s))εT (t).

This is true if and only if it is true when s = 1, so when for all a ∈ A, t ∈ T we have

f(aγ(t)) = f(a)εT (t) = f |A(Π(aγ(t))).

Equivalently, f ∈
(
H0
)coγ0

if and only if

f =
(
Π0 ◦ ι0

)
(f).

Since ι0(f) ∈ A0, every coinvariant of T 0 must be of the form Π0(g) for some g ∈ A0.

Moreover, any g ∈ A0 satisfies ι0(Π0(g)) = g and hence

(
Π0 ◦ ι0

)
(Π0(g)) = Π0(g),

which by the above tells us that as long as Π0(g) is a map in H0 it will be a coinvariant.

This means that the coinvariants of T 0 are precisely the elements in the image of Π0 which

are contained in H0. By definition, this is just Π0
(
A0

Π

)
= ξ(A0

Π).
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This means that Equation (4.8) becomes

H0 ∼= ξ(A0
Π)#T 0 (4.10)

Step 4: The isomorphism in Equation (4.10) is given by ξ:

Since ξ is injective, we can identify ξ(A0
Π) with A0

Π. Moreover, since the coinvariants

are always a subalgebra, this means we can always put an algebra structure on A0
Π such

that ξ|A0
Π

= Π0|A0
Π

is an algebra map with respect to it. (See Remark 4.15 for a discussion

on how this may compare to a canonical algebra structure on A0.)

Let φ : A0
Π#T 0 → H0 denote the algebra isomorphism we get via Equation (4.10) in

this way. By Proposition 2.22 and the fact that π0 is the cleaving map, this map is given

by φ(f#g) = ψ(f)π0(g), where ψ : A0
Π → H0 is the canonical embedding. This means ψ

is just Π0|A0
Π

. So for all f ∈ A0
Π, g ∈ T 0 we have

φ(f#g) = mH0 ◦
(

Π0|A0
Π
⊗ π0

)
(f ⊗ g) = ξ(f ⊗ g).

Remark 4.14. If we remove the assumption that γ is a coalgebra map, the theorem does

not hold in general. We have already seen an example where all other hypotheses hold

but the statement of the theorem is false: Example 4.8 shows that if H = O(T (3, k)), we

have H ∼= k[x, y]⊗ k[z], which is not just a smash product but actually has trivial action

as well. However, the subspace

ξ(k[x, y]0Π) = ξ(k[x, y]0) = {f ∈ H0 | f(xiyjz`) = 0 when ` > 0}

is not a subalgebra of H0 and so ξ cannot give rise to any algebra isomorphism between

ξ(k[x, y]0Π)#k[z]0 and H0.

Remark 4.15. The algebra structure on A0
Π induced by ξ does not have to be compatible

with any canonical algebra structure on A0. In particular, we frequently have a Hopf

algebra structure on A, in which case A0 has a Hopf algebra structure as its finite dual.

The next example shows that the algebra structure on A0
Π induced by ξ does not have to

agree with this canonical algebra structure on A0, and this is true even if A0
Π = A0.

Example 4.16. Let k be an algebraically closed field of characteristic zero, n and t be

coprime integers with n > 1 and 1 ≤ t ≤ n − 1, and let q be a primitive nth root of



CHAPTER 4. DUALS OF CROSSED PRODUCTS 88

unity in k. We take H := H(n, t, q) to be the infinite-dimensional Taft algebra on these

parameters as introduced in Example 1.14: that is, we have

H = k〈x, g | xg = qgx, gn = 1〉

as algebras, with g grouplike and ∆(x) = x ⊗ 1 + gt ⊗ x. This has a basis consisting of

monomials {xigj | i ≥ 0, 0 ≤ j ≤ n− 1}.

As discussed in Example 2.12, we have H ∼= k[x]#kCn. This smash product decompo-

sition arises from the factor Hopf map H → kCn given by factoring out the Hopf ideal 〈x〉.

The cleaving map γ is just the natural embedding of the Hopf subalgebra of H generated

by g.

Since kCn is finite dimensional, Lemma 3.16 tells us that the canonical quotient map

Π : H → k[x], which is given by factoring out the k[x]-module
∑n−1

i=1 k[x](gi−1), is a finite

overlay. Thus by Lemma 4.4 we have A0
Π = A0, and so by Theorem 4.13 we have

H0 ∼= ξ
(
k[x]0

)
#kC0

n
∼= ξ

(
k[x]0

)
#kCn,

using the fact that by Example 1.20, kC0
n
∼= kC∗n

∼= kCn. We also know that k[x]0 ∼=

k[z] ⊗ k(k,+) as Hopf algebras by Example 1.31. The question now is how the algebra

structure of k[x]0, viewed as a subalgebra of H0 via ξ, compares to this canonical one.

Consider the element z ∈ k[x]0. This is the map given by z(xi) = δi1. Thus the map

z := Π0(z) ∈ H0 is given by

z(xigj) = z(Π(xigj)) = z(xi) = δi1.

We want to show that this is nilpotent: in particular, that we have zn = 0.

Let H(i) := k{xigj | 0 ≤ j ≤ n − 1}, so with H(i) consisting of those terms with

x-degree i. This is a coalgebra grading as follows.

Let A(i) :=
⊕i

j=0H(j). Now A(0) = k{gj | 0 ≤ j ≤ n− 1} is a Hopf subalgebra of H,

A(1) generates H as an algebra and A(i) = A(1)i. Moreover, A(0)A(1) = A(1)A(0) = A(1)

and

∆(A(1)) ⊆ A(1)⊗A(0) +A(0)⊗A(1).

This means that by [36, Lemma 5.5.1], {A(i)}i≥0 is a coalgebra filtration. The associated

graded coalgebra is just H with grading H(i).

This means that because z is only nonzero on H(1), zn can only be nonzero on H(n),

in particular on those h ∈ H(n) such that ∆n
H(h) has a summand in H(1)⊗n, where ∆i

H

is recursively defined by ∆0
H = ∆H , ∆i

H = (id ◦∆H) ◦∆i−1
H .
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However, as we saw in Example 2.12, xn is primitive. Therefore, for all 0 ≤ j ≤ n− 1

we have

∆(xngj) ∈ H(n) = xngj ⊗ gj + gj ⊗ xngj ∈ H(n)⊗H(0) +H(0)⊗H(n),

which means that

∆n(xngj) ∈
n−1⊕
i=0

H(0)⊗i ⊗H(n)⊗H(0)⊗(n−i−1).

Since the monomials xngj give a basis for H(n), it follows that there exists no h ∈ H(n)

such that ∆n(h) has a summand in H(1)⊗n. Thus we have zn = 0.

So although there is an embedding Π0 : k[x]0 → H0, and although the image of this

embedding is a subalgebra in H0, the resulting algebra structure is not the same as the

canonical one on k[x]0. The element z which generates a polynomial ring in k[x]0 gets

mapped to a nilpotent element by Π0.

The fact that this problem arises is not that surprising, because the definition of a

crossed product we are using does not guarantee a coalgebra structure on A at all, and

certainly not one that is compatible with both the algebra structure of A and the coalgebra

structure of H. In the dual setting, this means there is not necessarily a canonical algebra

structure on A0, and that when we do have one it need not be compatible with both the

coalgebra structure on A0 and the multiplication in H0. This means that the algebra

isomorphism guaranteed by Theorem 4.13 is less useful than we would like it to be.

As a result, it makes sense to look at a specific case where we have a given canonical

coalgebra - in fact, a Hopf algebra - structure on A compatible with that of H, namely

when A is a Hopf subalgebra.

4.5 The case where A is a Hopf subalgebra

Throughout this section, we keep the notation of assumptions of Section 4.1.1, with A0
Π

as in Definition 4.3 and ξ as in (4.5). We also assume that γ is a coalgebra map.

In the last section, we saw that even when ξ gives rise to a description of the algebra

structure of H0 as a crossed product of A0
Π and T 0, this does not always preserve the

algebra structure of A0
Π as we might like - in particular, the algebra structure of ξ(A0

Π)

viewed as a subalgebra of H0 does not have to coincide with that of A0 when such exists.

The reason for this is because the definition of the crossed product makes no reference to

any coalgebra structure on A.
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Therefore, it makes sense to look at a situation in which we are guaranteed a coalgebra

structure on A compatible with its algebra structure and the coalgebra structure of H.

One such situation which arises frequently is that where A is not just a subalgebra but

in fact a Hopf subalgebra of H. We look at this in this section, under the additional

assumption that the cleaving map γ is a coalgebra map and hence T is a subcoalgebra of

H. Our main result is Theorem 4.19, which tells us that in this case ξ : A0
Π ⊗ T 0 → H0

is an algebra map. Hence, when ξ is known to be bijective (discussed in Section 4.3), it

follows that H0 ∼= A0
Π ⊗ T 0 as algebras.

First, we note that under our new assumptions Π is always a coalgebra map with

respect to the Hopf algebra structures of H and A, something that Example 4.16 and

Example 4.8 made clear is not true in general.

Lemma 4.17. Under the same assumptions and notations as in Section 4.1.1, assume

γ is a coalgebra map and suppose A is a Hopf subalgebra of H. Then Π : H → A is a

coalgebra map with respect to the canonical coalgebra structures on H and A.

Proof. Step 1: Π preserves the coproduct

Given a ∈ A, t ∈ T we have

((Π⊗Π) ◦∆H) (aγ(t)) = (Π⊗Π)
(∑

a1γ(t)1 ⊗ a2γ(t)2

)
= (Π⊗Π)

(∑
a1γ(t1)⊗ a2γ(t2)

)
=
∑

a1εT (t1)⊗ a2εT (t2)

= ∆A(a)εT (t)

= (∆A ◦Π) (aγ(t))

as required.

Step 2: Π preserves the counit

Given a ∈ A, t ∈ T we have

(εA ◦Π) (aγ(t)) = εA(a)εT (t) = εH(a)εH(γ(t)) = εH(aγ(t))

as required.

Remark 4.18. Note that this result does not hold true in general if γ is not a coalgebra

map. For instance, in Example 4.8 we saw that for

H := O(T (3, k)) ∼= k[x, y]⊗ k[z]
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the corresponding map Π : H → k[x, y] is given by factoring by the ideal 〈z〉. This is not

a coideal and Π is not a map of coalgebras. Here k[x, y] is a Hopf subalgebra of H, but

the cleaving map γ : k[z] → H is not a map of coalgebras. However, γ being a coalgebra

map is not a necessary condition and there are cases where it is not and the result of the

lemma still holds. This is discussed further in Chapter 5.

In fact, when A is a Hopf subalgebra and γ is a coalgebra map, we can say more about

the algebra structure of H0. Since both A and γ(T ) are subcoalgebras of H, we have

H ∼= A⊗ T as coalgebras.

This is regardless of whether H is a crossed or smash product, and indeed we do not

assume that the cocycle σ is trivial. Since the coalgebra structure determines the algebra

structure of the dual, the following result seems natural:

Theorem 4.19. Using the notation and assumptions of Section 4.1.1, let A0
Π be as in

Definition 4.3 and ξ as in (4.5). Suppose γ is a coalgebra map and ι is a map of Hopf

algebras. Then

(i) A0
Π ⊆ A0 is a subalgebra of A0 with respect to the canonical multiplication coming

from the coproduct in A.

(ii) ξ is an algebra homomorphism.

(iii) A0
Π ⊗ T 0 ⊆ H0 as algebras.

(iv) If ξ is surjective, there is a Hopf surjection φ : H0 → A0
Π given by

φ(ξ(f ⊗ g)) = g(1H)f

for f ∈ A0
Π, g ∈ T 0.

Proof. (i) A0
Π is a subalgebra of A0:

We know A is a Hopf subalgebra of H by assumption. So by Lemma 4.17, Π is a

coalgebra map.

Now let f, g ∈ A0
Π, so we have f, g ∈ A0 such that f ◦Π, g ◦Π ∈ H0. Then

(fg) ◦Π = µ ◦ (f ⊗ g) ◦∆A ◦Π = µ ◦ (f ⊗ g) ◦ (Π⊗Π) ◦∆H = (f ◦Π)(g ◦Π).

Since H0 is a subalgebra, this means that (fg) ◦Π ∈ H0 and so fg ∈ A0
Π.
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Moreoever, we have εA ◦ Π = εH ∈ H0, so εA ∈ A0
Π. Thus A0

Π is closed under

multiplication and contains the identity element: it is a subalgebra as required.

(ii) ξ is an algebra map:

First we note that Π0|A0
Π

and π0 are both algebra maps. Π∗ is an algebra map because

by Lemma 4.17, Π is a coalgebra map, and by Remark 3.13 this means Π∗ is an algebra

map. As a result, Π0|A0
Π

, which is simply the restriction of Π∗ to a subalgebra of A0 and

therefore a subalgebra of A∗, is also an algebra map. On the other hand, π is a map of

Hopf algebras, so a finite overlay by Corollary 3.6 and so by Theorem 3.12(vi) π0 is also

a map of Hopf algebras.

We need to show that given f, f̃ ∈ A0
Π and g, g̃ ∈ T 0 we have

ξ((f ⊗ g)(f̃ ⊗ g̃)) = ξ(f ⊗ g)ξ(f̃ ⊗ g̃). (4.11)

Note that the LHS of this is given by

ξ((f ⊗ g)(f̃ ⊗ g̃)) = ξ(ff̃ ⊗ gg̃) = Π0(ff̃)π0(gg̃) = Π0(f)Π0(f̃)π0(g)π0(g̃)

by definition of ξ and because, as discussed above, π0 and Π0|A0
Π

are both algebra maps.

The definition of ξ means the RHS of (4.11) becomes

ξ(f ⊗ g)ξ(f̃ ⊗ g̃) = Π0(f)π0(g)Π0(f̃)π0(g̃).

In particular, ξ is a homomorphism if and only if

π0(g)Π0(f̃) = Π0(f̃)π0(g),

for all f̃ ∈ A0
Π and g ∈ T 0, that is, if and only if Π0(A0

Π) and π0(T 0) commute.

Let g ∈ T 0, f ∈ A0
Π, a ∈ A and t ∈ T . Because we have assumed A a Hopf subalgebra

and γ a coalgebra map we know that both A and γ(T ) are subcoalgebras. So we have

∆H(aγ(t)) =
∑

a1γ(t)1 ⊗ a2γ(t)2 =
∑

a1γ(t1)⊗ a2γ(t2)

with a1, a2 ∈ A. This means that

π0(g)Π0(f)(aγ(t)) =
∑

(g ◦ π)(a1γ(t1))(f ◦Π)(a2γ(t2))

=
∑

εA(a1)g(t1)εT (t2)f(a2)

= f(a)g(t).

Now we know that

Π0(f)π0(g)(aγ(t)) = ξ(f ⊗ g)(aγ(t)) = f(a)g(t)
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by Lemma 4.5. So Π0(f) and π0(g) commute, and so ξ respects multiplication.

Furthermore, we have

ξ(εA ⊗ εT )(aγ(t)) = εA(a)εT (t) = εH(a)εH(γ(t)) = εH(aγ(t))

by Lemma 4.5 and the fact that A is a subcoalgebra and γ is a coalgebra map. So ξ

respects the identity element: it is an algebra map.

(iii) The fact that A0
Π⊗T 0 ⊆ H0 as algebras follows immediately from (i), (ii) and the

fact that by Corollary 4.6, ξ is injective.

(iv) By (ii) and the assumption that ξ is surjective, we have

H0 ∼= A0
Π ⊗ T 0 (4.12)

as algebras, where T 0 is a Hopf subalgebra. Now consider the right ideal (T 0)+H0. Iden-

tifying H0 with A0
Π ⊗ T 0 and T 0 with k ⊗ T 0 through the isomorphism in (4.12), we

get

(T 0)+H0 = (k ⊗ (T 0)+)(A0
Π ⊗ T 0)

= A0
Π ⊗ (T 0)+

= (A0
Π ⊗ T 0)(k ⊗ (T 0)+) = H0(T 0)+,

(4.13)

since A0
Π and T 0 commute. In particular, (T 0)+H0 is both a left and a right ideal and

factoring along it simply gives us the map φ : H0 → A0
Π. All we have to show is that it is

a Hopf ideal.

By [36, Lemma 3.4.2], it suffices to show that T 0 is normal in H0, meaning that the

left and right adjoint actions of H0 on itself leave T 0 fixed. By [36, Proposition 3.4.3], this

is true whenever H0 is faithfully flat as a T 0-module and (T 0)+H = H(T 0)+. The former

follows because by (4.12), H0 is in fact a free T 0-module. The latter follows by (4.13).

Remark 4.20. Theorem 4.19 is not valid without the assumption that γ is a map of

coalgebras. Again, Example 4.8 provides a counterexample. There we saw that for H :=

O(T (3, k)), H ∼= k[x, y]⊗ k[z], where k[x, y] is a Hopf subalgebra but the cleaving map γ

is not a coalgebra map, and moreover that in this example ξ(k[x, y]0Π) = ξ(k[x, y]0) does

not form a subalgebra of H0. This of course means that ξ : k[x, y]0 ⊗ k[z]0 → H0 cannot

be an algebra map.

We will discuss the situation where A is a Hopf subalgebra but γ is not necessarily a

coalgebra map further in Chapter 5.
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Remark 4.21. We know of no examples where the inclusion in Theorem 4.19 (iii) is strict,

or in other words where the inclusion map ξ : A0
Π ⊗ T 0 → H0 is not surjective and so

the equivalent conditions guaranteeing its bijectivity given in 4.9 are not satisfied. It is

possible they always are, but there is nothing in the theorem that guarantees this.

Theorem 4.19 provides an alternative way of computing the dual of the Taft algebra,

using a different crossed product decomposition than the one used in Example 4.16.

Example 4.22. Let k be an algebraically closed field of characteristic zero, n, t be coprime

integers with n > 1 and 1 ≤ t ≤ n − 1, and let q ∈ k∗ be a primitive nth root of unity.

Take H := H(n, t, q) be the infinite-dimensional Taft algebra on those parameters as in

Example 2.12 or 4.16. So we have

H ∼= k〈x, g | xg = qgx, gn = 1〉

as algebras with g grouplike and

∆H(x) = x⊗ 1 + gt ⊗ x.

Recall from Example 2.12 that we can express H as

H ∼= k[y]#σT = A#σT, (4.14)

where y = xn and T ∼= H/〈xn〉 is the finite-dimensional Taft algebra on the same param-

eters:

T ∼= k〈x, g | xg = qgx, gn = 1, xn = 0〉.

Here the action of T on k[y] is trivial, so we have t · y = εT (t)y for all t ∈ T . The map γ

is the inclusion given by γ(xigj) = xigj for 0 ≤ i, j ≤ n− 1. Standard computation shows

that γ is a coalgebra map.

However, γ is not a map of Hopf algebras, because γ(x)n 6= 0 = γ(xn). Thus by Lemma

2.30, σ is not trivial and the crossed product decomposition in Equation (4.14) is not a

smash product.

Since T is finite-dimensional, Corollary 4.11 applies: ξ is bijective, and A0
Π = A0.

Recall from Example 4.16 that y = xn is primitive, so k[y] is a Hopf subalgebra of H.

Since γ is a coalgebra map, Theorem 4.19 applies. Its results can be combined with those

of Corollary 4.11 to give us

H0 ∼= k[y]0 ⊗ T 0 (4.15)
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as algebras.

Now we find that T 0 ∼= T ∗ ∼= T as Hopf algebras. The fact that finite-dimensional

Taft algebras are self-dual is well-known in the t = 1 case - see for instance [39, Section

1.1]. It holds true when t is coprime to n as well: this is a standard calculation with the

isomorphism given by the map φ : T → T 0 defined by

φ(x)(xigj) = δi1 and φ(g)(xigj) = δi0q
−t−1j .

Here t−1 denotes the inverse of t modulo n. Moreover, by Example 1.31, we have k[y]0 ∼=

k[v]⊗ k(k,+) as algebras, with

v(yi) = δi1. (4.16)

So Equation (4.15) becomes

H0 ∼= k[v]⊗ k(k,+)⊗ T as algebras. (4.17)

The map x̂ ∈ H0 corresponding to x ∈ T is the map given by

x̂(xigj) = δi1.

In other words, it is precisely the map z we found in Example 4.16, which we expected

to generate a polynomial ring and were surprised to find was nilpotent. No such surprises

await us now: the fact that x̂ is nilpotent is obvious from the relations in T and the fact that

T is isomorphic to a subalgebra of H0, and the canonical embedding map Π0 : k[y]0 → H0

is an algebra map. So Equation (4.17) tells us everything about the algebra structure of

H0.

We note at this point that it does not tell us everything about the coalgebra structure.

We know that T 0 is not just a subalgebra but a Hopf subalgebra of H0 by Lemma 4.7,

and part (iv) of Theorem 4.19 tells us that k[y]0 is a factor Hopf algebra of H0. However,

k[y]0 does not form a subcoalgebra of H0:

The embedding of k[y]0 into H0 as a subalgebra is given by composition with Π,

meaning that all maps in k[y]0 are zero on ker Π. Similarly, we find that any element of

k[y]0 ⊗ k[y]0 will be zero on ker Π⊗ ker Π. However, we have

∆(v)(x⊗ xn−1) = v(xn) = 1 6= 0

by (4.16). Since ker Π = k{xin+jg` | 1 ≤ j ≤ n− 1}, we have x, xn−1 ∈ ker Π and thus

∆(v) /∈ k[y]0 ⊗ k[y]0.

We capture this fact in the following remark.
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Remark 4.23. In the statement of Theorem 4.19, ξ need not be a map of coalgebras. In

particular, although ξ|T 0 always gives us a map of Hopf algebras by Lemma 4.7, A0
Π need

not be a subcoalgebra of H0. This is despite the fact that it is always a quotient Hopf

algebra by Theorem 4.19(iv).

However, overall we are more interested in working out the algebra structure of H0, and

when ξ is bijective and its assumptions hold Theorem 4.19 gives us a complete description.

4.6 Summary

Throughout, we retain the hypotheses of Section 4.1.1, and let A0
Π be as in Definition 4.3

and ξ be as in (4.5).

Since all our statements concern the same map ξ and all our assumptions are relatively

independent of one another, as in Example 4.22 we can combine them when several hold.

For instance, we immediately get the following two corollaries to our previous results:

Corollary 4.24. Keeping the notation and assumptions of Section 4.1.1, let ξ be as in

(4.5) and A0
Π as in Definition 4.3. Suppose further that ι is a Hopf map, γ is a coalgebra

map and T is finite dimensional. Then

H0 ∼= A0 ⊗ T 0

as algebras, where the isomorphism is given by ξ.

Proof. Again, Theorem 4.19 tells us that ξ : A0
Π⊗T 0 → H0 is an algebra homomorphism.

Now Corollary 4.11 tells us that A0
Π = A0 and ξ is bijective. This means we have

H0 ∼= A0 ⊗ T 0

as algebras via ξ as required.

Corollary 4.25. Keeping the notation and assumptions of Section 4.1.1, let ξ be as in

(4.5) and A0
Π be as in Definition 4.3. Suppose further that γ and ι are both Hopf maps,

or in other words that H ∼= A#T is a smash product with both T and A Hopf subalgebras.

Then

H0 ∼= A0
Π ⊗ T 0

as algebras, where the isomorphism is given by ξ and T 0 is a Hopf subalgebra of H0.
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Proof. By Theorem 4.19, γ being a coalgebra map and ι being a Hopf map imply that

ξ : A0
Π ⊗ T 0 → H0 is an algebra homomorphism. It is bijective by Theorem 4.13, which

means we have

H0 ∼= A0
Π ⊗ T 0

as algebras via ξ, as required.

Remark 4.26. This generalises earlier work: Donkin shows in [13, Proposition 1.5.3] that

under these assumptions and also assuming that H is cocommutative, H0 ∼= A0
Π ⊗ T 0

as algebras. Note that while we show Donkin’s assumption that H is cocommutative to

be unnecessary, Donkin also shows that H0 ∼= A0
Π ⊗ T 0 as right H0-comodules without

assuming H0 cocommutative, something we have not looked into at all, and does not

assume the existence of a Hopf factor map π : H → T .

Furthermore, our work and Donkin’s also build on Hochschild’s work regarding the

finite dual of universal enveloping algebras of semisimple Lie algebras in [18], where he

used a similar approach to work out the finite dual of U(g), both for g solvable (a result

we recorded in Example 1.31) and the general case. We make note of this in the following

corollary, a reproduction of [18, Theorem 5] which largely uses Corollary 4.25 but refers

to [18] for the calculation of A0
Π in this case.

Corollary 4.27. Let k be a field of characteristic zero, g a finite-dimensional Lie algebra

over k, s := rad g its radical and and t := [g, s]. Write n := dimk(s),m := dimk(t) and let

L be the unique simply connected algebraic group with Lie algebra g/s. Then

U(g)0 ∼= k[x1, ..., xn]⊗ k(k,+)n−m ⊗O(L).

Here O(L) is a Hopf subalgebra of U(g)0.

Proof. First note that there exists a Lie subalgebra l of g such that

g ∼= s⊕ l, (4.18)

and since l ∼= g/s it is clear that l is semisimple. This is the Levi decomposition and follows

by [51, Theorem 20.3.5]. Now note that by Example 2.11, (4.18) means that

U(g) ∼= U(s)#U(l),

with trivial cocycle because l is a subalgebra of g. Moreover, both U(l) and U(s) are Hopf

subalgebras of U(g) and the factor map g→ l turns into a Hopf factor map U(g)→ U(l).
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So Corollary 4.25 applies and we have

U(g)0 ∼= U(s)0
Π ⊗ U(l)0

as algebras with U(l)0 being a Hopf subalgebra. Since by Example 1.27 (also due to

Hochschild) we have U(l)0 ∼= O(L), the equation becomes

U(g)0 ∼= U(s)0
Π ⊗O(L).

So all that needs to be done is to show that

U(s)0
Π
∼= k[x1, ..., xn]⊗ k(k,+)n−m

as algebras. This is where we can no longer rely on our results and instead refer to

Hochschild, who shows this in [18, pages 516-519] and writes R(L)A for what we denote

as U(s)0
Π.

A complete overview of how the results of this chapter combine is provided in Table

4.1 on the following page. In the table, we keep the notation and assumptions of Section

4.1.1 throughout and let ξ be as in (4.5) and A0
Π as in Definition 4.3.
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4.7 Originality

The results of this chapter are original. The proof of Theorem 4.9 is partially inspired by

earlier work of Donkin (see [13]), and Corollary 4.25 duplicates and generalises part of one

of the results of that paper. This is further discussed in Remark 4.26. Corollary 4.27 then

uses this result further to duplicate part of the work done by Hochschild to compute the

universal enveloping algebra of a general finite-dimensional Lie algebra (see [18]).



Chapter 5

Hopf algebras which are finite over

central Hopf subalgebras

5.1 Introduction

In this chapter, we use the results of the previous chapters to study a specific class of Hopf

algebras which is of interest to us and gives rise to some important and large families of

examples. In particular, we are interested in Hopf algebras H which are finitely-generated

as modules over some central Hopf subalgebra A.

Examples of Hopf algebras H that contain such a central Hopf subalgebra include the

Taft algebras studied in Examples 2.12, 4.16 and 4.22, all other prime Hopf algebras of GK-

dimension one described in [6] such as the generalised Liu algebras and the group algebra

of the dihedral group, as well as quantised enveloping algebras and coordinate rings at

roots of unity. If we also consider Hopf algebras over a field with positive characteristic,

then this class includes all enveloping algebras of finite-dimensional Lie algebras (see for

instance [22, Proposition 2]).

We are specifically interested in Noetherian Hopf algebras, which covers all the cases

mentioned above. So, assuming a given base field k, we say that A ⊆ H satisfy (F) if we

have

H is a Noetherian Hopf k-algebra and A ⊆ Z(H) is a Hopf sub-

algebra of H such that H is a finitely-generated left A-module.
(F)

We also assume that k is algebraically closed of characteristic zero throughout.

In Section 5.2 we discuss the implications of A ⊆ H satisfying these conditions and

101
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record various facts that always hold about the structure ofH andH0, such as the existence

of a canonical quotient Hopf algebra H := H/A+H. Using results from Chapter 3, we also

find that there is always a canonical Hopf surjection ι0 : H0 → A0 given by restriction. This

and other results lead us to Corollary 5.5, which tells us that when we have a convolution

invertible right A0-comodule map φ : A0 → H0, then

H0 ∼= H
0#τA

0 (5.1)

for some action and cocycle τ . In Section 5.2.1, we then investigate the question of when

such a map φ exists. The main result of this section is Theorem 5.8, which tells us that

when we have an A-module decomposition H ∼= A⊕X such that A is a Hopf subalgebra

and X is a coideal of H, then such a map always exists and in fact H0 decomposes as

H0 ∼= H
0#A0,

a smash product with no twisting given by any cocycle.

In Section 5.3, we turn our attention to subalgebras of H0. We consider two canonical

Hopf subalgebras - W , consisting of those functions vanishing on some power of A+H, and

kĜ, consisting of those functions extending characters on A to the whole of H. The main

result of this section regarding W is Theorem 5.21, which tells us that whenever there

exists an A-module projection Π : H → A, then

W ∼= H
0#σU(LieG),

where G is the affine algebraic group satisfying A ∼= O(G). The main results regarding kĜ

are Theorems 5.19 and 5.20, which put together tell us that given some right comodule

map ψ : A0 → H0,

kĜ ∼= H
0#τkG

with cleaving map ψ|A0 if and only if (5.1) holds with cleaving map ψ.

We look at how our results work on an example in Section 5.4, where we use Theorem

5.8 to compute the finite dual of Uε(sl2(k)) for ε ∈ k∗ a root of unity. We then use the

results of Section 5.3 to talk about its Hopf subalgebras. We also formulate a conjecture

regarding Uε(g)0 for any finite-dimensional semisimple g and make note of a partial result

in this vein regarding the Hopf subalgebra W .

In Section 5.5, we restrict ourselves to the case where H itself decomposes as a crossed

product. As, under hypothesis (F), we always have a canonical quotient Hopf algebra H,
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the results of Chapter 2 tell us that such a crossed product decomposition of H exists

whenever there exists a cleaving map γ : H → H. In Section 5.5.1, we ask when this

happens. It turns out that it is an open question whether all Hopf algebras A ⊆ H

satisfying (F) over an algebraically closed field k decompose in this way, and we make

note of some positive results from the literature. In Section 5.5.2, we then look at what we

can say about H0 when such a decomposition exists. In this case, we can use the results

of Chapter 4. We record these in Theorem 5.33. Finally, we note that our results so far

give us several potential crossed product decompositions of H0. We define the notion of

two such decompositions being equivalent and note that any two decompositions gained

from our results must be equivalent, and in fact under certain conditions coincide.

Section 5.6 concludes our investigation into H0 by noting as a conjecture what we

(optimistically) expect to hold true generally, or perhaps (more realistically) under one of

two given assumptions on H. We summarise how the results of the previous sections tie

into the three variations of the conjecture and what sort of partial answers they give us.

5.2 A potential crossed product decomposition of H0

Throughout, let k be an algebraically closed field of characteristic zero and let A ⊆ H be

Hopf algebras satisfying (F).

In this section, we record some of the results that always hold about the structure

of A and H as well as how the maps between them translate to the dual setting. We

find that there is always a canonical Hopf surjection H0 → A0 given by restriction, which

means we can apply the results recorded in Chapter 2 to work out whether this gives

rise to a crossed product decomposition. We apply the results recorded in Chapter 2 in

Corollary 5.5, which tells us that whenever there is a cleaving map φ : A0 → H0, we have

H0 ∼= H
0#σA

0 for some cocycle σ and action of A0 on H0. The immediate question is

when such a map exists. Theorem 5.8 gives us two cases in which it does.

A number of conditions about the structure of A and H follow from (F). Before listing

them, we note the following definition.

Definition 5.1. Let R be a ring. Then we say that R satisfies a polynomial identity or

that R is a polynomial identity ring or PI ring if there is some n ≥ 1 and some nonzero

polynomial p(x1, ..., xn) ∈ Z〈x1, ..., xn〉 such that

p(r1, ..., rn) = 0 for all r1, ..., rn ∈ R.
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We can assume that p has minimal degree with respect to this property. We then call the

degree of p the PI-degree of the ring R.

Proposition 5.2. Suppose A ⊆ H are Hopf algebras satisfying (F). Then

(i) A is Noetherian,

(ii) A and H are both affine,

(iii) H satisfies a polynomial identity,

(iv) The antipode SH of H is bijective, and

(v) H is a faithfully flat and projective left A-module.

Proof. (i) This follows by [34, Corollary 10.1.10]

(ii) Since A is commutative and Noetherian by (i), it is affine (by [35]). Now H

is a finitely-generated module over a finitely-generated algebra, and hence itself finitely

generated as an algebra: given a generating set S = {a1, ..., an} for A as an algebra and

S′ = {h1, ..., hm} for H as an A-module, S ∪ S′ provides a generating set for H as an

algebra.

(iii) This follows because any ring which is a finite module over its centre is PI ( [34,

Corollary 13.1.13(iii)]).

(iv) This follows immediately from (ii) and (iii), as by [44, Corollary 2] any Noetherian

affine Hopf algebra satisfying a polynomial identity has bijective antipode.

(v) This follows by [43, Theorem 3.3], which states that any Noetherian Hopf algebra is

faithfully flat over its central Hopf subalgebras. Now by [41, Corollary 3.57], any finitely-

generated flat module over a Noetherian ring is projective. Since A is Noetherian by (i),

it follows that H is projective.

Moreover, we know there is always a canonical finite-dimensional factor Hopf algebra

of H coming from the augmentation ideal of H.

Proposition 5.3. Suppose A ⊆ H are Hopf algebras satisfying (F). Then the subspace

A+H is a Hopf ideal, and the resulting factor Hopf algebra H/A+H is finite-dimensional.

Proof. The fact that A+H is a Hopf ideal is easy to see: it is an ideal thanks to the

centrality of A, as this means that

HA+H = A+HH = A+H.
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Moreover, it is a coideal because

∆H(A+H) = ∆H(A+)∆H(H) = ∆A(A+)∆H(H)

⊆ (A+ ⊗A+A⊗A+)(H ⊗H)

⊆ A+H ⊗H +H ⊗A+H

and

εH(A+H) = εH(A+)εH(H) = εA(A+)εH(H) = 0,

using the fact that A+ is a coideal of A and A is a Hopf subalgebra and hence subcoalgebra

of H. Finally, note that

SH(A+H) = SH(H)SH(A+) = SH(H)SA(A+) ⊆ HA+ = A+H

since A is a Hopf subalgebra and central in H.

The fact that H/A+H is finite-dimensional follows immediately from the fact that H

is finitely-generated as a left A-module, as this means there is a finite set of elements

generating H as an A-module. The images of these elements under the factor map span

H/A+H as a vector space.

So we always have a canonical Hopf surjection π : H → H, where we write H :=

H/A+H.

Now we wish to work out how these maps translate to the dual setting.

Recall some notation from Chapter 3: given a map f : A→ B, where B is an algebra,

we write f0 for the map from B0 to A∗ given by composition with f .

Lemma 5.4. Suppose A ⊆ H are Hopf algebras satisfying (F). Let H := H/A+H and

π : H → H denote the canonical factor map. Then

(i) The map ι0 : H0 → A0 given by restriction to A is a surjective map of Hopf algebras.

(ii) The map π0 : H0 → H0 given by composition with π is an embedding of Hopf

algebras.

(iii) The left and right coinvariants of the A0-coaction ρ := (id⊗ι0) ◦ ∆H0 on H0 are

given by H0: (
H0
)coι0 = coι0

(
H0
)

= H
0
,

where we view H
0 as a Hopf subalgebra of H0 through the embedding in (ii).
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Proof. (i) Let ι : A→ H denote the natural Hopf algebra embedding map. By Corollary

3.6, it is a finite overlay (recalling the definition of finite overlay from Definition 3.4,

although we do not use the details here.) This means that by Theorem 3.12 (ii) and (vi),

ι0 : H0 → A0 is a map of Hopf algebras that is surjective if and only if ι is reciprocal,

where we recall from Definition 3.9 that ι : A → H being reciprocal means that for any

ideal of finite codimension I ⊆ A there is an ideal of finite codimension J ⊆ H with

J ∩A ⊆ I.

To see that this holds, we recall that an ideal K ⊆ A is said to satisfy the right Artin-

Rees property if, for all finitely-generated right A-modules M and submodules N ⊆ M

there exists some n ≥ 1 with

N ∩MKn ⊆ NK

(see [16, Lemma 13.1] for this and other equivalent conditions.) Left Artin-Rees is defined

analogously.

Now note that because A is commutative (as it is central in H) and also Noetherian by

Proposition 5.2(i), all its ideals satisfy both left and right Artin-Rees properties (see for

instance [16, Theorem 13.3]). This means that given an ideal I ⊆ A of finite codimension,

there exists some n ≥ 1 such that

A ∩HIn ⊆ AI = I.

Since HIn is an ideal of H, all that remains to show is that this also has finite codimension

in H, or equivalently that In has finite codimension in A as H is a finitely generated A-

module.

It suffices to show this for n = 2, as the general result can then be obtained by

induction.

First note that because A is Noetherian, both I and I2 are finitely generated, and

we can choose a generating set {a1, ..., as, as+1, ..., at} of I such that {a1, ..., as} forms a

generating set for I2.

Now consider the quotient space I/I2. This is a canonical A/I-module, and it is

generated by the elements {as+1 + I2, ..., at + I2}. Since A/I is finite-dimensional by

assumption, this means that I/I2 is a finitely-generated module over a finite-dimensional

algebra and therefore itself finite-dimensional. By a standard isomorphism theorem we

know that

dim(A/I2) = dim(A/I) + dim(I/I2) <∞.
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So I2 is an ideal of finite codimension as required.

(ii) By Proposition 5.3, there is a surjective Hopf algebra map π : H → H. By Corollary

3.6, it is a finite overlay. So by Theorem 3.12 (iii) and (vi), the map π0 : H0 → H0 given

by composition with π is a well-defined injective map of Hopf algebras as required.

(iii) Step 1: Identifying π0(H0) with a specific subspace of H0

We want to show that π0(H0) consists precisely of those maps in H0 which are zero

on A+H.

To see this, note that whenever A+H ⊆ ker f we can construct a map f̂ ∈ H∗ with

π∗(f̂) = f by setting f̂(h+A+H) := f(h). This is well-defined because f is zero on A+H.

Since H is finite-dimensional by Proposition 5.3, we have f̂ ∈ H0 and thus f = π0(f̂) ∈

π0(H0) as required.

For the other direction, note that any map in H0 that arises by composition with π

will be zero on kerπ = A+H.

Step 2: Showing that for any coinvariant f ∈
(
H0
)coι0 we have A+H ⊆ ker f

Step 1 means that in order to show the coinvariants are just those maps in the image

of π0, it suffices to show that the left and right coinvariants of the im ι0-action are exactly

those maps which are zero on A+H.

Suppose f ∈
(
H0
)coι0 , so f ∈ H0 is such that

ρ(f) = (id⊗ι0) ◦∆H0(f) = f ⊗ εA.

On elements, this means that for h ∈ H, a ∈ A we need to have

f(ah) = f(ha) =
(∑

f1 ⊗ f2 ◦ ι
)

(h⊗ a) = ρ(f)(h⊗ a) = f(h)εA(a)

(recalling that by assumption, A is central in H). In particular, whenever a ∈ A+ we have

f(ah) = εA(a)h = 0. So f is zero on A+H. By Step 1 this gives us

(
H0
)coι0 ⊆ π0(H0).

Step 3: Showing that any map that is zero on A+H is a coinvariant

Suppose that g(A+H) = 0. So given h ∈ H and a = εA(a)1A + a′ for some a′ ∈ A+,

we have

g(ah) = g(εA(a)h+ a′h) = εA(a)g(h) + g(a′h) = εA(a)g(h)

and thus find that g is a right coinvariant. Again, by Step 1 this means we have

π0(H0) ⊆
(
H0
)coι0

,
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which combined with Step 2 gives us equality.

The proof for π0(H0) = coι0
(
H0
)

is analogous.

So given A ⊆ H satisfying (F), we always have a Hopf epimorphism H0 → A0 such that

the coinvariants are given by a Hopf embedding of H0 into H0, where H is the canonical

factor Hopf algebra.

Recall from Definition 2.19 that given a Hopf surjection ψ : H → T , a cleaving map is a

convolution invertible right T -comodule map γ : T → H. Recall further from Proposition

2.22 that the existence of a cleaving map guarantees that H decomposes as a crossed

product

H ∼= Hcoψ#σT

for some cocycle and action. Using these results, we find a natural corollary to Lemma

5.4:

Corollary 5.5. Suppose A ⊆ H are Hopf algebras satisfying (F), and let H := H/A+H

and π : H → H be the canonical factor map. Suppose further that there exists a cleaving

map φ : A0 → H0. Then

H0 ∼= H
0#σA

0

as algebras for some cocycle σ and action of A0 on H0. Moreover, the isomorphism is given

by ζ := mH0 ◦ (π0 ⊗ φ), and ζ is also a map of left H0-modules and right A0-comodules.

Finally, the restricted map ζ|
H

0 = π0 : H0 ⊆ H0 is a Hopf algebra embedding.

Proof. This follows immediately by Proposition 2.22, noting that by Lemma 5.4 (iii) the

subalgebra of coinvariants of the action of A0 on H0 is H0, viewed as a subalgebra of H0

under the embedding given by π0.

We discuss when such a map exists in the next section.

5.2.1 On the existence of a cleaving map A0 → H0

A cleaving map is simply a convolution invertible right comodule map. We find that right

comodule maps A0 → H0 can be retrieved from left A-module projections H → A:

Lemma 5.6. Suppose A ⊆ H are Hopf algebras satisfying (F) and suppose that φ : H → A

is an A-module map such that φ|A = idA. Then there exists a well-defined injective map

φ0 : A0 → H0 given by composition with φ. Moreover, φ0 is a map of right A0-comodules.
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Proof. By a standard result about split short exact sequences (see for instance [41, The-

orem 2.7]), the existence of an A-module projection φ : H → A satisfying φ ◦ ι = idA is

equivalent to saying that H decomposes as a direct sum:

H ∼= A⊕X

as left A-modules, where X = kerφ. Note that X must be finitely-generated because H is

a finitely-generated module over the Noetherian ring A and hence all its submodules are

finitely-generated. So by Lemma 3.16, φ is a finite overlay, and the map φ0 : A0 → H0 is

well-defined. It is injective by Theorem 3.12(iii), using the fact that φ is surjective.

Now note that the right A0-comodule structure on H0 is given by

ρ := (id⊗ι0) ◦∆H0 : H0 → H0 ⊗A0.

To show that φ0 is a right comodule map, we need to show that

ρ ◦ φ0 = (φ0 ⊗ idA0) ◦∆A0 . (5.2)

First note that given f ∈ H0, h ∈ H and a ∈ A and letting µ denote the canonical

isomorphism k ⊗ k ∼= k, we have

µ ◦ ρ(f)(h⊗ a) =
∑

f1(h)f2(ι(a)) = f(ha) = f(ah),

using the fact that A is central. Now we can use this to show that (5.2) holds: we have

µ ◦ (ρ ◦ φ0)(f)(h⊗ a) = ρ(f ◦ φ)(h⊗ a)

= (f ◦ φ)(ah)

= f(aφ(h))

= f(φ(h)a)

= µ ◦ (
∑

f1(φ(h))⊗ f2(a))

= µ ◦
(∑

φ0(f1)⊗ f2

)
(h⊗ a)

= µ ◦ ((φ0 ⊗ idA0) ◦∆A0)(f)(h⊗ a).

Since µ is an isomorphism and this is true for all f ∈ H0, h ∈ H, a ∈ A, this gives us

exactly (5.2).

Remark 5.7. Note that when H ∼= A#τH is itself a crossed product, the assumptions

of this lemma always hold by taking X := A
(
γ(H+)

)
, where γ : H → H is the cleaving

map. We will discuss this situation further in Section 5.5.
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So whenever we have a decomposition of H as in Lemma 5.6, we have a right A0-

comodule map φ0 : A0 → H0. All we need for Corollary 5.5 to apply is for it to be

convolution invertible.

Two types of maps which we know are always convolution invertible are algebra and

coalgebra maps. In particular, if X is either an ideal or a coideal, Corollary 5.5 applies:

Theorem 5.8. Suppose A ⊆ H are Hopf algebras satisfying (F), and let H := H/A+H.

Suppose also that we have H ∼= A ⊕ X as left A-modules, where the first summand A is

the embedding of A into H as a Hopf subalgebra. Then

(i) If X is a coideal, we have

H0 ∼= H
0#A0

as left H0-modules, right A0-comodules and algebras for some action of A0 on H
0.

(ii) If X is an ideal, we have

H0 ∼= H
0#σA

0

as left H0-modules, right A0-comodules and algebras for some action of A0 on H
0

and cocycle σ. Moreover, this isomorphism induces a coalgebra isomorphism

H0 ∼= H
0 ⊗A0

through the canonical identification of a crossed product with its underlying tensor

product.

In both cases the isomorphism is given by mH0 ◦ (π0 ⊗Π0), where π : H → H denotes the

canonical Hopf surjection and Π : H → A the quotient map along X. Moreover, this map

restricts to a Hopf algebra embedding on H
0.

Proof. Let φ : H → A denote the map given by factoring along X. By Lemma 5.6, it is

a finite overlay and the map φ0 : A0 → H0 given by composition is a right A0-comodule

map.

(i) Because X := kerφ is a coideal, φ is a coalgebra map. So by Theorem 3.12(v), φ0

is an algebra map. This means it is convolution invertible, with inverse φ0 ◦ SA0 . That is,

given f ∈ A0, we have

∑
(φ0 ◦ SA0)(f1)φ0(f2) = φ(SH0(f1)f2)) = φ(1H0)εH0(f)
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by the antipode axiom, and showing φ0◦SA0 is a right inverse is similar. So φ0 is a cleaving

map: by Corollary 5.5, we have

H0 ∼= H
0#σA

0

for some action of A0 on H
0 and cocycle σ, and H

0 is a Hopf subalgebra in this decom-

position.

Now note that by Lemma 2.30, the cleaving map φ0 being an algebra map tells us that

σ is trivial. This means that the crossed product is in fact a smash product as required.

(ii) Since X := kerφ is an ideal, φ is an injective algebra map. So by Theorem 3.12(ii)

and (iv), φ0 is a coalgebra embedding, and moreover one that satisfies φ0 ◦ ι0 = idA0 since

φ|A = idA. So by Lemma 2.20, φ0 is convolution invertible. By Corollary 5.5, we have

H0 ∼= H
0#σA

0 (5.3)

for some action and cocycle σ, with H
0 a Hopf subalgebra. Furthermore, we know that

the isomorphism in (5.3) is given by ζ := mH0 ◦ (π0 ⊗ φ0). So the corresponding bijection

ζ ′ : A0 ⊗H0 → H0 on tensor products is given by ζ ′ = mH0 ◦ (π0 ⊗ φ0).

Now note that the cleaving map φ0 : A0 → H0 is a coalgebra map. Similarly, π0 is a

Hopf algebra and hence coalgebra map by Lemma 5.4 (ii). So π0⊗φ0 : H0⊗A0 → H0⊗H0

is a coalgebra map. Since H0 is a Hopf algebra, mH0 is also a coalgebra map. So ζ ′ is the

composition of coalgebra maps and hence itself a coalgebra map. Since it is bijective, this

means that

H0 ∼= H
0 ⊗A0

as coalgebras as required.

We will see applications of Theorem 5.8 in Section 5.4, which uses part (i) to calculate

the finite dual of the quantised enveloping algebra Uε(sl2(k)) for ε a root of unity, and in

Section 6.5, which uses part (i) to calculate the finite dual of the generalised Liu algebras

introduced by Liu ( [31]) and Brown and Zhang ( [6]).

Remark 5.9. It is unclear whether the assumptions made in Theorem 5.8(i) and (ii) are

necessary for the dual of the projection map to be convolution invertible. In particular,

we know of no examples of Hopf algebras A ⊆ H satisfying (F) such that there is a left

A-module projection Π : H → A where H0 does not decompose as a crossed product. We

record this in the following question.
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Question 5.A. Are there any Hopf algebras A ⊆ H satisfying (F) such that H ∼= A⊕X

as left A-modules for some left A-module X and such that H0 does not decompose as a

crossed product of H0 and A0, meaning that

H0 � H
0#σA

0

for any action of A0 on H
0 or cocycle σ?

What about if H ∼= A#τH, so that H itself decomposes as a crossed product?

We will discuss this in more detail in Section 5.6.

Remark 5.10. In the case where H itself decomposes as a crossed product and X :=

Aγ(H+), we can look at previous results to see when Theorem 5.8 will apply. In particular,

the assumption that X is an ideal made in part (ii) of the theorem is then true if and only

if both the action and cocycle are trivial and H ∼= A ⊗ H as algebras, by Lemma 2.31.

The assumption that X is a coideal made in part (i) is then true if γ is a coalgebra map

by Lemma 4.17, but we will see in Section 6.5 that this is not a necessary condition.

5.3 Canonical Hopf subalgebras of H0

Throughout, k is an algebraically closed field of characteristic zero.

In the previous section, we looked at Hopf algebras A ⊆ H satisfying (F) and tried to

understand the structure of H0. In this section, we study two canonical Hopf subalgebras

of H0 instead. It turns out that we can say quite a bit about them. We see that the

Hopf subalgebra kĜ, given by those functions in H0 that restrict to characters on A0,

is a G-graded algebra, where G denotes the affine algebraic group satisfying A ∼= O(G)

(Lemma 5.15). Furthermore, Theorems 5.19 and 5.20 together tell us that kĜ decomposes

as a crossed product if and only if the whole of H0 does.

The Hopf subalgebra W , given by those functions in H0 vanishing on some power of

A+H, is isomorphic to (H/A+H)0#σU(LieG) whenever we have an A-module projection

Π : H → A (Theorem 5.21). This is for instance always true when H is a free A-module

with A-basis containing 1H , such as when H is a crossed product of A and H/A+H.

To define kĜ and W , we first recall the following facts about coordinate rings. Recall

also that G(K) denotes the group of grouplike elements of a Hopf algebra K.

Proposition 5.11. Suppose A is a commutative affine Hopf k-algebra where k is an

algebraically closed field of characteristic zero. Then there exists an affine algebraic group
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G such that A ∼= O(G) as Hopf algebras. Moreover, there exists an isomorphism of groups

given by

G ∼= G(A0) = Alg(A, k).

Proof. These are both standard results of algebraic geometry. The first part has been

discussed in Remark 1.13, the second we have seen in the characterisation of O(G)0 given

in Proposition 2.13,

Remark 5.12. Note that, as discussed in Remark 1.13, this result does not hold in positive

characteristic. For instance, if char k = p, the Hopf algebra kCp is a commutative affine

Hopf algebra but not isomorphic to the coordinate ring of any affine algebraic group.

Further, the characterisation of the dual of O(G)0 coming from Proposition 2.13 also

requires k to be algebraically closed.

We write αg for the map in A0 corresponding to g ∈ G, and set mg := kerαg. Since

αg is an algebra map, mg is a maximal ideal of codimension one in A for each g ∈ G.

This gives us all we need to define several canonical subspaces of H0.

Definition 5.13. Let A ⊆ H be Hopf algebras satisfying (F) and let G be the affine

algebraic group such that A ∼= O(G).

(i) Let W := {f ∈ H0 | f ((A+H)n) = 0 for some n > 0}.

(ii) Given g ∈ G, set

ĝ := {f ∈ H0 | f(mgH) = 0} ∼= (H/mgH)∗

and

kĜ :=
⊕
g∈G

ĝ.

In fact, the following lemmas show that both W and kĜ are Hopf subalgebras of H0.

First, the fact that W is a Hopf subalgebra follows from standard results regarding

subspaces of H0 consisting of functions vanishing on some power of a Hopf ideal.

Lemma 5.14. Retain the notation and assumptions of Definition 5.13 let ι : A → H

denote the canonical embedding map. Then W is a Hopf subalgebra of H0 such that

ι0(W ) ⊆ U(LieG) ⊆ A0.
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Proof. This is due to standard results: by [36, Lemma 9.2.1], given any Hopf ideal I ⊆ H

the set

H0
I := {f ∈ H0 | f(In) = 0 for some n > 0}

is a Hopf subalgebra. Since A+H is a Hopf ideal by Proposition 5.3, this means that

W = H0
A+H is a Hopf subalgebra of H0.

Now note that following [36, Proposition 9.2.5], we can identify U(LieG) ⊆ A0 with

U(LieG) = {f ∈ A0 | f((A+)n) = 0 for some n ≥ 1}.

In particular, if f ∈ W , then f((A+H)n) = 0 for some n ≥ 1 and ι0(f) = f |A is zero on

(A+)n, meaning that ι0(f) ∈ U(LieG).

Showing that kĜ is a Hopf subalgebra is slightly more complicated. The result relies

on the fact that we can show that kĜ is a G-graded subalgebra where each component of

the grading is a subcoalgebra.

Lemma 5.15. Retain the notation and assumptions of Definition 5.13. Then

(i) kĜ is a G-graded subalgebra of H0, with ĝĥ ⊆ ĝh for g, h ∈ G.

(ii) kĜ is a Hopf subalgebra of H0, with each ĝ being a subcoalgebra and SH0(ĝ) ⊆ ĝ−1.

Proof. (i) Let αg ∈ A0 = O(G)0 be the algebra map associated to g ∈ G, and let mg :=

kerαg be the corresponding maximal ideal in A.

Let g, h ∈ G. We start by showing that

∆A(mgh) ⊆ mg ⊗A+A⊗mh.

We have A = mg ⊕ k1A = mh ⊕ k1A, so we can write

∆A(mgh) ⊆ (mg ⊕ k1A)⊗ (mh ⊕ k1A) = mg ⊗A+A⊗mh ⊕ k1A ⊗ k1A.

We write λ1A ⊗ 1A for the summand belonging to k1A ⊗ k1A in this decomposition and∑
x⊗ y for the remainder of the sum contained in mg ⊗A+A⊗mh.

Now by Proposition 5.11, αgαh = αgh. This means that, letting µ denote the canonical
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isomorphism k ⊗ k ∼= k given by scalar multiplication,

0 = αgαh(mgh)

= µ ◦ (αg ⊗ αh)(∆(mgh))

= µ ◦ (αg ⊗ αh)
(∑

x⊗ y + λ1A ⊗ 1A
)

=
∑

αg(x)⊗ αh(y) + λαg(1A)αh(1A)

= λ,

noting that αg, αh are algebra maps and hence send 1A to 1k. So λ = 0 and so

∆A(mgh) ⊆ mg ⊗A+A⊗mh.

Now let f ∈ ĝ, f ′ ∈ ĥ. We have

ff ′(mghH) = µ ◦ (f ⊗ f ′)(∆H(mghH))

= µ ◦ (f ⊗ f ′)(∆A(mgh)∆H(H))

⊆ µ ◦ (f ⊗ f ′)((mg ⊗A+A⊗mh)(H ⊗H))

⊆ µ ◦ (f ⊗ f ′)(mgH ⊗H +H ⊗mhH)

= f(mgH)f ′(H) + f(H)f ′(mhH) = 0

by assumption on f and f ′. In particular, ff ′ ∈ ĝh, so kĜ is closed under multiplication

and is G-graded.

Finally, note that 1H0 = εH is zero on H+ ⊇ A+H = m1H, so 1H0 ∈ 1̂G ⊆ kĜ. This

together with the above means that kĜ is a subalgebra of H0.

(ii) Let g ∈ G and f ∈ ĝ, and consider ∆(f) :=
∑
f1 ⊗ f2. We want to show that

∆(f) ∈ ĝ ⊗ ĝ.

We can choose this expression for ∆(f) such that the f2 are linearly independent. Now

note that for all h ∈ H,m ∈ mgH we have mh ∈ mgH and so

∑
f1(m)f2(h) = f(mh) = 0.

In particular,
∑
f1(m)f2 ≡ 0 on the whole of H, and since the f2 are linearly independent

this means that f1(m) = 0 for each f1 in the sum and all m ∈ mgH. So ∆(f) ⊆ ĝ ⊗H0.

The exact same argument works for the right hand side as well, giving us

∆(f) ⊆ (ĝ ⊗H0 ∩H0 ⊗ ĝ) = ĝ ⊗ ĝ.
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Now we want to show that SH0(ĝ) = ĝ−1.

⊆:

First recall that by Proposition 5.2, SH is bijective. This means that given f ∈ ĝ for

g ∈ G, SH0(f) = f ◦ SH is zero on S−1
H (mgH). Note that

S−1
H (mgH) = S−1

H (H)S−1
H (mg) = HS−1

A (mg) = S−1
A (mg)H, (5.4)

using the fact that A is a central Hopf subalgebra and that SH and hence S−1
H are algebra

antihomomorphisms.

Now we recall that there is a group homomorphism G ∼= G(A0) given by g 7→ αg. In

particular, SA0(αg) = α−1
g = αg−1 and so S−1

A (mg) = mg−1 . So Equation (5.4) becomes

S−1
H (mgH) = mg−1H

and so SH0(f) ∈ ĝ−1 ⊆ kĜ as required.

⊇:

By the above, SH is invertible. Since SH is an algebra antihomomorphism, so is S−1
H ,

meaning that it sends two-sided ideals to two-sided ideals. Since S−1
H is also bijective and

hence preserves the notion of finite codimension, this means that S−1
H is a finite overlay

and gives rise to a well-defined map
(
S−1
H

)0 : H0 → H0 given by composition. The same

argument as above performed for S−1
H tells us that

(
S−1
H

)0 (ĝ−1) ⊆ ĝ. Moreover,
(
S−1
H

)0
and SH0 are mutually inverse, and therefore mutually inverse on restriction to ĝ and ĝ−1.

In particular, this means that SH0 |bg must be surjective.

Remark 5.16. In fact, Lemma 5.15 tells us that not only is kĜ a Hopf subalgebra of H0,

so is
⊕

g∈K ĝ for any subgroup K < G.

We will see later that kĜ is only a crossed product if the whole of H0 is. However,

Lemma 5.15(i) tells us that it is always G-graded and hence a kG-comodule, which we can

view as a weaker version of that statement.

Both W and kĜ contain H
0 as a Hopf subalgebra, and in fact this is all of their

intersection.

Lemma 5.17. Retain the notation and assumptions of Definition 5.13. Then

(i) H
0 ⊆W and H0 = 1̂G ⊆ kĜ.

(ii) W ∩ kĜ = H
0.
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Proof. (i) We can identify H0 in H0 as

H
0 ∼= {f ∈ H0 | f(A+H) = 0}.

On the one hand, since W consists of those functions vanishing on some power of A+H, it

certainly contains those functions that vanish on A+H itself and hence H0. On the other,

A+ = ker ε = m1G and so H0 = 1̂G by definition.

(ii) From (i), we know that H0 ⊆W ∩kĜ, so we only need to show the other inclusion.

Let f ∈ W ∩ kĜ. So there exists some n ≥ 1 such that f((A+H)n) = 0 and some

g1, ..., gn ∈ G with gi 6= gj for i 6= j such that f (
⋂n
i=1 mgiH) = 0. We want to show that

f(A+H) = 0.

Write I :=
⋂n
i=1 mgiH. We have (

n⋂
i=1

mgi

)
H ⊆ I

and

(A+H)n = (A+)nHn = (A+)nH,

using the fact that A is central in H.

Suppose first that gi 6= 1G for all i. Then
⋂n
i=1 mgi and (A+)n are comaximal as there

is no maximal ideal of A containing both of them, so

n⋂
i=1

mgi + (A+)n = A.

This means that

I + (A+H)n =
n⋂
i=1

(mgiH) + (A+)nH

⊇

(
n⋂
i=1

mgi

)
H + (A+)nH

=

(
n⋂
i=1

mgi + (A+)n
)
H = AH = H.

So I + (A+H)n = H. Since f(I) = 0 and f((A+H)n) = 0, it follows that f is also zero on

their sum and so the whole of H: f = 0.

So we can assume that g1 = 1G, which means that
⋂n
i=1 mgiH ⊆ A+H.

Since A+H and I+ (A+H)n are both ideals in H, we can view them as left A-modules

and consider their quotient module B := (A+H)/(I + (A+H)n). B is finite-dimensional
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because I and (A+H)n have finite codimension in H. We find that (
⋂n
i=2 mgi)B = 0,

because (
n⋂
i=2

mgi

)
A+H ⊆

(
n⋂
i=1

mgi

)
H ⊆ I.

However, we also have (A+)n−1B = 0. So in particular, (A+)n−1 +
⋂n
i=2 mgi acts as zero

on B. By the same argument as above, these two ideals are comaximal and this sum is

the whole of A. So B = 0, meaning that I + (A+H)n = A+H and so f(A+H) = 0 as

required.

Our aim is to express W in terms of a crossed product of H0 and U(LieG) and similarly

express kĜ in terms of H0 and kG.

We start with kĜ. The following lemma, regarding the structure of the subcoalgebras

ĝ ⊆ kĜ, records some preliminary facts which we will need for the proof of the main

results.

Lemma 5.18. Retain the notation and assumptions of Definition 5.13, let ι : A → H

denote the canonical embedding map, ρA0 the canonical A0-comodule structure on H0 given

by ι0 as in Lemma 5.4(i) and (iii), g ∈ G and αg ∈ A0 be the algebra map corresponding

to g. Then

(i) The space ĝ is a finite-dimensional nonzero left H0-module. If H is free as an A-

module, then dimk(ĝ) = dimk(H).

(ii) ι0(ĝ) = kαg and so ι0(kĜ) = kG.

(iii) ĝ = {f ∈ H0 | ρA0(f) = f ⊗ αg}.

Proof. (i) The fact that ĝ is a left H0-module follows immediately from the fact that by

Lemma 5.15(i) and Lemma 5.17(i), kĜ :=
⊕

h∈G ĥ is a G-graded algebra and 1̂G = H
0.

So H0
ĝ ⊆ ĝ by definition.

ĝ is finite dimensional because we can identify ĝ = (H/mgH)∗, where H/mgH is a

finite-dimensional module. The only way for it to be zero is for mgH to be the whole

of H. However, in this case, by Nakayama’s Lemma (in the form stated for instance

in [33, Theorem 2.2]) there would have to exist an element a ∈ A satisfying aH = 0

and a ≡ 1A mod mg. In particular, the latter statement means that a would have to be

nonzero. This is impossible and so mgH 6= H and ĝ 6= 0.

Finally, if H is free as an A-module, then H/mgH ∼= (A/mg)
n for n = dimk(H), and

so by the above dimk(ĝ) = dimk(H).
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(ii) αg is the algebra map A→ k given by factoring along mg by definition. This means

that in A0, any map which is zero on mg is a scalar multiple of αg.

Let f ∈ ĝ. This means that f is zero on mgH and so ι0(f) = f |A is zero on mg,

meaning that ι0(f) is a scalar multiple of αg. Since kαg is a one-dimensional vector space,

in order to show that ι0(ĝ) = kαg we only need to show that we can choose f such that

ι0(f) is nonzero.

Since by (i) ĝ 6= 0 and so mgH 6= H, we know that 1H /∈ mgH. This means that we

can choose f such that f(1H) 6= 0. Then ι0(f)(1A) = f(ι(1A)) = f(1H) 6= 0, giving us

what we want.

So

ι0(kĜ) = ι0

⊕
g∈G

ĝ

 =
∑
g∈G

ι0(ĝ) =
∑
g∈G

kαg = kG

as required.

(iii) We want to show that

ĝ = {f ∈ H0 | ρ(f) = f ⊗ αg}.

⊆: Suppose f ∈ ĝ. By Lemma 5.15(ii), ĝ is a subcoalgebra of H0. Since by (ii)

ι0(ĝ) ⊆ kαg, we have ρ(f) =
∑
λ1f1 ⊗ αg for some λ1 ∈ k. Now the counit part of the

comodule axiom means that

(id⊗εA0) ◦ ρ(f) = f ⊗ 1

and so
∑
λ1f1 = f as required.

⊇: Suppose f ∈ H0, and f is such that ρ(f) = f ⊗ αg. We need to show that

f(mgH) = 0.

Using the fact that A is central in H and letting µ : k ⊗ k → k denote the canonical

isomorphism given by scalar multiplication, we find that

f(mgH) = f(Hmg)

= f(Hι(mg))

=
∑

f1(H)f2(ι(mg))

= µ ◦ (id⊗ι0) ◦∆H0(f)(H ⊗mg)

= µ ◦ ρ(f)(H ⊗mg)

= f(H)αg(mg) = 0,
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giving us what we want.

With these results, we can show that whenever H0 decomposes as a crossed product,

so does kĜ with respect to the same action and cocycle.

Theorem 5.19. Retain the notation and assumptions of Definition 5.13. Suppose that

H0 decomposes as a crossed product:

H0 ∼= H
0#σA

0

as left H0-modules, algebras and right A0-comodules for some cocycle σ and action of A0.

Then kĜ also decomposes as a crossed product, namely

kĜ ∼= H
0#σ|kG⊗kG

kG.

Here the action and cocycle both arise from those in the decomposition of H0 as a crossed

product under restriction to kG or kG⊗ kG respectively . Moreover, for all g ∈ G,

ĝ = H
0#αg,

where αg : A→ k denotes the algebra map corresponding to g.

Proof. Step 1: Showing that ĝ = H
0#αg.

⊇: Let f ∈ H0. We want to show that f#αg ∈ ĝ.

By Proposition 2.23, there exists a convolution invertible right A0-comodule map φ :

A0 → H0 such that we can identify f#αg with fφ(αg). Moreover, φ(αg) ∈ ĝ : this follows

as φ is a right comodule map, meaning that, since αg ∈ A0 is grouplike,

ρ(φ(αg)) = (φ⊗ id) ◦∆A0(αg) = φ(αg)⊗ αg,

and so by Lemma 5.18 φ(αg) ∈ ĝ. Now we can use this and the fact that

∆H(mg) ⊆ A+H ⊗H +H ⊗mgH

by the proof of Lemma 5.15(i) to get

fφ(αg)(mgH) ⊆ µ ◦ (f ⊗ φ(αg))
(
A+H ⊗H +H ⊗mgH

)
= f(A+H)φ(αg)(H) + f(H)φ(αg)(mgH)

= 0 + 0 = 0.
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So f#αg(mgH) = 0, meaning that f#αg ∈ ĝ by definition.

⊆: Let ρ := (id⊗ι0) ◦ ∆H0 : H0 → H0 ⊗ A0 denote the map giving the right A0-

comodule structure on H0. By Lemma 5.18(iii), it suffices to show that the only f ∈ H0

satisfying ρ(f) = f ⊗ αg are those such that f ∈ H0#αg.

Suppose f ∈ H0 is such that ρ(f) = f ⊗ αg. Recall from Proposition 5.11 that

A0 ∼= U(LieG)#kG. This and the assumed crossed product decomposition of H0 means

we have

f =
n∑
i=1

fiφ(ui#αgi)

for some n ≥ 1, fi ∈ H
0, ui ∈ U(LieG) and gi ∈ G. Then

ρ(f) = ρ

(
n∑
i=1

fiφ(ui#αgi)

)

=
n∑
i=1

ρ(fi)ρ(φ(ui#αgi))

=
n∑
i=1

(fi ⊗ 1A0)(φ⊗ id) ◦∆A0(ui#αgi)

=
n∑
i=1

(fi ⊗ 1A0)(φ⊗ id)(∆A0(ui)(αgi ⊗ αgi))

=
n∑
i=1

∑
fiφ((ui)1αgi)⊗ (ui)2αgi .

The map φ is injective and since ui ∈ U(LieG), ui is a polynomial in primitive elements.

In particular, the only way for ρ(f) = f ⊗ αg is for n = 1, g1 = g and u1 = 1H0 .

Step 2: kĜ ∼= H
0#τkG.

By the above, kĜ =
⊕

g∈GH
0#αg. So in particular, we can find a linear isomorphism

ψ : kĜ → H
0 ⊗ kG given by ψ(f#αg) := f ⊗ g and extending linearly. It follows

immediately from this definition that ψ is a left H0-module map as well as a right kG-

comodule map.

So by [36, Theorem 8.2.4], to show that kĜ decomposes as

kĜ ∼= H
0#τkG

for some action of kG on H
0 and cocycle τ it suffices to show that H0 ⊆ kĜ is Galois,

meaning that the map

β : kĜ⊗
H

0 kĜ→ kĜ⊗k kG

given by β(a⊗ b) := (a⊗ 1)ρ(b) is bijective.
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We have kĜ =
⊕

g∈GH
0#αg and

H
0
φ(αg) = H

0(1H#αg) = H
0#αg.

So kĜ is a free H0-module with basis {φ(αg) | g ∈ G} and so we can identify kĜ⊗
H

0 kĜ

with
⊕

g∈G kĜ⊗k αg. Viewed like this, the map β sends
∑
ai ⊗ αgi to

∑
aiφ(αgi)⊗ αgi .

Define β−1 by β−1 : f ⊗ αg 7→ fφ−1(αg) ⊗ αg. We know that αg is grouplike and

φ−1 is the convolution inverse for φ. This means that φ(αg)φ−1(αg) = 1H and so for all

ai ∈ A, gi ∈ G,

(β−1 ◦ β)
(∑

ai ⊗ αgi

)
= β−1

(∑
aiφ(αgi)⊗ αgi

)
=
∑

aiφ(αgi)φ
−1(αgi)⊗ αgi

=
∑

ai ⊗ αgi

The same argument shows that β ◦ β−1 = id. So β is invertible and hence bijective as

required.

Step 3: Action and cocycle agree

This simply follows from the fact that kĜ is a Hopf subalgebra of H0 such that

H
0#ταg ⊆ kĜ corresponds to H

0#σαg ⊆ H0. So the crossed product multiplication

from the decomposition

kĜ ∼= H
0#τkG

gained in part (ii) has to agree with that of H0, forcing the action and cocycle to coincide.

Thanks to a result of Takeuchi, we find that as long as we can extend the cleaving map

kG → kĜ to the whole of A0 and H0, the converse of Theorem 5.19 also holds: in this

case, if kĜ decomposes as a crossed product so does the whole of H0.

Theorem 5.20. Retaining the notation and assumptions of Definition 5.13, suppose that

kĜ ∼= H
0#σkG

with cleaving map given by ψ and suppose there exists some right A0-comodule map φ :

A0 → H0 satisfying φ|kG = ψ. Then φ is convolution invertible and

H0 ∼= H
0#τA

0

with cleaving map φ, and τkG⊗kG = σ and the two actions agree on kG.
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Proof. Suppose ψ : kG → kĜ is a cleaving map for kĜ. So ψ : kG → kĜ is convolution

invertible, which means that φ|kG : kG→ H0 is so as well. Now we note that the coradical

of A0 is given by kG as by Proposition 2.13, A0 ∼= U(LieG)#kG as Hopf algebras, where

U(LieG) is connected andG consists of grouplike elements. So by [50, Lemma 14], since the

restriction of φ to the coradical is convolution invertible, so is the whole map φ : A0 → H0.

Corollary 5.5 gives us that

H0 ∼= H
0#σA

0

in the ways required, and the actions and cocycles agreeing follows by the fact that they

are defined via the cleaving maps and one is a restriction of the other.

So whenever we have some right A0-comodule map φ : A0 → H0 (such as, by Lemma

5.6, whenever there exists an A-module projection H → A), then kĜ decomposes as a

crossed product with respect to it if and only if the whole of H0 does so.

We now return to looking at W . In contrast to kĜ, we discover that W decomposes

as a crossed product with only very minor assumptions on H.

Theorem 5.21. Retain the notation and assumptions of Definition 5.13. Suppose that

there exists a left A-module projection Π : H → A satisfying Π|A = idA. Then W decom-

poses as a crossed product, with

W ∼= H
0#σU(LieG)

for some action and cocycle σ.

Proof. We first note that by Lemma 5.14, W is a Hopf subalgebra of H0 satisfying ι0(W ) ⊆

U(LieG). In particular,

ρ(W ) = (id⊗ι0) ◦∆H0(W ) ⊆W ⊗ U(LieG)

and so the canonical A0-comodule structure on H0 restricts to a canonical U(LieG)-

comodule structure on W . Further, the map Π0 : A0 → H0, which by Lemma 5.6 is a

right A0-comodule map, satisfies Π0(U(LieG)) ⊆ W . This follows because Π0 extends

maps in A0 to maps in H0 by setting them to be zero on X: any map u ∈ U(LieG) is

zero on (A+)n for some n ≥ 1, and it follows from this that

Π0(u)((A+H)n) ⊆ Π0(u)((A+ ⊕X)n) ⊆ Π0(u)((A+)n ⊕X) = 0.

So u ∈W as required.
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So Π0|U(LieG) : U(LieG) → W is a right U(LieG)-comodule map. By [50, Lemma

14], it is convolution invertible if and only if its restriction to the coradical is convolution

invertible. However, U(LieG) is connected, meaning that its coradical is simply k, and of

course any map k → W is convolution invertible. So Π0|U(LieG) is convolution invertible

and so a cleaving map, meaning that by Proposition 2.22 we have

W ∼= (W )coU(LieG) #σU(LieG),

and all that remains to be shown is that the coinvariants are given by H0.

For this, first note that since the U(LieG)-comodule structure on W is the restriction

of the A0-comodule structure on H0,

(W )coU(LieG) = W ∩
(
H0
)coA0

. (5.5)

Now by Lemma 5.4,
(
H0
)coA0

= H
0, and by Lemma 5.17 we have H0 ⊆ W . This means

that (5.5) turns into

(W )coU(LieG) = H
0

as required.

The condition that there is a left A-module projection Π : H → A is frequently fulfilled

and may easily always be true - as we will see in Section 5.5.1, since we are assuming that

k is algebraically closed it is an open question whether a far stronger condition on H is

always true. Among others, Theorem 5.21 gives rise to the following corollary.

Corollary 5.22. Suppose A ⊆ H are Hopf algebras satisfying (F), with G denoting the

affine algebraic group such that A ∼= O(G) and H := H/A+H denoting the canonical

quotient Hopf algebra, and suppose that H is free as an A-module with an A-basis that

includes 1H . Then there exists a Hopf subalgebra W of H0 that decomposes as a crossed

product, with

W ∼= H
0#σU(LieG)

for some cocycle σ and action of U(LieG) on H
0.

This is always satisfied when H ∼= A#τH is itself a crossed product, a case we will

look at in more detail in Section 5.5.
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5.4 The finite dual of Uε(sl2)

Throughout, k is an algebraically closed field of characteristic zero.

In this section, we use Theorem 5.8 to work out the finite dual of the quantised en-

veloping algebra Uε(sl2(k)).

First, recall that given a semisimple Lie algebra g and a nonzero scalar q ∈ k∗ with

q 6= 1, we can define the quantised enveloping algebra Uq(g), which can be viewed as a

noncocommutative deformation of the usual enveloping algebra on the parameter q. This

construction and its properties are discussed in detail in [7, Section I.6].

The theory of quantised enveloping algebras divides into two different cases. In the case

where q is generic, one studies quantised enveloping algebras for q ∈ k∗ not a root of unity.

In this case, the finite dual Uq(g)0 is known: it is isomorphic to Oq(G)#kZrk(g)
2 , where G

is the unique simply connected affine algebraic group satisfying LieG = g (see [25, Section

9.1.1] for details).

When q is a root of unity, the finite dual of Uq(g) is less well understood. However,

Uq(g) always has a central Hopf subalgebra satisfying (F) (see [7, Theorem III.6.2]) and

so provides an example of the sort of Hopf algebra we are studying in this chapter.

In this section, we look at the specific case where g := sl2(k) and show how our results

apply, in particular that we can describe Uε(sl2(k))0 as a crossed product. We then form

a conjecture about the general case Uε(g)0 and note a partial positive result in this area.

Definition 5.23. Let k be an algebraically closed field of characteristic zero, n ≥ 3 be odd

and ε ∈ k∗ be a primitive nth root of unity. The quantised enveloping algebra Uε(sl2(k))

is defined as follows:

As an algebra, Uε(sl2(k)) is generated by E,F,K±1 under the relations

KE = ε2EK KF = ε−2FK

EF − FE =
K −K−1

ε− ε−1
KK−1 = 1 = K−1K.

The coalgebra structure is given by K grouplike and

∆(E) = E ⊗ 1 +K ⊗ E

∆(F ) = F ⊗K−1 + 1⊗ F.

We write U for Uε(sl2(k)).

This algebra has a nice PBW basis, along with a central Hopf subalgebra satisfying

(F):
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Proposition 5.24. Let ε ∈ k∗ be a primitive nth root of unity for some odd n > 1, and

let U := Uε(sl2(k)) denote the quantised universal enveloping algebra. Then

(i) U has a PBW basis given by {EiKjF t | i, j, t ∈ Z, i, t ≥ 0}.

(ii) The subalgebra A := k〈En, Fn,K±n〉 is a central Hopf subalgebra of U , satisfying

A ∼= k[En, Fn,K±n].

(iii) U is Noetherian as an algebra and is finitely-generated as an A-module.

Proof. (i) This is by [7, Corollary I.3].

(ii) This follows by [7, Theorem III.6.2] (see also [7, Section III.2.1] for further discus-

sion).

(iii) The fact that U is Noetherian follows as it can be written as an iterated skew

polynomial algebra. To see that U is finitely-generated, note that the finite set {EiKjF t |

0 ≤ i, j, t < n} provides an A-generating set for U .

The proposition means that we have an A-module decomposition of U as follows:

U ∼= A⊕
⊕

0≤i,j,t<n
i+t>0

AEiKjF t ⊕
n−1⊕
s=1

A(Ks − 1),

where the summand A is the embedding of A into U as a Hopf subalgebra. As such, if we

can show that the complement of A under this decomposition is a coideal, then Theorem

5.8(i) applies. We choose Ks− 1 rather than Ks in the latter summand in order to ensure

that the complement will lie inside U+, one of the requirements to be a coideal.

Lemma 5.25. Let ε ∈ k be a primitive nth root of unity for some n > 1, n odd, and let

U := Uε(sl2(k)) and A := k[En, Fn,K±n] ⊆ U be the canonical central Hopf subalgebra

described in Proposition 5.24. Then there is an A-module decomposition of U given by

U ∼= A⊕
⊕

0≤i,j,t<n
i+t>0

AEiKjF t ⊕
n−1⊕
s=1

A(Ks − 1).

Moreover, the complement of A under this decomposition is a coideal.

Proof. The fact that the decomposition given is an A-module decomposition with all sums

direct follows straightforwardly from Proposition 5.24 (i) and (ii). Define X by

X :=
⊕

0≤i,j,t<n
i+t>0

AEiKjF t ⊕
n−1⊕
s=1

A(Ks − 1),
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the complement of A. We need to show X is a coideal.

First note that as an A-module, X has generating set Y ∪ P , where Y = {EiKjF t |

0 ≤ i, j, t < n, i + t > 0} and P = {Ks − 1 | 1 ≤ s < n}. It suffices to check that

ε(Y ) = ε(P ) = 0 and also that both ∆(Y ) and ∆(P ) are contained in U ⊗ X + X ⊗ U .

As A is a coalgebra, this will give us the result for the whole of X.

Step 1: ε(Y ) = ε(P ) = 0

Given EiKjF t ∈ Y , we have

ε(EiKjF t) = ε(E)iε(K)jε(F )t = 0i+t = 0

as i+ t > 0.

Similarly, given (Ks − 1) ∈ P , we have

ε(Ks − 1) = ε(Ks)− ε(1) = 1− 1 = 0.

Step 2: ∆(P ) ⊆ U ⊗X +X ⊗ U

Let (Ks − 1) ∈ P . Because Ks is grouplike, (Ks − 1) is primitive, and so

∆(Ks − 1) = (Ks − 1)⊗ 1 + 1⊗ (Ks − 1) ∈ X ⊗ U + U ⊗X

as required.

Step 3: ∆(Y ) ⊆ U ⊗X +X ⊗ U

Let EiKjF t ∈ Y , i.e. we have 0 ≤ i, j, t < n and at least one of i, t nonzero.

First, note that

∆(Ei) =
i∑

`=0

(
i

`

)
ε2
Ei−`K` ⊗ E`,

using standard facts about skew-commuting variables and recalling the notation
(
r
s

)
τ

for

r ≥ 1, s ≥ 0 and τ ∈ k∗ from Example 2.12.

Similarly,

∆(F t) =
t∑

r=0

(
t

r

)
ε2
F t ⊗K−tF r−t.

This means that

∆(EiKjF t) =

(
i∑

`=0

(
i

`

)
ε2
Ei−`K` ⊗ E`

)
∆(Kj)

(
t∑

r=0

(
t

r

)
ε2
F t ⊗K−tF r−t

)

=
i∑

`=0

t∑
r=0

(
i

`

)
ε2

(
t

r

)
ε2
Ei−`K`+jF t ⊗ E`Kj−tF r−t.

Consider the normed summand Ei−`K`+jF t ⊗ E`Kj−tF r−t and assume for a contra-

diction that it is not an element of X ⊗H +H ⊗X.



CHAPTER 5. CENTRAL HOPF SUBALGEBRAS 128

This means that neither of the tensorands are elements of X, meaning that both the

degrees of E and F must be divisible by n in both of the tensorands. This in turns means

that `+(i− `) = i ≡ 0 mod n, and similarly r ≡ 0 mod n. Since 0 ≤ i, r < n, this means

that i = r = 0. However, we assumed that i+ r > 0. This is a contradiction: at least one

of the tensorands must be in X.

So for each summand we have(
i

`

)
q2

(
t

r

)
q2

Ei−`K`+jF t ⊗ E`Kj−tF r−t ∈ H ⊗X +X ⊗H.

As a result,

∆(EiKjF t) ∈ H ⊗X +X ⊗H

as required.

This allows us to fully describe the algebra structure of U0, recalling the definition

of a quantised coordinate ring from [7, Chapters I.7 and III.7] and using it to define the

restricted quantised coordinate ring as in [7, Section III.4.4].

Corollary 5.26. Suppose that k is an algebraically closed field of characteristic zero, n ≥ 3

is odd and ε ∈ k∗ a primitive nth root of unity.

(i) The finite dual of Uε(sl2(k)) is a smash product, with

Uε(sl2(k))0 ∼= Oε(SL2(k))#
(
U(g)#k((k2,+)o (k∗, ∗)

)
,

where g := k〈a, b, c | [a, b] = 0, [a, c] = a, [b, c] = b〉 and Oε(SL2(k)) denotes the

restricted quantised coordinate ring of SL2(k).

(ii) Neither action in the two smash products in (i) is trivial.

(iii) There are two canonical Hopf subalgebras of Uε(sl2(k))0, given by Oε(SL2(k))#U(g)

and Oε(SL2(k))#k((k2,+)o (k∗, ∗)) respectively.

Proof. (i) Let U := Uε(sl2(k)).

By Lemma 5.25, we have U ∼= A⊕X as A-modules, where X is a coideal and the direct

summand A corresponds to the embedding of A into U as a central Hopf subalgebra. By

Theorem 5.8, this means that we have

U0 ∼=
(
H/A+H

)∗#A0.
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BecauseA is an affine commutative Hopf algebra and k has characteristic 0, as discussed

in Remark 1.13 it is isomorphic to O(G) for some affine algebraic group G. Following

the discussion in [7, Section III.6.5], we have G ∼= (k2,+) o (k∗, ∗) with action given by

λ · (f, g) = (λ−2f, λ−2g) for λ ∈ k∗, f, g ∈ k, using the maximal torus T in SL2(k) given by

T =


λ 0

0 λ−1

 | λ ∈ k∗
 ∼= (k∗, ∗).

Now we want to work out LieG. As discussed in [21, Section 5.1], one of the ways it

arises is via

LieG ∼=
(
A+/(A+)2

)∗
.

We first note that A ∼= k[En, Fn,K±n], where En and Fn are skew-primitive with

∆(En) = En ⊗ 1 +Kn ⊗ En ∆(Fn) = Fn ⊗K−n + 1⊗ Fn

and Kn is grouplike - this simply follows by standard results on skew-commuting variables

and q-binomials. This means that A+ = 〈En, Fn,Kn − 1〉 ⊆ A.

We have

dimk(A+/(A+)2) = dimk(LieG) = dim(G) = 3

by [1, Theorem 4.3.11]. Since En, Fn,Kn − 1 /∈ (A+)2 and their images are linearly

independent in A+/(A+)2, this means said images form a basis for that vector space.

Under minor abuse of notation via identifying En, Fn and Kn − 1 with their images, this

gives us a resulting dual basis for LieG ∼=
(
A+/(A+)2

)∗:
a(En) = 1 a(Fn) = 0 a(Kn − 1) = 0

b(En) = 0 b(Fn) = 1 b(Kn − 1) = 0

c(En) = 0 c(Fn) = 0 c(Kn − 1) = 1.

Setting a(1) = b(1) = c(1) = 0 allows us to extend these maps to
(
A/(A+)2

)∗ and from

there to A0 by setting them to be zero on (A+)2 (noting that (A+)2 is an ideal of finite

codimension and so the resulting maps are indeed elements of A0). This means that on

an element α := EknF rnK`n ∈ A with k, r ≥ 0, ` ∈ Z, a, b and c become

a(α) = δk1δr0, b(α) = δk0δr1, c(α) = `δk0δr0.

As discussed in [21, Section 9.3], in this embedding LieG → A0, the Lie bracket of LieG

agrees with the commutator in A0. This lets us compute the Lie bracket of a, b, c using
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the multiplication in A0. Some calculation shows that this gives us precisely LieG = g as

in the statement of the theorem.

Finally, by Proposition 2.13, all this means that we have

A0 ∼= U(LieG)#kG ∼= U(g)#k((k2,+)o (k∗, ∗)).

Now H/A+H is the restricted quantised enveloping algebra Uε(sl2(k)). By [7, Theorem

III.7.10], this satisfies

Uε(sl2(k))
∗ ∼= Oε(SL2(k)).

Combining these, we find that

U0 ∼= Oε(SL2(k))# (U(g)#kG) (5.6)

as required.

(ii) We want to see that neither smash product is trivial. To do this we find elements

in Oε(SL2(k)), U(g) and kG that do not commute.

First, note that the elements of Oε(SL2(k)) are those functions in Homk(U, k) that

are zero on A+U = 〈En, Fn,K±n − 1〉. So we can find a map f ∈ Oε(SL2(k)) satisfying

f(EKn−1) = 1. Now, the elements of U(LieG)#kG consist of functions in k[En, Fn,K±n]0

extended to the whole of U by being set to be zero on X where we recall that

X :=
⊕

0≤i,j,t<n
i+t>0

AEiKjF t ⊕
n−1⊕
s=1

A(Ks − 1).

We can set g ∈ U(g) ⊆ U0 to be g = a+ b where a and b are as in (i), so a map satisfying

g(En) = g(Fn) = 1, g(K±n) = 0. Since kG corresponds to the grouplike elements in

U0, for λ ∈ k∗ such that λ 6= 1 we can set hλ ∈ kG to be the algebra map such that

hλ(En) = hλ(Fn) = hλ(Kn) = λ.

Step 1: f and hλ do not commute

Consider EKn−1. We have

fhλ(EKn−1) = f(EKn−1)hλ(Kn−1) + f(Kn)hλ(EKn−1)

= hλ(1) + 0 = 1,

using the fact that f(EKn−1) = 1 by assumption and that because hλ is zero on X we

have hλ(Kn−1) = hλ(1) and hλ(EKn−1) = 0. However,

hλf(EKn−1) = hλ(EKn−1)f(Kn−1) + hλ(Kn)f(EKn−1)

= 0 + λ = λ,
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again using the definition of hλ and f . Since λ 6= 1 by assumption, we are left with

fhλ(EKn−1) 6= hλf(EKn−1),

meaning that Oε(SL2(k)) and U(LieG)#kG do not commute and the smash product

between them is nontrivial.

Step 2: g and hλ do not commute

Consider the element En ∈ U . Previous results on the coproduct of skew-primitive

elements with respect to a grouplike element with which they skew-commute (see e.g. the

discussion in Example 2.12) tell us that we have

∆U (En) = En ⊗ 1 +Kn ⊗ En.

This means that

ghλ(En) = g(En)hλ(1) + g(Kn)hλ(En) = 1 + 0 = 1.

However,

hλg(En) = hλ(En)g(1) + hλ(Kn)g(En) = 0 + λ = λ.

Again, this means that g and hλ and hence U(LieG) and kG do not commute, and so the

smash product between them is nontrivial.

(iii) By Lemmas 5.14 and 5.15, we have Hopf subalgebras W and kĜ of H0. Since U0

decomposes as a smash product with respect to the its central Hopf subalgebra A ∼= O(G)

by part (i), Theorem 5.19 and Corollary 5.22 apply. So the Hopf subalgebras W and kĜ

become

W := {f ∈ U0 | f((A+U)n) = 0 for some n > 0} ∼= Oε(SL2(k))#U(LieG)

kĜ := {f ∈ U0 | f(mgU) = 0 for some g ∈ G} ∼= Oε(SL2(k))#kG,

with trivial cocycle because the cocycle in U0 is trivial. This gives us exactly what we

want.

The relations between E and F did not come into play at all in this proof. Our result

relies on the fact that Uε(sl2(k)) has a PBW-basis given by {EiKjF r | i, r ≥ 0, j ∈ Z}

such that K is grouplike, E and F skew-primitive involving K, and E and K as well as F

and K skew-commute.

The reason this cannot be immediately extended to further Uε(g) is due to the PBW

basis of Uε(sl2(k)) being formed by grouplike and skew-primitive elements. Although
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Uε(g) for a finite-dimensional semisimple g is generated by grouplike elements Kλ along

with skew-primitive generators E1, ..., En and F1, ..., Fn such that each Ei and Kλ skew-

commute, these do not generally form a PBW basis. Instead, one typically defines ad-

ditional generators Eαi , Fαi , corresponding to non-simple roots of g where the E1, ..., En,

and F1, ..., Fn correspond to simple roots. These extra generators give us a PBW ba-

sis {EiKjFr}. The coproduct of these new generators is not immediately obvious - a

particular problem for us is that they need not be skew-primitive.

However, it still seems reasonable to suggest that even if Corollary 5.26 cannot imme-

diately be extended to further Lie algebras, there still exists some cleaving map so that

Corollary 5.5 applies. We record this in the following conjecture.

Conjecture 5.A. Let k be an algebraically closed field of characteristic zero, g be a

semisimple finite-dimensional Lie algebra, n ≥ 3 odd and ε ∈ k∗ a primitive nth root

of unity. Let Z ⊆ Uε(g) denote the maximal central Hopf subalgebra in Uε(g), K denote

the affine algebraic group such that O(K) ∼= Z and G be the unique simply connected affine

algebraic group satisfying LieG = g. Then

Uε(g)0 ∼= Oε(G)#σ(U(LieK)#kK)

as algebras, left Oε(G)-modules and right U(LieK)#kK-comodules for some action of

U(LieK)#kK on Oε(G) and cocycle σ.

The results of Section 5.3 give us a partial result in this vein regarding a Hopf subal-

gebra of Uε(g)0.

Theorem 5.27. Let k be an algebraically closed field of characteristic zero, g be a semisim-

ple finite-dimensional Lie algebra, n ≥ 3 odd and ε ∈ k∗ a primitive nth root of unity. Let

Z ⊆ Uε(g) denote the maximal central Hopf subalgebra in Uε(g), G the unique simply con-

nected affine algebraic group satisfying LieG = g and K the affine algebraic group such

that O(K) ∼= Z. Then there exists a Hopf subalgebra W of Uε(g)0 such that

W ∼= Oε(G)#σU(LieK)

as algebras, left Oε(G)-modules and right U(LieK)-comodules.

Proof. By [7, Theorem III.6.2], the central Hopf subalgebra Z noted in the statement of

the theorem exists and Uε(g) is free over it with a basis that includes 1. So Corollary 5.22

applies: there exists a canonical Hopf subalgebra W of Uε(g)0 such that

W ∼= Uε(g)
0
#σU(LieK)
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in the required ways. Now by [7, Theorem III.7.10],

Uε(g)
∗

= Oε(G),

giving us the result.

We will see another partial positive result for Conjecture 5.A later, as Example 5.34

shows that there always exists at least a right U(LieK)#kK-comodule isomorphism be-

tween the desired objects.

5.5 The case when H decomposes as a crossed product

Throughout, we let k be an algebraically closed field of characteristic zero, let A ⊆ H be

Hopf algebras satisfying (F), and let H := H/A+H.

In the previous sections, we looked at the structure of Hopf algebras A ⊆ H satisfying

(F), discovered a canonical Hopf surjection H0 → A0 and discussed when this surjection

produces a crossed product decomposition of H0. In this section, we look into the pos-

sibility of H itself decomposing as a crossed product. In Section 5.5.1, we ask when this

happens and make note of relevant results in the literature. In Section 5.5.2, we look at the

consequences for H0 if H does decompose as a crossed product. In this case, we can use

the results of Chapter 4, which we record in Theorem 5.33. Of particular note is that this

along with the results of the previous section potentially gives us different decompositions

of H0 as a crossed product if certain conditions on H are met. We note that the resulting

crossed product structures are always equivalent (defined in Definition 5.36) and in certain

cases coincide.

5.5.1 The existence of a cleaving map

By Proposition 5.3, the canonical quotient map π : H → H is in fact a Hopf surjection.

So the results in Chapter 2 tell us when H decomposes as a crossed product:

Lemma 5.28. Suppose A ⊆ H are Hopf algebras satisfying (F), and let H := H/A+H.

Suppose we have an invertible right H-comodule map γ : H → H with respect to the

canonical H-comodule structure on H coming from the quotient map. Then there is a

cocycle σ and action of H on A such that A#σH is a crossed product, and the map

φ : A#σH → H
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given by φ(a#h) = aγ(h) for a ∈ A, h ∈ H is an algebra, left A-module and right H-

comodule isomorphism, where the right H-comodule structure on A#σH is given by a#h 7→

a#h1 ⊗ h2.

Moreover, the converse holds: if there is an algebra isomorphism

H ∼= A#σH

for some cocycle σ and action of H on H, then the canonical embedding H → A#σH is a

convolution invertible right H-comodule map with respect to the structure defined above.

Proof. We know that the existence of a cleaving map γ means we have

H ∼= HcoH#σH

as algebras for some cocycle σ and relevant action by Proposition 2.22. Moreover, by

Proposition 5.2(v), H is a faithfully flat A-module and so by [36, Proposition 3.4.3] we

find that HcoH = A. So all we need to show is that the action of H on A is trivial. We

see as follows that this is a consequence of the fact that A is central.

Recall that given a ∈ A, t ∈ H, the crossed product multiplication rules in H ∼= A#σH

mean we have

γ(t)a =
∑

(t1 · a)σ(t2, 1)γ(t3)

=
∑

(t1 · a)εT (t2)γ(t3)

=
∑

(t1 · a)γ(t2).

So by centrality of A, we find that for any t ∈ H we have

aγ(t) =
∑

(t1 · a)γ(t2) (5.7)

for all a ∈ A.

Now consider the map Π : H → A given by factoring along Aγ(H+). Given s ∈ H we

can write s = εH(s)1 + s′, with s′ ∈ H+. So for b ∈ A we have

Π(bγ(s)) = Π(εH(s)bγ(1H) + bγ(s′))

= εH(s)Π(bγ(1H)) + Π(bγ(s′))

= εH(s)Π(b1H)

= εH(s)Π(b) = εH(s)b,
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recalling from Lemma 2.21 that we can assume without loss of generality that γ(1H) = 1H .

So if we apply Π to both sides of (5.7), we get

εH(t)a = Π(aγ(t)) =
∑

Π((t1 · a)γ(t2)) =
∑

εT (t2)(t1 · a) = t · a.

This means that the action of T on A is trivial, giving us what we want.

Finally, note that the converse statement holds by Proposition 2.23.

The immediate question that arises is when such a map exists. In fact, since we are

assuming that k is algebraically closed, it appears to be an open question whether such a

map always exists.

Question 5.B. Suppose k is an algebraically closed field and A ⊆ H are Hopf algebras

satisfying (F). Let H := H/A+H. Is there a cleaving map γ : H → H, and therefore a

crossed product decomposition of H as in Lemma 5.28?

The following example, due to Oberst and Schneider ( [37]), shows that the assumption

that k is algebraically closed is definitely necessary.

Example 5.29. Let k be a field of characteristic zero and k ⊂ K a field extension of

degree 2, and let G = {1G, ν} denote the Galois group of the extension. We can extend G

to act on the Hopf algebra R := K[x±1] by 1G acting as the identity and ν(xi) = x−i. Let

H :=
(
K[x±1]

)G be the invariants under the action and A :=
(
K[x±2]

)G.

Step 1: A ⊆ H satisfy (F):

Both R and K[x±2] ⊆ R are Hopf K-algebras, viewed as the group algebra KZ and

its subalgebra K2Z respectively. Since G acts k-linearly on both of them, by [36, Lemma

3.5.1] A and H are both k-Hopf algebras with multiplication and comultiplication induced

from R and K[x±2]. Therefore A is a Hopf subalgebra of H, which is obviously central

because both A and H are commutative. It is left to show that H is Noetherian and a

finitely-generated A-module.

Since R is a finitely-generated commutative k-algebra and G is a finite group acting

on it by k-linear automorphisms, by [46, Theorem 2.3.1] the resulting ring of coinvariants

H is Noetherian. The same result tells us that A is Noetherian, and furthermore that

K[x±2] is a finitely-generated A-module. Since R is a finitely-generated K[x±2]-module

with generating elements 1 and x, this means that R is a finitely-generated A-module

as well. Now H ⊆ R is an A-submodule of a finitely-generated A-module. Since A is

Noetherian, this means that H is also finitely-generated.
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So A ⊆ H are Hopf algebras satisfying (F).

Step 2: A ⊆ H does not give rise to a crossed product structure

By [37, 10. Proposition], H is not free as an A-module. This means it cannot be a

crossed product as in Question (5.B): any decomposition H ∼= A#σT would give a free

basis for H as an A-module through the embedding of a vector space basis of T into H.

Note that our assumption that k has a field extension of degree 2 means that in this

example, k is not algebraically closed.

On the other hand, we know the answer to Question 5.B is yes if we impose certain

extra conditions on H. In particular, recall from Chapter 2 that we made note of some

conditions which force any Hopf surjection to give rise to a cleaving map and hence a

crossed product structure in Proposition 2.26. We restate this result for our new situation.

First, recall that the coradical H0 of a Hopf algebra H is simply the sum of its simple

subcoalgebras, and so a subcoalgebra of H.

Proposition 5.30. Suppose A ⊆ H are Hopf algebras satisfying (F). Let H := H/A+H

with π : H → H denoting the canonical factor map. Suppose that the following two

conditions hold:

A. H is an injective H-comodule under the canonical coaction.

B. There is a coalgebra map f :
(
H
)

0
→ H such that π ◦ f :

(
H
)

0
→ H is simply the

inclusion map.

Then there is a cleaving map γ : H → H and so

H ∼= A#σH

for some cocycle σ and trivial action of H on A.

Proof. Recall that by Proposition 5.3, H is a factor Hopf algebra and π : H → H a

surjective map of Hopf algebras. So we are in the situation described by Proposition 2.26,

and the result that there exists a cleaving map γ if conditions A. and B. are satisfied is

simply a restatement of it. Now the fact that in this case, H ∼= A#σH with trivial action

of H on A follows immediately from 5.28.

In [42, Corollary 4.3], we see that working with Hopf surjections arising from central

Hopf subalgebras gives us some immediate corollaries covering a number of cases we are

interested in. We state these here.



CHAPTER 5. CENTRAL HOPF SUBALGEBRAS 137

Recall that we say a Hopf algebra H is pointed if all its simple subcoalgebras are

one-dimensional, and connected if the only simple subcoalgebra is k1H .

Proposition 5.31. Suppose A ⊆ H are Hopf algebras satisfying (F) and H := H/A+H

with π : H → H denoting the canonical factor map. Suppose further that any one of the

following conditions holds:

(i) H0 ⊆ AG(H), where G(H) denotes the grouplike elements of H, or

(ii) H is pointed.

Then there is a cleaving map γ : H → H and so

H ∼= A#σH

for some cocycle σ and trivial action of H on A.

Proof. This is due to [42, Corollary 4.3]. Note that this result also requires in (i) that

the antipode SH of H is bijective. However, we know by Proposition 5.2(iv) that this is

always true under the conditions we assume in (F).

Remark 5.32. Note that this result implies that any quantised enveloping algebra Uε(g)

for g a finite-dimensional Lie algebra and ε a root of unity decomposes as a crossed product

in the way we want. This is because Uε(g) is pointed as it is generated by grouplike and

skew-primitive elements, and it has a central Hopf subalgebra satisfying (F) by [7, Theorem

III.6.2], so satisfies the conditions for Proposition 5.31(ii).

5.5.2 Consequences for the finite dual

When H does decompose as a crossed product as discussed in the previous section, we

are in the situation studied in Chapter 4. The following theorem is a restatement of the

results we obtained in that chapter for the central Hopf subalgebra case, along with some

extra information we gain through this specific situation.

Theorem 5.33. Suppose k is an algebraically closed field of characteristic zero, A ⊆ H

are Hopf k-algebras satisfying (F) and let H := H/A+H denote the canonical factor Hopf

algebra with π the factor map. Suppose γ : H → H is a cleaving map. Then there is a

isomorphism of right A0-comodules

H
0 ⊗A0 ∼= H0.
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The isomorphism is given by the map

mH0 ◦
(
Π0 ⊗ π0

)
◦ τ : H0 ⊗A0 → H0,

where Π denotes the canonical quotient map H → A given by factoring along Aγ(H+) and

τ denotes the tensor flip map, and restricts to a Hopf algebra embedding on H0. Moreover,

if γ is a map of coalgebras, this map is not just a right A0-comodule map but also a left

H
0-module map and an algebra map, so that the isomorphism is one of crossed products.

Proof. First note that by Lemma 5.28, we have

H ∼= A#σH

as algebras for some cocycle σ and trivial action of H on A. Moreover, by Proposition 5.3,

H is finite-dimensional.

By Corollary 4.11, we have a vector space isomorphism

ξ := mH0 ◦
(
Π0 ⊗ π0

)
: A0 ⊗H0 → H0.

Since the tensor flip τ is also a vector space isomorphism, so is ξ ◦ τ : H0 ⊗ A0 → H0,

and it restricts to π0 on H0 which is a Hopf embedding by Lemma 5.4(ii). So for the first

part, we only need to show that ξ ◦ τ is a map of A0-comodules. We see this as follows.

Given f ∈ A0, g ∈ H0 we have

ρH0 ◦ ξ ◦ τ(g ⊗ f) = (id⊗ι) ◦∆H0 ◦ ξ(f ⊗ g)

= (id⊗ι) ◦∆H0(Π0(f)π0(g))

= ρH0(Π0(f))ρH0(π0(g)),

(5.8)

using the fact that the map ρH0 = (id⊗ι) ◦∆H0 giving the A0-comodule structure on H0

is an algebra map by Lemma 2.17. Now note that π0(g) is a coinvariant of the comodule

coaction by Lemma 5.4 and Π0 is a right A0-comodule map by Lemma 5.6. So (5.8)

becomes

ρH0 ◦ ξ ◦ τ(g ⊗ f) = (Π0(f1)π0(g)⊗ f2 = (ξ ◦ τ) ◦ (id
H

0 ⊗∆A0)(g ⊗ f)

as required.

Now assume that γ is a coalgebra map.

This means that by Corollary 4.24, the map ξ is an algebra isomorphism. The tensor

flip map τ : H0⊗A0 → A0⊗H0 is also an algebra isomorphism, so ξ ◦τ is an algebra map.
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It is a left H0-module map because it is an algebra map and the H0-module structure on

H0 comes from the multiplication in H0.

The following example shows that Theorem 5.33 gives us a partial positive answer to

Conjecture 5.A.

Example 5.34. Let k be an algebraically closed field of characteristic zero, g a finite-

dimensional semisimple Lie algebra, n ≥ 3 and ε ∈ k∗ a primitive nth root of unity.

We know that the quantised universal enveloping algebra U := Uε(g) has a central Hopf

subalgebra Z ⊆ U satisfying (F) by [7, Theorem III.6.2], and that it is pointed as it is

generated by primitive and skew-primitive elements. So Proposition 5.31 applies and Uε(g)

decomposes as a crossed product, with

U ∼= Z#σUε(g).

This means that we can apply Theorem 5.33 to get

Uε(g)0 ∼= Oε(G)⊗ Z0 (5.9)

as right Z0-comodules, where G is the unique simply connected affine algebraic group such

that LieG = g, Oε(G) is the restricted quantised coordinate ring defined via [7, Theorem

III.7.2] and we use [7, Theorem III.7.10] to get Oε(G) ∼= Uε(g)
∗
.

Note that the condition needed for the remainder of Theorem 5.33 to apply (in par-

ticular, that there exists a cleaving map which is a coalgebra map) cannot possibly be

satisfied for general g. If this were the case, (5.9) would be not just a right A0-comodule

isomorphism but also an algebra isomorphism. However, we have seen in Corollary 5.26

that when g = sl2(k), U0 decomposes as a smash product with nontrivial action. As we

will see below this means that in this case, no such cleaving map can exist.

In general, our results so far give us what are potentially multiple different crossed

product decompositions of H0 in terms of H0 and A0. However, any such decompositions

have to agree in some sense. To clarify what we mean by this, we make note of the

following result, due to Doi ( [11]) although we follow the presentation given in [36].

Proposition 5.35. Suppose B is an algebra and T a Hopf algebra with two actions of T on

B given by t⊗b 7→ t ·b and t⊗b 7→ t ·′ b for t ∈ T, b ∈ B and two cocycles σ, σ′ : T ⊗T → B.

Suppose further that B#σT and B#′σ′T are crossed products with respect to these actions.

Then the following are equivalent:
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(i) There exists an algebra, left B-module, right T -comodule isomorphism

φ : B#σT → B#′σ′T.

(ii) There exists a convolution invertible linear map u : T → B such that for b ∈ B, s, t ∈ T

t ·′ b =
∑

u−1(t1)(t2 · b)u(t3),

σ′(s, t) =
∑

u−1(s1)(s2 · u−1(t1))σ(s3, t2)u(s4t3).

If this holds, then φ and u can be chosen such that

φ(b#t) =
∑

bu(t1)#′t2.

Proof. This is [36, Theorem 7.3.4].

Definition 5.36. Suppose B is an algebra, T a Hopf algebra and we have two crossed

product decompositions B#σT , B#′σ′T such that the equivalent conditions in Proposition

5.35 hold. Then we call these crossed products equivalent.

Since the isomorphisms H0 ∼= H
0#σA

0 found in Corollary 5.5, Theorem 5.8 as well as

Theorem 5.33 (under the assumption that γ is a coideal map) are all algebra, left module

and right comodule maps, any decompositions of H0 for given A ⊆ H satisfying (F) we

find through these results must be equivalent.

Remark 5.37. In fact, when A ⊆ H satisfying (F) are such that H ∼= A#σH and

the cleaving map γ : H → H is a coalgebra map, we can apply not just Theorem 5.33

immediately but also Theorem 5.8(i) as we have a canonical A-module decomposition

H ∼= A⊕ Aγ(H+) where Aγ(H+) is a coideal. In this case, the resulting decompositions

of H0 are not just equivalent but in fact equal.

This follows because the isomorphism in Theorem 5.8 is given by ζ := mH0 ◦ (π0 ⊗

Π0), since Π : H → A is the canonical projection in the decomposition. Moreover, the

isomorphism in Theorem 5.33 is given by ξ′ := ξ ◦ τ = mH0 ◦ (Π0 ⊗ π0) ◦ τ , and ξ′ is an

algebra map. Let f ∈ A0, g ∈ H0. This means we have

ξ′(g ⊗ f) = ξ′(g ⊗ εA)ξ′(εH ⊗ f)

= Π0(εA)π0(g)Π0(f)π0(εH)

= π0(g)Π0(f) = ζ(g ⊗ f).

So the two isomorphisms are in fact the same.
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5.6 Conjectures and results

Throughout, k is an algebraically closed field of characteristic zero and A ⊆ H are Hopf

algebras satisfying (F).

We now have numerous partial results regarding H0 under numerous assumptions. In

this section, we give an overview by conjecturing what we believe is always true for H0

(possibly under one of two assumptions) and explaining how the results we have obtained

so far fit into that picture.

What we have seen leads us to the following, rather optimistic conjecture.

Conjecture 5.B. Suppose A ⊆ H are Hopf algebras satisfying (F) and let H denote the

canonical factor Hopf algebra. Then H0 is a crossed product, with

H0 ∼= H
0#σA

0

for some action and cocycle σ.

It is quite possible that this conjecture does not hold true at such a level of generality.

However, even if this is the case we can still hope for it to hold if we have an A-module

projection H → A:

A ⊆ H are Hopf algebras satisfying (F) and there exists

a left A-module map Π : H → A such that Π|A = idA.
(Mod)

or if H decomposes as a crossed product:

A ⊆ H are Hopf algebras satisfying (F) and there exists

a cleaving map γ : H/A+H → H, so H ∼= A#σH/A
+H.

(CP)

Note that by Lemma 2.29, (CP) holding is a sufficient condition for (Mod) to hold.

Moreover, as discussed in Section 5.2.1, it is an open question whether (CP) (and hence

certainly (Mod)) is always satisfied for k algebraically closed and there are numerous

positive examples, such as pointed Hopf algebras.

Although none of our results prove the conjecture either on its own or assuming (CP)

or (Mod), we do have a number of partial results.

Section 5.2 gives us some positive results regarding (Mod) with extra assumptions.

Corollary 5.5 tells us that the conjecture holds whenever (Mod) is satisfied and the map

Π0 : A0 → H0 is convolution invertible, and the related result Theorem 5.8(i) and (ii) tells
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us that this is true when (Mod) is satisfied and the map Π is also either a coalgebra or an

algebra map.

Section 5.3 gives us a partial result in a different vein by looking at Hopf subalgebras in

place of the whole of H0. Of particular interest to the conjecture is Theorem 5.21, which

tells us that when (Mod) is satisfied, there always exists a Hopf subalgebra W of H0 such

that W is a crossed product with

W ∼= H
0#σU(LieG),

where G is such that O(G) ∼= A. Here U(LieG) ⊆ A0 in a canonical way.

Moreover, Theorems 5.19 and 5.20 give a necessary and sufficient condition for the

conjecture to hold: namely, that the canonical Hopf subalgebra kĜ defined in Definition

5.13 decomposes as a crossed product, with cleaving map given by the restriction of some

right A0-comodule map φ : A0 → H0. So when such as a map exists (such as when (Mod)

holds), it suffices to look at kĜ rather than the whole of H0.

Finally, Section 5.5 looks at the case when (CP) is satisfied. Theorem 5.33 tells us

that in this situation, part of the statement of the conjecture always holds because then

we have a right A0-comodule isomorphism

H0 ∼= H
0 ⊗A0.

We also note that although the conjecture is framed in terms of when H0 decomposes

as a crossed product, all examples we know of and all those we will see in Chapter 6 are

in fact smash products, with trivial cocycle. We record this in the following question.

Question 5.C. Are there any A ⊆ H satisfying (F) such that H0 decomposes as a crossed

product with

H0 ∼= (H/A+H)0#σA
0

where the cocycle σ is nontrivial? What if H satisfies (Mod) or (CP)?

Recall that when H satisfies (Mod), Question 5.A asks whether the projection map

can be convolution invertible (and hence give rise to a crossed product decomposition)

without being either an algebra or a coalgebra map. If the projection is a coalgebra map,

then the crossed product decomposition is always a smash product, so these two questions

are related.
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5.7 Originality

In Section 5.2, Propositions 5.2 and 5.3 are well-known, while Lemma 5.4 and Corollary

5.5 are original. Section 5.2.1 is original, as are Section 5.3 and Section 5.4 apart from

the known results regarding the structure of Uq(sl2(k)) at a root of unity recorded in

Proposition 5.24.

In Section 5.5, Section 5.5.1 is known. Example 5.29 is due to Oberst and Schneider

( [37]), while Proposition 5.30 and its corollary Proposition 5.31 are due to Schneider

( [42]). Section 5.5.2 is original save for Proposition 5.35, which gives the notion of two

crossed products being equivalent and is due to Doi ( [11]).



Chapter 6

Prime affine regular Hopf algebras

of Gelfand-Kirillov dimension one

We conclude by showing how the results of the previous two chapters let us calculate the

finite duals of the prime affine regular Hopf algebras of Gelfand-Kirillov dimension one

described by Brown and Zhang in [6].

There has been a great deal of interest in the classification of infinite-dimensional Hopf

algebras in recent years. One of the approaches taken is classifying Hopf algebras with

specific Gelfand-Kirillov dimension. In [6], as a corollary of their main result Brown and

Zhang classified all prime affine regular Hopf algebras of Gelfand-Kirillov dimension one

with prime PI-degree over some algebraically closed field of characteristic zero. They

showed that any such Hopf algebra is one of a given list, and conjectured that this list

along with those Taft algebras and generalised Liu algebras (defined in Section 6.5) with

non-prime PI degree should give a classification of all prime affine regular Hopf algebras

of Gelfand-Kirillov dimension one.

Recent work by Wu, Liu and Ding ( [52]) has shown that this conjecture is not true.

They define another family of Hopf algebras D(m, d, q), show that these are prime affine

regular with Gelfand-Kirillov dimension one and not isomorphic to any of the Hopf algebras

listed in [6], and then prove that these Hopf algebras complete the classification: any prime

affine regular Hopf algebra of GK-dimension one is either D(m, d, q) for some m, d, q or

one of the Hopf algebras in the conjectured classification of [6].

In this chapter, we compute the finite duals of all Hopf algebras listed in [6]. As this

part of the thesis had already been written when Wu, Liu and Ding’s work came out, we

144
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do not consider the family of Hopf algebras D(m, d, q) they introduced. It is not clear

whether we can calculate their finite dual using the results obtained in Chapters 4 and 5.

In Section 6.1, we give the preliminary definitions needed to understand the classifi-

cation of those Hopf algebras with prime PI-degree in [6], recording said classification in

Proposition 6.4. We state the main result of this chapter - the finite duals of all Hopf

algebras listed in Proposition 6.4 - without proof in Theorem 6.5.

In the following sections, we go through the Hopf algebras and families of Hopf algebras

listed in Proposition 6.4 to compute their finite duals. Section 6.2 looks at the polynomials

and Laurent polynomials, whose finite duals are classical. Section 6.3 looks at the finite

dual of the group algebra of the dihedral group, finding it as a corollary of a general result

about the finite duals of group algebras thanks to the results in Chapter 4. Section 6.4

looks at the finite dual of the Taft algebras, which we already computed in the gcd(n, t) = 1

case in Example 4.22 but extend to gcd(n, t) > 1 here in order to also find the finite dual

of those with non-prime PI degrees. Finally, in Section 6.5 we define and then compute

the finite dual of the generalised Liu algebras, again of any PI-degree. All these results

combine to give us the proof of Theorem 6.5.

6.1 Preliminaries

First, we need some definitions.

Definition 6.1. Let R be a ring. We call R regular if R has finite global dimension. The

global dimension is defined by

gldim(A) = sup
M∈R−Mod

pdimRM,

where pdim denotes the projective dimension of M as an R-module.

Definition 6.2. Let R be a ring. We call R prime if for all ideals I, J ⊆ R, we have

IJ = 0 if and only if one of I, J = {0}.

Definition 6.3. Let k be any field and A be an affine k-algebra. Let {a1, ..., an} be

a generating set for A and set V :=
∑
kai be the span of these elements. Then the

Gelfand-Kirillov dimension or GK-dimension of A is defined by

GKdim(A) := lim sup
n→∞

(logn(dimk(V n))) .
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Note that although the value of the Gelfand-Kirillov dimension appears to depend on

the choice of generating elements, it is in fact independent: any generating set for A will

give the same value for GKdim(A) in the above formula (see [28, Lemma 1.1]).

By [45], any prime affine regular algebra of GK-dimension one is Noetherian and a

finite module over its centre. The latter means that by [34, Corollary 13.1.13(i)] it is a

PI algebra (recalling what this means from Definition 5.1). Furthermore, if the algebra

in question is a Hopf algebra this means we are very close to (F) being satisfied, as all

we still need is for the algebra to be not just a finite module over its centre but in fact a

finite module over a central Hopf subalgebra. This is not always the case (for instance, we

note in Section 6.4 that the infinite-dimensional Taft algebra H(n, t, q) for gcd(n, t) > 1 is

finite over its centre but not finite over a central Hopf subalgebra) but will often be true.

These definitions give us everything we need to understand the classification in [6].

Let k be an algebraically closed field of characteristic zero. In [6], as a corollary of

their main result Brown and Zhang classified all prime affine regular Hopf k-algebras of

Gelfand-Kirillov dimension one with prime PI-degree (again recalling the definition of this

from Definition 5.1), showing that any such Hopf algebra is one of a given list. They

conjectured that this list along with those Taft algebras and generalised Liu algebras

(defined in Section 6.5) with non-prime PI degree should give a classification of all prime

affine regular Hopf algebras of Gelfand-Kirillov dimension one. However, recent work by

Wu, Liu and Ding ( [52]) has shown that this is not true. They define another family of

Hopf algebras D(m, d, q), show that these are prime affine regular with Gelfand-Kirillov

dimension one and not isomorphic to any of the Hopf algebras listed in [6], and then prove

that these Hopf algebras complete the classification: any prime affine regular Hopf algebra

of GK-dimension one is either D(m, d, q) for some m, d, q or one of the Hopf algebras in

the conjectured classification of [6].

First, we record Brown and Zhang’s classification in the following proposition, noting

that the Taft algebras were defined in Example 1.14 and the generalised Liu algebras are

defined in Section 6.5.

Proposition 6.4. Suppose k is an algebraically closed field of characteristic zero and H

is a prime affine regular Noetherian Hopf k-algebra of Gelfand-Kirillov dimension one.

Suppose further that the polynomial identity degree of H is prime. Then H is isomorphic

to one of the following:

(1) The polynomial algebra k[x],
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(2) The Laurent polynomial algebra k[x±1],

(3) The group algebra kD of the infinite dihedral group D := 〈x, g | gxg = x−1, g2 = 1〉,

(4) An infinite-dimensional Taft algebra H(p, t, q) for some integers p > 1 prime, 0 ≤

t < p and primitive pth root of unity q ∈ k∗, or

(5) A generalised Liu algebra B(p, w, q) for some integers p > 1 prime, w ≥ 1 and

primitive pth root of unity q ∈ k∗.

Proof. This result is [6, Corollary 0.3].

We can use our results to determine the finite dual of all Hopf algebras listed in this

classification.

Theorem 6.5. Suppose k is an algebraically closed field of characteristic zero and H is a

prime affine regular Noetherian Hopf algebra of Gelfand-Kirillov dimension one. Suppose

further that the PI-degree of H is prime. Then one of the following holds:

(1) H ∼= k[x], and

H0 ∼= k[y]⊗ k(k,+).

(2) H ∼= k[x±1], and

H0 ∼= k[y]⊗ k(k∗, ∗).

(3) H ∼= kD, and

H0 ∼= k[y]⊗ k(k∗, ∗)⊗ kC2,

where kC2, k[y]⊗ kC2 and k(k∗, ∗)⊗ kC2 are Hopf subalgebras.

(4) H ∼= H(p, t, q) for some prime p > 1, integer 0 ≤ t < p and primitive pth root of

unity q ∈ k∗. Then

H0 ∼= (k[y]⊗ k(k,+))⊗Hf (p, t, q)

as crossed products, where Hf (p, t, q) denotes the finite-dimensional Taft algebra on

those parameters. Here Hf (p, t, q), k[y] ⊗ Hf (p, t, q) and k(k,+) ⊗ Hf (p, t, q) are

Hopf subalgebras.

(5) H is a generalised Liu algebra on (p, w, q) for prime p > 1, integer w ≥ 1 and

primitive pth root of unity q. Then

H0 ∼= Hf (p, 1, q)#(k[z]⊗ (k∗, ∗))
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as crossed products, where Hf (p, 1, q) denotes the finite-dimensional Taft algebra on

those parameters. Here Hf (p, 1, q) is a Hopf subalgebra, as are Hf (p, 1, q)#k[z] and

Hf (p, 1, q)#(k∗, ∗).

All isomorphisms on H0 are as algebras. They are also of left modules and right comodules

with respect to the appropriate structures when explicitly stated to be a crossed product

isomorphism.

6.2 The polynomial and Laurent polynomial algebras

We do not use our results to calculate the finite dual of these algebras. Instead, they

are special cases of classical results already presented previously, and we will use them as

building blocks to determine the finite dual of the other algebras listed in Proposition 6.4.

First, consider the polynomial algebra k[x] on one variable. This is a Hopf algebra,

isomorphic to the universal enveloping algebra of the one-dimensional Lie algebra. Recall

that by Example 1.31 this means we have

k[x]0 ∼= k[y]⊗ k(k,+)

as algebras, where k(k,+) denotes the group algebra of the additive group of the underlying

field.

Now let H := k[x±1] be the Laurent polynomial ring, with the Hopf structure given

by xi grouplike. We find that

H ∼= k[X,Y ]/〈XY − 1〉 ∼= O((k∗, ∗)),

where (k∗, ∗) denotes the multiplicative group of the underlying field, viewed as an alge-

braic variety. In fact, this is an isomorphism of Hopf algebras. This means that we can

use Proposition 2.13: we have

H0 ∼= U(Lie(k∗, ∗))#k(k∗, ∗).

The Lie algebra associated with (k∗, ∗) must be the one-dimensional Lie algebra. More-

over, it is easy to see that the definition of multiplication in the finite dual means that

k[x±1] being cocommutative forces its finite dual to be commutative. It then follows from

the definition of multiplication in a smash product that the action of k(k∗, ∗) on k[z] must

be trivial. So we find that

H0 ∼= k[z]⊗ k(k∗, ∗)
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as algebras.

Note that there are multiple ways to view these structures: for instance, k[x] is also

the coordinate ring of the algebraic group (k,+), and k[x±1] is the group algebra of the

integers.

6.3 The group algebra of the dihedral group

Let D denote the infinite dihedral group, given by

D := 〈x, y | xyx = y−1, x2 = 1〉.

This means that the corresponding group algebra is

H := kD = k〈x, y | xyx = y−1, x2 = 1〉.

As this is a group algebra, both x and y are grouplike.

We can use our results to calculate H0. In fact, we see that this is a special case of a

general result about group algebras:

Theorem 6.6. Let G be any group and N a normal subgroup of finite index. Then

kG0 ∼= kN0 ⊗ k (G/N)0

as algebras, with k (G/N)0 a Hopf subalgebra.

Proof. By [36, Example 7.1.6], we have

kG ∼= kN#σk (G/N)

for some cocycle σ, where the cleaving map γ : k(G/N) → kG is given by a map picking

out coset representatives for elements of G/N in G and extending linearly. Moreover, the

crossed product structure is induced by the map π : kG → k(G/N) given by extending

the canonical quotient map G→ G/N , and γ splits π: π ◦ γ = idk(G/N). So we are in the

setting of Section 4.1.1.

Now note that kN simply consists of the subalgebra spanned by elements of N . Since

all these are grouplike, kN is in fact a Hopf subalgebra of kG. Moreover, since γ sends

the elements of G/N which form a basis for k(G/N) to elements in G, it is a coalgebra

map (as it sends a basis of grouplike elements to grouplike elements). Finally, since N has

finite index in G, k(G/N) is finite-dimensional. So Corollary 4.24 applies: we have

kG0 ∼= kN0 ⊗ k(G/N)0
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as algebras as required.

Corollary 6.7. Let D = 〈x, y | xyx = y−1, x2 = 1〉 be the dihedral group. Then

(kD)0 ∼= k[z]⊗ k(k∗, ∗)⊗ kC2

as algebras, where kC2 is a Hopf subalgebra.

Proof. This follows because the cyclic subgroup N generated by y is a normal subgroup

of D, which is isomorphic to Z as y has infinite order, and D/N = C2. So the theorem

says that

kD0 ∼= kZ0 ⊗ kC0
2 ,

with kC0
2 a Hopf subalgebra. Since kZ ∼= k[x±1], by the previous section we know that

kZ0 ∼= k[z] ⊗ k(k∗, ∗). Moreover, group algebras of finite cyclic groups are self-dual by

Example 1.20, giving us what we want.

Remark 6.8. Although the corollary tells us what the algebra structure of kD0 looks like,

it does not give us much information about the coalgebra structure.

Let f denote the generating element of C2 and zλ the element of (k∗, ∗) corresponding

to λ ∈ k∗. Keep z as in Corollary 6.7. We know that f is grouplike because kC2 is a

Hopf subalgebra. As for z and zλ, some calculation gives z skew-primitive with ∆(z) =

z ⊗ 1 + f ⊗ z along with ε(zλ) = 1 and

∆(zλ) =
1
2
(
zλ ⊗ (zλ + zλ−1) + (fzλ)⊗ (zλ − zλ−1)

)
.

We omit the details here; interested readers can check that these correspond to the defi-

nition of ∆H0 as coming from the multiplication on H on the basis of H given by D.

It is clear that k[z]⊗ k(k∗, ∗) is not a Hopf subalgebra and that moreover the elements

zλ coming from characters on k[y±1] do not give characters on H. However, both k[z]⊗kC2

and k(k∗, ∗)⊗ kC2 are Hopf subalgebras.

6.4 The Taft algebras

Let k be an algebraically closed field of characteristic zero, n > 1 and 1 ≤ t < n be integers

and q be a primitive nth root of unity, and let H be the infinite-dimensional Taft algebra

on these parameters: that is,

H := H(n, t, q) = k〈x, g | xg = qgx, gn = 1〉
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as algebras, with ∆(x) = x⊗ 1 + gt ⊗ x and g grouplike.

As discussed in [32, Examples 2.7, 7.3] and [6, Section 3.3]), the Taft algebras form

examples of prime affine regular Hopf algebras of Gelfand-Kirillov dimension one, and the

PI-degree of H(n, t, q) is simply n.

We have already calculated H0 for the case where gcd(n, t) = 1 in Chapter 4. We

record it again here, with additional information about Hopf subalgebras.

Lemma 6.9. Let n > 1, 1 ≤ t < n − 1 be integers and q ∈ k∗ a primitive nth root of

unity. Let H := H(n, t, q) denote the infinite-dimensional Taft algebra on those paramters

and suppose that gcd(n, t) = 1.

(i) H0 decomposes as a crossed product, with

H0 ∼= Hf (n, t, q)⊗ k[y]⊗ k(k,+). (6.1)

Here action and cocycle are trivial.

(ii) Hf (n, t, q), k[y]⊗Hf (n, t, q) and k(k,+)⊗Hf (n, t, q) are Hopf subalgebras of H0.

Proof. The algebra decomposition and Hf (n, t, q) being a Hopf subalgebra are simply Ex-

ample 4.22, using the fact that the tensor flip map is an algebra map. We can also get

the same decomposition through Theorem 5.33, which also guarantees that the decompo-

sition is not just as algebras but also as left Hf (n, t, q)-modules and right k[y] ⊗ k(k,+)-

comodules.

Now note that k[xn] is a central Hopf subalgebra of H0 satisfying (F). So by Theorem

5.21, there exists a Hopf subalgebra W of H0 such that

W ∼= Hf (n, t, q)#σk[y],

and the fact that W is a Hopf subalgebra and Hf (n, t, q) and k[y] in its decomposition

correspond to those in (6.1) mean that the action and cocycle must be trivial. Similarly,

by Theorem 5.19, there exists a Hopf subalgebra

kĜ ∼= Hf (n, t, q)⊗ k(k,+).

We know that action and cocycle are trivial here because the cocycle and action on kĜ

are induced from (6.1).
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Since H having prime PI-degree and hence n being prime forces gcd(n, t) = 1, this

result already gives us the finite duals of all Hopf algebras listed in Proposition 6.4. How-

ever, we would like to find the finite duals of all prime affine regular Hopf algebras of

GK-dimension one, not just those whose PI-degree is prime.

From now on, we assume gcd(n, t) = d > 1, and write n := n′d, t := t′d.

In this case, although H is finite over its center by the above, it is not finite over any

central Hopf subalgebra. We make note of this fact in the following lemma.

Lemma 6.10. Let n > 1, 1 ≤ t < n be integers such that gcd(n, t) = d > 1 and let q ∈ k∗

be a primitive nth root of unity. Then there does not exist any central Hopf subalgebra

A ⊆ H(n, t, q) such that H(n, t, q) is a finite left A-module.

Proof. Suppose for a contradiction that such an A exists. By the discussion in [6, Section

3.3], Z(H) = k[xn]. Moreover, by Example 2.12 xn
′

is primitive, meaning that k[xn
′
] is a

Hopf subalgebra of H(n, t, q), where we write n′ := n/d. So we have A ( k[xn
′
] as Hopf

subalgebras. Moreover, H(n, t, q) being a finite A-module means that k[xn
′
] is a finite

A-module. Since polynomial rings are Noetherian, this means that A ⊆ k[xn
′
] satisfies

(F) and so Proposition 5.3 applies: there exists a canonical finite dimensional factor Hopf

algebra T ∼= k[xn
′
]/A+k[xn

′
]. Since k[xn

′
] is commutative, T is commutative.

Now recall from Remark 1.13 that there exists a contravariant equivalence of categories

between commutative Hopf algebras and coordinate rings of affine algebraic groups. This

means that T is the coordinate ring of some affine algebraic group which is a subgroup

of (k,+). Since T is finite dimensional, the group must be finite. But since we are in

characteristic zero, the only finite subgroup of (k,+) is {0}. This means that T = k and

A = k[xn
′
] itself. But this is not central in H(n, t, q), giving us a contradiction.

So the results of Chapter 5 do not apply when gcd(n, t) > 1. However, we can use the

results of Chapter 4 to calculate H0.

Theorem 6.11. Let n > 1, 1 ≤ t < n − 1 be integers and q ∈ k a primitive nth root of

unity. Suppose gcd(n, t) = d and write n = n′d, t = t′d. Then

H(n, t, q)0 ∼= k[y]⊗ k(k,+)⊗Hf (n′, t′, qd)⊗ kCd

as algebras, where kCd is a Hopf subalgebra.
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Proof. Let I := 〈x, gd − 1〉. This is an ideal of finite codimension in H which is also a

Hopf ideal as gd − 1 is primitive and x is skew-primitive. It satisfies H/I ∼= kCd. Let

π : H → H/I denote the canonical quotient map, and let g := π(g).

We have a coalgebra embedding γ : kCd → H given by γ(gi) = gi for 0 ≤ i < d which

satisfies π ◦ γ = idkCd
. By Lemma 2.20, γ is a cleaving map and so by Proposition 2.22

we have

H ∼= Hcoπ#σkCd (6.2)

as algebras, left Hcoπ-modules and right kCd-comodules for some action of kCd on Hcoπ

and cocycle σ. We claim that A := Hcoπ is the Hopf subalgebra of H generated by x and

gd.

For this, let ρ := (id⊗π) ◦∆H : H → H ⊗ kCd denote the map giving the comodule

algebra structure. Note that ρ(x) = x⊗ 1 + gt ⊗ π(x) = x⊗ 1, and ρ(g) = g ⊗ g. Because

ρ is an algebra map, this means that for i ≥ 0, 0 ≤ j < n we have

ρ(xigj) = ρ(x)iρ(g)j = xigj ⊗ gj .

Now let α ∈ H be any element. We can write α as α0 + α1 + ... + αd−1, where each

αr consists of the sum of those summands xigj of α where j ≡ r mod d. Since any such

summand satisfies ρ(xigj) = xigj ⊗ gr by the above, we have

ρ(α) =
d−1∑
r=0

ρ(αr) =
d−1∑
r=0

αr ⊗ gr.

In particular, α ∈ A if and only if αr = 0 for all r ≥ 1.

This means that A = k〈x, gd〉. This is in fact a Hopf subalgebra of H, and setting

g′ := gd, we find that

A ∼= k〈x, g′ | xg′ = qdg′x, (g′)n
′

= 1〉

as algebras, with coproduct given by ∆(x) = x ⊗ 1 + (g′)t
′ ⊗ x, g′ grouplike. In other

words, A is isomorphic to the infinite-dimensional Taft algebra on parameters (n′, t′, qd).

By Corollary 4.24, we now have

H0 ∼= A0 ⊗ (kCd)
0

as algebras. By Example 1.20, (kCd)
0 ∼= kCd. Moreover, since gcd(n, t) = d by assumption,

we must have gcd(n′, t′) = 1 and so our previous results apply to A0: we have

A0 ∼= k[y]⊗ k(k,+)⊗ T,
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where T is the finite-dimensional Taft algebra on parameters (n′, t′, qd).

Inserting this into (6.2), we find that

H0 ∼= k[y]⊗ k(k,+)⊗ T ⊗ kCd

as algebras as required.

Remark 6.12. The isomorphism in Theorem 6.11 is not one of Hopf algebras. This can

be seen for instance by the fact there are no characters of H(n, t, q) other than those given

by the n simple modules annihilated by x. In particular, the elements in (k+,+) cannot all

be grouplike elements. Similarly, y ∈ k[y] corresponds to the map satisfying y(xigj) = δin′ ,

and so

µ ◦∆(y)(xn
′−1 ⊗ x) = y(xn

′−1x) = y(xn
′
) = 1

which means that y cannot be primitive.

In the gcd(n, t) = 1 case, some calculation tells us that if xi is defined to be the map

such that

xi(xjgr) = δij for j ≥ 0, 0 ≤ r < n,

then

∆(y) = y ⊗ 1 + 1⊗ y +
n−1∑
i=1

xig
i ⊗ xn−i

and, letting yλ denote the element of (k,+) ⊆ H0 corresponding to λ ∈ k,

∆(yλ) = yλ ⊗ yλ + λ(yλ ⊗ yλ)

(
n−1∑
i=1

xig
i ⊗ xn−i

)
.

We note that xi is some scalar multiple of xi: for instance,

x2 = (1 + q−t)−1x2.

Here the subalgebra Hf (n′, t′, qd) = Hf (n, t, q) is in fact a Hopf subalgebra by Lemma 6.9,

and the calculation of ∆(fλ) confirms Lemma 5.15(ii) in that it shows that the (k,+)-

indexed subspaces Hf (n, t, q) ⊗ yλ are all subcoalgebras of H0. This also means that

Hf (n, t, q) ⊗ kG is a Hopf subalgebra for any subgroup G < (k,+). Finally, although

k[y] ⊗ k(k,+) is not a subcoalgebra, we do find that the map H0 → k[y] ⊗ k(k,+) given

by restriction to k[xn] is a map of Hopf algebras - as stated in Lemma 5.4(i).

Note also that the fact that action and coaction are trivial in Theorem 6.11 is due to

the fact that there exists a cleaving map for H(n, t, q) which is a coalgebra map, and since

the coinvariants form a Hopf subalgebra. This means that Theorem 4.19 applies. As we

will see in the next section, this forms a contrast to the generalised Liu algebras.
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6.5 The generalised Liu algebras

Let k be an algebraically closed field of characteristic zero.

Liu algebras were introduced by Liu in [31] and generalised by Brown and Zhang in [6].

In our definition, we follow the second presentation given in [6, Section 3.4].

Definition 6.13. Let k be an algebraically closed field, n > 1 and 1 ≤ w < n be integers

and q ∈ k be a primitive nth root of unity. Then the Liu algebra on (n,w, q) is given by

B(n,w, q) := k〈x±1, g±1, y | yg = qgy, x central, yn = 1− gn = 1− xw〉.

This is a Hopf algebra, with the coalgebra structure given by x, g, being grouplike and y

skew-primitive with ∆(y) = y ⊗ g + 1⊗ y.

By [6, Theorem 3.4], Liu algebras are prime affine regular Hopf algebras of Gelfand-

Kirillov dimension one, and the PI-degree of a Liu algebra B(n,w, q) is simply n. Moreover,

Liu algebras are finite dimensional over central Hopf subalgebras and so satisfy (F). We

note this and other results we need to compute the finite dual in the following lemma.

Lemma 6.14. Let k be an algebraically closed field, n > 1 and 1 ≤ w < n be integers and

q ∈ k be a primitive nth root of unity, and let B := B(n,w, q) be the Liu algebra on those

parameters. Then

(i) A := k[x±1] is a central Hopf subalgebra of B such that A ⊆ B satisfies (F).

(ii) The canonical Hopf quotient B := B/A+B is isomorphic to the finite-dimensional

Taft algebra Hf (n, 1, q):

B ∼= k〈y, g | yg = qgy, yn = 0, gn = 1〉

as algebras, where g is grouplike and y is (g, 1)-primitive.

(iii) B has a PBW basis given by {xryigj | r ∈ Z, 0 ≤ i, j < n}.

Proof. (i) By [6, Theorem 3.4(b)], B is a Noetherian Hopf algebra with a central subalgebra

A := k[x±1]. Further, A is a Hopf subalgebra because x is grouplike. So in order to show

that A ⊆ B satisfy (F), we only need to show that B is finitely-generated as an A-module.

We do this by showing that the set {yigj | 0 ≤ i, j < n} is a generating set for B.

First note since B is generated by x±1, y and g it is spanned by monomials in these

variables. Because x is central and y and g skew-commute, any element of B which is a
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monomial in x, y and g can be rearranged into the form λxrysgt for r, t ∈ Z, s ≥ 0, λ ∈ k∗.

Now suppose that t = un+ i and s = vn+ j for some 0 ≤ i, j < n, u ∈ Z, v ≥ 0. Then we

have

xrysgt = xr(yn)vyj(gn)ugi

= xr(1− xw)vyj(xw)ugi

=
v∑
`=0

(
v

`

)
(−1)`xr+(u+`)wyjgi,

giving us what we need.

(ii) Write π : B → B for the canonical quotient map given by factoring by 〈x− 1〉 and

y := π(y), g := π(g). We want to show that B is isomorphic to a Taft algebra.

Consider F := k[x±1] and E := F 〈ŷ, ĝ〉 to be free on generators ŷ and ĝ. It is clear

that if we set I and J to be the ideals of E given by

J := 〈ŷĝ − qĝŷ, ŷn − xw + 1, ŷn − ĝn + 1〉, I := J + 〈x− 1〉,

then by standard isomorphism theorems,

E/I ∼= (E/J)/(I/J) ∼= B/〈x− 1〉B ∼= B.

However, we can also view E/I as

E/I ∼= (E/〈x− 1〉)/(I/〈x− 1〉) ∼= k〈ŷ, ĝ〉/(I/〈x− 1〉).

Now we have

I/〈x− 1〉 = (J + 〈x− 1〉)/〈x− 1〉 = 〈ŷn, ĝn + 1, ŷĝ − qĝŷ〉k〈ŷ,ĝ〉.

Since these are precisely the relations giving a Taft algebra on parameters n and q and

k〈ŷ, ĝ〉 is the free algebra on ŷ and ĝ, it follows that

B ∼= E/I ∼= Hf (n, 1, q)

as algebras as required.

The fact that the factor map π is a coalgebra map means that under this identification,

ĝ is grouplike and ŷ is (ĝ, 1)-primitive. So in fact,

B ∼= Hf (n, 1, q)

as Hopf algebras.
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(iii) We first note that B is torsion-free as an A-module, because B is a domain and

the A-module structure is given by multiplication in B. This means that B must be free,

following a basic result about the structure of finitely-generated modules over principal

rings (see for instance [29, Theorem 7.3]), and must have finite rank ` > 0. Any A-basis of

B gives a k-basis of B/A+B and vice versa, so by (ii) ` = dimk(B) = n2 and the spanning

set {yigj | 0 ≤ i, j < n} given in (i) is a basis for B as a free A-module. Since {xr | r ∈ Z}

is a k-basis for A, it follows immediately that {xryigj | r ∈ Z, 0 ≤ i, j < n} is a k-basis for

B as required.

This gives us what we need to apply Theorem 5.8.

Theorem 6.15. Let k be an algebraically closed field of characteristic zero, n,w > 0 be

integers and q ∈ k∗ be a primitive nth root of unity, and let B := B(n,w, q) denote the

generalised Liu algebra on those parameters.

(i) B0 decomposes as a crossed product with trivial cocycle:

B0 ∼= Hf (n, 1, q)#(k[z]⊗ k(k∗, ∗)),

where Hf (n, 1, q) denotes the finite-dimensional Taft algebra on those parameters.

Here Hf (n, 1, q) is a Hopf subalgebra of B0.

(ii) The action determining the smash product in (i) is nontrivial.

(iii) The crossed product in (i) is transitive, meaning that there are two subalgebras

Hf (n, 1, q)#k[z] and Hf (n, 1, q)#k(k∗, ∗) of B0. In fact, these are Hopf subalge-

bras.

Proof. (i) To find the stated crossed product decomposition of B0, we use Theorem 5.8.

This tells us that given A ⊆ B satisfying (F), if we have a left A-module decomposition

B ∼= A⊕X (6.3)

where A is a Hopf subalgebra and X is a coideal, then B0 is a crossed product with

B0 ∼= B
0#A0. (6.4)

By Lemma 6.14(i), A := k[x±1] ⊆ B satisfies (F) and by (ii) the canonical quotient

algebra B is isomorphic to the finite-dimensional Taft algebra Hf (n, 1, q). Since we saw
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in Example 4.22 that finite-dimensional Taft algebras are self-dual and in Section 6.2 that

k[x±1]0 ∼= k[z]⊗ k(k∗, ∗), (6.4) becomes

B0 ∼= Hf (n, 1, q)#(k[z]⊗ k(k∗, ∗)), (6.5)

which is exactly what we want. So all we need to do is show that (6.3) holds for some left

A-module and coideal X.

Let

X :=
⊕

1≤j<n
0≤r<n

Ayjgr ⊕
⊕

1≤s<n
A(gs − 1).

This is an A-module by definition, and we have

B ∼= A⊕X

as a slightly modified form of the canonical PBW-basis decomposition. So all that remains

to check is that X is a coideal.

Step 1: Showing ε(X) = 0

This is quite straightforward: we have ε(yj) = ε(y)j = 0 whenever 1 ≤ j < n, and

furthermore gs is grouplike and so ε(gs − 1) = 0 for all s. Since the counit is an algebra

map, this means that

ε(X) =
⊕

1≤j<n
0≤r<n

ε(A)ε(yj)ε(gr)⊕
⊕

1≤s<n
ε(A)ε(gs − 1) = 0.

Step 2: Showing ∆(X) ⊆ X ⊗H +H ⊗X

Let

Y := {yjgr, (gs − 1) | 1 ≤ j, s < n, 0 ≤ r < n}.

This is a generating set for X as an A-module, and we first check that ∆(Y ) ⊆ H ⊗X +

X ⊗H.

Let 1 ≤ s < n. Since gs is grouplike,

∆(gs − 1) = (gs − 1)⊗ 1 + 1⊗ (gs − 1) ∈ X ⊗H +H ⊗X

as required.
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Now let 1 ≤ j < n, 0 ≤ r < n. Then we have

∆(yjgr) = ∆(yj)∆(gr)

=

(
j∑
s=0

(
j

s

)
q−1

ys ⊗ yj−sgs
)

(gr ⊗ gr)

=
j∑
s=0

(
j

s

)
q−1

ysgr ⊗ yj−sgs+r

=
min(j,n−r−1)∑

s=0

(
j

s

)
q−1

ysgr ⊗ yj−sgs+r

+
j∑

t=n−r

(
j

t

)
q−1

ytgr ⊗ xwyj−tgt+r−n,

where
(
j
s

)
q−1 denotes the quantum binomial defined in Example 2.12.

Every term in both the sums is expressed in terms of the decomposition H ∼= A ⊕X

and has at least one of the tensorands with degree of y between 1 and n−1, so every term

is contained in H ⊗X +X ⊗H. This means that ∆(yjgr) ∈ H ⊗X +X ⊗H as required.

This gives us all of Y . Now we have

∆(X) = ∆(AY ) = ∆(A)∆(Y )

⊆ (A⊗A)(H ⊗X +X ⊗H)

⊆ AH ⊗AX +AX ⊗AH ⊆ H ⊗X +X ⊗H.

So X is a coideal as required: Theorem 5.8(i) applies and (6.5) holds, giving us what we

want.

(ii) We want to show that the action determining the smash product in (6.5) is non-

trivial. We do this by showing that there are elements in Hf (n, 1, q) and elements in

k[z]⊗ (k∗, ∗) that do not commute.

Let f ∈ B0 = B
∗ ∼= Hf (n, 1, q) be any map such that f(ygn−1) = 1, and let α ∈ k[x±1]∗

be given by α(xi) = λi for some λ ∈ k∗ such that λ 6= 1, λw 6= 1. Since α is an algebra

map, it is contained in k[x±1]0.

Under minor abuse of notation, we also write f and α for the images of these maps in

B0, where the embedding maps are given by π0 and the dual of the canonical map given

by factoring along X respectively. We find that f(xiyjgr) = f(yjgr) for any i ∈ Z and

that α(xigr) = α(xi) = λi, while α(xiyjgr) = 0 whenever 0 < j ≤ n− 1.

We now show that fα(ygn−1) 6= αf(ygn−1), meaning that f and α do not commute.



CHAPTER 6. PRIME AFFINE REGULAR HOPF ALGEBRAS OF GKDIM 1 160

This follows as we have

fα(ygn−1) = µ ◦ (f ⊗ α)
(
ygn−1 ⊗ gn + gn−1 ⊗ ygn−1

)
= µ ◦ (f ⊗ α)

(
ygn−1 ⊗ xw + gn−1 ⊗ ygn−1

)
= f(ygn−1)α(xw) + f(gn−1)α(ygn−1)

= λw + 0 = λw.

However,

αf(ygn−1) = µ ◦ (α⊗ f)
(
ygn−1 ⊗ gn + gn−1 ⊗ ygn−1

)
= α(ygn−1)f(xw) + α(gn−1)f(ygn−1)

= 0 + λ0 = 1.

Since we assumed λw 6= 1, this means that fα(ygn−1) 6= αf(ygn−1) and so the two maps

do not commute: the smash product structure in (6.5) is nontrivial.

(iii) By (i), B0 decomposes as a smash product as in (6.5) and so is also a free H0-

module. So Theorems 5.19 and 5.21 apply: we have Hopf subalgebras

W := {f ∈ B0 | f(〈x− 1〉n) = 0 for some n > 0} ∼= B
0#σU(LieG)

and

kĜ := {f ∈ B0 | f(mgB) = 0 for some g ∈ G} ∼= B
0#τkG,

where G is the affine algebraic group such that O(G) ∼= k[x±1]. In other words, G = (k∗, ∗)

and LieG is simply the one-dimensional Lie algebra, so that U(LieG) = k[y]. Moreover,

the cocycles σ and τ arise from restriction of the cocycle on B and are hence also trivial.

Since we know that B0 ∼= Hf (n, 1, q) by (i), these equations become

W ∼= Hf (n, 1, q)#k[y],

kĜ ∼= Hf (n, 1, q)#k(k∗, ∗),

with k[y] and k(k∗, ∗) in these decompositions corresponding to those in (6.5).

Remark 6.16. An immediate consequence of part (ii) of Theorem 6.15 is that although

we know that the Liu algebras can be written as a crossed product with respect to k[x±1]

by Proposition 5.31(ii) (using the fact that they are generated by grouplike and skew-

primitive elements and hence pointed), the resulting cleaving map cannot be a coalgebra

map. We can see this as follows.
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Suppose for a contradiction that there did exist a coalgebra map γ : B → B. Then by

Theorem 5.33 we have

B0 ∼= B
0 ⊗ k[x±1]0

as algebras, left B0-modules and right k[x±1]0-comodules. Given b ∈ B, a ∈ k[x±1], we

write b · a for the action of B on A in the crossed product decomposition in Theorem

6.15(i). Now by Proposition 5.35, there exists a convolution invertible map u : H → A

satisfying

b · a =
∑

u−1(b1)(εB(b2)a)u(b3)

=
∑

u−1(b1)au(b2)

=
∑

u−1(b1)u(b2)a = εB(b)a.

So the action of B on A and hence the smash product structure in the decomposition of

Theorem 6.15(i) is trivial - contradicting part (ii) of said theorem.

6.6 Originality

The first part of this chapter, up to Theorem 6.5, relates known results and work regarding

the structure and classification of prime affine regular Hopf algebras of Gelfand-Kirillov

dimension one. Section 6.2 is known. Section 6.3 is to our knowledge original, but Theorem

6.6 may reproduce results in the representation theory of finite groups. Section 6.4 is

original, as is Section 6.5.



Chapter 7

Conclusion

In this thesis, we have worked out various ways of calculating the finite dual of various

Hopf algebras, focusing on those which can be decomposed as crossed products (Chapter

4) or which have some distinguished central Hopf subalgebra (Chapter 5). These results

let us use known classical results to compute the finite duals of numerous Hopf algebras or

families of Hopf algebras of interest: we have done so with the prime regular Noetherian

Hopf algebras classified by Brown and Zhang in [6] (Chapter 6) along with the quantised

enveloping algebra Uε(sl2(k)) at a root of unity (Section 5.4), with an eye to the possibility

of extending the latter to sln(k) or other Lie algebras.

Such examples allow us to better study how various well-known results about duality

in the finite-dimensional world do or do not transfer to the infinite-dimensional world. The

duality theory of finite-dimensional Hopf algebras is a powerful tool, but as we already saw

in the introduction numerous properties that are preserved under taking finite-dimensional

duals need not transfer from an infinite-dimensional Hopf algebra to its dual.

One of the problems we discussed in the introduction was that of the size of H0. Most

examples we have seen in the intervening chapters have been “too big”: in particular,

they often have uncountable dimension thanks to containing some group of characters

isomorphic to an algebraic group. So for instance, in Example 4.22, we saw that given an

algebraically closed field k of characteristic zero, the finite dual of a Taft algebra H(n, t, q)

on coprime integers n > 1, t > 0 and a primitive nth root of unity q ∈ k is given by

H(n, t, q)0 ∼= k[z]⊗Hf (n, t, q)⊗ k(k,+),

where Hf (n, t, q) is the finite-dimensional Taft algebra with respect to the same parameters

and k(k,+) is the group algebra of the additive group of the underlying field. This last

162
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subalgebra has basis indexed by k, and so when k = C it, and hence H(n, t, q)0 as a

whole, has uncountable dimension. This also means the finite dual is not affine, in distinct

contrast to the Hopf algebra we started with. Another example is given by the coordinate

ring of an affine algebraic group. In Proposition 2.13, we saw that this satisfies

O(G)0 ∼= U(LieG)#kG.

Again, kG is the group algebra of G and hence has basis indexed by G, which as an

algebraic variety is generally going to have the same cardinality as the underlying field.

However, in many cases including these we can find a smaller Hopf subalgebra inside

the finite dual with size far closer to the size of H.

In the case of the Taft algebras above, this might be the subalgebra k[z]⊗Hf (n, t, q),

which we know is a Hopf subalgebra by Lemma 6.9(ii), or perhaps k[z]⊗Hf (n, t, q)⊗ kK

for some finitely-generated subgroup K < (k,+), this also being a Hopf subalgebra by

the discussion in Remark 6.12. In the case of the coordinate ring O(G) of an affine

algebraic group G, we have U(LieG) - hinting at a duality between coordinate rings and

universal enveloping algebras of Lie algebras. Finally, Theorem 5.21 extends the example

of coordinate rings: it says that whenever H is a Noetherian Hopf algebra which is a

finite module over some central Hopf subalgebra A ∼= O(G) such that there exists a left

A-module projection Π : H → A, there is a Hopf subalgebra W ∼= (H/A+H)∗#U(LieG).

Chin and Musson also investigate this question in [9], focusing on the injective hull

EH(k) of the trivial module as a potential replacement for H0.

One potential situation where having a distinguished subalgebra of H0 would be useful

is in a potential extension of the Drinfel’d double to infinite dimensions.

The Drinfel’d double, introduced by Drinfel’d in [14], is a Hopf algebra D(H) con-

structed from a finite-dimensional Hopf algebra H and its dual H∗. This Hopf algebra is

isomorphic to H ⊗ H∗ as a vector space, contains both H and H∗ as Hopf subalgebras,

and satisfies some good structural properties such as being quasitriangular (see [14]). It

is hence a useful tool in the study of finite-dimensional Hopf algebras.

In the infinite-dimensional case, it is possible to form a so-called Hopf pairing between

a Hopf algebra H and any Hopf algebra K ⊆ H0 that is dense in H∗, a construction

which is analogous to the Drinfel’d double and for instance described in [25, Section 3.2].

However, such a pairing does not necessarily satisfy any of the properties it does in the

finite-dimensional case. Moreover, using K = H0 means that we end up with the same
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size problems as we have for H0 itself: the resulting Hopf pairing may have uncountable

dimension and hence not be affine and possibly not Noetherian, even when the Hopf algebra

we started with satisfied those properties. This makes it of limited usefulness for many

applications and means that some smaller algebra may often be more suitable instead.

In all of this, the results of this thesis are immediately useful in two ways. First, they

allow us to explicitly compute the structure of H0 for various Hopf algebras H and hence

can provide a large class of examples on which we can check theories and look for patterns.

Second, there is the possibility of using them to extending any results in this area about

classical Hopf algebras like coordinate rings, group algebras and enveloping algebras to

crossed products of these algebras or, in the case of coordinate rings, to Hopf algebras

containing them as a central Hopf subalgebra. This is of particular interest because this

might allow us to use results about commutative and cocommutative Hopf algebras to say

things about Hopf algebras that are neither, such as quantum groups.
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[28] Günter R. Krause and Thomas H. Lenagan. Growth of algebras and Gelfand-Kirillov

dimension, volume 22 of Graduate Studies in Mathematics. American Mathematical

Society, Providence, RI, revised edition, 2000.

[29] Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag,

New York, third edition, 2002.

[30] Thierry Levasseur. L’enveloppe injective du module trivial sur une algèbre de Lie
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