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Abstract

In this thesis, I study the strategic foundations of oligopolies in general equi-

librium by following the approach based on strategic market games. The thesis is

organised as follows.

In Chapter 1, I first survey some of the main contributions on imperfect com-

petition in production economies and the main problems which arise in this frame-

work. I then focus on the literature on imperfect competition in exchange economies

by considering the Cournot-Walras approach and strategic market games. I finally

discuss the main contributions on the foundations of oligopolies.

In Chapter 2, I extend the non-cooperative analysis of oligopoly to exchange

economies with infinitely many commodities and traders by using a strategic mar-

ket game with trading posts. I prove the existence of a Cournot-Nash equilibrium

with trade and show that the price vector and the allocation at the Cournot-Nash

equilibrium converge to the Walras equilibrium when the number of traders in-

creases. In a framework with infinitely many commodities, an oligopolist can be

an “asymptotic oligopolist” if his market power is uniformly bounded away from

zero on an infinite set of commodities, or an “asymptotic price-taker” if his market

power converges to zero along the sequence of commodities. The former corre-

sponds to the Cournotian idea of oligopolist. The latter describes an agent with

a kind of mixed behaviour since his market power can be made arbitrary small

by choosing an appropriate infinite set of commodities while it is greater than a

positive constant on a finite set.

In Chapter 3, I further study oligopolies in economies with infinitely many

commodities and traders. By using the strategic market game called “all for sale

model”, I prove the existence of an asymptotic price-taker. Heuristically, an asymp-

totic price-taker exists if at least one trader makes positive bids on an infinite num-

ber of commodities and in all markets the quantities of commodities exchanged are

non-negligible.

In Chapter 4, I study if there is a non-empty intersection between the sets of

Cournot-Nash and Walras allocations in mixed exchange economies, with oligopolists

represented as atoms and small traders represented by a continuum. In a bilateral

oligopoly setting, I show that a necessary and sufficient condition for a Cournot-

Nash allocation to be a Walras allocation is that all atoms demand a null amount

of one of the two commodities. I also provide four examples which show that this

characterization holds non-vacuously.
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Preface

Nowadays real world economies are characterised by large firms which often

spread their activities on many countries and it is hard to believe that they do

not have market power. In such situation, it is not clear if markets are still an

efficient way to allocate resources among agents. Crouch (2011) argues that a

political debate that continues to be organised around market and state is missing

the issues raised by the presence of big corporations. He also underlines that

“The confrontation between the market and the state that seems to

dominate political conflict in many societies conceals the existence of

this third force, which is more potent than either and transforms the

workings of both.”

In this thesis, I analyse exchange economies in which the price-taking assump-

tion is dropped and agents can influence the prices with their supply and demand

decisions. To do so, I consider the literature on strategic market games which are

models where traders can choose the amount of their initial endowments to put up

in exchange for other commodities. In this framework, I study the conditions on

the fundamentals of an economy under which market power arises endogenously

in equilibrium, i.e., foundations of oligopolies.

The main contributions of this thesis are twofold. In Chapters 2 and 3, I focus

on oligopolies in exchange economies with infinitely many commodities and traders

to study agents with mixed behaviours having market power on some commodities

while being competitive on others. Perhaps surprisingly, in such framework both

agents who keep market power on an infinite set of commodities and agents whose

market power vanishes along the sequence of commodities arise endogenously in

equilibrium. This model is a starting point to analyse the differences between

global and local oligopolists. In Chapter 4, I consider mixed exchange economies

where oligopolists are represented as atoms and small traders are represented by

a continuum. In this framework, I show the necessary and sufficient conditions

under which the sets of Cournot-Nash and Walras allocations coincide. This result

helps to understand when in a market with oligopolists a competitive outcome can

arise endogenously in equilibrium.

Finally, in the rest of the thesis I use “we” instead of “I” because it is more

formal and less personal. As proposed by Thomson (2011), in single author con-

tributions “we” may mean the author and the reader.
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1

Introduction

“Let me, to begin with, justify the choice, which may be surprising

since the topic has been dormant for so long. First, I think that there

is no microeconomic theory if it is not eventually cast in a general equi-

librium framework. Of course, partial models give insights, and also

serve as natural starting points. But, in its very essence, the economy

is a system of interrelated markets where the influence of what happens

at some point is unavoidably propagated throughout the system, via

the chain of markets, through the possible substitutions and comple-

mentarities between goods that are due to tastes and technologies.”

Gabszewicz (1999)

“Finally, it seems impossible to go on with analysing markets under

the assumption of perfect competition. Direct observation of economic

activity reveals that markets are the fields of “giants”, operating si-

multaneously with a fringe of small competitors. Even partial analysis

has taken this picture of the market when proposing oligopoly solutions

to describe the outcomes of imperfectly competitive markets. Behind

the demand function there is a myriad of “small” price-taking agents,

while the supply side is occupied by few agents appearing as giants,

contrasting with the dwarfs on the demand side.”

Gabszewicz (2013)
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1.1 Market power in general equilibrium theory

We have started this chapter with two quotes from Jean J. Gabszewicz as

rhetorical devices to appeal for the studying of market power in general equilibrium

models. We now briefly clarify why this area of research can provide a useful

theoretical framework to address economic issues.

It is easy to recognise that many markets in real world economies are dominated

by few giant firms which compete against each others. Even if it may be true

that sometimes perfect competition arises despite the few number of agents, as

in the Bertrand’s model, usually imperfect competition prevails. Therefore, the

first justification of studying market power is the necessity of realism in economic

models. The hypothesis of price-taking behaviours, which is crucial in the theory of

perfect competition, could hardly capture the features of markets in which agents

can manipulate prices. Furthermore, imperfect competition may take away markets

efficiency properties and then under such condition it is not clear if markets are

still an efficient way to allocate commodities among agents. This clearly makes

market power a fundamental matter to study.

The choice of using general equilibrium models is again justified by a realism

requirement. Since multinational firms are active simultaneously in several markets

and consumers’ preferences are spread over many commodities, general equilibrium

theory arises as a natural way to capture the complexity of this interrelated system.

General equilibrium models can also be used to check the robustness and consis-

tency of results obtained in partial analysis. Obviously, if we think about industrial

organisation, this cannot be done systematically for all its rich research which aims

to analyse in depth the industry level and not the whole economy. Finally, general

equilibrium theory can provide a unified framework to study and compare different

market structures. The study of monopoly, oligopoly, and monopolistic competi-

tion is usually conducted with different approaches within partial analysis and is

based on ad hoc assumptions. This is further away from the comprehensive and

coherent Walrasian system developed for perfect competitive economies.

In the next sections, we do not aim to review all the literature on general

equilibrium with imperfect competition but we focus only on those contributions

that provide an historical and theoretical framework for the next chapters of the

thesis. The literature on imperfect competition in general equilibrium was masterly

surveyed by Hart (1985), Gary-Bobo (1988), Bonanno (1990), and Gabszewicz

(1999, 2002).
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1.2 Imperfect competition: an historical overview

The first attempt to analyse analytically imperfect competition was made by

Cournot (1838). He proposes a simply theoretical framework to study a market

with oligopolistic firms and a large number of price taking consumers. He assumes

that firms produce an homogeneous commodity and that consumers are represented

by an inverse demand function. Given the demand function, each firm decides the

quantity to produce in order to maximise its profit. The equilibrium concept

introduced by Cournot, which is a particular case of the Nash equilibrium (see

Nash (1951)), captures the strategic interactions among firms. In other words,

each firm maximises its profit given the production levels of all other firms.

Many years later, Chamberlin (1933) developed a theoretical framework to

study markets with differentiated commodities. He introduces the notion of mo-

nopolistic competition which describes an industry with differentiated commodities

where each commodity is produced only by one firm whose strategic variable is the

commodity’s price. There are two types of monopolistic competition: small group

and large group. The former considers an industry with few firms and then any

change in price has an effect on the other few firms in the industry. Differently, the

latter considers an industry with many firms and then “any adjustment of price

[. . . ] by a single producer spreads its influence over so many of his competitors that

the impact felt by any one is negligible and does not lead him to any readjustment

of his own situation” (Chamberlin (1933) p.83). This is the more studied case

in the literature on monopolistic competition. By comparing the Cournot model

and the large group case, we observe that in both of them firms can manipulate

prices but while in Cournot there is strategic interaction among firms in the large

group monopolistic competition firms ignore each others. Furthermore, both con-

tributions are cast in partial equilibrium analysis which means that they do not

consider the whole economy and the system is not closed because consumers do not

formally belong to the model and they are just represented by an inverse demand

function.

Negishi (1961) and Gabszewicz and Vial (1972) made one of the first attempts to

extend to general equilibrium theory the model of imperfect competition introduced

by Chamberlin (1933) and by Cournot (1838) respectively. We now briefly describe

the main features of these two contributions (for a detailed comparison see Busetto

(2005)).

Negishi (1961) proves the existence of an equilibrium in an economy with per-
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fectly competitive consumer, some perfectly competitive firms and some monopo-

listically competitive firms. The assumptions on consumers and perfectly compet-

itive firms are standard, the novelty is the assumption that each monopolistically

competitive firm is characterized by a portfolio of commodities containing all the

commodities on which the firm has market power. It is also assumed that portfolios

are such that no firm controls all markets and none of the markets is dominated by

two firms. In this way, monopoly and oligopoly are ruled out from the analysis. In

this general equilibrium framework, monopolistic competition turns out to be an

economic configuration in which monopolistically competitive firms have market

power on some markets while behave competitively on all others and each market

is possibly dominated by only one firm. In this model, production decisions are

based on subjective (or perceived) demand curves which only show the prices con-

jectured by firms for different production levels and they may not coincide with

the real market demands. This feature is a weakness of this approach because it

introduces an element of arbitrariness in the model. Gary-Bobo (1989) showed

that all feasible allocations such that the production of each firm is greater than

zero and yields non-negative profits are equilibria in the sense defined by Negishi

(1961). In other words, it is possible to find subjective demands which sustain each

allocation as an equilibrium allocation. To overcome this indeterminacy problem,

it is necessary to consider firms which face objective demands.

Gabszewicz and Vial (1972) in their attempt to extend the Cournot model to

general equilibrium theory pioneered the objective demand approach, i.e., firms face

objective demands generated by consumers utility maximisation problem. They

define an economy with production where, as in the Cournot model, firms are as-

sumed to be few whereas consumers are assumed to be many. Consumers, who

behave competitively, provide firms with labour and other primary factors which

are non-consumable and non-marketable. With these resources, firms, which have

market power and behave as players of a non-cooperative game, produce consump-

tion commodities. These commodities are then distributed to the consumers, who

have provided primary factors, as real wages according to some preassigned shares.

At the end of the production process, each consumer is thus endowed with his ini-

tial endowment plus the bundles of commodities which he receives as a shareholder

of the firms. Exchange markets are then organized, where the consumers aim at

improving their utility levels through trade. The rule of exchange consists in us-

ing a Walrasian price mechanism under which all markets clear. The equilibrium

prices resulting from these exchanges allow firms to choose the production levels

4



which maximise their profits given the production decisions of others.

Bonanno (1990) and Codognato (1994) summarised the main problems raised

by the approach of Gabszewicz and Vial (1972). Here, we just focus on two of

them, namely the existence of a Cournot-Walras equilibrium and the fact that

profit maximisation may not be a rational objective for imperfectly competitive

firms. Both these are crucial issues since they concern the consistency of the whole

theory.

In the paper of Gabszewicz and Vial (1972), the existence of a Cournot-Walras

equilibrium relies on two strong assumptions namely that the set of Walras equi-

libria resulting from the exchange of commodities among consumers contains a

unique element and that firms’ profit functions are quasi-concave. Clearly these

two assumptions are not based on the fundamentals of the economy. Furthermore,

the quasi-concavity of profit functions imposes restrictions on the shape of demand

curves. The first assumption was actually relaxed by Roberts (1980) and Dierker

and Grodal (1986). Differently, Roberts and Sonnenschein (1977) showed that even

if we make standard assumptions on consumers and firms, profit functions need

not to be quasi-concave. A possible way of avoiding this ad hoc assumption is to

consider equilibria in mixed strategies. But the notion of mixed strategy is far from

being clear in this framework and additionally Dieker and Grodal (1986) showed

an example of non-existence even in mixed strategies.

Let us now discuss the problem of maximising profits in imperfect competitive

economies. The following quotation from the referee’s report of Gabszewicz and

Vial (1972) raised the issue for the first time.

“Consider a firm owned by many consumers, all of whom are identical.

Given the strategies of the other firms in the economy, this firm chooses

an output vector so as to maximize the wealth of each of its consumers.

However, it is possible that this firm could choose a different strategy

which would result in slightly lower wealth, but in a much lower price

of some particular commodity which is greatly “desired” by the owners

of the firm. Thus this alternative strategy might yield greater “real

income” to the firms owners.”

In other words, firms’ owners are interested in monetary profits only in terms

of their purchasing power and then they may not find profit maximisation as a

rational objective if it leads to higher prices for the commodities they consume.

One of the first attempts to overcome this difficulty was proposed by Mas-Colell
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(1982) who considers a model where consumers with positive share ownership in

firms consume only the numeraire commodity (which is endogenously determined).

They can be seen as a class of capitalists who leaves in an outside world. A

similar but probably more ingenious construction was proposed by Hart (1985).

He considers a model with islands in which consumers consume only in the island

where they live but get profits from other islands. In these two frameworks, profit

maximisation is a consistent objective for firms because when they maximise profits

they are also maximising the utility of their owners. These approaches can then

reconcile the trade-off between firms’ profit maximisation and shareholders’ utility

maximisation but at the price of moving the original Gabszewicz and Vial model

toward partial equilibrium analysis as it was noticed by Mas-Colell (1982) and

Hart (1985) themselves. Another way to circumvent the problem was proposed

by Dierker and Grodal (1986) by considering an economy in which each firm is

owned by only one consumer and the firm, instead of maximising profit, maximises

the indirect utility function of its owner. However, this latter approach provides

a well defined objective function for the firms only in the special case where each

firm is owned by a single consumer. Dierker and Grodal (1999) and Dierker,

Dierker, and Grodal (2001) proposed another objective for the firms based on the

maximisation of shareholders’ real wealth. A different and more drastic path was

followed by Codognato and Gabszewicz (1991) and Gabszewicz and Michel (1997)

which recasts the Cournot-Walras model in exchange economies. The advantage

of analysing oligopoly in exchange economies is that it helps to study exchanges

among traders who can influence prices avoiding all other problems which arise in

production economies. We analyse in detail this approach in the next section.

1.3 Oligopolies in exchange economies

The study of oligopoly in exchange economies can be divided in two approaches:

asymmetric oligopoly and symmetric oligopoly (see also Codognato (1988)). In

the asymmetric oligopoly some consumers have market power while others act

competitively. Such framework was introduced by Codognato and Gabszewicz

(1991) and further studied by Gabszewicz and Michel (1997). In the symmetric

oligopoly all consumers are treated symmetrically and all of them act strategically.

This case was studied by using strategic market games which were introduced in the

contributions of Shubik (1973), Shapley (1976), and Shapley and Shubik (1977).

We start by describing the first approach which is very close to the spirit of
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Cournot-Walras in production economies. In order to clearly understand the in-

stitutional framework of Cournot-Walras in exchange economy, we first quote the

description provided by Gabszewicz and Michel (1997) of how trade takes place in

competitive economies.

“In a competitive economy, exchange can be viewed as taking place

in the following way. Each competitive trader comes with his initial

endowment in each good to a central market-place, where the sum of

these endowments for each good is supplied for trade. A price system

is announced, which determines the income of each trader as the scalar

product of this price vector by the vector of his initial endowments.

Then each utility maximizing competitive traders buys back a bundle

of the commodities, the value of which does not exceed his income. If

the price system clears each market a competitive equilibrium obtains.”

We now describe the institutional framework of Cournot-Walras in exchange

economies. Consumers are divided in two groups: oligopolists and small traders.

Each of them is characterised by an initial endowment which represents his wealth

and by a utility function which describes his preferences. Additionally, each

oligopolist is further characterised by a portfolio of commodities which contains

the commodities on which he behaves strategically. Differently, small traders are

assumed to behave competitively on all commodities. By analogy with the above

story on perfect competition, a consumer behaves competitive on a commodity if

he supplies the market-place with all his endowment of that commodity. Differ-

ently, a consumer has a strategic behaviour, if he supplies the market-place only

with a restricted share of his endowment. Therefore, small traders send to the

market-place all their endowments while oligopolists can restrict the supply of the

commodities in the portfolios. The process of exchange can be seen as organised in

two stages. First, each oligopolist chooses the amount of commodities he wants to

sell keeping for later consumption the remaining share. In the second stage, each

consumer demands the preferred commodity bundles, according to the Walrasian

demands, and prices are computed in a way that all markets clear. In order to

clarify the notion of Cournot-Walras equilibrium, we now show an example in a

two-commodity exchange economy.

Example 1. Consider an exchange economy with the following set of consumers

{1, 2, 3, 4}. The initial endowments and utility functions of traders are as follows.

wi = (2, 0), ui(xi) = ln(1 + xi1) + xi2, for i = 1, 2, and wi = (0, 5), ui(xi) =

7



2xi1 − 1
2
(xi1)2 + xi2, for i = 3, 4. We assume that consumers 1 and 2 are oligopolists

while consumers 3 and 4 are small traders. Since we consider an exchange economy

with only two commodities and corner endowments, to find the Cournot-Walras

equilibrium we only need to calculate the Walrasian demands for the small traders

and then find the best supply decisions of oligopolists. We solve the following

maximisation problem to find the Walrasian demands of consumers 3 and 4.

max
xi1,x

i
2

2xi1 −
1

2
(xi1)2 + xi2,

subject to p1x
i
1 + p2x

i
2 ≤ p25,

xi1, x
i
2 ≥ 0,

for i = 3, 4. It is straightforward to verify that the following Walrasian demands

are the solutions of the maximisation problem above.

xi1 = 2− p1

p2

,

xi2 =
5p2

2 + p2
1 − 2p1p2

p2
2

,

for i = 3, 4. Let q1 and q2 be the amounts of commodity 1 that consumers 1 and 2

send to the market-place respectively. We normalise to 1 the price of commodity 2

and p1 is such that the market for commodity 1 clears, i.e., x3
1 +x4

1 = q1 +q2. Then,

the price of commodity 1 is given by p1 = 2− 1
2
(q1 +q2) and the commodity bundles

of oligopolists are determined as follows. xi1 = wi1− qi and xi2 = (2− 1
2
(q1 + q2))qi,

for i = 1, 2. We solve the following maximisation problem to find the optimal

supply decision qi.

max
qi

log(1 + 2− qi) +
(

2− 1

2
(q1 + q2)

)
qi,

subject to 0 ≤ qi ≤ 2,

for i = 1, 2. It is straightforward to verify that q1 = q2 = 1 is the solution of the

maximisation problem. Hence, the price vector and the allocation at the Cournot-

Walras equilibrium of this exchange economy are

(p1, p2) = (1, 1),

(xi1, x
i
2) = (1, 1), for i = 1, 2,

(xi1, x
i
2) = (1, 4), for i = 3, 4.
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The model proposed by Gabszewicz and Michel (1997) makes it possible to

deal with Cournotian oligopoly in a general equilibrium framework while avoiding

some of the problems raised by the Gabszewicz and Vial approach. However, the

problem of existence of a Cournot-Walras equilibrium remains open. Bonnisseau

and Florig (2003) provided an existence result which holds only for linear exchange

economies. Another issue which arises in this framework was stressed by Okuno,

Postelwaite, and Roberts (1980).

“Traditional general equilibrium treatments of such situations [in

which some but not all agents may have market power] have been de-

ficient in that they have simply assumed a priori that certain agents

behave as price takers while others act non-competitively, with no for-

mal explanation being given as to why a particular agent should behave

one way or the other.”

Indeed, Gabszewicz and Michel (1997) do not provide a formal explanation on

why some consumers are considered oligopolists while others are considered small

traders. Obviously, a heuristic explanation is that consumers are oligopolists if

they hold a commodity whose ownership is concentrated among few of them while

small traders own commodities whose ownership is spread over many consumers.

In any case, the example above shows that it is also possible to consider odd cases

in which some consumers are assumed to be small traders even if there are only

two of them.

Differently, symmetric oligopolies overcome the issue raised by Okuno et al.

(1980) because in these models all traders behave strategically. This approach

is usually based on strategic market games, which are games where all traders

decide simultaneously how much of the commodities in their endowments put up

in exchange for other commodities. There are many types of strategic market

games (see Giraud (2003)) and here we focus on the trading post model and the

window model which can be seen as different institutional mechanisms through

which prices are determined.

In the former, trade is decentralised through a system of trading posts where

commodities are exchanged. There are two variants of this model which were

studied by Dubey and Shubik (1978) and Amir, Shubik, Sahi, and Yao (1990)

respectively. In the first variant, there is one commodity which has the role of

commodity money and it is used to buy all other commodities. So, each trader

simultaneously puts up quantities of the commodities he holds in exchange for
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commodity money and quantities of commodity money in exchange for other com-

modities. In each trading post a commodity is exchanged for commodity money

and the price is determined as the ratio of the two amounts exchanged. Differently,

Amir et al. (1990) study a model in which there is a trading post for each pair of

commodities, i.e., any commodity can be used to buy other commodities. Prices

are then computed in each trading post as in the previous model but since there

is a price for each pair of commodities, they are not necessarily consistent through

pairs of markets in which the same commodity is exchanged.

In the latter, the window model, any commodity can be used to buy other

commodities, as in Amir et al. (1990), but trade is centralised by a clearing house

in which there is a “window” for each commodity. All bids to buy a commodity

are aggregated in the window for that commodity and the clearing house carries

out a massive coordinated computation in order to find consistent prices which

clear all markets. This model was initially proposed informally by Lloyd Shapley

and subsequently analysed in detail by Sahi and Yao (1989). In all these three

contributions, Dubey and Shubik (1978), Amir et al. (1990), and Sahi and Yao

(1989), the existence of a Cournot-Nash equilibrium was proved. We now consider

an example of the strategic market game considered by Dubey and Shubik (1978)

in which the Cournot-Nash equilibrium is used as equilibrium concept.

Example 2. Consider the exchange economy defined in Example 1 but in this

case, since we deal with a strategic market game, all traders act strategically. Let

commodity 2 be commodity money and we then normalize its price to 1. Since we

consider an exchange economy with only two commodities and corner endowments,

the only actions available to traders 1 and 2 are q1 and q2 respectively, which are the

amounts of commodity 1 offered in exchange for commodity money. Analogously,

the only actions available to traders 3 and 4 are b3 and b4 respectively, which are the

amounts of commodity money offered for commodity 1. The price of commodity

1 is determined according the following rule

p1 =

{
b3+b4

q1+q2
if q1 + q2 6= 0,

0 if q1 + q2 = 0.

Traders’ commodity bundles are determined as follows.

xi1 = wi1 − qi,

xi2 = p1q
i,
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for i = 1, 2, and

xi1 =
bi

p1

,

xi2 = wi2 − bi,

for i = 3, 4. We solve the following maximisation problems to find the Cournot-

Nash equilibrium.

max
qi

ln(1 + 2− qi) + p1q
i,

subject to 0 ≤ qi ≤ 2,

for i = 1, 2, and

max
bi

2
bi

p1

− 1

2

(
bi

p1

)2

+ (5− bi),

subject to 0 ≤ bi ≤ 5,

for i = 3, 4. By combining the solutions of both maximisation problems, we obtain

the following Cournot-Nash equilibrium.

(q1, q2, b3, b4) =

(
5−
√

17

2
,
5−
√

17

2
,
3
√

17− 11

4
,
3
√

17− 11

4

)
.

Hence, the price vector and the allocation at the Cournot-Nash equilibrium of this

exchange economy are

(p1, p2) =

(√
17− 1

4
, 1

)
,

(xi1, x
i
2) =

(√
17 + 3

4
,
3
√

17− 11

4

)
, for i = 1, 2,

(xi1, x
i
2) =

(
5−
√

17

4
,
31− 3

√
17

4

)
, for i = 3, 4.

The Cournot-Walras approach in exchange economies and strategic market

games have the common characteristic that consumers/traders supply the mar-

ket with shares of their initial endowment in order to purchase other commodities

and therefore both of them can be considered as Cournotian models. However, they

differ in the institutional organisation of the exchange process which is purely Wal-

rasian in Cournot-Walras whereas it is non-Walrasian in strategic market games.

In the two examples above, the two exchange economies considered are the same

but the allocations at the Cournot-Walras equilibrium and at the Cournot-Nash

equilibrium are different because in Example 1 consumers 3 and 4 behave compet-

itively while in Example 2 they behave strategically.
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Since in strategic market games all traders are treated symmetrically, it is not

necessary to make ad hoc assumptions on traders’ behaviours. But this means that

the problem of developing a model of asymmetric oligopoly in which the differences

in traders’ behaviours are not assumed a priori but are endogenously determined re-

mains open. This is the so called problem of “foundations of asymmetric oligopoly”

(hereafter simply “foundations of oligopoly”). We analyse this issue in the next

section by continuing to focus on exchange economies.

1.4 Foundations of oligopolies

It is worth to stress that an issue similar to the foundations of oligopoly arises

also in perfect competitive economies and it is called “foundations of perfect com-

petition”. The Walrasian analysis in the synthesis reached in the contributions of

Arrow and Debreu (1954), Debreu (1959), and Arrow and Hahn (1971) crucially

relies on the price-taking assumption. It is then important to study under which

conditions on the fundamentals of an economy agents consider prices as given en-

dogenously in equilibrium. We first recall briefly the main results obtained on

the foundations of perfect competition and we then consider the foundations of

oligopoly.

There are two approaches to provide a foundation to perfect competition: the

cooperative approach and the non-cooperative one. The first is based on the notion

of core which was first proposed by Edgeworth (1881) who was interested in showing

how the presence of many agents would lead them to consider prices as given.

Debreu and Scarf (1963) developed a general model of the Edgeworth idea. They

provide a limit result showing that when an economy is replicated, the allocations

in the core shrink to the Walras allocations. This result is heuristically based

on the fact that when the number of trader increases traders’ influence on prices

decreases and at the limit totally disappears. Aumann (1964) established a result

at the limit by considering an economy with a continuum of traders and by showing

that the allocations in the core coincide with the Walras allocations. In this model,

each trader is negligible and then he cannot influence the prices.

When the non-cooperative approach is used to give a foundation to the price-

taking assumption, we provide a strategic foundation of perfect competition. Strate-

gic market games were originally developed to study the strategic foundations of

perfect competition because traders influence prices with their choices. Indeed,

the papers of Dubey and Shubik (1978), Sahi and Yao (1989), and Amir et al.
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(1990) showed that when the economy is replicated à la Debreu and Scarf, the

price vector and the allocation, at the Cournot-Nash equilibrium, converge to the

Walras equilibrium of the underlying exchange economy. By using strategic market

games, it is also possible to establish results at the limit à la Aumann. Dubey and

Shapley (1994) and Codognato and Ghosal (2000) extended to exchange economies

with a continuum of traders the models of Dubey and Shubik (1978) and Sahi and

Yao (1989) respectively. Mas-Colell (1980) surveyed the main contributions on the

strategic foundations of perfect competition by considering also the approaches

which do not rely on strategic market games (see Robert and Postlewaite (1974),

Roberts (1980), Mas-Colell (1983), and Novshek and Sonnenschein (1983) among

others).

The problem of providing a foundation to oligopoly can be essentially reduced

in finding a mathematical framework in which endogenously in equilibrium some

traders have market power and others behave competitively. In the cooperative

approach, Drèze, Gabszewicz, and Gepts (1969) adopted a partial replication which

leaves some traders as in the original economy while increasing the number of

others. With this variation of the Debreu and Scarf replica, the set of traders

becomes a mixture of “giants” and “dwarfs” where the former ones keep market

power while the latter ones lose it. Differently, Gabszewicz and Mertens (1971) and

Shitovitz (1973), by following the Aumann approach, considered the core of mixed

exchange economies where oligopolists are represented as atoms, and small traders

are represented by a continuum. An atom is a trader whose initial endowment

is large compared to the total endowment of the economy while a trader in the

continuum holds only a negligible part of it. This approach, based on mixed

exchange economies, overcomes the problem raised by Okuno et al. (1980) as

remarked in Shitovitz (1973).

“The main point in our treatment is that the small and the large

traders are not segregated into different groups a priori; they are treated

on exactly the same basis. The distinctions we have found between

them are an outcome of the analysis; they have not been artificially

introduced in the beginning, as is the case in the classical approach.”

In exchange situations with non-negligible and negligible traders, the core does not

generally coincide with the Walras allocations because atoms can manipulate the

coalition formation and the allocation of commodities at the core of an economy

(see for instance Example 1 in Chapter 4). Nevertheless, Gabszewicz and Mertens
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(1971) and Shitovitz (1973) established some equivalence theorems for mixed ex-

change economies, similar to the one proved by Aumann (1964) in continuum

economies. In particular, Shitovitz’s Theorem B shows that the presence of an ar-

bitrary small (but not infinitesimal) oligopolist cancels out the market power of all

oligopolists. Okuno et al. (1980) found this result so counterintuitive to call into

question the use of the cooperative approach to study oligopoly in general equilib-

rium. In their contribution, they keep the framework of mixed exchange economy,

which seems useful to study oligopoly because introduce an element of asymmetry

among traders, and replace the core solution concept with a Cournot-Nash equilib-

rium of the strategic market game analysed by Dubey and Shubik (1978). In this

non-cooperative framework, they show that, under the assumptions of Shitovitz’s

Theorem B, the Cournot-Nash allocations do not coincide with the Walras allo-

cations. This result allows them to conclude that the non-cooperative approach

is a useful one to study oligopoly in a general equilibrium framework as the small

traders always have a negligible influence on prices, while the oligopolists keep their

strategic power. Furthermore, price taking and price making behaviours are en-

dogenously determined in equilibrium and they are not assumed a priori. However,

Okuno et al. (1980) considered particular types of mixed exchange economies with

only two commodities and interior initial endowments and they do not provide

an existence result. Busetto, Codognato, and Ghosal (2011) generalized Okuno et

alii’s model to mixed exchange economies with a finite number of commodities by

using the strategic market game analysed by Sahi and Yao (1989) and they proved

for such model the existence of a Cournot-Nash equilibrium. Therefore, this con-

tribution provides a strategic foundation of oligopoly since it proves the existence

of a Cournot-Nash equilibrium in which endogenously traders on the continuum

behave competitively while atoms keep market power.

This asymmetric oligopoly obtained by considering strategic market games in

mixed exchange economies is similar to the asymmetric oligopoly considered in

the Cournot-Walras approach in exchange economies. However, Codognato (1995)

showed that in mixed exchange economies the set of Cournot-Nash allocations

does not coincide with the set of Cournot-Walras allocations. This is due to the

fact that the Cournot-Walras approach has an intrinsic two-stage structure –the

supply decisions of oligopolists and the exchange of commodities among traders–

whereas in strategic market games all traders choose their actions simultaneously.

Consequently, the strategic foundation provided in Busetto et al. (2011) concerns a

simultaneously oligopoly which is different from the case considered in the Cournot-
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Walras approach. There is also a second reason for the non-equivalence between the

two models which is more subtle. In the Cournot-Walras approach, each oligopolist

is characterised by a mixed behaviour, since he behaves strategically in making his

supply decisions on the commodities in his portfolio while acts competitively in

demanding all commodities.1 Differently, in strategic market games atoms behave

strategically on all commodities.

The issue of providing a strategic foundations to the Cournot-Walras approach

was studied by Busetto, Codognato, and Ghosal (2008). They first provide a new

definition of Cournot-Walras equilibrium in which oligopolists behave strategically

on all commodities in the economy. They then reformulate the window model

as a two-stage game in which atoms move in the first stage and traders in the

continuum move in the second stage. With this new definition of Cournot-Walras

equilibrium and the two-stage game, they show that the set of Cournot-Walras

equilibria coincide with a specific set of subgame perfect equilibria, which is called

the set of Pseudo-Markov perfect equilibria. Unfortunately, the paper does not

provide an existence result for a Pseudo-Markov perfect equilibrium, which is the

Cournot-Walras equilibrium.

1.5 Outline of the thesis

This thesis studies oligopolies in two different kinds of exchange economies. In

Chapters 2 and 3, we consider exchange economies with infinitely many commodi-

ties and traders while, in Chapter 4, we consider mixed exchange economies with

two commodities. However, in all three chapters, the analysis is developed by us-

ing a strategic market game with trading posts where trade takes place by using

commodity money.

In the previous sections, we have seen that both the contributions of Negishi

(1961) and Gabszewicz and Michel (1997) consider agents with mixed behaviours:

the monopolistically competitive firms and the oligopolists respectively. A critique

similar to the one stressed by Okuno et al. (1980) can be raised for these two

models: no formal explanation is given as to why a particular trader should behave

strategically on some commodities and competitively on others. In Chapter 2 and

3, we address this issue by considering a strategic market game with a countable

infinity of commodities and traders in order to see if in such framework traders

1In Example 1 it is not possible to see this feature because we consider a two-commodity
exchange economy with corner endowments.
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with mixed behaviours arise endogenously in equilibrium. Indeed, when a trader

is active on an infinite set of commodities, his market power can vanish along

the sequence of commodities or can remain non-negligible. To describe these new

phenomena, we introduce the notion of “asymptotic oligopolist”, which describes

a trader whose market power is uniformly bounded away from zero on an infinite

set of commodities, and the notion of “asymptotic price-taker”, which describes a

trader whose market power converges to zero along the sequence of commodities.

It is the latter that represents a trader with a kind of mixed behaviour since his

market power can be made arbitrary small by choosing an appropriate infinite set

of commodities while it is greater than a positive constant on a finite set.

In Chapter 2, we extend the strategic market game developed by Dubey and

Shubik (1978) to exchange economies with a double infinity of commodities and

traders. The main results of the chapter are a theorem of existence of a Cournot-

Nash equilibrium in which all commodities are exchanged and a theorem of con-

vergence which shows that when the economy is replicated the price vector and

the allocation, at the Cournot-Nash equilibrium, converge to the Walras equilib-

rium of the underlying exchange economy. Furthermore, we illustrate the notions

of asymptotic oligopolist and asymptotic price-taker by means of examples. We

also show the main difficulties which arise in proving the existence of asymptotic

price-takers.

In Chapter 3, we address this last issue by considering a variation of the Dubey

and Shubik game called “all for sale model”. In this model, at the start of the

game all traders are required to deposit all the commodities in their initial endow-

ment, except commodity money, in the appropriate trading post in exchange for

non-negotiable receipts. The fact that all commodities go into the trading posts

at the beginning of the game simplifies the mathematical analysis of the model.

In such framework, we provide the sufficient conditions on the fundamentals of an

economy under which an asymptotic price-taker exists. Heuristically, an asymp-

totic price-taker exists if all markets are thick, i.e., the quantities of commodities

exchanged in each trading post are non-negligible. Furthermore, we prove the ex-

istence of a Cournot-Nash equilibrium for the all for sale model with an infinite

number of commodities and traders. It is worth to note that even if the games

considered in the two chapters are similar the two proofs of existence require dif-

ferent assumptions and one is based on the Kakutani–Fan–Glicksberg Fixed Point

Theorem while the other is based on the Brouwer–Schauder–Tychonoff Fixed Point

Theorem (see Corollaries 17.55 and 17.56 in Aliprantis and Border (2006)).
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In Chapter 4, which is the part devoted to mixed exchange economies, we study

the strategic foundations of oligopoly in a bilateral oligopoly framework. In the

previous section, we have seen that Gabszewicz and Mertens (1971) and Shitovitz

(1973) were able to establish some equivalence results between the allocations in

the core and the Walras allocations in mixed exchange economies. In this chapter,

we raise the question whether, in the non-cooperative approach, an equivalence, or

at least a non-empty intersection, between the sets of Cournot-Nash and Walras

allocations may hold in mixed exchange economies. We answer to this question

by showing that a necessary and sufficient condition for a Cournot–Nash alloca-

tion to be a Walras allocation is that all atoms demand a null amount of one of

the two commodities. When our condition fails to hold, we also confirm, through

some examples, the result obtained by Okuno et al. (1980): small traders al-

ways have a negligible influence on prices, while oligopolists keep their strategic

power even when their behaviour turns out to be Walrasian in the cooperative ap-

proach. Furthermore, we discuss the threefold equivalence among the sets of core,

Cournot-Nash, and Walras allocations with some examples. Unfortunately, our

result depends on atoms’ demand behaviours at a Cournot-Nash equilibrium and

then further research should be devoted to find the conditions on the fundamentals

of an economy, i.e., traders’ size, endowments, and preferences, under which our

theorem holds.
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2

Non-Cooperative Oligopoly in Economies with

Infinitely Many Commodities and Traders

2.1 Introduction

The celebrated works of Chamberlin (1933) and Robinson (1933) introduced

the theory of monopolistic competition to overcome the cleavage between the com-

plementary approaches of perfect competition and monopoly. Indeed both believed

that the assumption of perfect competition was too restrictive and that the real

world was characterised by a mixture of competitive behaviour and market power.

The aim of this chapter is to develop a coherent and tractable theoretical model

in which agents with some kind of mixed behaviour – market power on some mar-

kets and competitive behaviour on others – can arise endogenously in equilibrium

without making ad hoc assumptions.

To consider traders who are “small” compared to the whole economy and may

display the mixed behaviour, we extend the analysis of non-cooperative oligopoly

to exchange economies with a countable infinity of commodities and traders. The

infinity of commodities can be seen as a set of differentiated commodities by using

the Hotelling line. Our analysis is based on the literature on strategic market games

initiated by the seminal papers of Shubik (1973), Shapley (1976), and Shapley and

Shubik (1977) to study exchange economies in which all traders can influence the

0Some of the materials of this chapter were published in Ghosal S., Tonin S. (2014), “Non-
Cooperative Asymptotic Oligopoly in Economies with Infinitely Many Commodities”, Discussion
Paper 2014-15, Adam Smith Business School, University of Glasgow.
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prices. In this games, when traders and commodities are finite, all traders turn

out to have market power on all commodities. Dubey and Shapley (1994) and

Codognato and Ghosal (2000) considered strategic market games with a continuum

of traders to study agents that are negligible when compared to the whole economy

and then behave competitively in equilibrium. Differently, in our framework with

“small” agents, the market power of a trader active on an infinite set of commodities

can vanish along the sequence of commodities or can remain non-negligible as in

the finite case. To describe these phenomena, we introduce two new notions. We

say that a trader is an “asymptotic oligopolist” if his market power is uniformly

bounded away from zero on an infinite subset of commodities, otherwise, if his

market power converges to zero along the sequence of commodities, we say that

the trader is an “asymptotic price-taker”. The former can be simply interpreted

as the extension of the classical notion of oligopolist to infinite economies (see

Cournot (1838) and Gabszewicz and Vial (1972) for the study of oligopolists in

partial equilibrium and in general equilibrium respectively). The latter describes

a trader with a kind of mixed behaviour since his market power can be made

arbitrary small on an infinite set of commodities while it is greater than a positive

constant only on a finite number of commodities.

In the previous literature on imperfect competition the mixed behaviour was

usually obtained by considering agents characterised by portfolios of commodities

which contain the commodities on which agents have market power. For instance,

Negishi (1961) extended the theory of monopolistic competition of Chamberlin

(1933) and Robinson (1933) from partial to general equilibrium. To do so, he

considers monopolistically competitive firms characterized by portfolios of com-

modities containing all the commodities on which a firm has market power. He

further assumes that portfolios are strict subsets of all commodities so that a mo-

nopolistically competitive firm has market power on a subset of commodities while

it acts competitively on all others. In a similar vein, d’Aspremont, Dos Santos Fer-

reira, and Gérard-Varet (1997) considered exchange economies in which consumers

are characterised by portfolios of commodities to introduce the “Cournotian Mo-

nopolistic Competition Equilibrium” which aims to generalize both the Cournot’s

solution and the monopolistic competition in partial equilibrium. Finally, Gab-

szewicz and Michel (1997) introduced the notion of portfolio in the Cournot-Walras

approach in exchange economies initiated by Codognato and Gabszewicz (1991).

In their model, some traders are defined oligopolists and each of them is charac-

terized by a portfolio which is a subset of the commodities held by the oligopolist.
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Therefore, each oligopolist has a mixed behaviour: strategic behaviour in supply-

ing the commodities which belong to the portfolio and competitive behaviour in

demanding all the commodities and in supplying the commodities which are not in

the portfolio. A common feature of all these contributions is that the portfolio of

commodities is a primitive of the model and then no formal explanation is given as

to why a particular trader should behave strategically on some commodities and

competitively on others. In contrast, by using strategic market games, traders’

market power is not assumed but is endogenously determined in equilibrium.

Our contributions are as follows. We first define an exchange economy with

a countable infinity of commodities and traders having a structure of multilateral

oligopoly, that is an economy in which each trader holds only commodity money

and one other commodity. We then extend the strategic market game analysed

by Dubey and Shubik (1978) to this particular setting. This is a strategic market

game with commodity money in which there is a trading post for each commodity

where the commodity is exchanged for commodity money. The actions available

to traders are offers, amounts of commodities put up in exchange for commodity

money, and bids, amounts of commodity money given in exchange for other com-

modities. Since in this game a Cournot-Nash equilibrium with no trade always

exists, we prove the existence of an “active” Cournot-Nash equilibrium at which

all commodities are exchanged. After having defined the model and proved the ex-

istence result, we analyse traders’ market power at a Cournot-Nash equilibrium by

introducing the formal definitions of asymptotic oligopolist and asymptotic price-

taker. We then consider some examples to illustrate these two notions and to show,

heuristically, under which conditions an asymptotic oligopolist exists. Perhaps sur-

prisingly, we construct an example where, even if the number of traders active in

each trading post is not uniformly bounded from above, there are traders “big

enough”, in terms of initial endowment of commodity money, who are asymptotic

oligopolists. In Example 4, we show why an asymptotic oligopolist and an asymp-

totic price-taker can be heuristically interpreted as global and local oligopolists

respectively. Furthermore, this example clarifies why the definitions of asymptotic

oligopolist and asymptotic price-taker are based on the notion of limit. As in the

previous contributions on strategic market games (see Dubey and Shubik (1978),

Sahi and Yao (1989), and Amir, Sahi, Shubik, and Yao (1990), among others), we

prove that the price vector and the allocation, at the Cournot-Nash equilibrium,

converge to the Walras equilibrium when the number of each type of trader tends

to infinity. We finally consider the case of exchange economies with an infinite
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aggregate endowment of commodity money. In such setting, we prove the exis-

tence of an active Cournot-Nash equilibrium and we consider some examples with

asymptotic oligopolists and asymptotic price-takers. Obviously, since there is an

infinite amount of commodity money, a Walras equilibrium does not exist.

From a mathematical point of view, our approach relies on the literature on

economies with infinitely many commodities and with a double infinity of commodi-

ties and traders initiated by Bewley (1972) and Balasko, Cass, and Shell (1980)

respectively. Our existence result is different from the one provided by Dubey and

Shubik (1978) because we prove the existence of a Cournot-Nash equilibrium at

which all commodities are exchanged while they proved the existence of an “equi-

librium point” that is a Cournot-Nash equilibrium in which some commodities are

legitimately not exchanged (see Cordella and Gabszewicz (1998) and Busetto and

Codognato (2006) for a detailed analysis on “legitimately inactive” trading posts).

Furthermore, the proof of existence adapts the approach used by Bloch and Ferrer

(2001) for the case of two commodities to a setting with an infinite set of commodi-

ties and it is based on the Brouwer–Schauder–Tychonoff Fixed Point Theorem and

on the Generalized Kuhn-Tucker Theorem. This last theorem is systematically

used to prove that each commodity is exchanged at the Cournot-Nash equilibrium.

Since we deal with a framework with an infinite number of commodities, some non

classical restrictions on marginal utilities are needed to ensure that the vector of

prices lies in a compact set bounded away form zero.

The chapter is organised as follows. In Section 2.2, we introduce the mathe-

matical model. In Section 2.3, we prove the existence theorem. In Section 2.4,

we introduce the definitions of asymptotic oligopolist and asymptotic price-taker

and we show the examples. In Section 2.5, we prove the convergence theorem. In

Section 2.6, we consider exchange economies with an infinite aggregate endowment

of commodity money. In Section 2.7, we draw some conclusions from our analysis.

In the appendixes, we list some mathematical definitions and results, we relate

our market power measure with the notions of marginal price and average price

introduced by Okuno, Postlewaite, and Roberts (1980), and we compare our model

with the strategic market game analysed by Dubey and Shubik (1978).

2.2 Mathematical model

In this section, we define an exchange economy with a countable infinity of

commodities and traders and the strategic market game associated to it. Further-
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more, we make the assumptions necessary to prove the existence of a Cournot-Nash

equilibrium at which all commodities are exchanged.

Let Tt be a finite set with cardinality k strictly greater than 1. Elements of Tt

are traders of type t. The set of traders is I = ∪∞t=1Tt. The set of commodities is

J = {0, 1, 2, . . . }. The consumption set is denoted by X. A commodity bundle x is

a point in X with xj the amount of commodity j. A trader i is characterised by an

initial endowment, wi ∈ X, and a utility function, ui : X → R, which describes his

preferences. Traders of the same type have the same initial endowment and utility

function. The context should clarify whether the superscript refers to a trader type

or to a trader. An exchange economy is then a set kE = {(ui, wi) : i ∈ I}, with k

the number of traders of each type.

An allocation x is a specification of a commodity bundle xi, for each i ∈ I,

such that
∑

i∈I x
i
j =

∑
i∈I w

i
j, for each j ∈ J . A price vector is denoted by p.

Given a price vector p, we define the budget set of a trader i to be Bi(p) = {x ∈
X :

∑∞
j=0 pjx

i
j ≤

∑∞
j=0 pjw

i
j}. A Walras equilibrium is a pair (p,x) consisting of a

price vector p and an allocation x such that xi is maximal with respect to ui in i’s

budget set, for each i ∈ I.

A commodity j is desired by a trader i if ui is an increasing function of the

variable xij and limxij→0
∂ui

∂xij
= ∞, for any fixed choice of the other variables. The

set of commodities desired by a trader i is denoted by Li.

We make the following assumptions.

Assumption 1. Let σ be a positive constant. The initial endowment of a type

t trader is such that wt0 > 0, wtt > σ, and wtj = 0, for each j ∈ J \ {0, t}, for

t = 1, 2, . . . .

Assumption 2. Let e be a positive constant such that σ < e. The aggregate initial

endowment of each commodity is such that
∑∞

t=1 w
t
0 < e and

∑∞
t=1 w

t
j = wjj < e,

for each j ∈ J \ {0}.

Assumption 3. The consumption set X is a subset of the space of non-negative

bounded sequences `+
∞ endowed with the product topology, i.e., X = {x ∈ `+

∞ :

supj |xj| ≤ ke}.1

Assumption 4. The utility function of a type t trader is continuous, continuously

1All the mathematical definitions and results can be found in Appendix 2.A.
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Frèchet differentiable,2 non-decreasing, and concave, for t = 1, 2, . . . . Moreover,

let λ and f be two positive constants such that λ < f , the marginal utilities of

a type t trader are such that (i) λ ≤ ∂ut

∂xt0
(xt) ≤ f and λ ≤ ∂ut

∂xtt
(xt) ≤ f , for each

xt ∈ X; (ii) ∂ut

∂xtt
(xt) ≤ ∂ut

∂xt0
(xt), for each xt such that xtt = wtt, for t = 1, 2, . . . .

Assumption 5. A commodity j is desired by at least one type of trader, for each

j ∈ J \ {0}.

The first assumption formalises the notion of multilateral oligopoly and the sec-

ond ensures that the aggregate initial endowment of all commodities is uniformly

bounded from above. The third assumption imposes restrictions on the consump-

tion set which are standard in the literature on infinite economies. In the first part

of Assumption 4, we made the classical restrictions on traders’ preferences. We

need the additional conditions (i) and (ii) on the marginal utilities of commodity

money and the commodity held by the trader because the space of commodities is

infinite. Condition (i) is needed to prove that the price vector lies in a compact set

uniformly bounded away from zero. Condition (ii) guarantees that each trader puts

up in exchange the commodity in his initial endowment at the Cournot-Nash equi-

librium. Utility functions which satisfy these conditions are, for instance, linear in

commodity money and separable respect to the commodity in the endowment of

the trader, i.e., ut(x) = xt0 + zt(xtt) + vt(xt1, . . . , x
t
t−1, x

t
t+1, . . . ).

3 The last assump-

tion is standard in the literature on strategic market games but our definition of

desired commodity is stronger than the one of Dubey and Shubik (1978) because

we impose restrictions on the limits of marginal utilities.

We now introduce the strategic market game kΓ associated with the exchange

economy, with k the number of traders of each type.4 In this game, each trader

has two types of actions: the offer of the commodity in his initial endowment and

the bids of commodity money on all other commodities. So, the strategy set of a

trader i of type t is

Si =
{
si = (qit, b

i
1, . . . , b

i
t−1, b

i
t+1, . . . ) : 0 ≤ qit ≤ wit, b

i
j ≥ 0, for j ∈ J \ {0, t},

and
∑
j 6=0,t

bij ≤ wi0

}
,

2Differentiability should implicitly be understood to include the case of infinite partial deriva-
tives along the boundary of the consumption set (for a discussion of this case, see, for instance,
Kreps (2012), p. 58).

3Shubik and Yao (1989) made assumptions similar to ours to prove the existence of an equi-
librium in an infinite-horizon strategic market game with commodity money.

4A similar game was introduced by Shubik (1973). In Appendix 2.C, we prove that in our
setting the game kΓ is equivalent to the game analysed by Dubey and Shubik (1978) in terms of
attainable commodity bundles at the Cournot-Nash equilibrium.
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where qit is the offer of commodity t that trader i puts up in exchange for commodity

money and bij is the bid of commodity money that he makes on commodity j.

Without loss of generality, we make the following technical assumption on the

strategy set.

Assumption 6. The set Si is a subset of `+
∞ endowed with the product topology,

for each i ∈ I, i.e., Si ⊆ {si ∈ `+
∞ : supj |sij| ≤ e}.

This assumption implies that Si lies in a normed space and therefore in a Hausdorff

space. Let S =
∏

i∈I S
i and S−z =

∏
i∈I\{z} S

i. Let s and s−i be elements of S and

S−i respectively.

In the game, there is a trading post for each commodity where its price is

determined and the commodity is exchanged for commodity money. For each

s ∈ S, the price vector p(s) is such that

pj(s) =

{
b̄j
q̄j

if q̄j 6= 0,

0 if q̄j = 0,

for each j ∈ J \ {0}, with q̄j =
∑

i∈Tj q
i
j and b̄j =

∑
i∈I\Tj b

i
j. By Assumption 2,

the sums q̄j and b̄j are uniformly bounded from above, for each j ∈ J \ {0}. For

each s ∈ S, the final holding xi(s) of a trader i of type t is such that

xi0(s) = wi0 −
∑
j 6=0,t

bij + qitpt(s), (2.1)

xit(s) = wit − qit,

xij(s) =

{
bij

pj(s)
if pj(s) 6= 0,

0 if pj(s) = 0,
(2.2)

for each j ∈ J \ {0, t}.
The payoff function of a trader i, πi : S → R, is such that πi(s) = ui(xi(s)).

We now introduce the definitions of an active trading post, a best response

correspondence, and a Cournot-Nash equilibrium.

Definition 1. A trading post for a commodity j is said to be active if q̄j > 0 and

b̄j > 0, otherwise we say that the trading post is inactive.

Definition 2. The best response correspondence of a trader i is a correspondence

φi : S−i → Si such that

φi(s−i) ∈ arg max
si∈Si

πi(si, s−i),

for each s−i ∈ S−i.
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Definition 3. An ŝ ∈ S is a Cournot-Nash equilibrium of kΓ if ŝi ∈ φi(ŝ−i), for

each i ∈ I.

We also define the following particular types of Cournot-Nash equilibria. An

active Cournot-Nash equilibrium is a Cournot-Nash equilibrium such that all trad-

ing posts are active. A type-symmetric Cournot-Nash equilibrium is a Cournot-

Nash equilibrium such that all traders of the same type play the same strategy.

An interior Cournot-Nash equilibrium is a Cournot-Nash equilibrium such that∑
j 6=0,t b

i
j < wi0, for each i ∈ I.

2.3 Theorem of existence

In this section, we state and prove the theorem of existence of an active Cournot-

Nash equilibrium for the game kΓ. Before to do so, we introduce some additional

notions and we prove some lemmas. Following Dubey and Shubik (1978), in order

to prove the existence of a Cournot-Nash equilibrium, we introduce the perturbed

strategic market game kΓ
ε, the function xi0(xi1, x

i
2, . . . ), and the set Y i(s−i, ε).5

The perturbed strategic market game kΓ
ε is a game defined as kΓ with the only

exception that the price vector p(s) becomes

pεj(s) =
b̄j + ε

q̄j + ε
,

for each j ∈ J \ {0}, with ε > 0. The interpretation is that an outside agency

places a fixed bid of ε and a fixed offer of ε in each trading post. This does not

change the strategy sets of traders, but does affect the prices, the final holdings,

and the payoffs. Consider, without loss of generality, a trader i of type t and fix

the strategies s−i for all other traders. Let

xi0(xi1, x
i
2, . . . ) = wi0 −

∑
j 6=0,t

(b̄ij + ε)xij
q̄j + ε− xij

+
(b̄t + ε)(wit − xit)
q̄it + ε+ wit − xit

and let

Y i(s−i, ε) =
{

(xi1, x
i
2, . . . ) ∈ X : xit = wit − qit, xij = bij

q̄j + ε

b̄ij + bij + ε
,

for each j ∈ J \ {0, t}, for each si ∈ Si
}
,

with q̄it = q̄t − qit and b̄ij = b̄j − bij. The function xi0(xi1, x
i
2, . . . ) can be easily

obtained by the function xi0(si) in (2.1) by relabelling the variables. Furthermore,

5Dubey and Shubik (1978) denotes the set Y i(s−i, ε) with Di(Q,B, ε).
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it is straightforward to verify that this function is strictly concave since it is a sum

of concave and strictly concave functions. In the next proposition, by following

the proof in Appendix A of Dubey and Shubik (1978), we prove that Y i(s−i, ε) is

a convex set.

Proposition 1. The set Y i(s−i, ε) is convex.

Proof. Consider, without loss of generality, a trader i of type t and fix the strategies

s−i for all other traders. Take two commodity bundles x′i, x′′i ∈ Y i(s−i, ε) and

consider x̃i = αx′i + (1 − α)x′′i, with α ∈ (0, 1). We want to show that x̃i ∈
Y i(s−i, ε). Hence, there must exist a strategy s̃i ∈ Si such that xi(s̃i) = x̃i. Let

x′i = xi(s′i) and x′′i = xi(s′′i). Consider first the commodity t. It is straightforward

to verify that x̃it = xit(αq
′i
t + (1 − α)q′′it ). Consider now a commodity j 6= t. By

equation (2.2), the function xij(b
i
j) is concave in bij, then

x̃ij = αx′ij + (1− α)x′′ij = αxij(b
′i
j ) + (1− α)xij(b

′′i
j ) ≤ xij(αb

′i
j + (1− α)b′′ij ) = x∗ij .

By the intermediate value theorem and since setting b′ij = 0 and b′′ij = 0 would make

x∗ij = 0, we may reduce b′ij and b′′ij appropriately to get x̃ij, for each j ∈ J \{0}.

In the next lemma, we prove the existence of a Cournot-Nash equilibrium in

the perturbed game.

Lemma 1. Under Assumptions 1, 2, 3, 4, 5, and 6, for each ε > 0, there exists a

Cournot-Nash equilibrium for kΓ
ε.

Proof. Consider, without loss of generality, a trader i and fix the strategies s−i

for all other traders. In the perturbed game the payoff function πi is continuous

because it is a composition of continuous functions (see Theorem 17.23, p. 566 in

Aliprantis and Border (2006), AB hereafter). By Tychonoff Theorem (see Theorem

2.61, p. 52 in AB), Si is compact. By Weierstrass Theorem (see Corollary 2.35, p.

40 in AB), there exists a strategy ŝi that maximises the payoff function. We then

consider the best response correspondence φi : S−i → Si. Since Si is a non-empty

and compact Hausdorff space, by Berge Maximum Theorem (see Theorem 17.31,

p. 570 in AB), φi is an upper hemicontinuous correspondence.

We show now that φi is a continuous function. Suppose that there are two

feasible commodity bundles x′i and x′′i that maximise the utility function. Consider

the commodity bundle x̃ii = 1
2
x′i + 1

2
x′′i. Since the utility function is concave,

ui(x̃i) ≥ 1
2
ui(x′i) + 1

2
ui(x′′i) = ui(x′i). Since xi0(xi1, x

i
2, . . . ) is strictly concave and
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Y i(s−i, ε) is convex, there exists a γ > 0 such that x̃i+γe0 is a feasible allocation6.

But then, since the utility function is strictly increasing in xi0, ui(x̃i+γe0) > ui(x′i),

a contradiction. Therefore, there is only one commodity bundle that maximises the

utility function and φi is a single valued correspondence. Hence, φi is a continuous

function (see Lemma 17.6, p.559 in AB).

As we are looking for a fixed point in the strategy space S, let’s consider

φi : S → Si. Let Φ : S → S such that Φ(S) =
∏

i∈I φ
i(S). The function Φ is

continuous since it is a product of continuous functions (see Theorem 17.28, p.

568 in AB). By Tychonoff Theorem, S is compact. Moreover, S is a non-empty

and convex Hausdorff space. Therefore, by Brouwer-Schauder-Tychonoff Theorem

(see Corollary 17.56, p. 583 in AB), there exists a fixed point ŝ of Φ, which is a

Cournot-Nash equilibrium of the perturbed game kΓ
ε.

In the next lemma, we prove that all traders make positive bids on the com-

modities which are desired at a Cournot-Nash equilibrium.

Lemma 2. At a Cournot-Nash equilibrium ŝ of the perturbed game kΓ
ε, b̂ij > 0,

for each j ∈ Li, for each i ∈ I.

Proof. Let ŝ be a Cournot-Nash equilibrium of the perturbed game. Consider,

without loss of generality, a trader i. First, suppose that b̂il = 0, for an l ∈ Li, and∑
j 6=0,t b̂

i
j < wi0. Consider a strategy s′i such that b′il = b̂il + γ, with γ sufficiently

small, and all other actions equal to the actions of the original strategy ŝi. Since

limxil→0
∂ui

∂xil
= ∞, ui(xi(s′i, ŝ−i)) > ui(xi(ŝi, ŝ−i)), a contradiction. Now, suppose

that b̂il = 0, for an l ∈ Li, and
∑

j 6=0,t b̂
i
j = wi0. Then, there exists a commodity m

such that b̂im > 0. Consider a strategy s′i such that b′im = b̂im−γ, b′il = b̂il+γ, with γ

sufficiently small, and all other actions equal to the actions of the original strategy

ŝi. Since limxil→0
∂ui

∂xil
=∞, ui(xi(s′i, ŝ−i)) > ui(xi(ŝi, ŝ−i)), a contradiction. Hence,

b̂ij > 0, for each j ∈ Li, for each i ∈ I.

In the next lemma, we prove that all commodities are offered in the trading

posts at a Cournot-Nash equilibrium.

Lemma 3. At a Cournot-Nash equilibrium ŝ of the perturbed game kΓ
ε, ¯̂qj > 0,

for each j ∈ J \ {0}.

Proof. Let ŝ be a Cournot-Nash equilibrium of the perturbed game. Consider,

without loss of generality, a trader i of type t. Then, ŝi solves the following max-

6ej is an infinite vector in `∞ whose jth component is 1, and all others are 0.
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imisation problem

max
si

πi(si, ŝ−i),

subject to qit ≤ wit, (i)∑
j 6=0,t

bij ≤ wi0, (ii)

− qit ≤ 0, (iii)

− bij ≤ 0, for each j ∈ J \ {0, t}. (iv)

(2.3)

The constraints can be written as a function G : `∞ → Z, with Z ⊂ `∞. It

is straightforward to verify that Z contains a positive cone P with a non-empty

interior and G is Fréchet differentiable. We now show that there exists an h ∈ `∞
such that G(ŝi)+G′(ŝi)h < 0, with G′ the Fréchet derivative of G. In matrix form,

it becomes 

q̂it − wit∑
j 6=t b̂

i
j − wi0
−q̂it
−b̂i1
−b̂i2
. . .


+



ht∑
j 6=t hj

−ht
−h1

−h2

. . .


<



0

0

0

0

0

. . .


.

First, suppose that the constraints (i) and (ii) are not binding. Consider a vector

h with hj = 0, for each j such that b̂ij > 0, and hj positive and sufficiently small,

for all other j. But then, ŝi is a regular point. Now, suppose that the constraints

(i) and (ii) are binding. Consider a vector h with hj positive and sufficiently small,

for each j such that b̂ij = 0, and hj negative and sufficiently small, for all other

j. But then, ŝi is a regular point. If either constraint (i) or (ii) is binding the

previous argument leads, mutatis mutandis, to the same result. Hence, ŝi is a

regular point of the constrained set. Finally, since the game is perturbed and the

utility function is continuously Fréchet differentiable, πi is continuously Fréchet

differentiable. Hence, we have proved that all the hypothesis of the Generalized

Kuhn-Tucker Theorem are satisfied (see Appendix 2.A). Therefore, there exist

non-negative multipliers λ̂i∗1 and µ̂i∗t such that

∂πi

∂qit
(ŝi, ŝ−i)− λ̂i∗1 + µ̂i∗t = 0, (2.4)

λ̂i∗1 (q̂it − wit) = 0,

µ̂i∗t q̂
i
t = 0.
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Since the payoff function is defined as πi(s) = ui(xi(s)), equation (2.4) becomes

∂ui

∂xi0
(xi(ŝ))

¯̂
bt + ε

¯̂qit + q̂it + ε

(
1− q̂it

¯̂qit + q̂it + ε

)
− ∂ui

∂xit
(xi(ŝ))− λ̂i∗1 + µ̂i∗t = 0. (2.5)

Suppose that ¯̂qt = 0. Then, q̂it = 0, for each trader i of type t, and λ̂i∗1 = 0. Hence,

the equation above becomes

∂ui

∂xi0
(xi(ŝ))

b̂t + ε

ε
− ∂ui

∂xit
(xi(ŝ)) + µ̂i∗t = 0.

Since
¯̂
bt+ε
ε
> 1, by Lemma 2, and ∂ut

∂xtt
(xt) ≤ ∂ut

∂xt0
(xt) for each xt such that xtt = wtt,

by Assumption 4, then the left hand side of the equation is greater than zero, a

contradiction. Hence, ¯̂qj > 0, for each j ∈ J \ {0}.

By Lemmas 1, 2, and 3, there exists an active Cournot-Nash equilibrium in

the perturbed game. In the next lemma, we prove that the price vector lies in

a compact set bounded away from zero, for any ε, at an active Cournot-Nash

equilibrium. Since the number of commodities is infinite, we could not apply the

analogous lemma of Dubey and Shubik (1978).

Lemma 4. At an active Cournot-Nash equilibrium ŝ of the perturbed game kΓ
ε,

there exist two positive constants, independent from ε, Cj and Dj such that

Cj < pεj(ŝ) < Dj,

for each j ∈ J \ {0}. Moreover, Cj is uniformly bounded away from zero and Dj

is uniformly bounded from above.

Proof. Let ŝ be an active Cournot-Nash equilibrium of the perturbed game. With-

out loss of generality, let j = l. We first establish the existence of Cl. Since

the Cournot-Nash equilibrium is active, there exists a trader i of type l such that

q̂il > 0. Then, a decrease γ in i’s offer of commodity l is feasible, with 0 < γ ≤ q̂il ,

and has the following incremental effects on the final holding of trader i

xi0(ŝ(γ))− xi0(ŝ) = (q̂il − γ)
¯̂
bl + ε

¯̂ql + ε− γ
− q̂il

¯̂
bl + ε
¯̂ql + ε

,

=
¯̂
bl + ε
¯̂ql + ε

(
(q̂il − γ)

¯̂ql + ε
¯̂ql + ε− γ

− q̂il
)
≥ −pεl (ŝ)γ,

xij(ŝ(γ))− xij(ŝ) = 0, for each j ∈ J \ {0, l},

xil(ŝ(γ))− xil(ŝ) = γ.
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The inequality in the preceding array follows from the fact that ¯̂ql + ε > ¯̂ql + ε− γ.

Then, we obtain the following vector inequality

xi(ŝ(γ)) ≥ xi(ŝ)− pεl (ŝ)γe0 + γel.

By using a linear approximation of the utility function around the point xi(ŝ), we

obtain

ui(xi(ŝ(γ)))− ui(xi(ŝ)) ≥ − ∂u
i

∂xi0
(xi(ŝ))pεl (ŝ)γ +

∂ui

∂xil
(xi(ŝ))γ +O(γ2).

Since xi(ŝ) is an optimum point, the left hand side of the inequality is negative

and then

pεl (ŝ) >
∂ui

∂xil
(xi(ŝ))

/
∂ui

∂xi0
(xi(ŝ)) = Cl.

By Assumption 4(i), Cl ≥ λ
f
. Then, Cj ≥ λ

f
, for each j ∈ J \ {0}. Now, we

establish the existence of Dl. Since there are at least two traders of each type, we

consider a trader i of type l such that q̂il ≤
¯̂ql
2

. We need to consider two cases.

First, suppose that q̂il < wil . Then, an increase γ in i’s offer of commodity l is

feasible, with 0 < γ < min{wil − q̂il , ε}, and has the following incremental effects

on the final holding of trader i

xi0(ŝ(γ))− xi0(ŝ) = (q̂il + γ)
¯̂
bl + ε

¯̂ql + ε+ γ
− q̂il

¯̂
bl + ε
¯̂ql + ε

,

=
¯̂
bl + ε
¯̂ql + ε

¯̂qil + ε
¯̂qil + q̂il + ε+ γ

γ ≥ 1

3
pεl (ŝ)γ,

xij(ŝ(γ))− xij(ŝ) = 0, for each j ∈ J \ {0, l},

xil(ŝ(γ))− xil(ŝ) = −γ.

The inequality in the preceding array follows from the fact that q̂il ≤ ¯̂qil + ε and

γ ≤ ¯̂qil + ε. Then, we obtain the following vector inequality

xi(ŝ(γ)) ≥ xi(ŝ) +
1

3
pεl (ŝ)γe0 − γel.

By using a linear approximation of the utility function around the point xi(ŝ), we

obtain

ui(xi(ŝ(γ)))− ui(xi(ŝ)) ≥ ∂ui

∂xi0
(xi(ŝ))

1

3
pεl (ŝ)γ −

∂ui

∂xil
(xi(ŝ))γ +O(γ2).

Since xi(ŝ) is an optimum point, the left hand side of the inequality is negative

and then

pεl (ŝ) < 3

(
∂ui

∂xil
(xi(ŝ))

/
∂ui

∂xi0
(xi(ŝ))

)
= D1

l .
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By Assumption 4(i), D1
l ≤ 3f

λ
. Now, suppose that q̂il = wil . Then,

pεl (ŝ) <
ke

wil
= D2

l ,

with ke the total endowment of commodity money in the economy. By Assumption

1, D2
l ≤ ke

σ
. Finally, we choose Dl such that Dl = max{D1

l , D
2
l }. Hence, Dj is

uniformly bounded from above as D1
j and D2

j are uniformly bounded from above,

for each j ∈ J \ {0}.

In the next lemma, we prove that there exists a positive lower bound, indepen-

dent from ε, for each bid made by a trader on a desired commodity at an active

Cournot-Nash equilibrium.

Lemma 5. At an active Cournot-Nash equilibrium ŝ of the perturbed game kΓ
ε,

there exists a positive constant Bi
j, independent of ε, such that

0 < Bi
j ≤ b̂ij,

for each j ∈ Li, for each i ∈ I.

Proof. Let ŝ be an active Cournot-Nash equilibrium of the perturbed game. Con-

sider, without loss of generality, a trader i of type t. Then, ŝi solves the maximi-

sation problem in (2.3). As in the proof of Lemma 3, all the hypothesis of the

Generalized Kuhn-Tucker Theorem are satisfied and then there exist non-negative

multipliers λ̂i∗2 and µ̂i∗j , for each j ∈ J \ {0, t}, such that

∂πi

∂bij
(ŝi, ŝ−i)− λ̂i∗2 + µ̂i∗j = 0, for each j ∈ J \ {0, t}, (2.6)

λ̂i∗2

(∑
j 6=0,t

b̂ij − wi0
)

= 0,

µ̂i∗j b̂
i
j = 0, for each j ∈ J \ {0, t}.

Consider, without loss of generality, a commodity l ∈ Li. Since the payoff function

is defined as πi(s) = ui(xi(s)), equation (2.6) becomes

− ∂u
i

∂xi0
(xi(ŝ)) +

∂ui

∂xil
(xi(ŝ))

¯̂ql + ε
¯̂
bil + b̂il + ε

(
1− b̂il

¯̂
bil + b̂il + ε

)
− λ̂i∗2 + µ̂i∗j = 0. (2.7)

By Lemma 4 and since ŝ is an active Cournot-Nash equilibrium, we obtain the

following inequality from the previous equation

− ∂u
i

∂xi0
(xi(ŝ)) +

∂ui

∂xil
(xi(ŝ))

1

Dl

( ¯̂
bil + ε

¯̂
bil + b̂il + ε

)
− λ̂i∗2 ≤ 0. (2.8)
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Suppose that b̂il → 0. Then, limb̂il→0

¯̂
bil+ε

¯̂
bil+b̂

i
l+ε

= 1 and limb̂il→0
∂ui

∂xil
(xi(ŝ)) = ∞, as

l ∈ Li. But then, since ∂ui

∂xi0
(xi) and Dl are bounded from above, the left hand side

of the inequality is positive, a contradiction. Hence, there exists a positive lower

bound Bi
j, independent of ε, at which the left hand side of equation (2.8) is equal

to zero, for each j ∈ Li, for each i ∈ I.

We now state the existence theorem.

Theorem 1. Under Assumptions 1, 2, 3, 4, 5, and 6, there exists an active

Cournot-Nash equilibrium for kΓ.

Proof. Consider a sequence of {gε}∞g=1 converging to 0. By Lemmas 1, 2, and 3,

in each perturbed game there exists an active Cournot-Nash equilibrium. Then,

we can consider a sequence of active Cournot-Nash equilibria {gŝ}∞g=1 associated

to the sequence of ε. As proved before, S is compact and, by Lemma 4, pε(gŝ) ∈∏
j 6=0[Cj, Dj] with Cj uniformly bounded away from zero andDj uniformly bounded

from above, for each j ∈ J \{0}. By Tychonoff Theorem,
∏

j 6=0[Cj, Dj] is compact.

Then, we can pick a subsequence of {gŝ}∞g=1 that converges to v such that v ∈ S
and p(v) ∈

∏
j 6=0[Cj, Dj]. Hence, v is a point of continuity of payoff functions

and then it is a Cournot-Nash equilibrium, i.e., v̂. It remains to prove that v̂ is

an active Cournot-Nash equilibrium. By Assumption 5 and Lemma 5, for each

commodity j ∈ J \ {0}, ¯̂
bj ≥ Bi

j > 0, for a trader i such that j ∈ Li. Suppose,

without loss of generality, that there exists a commodity l such that ¯̂ql = 0. But

then, pl(v̂) /∈ [Cl, Dl], a contradiction. Therefore, ¯̂qj > 0, for each j ∈ J \ {0}, and

then v̂ is an active Cournot-Nash equilibrium.

2.4 Asymptotic oligopolies and asymptotic price takers

In this section, we analyse traders’ market power at an active Cournot-Nash

equilibrium of the game kΓ. We study it by introducing the definitions of asymp-

totic oligopolist and asymptotic price-taker. These concepts allow us to extend

the study of traders who can influence prices from finite to infinite economies.

In fact, differently from the finite case, if a trader is active on an infinite num-

ber of commodities, he can keep market power on an infinite set of them or his

market power can vanish along their sequence. We also provide some examples

to illustrate these two notions and to show that the distinction is not trivial in

our framework. Example 1 and 2 show economies with asymptotic oligopolists
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and asymptotic price-takers respectively. Example 3 shows that, perhaps surpris-

ingly, even if the number of traders active in each trading post is not uniformly

bounded from above, there are traders “big enough”, in terms of initial endowment

of commodity money, who are asymptotic oligopolists. This example also helps to

understand heuristically under which conditions an asymptotic oligopolist exists.

Finally, Example 4 shows why an asymptotic oligopolist can heuristically be seen

as a global oligopolist and an asymptotic price-taker as a local one. We start our

analysis by discussing a possible interpretation of the infinity of commodities and

by defining an index to measure traders’ market power.

It is straightforward to see that the mathematical structure of the exchange

economy described in Section 2.2 is similar to an overlapping generation model

(see Balasko, Cass, and Shell (1980), Wilson (1981), and Burke (1988), among

others). As remarked in Geanakoplos and Polemarchakis (1991) “The countably

infinite index of commodities need not to refer to calendar time. Location or

any other characteristic suffice to give rise to economies analytically equivalent to

economies of overlapping generations”. Therefore, the infinite set of commodities

can be interpreted as commodities in different locations or as a set of differentiated

commodities respect to particular attribute. The next figure shows a possible

arrangement of commodities on a Hotelling line. As the diagram makes clear,

A

1

B

2 3 4 5 ...

commodity 1 is at the origin of the line, commodity 2 is in the middle of the line,

commodity 3 is in the middle of the second half, and so on.

We measure traders’ market power by using their market share in each trading

post. Therefore, on the offers side, the market power of a trader i of type t on the

commodity he holds can be measured by qit/q̄t. The higher this ratio is, the higher

is the market power of trader i. By Assumption 1, each commodity is offered by

k traders and then each trader always keeps market power on the commodity held

for any finite k. Similarly, on the bids side, the market power of a trader i of type

t on a commodity j, with j 6= t, can be measured by the ratio bij/b̄j. If bij = 0,

we say that trader i is a trivial price-taker on commodity j. Okuno et al. (1980)

used a different way to measure traders’ market power in strategic market games.

They introduce the notions of marginal price and average price and they show that

when the two prices are equal traders behave competitively. In Appendix 2.B, we

show that our approach is equivalent to the one used by Okuno et al. (1980).
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We now introduce the definitions of an asymptotic oligopolist and an asymptotic

price-taker.

Definition 4. Consider an active Cournot-Nash equilibrium ŝ in which there exists

a trader i such that b̂ij > 0 for an infinite number of commodities. We say that

trader i is an asymptotic price-taker if limj→∞ b̂
i
j/

¯̂
bj = 0, otherwise trader i is an

asymptotic oligopolist.

The key feature of an asymptotic oligopolist is that his market power is greater than

a positive constant on an infinite subset of commodities. Differently, an asymptotic

price-taker i is a trader such that, for any µ > 0, there exists a l ∈ J such that

bij/b̄j < µ, for each j > l, i.e., his market power is smaller than µ on an infinite

set of commodities, with µ arbitrary small. Therefore, an asymptotic price-taker

is characterised by a mixed behaviour because his market power is greater than

a positive constant on a finite set of commodities while it can be made arbitrary

small on infinite sets of commodities.

To simplify computations, in all examples we consider logarithmic additive

utility functions linear in commodity money and in the commodity held by the

trader, i.e., x0+xt+
∑

j βj lnxj.
7 The coefficient βj converts the utilities associated

with the consumption of commodities into commodity money. Furthermore, in the

examples we consider only type-symmetric Cournot-Nash equilibria and then all

superscripts denote types of traders.

In the first example, we show an exchange economy in which at the Cournot-

Nash equilibrium type 1 traders are asymptotic oligopolists.

Example 1. Consider an exchange economy in which traders of type 1, 2, 3, and

t ≥ 4 have the following utility functions and initial endowments

u1(x1) = x1
0 + x1

1 +
∞∑
j=2

δj lnx1
j w1 =

(
1

1− δ
, 1, 0, . . .

)
,

u2(x2) = x2
0 + δ lnx2

1 + x2
2 + δ3 lnx2

3 w2 =

(
δ1

1− δ
, 0, 1, 0, . . .

)
,

u3(x3) = x3
0 + x3

3 + δ4 lnx3
4 w3 =

(
δ2

1− δ
, 0, 0, 1, 0, . . .

)
,

ut(xt) = xt0 + xtt + δt+1 lnxtt+1 wt =

(
δt−1

1− δ
, 0, . . . , 0, 1, 0, . . .

)
,

7Logarithmic utility functions facilitate computations but are not continuous at the boundary.
Therefore, they violate Assumption 4. This does not affect the current analysis but should be
kept in mind.
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with δ ∈ (0, 1). The type-symmetric active Cournot-Nash equilibrium of the game

kΓ associated to the exchange economy is(
q̂1

1, b̂
1
2, b̂

1
3, . . . , b̂

1
j , . . .

)
=
(
δ1G(1)2, δ2G(1), δ3G(2), . . . , δjG(2), . . .

)
,(

q̂2
2, b̂

2
1, b̂

2
3, b̂

2
4, . . . , b̂

2
j , . . .

)
=
(
δ2G(1)2, δ1G(1), δ3G(2), 0, . . . , 0, . . .

)
,(

q̂3
3, b̂

3
1, b̂

3
2, b̂

3
4, b̂

3
5, . . . , b̂

3
j , . . .

)
=
(
2δ3G(1)G(2), 0, 0, δ4G(2), 0, . . . , 0, . . .

)
,(

q̂tt, b̂
t
1, . . . , b̂

t
t−1, b̂

t
t+1, b̂

t
t+2, . . .

)
=
(
2δtG(1)G(2), 0, . . . , 0, δt+1G(2), 0, . . .

)
,

for t = 4, 5, . . . , with G(y) =
(
1 − 1

yk

)
. At this Cournot-Nash equilibrium, type 1

traders are asymptotic oligopolists.

Proof. At the Cournot-Nash equilibrium, in a trading post for commodity j ≥ 3

only types of traders 1 and j− 1 are active and they both bid the same amount of

commodity money. Therefore, the market power of type 1 traders, b̂1
j/

¯̂
bj, is equal

to 1
2k

, for j ≥ 3. Hence, limj→∞ b̂
1
j/

¯̂
bj = 1

2k
.

In this example, type 1 traders are asymptotic oligopolists because in equilibrium

there are only two types of traders active in each trading post and all of them make

the same bid. Heuristically, type 1 traders keep market power on all commodities

because bids and markets’ size shrink together along the sequence of commodities.

In the next example, we show an exchange economy in which at the Cournot-

Nash equilibrium type 1 traders are asymptotic price-takers.

Example 2. Consider an exchange economy in which traders of type 1, 2, 3, and

t ≥ 4 have the following utility functions and initial endowments

u1(x1) = x1
0 + x1

1 +
∞∑
j=2

δj lnx1
j w1 =

(
1

1− δ
, 1, 0, . . .

)
,

u2(x2) = x2
0 + δ lnx2

1 + x2
2 +

∞∑
j=3

δj lnx2
j w2 =

(
δ1

1− δ
, 0, 1, 0, . . .

)
,

u3(x3) = x3
0 + x3

3 +
∞∑
j=4

δj lnx3
j w3 =

(
δ2

1− δ
, 0, 0, 1, 0, . . .

)
,

ut(xt) = xt0 + xtt +
∞∑

j=t+1

δj lnxtj wt =

(
δt−1

1− δ
, 0, . . . , 0, 1, 0, . . .

)
,

with δ ∈ (0, 1). The type-symmetric active Cournot-Nash equilibrium of the game

kΓ associated to the exchange economy is(
q̂1

1, b̂
1
2, b̂

1
3, . . . , b̂

1
j , . . .

)
=
(
δ1G(1)2, δ2G(1), δ3G(2), . . . , δjG(j − 1), . . .

)
,(

q̂2
2, b̂

2
1, b̂

2
3, . . . , b̂

2
j , . . .

)
=
(
δ2G(1)2, δ1G(1), δ3G(2), . . . , δjG(j − 1), . . .

)
,
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(
q̂3

3, b̂
3
1, b̂

3
2, b̂

3
4, . . . , b̂

3
j , . . .

)
=
(
2δ3G(1)G(2), 0, 0, δ4G(3), . . . , δjG(j − 1), . . .

)
,(

q̂tt, b̂
t
1, . . . , b̂

t
t−1, b̂

t
t+1, . . .

)
=
(
(t− 1)δtG(1)G(t− 1), 0, . . . , 0, δt+1G(t), . . .

)
,

for t = 4, 5, . . . , with G(y) =
(
1 − 1

yk

)
. At this Cournot-Nash equilibrium, all

traders are asymptotic price-takers.

Proof. At the Cournot-Nash equilibrium, in a trading post for commodity j ≥
3 there are j − 1 types of traders active and all of them bid the same amount

of commodity money. Therefore, the market power of type t traders active on

commodity j, b̂tj/
¯̂
bj, is equal to 1

(j−1)k
, for j ≥ 2. Hence, limj→∞ b̂

t
j/

¯̂
bj = 0, for

t = 1, 2, . . . .

In this example, in each trading post all traders types make the same bid and their

number is strictly increasing. Therefore, the bids of each trader become negligible

in comparison to the bids of all others along the sequence of commodities and then

everyone is an asymptotic price-taker. A key difference with Example 1 is that the

number of traders types active in each trading post is not uniformly bounded from

above and this counteracts type 1 traders’ market power. As remarked above, even

if the market power of all traders vanishes along the sequence of commodities, each

of them keeps market power on the commodity in the endowment since qtt/q̄t = 1/k,

for t = 1, 2, . . . . A different result is obtained if there exists a type of trader that

places higher bids than other traders along the sequence of commodities.

In the next example, we show an exchange economy where there are asymp-

totic oligopolists even if the number of traders active in each trading post is not

uniformly bounded from above.

Example 3. Consider an exchange economy in which traders of type 1, 2, 3, and

t ≥ 4 have the following utility functions and initial endowments

u1(x1) = x1
0 + x1

1 +
∞∑
j=2

1

j2
lnx1

j , w1 =

(
π2

6
, 1, 0, . . .

)
,

u2(x2) = x2
0 + δ lnx2

1 + x2
2 +

∞∑
j=3

δj lnx2
j w2 =

(
δ1

1− δ
, 0, 1, 0, . . .

)
,

u3(x3) = x3
0 + x3

3 +
∞∑
j=4

δj lnx3
j w3 =

(
δ2

1− δ
, 0, 0, 1, 0, . . .

)
,

ut(xt) = xt0 + xtt +
∞∑

j=t+1

δj lnxtj wt =

(
δt−1

1− δ
, 0, . . . , 0, 1, 0, . . .

)
.
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For k = 2 and δ = 1/3, the type-symmetric active Cournot-Nash equilibrium of

the game kΓ associated to the exchange economy is

(
q̂1

1, b̂
1
2, b̂

1
3, . . . , b̂

1
j , . . .

)
=

(
1

12
,
1

8
,

√
13− 1

36
, . . . ,

(2j + 1)j2 − 3j − F (j)

4j2 (j2 − 3j)
, . . .

)
,

(
q̂2

2, b̂
2
1, b̂

2
3, . . . , b̂

2
j , . . .

)
=

(
1

16
,
1

6
,
7−
√

13

108
, . . . , b̂j, . . .

)
,

(
q̂3

3, b̂
3
1, b̂

3
2, b̂

3
4, . . . , b̂

3
j , . . .

)
=

(
2 +
√

13

108
, 0, 0,

227−
√

4729

14040
, . . . , b̂j, . . .

)
,

(
q̂tt, b̂

t
1, . . . , b̂

t
t−1, b̂

t
t+1, . . .

)
=

(
(2j − 5)j2 + 3j + F (j)

3j8j2
, 0, . . . , 0, b̂j, . . .

)
,

with b̂j = (5−2j)j2+3j(4j−7)−F (j)
3j4(j−2)(3j−j2)

and F (y) =
√

(5− 2y)2y4 + 3y2y2(6y − 11) + 9y,

for t = 4, 5, . . . . At this Cournot-Nash equilibrium, type 1 traders are asymptotic

oligopolists.

Proof. At the Cournot-Nash equilibrium, the market power of type 1 traders, b̂1
j/b̂j,

is equal to (2j−5)j2+3j+1−F (j)
4(3j−j2)

, for each j ≥ 3. Hence, limj→∞ b̂
1
j/b̂j = 1

2
.

In this example, type 1 traders are again asymptotic oligopolists because in each

trading post they place sufficiently higher bids and therefore their bids do not

become negligible respect to other traders’ bids. Heuristically, a trader, with a

higher initial endowment of commodity money and a sequence of utility coefficients

that converges to zero slowly enough, can be an asymptotic oligopolist even if

the number of traders active in each trading post is not uniformly bounded from

above. In Example 3, indeed, type 1 traders have an higher initial endowment of

commodity money than in the previous examples and the sequence { 1
j2
} converges

to zero slower that the sequence {δj}.
In the next example, we show why the notions of asymptotic oligopolist and

asymptotic price-taker are defined by using limits instead of limit points.

Example 4. Consider an exchange economy in which traders of type 1, 2, s ≥ 3

odd, and t ≥ 4 even have the following utility functions and initial endowments

u1(x1) = x1
0 + x1

1 +
∞∑
j=2

δj lnx1
j w1 =

(
1

1− δ
, 1, 0, . . .

)
,

u2(x2) = x2
0 + δ lnx2

1 + x2
2 + δ3 lnx2

3 w2 =

(
δ1

1− δ
, 0, 1, 0, . . .

)
,

us(xs) = xs0 + xss +
1

(s+ 1)2
lnxss+1 ws =

(
1

(s− 1)2
, 0, . . . , 0, 1, 0, . . .

)
,
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ut(xt) = xt0 + xtt + δt+1 lnxtt+1 wt =

(
δt−1

1− δ
, 0, . . . , 0, 1, 0, . . .

)
.

For k = 2 and δ = 1/3, the type-symmetric active Cournot-Nash equilibrium of

the game kΓ associated to the exchange economy is

(b̂1
1, b̂

1
2, b̂

1
3, . . . , b̂

1
j , b̂

1
j+1, . . . ) =

(
1

12
,

1

18
,

1

36
, . . . ,

6

3j5− j2 + F (j)
,

3

3j+14
, . . .

)
,

(q̂2
2, b̂

2
1, b̂

2
3, b̂

2
4, . . . , b̂

2
j , . . . ) =

(
1

36
,
1

6
,

1

36
, 0, . . . , 0, . . .

)
,

(q̂ss, b̂
s
1, . . . , b̂

s
s−1, b̂

s
s+1, . . . ) =

(
3

3s4
, 0, . . . , 0,

6

5(s+ 1)2 − 3s+1 + F (s+ 1)
, 0, . . .

)
,

(q̂tt, b̂
t
1, . . . , b̂

t
t−1, b̂

t
t+1, . . . ) =

(
t2 + 3t + F (t)

3t8t2
, 0, . . . , 0,

3

3t+14
, 0, . . .

)
,

for s ≥ 3 odd and t ≥ 4 even, with F (y) =
√
y4 + 3y14y2 + 9y. At this Cournot-

Nash equilibrium, type 1 traders are asymptotic oligopolists.

Proof. At the Cournot-Nash equilibrium, the market power of type 1 traders, b̂1
j/

¯̂
bj,

is equal to 1
4
, for each j ≥ 3 odd, and to 2j2

3j2+F (j)+3j
, for each j ≥ 4 even. Hence,

the sequence of market power has two limit points 1
4

and 0.

In this example, the sequence of market power has two different limit points and

even if one of them is zero, type 1 traders are asymptotic oligopolists because there

is an infinite number of commodities on which their market power is greater than a

positive constant. These traders can be seen as global oligopolists precisely because

their market power is uniformly bounded away from zero on an infinite subset of

commodities. In the definition of asymptotic price-takers, we have used the notion

of limit to rule out such traders who have a market power uniformly bounded away

from zero on odd commodities and which converges to zero on the even ones. By

doing so, an asymptotic price-taker can be seen as a local oligopolist because his

market power is greater than a positive constant on a finite set of commodities

while it is vanishing on the tail of the sequence of commodities.

2.5 Convergence to the Walras equilibrium

In this section, we consider the relationship between the Walras equilibrium of

the exchange economy and the Cournot-Nash equilibrium of the strategic market

game. We show that if the number of traders of each type tends to infinity then

the price vector and the allocation, at a Cournot-Nash equilibrium, converge to

the Walras equilibrium of the underlying exchange economy.
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Our framework is a particular case of the one considered by Wilson (1981) and it

is straightforward to verify that under our assumptions a Walras equilibrium exists.

This result relies crucially on the fact that there is a finite aggregate endowment

of all commodities. We can then compare the Cournot-Nash equilibrium with the

case in which all traders behave competitively, i.e., the Walras equilibrium. From

the analysis of traders’ market power in the previous section, it follows that the

price vector and the allocation at a Cournot-Nash equilibrium do not coincide with

the Walras equilibrium. In fact, even when the market power of asymptotic price-

takers vanishes along the sequence of commodities, all traders continue to keep

market power on the offers side.

Before to state the convergence theorem, we need to introduce some further

notation, a definition, and a lemma. We denote by kŝ a type symmetric Cournot-

Nash equilibrium of the game kΓ. To each kŝ can be associated a vector ks̃ which

associates a strategy to each type of trader, i.e., ks̃ ∈
∏∞

t=1 S
t and ks̃

t = kŝ
t, for

t = 1, 2, . . . . We denote by p(ks̃) and hx(ks̃) a price vector and an allocation of an

exchange economy hE such that p(ks̃) = p(kŝ) and xt(ks̃) = xt(kŝ), for t = 1, 2, . . . ,

and all h traders of type t have the same final holding xt(ks̃). In the next definition,

we introduce the notion of marginal price vector.8

Definition 5. Consider an active Cournot-Nash equilibrium ŝ of kΓ. The marginal

price vector for a trader i of type t, p̄i(ŝ), is such that

p̄it(ŝ) = pt(ŝ)

(
1− q̂it

¯̂qt

)
and p̄ij(ŝ) = pj(ŝ)

(
1 +

b̂ij
¯̂
bij

)
, for each j ∈ J \ {0, t}.

The following lemma is the analogous of Lemma 4 of Dubey and Shubik (1978)

for a setting with infinitely many commodities.

Lemma 6. At an interior type-symmetric active Cournot-Nash equilibrium kŝ of

the game kΓ, a trader i of type t maximises his payoff at the fixed marginal price

vector p̄i(kŝ), for each i ∈ I.

Proof. Let kŝ be an interior type-symmetric active Cournot-Nash equilibrium of

the game kΓ. Consider, without loss of generality, a trader i of type t and the

following maximisation problem

max
ksi

πi(ks
i, p̄i(kŝ)),

subject to qit ≤ wit, (i)
(2.9)

8This definition is equivalent to the one of Okuno et al. (1980) only if the Cournot-Nash

equilibrium is such that 0 < q̂it < wi
t, b̂

i
j > 0, for j ∈ J \{0, t}, and

∑
j 6=0,t b̂

i
j < wi

0, for each i ∈ I.
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∑
j 6=0,t

bij ≤ wi0, (ii)

− qit ≤ 0, (iii)

− bij ≤ 0, for each j ∈ J \ {0, t}, (iv)

with πi(ks
i, p̄i(kŝ)) a payoff function at which the price vector is fixed and equal to

p̄i(kŝ). Let xi(ks
i, p̄i(kŝ)) denote the commodity bundle of trader i when he plays

ks
i and the price vector is fixed and equal to p̄i(kŝ). As in the proof of Lemma 3,

all the hypothesis of the Generalized Kuhn-Tucker Theorem are satisfied and then,

if a ks
i solves the maximisation problem, there exist non-negative multipliers λi∗1 ,

λi∗2 and µi∗j , for j ∈ J \ {0}, such that

∂ui

∂xi0
(xi(ks

i, p̄i(kŝ)))p̄
i
t(kŝ)−

∂ui

∂xit
(xi(ks

i, p̄i(kŝ)))− λi∗1 + µi∗t = 0, (2.10)

λi∗1 (qit − wit) = 0,

µi∗t q
i
t = 0,

− ∂ui

∂xi0
(xi(ks

i, p̄i(kŝ))) +
∂ui

∂xij
(xi(ks

i, p̄i(kŝ)))
1

p̄ij(kŝ)
− λi∗2 + µi∗j = 0, (2.11)

λi∗2

(∑
j 6=0,t

bij − wi0
)

= 0,

µi∗j b
i
j = 0, for each j ∈ J \ {0, t}.

By using the definition of marginal price vector, it is straightforward to verify that

equations (2.5) and (2.7) become (2.10) and (2.11) respectively. But then, kŝ
i, λ̂i∗1 ,

λ̂i∗2 , and µ̂i∗j , for j ∈ J \ {0}, satisfy the first order conditions associated to the

maximisation problem (2.9). Since the utility function is concave and prices are

fixed, the payoff function πi(ks
i, p̄i(kŝ)) is concave. Hence, kŝ

i is optimal for the

maximisation problem (2.9).9

We now state and prove the convergence theorem.

Theorem 2. Consider a sequence of games {kΓ}∞k=2. Suppose that there exists a

sequence of interior type-symmetric active Cournot-Nash equilibria, {kŝ}∞k=2, such

that the sequences {ks̃}∞k=2 and {p(ks̃)}∞k=2 converge to ṽ and to p(ṽ), respectively.

Then, the pair (p(ṽ), hx(ṽ)) is a Walras equilibrium of the exchange economy as-

sociated to the game hΓ, for any h.

9This conclusion can be also obtained by Theorem 2 of Section 8.5 and Lemma 1 of Section
8.7 in Luenberger (1969).
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Proof. Let {kΓ}∞k=2 be a sequence of games kΓ. Assume that there exists a sequence

of interior type-symmetric active Cournot-Nash equilibria {kŝ}∞k=2 such that the

sequences {ks̃}∞k=2 and {p(ks̃)}∞k=2 converge to ṽ and to p(ṽ) respectively. Con-

sider, without loss of generality, a trader i of type t. By Lemma 6, kŝ
i solves the

maximisation problem (2.9), for any k, and, since kŝ
i is an interior type symmetric

active Cournot-Nash equilibrium, the constraints (ii) and (iii) are not binding. Let

p̄0(kŝ) = 1, for any k.10 It is straightforward to verify that xi(kŝ
i, p̄i(kŝ)) belongs

to the budget set at price p̄i(kŝ), B
i(p̄i(kŝ)), for any k. Now, suppose that there

exists a commodity bundle x′i ∈ Bi(p̄i(kŝ)) such that ui(x′i) > ui(xi(kŝ
i, p̄i(kŝ))).

Since the utility function is non-decreasing, x′ij > xij(kŝ
i, p̄i(kŝ)), for at least one

commodity j. But since
∑

j 6=0,t b̂
i
j < wi0 and −q̂it < 0, there exists a feasible strategy

ks
′i ∈ Si such that xij(ks

′i, p̄i(kŝ)) = x′ij , a contradiction. Hence, the commodity

bundle xi(kŝ
i, p̄i(kŝ)) maximises the utility function on Bi(p̄i(kŝ)), for each i ∈ I,

for any k. Now, consider the sequence of marginal price vectors {p̄t(ks̃)}∞k=2, for

a representative trader of type t. By the assumptions of Theorem 2 and by the

definition of marginal price vector, limk→∞ p̄
t
j(ks̃) = pj(ṽ), for each j ∈ J \ {0}, for

t = 1, 2, . . . . Since ŝ is a type symmetric Cournot-Nash equilibrium, D2
j in Lemma

4 becomes e
σ
. Then, Cj and Dj are independent from k, for each j ∈ J \ {0}. But

then, by Lemma 4, p(ṽ) ∈
∏

j 6=0[Cj, Dj]. Therefore, ṽ is a point of continuity of the

payoff function and then the commodity bundle xt(ṽ) is optimal on Bt(p(ṽ)), for

t = 1, 2, . . . . Hence, (p(ṽ), hx(ṽ)) is a Walras equilibrium for the exchange economy

associated to hΓ, for any h.

It is worth to note that Theorem 2 holds for all the examples in the previous

section.

2.6 An infinity of commodity money

In all the previous sections, we have considered exchange economies with a

finite aggregate endowment of commodity money. Since in the strategic market

game commodity money is used as a medium of exchange, it is also useful to

consider the case in which the aggregate initial endowment of commodity money

is infinite. In this section, we first prove the existence of an active Cournot-Nash

equilibrium for a strategic market game kΓ with an infinite amount of commodity

money. We then show by two examples that also in such framework there are

10With a slight abuse of notation, p̄(kŝ) denotes also a marginal price vector in which the first
element is p̄0(kŝ).
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both asymptotic oligopolists and asymptotic price-takers. We conclude the section

by considering an interesting example in which, at the Cournot-Nash equilibrium,

all traders consume all commodities and all of them are asymptotic price-takers.

Finally, in this setting, the market clearing condition for commodity money does

not hold and then a Walras equilibrium does not exist.

We make the following new assumptions.

Assumption 7. Let σ and e be positive constants such that σ < e. The initial

endowment of a type t trader is such that σ < wt0 < e, σ < wtt < e, and wtj = 0,

for each j ∈ J \ {0, t}, for t = 1, 2, . . . .

Assumption 8. Let a be a positive constant. A commodity j is desired by at

least one type of trader and there are no more than a types of traders for which

the utility function is increasing respect to the variable xj, for each j ∈ J \ {0}.

Assumption 9. The consumption set X is a subset of the space of non-negative

bounded sequences `+
∞ endowed with the product topology, i.e., X = {x ∈ `+

∞ :

supj |xj| < ake}.

Assumption 7 formalises the notion of multilateral oligopoly and guarantees

that the total endowment of each commodity except commodity money is uni-

formly bounded from above. Assumption 8 ensures that all commodities are con-

sumed by a finite number of types of traders. We need a uniform upper bound on

the number of traders who desire each commodity because the total endowment of

commodity money is infinite. Assumption 9 imposes restrictions on the consump-

tion set which are standard in the literature on infinite economies. The constant

ake is the maximum amount of commodity money that a trader can receive in

exchange for the commodity he holds.

We now state the existence theorem.

Theorem 3. Under Assumptions 4, 6, 7, 8, and 9, there exists an active Cournot-

Nash equilibrium for kΓ.

Proof. It is straightforward to verify that under Assumptions 4, 6, 7, 8, and 9,

Lemmas 1, 2, 3, and 5 hold. Lemma 4 holds with D2
l equal aek

wil
. Therefore, by

applying the same steps in the proof of Theorem 1, we can conclude that there

exists an active Cournot-Nash equilibrium for a game kΓ with an infinite aggregate

endowment of commodity money.
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When there is an infinity of commodity money, each trader holds only a negli-

gible quantity of the total amount of commodity money in the economy. In such

setting, we can expect that no trader has enough money to be an asymptotic

oligopolist. The following example shows that this conjecture is false.

Example 5. Consider an exchange economy in which traders of type 1, 2, 3, and

t ≥ 4 have the following utility functions and initial endowments

u1(x1) = x1
0 + x1

1 +
∞∑
j=2

δj lnx1
j w1 =

(
1

1− δ
, 1, 0, . . .

)
,

u2(x2) = x2
0 + δ lnx2

1 + x2
2 + δ3 lnx2

3 w2 = (2, 0, 1, 0, . . . ),

u3(x3) = x3
0 + x3

3 + δ4 lnx3
4 w3 = (2, 0, 0, 1, 0, . . . ),

ut(xt) = xt0 + xtt + δt+1 lnxtt+1 wt = (2, 0, . . . , 0, 1, 0, . . . ),

with δ ∈ (0, 1). At the type-symmetric active Cournot-Nash equilibrium of the

game kΓ, type 1 traders are asymptotic oligopolists.

Proof. This exchange economy is identical to the one considered in Example 1

except for the fact that all types of traders t ≥ 2 have an initial endowment of

commodity money equal to 2. It is straightforward to verify that this does not

affect the Cournot-Nash equilibrium which is the same of Example 1. Therefore,

type 1 traders are asymptotic oligopolists.

In the next example, we show an exchange economy in which at the Cournot-

Nash equilibrium type 1 traders are asymptotic price-takers.

Example 6. Consider an exchange economy in which traders of type 1, 2, 3, and

t ≥ 4 have the following utility functions and initial endowments

u1(x1) = x1
0 + x1

1 +
∞∑
j=2

δj lnx1
j w1 =

(
1

1− δ
, 1, 0, . . .

)
,

u2(x2) = x2
0 + lnx2

1 + x2
2 + lnx2

3 w2 =
(
2, 0, 1, 0, . . .

)
,

u3(x3) = x3
0 + x3

3 + lnx3
4 w3 =

(
2, 0, 0, 1, 0, . . .

)
,

ut(xt) = xt0 + xtt + lnxtt+1 wt =
(
2, 0, . . . , 0, 1, 0, . . .

)
,

with δ ∈ (0, 1). For k = 2, the type-symmetric active Cournot-Nash equilibrium

of the game kΓ associated to the exchange economy is

(q̂1
1, b̂

1
2, b̂

1
3, . . . , b̂

1
j , . . . ) =

(
1

4
,
δ2

2
,
δ3(δ3 − 5 + F (3))

4δj − 4
, . . . ,

δj(δj − 5 + F (j))

4δj − 4
, . . .

)
,

(q̂2
2, b̂

2
1, b̂

2
3, b̂

2
4, . . . , b̂

2
j , . . . ) =

(
δ2

4
,
1

2
,
1− 5δ3 + F (3)

4− 4δ3
, 0, . . . , 0, . . .

)
,
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(q̂3
3, b̂

3
1, b̂

3
2, b̂

3
4, . . . , b̂

3
j , . . . ) =

(
δ3 + F (3) + 1

4
, 0, 0,

1− 5δ4 + F (4)

4− 4δ4
, 0, . . . , 0, . . .

)
,

(q̂tt, b̂
t
1, . . . , b̂

t
t−1, b̂

t
t+1, . . . ) =

(
δt + F (t) + 1

4
, 0, . . . , 0,

1− 5δt+1 + F (t+ 1)

4− 4δt+1
, . . .

)
,

for t = 4, 5, . . . , with F (y) =
√

(δy + 14)δy + 1. At this Cournot-Nash equilibrium,

type 1 traders are asymptotic price-takers.

Proof. At the Cournot-Nash equilibrium, the market power of type 1 traders, b̂1
j/b̂j,

is equal to
3δj−
√

(δj+14)δj+1+1

4δj−4
, for each j ≥ 3. Hence, limj→∞ b̂

1
j/b̂j = 0.

In the next example, we consider an exchange economy in which all traders

desire all commodities and everyone is an asymptotic price-taker. Therefore, this

example does not satisfy Assumption 8 but nevertheless there exists a Cournot-

Nash equilibrium because traders’ preferences have a particular pattern.

Example 7. Consider an exchange economy in which traders of type 1, 2, 3, and

t ≥ 4 have the following utility functions and initial endowments

u1(x1) = x1
0 + x1

1 +
∞∑
j=2

δj lnx1
j w1 =

(
1

1− δ
, 1, 0, . . .

)
,

u2(x2) = x2
0 + x2

2 + δ2 lnx2
1 +

∞∑
j=3

δj−1 lnx2
j w2 =

(
1

1− δ
, 0, 1, 0, . . .

)
,

u3(x3) = x3
0 + x3

3 +
2∑
j=1

δ3 lnx3
j +

∞∑
j=4

δj−2 lnx3
j w3 =

(
1

1− δ
, 0, 0, 1, 0, . . .

)
,

ut(xt) = xt0 + xtt +
t−1∑
j=1

δt lnxtj +
∞∑

j=t+1

δj−t+1 lnxtj wt =

(
1

1− δ
, 0, . . . , 0, 1, 0, . . .

)
.

For k = 2 and δ = 1/2, the type-symmetric active Cournot-Nash equilibrium of

the game kΓ associated to the exchange economy is

(q̂1
1, b̂

1
2, b̂

1
3, b̂

1
4, . . . , b̂

1
j , . . . ) =

(
m

2
,
δ2m

δ2 +m
,
δ3m

δ3 +m
,
δ4m

δ4 +m
, . . . ,

δjm

δj +m
, . . .

)
,

(q̂2
2, b̂

2
1, b̂

2
3, b̂

2
4 . . . , b̂

2
j , . . . ) =

(
m

2
,
δ2m

δ2 +m
,
δ2m

δ2 +m
,
δ3m

δ3 +m
. . . ,

δj−1m

δj−1 +m
, . . .

)
,

(q̂3
3, b̂

3
1, b̂

3
2, b̂

3
4, . . . , b̂

3
t , . . . ) =

(
m

2
,
δ3m

δ3 +m
,
δ3m

δ3 +m
,
δ2m

δ2 +m
, . . . ,

δj−2m

δj−2 +m
, . . .

)
,

(q̂tt, b̂
t
1, . . . , b̂

t
t−1, b̂

t
t+1, . . . ) =

(
m

2
,
δtm

δt +m
, . . . ,

δtm

δt +m
,
δ2m

δ2 +m
,
δ3m

δ3 +m
, . . .

)
,

for t = 4, 5, . . . , with m =
¯̂
bj ≈ 0.8415, for each j ∈ J\{0}.11 At this Cournot-Nash

equilibrium, all traders types are asymptotic price-takers.
11This approximated result was obtained with Mathematica.

44



Proof. At the Cournot-Nash equilibrium, given the particular structure of traders’

preferences, it is straightforward to verify that the sum of bids is the same in

each trading post and it is equal to m. Since limj→∞ b̂
t
j = 0, for t = 1, 2, . . . ,

limj→∞ b̂
t
j/

¯̂
bj = 0, for t = 1, 2, . . . .

2.7 Conclusion

In this chapter, we have extended the analysis of non-cooperative oligopoly

to exchange economies with infinitely many commodities and traders. We have

done so by considering the strategic market game analysed by Dubey and Shubik

(1978) in a setting with a countable infinity of commodities and traders having

the structure of multilateral oligopoly. In such framework, we have proved the

existence of an active Cournot-Nash equilibrium and its convergence to the Walras

equilibrium when the number of traders of each type tends to infinity.

To analyse traders’ market power in infinite economies, we have introduced the

notions of asymptotic oligopolist and asymptotic price-taker and we have showed,

via a number of examples, that both cases arise endogenously in equilibrium in our

framework. Therefore, the infinity of commodities and traders is not sufficient to

guarantee that all traders are “small” and display a mixed behaviour, i.e., asymp-

totic price-takers. In the previous section, we have considered exchange economies

with an infinite aggregate endowment of commodity money and by two examples

we have shown that also in this setting both asymptotic oligopolists and asymptotic

price-takers arise endogenously in equilibrium.

From the examples in Section 2.4, we can draw some conclusions about the

problem of proving the existence of asymptotic oligopolists. In the first example,

we have shown that some traders are asymptotic oligopolists because, heuristically,

traders have similar preferences and only few of them are active in each trading

post. In the second example, we have shown a case in which the number of traders

active in each trading post is non uniformly bounded from above and all traders

are asymptotic price-takers. In the third example, we have shown that, even if

the number of traders active in each trading post is not uniformly bounded from

above, some traders with a higher initial endowment of commodity money and

with particular preferences can be asymptotic oligopolists. Therefore, whether or

not a trader is an asymptotic oligopolist in equilibrium is sensitive to the initial

endowment of commodity money and to the “size of the market” in each trading

post, which depends on preferences throughout traders. We leave as an open
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problem for further research the determination of sufficient conditions to prove the

existence of asymptotic oligopolists. In the next chapter, we prove the existence

of asymptotic price-takers in a strategic market game called “all for sale model”.

In Section 2.4, we have illustrated how our setting can be interpreted as a model

of oligopoly with differentiated commodities by using the Hotelling line. Therefore,

this framework may be useful to get some insights on competition policy issues.

2.A Mathematical appendix

In this appendix, we describe the mathematical notions that we have used in

the chapter. The definitions and the theorems are based on Luenberger (1969) and

the page number in brackets refers to it.

Definition (`∞ spaces). The space `+
∞ consists of non-negative bounded sequences.

The norm of an element x = {xi} in `+
∞ is defined as ‖x‖∞ = supi |xi| (p. 29).

By assuming that the space `+
∞ is endowed with the product topology, we impose

on `+
∞ the norm ‖x‖∞ = supi ‖aixi‖ such that {ai} is a sequence of real number

converging to zero (see Brown and Lewis (1981)).

Definition (Transformation T ). Let X and Y be linear vector spaces and let D

be a subset of X. A rule which associates with every element x ∈ D an element

y ∈ Y is said to be a transformation from X to Y with domain D. If y corresponds

to x under T , we write y = T (x) (p. 27).

Definition (Fréchet differentiable). Let T be a transformation defined on an open

domain D in a normed space X and having range in a normed space Y . If for fixed

x ∈ D and each h ∈ X there exists δT (x;h) ∈ Y which is linear and continuous

with respect to h such that

lim
‖h‖→0

‖T (x+ h)− T (x)− δT (x;h)‖
‖h‖

= 0,

then T is said to be Fréchet differentiable at x and δT (x;h) is said to be the Fréchet

differential of T at x with incremental h (p. 172).

Definition (Continuously Fréchet differentiable). The Fréchet differential of T

at x with incremental h, δT (x;h), can be written as T ′(x)h with T ′ the Fréchet

derivative of T . If the correspondence x → T ′(x) is continuous at the point x0,

we say that the Fréchet derivative of T is continuous at x0. If the derivative of
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T is continuous on some open sphere S, we say that T is continuously Fréchet

differentiable on S (p. 175).

Definition (Normed dual). Let X be a normed linear vector space. The space of

all bounded linear function on X is called the normed dual of X and is denoted

by X∗ (p. 106).

Luenberger states the Regular Point definition (p. 248) and the Generalized

Kuhn-Tucker Theorem (p. 249-250) for vector spaces. Since we deal with normed

spaces, we state them for these particular spaces (see Example 1, p. 250).

Definition (Regular Point). Let X be a normed vector space and let Z be a

normed vector space with a closed positive cone P having non-empty interior. Let

G be a mapping G : X → Z which is Fréchet differentiable. A point x0 ∈ X is

said to be a regular point of the inequality G(x) ≤ 0 if G(x0) ≤ 0 and there is an

h ∈ X such that G(x0) +G′(x0) · h < 0.

Theorem (Generalized Kuhn-Tucker Theorem). Let X be a normed vector space

and Z be a normed vector space having a closed positive cone P . Assume that P

contains an interior point. Let f be a Fréchet differentiable real-valued function on

X and G a Fréchet differentiable mapping from X into Z. Suppose x0 maximizes

f subject to G(x) ≤ 0 and that x0 is a regular point of the inequality G(x) ≤ 0.

Then there is a z∗0 ∈ Z∗, z∗0 ≥ 0 such that

f ′(x0) + z∗0G
′(x0) = 0,

z∗0 ·G(x0) = 0.

2.B Marginal and average prices

Okuno et al. (1980) introduce the notions of marginal price and average price

to study traders’ behaviours. They show that when the two prices are equal traders

behave competitively. At a Cournot-Nash equilibrium ŝ, the average price vector

is equal to p(ŝ) and traders’ marginal price vectors are defined in Definition 5. The

next proposition shows, in our framework of multilateral oligopoly, the relationship

between the approach of Okuno et al. (1980) and traders’ market share, which is

used by us to measure traders’ market power.

Proposition 2. Consider an active Cournot-Nash equilibrium ŝ of kΓ. For a trader

i of type t, the marginal price vector is equal to the average price vector if and

only if q̂it
/

¯̂qt = 0 and b̂ij
/¯̂
bj = 0, for each j ∈ J \ {0, t}.
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Proof. Let ŝ be an active Cournot-Nash equilibrium of kΓ. Consider a trader i of

type t. First, assume that p̄i(ŝ) = p(ŝ). By Definition 5, q̂it/
¯̂qt = 0 and b̂ij/

¯̂
bij = 0,

for each j ∈ J \ {0, t}. But then, b̂ij/
¯̂
bj = 0, for each j ∈ J \ {0, t}. Now, assume

that q̂it/
¯̂qt = 0 and b̂ij/

¯̂
bj = 0, for each j ∈ J \ {0, t}. This implies that b̂ij = 0 and

then b̂ij/
¯̂
bij = 0, for each j ∈ J \ {0, t}. By Definition 5, p̄i(ŝ) = p(ŝ).

2.C The game analysed by Dubey and Shubik (1978)

The game kΓ was introduced for exchange economies with a finite number of

commodities by Shubik (1973). The strategy space of this game is different from the

one considered by Dubey and Shubik (1978) where traders are allowed to sell and

buy the same commodity. We introduce now the strategic market game analysed

by Dubey and Shubik (1978) and we show how it is related to the game kΓ. Let’s

call this game Λ. The strategy set of trader i is

Zi =
{
zi = (qi1, b

i
1, q

i
2, b

i
2, . . . , q

i
j, b

i
j, . . . ) : 0 ≤ qij ≤ wij, b

i
j ≥ 0, for each j ∈ J \ {0},

and
∞∑
j=1

bij ≤ wi0

}
.

Let Z =
∏

i∈I Z
i and Z−r =

∏
i∈I\{r} Z

i. Let z and z−i be elements of Z and Z−i

respectively. For each z ∈ Z, the price vector p(z) is such that

pj(z) =

{
b̄j
q̄j

if q̄j 6= 0,

0 if q̄j = 0,

for each j ∈ J \ {0}, with q̄j =
∑

i∈I q
i
j and b̄j =

∑
i∈I b

i
j. For each z ∈ Z, the final

holding xi(z) of a trader i is such that

xi0(z) = wi0 −
∞∑
j=1

bij +
∞∑
j=1

qijpj(z),

xij(z) =

{
wij − qij +

bij
pj(z)

if pj(z) 6= 0,

0 if pj(z) = 0,

for each j ∈ J \ {0}.
The payoff function of a trader i, πi : Z → R, is such that πi(z) = ui(xi(z)).

The following proposition establishes the relationship between the attainable

allocations of the two games at a Cournot-Nash equilibrium.
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Theorem 4. Consider an exchange economy kE as defined in Section 2.2 which

satisfies Assumption 1. An allocation x is attainable at a Cournot-Nash equilibrium

ŝ of the game kΓ if and only if the same allocation x is attainable at a Cournot-Nash

equilibrium ẑ of the game Λ.

Proof. Let kE be an exchange economy which satisfies Assumption 1. First, assume

that ŝ is a Cournot-Nash equilibrium of the game kΓ. Let ẑ be a strategy profile

such that, for a trader i of type t, ẑi = (0, b̂i1, 0, b̂
i
2, . . . , q̂

i
t, 0, . . . ), for each i ∈ I.

It is straightforward to verify that x(ŝ) and x(ẑ) are equal. Suppose that z is

not a Cournot-Nash equilibrium for Λ. Then, there exists a trader i of type t

that can increase his payoff by playing a strategy z′i. The only action that can

increase the trader’s payoff is to increase the bid for commodity t, b′it , because all

other feasible deviations are also available in the game kΓ. Then, xit(z
′i, ẑ−i) >

xit(ŝ). But, by decreasing q̂it, the commodity bundle xi(z′i, z−i) is attainable also

in the original game, a contradiction. Hence, ẑ is a Cournot-Nash equilibrium

for the game Λ. Now, assume that ẑ is a Cournot-Nash equilibrium of the game

Λ. Let ŝ be a strategy profile such that, for a trader i of type t, si = (q̂it −
b̂it

pt(ŝ)
, b̂i1, b̂

i
2, . . . , b̂

i
t−1, b̂

i
t+1, . . . ), for each i ∈ I. It is straightforward to verify that

x(ẑ) and x(ŝ) are equal. Suppose that ŝ is not a Cournot-Nash equilibrium for kΓ.

Then, there exists a trader i of type t that can increase his payoff by playing a

strategy s′i. But, any possible deviation in kΓ is also available in Λ, a contradiction.

Hence, ŝ is a Cournot-Nash equilibrium for kΓ.

As a corollary of this theorem, we can extend the existence theorem to the

game Λ analysed by Dubey and Shubik (1978).

Corollary 1. In an exchange economy kE as defined in Section 2.2, under As-

sumptions 1, 2, 3, 4, 5, and 6, there exists an active Cournot-Nash equilibrium for

Λ.

Proof. Let kE be an exchange economy which satisfies Assumptions 1, 2, 3, 4, 5,

and 6. By Theorem 1, there exists an active Cournot-Nash equilibrium for the game

kΓ associated to kE . Let x(ŝ) be the allocation at the Cournot-Nash equilibrium ŝ.

But then, by Theorem 4, there exists a Cournot-Nash equilibrium ẑ for the game

Λ such that x(ẑ) = x(ŝ).
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3

Asymptotic Price-Takers in Economies with

Infinitely Many Commodities and Traders

3.1 Introduction

In the previous chapter, we have introduced the notions of asymptotic oligopolist

and asymptotic price-taker to study traders’ market power in exchange economies

with a countable infinity of commodities and traders. In this chapter, we focus on

asymptotic price-takers and we study under which conditions on the fundamentals

of an economy, i.e., initial endowments and preferences, an asymptotic price-taker

exists.

As described in the previous chapter, an asymptotic price-taker is a trader who

makes positive bids on an infinite set of commodities and whose market power

converges to zero along the sequence of commodities. This trader exhibits a kind

of mixed behaviour since his market power can be made arbitrary small on an infi-

nite set of commodities while it is greater than a positive constant only on a finite

number of them. In the previous literature on imperfect competition, the mixed

behaviour was usually obtained by assuming that agents are characterised by port-

folios of commodities that contain the commodities on which agents have market

power. Negishi (1961) considered monopolistically competitive firms which have

market power on the commodities in their portfolios while they behave competi-

tively on all other commodities. In this way, he extended the theory of monopolis-

tic competition of Chamberlin (1933) and Robinson (1933) from partial to general

equilibrium. Gabszewicz and Michel (1997) and d’Aspremont, Dos Santos Ferreira,
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and Gérard-Varet (1997) considered exchange economies in which consumers are

characterized by portfolios of commodities to study the Cournot-Walras equilib-

rium and the Cournotian Monopolistic Competition equilibrium respectively. In all

these contributions, traders’ behaviours on each commodity are assumed a priori

without giving any formal explanation as to why a particular trader should behave

strategically on some commodities and competitively on others. In contrast, by

using strategic market games, we provide the sufficient conditions on the funda-

mentals of an economy under which asymptotic price-takers, who are traders with

a kind of mixed behaviour, arise endogenously in equilibrium.

Traders’ market power is measured by traders’ market share as in Chapter 2,

i.e., the market power of trader i on commodity j is bij/b̄j. From the examples in

Section 2.4, it is clear that the sequence of sums of bids, {b̄j}, converges always to

zero when there is a finite aggregate endowment of commodity money. Therefore,

in such framework, the existence of an asymptotic price-taker depends crucially on

the convergence rates to zero of the sequence of trader’s bids and the sequence of

sums of bids. Unfortunately, it turns out that it is a difficult task to obtain specific

convergence rates by making assumptions on the fundamentals of an economy.

In this chapter, we overcome these difficulties in the following way. We consider

exchange economies with an infinite aggregate endowment of commodity money,

as in Section 2.6, and we further simplify our analysis by considering a variation

of the strategic market game analysed by Dubey and Shubik (1978), namely the

“all for sale model”, which was introduced by Shapley (1976) and Shapley and

Shubik (1977). In this model, at the start of the game all traders are required to

deposit all their commodities, except commodity money, in the appropriate trading

post in exchange for non-negotiable receipts. These receipts will be redeemed after

trade for the amount of commodity money obtained from the sale of each trader’s

commodities. Hence, the only actions available to traders are bids, amounts of

commodity money offered in exchange for other commodities.

In such framework, we prove the existence of an active Cournot-Nash equilib-

rium in which the sum of bids in each trading post is uniformly bounded away from

zero. Consequently, the proof of existence of an asymptotic price-taker reduces to

show that there exists a trader who is active on an infinite number of commodi-

ties. Indeed, if the sums of bids are uniformly bounded away from zero then the

sequence of market power, {bij/b̄j}, converges to zero as the sequence of bids of

a trader always converges to zero. As remarked above, to prove the existence of

asymptotic price-takers it is crucial to assume that the aggregate endowment of
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commodity money is infinite. Unfortunately, this rules out the existence of a Wal-

ras equilibrium, but it helps to clarify the connections between the fundamentals

of an economy and the mixed behaviour. The infinity of commodity money can be

interpreted as a limiting case where the total endowment of commodity money is

much greater than traders’ initial endowments.

Our contributions are as follows. We first prove the existence of an active

Cournot-Nash equilibrium in which the price vector lies in a compact set uniformly

bounded away from zero. Under the assumptions of the model, this implies that

the sums of bids along trading posts are uniformly bounded away from zero at a

Cournot-Nash equilibrium. The fact that all commodities go into the trading posts

at the beginning of the game means that one side of the market is always active

and this simplifies the proof of existence. Furthermore, the assumptions needed to

prove the existence are somehow less restrictive than the ones made in the previous

chapter. For instance, it is not necessary to assume the structure of multilateral

oligopoly but some restrictions on traders’ marginal utilities are still necessary.1

We finally prove the existence of an asymptotic price-taker. Heuristically, a trader

active on an infinite number of commodities is an asymptotic price-taker if all

markets are thick, i.e., the quantities of commodity money and commodities in all

trading posts are non-negligible. The results of the two theorems are discussed with

some examples which clarify the role of the assumptions and why it is crucial for the

existence of asymptotic price-takers that prices are uniformly bounded away from

zero. We conclude the chapter by comparing our results with the contributions

on monopolistic competition of Dixit and Stiglitz (1977), Hart (1985), and Pascoa

(1993).

The chapter is organised as follows. In Section 3.2, we introduce the mathemat-

ical model. In Section 3.3, we prove the existence theorem. In Section 3.4, we prove

the existence of an asymptotic price-taker and we discuss it by means of examples.

In Section 3.5, we draw some conclusions from our analysis and we compare our

results with some previous contributions on monopolistic competition.

3.2 Mathematical model

The set of commodities is J = {0, 1, 2, . . . }. Let I be a countable set which

denotes the set of traders. This set I is partitioned in two sets T and H. The

1In finite economies, the existence of a Cournot-Nash equilibrium in the all for sale model
was proved by Dubey and Shubik (1977) in a framework with exogenous uncertainty.
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consumption set is denoted by X. A commodity bundle x is a point in X with xj

the amount of commodity j. A trader i is characterized by an initial endowment,

wi ∈ X, which represents his wealth, and a utility function, ui : X → R, which

describes his preferences. An exchange economy is then a set E = {(ui, wi) : i ∈ I}.
A commodity j is desired by a trader i if ui is an increasing function of the

variable xij, for any fixed choice of the other variables. The set of commodities

desired by a trader i is denoted by Li.

We make the following assumptions.

Assumption 1. Let σ, e, and g be positive constants such that σ < e. The initial

endowment of commodity money of a trader i is such that σ < wi0 < e, for each

i ∈ I. The total endowment of a commodity j is such that σ <
∑

iw
i
j < e, for

each j ∈ J \ {0}. Furthermore, a trader i is endowed with less than g different

commodities, for each i ∈ I.

Assumption 2. Let f and n be two positive constants. For each trader i ∈ T , (i)

the utility function, ui, is continuously Frèchet differentiable, non-decreasing, and

concave; (ii) ]Li ≤ n, i.e, a trader i desires less than n commodities; (iii) ∂u
i

∂xij
(xi) < f ,

for each xi ∈ X, for each j ∈ J .

Assumption 3. For each trader i ∈ H, the utility function, ui, is continuous,

non-decreasing, and concave.

Assumption 4. Let a and λ be positive constants such that λ < f . For each

commodity j ∈ J \ {0}, (i) there are less than a traders that desire commodity

j; (ii) there exist two traders s, t ∈ T such that ∂us

∂xsj
(xs), ∂u

t

∂xtj
(xt) > λ, for each

xs, xt ∈ X.

Assumption 5. The consumption set X is a subset of the space of non-negative

bounded sequences `+
∞ endowed with the product topology, i.e., X = {x ∈ `+

∞ :

supj |xj| ≤ aeg}.

The first assumption guarantees that the aggregate endowment of all com-

modities except commodity money is uniformly bounded away from zero and from

above. Differently, the aggregate endowment of commodity money is infinite and

this is crucial to prove the existence of an asymptotic price-taker. The last part

of Assumption 1 implies that traders’ wealth is finite. Assumptions 2(i) and 2(ii)

are classical restrictions on traders’ preferences in infinite economies. Assumption
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2(iii) is trivially true when the number of commodities is finite.2 Assumptions 2

and 3 imply that traders in the set T desire only a finite number of commodities

and traders in the set H can desire an infinite number of commodities. The first

part of Assumption 4 imposes an upper bound a on the number of traders who

desire each commodity. This guarantees that the sum of bids in each trading post

is finite. The second part implies that for each commodity there are at least two

traders whose utility functions are strictly increasing respect to it. Finally, the last

assumption is common in economies with infinitely many commodities. The con-

stant aeg is the maximum amount of commodity money that a trader can receive

in exchange for the commodities he holds.

We now introduce the strategic market game Γ associated with the exchange

economy E . For each commodity j ∈ J \ {0}, there is a trading post where

commodity j is exchanged for commodity money 0. At the beginning of the game

all traders are required to deposit all of their commodities, except commodity

money, in the appropriate trading post. They receive non-negotiable receipts which

will be redeemed after trade for the amount of commodity money obtained from

the sale of each trader’s commodities. The strategy set of a trader i is

Si =
{
si = (bi1, b

i
2, b

i
3, . . . ) : bij ≥ 0, for each j ∈ J \ {0}, and

∑
j

bij ≤ wi0

}
,

where bij is the amount of commodity money that trader i bids on commodity j.

Without loss of generality, we make the following technical assumption

Assumption 6. The set Si is a subset of `+
∞ endowed with the product topology,

for each i ∈ I, i.e., Si ⊆ {si ∈ `+
∞ : sup |sij| ≤ e}.

This assumption implies that Si lies in a normed space and therefore in a Hausdorff

space.

Let S =
∏

i∈I S
i and S−z =

∏
i∈I\{z} S

i. Let s and s−i be elements of S and

S−i respectively. For each s ∈ S, the price vector p(s) is such that

pj(s) =
b̄j
w̄j
,

for each j ∈ J \ {0}, with b̄j =
∑

i∈I b
i
j and w̄j =

∑
i∈I w

i
j. By Assumption 1 and

4(ii), the sums b̄j and w̄j are finite, for each j ∈ J \ {0}. For each s ∈ S, the final

2The classical definition of differentiability excludes the case of infinite partial derivatives
along the boundary of the consumption set (see for instance Amir et al. (1990)).
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holding xi(s) of a trader i is such that

xi0(s) = wi0 −
∞∑
j=1

bij +
∞∑
j=1

wijpj(s), (3.1)

xij(s) =

{
bij

pj(s)
if pj(s) 6= 0,

0 if pj(s) = 0,
(3.2)

for each j ∈ J \ {0}.
The payoff function of a trader i, πi : S → R, is such that πi(s) = ui(xi(s)).

We now introduce the definitions of an active trading post, a best response

correspondence, and a Cournot-Nash equilibrium.

Definition 6. A trading post for a commodity j is said to be active if w̄j > 0 and

b̄j > 0, otherwise we say that the trading post is inactive.

Definition 1. The best response correspondence of a trader i is a correspondence

φi : S−i → Si such that

φi(s−i) ∈ arg max
si∈Si

πi(si, s−i),

for each s−i ∈ S−i.

Definition 2. An ŝ ∈ S is a Cournot-Nash equilibrium of Γ, if ŝi ∈ φi(ŝ−i), for

each i ∈ I.

Furthermore, we say that a Cournot-Nash equilibrium is active if all trading

posts are active.

3.3 Theorem of existence

In this section, we state and prove the theorem of existence of an active Cournot-

Nash equilibrium for the game Γ such that the price vector lies in a compact set

uniformly bounded away from zero. Before to do so, we define the perturbed

strategic market game and we prove two lemmas. The perturbed strategic market

game Γε is a game defined as Γ with the only exception that the price becomes

pεj(s) =
b̄j + ε

w̄j
,

for each j ∈ J \ {0}, with ε > 0. The interpretation is that an outside agency

places fixed bids of ε in all trading posts. This does not change the strategy sets
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of traders, but does affect the prices, the final holdings, and the payoffs. In the

next lemma we prove the existence of a Cournot-Nash equilibrium in the perturbed

game.

Lemma 1. Under Assumptions 1, 2, 3, 4, 5, and 6, for each ε > 0, there exists a

Cournot-Nash equilibrium for Γε.

Proof. Consider, without loss of generality, a trader i and fix the strategies s−i

for all other traders. In the perturbed game the payoff function πi is continuous

because it is a composition of continuous functions (see Theorem 17.23, p. 566 in

Aliprantis and Border (2006), AB hereafter). By Tychonoff Theorem (see Theorem

2.61, p. 52 in AB), Si is compact. By Weierstrass Theorem (see Corollary 2.35, p.

40 in AB), there exists a strategy ŝi that maximises the payoff function. We can

then consider the best response correspondence φi : S−i → Si. Since Si is a non-

empty and compact Hausdorff space, by Berge Maximum Theorem (see Theorem

17.31, p. 570 in AB), φi is an upper hemicontinuous correspondence.

We show now that φi has convex and closed-valued. Suppose that there are

two feasible strategies s′i and s′′i which belong to φi(s−i). We need to prove that

s̃i = αs′i + (1 − α)s′′i, with α ∈ (0, 1), belongs to φi(s−i). Let x′i = xi(s′i) and

x′′i = xi(s′′i). Since the utility function is concave, also the commodity bundle

x̃i = αx′i + (1 − α)x′′i maximises the utility function. By equations (3.1) and

(3.2), xi0(si) is linear in si and xij(s
i) is concave respect to si, for each j ∈ J \ {0}.

Therefore,

x̃i = αxi(s′i) + (1− α)xi(s′′i) ≤ xi(αs′i + (1− α)s′′i).

But then x̃i ≤ xi(s̃). Hence, s̃ belongs to φi(s−i) and then φi(s−i) has convex-

valued. By the continuity of the payoff function πi, it follows that φi has closed-

valued.

Since Si is closed and φi is upper hemicontinuous and closed-valued, φi has a

closed graph by the Closed Graph Theorem (see Theorem 17.11, p. 561 in AB).

As we are looking for a fixed point in strategy space S, let’s consider φi : S → Si.

Let Φ : S → S such that Φ(S) =
∏

i∈I φ
i(S). Since Φ(S) is a product of correspon-

dences with closed graph and non-empty convex values, it is straightforward to

verify that the correspondence Φ has closed graph and non-empty convex values.

Moreover, S is a non-empty compact convex subset of a locally convex Hausdorff

space. Therefore, by Kakutani-Fan-Glicksberg Theorem (see Corollary 17.55, p.

583 in AB), there exists a fixed point ŝ of Φ which is a Cournot-Nash equilibrium

of the perturbed game Γε.
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In the next lemma, we prove that the price vector lies in a compact set bounded

away from zero, for any ε, at a Cournot-Nash equilibrium.

Lemma 2. At a Cournot-Nash equilibrium ŝ of the perturbed game Γε, there exist

two positive constants, independent from ε, Cj and Dj such that

Cj < pεj(ŝ) < Dj,

for each j ∈ J \ {0}. Moreover, Cj is uniformly bounded away from zero and Dj

is uniformly bounded from above.

Proof. Let ŝ be a Cournot-Nash equilibrium of the perturbed game. Without loss of

generality, let j = l. First, we establish the existence of Dl. It is straightforward to

verify that the highest possible price is pl = ae
σ

. Hence, Dj = ae
σ

, for each j ∈ J\{0}.
Now, we establish the existence of Cl. By Assumption 4(ii), there are at least two

traders belonging to the set T such that ∂ui

∂xil
(xi) > λ. Between them, consider the

trader i such that b̂il ≤
¯̂
bl
2

. We consider two cases. First, suppose that
∑

j 6=0 b̂
i
j < wi0.

An increase γ in i’s bid for l is feasible, with 0 < γ ≤ min{wi0 −
∑

j 6=0 b̂
i
j, ε}, and

has the following incremental effects on the final holding of trader i

xi0(ŝ(γ))− xi0(ŝ) =− γ + wil

¯̂
bl + ε+ γ

w̄l
− wil

¯̂
b+ ε

w̄l
,

= −γ +
wil
w̄l
γ ≥ −γ

xij(ŝ(γ))− xij(ŝ) =0, for each j ∈ J \ {0, l},

xil(ŝ(γ))− xil(ŝ) =(b̂il + γ)
w̄l

¯̂
bl + ε+ γ

− b̂il
w̄l

¯̂
bl + ε

,

=
w̄l

¯̂
bl + ε

¯̂
bil + ε

¯̂
bil + b̂il + ε+ γ

γ ≥ 1

3pεl (ŝ)
γ,

with
¯̂
bij =

¯̂
bj − b̂ij. The inequality in the preceding array follows from the fact that

b̂il ≤
¯̂
bil + ε and γ ≤ ¯̂

bil + ε. Then, we obtain the following vector inequality3

xi(ŝ(γ)) ≥ xi(ŝ)− γe0 +
1

3pεl (ŝ)
γel.

By using a linear approximation of the utility function around the point xi(ŝ), we

obtain

ui(xi(ŝ(γ)))− ui(xi(ŝ)) ≥ − ∂u
i

∂xi0
(xi(ŝ))γ +

∂ui

∂xil
(xi(ŝ))

1

3pεl (ŝ)
γ +O(γ2).

3ej is an infinite vector in `∞ whose jth component is 1, and all others are 0.
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Since xi(ŝ) is an optimum point, the left hand side of the equation is negative and

then

pεl (ŝ) >
1

3

(
∂ui

∂xil
(xi(ŝ))

/
∂ui

∂xi0
(xi(ŝ))

)
= C1

l .

By Assumption 2(iii) and since ∂ui

∂xil
(xi) > λ, C1

l ≥ λ
f
. Now, suppose

∑
j 6=0 b̂

i
j = wi0.

By Assumption 2(ii), there exists a bid b̂ih such that b̂ih >
wi0
n

. If h = l, then

pεl (ŝ) = pεh(ŝ) ≥
wi0
nw̄l

= C2
l .

By Assumption 1, C2
l ≥ σ

ne
. If h 6= l, then trader i can decrease b̂ih by a small

γ, with 0 < γ < b̂ih, and increase b̂il by the same amount, with the following

incremental effects on the final holding of trader i

xi0(ŝ(γ))− xi0(ŝ) = wil
b̄l + γ

w̄l
+ wih

b̄h − γ
w̄h

− wil
b̄l
w̄l
− wih

b̄h
w̄h

=
wil
w̄l
γ − wih

w̄h
γ ≥ −w

i
h

w̄h
γ ≥ −γ

xij(ŝ(γ))− xij(ŝ) = 0, for each j ∈ J \ {0, l, h},

xil(ŝ(γ))− xil(ŝ) ≥
1

3pεl (ŝ)
γ,

xih(ŝ(γ))− xih(ŝ) = (b̂ih − γ)
w̄h

¯̂
bh + ε− γ

− b̂ih
w̄h

¯̂
bh + ε

,

= −
¯̂
bih + ε

¯̂
bh + ε− γ

1

pεh(ŝ)
γ ≥ − 1

pεh(ŝ)
γ ≥ −nw̄h

wi0
γ.

The inequality in the preceding array follows from the fact that
¯̂
bh+ ε−γ ≥ ¯̂

bih+ ε.

Then, we obtain the following vector inequality

xi(ŝ(γ)) ≥ xi(ŝ)− γe0 +
1

3pεl (ŝ)
γel −

nw̄h
wi0

γeh.

By using a linear approximation of the utility function around the point xi(ŝ), we

obtain

ui(xi(ŝ(γ)))− ui(xi(ŝ)) ≥ − ∂u
i

∂xi0
(xi(ŝ))γ +

∂ui

∂xil
(xi(ŝ))

1

3pεl (ŝ)
γ

− ∂u
i

∂xih
(xi(ŝ))

nw̄h
wi0

γ +O(γ2).

Since xi(ŝ) is an optimum point, the left hand side of the equation is negative and

then

pεl (ŝ) >
1

3

∂ui

∂xil
(xi(ŝ))

/(
∂ui

∂xi0
(xi(ŝ)) +

nw̄h
wi0

∂ui

∂xih
(xi(ŝ))

)
= C3

l .
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By Assumptions 1, 2, and since ∂ui

∂xil
(xi) > λ, C3

l ≥ 1
3

σ
σ+ne

λ
f
. Finally, we choose Cl

such that Cl = min{C1
l , C

2
l , C

3
l , }. Since C1

j , C2
j , and C3

j are uniformly bounded

away from zero, Cj is uniformly bounded above from zero, for each j ∈ J \{0}.

We now state the existence theorem.

Theorem 1. Under Assumptions 1, 2, 3, 4, 5, and 6, the game Γ has an active

Cournot-Nash equilibrium ŝ such that the vector p(ŝ) is uniformly bounded away

from zero.

Proof. Consider a sequence of {gε}∞g=1 converging to 0. By Lemma 1, in each

perturbed game there exists a Cournot-Nash equilibrium. Then, we can consider

the sequence of Cournot-Nash equilibria, {gŝ}∞g=1, associated to the sequence of

ε. As proved before, S is compact and, by Lemma 2, pε(gŝ) ∈
∏

j 6=0[Cj, Dj] with

Cj uniformly bounded away from zero and Dj uniformly bounded from above,

for each j ∈ J \ {0}. By Tychonoff Theorem,
∏

j 6=0[Cj, Dj] is compact. Then,

we can pick a subsequence of {gŝ}∞g=1 that converges to v such that v ∈ S and

p(v) ∈
∏

j 6=0[Cj, Dj]. Therefore, v is a point of continuity of payoff functions

and then v is a Cournot-Nash equilibrium with prices uniformly bounded away

from zero. It remains to prove that v̂ is an active Cournot-Nash equilibrium. By

Assumption 1, w̄j ≥ σ, for each j ∈ J \ {0}. Suppose, without loss of generality,

that there exists a commodity l such that
¯̂
bl = 0. But then, pl(v̂) /∈ [Cl, Dl], a

contradiction. Therefore,
¯̂
bj > 0, for each j ∈ J \ {0}, and then v̂ is an active

Cournot-Nash equilibrium.

We have shown the existence of an active Cournot–Nash equilibrium with prices

bounded away from zero under the assumptions that there is a set of traders who

desire a finite number of commodities (Assumption 2(i)) and that marginal utilities

are uniformly bounded from above (Assumption 2(ii)). These assumptions are

crucial to prove that prices are uniformly bounded away from zero. The next two

examples clarify the role of these assumptions and show why prices converge to

zero when the two assumptions do not hold. In order to simplify the computations,

in both examples the set of traders H is empty and traders’ utility functions are

neither differentiable nor continuous at the boundary of the consumption set. This

does not affect the current analysis but should be kept in mind. In the first example,

we consider an exchange economy in which the number of commodities desired by

each trader is finite but it is not uniformly bounded from above.
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Example 1. Consider an exchange economy having as set of traders I = T =

{1, 1′, 2, 2′, 3, 3′, . . . }. Trader t and t′ have the same initial endowment and utility

function. Traders 1, 2, 3, 4, and t ≥ 5 have the following utility functions and

initial endowments

u1(x1) = x1
0 + lnx1

1 w1 = (1, 1, 0, . . . ),

u2(x2) = x2
0 + lnx2

2 + lnx2
3 w2 = (1, 0, 1, 0, . . . ),

u3(x3) = x3
0 +

6∑
j=4

lnx3
j w3 = (1, 0, 0, 1, 0, . . . ),

u4(x4) = x4
0 +

10∑
j=7

lnx4
j w4 = (1, 0, 0, 0, 1, 0, . . . ),

ut(xt) = xt0 +

t+
∑t−1
i=1 i∑

j=1+
∑t−1
i=1 i

lnxtj wt = (1, 0, . . . , 0, 1, 0, . . . ).

The Cournot-Nash equilibrium of the game Γ associated to the exchange economy

is

(b̂1
1, b̂

1
2, b̂

1
3, b̂

1
4, . . . , b̂

1
j , . . . ) =

(
1

2
, 0, 0, 0, . . . , 0, . . .

)
,

(b̂2
1, b̂

2
2, b̂

2
3, b̂

2
4, . . . , b̂

2
j , . . . ) =

(
0,

1

2
,
1

2
, 0, . . . , 0, . . .

)
,

(b̂3
1, b̂

3
2, b̂

3
3, b̂

3
4, b̂

3
5, b̂

3
6, b̂

3
7, . . . , b̂

3
j , . . . ) =

(
0, 0, 0,

1

3
,
1

3
,
1

3
, 0, . . . , 0, . . .

)
,

(b̂4
1, . . . , b̂

4
6, b̂

4
7, b̂

4
8, b̂

4
9, b̂

4
10, b̂

4
11, . . . , b̂

4
j , . . . ) =

(
0, . . . , 0,

1

4
,
1

4
,
1

4
,
1

4
, 0, . . . , 0, . . .

)
,

(b̂t1, . . . , b̂
t
1+

∑t−1
i=1 i

, . . . , b̂t
t+

∑t−1
i=1 i

, . . . ) =

(
0, . . . , 0,

1

t
, . . . ,

1

t
, 0, . . .

)
.

for t = 5, 6, . . . . At this Cournot-Nash equilibrium the price vector p(ŝ) is not

uniformly bounded away from zero.

Proof. At the Cournot-Nash equilibrium, in each trading post there are two traders

active t and t′ and both of them make the same bid 1
t
. Since limj→∞

¯̂
bj = 0 and

w̄j = 2, for each j ∈ J \ {0}, limj→∞ p̂j(s) = 0. Hence, p(ŝ) is not uniformly

bounded away from zero.

In the next example, we consider an exchange economy in which the marginal

utilities of the desired commodities are not uniformly bounded from above when

these commodities are consumed in positive quantities.
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Example 2. Consider an exchange economy having as set of traders I = T =

{1, 1′, 2, 2′, 3, 3′, . . . }. Trader t and t′ have the same initial endowment and utility

function. Traders 1, 2, 3, 4, s ≥ 5 odd, and t ≥ 6 even have the following utility

functions and initial endowments

u1(x1) = x1
0 w1 = (1, 1, 0, . . . ),

u2(x2) = x2
0 + 2 lnx2

1 w2 = (1, 0, 1, 0, . . . ),

u3(x3) = x3
0 w3 = (1, 0, 0, 1, 0, . . . ),

u4(x4) = x4
0 + lnx4

2 + 4 lnx4
3 w4 = (1, 0, 0, 0, 1, 0, . . . ),

us(xs) = xs0 ws = (1, 0, . . . , 0, 1, 0, . . . ),

ut(xt) = xt0 + lnxtt−2 + t lnxtt−1 wt = (1, 0, . . . , 0, 1, 0, . . . ).

The Cournot-Nash equilibrium of the game Γ associated to the exchange economy

is

(b̂s1, b̂
s
2, . . . , b̂

s
j , . . . ) =(0, 0, . . . , 0, . . . ),

(b̂2
1, b̂

2
2, b̂

2
3, . . . , b̂

2
j , . . . ) =(1, 0, 0, . . . , 0, . . . ),

(b̂4
1, b̂

4
2, b̂

4
3, b̂

4
4, . . . , b̂

4
j , . . . ) =

(
0,

1

4
,
3

4
, 0, . . . , 0, . . .

)
,

(b̂t1, . . . , b̂
t
t−2, b̂

t
t−1, b̂

t
t, . . . ) =

(
0, . . . , 0,

1

t
,
t− 1

t
, 0, . . .

)
,

for s ≥ 1 odd and t ≥ 6 even. At this Cournot-Nash equilibrium the price vector

p(ŝ) is not uniformly bounded away from zero.

Proof. At the Cournot-Nash equilibrium, in each trading post there are two traders

active t and t′ and both of them make the same bid. The price of a commodity

j odd is pj(ŝ) = j
j+1

and the price of a commodity j even is pj(ŝ) = 1
j+2

. Then,

the subsequence of odd commodities’ prices converges to 1 while the subsequence

of even commodities’ prices converges to 0. Hence, p(ŝ) is not uniformly bounded

away from zero.

3.4 Asymptotic price-takers

We start this section by recalling the definitions of market power, asymptotic

price-taker, and asymptotic oligopolist from the previous chapter.

In the game Γ, the market power of a trader i on commodity j can be measured

by the ratio bij/b̄j. The higher this ratio is, the higher is the market power of
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trader i on commodity j. If bij = 0, we say that trader i is a trivial price-taker on

commodity j.

Definition 3. Consider an active Cournot-Nash equilibrium ŝ in which there exists

a trader h such that b̂hj > 0 for an infinite number of commodities. We say that

trader h is an asymptotic price-taker if limj→∞ b̂
h
j /

¯̂
bj = 0, otherwise we say that

trader h is an asymptotic oligopolist.

The key features of an asymptotic price-taker are that he consumes an infinite

number of commodities and his market power converges to zero along the sequence

of commodities.

In the next theorem, we prove the existence of an asymptotic price-taker.

Theorem 2. Let E be an exchange economy which satisfies Assumptions 1, 2, 3,

4, 5, and 6. If there exists a trader h ∈ H whose utility function is such that

limxhj→0
∂uh

∂xhj
= ∞, for an infinite number of commodities, then h is an asymptotic

price-taker.

Proof. By Theorem 1, under Assumptions 1, 2, 3, 4, 5, and 6, there exists an

active Cournot-Nash equilibrium ŝ of Γ such that the vector p(ŝ) is uniformly

bounded away from zero. Let h ∈ H be a trader whose utility function is such

that limxhj→0
∂uh

∂xhj
= ∞, for an infinite number of commodities. First, suppose

that b̂hl = 0, for a commodity l such that limxhl→0
∂uh

∂xhl
= ∞, and

∑
j 6=0 b̂

h
j < wh0 .

Consider a strategy s′h such that b′hl = b̂hl +γ, with γ sufficiently small, and all other

actions equal to the actions of the original strategy ŝh. Since limxhl→0
∂uh

∂xhl
= ∞,

uh(xh(s′h, ŝ−h)) > uh(xh(ŝh, ŝ−h)), a contradiction. Now, suppose that b̂hl = 0, for

a commodity l such that limxhl→0
∂uh

∂xhl
=∞, and

∑
j 6=0 b̂

h
j = wh0 . Then, there exists

a commodity m such that b̂hm > 0. Consider a strategy s′h such that b′hm = b̂hm − γ,

b′hl = b̂hl + γ, with γ sufficiently small, and all other actions equal to the actions of

the original strategy ŝh. Since limxhl→0
∂uh

∂xhl
=∞, uh(xh(s′h, ŝ−h)) > uh(xh(ŝh, ŝ−h)),

a contradiction. Hence, b̂hj > 0, for each commodity j such that limxhj→0
∂uh

∂xhj
=∞.

Therefore, trader h makes positive bids on an infinite number of commodities and

his sequence of bids, {b̂hj }, converges to zero because his endowment of commodity

money is finite. Since p(ŝ) is bounded away from zero and the aggregate endowment

of each commodity is uniformly bounded away from zero by Assumption 1, the

sequence of sums of bids, {¯̂bj}, is uniformly bounded away from zero. But then,

limj→∞ b̂
h
j /

¯̂
bj = 0. Hence, trader h is an asymptotic price-taker.
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In the subsequent examples, we show that a price vector uniformly bounded

away from zero is crucial to prove the existence of asymptotic price-takers. The

next example shows that if prices converge to zero along the sequence of commodi-

ties then a trader who consumes and infinite number of commodities can be an

asymptotic oligopolist.

Example 3. Consider an exchange economy having as set of traders I = {1, 2, 3,
. . . }. Traders 1, 2, 3, and t ≥ 4 have the following utility functions and initial

endowments

u1(x1) = x1
0 +

∞∑
j=1

1

j2
lnx1

j w1 = (1, 1, 0, . . . ),

u2(x2) = x2
0 + lnx2

1 w2 = (1, 0, 1, 0, . . . ),

u3(x3) = x3
0 +

1

4
lnx3

2 w3 = (1, 0, 0, 1, 0, . . . ),

ut(xt) = xt0 +
1

(t− 1)2
lnxtt−1 wt =

(
1, 0, . . . , 0, 1, 0, . . . ).

The Cournot-Nash equilibrium of the game Γ associated to the exchange economy

is

(b̂1
1, b̂

1
2, b̂

1
3, . . . , b̂

1
j , . . . ) =

(
1

2
,
1

8
,

1

18
, . . . ,

1

2j2
, . . .

)
,

(b̂2
1, b̂

2
2, b̂

2
3, . . . , b̂

2
j , . . . ) =

(
1

2
, 0, 0, . . . , 0, . . .

)
,

(b̂3
1, b̂

3
2, b̂

3
3, . . . , b̂

3
j , . . . ) =

(
0,

1

8
, 0, . . . , 0, . . .

)
,

(b̂t1, . . . , b̂
t
t−1, b̂

t
t, b̂

t
t+1, . . . ) =

(
0, . . . , 0,

1

2(j − 1)2
, 0, . . .

)
,

for t = 4, 5, . . . . At this Cournot-Nash equilibrium trader 1 is an asymptotic

oligopolist.

Proof. At the Cournot-Nash equilibrium, in a trading post for commodity j only

traders 1 and j+1 are active and they both make the same bid 1
2j2

. Therefore, the

market power of trader 1, b̂1
j/

¯̂
bj, is equal to 1

2
, for j ≥ 1. Hence, limj→∞ b̂

1
j/

¯̂
bj =

1
2
.

The next example shows that there are exchange economies with asymptotic

price-takers even when prices converge to zero along the sequence of commodities.

In other words, a price vector uniformly bounded away from zero is a sufficient

condition for the existence of asymptotic price takers but it is not a necessary

condition.
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Example 4. Consider an exchange economy having as set of traders I = {1, 2, 3,
. . . }. Traders 1, 2, 3, and t ≥ 4 have the following utility functions and initial

endowments

u1(x1) = x1
0 +

∞∑
j=1

1

j2
lnx1

j w1 = (1, 1, 0, . . . ),

u2(x2) = x2
0 + lnx2

1 w2 = (1, 0, 1, 0, . . . ),

u3(x3) = x3
0 + lnx3

2 w3 = (1, 0, 0, 1, 0, . . . ),

ut(xt) = xt0 + lnxtt−1 wt =
(
1, 0, . . . , 0, 1, 0, . . . ).

The Cournot-Nash equilibrium of the game Γ associated to the exchange economy

is

(b̂1
1, b̂

1
2, b̂

1
3, . . . , b̂

1
j , . . . ) =

(
1

2
,
1

6
,

1

12
, . . . ,

1

j + j2
, . . .

)
,

(b̂2
1, b̂

2
2, b̂

2
3, . . . , b̂

2
j , . . . ) =

(
1

2
, 0, 0, . . . , 0, . . .

)
,

(b̂3
1, b̂

3
2, b̂

3
3, . . . , b̂

2
j , . . . ) =

(
0,

1

3
, 0, . . . , 0, . . .

)
,

(b̂t1, . . . , b̂
t
t−2, b̂

t
t−1, b̂

t
t, . . . ) =

(
0, . . . , 0,

1

t
, 0, . . .

)
,

for t = 4, 5, . . . . At this Cournot-Nash equilibrium trader 1 is an asymptotic

price-taker.

Proof. At the Cournot-Nash equilibrium, in a trading post for commodity j only

traders 1 and j + 1 are active. The market power of trader 1, b̂1
j/

¯̂
bj, is equal to

1
1+j

, for each j ≥ 2. Hence, limj→∞ b̂
1
j/

¯̂
bj = 0.

The condition that the price vector is uniformly bounded away from zero and

Assumption 1 on initial endowments imply that the sums of bids and offers along

the sequence of trading posts are uniformly bounded away from zero. This can be

interpreted as a case in which all markets are “thick”. Gretsky and Ostroy (1984)

introduced the notions of “thick” and “thin” to refer to markets with many and

few traders respectively. Similarly, Shubik (1973) call them “broad” and “thin”

markets. Differently, in our framework thick means that the quantities of com-

modities and commodity money along the sequence of trading posts are uniformly

bounded away from zero. In Examples 3 and 4, the sums of bids converge to zero

along the sequence of trading posts and then markets are not thick.

Heuristically, Theorem 2, Examples 3, and Example 4 imply that if all mar-

kets are thick then all traders active on an infinite number of commodities are
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asymptotic price-takers. Differently, if markets are not thick the existence of an

asymptotic price-taker depends on the pattern of preferences among traders.

3.5 Discussion of the model

The papers of Dixit and Stiglitz (1977), Hart (1985), and Pascoa (1993) devel-

oped different models to study monopolistic competition in the spirit of Chamberlin

in production economies. All these contributions are characterised by firms which

have market power on some commodities and consider as given the prices of all

others. This is a crucial feature of Chamberlinian monopolistic competition and it

is similar to the mixed behaviour obtained by using the portfolio of commodities.

In the paper of Dixit and Stiglitz (1977) and Hart (1985), the mixed behaviour

does not arise endogenously in equilibrium but it is assumed and justified by saying

that firms can ignore their impact on others because their number is very large,

i.e., firms are small compared to the whole economy. Differently, in Pascoa (1993)

the mixed behaviour arises endogenously because the set of firms is an atomless

continuum and then each firm is negligible. Unfortunately, it seems to be no hope

to prove the existence of a Cournot-Nash equilibrium in such framework and then

Pascoa (1993) proved the existence of an approximate equilibrium.

In the framework of this chapter, the mixed behaviour of an asymptotic price-

taker is characterised by an approximate competitive behaviour since traders’ mar-

ket power is never zero but it can be made arbitrary small on infinite set of com-

modities. To obtain a clear endogenous split between strategic and competitive

behaviours, it seems necessary to deal with models with a continuum of traders

and a continuum of commodities. In the literature on the core, the equivalence

and non-equivalence results were already extended to economies with a continuum

of traders and commodities by Mas-Colell (1975) and Ostroy and Zame (1994)

respectively. Nevertheless, in non-cooperative game theory many non existence re-

sults arise in games with a continuum of players and an infinite dimensional space

of strategies as shown by Kahn, Rath, and Sun (1997) and Sun and Zhang (2015).

3.6 Conclusion

In this chapter, we have extended the study of mixed behaviour to Cournotian

games by focusing on the bids side. The mixed behaviour is formalised by the

notion of asymptotic price-taker. The idea that a trader is small compared to the
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whole economy is captured by considering economies with infinitely many com-

modities and traders and by assuming that the aggregate endowment of commod-

ity money is infinite. In such framework, each trader holds only a negligible part

of the total endowment of commodity money. In Theorem 1, we have proved the

existence of a Cournot-Nash equilibrium for the all for sale model with an infinite

number of commodities and traders. The difficulties which characterise the set-

ting with a continuum of traders and strategies are overcome with our approach

based on countable infinities. In Theorem 2, we provide the sufficient conditions

on the fundamentals of an economy under which an asymptotic price-taker ex-

ists. Surprisingly, Example 3 shows that the infinities of commodities, traders,

and endowment of commodity money are not sufficient to obtain the mixed be-

haviour which characterises asymptotic price-takers but additional restrictions on

preferences are necessary.
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4

Atomic Cournotian Traders May Be Walrasian

4.1 Introduction

In his celebrated paper, Aumann (1964) proved that, in exchange economies

with a continuum of traders, the core coincides with the set of Walras allocations.

He also suggested

“Of course, to the extent that individual consumers or merchants

are in fact not anonymous (think of General Motors), the continuous

model is inappropriate, and our results do not apply to such a situ-

ation. But, in that case, perfect competition does not obtain either.

In many real markets the competition is indeed far from perfect; such

markets are probably best represented by a mixed model, in which some

of the traders are points in a continuum, and others are individually

significant.”

Some years later, by following Aumann’s suggestion, Gabszewicz and Mertens

(1971) and Shitovitz (1973) introduced the mixed exchange economy model, i.e.,

an exchange economy with oligopolists, represented as atoms, and small traders,

represented by an atomless continuum, in order to analyse oligopoly in a general

equilibrium framework. Gabszewicz and Mertens (1971) showed that, if atoms are

not “too” big, the core still coincides with the set of Walras allocations whereas

Shitovitz (1973), in his Theorem B, proved that this result also holds if the atoms

0Some of the materials of this chapter were published in Codognato G., Ghosal S., Tonin S.
(2015), “Atomic Cournotian traders may be Walrasian”, Journal of Economic Theory, 159, 1-14.
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are of the same type, i.e., have the same initial endowments and preferences. It is

worthy to note that Gabszewicz and Mertens were not satisfied of their result since

they find an “extravagant condition” which divides exchange economies into two

main categories: the one in which there is an equivalence result and the interesting

one.

Analogously, Okuno et al. (1980) considered the result obtained by Shitovitz

(1973) so counterintuitive to call into question the use of the core as the solu-

tion concept to study oligopoly in general equilibrium.1 This led them to replace

the core with the Cournot-Nash equilibrium of a model of simultaneous, non-

cooperative exchange between oligopolists and small traders as the appropriate

solution for the analysis of oligopoly in general equilibrium. The model of non-

cooperative exchange they used belongs to a line of research initiated by Shubik

(1973), Shapley (1976), and Shapley and Shubik (1977) (see Giraud (2003) for a

survey of this literature). In particular, they considered a mixed exchange econ-

omy with two commodities which are both held by all traders. Furthermore, they

assumed that no trader is allowed to be both buyer and seller of any commodity.

In this framework, they showed that, if there are two atoms of the same type who

demand, at a Cournot-Nash equilibrium, a positive amount of the two commodi-

ties, then the corresponding Cournot-Nash allocation is not a Walras allocation.

Therefore, under the assumptions of Shitovitz’s Theorem B, demanding a non-null

amount of the two commodities by all the atoms is a sufficient condition for a

Cournot-Nash allocation not to be a Walras allocation. This proposition allowed

Okuno et al. (1980) to conclude that the non-cooperative model they considered

is a useful one to study oligopoly in a general equilibrium framework as the small

traders always have a negligible influence on prices, while oligopolists keep their

strategic power even when their behaviour turns out to be Walrasian in the coop-

erative framework considered by Shitovitz (1973).

In this paper, we raise the question whether, in mixed exchange economies,

an equivalence, or at least a non-empty intersection, between the sets of Walras

and Cournot-Nash allocations may hold. In order to further simplify our analysis,

we consider the model of bilateral oligopoly introduced by Gabszewicz and Michel

(1997) and further analysed by Bloch and Ghosal (1997), Bloch and Ferrer (2001),

Dickson and Hartley (2008), Amir and Bloch (2009), among others. By using this

model, we still remain in a two-commodity setting but we assume that each trader

1Okuno et al. (1980) did not quote the result obtained by Gabszewicz and Mertens (1971).
Nevertheless, their argument also holds, mutatis mutandis, for this result.
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holds only one of the two commodities whose aggregate amount is strictly positive

in the economy. We shall use a mixed bilateral oligopoly version of the strategic

market game with commodity money analysed by Dubey and Shubik (1978) and by

Dubey and Shapley (1994). In particular, Dubey and Shapley (1994) considered an

economy with an atomless continuum of traders and proved that in such framework

the sets of Walras and Cournot-Nash allocations coincide, thereby providing a non-

cooperative version of Aumann’s theorem. However, since in this strategic market

game trade takes place by using commodity money, liquidity problems can arise and

even if all traders are negligible there can be a non-equivalence between Cournot-

Nash and Walras allocations. For this reason, the equivalence result is obtained

under more restrictive assumptions than the ones made Aumann (1964). However,

in exchange economies with two commodities, liquidity problems do not arise and

the coincidence between the sets of Cournot-Nash and Walras allocations can be

proved under more general conditions.

We first show, through some examples, that the threefold equivalence among

the sets of Walras, core, and Cournot-Nash allocations may not hold, in mixed

exchange economies with a bilateral oligopoly configuration, even under the as-

sumptions made by Gabszewicz and Mertens (1971) and Shitovitz (1973). These

examples confirm the result obtained by Okuno et al. (1980). We then answer our

main question by proving a theorem which states that demanding a null amount of

one of the two commodities by all the atoms is a necessary and sufficient condition

for a Cournot-Nash allocation to be a Walras allocation. We also provide four

examples which show that this characterisation theorem is non-vacuous.

Our result depends only on atoms’ demand behaviour at a Cournot-Nash equi-

librium. This opens the door to a research on the conditions on the fundamentals

of an economy, i.e., traders’ size, initial endowments, and preferences, under which

our theorem holds. We start an investigation in this direction by providing two

necessary conditions, expressed in terms of bounds on atoms’ marginal rates of

substitution, for our result to hold when atoms’ preferences are represented by

additively separable utility functions and by quasi linear utility functions respec-

tively. Finally, we show that, in the mixed bilateral oligopoly framework, our main

theorem can be extended to the model of non-cooperative exchange with complete

markets proposed by Amir, Sahi, Shubik, and Yao (1990).

The paper is organised as follows. In Section 4.2, we introduce the mathematical

model. In Section 4.3, we state the main equivalence theorems. In Section 4.4, we

provide some examples and we state and prove our main theorem. In Section 4.5,
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we show two necessary conditions on the fundamentals of an economy under which

our result holds. In Section 4.6, we extend our main result to the model analysed

by Amir et al. (1990). In Section 4.7, we draw some conclusions from our analysis.

4.2 Mathematical model

We consider an exchange economy with oligopolists, represented as atoms, and

small traders, represented by an atomless part. The space of traders is denoted by

the measure space (T, T , µ), where T is the set of traders, T is the σ-algebra of all

µ-measurable subsets of T , and µ is a real valued, non-negative, countably additive

measure defined on T . We assume that (T, T , µ) is finite, i.e., µ(T ) < ∞. This

implies that the measure space (T, T , µ) contains at most countably many atoms.

Let T0 denote the atomless part of T . A null set of traders is a set of measure

0. Null sets of traders are systematically ignored throughout the paper. Thus, a

statement asserted for “each” trader in a certain set is to be understood to hold for

all such traders except possibly for a null set of traders. A coalition is a non-null

element of T . The word “integrable” is to be understood in the sense of Lebesgue.

In the exchange economy, there are two different commodities. A commodity

bundle is a point in R2
+. An assignment of commodity bundles to traders is an

integrable function x : T → R2
+. There is a fixed initial assignment w, satisfying

the following assumption.

Assumption 1. There is a coalition S such that w1(t) > 0, w2(t) = 0, for each

t ∈ S, and w1(t) = 0, w2(t) > 0, for each t ∈ Sc.

The preferences of each trader t ∈ T are described by a utility function ut : R2
+ →

R, satisfying the following assumptions.

Assumption 2. ut : R2
+ → R is continuous, strongly monotone, and quasi-

concave, for each t ∈ T .

Let B(R2
+) denote the Borel σ-algebra of R2

+. Moreover, let T
⊗
B denote the

σ-algebra generated by the sets E × F such that E ∈ T and F ∈ B.

Assumption 3. u : T ×R2
+ → R, given by u(t, x) = ut(x), for each t ∈ T and for

each x ∈ R2
+, is T

⊗
B-measurable.

An allocation is an assignment x for which
∫
T

x(t) dµ =
∫
T

w(t) dµ. An al-

location y dominates an allocation x via a coalition S if ut(y(t)) ≥ ut(x(t)), for
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each t ∈ S, ut(y(t)) > ut(x(t)), for a non-null subset of traders t in S, and∫
S

y(t)dµ =
∫
S

w(t)dµ. The core is the set of all allocations which are not domi-

nated via any coalition. A Walras equilibrium is a pair (p∗,x∗), consisting of a price

vector p∗ and an allocation x∗, such that p∗x∗(t) = p∗w(t) and ut(x∗(t)) ≥ ut(y),

for each y ∈ {x ∈ R2
+ : p∗x = p∗w(t)}, for each t ∈ T .

A price vector is a non-null vector p ∈ R2
+. A Walras allocation is an allocation

x∗ for which there exists a price vector p∗ such that the pair (p∗,x∗) is a Walras

equilibrium.

We now introduce the strategic market game associated to the exchange econ-

omy. We consider a two-commodity version of the game analysed by Dubey and

Shubik (1978) and adapted for mixed exchange economies. To do so, we follow the

contribution of Busetto, Codognato, and Ghosal (2011) on a strategic market game

in mixed exchange economies. Since this is a game in which trade takes place by

using commodity money, we assume, without loss of generality, that commodity 2

has this role. A strategy correspondence is a correspondence S : T → P(R2
+) such

that, for each t ∈ T , S(t) = {(q, b) ∈ R2
+ : q ≤ w1(t) and b ≤ w2(t)}, where q is

the amount of commodity 1 puts up in exchange for commodity money and b is

the bid of commodity money offered for commodity 1. A strategy selection is an

integrable function s : T → R+, such that s(t) ∈ S(t), for each t ∈ T . We denote

by s\s(t) the strategy selection obtained from s by replacing s(t) with s(t) ∈ S(t).

Since commodity 2 has the role of money, we normalize its price to one, i.e., p2 =

1. Therefore, given a strategy selection s, the price of commodity 1 is determined

as follows

p1 =

{
b̄
q̄

if q̄ 6= 0,

0 if q̄ = 0,
(4.1)

with q̄ =
∫
T

q(t)dµ and b̄ =
∫
T

b(t)dµ. We denote by p(s) a function which

associates with each strategy selection s the price vector (p1, 1) satisfying (4.1).

Given a strategy selection s and a price vector p, consider the assignment

determined as follows

x1(t, s(t), p) =

{
w1(t)− q(t) + b(t)

p1
if p1 6= 0,

w1(t)− q(t) if p1 = 0,

x2(t, s(t), p) = w2(t)− b(t) + q(t)p1,

for each t ∈ T . Given a strategy selection s and the function p(s), the traders’

final holdings are determined according with this rule and consequently expressed

by the assignment

x(t) = x(t, s(t), p(s)),
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for each t ∈ T .2 It is straightforward to show that this assignment is an allocation.

We are now able to define a notion of Cournot-Nash equilibrium for this refor-

mulation of the Dubey and Shubik model.

Definition 1. A strategy selection ŝ is a Cournot-Nash equilibrium if

ut(x(t, ŝ(t), p(ŝ))) ≥ ut(x(t, ŝ \ s(t), p(ŝ \ s(t)))),

for each s(t) ∈ S(t) and for each t ∈ T .

It is straightforward to verify that a strategy selection s such that (q(t),b(t)) =

(0, 0) for each t ∈ T is always a Cournot-Nash equilibrium. We call it trivial

Cournot-Nash equilibrium since there is no trade. Differently, if a Cournot-Nash

equilibrium ŝ is such that ¯̂q > 0 and
¯̂
b > 0, we say that ŝ is an active Cournot-

Nash equilibrium. Since we want to establish equivalence results, in the rest of the

paper the trivial Cournot-Nash equilibrium is systematically ignored and we refer

to active Cournot-Nash equilibria simply as Cournot-Nash equilibria.

A Cournot-Nash allocation is an allocation x̂ such that x̂(t) = x(t, ŝ(t), p(ŝ)),

for each t ∈ T , where ŝ is a Cournot-Nash equilibrium.

4.3 Theorems of equivalence

In this section, we first state the equivalence result between the core and the

set of Walras allocations established by Aumann (1964) in atomless economies and

we prove the analogous theorem between the sets of Cournot-Nash and Walras

allocations. We then recall the equivalence results between the core and the set

of Walras allocations obtained by Gabszewicz and Mertens (1971) and Shitovitz

(1973) in mixed exchange economies.

Theorem 1. Under Assumptions 1, 2, and 3, if T = T0, then the core coincides

with the set of Walras allocations.

Proof. See the proof of the main theorem in Aumann (1964).

The equivalence theorem between Cournot-Nash and Walras allocations could

not be established in such generality because it holds only for active Cournot-Nash

equilibria. Indeed, when the Walras allocation is interior for a non-null subset of

2In order to save in notation, with some abuse, we denote by x both the function x(t) and
the function x(t, s(t), p(s)).

72



traders, there exists an allocation associated to the trivial Cournot-Nash equilib-

rium which breaks the equivalence result. But by excluding the trivial Cournot-

Nash equilibrium, we do not have an equivalence when a Walras allocation is equal

to the initial assignments.

Theorem 2. Let x be an allocation such that x(t) � 0 for a non-null subset of

traders t ∈ T . Under Assumptions 1, 2, and 3, if T = T0, the allocation x is a

Cournot-Nash allocation if and only if it is a Walras allocation.

Proof. Let x be a Cournot-Nash allocation. Then, there exists a strategy selection

ŝ, which is a Cournot-Nash equilibrium, such that x(t) = x̂(t) = x(t, ŝ(t), p(ŝ)),

for each t ∈ T . We now show that x̂ is also a Walras allocation. Let p̂ = p(ŝ).

Since x̂(t) � 0 for a non-null subset of traders t ∈ T , p̂ � 0. We have that

p̂x̂(t) = p̂w(t), for each t ∈ T , since p̂2 = 1 and

p̂1x̂1(t) + p̂2x̂2(t) = p̂1

(
w1(t)− q̂(t) +

b̂(t)

p̂1

)
+

p̂2

(
w2(t)− b̂(t) + q̂(t)p̂1

)
= p̂1w1(t) + p̂2w2(t),

(4.2)

for each t ∈ T . Suppose that there exist a trader t ∈ T and a commodity bundle

x̃ such that ut(x̃) > ut(x̂(t)) and x̃ ∈ {x ∈ R2
+ : p̂x = p̂w(t)}. Since the utility

function is strongly monotone, by Assumption 2, x̃1 > x̂1(t) or x̃2 > x̂2(t). First,

assume that the trader t is such that w1(t) > 0 and w2(t) = 0. Consider the case

where x̃1 > x̂1(t). If ŝ(t) is such that q̂(t) = 0 then p̂x̃ 6= p̂w(t), a contradiction.

If ŝ(t) is such that q̂(t) > 0, then there exists a strategy s̃(t) ∈ S(t) such that

x̃ = x(t, ŝ \ s̃(t), p(ŝ)). Note that p(ŝ) = p(ŝ \ s̃(t)) as p̂1 =
∫
T b̂(t)dµ∫
T q̂(t)dµ

and p̂2 = 1.

But then,

ut(x(t, ŝ \ s̃(t), p(ŝ))) > ut(x(t, ŝ(t), p(ŝ))),

a contradiction. Consider the case where x̃2 > x̂2(t). If ŝ(t) is such that q̂(t) =

w2(t), then p̂x̃ 6= p̂w(t), a contradiction. If ŝ(t) is such that q̂(t) < w2(t), then

there exists a strategy s̃(t) ∈ S(t) such that x̃ = x(t, ŝ \ s̃(t), p(ŝ)). But then,

ut(x(t, ŝ \ s̃(t), p(ŝ))) > ut(x(t, ŝ(t), p(ŝ))),

a contradiction. Now, assume that the trader t is such that w1(t) = 0 and

w2(t) > 0. Then, the previous argument leads, mutatis mutandis, to the same kinds

of contradictions. Therefore, (p̂, x̂) is a Walras equilibrium. Now, let x be a Walras

allocation. Then, there exist a price p∗ and an assignment x∗ = x such that the pair

(p∗,x∗) is a Walras equilibrium. We now show that x∗ is also a Cournot-Nash allo-

cation. It is straightforward to verify that in two-commodity exchange economies
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there exists always a strategy selection s∗ such that x∗(t) = x(t, s∗(t), p(s∗)), for

each t ∈ T . Since utility functions are strongly monotone, by Assumption 2,

p∗ � 0. Since, given a trader t ∈ T , p(s∗)x∗(t) = p(s∗)w(t) by equation (4.2)

and p∗ is the unique price vector such that p∗x∗(t) = p∗w(t), p∗ = p(s∗). Suppose

that s∗ is not a Cournot-Nash equilibrium. Then, there exist a trader t ∈ T and a

strategy s̃ ∈ S(t) such that

ut(x(t, s∗ \ s̃(t), p(s∗))) > ut(x(t, s∗(t), p(s∗))).

Note that p(s∗) = p(s∗ \ s̃(t)) as p∗1 =
∫
T b∗(t)dµ∫
T q∗(t)dµ

. But then, there exists x̃ =

x(t, s∗ \ s̃(t), p(s∗)) such that ut(x̃) > ut(x∗(t)) and p∗x̃ = p∗w(t), by equation

(4.2), a contradiction. Therefore, s∗ is a Cournot-Nash equilibrium.

Gabszewicz and Mertens (1971) and Shitovitz (1973) showed that an equiva-

lence between the core and the set of Walras allocations may hold even when the

space of traders contains atoms. In order to state their two main theorems, we need

to introduce some further notation and definitions. Two traders τ, ρ ∈ T are said

to be of the same type if w(τ) = w(ρ) and uτ = uρ. Let A = {A1, A2, . . . , Ak, . . .}
be a partition of the set of atoms T \T0 such that Ak contains all the atoms who are

of the same type as an atom τk ∈ Ak, for each k = 1, . . . , |A|, where |A| denotes the

cardinality of the partition A. Moreover, let Tk be the set of the traders t ∈ T who

are of the same type as the atoms in Ak, for each k = 1, . . . , |A|. Given a set Tk,

denote by τhk the h-th atom belonging to the set Tk, for each h = 1, . . . , |Ak|, where

|Ak| denotes the cardinality of the set Ak. We can now state the two theorems.

Theorem 3. Under Assumptions 1, 2, and 3, if, either |A| = 1 and
∑|A1|

h=1
µ(τh1)
µ(T1)

< 1,

or, |A| > 1 and
∑|A|

k=1

∑|Ak|
h=1

µ(τhk)
µ(Tk)

≤ 1, then the core coincides with the set of Walras

allocations.

Proof. See the proof of the theorem in Gabszewicz and Mertens (1971).

Theorem 4. Under Assumptions 1, 2, and 3, if |A| = 1 and |A1| ≥ 2, then the

core coincides with the set of Walras allocations.

Proof. See the proof of Theorem B in Shitovitz (1973).

Okuno et al. (1980) already showed that the equivalence stated by Theorem 4

(Shitovitz’s Theorem B) does not extend to the set of Cournot-Nash allocations.

In the next section, we further investigate the relation between the core and the

sets of Walras and Cournot-Nash allocations.
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4.4 Some examples and two theorems

In this section, we provide some examples to extend Okuno et alii’s results to

mixed exchange economies with corner endowments. We then show some examples

in which the set of Cournot-Nash allocations coincides with the Walras allocations

which, it turn, coincides with the core. Moreover, we answer our main question

by providing two theorems. The first theorem shows sufficient conditions under

which the sets of Cournot-Nash and Walras allocations are not equivalent. The

second theorem establishes a necessary and sufficient condition for a Cournot-Nash

allocation to be a Walras allocation.

We start our analysis by considering Example 1 in Shitovitz (1973) where the

market of commodity 2 is monopolistic. The example shows that Theorems 3 and

4 cannot be extended to this case as |A| = 1, |A1| = 1, and µ(τ11)
µ(T1)

= 1. Moreover,

in this market configuration, the sets of Walras and Cournot-Nash allocations

are disjoint as there is no Cournot-Nash equilibrium (there exists only the trivial

Cournot-Nash equilibrium).

Example 1. Consider the following specification of the exchange economy satis-

fying Assumptions 1, 2, and 3. T0 = [0, 1], A1 = {2}, T0 is taken with Lebesgue

measure, µ(2) = 1, w(t) = (4, 0), ut(x) =
√
x1+
√
x2, for each t ∈ T0, w(2) = (0, 4),

u2(x) =
√
x1 +
√
x2. Then, there is an allocation in the core, which is not a Walras

allocation, and there is no Cournot-Nash allocation.

Proof. The unique Walras equilibrium is the pair (p∗,x∗), where (p∗1, p
∗
2) = (1, 1),

(x∗1(t),x∗2(t)) = (2, 2), for each t ∈ T0, (x∗1(2),x∗2(2)) = (2, 2). As shown by Shi-

tovitz (1973), the allocation x̃ such that (x̃1(t), x̃2(t)) = (1, 1), for each t ∈ T0,

(x̃1(2), x̃2(2)) = (3, 3) is in the core but it is not a Walras allocation. Suppose that

there is a Cournot-Nash allocation x̂. Then, there is a strategy selection ŝ which is

a Cournot-Nash equilibrium and which is such that x̂(t) = x(t, ŝ(t), p(ŝ)), for each

t ∈ T . In particular, x(2, ŝ(2), p(ŝ)) = (¯̂q, 4 − b̂(2)). Let s′(2) be a strategy such

that 0 < b′(2) < b̂(2). Then,

u2(x(2, ŝ \ s′(2), p(ŝ \ s′(2)))) > u2(x(2, ŝ(2), p(ŝ))),

as x(2, ŝ \ s′(2), p(ŝ \ s′(2))) = (¯̂q, 4− b′(2)) and u2 is strongly monotone, a contra-

diction. Then, there is no Cournot-Nash allocation.

In the following example, all traders have the same utility function as in Ex-

ample 1 but a competitive fringe competes with the monopolist in the market

75



for commodity 2. The core coincides with the set of Walras allocations as the

assumptions of Theorem 3 are satisfied but no Cournot-Nash allocation is in the

core.

Example 2. Consider the following specification of the exchange economy satisfy-

ing Assumptions 1, 2, and 3. T0 = [0, 2], A1 = {3}, T0 is taken with Lebesgue mea-

sure, µ(3) = 1, w(t) = (4, 0), ut(x) =
√
x1 +

√
x2, for each t ∈ [0, 1], w(t) = (0, 4),

ut(x) =
√
x1 +

√
x2, for each t ∈ [1, 2], w(3) = (0, 4), u3(x) =

√
x1 +

√
x2. Then,

there is a unique allocation in the core which is also the unique Walras allocation

but which is not a Cournot-Nash allocation.

Proof. The unique Walras equilibrium is the pair (p∗,x∗), where (p∗1, p
∗
2) = (

√
2, 1),

(x∗1(t),x∗2(t)) = (4
√

2−4, 8
√

2−8), for each t ∈ [0, 1], (x∗1(t),x∗2(t)) = (4−2
√

2, 8−
4
√

2), for each t ∈ [1, 2], (x∗1(3),x∗2(3)) = (4 − 2
√

2, 8 − 4
√

2). Then, by Theorem

3, the unique Walras allocation is also the unique allocation in the core as |A| = 1,

|A1| = 1, and µ(τ11)
µ(T1)

< 1. Suppose that x∗ is also a Cournot-Nash allocation. Then,

there is a strategy selection s∗ which is a Cournot-Nash equilibrium and which is

such that x∗(t) = x(t, s∗(t), p(s∗)), for each t ∈ T . But then, s∗ must be such that

q∗(t) = 8 − 4
√

2, for each t ∈ [0, 1], b∗(t) = 4
√

2 − 4, for each t ∈ [1, 2], b∗(3) =

4
√

2− 4. However, the unique Cournot-Nash equilibrium is the strategy selection

ŝ where (q̂(t), b̂(t)) = (2.221, 0), for each t ∈ [0, 1], (q̂(t), b̂(t)) = (0, 1.779), for

each t ∈ [1, 2], (q̂(3), b̂(3)) = (0, 0.993).3 It is straightforward to see that s∗ 6= ŝ.

Then, the unique Walras allocation is not a Cournot-Nash allocation.

In the following example, all traders have the same utility function as in Exam-

ple 1 but there are two oligopolists of the same type in the market for commodity

2. The core coincides with the set of Walras allocations as the assumptions of

Theorem 4 are satisfied but no Cournot-Nash allocation is in the core.

Example 3. Consider the following specification of the exchange economy satis-

fying Assumptions 1, 2, and 3. T0 = [0, 1], A1 = {2, 3}, T0 is taken with Lebesgue

measure, µ(2) = µ(3) = 1, w(t) = (4, 0), ut(x) =
√
x1 +

√
x2, for each t ∈ T0,

w(2) = w(3) = (0, 4), u2(x) = u3(x) =
√
x1 +

√
x2. Then, there is a unique

allocation in the core which is also the unique Walras allocation but which is not

a Cournot-Nash allocation.

3These results are obtained with Mathematica. Since the exact strategies are complicate
formulas, we have written the approximate ones. The actions q̂(t), for each t ∈ [0, 1], b̂(t),

for each t ∈ [1, 2], and b̂(3) are the roots of the following polynomials x6 − 64 + x5 + 640x4 −
3200x3 + 8960x2 − 13312x + 8192, x6 + 40x5 − 400x4 + 1920x3 − 5120x2 + 7168x − 4096, and
x6 + 20x5 + 160x4 + 640x3 + 1280x2 + 2048x− 4096 respectively.
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Proof. The unique Walras equilibrium is the pair (p∗,x∗), where (p∗1, p
∗
2) = (

√
2, 1),

(x∗1(t),x∗2(t)) = (4
√

2−4, 8
√

2−8), for each t ∈ T0, (x∗1(2),x∗2(2)) = (x∗1(3),x∗2(3)) =

(4 − 2
√

2, 8 − 4
√

2). Then, by Theorem 4, the unique Walras allocation is also

the unique allocation in the core as |A| = 1 and |A1| = 2. Suppose that x∗ is

also a Cournot-Nash allocation. Then, there is a strategy selection s∗ which is

a Cournot-Nash equilibrium and which is such that x∗(t) = x(t, s∗(t), p(s∗)), for

each t ∈ T . But then, s∗ must be such that q∗(t) = 8 − 4
√

2, for each t ∈ [0, 1],

b∗(2) = b∗(3) = 4
√

2 − 4. However, the unique Cournot-Nash equilibrium is the

strategy selection ŝ where (q̂(t), b̂(t)) = (1.903, 0), for each t ∈ [0, 1], (q̂(2), b̂(2)) =

(q̂(3), b̂(3)) = (0, 0.864).4 It is straightforward to see that s∗ 6= ŝ. Then, the unique

Walras allocation is not a Cournot-Nash allocation.

In Examples 2 and 3, there are atoms who demand a strictly positive amount

of both commodities at a Walras equilibrium and the sets of Walras and Cournot-

Nash allocations are disjoint. The following theorem generalises these examples

providing a sufficient condition for a Walras allocation not to be a Cournot-Nash

allocation. In order to state the theorem, we need a further assumption on traders’

utility functions.

Assumption 4. ut : R2
+ → R is differentiable, for each t ∈ T \ T0.5

Theorem 5. Under Assumptions 1, 2, 3, and 4, if the pair (p∗,x∗) is a Walras

equilibrium such that x∗(τ)� 0, for an atom τ ∈ T \T0, then x∗ is not a Cournot-

Nash allocation.

Proof. Assume that the pair (p∗,x∗) is a Walras equilibrium such that x∗(τ)� 0,

for an atom τ ∈ T \ T0. Moreover, suppose that x∗ is a Cournot-Nash allocation.

Then, there is a strategy selection s∗ such that x∗(t) = x(t, s∗(t), p(s∗)), for each

t ∈ T , where s∗ is a Cournot-Nash equilibrium. Since, given a trader t ∈ T ,

p(s∗)x∗(t) = p(s∗)w(t) and p∗ is the unique price vector such that p∗x∗(t) = p∗w(t),

p∗ = p(s∗). First, consider an atom τ ∈ T \T0 such that w1(τ) > 0 and w2(τ) = 0.

At a Cournot-Nash equilibrium, for the atom τ , the marginal rate of substitution

must be equal to the marginal rate at which he can trade off commodity 1 for

commodity 2 (see Okuno et al. (1980)). Moreover, at a Walras equilibrium, the

4The actions q̂(t), for each t ∈ [0, 1], and b̂(2) = b̂(3) are the roots of the following polyno-
mials 3x3 − 4x2 + 64x− 128 and 6x3 + 7x2 + 8x− 16 respectively.

5In this assumption, differentiability should be implicitly understood to include the case of
infinite partial derivatives along the boundary of the consumption set (for a discussion of this
case, see, for instance, Kreps (2012), p. 58).
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marginal rate of substitution must be equal to the relative price of commodity 1

in terms of commodity 2, where p∗2 = 1. These conditions are expressed by the

following equations
dx2

dx1

= −p∗1
q̄∗ − q∗(τ)µ(τ)

q̄∗
= −p∗1.

Then, we must have q∗(τ) = 0. But then, (x∗1(τ),x∗2(τ)) = (w1(τ), 0), a contradic-

tion. Hence, x∗ is not a Cournot-Nash allocation. Now, consider an atom τ ∈ T \T0

and assume that w1(τ) = 0 and w2(τ) > 0. At a Cournot-Nash equilibrium, for

the atom τ , the marginal rate of substitution must be equal to the marginal rate

at which he can trade off commodity 1 for commodity 2 (see Okuno et al. (1980)).

Moreover, at a Walras equilibrium, the marginal rate of substitution must be equal

to the relative price of commodity 1 in terms of commodity 2, where p∗2 = 1. These

two conditions are expressed by the following equations

dx2

dx1

= −p∗1
b̄
∗

b̄
∗ − b∗(τ)µ(τ)

= −p∗1.

Then, we must have b∗(τ) = 0. But then, (x∗1(τ),x∗2(τ)) = (0,w2(τ)), a contradic-

tion. Hence, x∗ is not a Cournot-Nash allocation.

The following example differs from Example 2 only in that the monopolist and

the competitive fringe have quasi-linear utility functions. It shows that, under

the assumptions of Theorem 3, the converse of Theorem 5 does not hold. At

the unique Walras equilibrium, both the monopolist and the competitive fringe

demand a null amount of commodity 2 and this unique Walras allocation is also

the unique allocation in the core but it is not a Cournot-Nash allocation.

Example 4. Consider the following specification of the exchange economy satisfy-

ing Assumptions 1, 2, and 3. T0 = [0, 2], A1 = {3}, T0 is taken with Lebesgue mea-

sure, µ(3) = 1, w(t) = (4, 0), ut(x) =
√
x1 +

√
x2, for each t ∈ [0, 1], w(t) = (0, 4),

ut(x) =
√
x1 + 1

10
x2, for each t ∈ [1, 2], w(3) = (0, 4), u3(x) =

√
x1 + 1

10
x2. Then,

there is a unique allocation in the core which is also the unique Walras allocation

but which is not a Cournot-Nash allocation.

Proof. The unique Walras equilibrium is the pair (p∗,x∗), where (p∗1, p
∗
2) = (

√
3 +

1, 1), (x∗1(t),x∗2(t)) = (8− 4
√

3, 8), for each t ∈ [0, 1], (x∗1(t),x∗2(t)) = (2
√

3− 2, 0),

for each t ∈ [1, 2], (x∗1(3),x∗2(3)) = (2
√

3− 2, 0). Then, by Theorem 3, the unique

Walras allocation is also the unique allocation in the core as |A| = 1, |A1| = 1,

and µ(τ11)
µ(T1)

< 1. Suppose that x∗ is also a Cournot-Nash allocation. Then, there

is a strategy selection s∗ which is a Cournot-Nash equilibrium and which is such
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that x∗(t) = x(t, s∗(t), p(s∗)), for each t ∈ T . But then, s∗ must be such that

q∗(t) = 2
√

21 − 6, for each t ∈ [0, 1], b∗(t) = 4, for each t ∈ [1, 2], b∗(3) = 4.

However, the unique Cournot-Nash equilibrium is the strategy selection ŝ where

(q̂(t), b̂(t)) = (2.857, 0), for each t ∈ [0, 1], (q̂(t), b̂(t)) = (0, 4), for each t ∈ [1, 2],

(q̂(3), b̂(3)) = (0, 3.140).6 It is straightforward to see that s∗ 6= ŝ. Then, the

unique Walras allocation is not a Cournot-Nash allocation.

The following example differs from Example 3 only in that the two oligopolists

have quasi-linear utility functions. It shows that, under the assumptions of Theo-

rem 4, the converse of Theorem 5 does not hold. At the unique Walras equilibrium,

the two oligopolists demand a null amount of commodity 2 and this unique Walras

allocation is also the unique allocation in the core but it is not a Cournot-Nash

allocation.

Example 5. Consider the following specification of the exchange economy satis-

fying Assumptions 1, 2, and 3. T0 = [0, 1], A1 = {2, 3}, T0 is taken with Lebesgue

measure, µ(2) = µ(3) = 1, w(t) = (4, 0), ut(x) =
√
x1 +

√
x2, for each t ∈ T0,

w(2) = w(3) = (0, 4), u2(x) = u3(x) =
√
x1 + 1

10
x2. Then, there is a unique

allocation in the core which is also the unique Walras allocation but which is not

a Cournot-Nash allocation.

Proof. The unique Walras equilibrium is the pair (p∗,x∗), where (p∗1, p
∗
2) = (

√
3 +

1, 1), (x∗1(t),x∗2(t)) = (8−4
√

3, 8), for each t ∈ T0, (x∗1(2),x∗2(2)) = (x∗1(3),x∗2(3)) =

(2
√

3− 2, 0). Then, by Theorem 4, the unique Walras allocation is also the unique

allocation in the core as |A| = 1 and |A1| = 2. Suppose that x∗ is also a Cournot-

Nash allocation. Then, there is a strategy selection s∗ which is a Cournot-Nash

equilibrium and which is such that x∗(t) = x(t,b∗(t), p(b∗)), for each t ∈ T . But

then, s∗ must be such that q∗(t) = 2
√

21 − 6, for each t ∈ T0, b∗(2) = b∗(3) = 4.

However, the unique Cournot-Nash equilibrium is the strategy selection ŝ where

(q̂(t), b̂(t)) = (2.857, 0), for each t ∈ [0, 1], (q̂(2), b̂(2)) = (q̂(3), b̂(3)) = (0, 3.140).7

It is straightforward to see that s∗ 6= ŝ. Then, the unique Walras allocation is not

a Cournot-Nash allocation.

We now address the question whether, in mixed exchange economies, an equiva-

lence, or at least a non-empty intersection, between the sets of Walras and Cournot-

6The actions q̂(t), for each t ∈ [0, 1], and b̂(3) are the roots of the following polynomials
x7 +4x6−16x5−400x4 +6400x3−38400x2 +102400x−102400 and x7 +20x6 +160x5 +1040x4 +
6080x3 + 20224x2 + 25600x− 640000.

7The actions q̂(t), for each t ∈ [0, 1], and b̂(2) = b̂(3) are the roots of the following polyno-
mials 2x3 − 25x2 + 200x− 400 and 8x3 + 50x2 − 625.
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Nash allocations may hold. The following example differs from Example 4 only for

the lower “weight” of commodity 2 for traders who have quasi-linear utility func-

tions. At the unique Walras equilibrium, both the monopolist and the competitive

fringe demand a null amount of commodity 2 and this unique Walras allocation is

also the unique allocation in the core and the unique Cournot-Nash allocation.

Example 6. Consider the following specification of the exchange economy satisfy-

ing Assumptions 1, 2, and 3. T0 = [0, 2], A1 = {3}, T0 is taken with Lebesgue mea-

sure, µ(3) = 1, w(t) = (4, 0), ut(x) =
√
x1 +

√
x2, for each t ∈ [0, 1], w(t) = (0, 4),

ut(x) =
√
x1 + 1

30
x2, for each t ∈ [1, 2], w(3) = (0, 4), u3(x) =

√
x1 + 1

30
x2. Then,

there is a unique allocation in the core which is also the unique Walras allocation

and the unique Cournot-Nash allocation.

Proof. The unique Walras equilibrium is the pair (p∗,x∗), where (p∗1, p
∗
2) = (

√
3 +

1, 1), (x∗1(t),x∗2(t)) = (8− 4
√

3, 8), for each t ∈ [0, 1], (x∗1(t),x∗2(t)) = (2
√

3− 2, 0),

for each t ∈ [1, 2], (x∗1(3),x∗2(3)) = (2
√

3− 2, 0). Then, by Theorem 3, the unique

Walras allocation is also the unique allocation in the core as |A| = 1, |A1| = 1, and
µ(τ11)
µ(T1)

< 1. The unique Cournot-Nash equilibrium is the strategy selection ŝ where

(q̂(t), b̂(t)) = (4
√

3−4, 0), for each t ∈ [0, 1], (q̂(t), b̂(t)) = (0, 4), for each t ∈ [1, 2],

(q̂(3), b̂(3)) = (0, 4). But then, x∗(t) = x(t, ŝ(t), p(ŝ)), for each t ∈ T . Hence, the

unique Walras allocation is also the unique Cournot-Nash allocation.

The following example differs from Example 5 only for the lower “weight” of

commodity 2 for traders who have quasi-linear utility functions. At the unique

Walras equilibrium, the two oligopolists demand a null amount of commodity 2

and this unique Walras allocation is also the unique allocation in the core and the

unique Cournot-Nash allocation.

Example 7. Consider the following specification of the exchange economy satis-

fying Assumptions 1, 2, and 3. T0 = [0, 1], A1 = {2, 3}, T0 is taken with Lebesgue

measure, µ(2) = µ(3) = 1, w(t) = (4, 0), ut(x) =
√
x1 +

√
x2, for each t ∈ T0,

w(2) = w(3) = (0, 4), u2(x) = u3(x) =
√
x1 + 1

30
x2. Then, there is a unique

allocation in the core which is also the unique Walras allocation and the unique

Cournot-Nash allocation.

Proof. The unique Walras equilibrium is the pair (p∗,x∗), where (p∗1, p
∗
2) = (

√
3 +

1, 1), (x∗1(t),x∗2(t)) = (8−4
√

3, 8), for each t ∈ T0, (x∗1(2),x∗2(2)) = (x∗1(3),x∗2(3)) =

(2
√

3− 2, 0). Then, by Theorem 4, the unique Walras allocation is also the unique
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allocation in the core as |A| = 1 and |A1| = 2. The unique Cournot-Nash equilib-

rium is the strategy selection ŝ where (q̂(t), b̂(t)) = (4
√

3−4, 0), for each t ∈ [0, 1],

and (q̂(2), b̂(2)) = (q̂(3), b̂(3)) = (0, 4). But then, x∗(t) = x(t, ŝ(t), p(ŝ)), for

each t ∈ T . Hence, the unique Walras allocation is also the unique Cournot-Nash

allocation.

Examples 6 and 7 differ from Examples 4 and 5 as, in the latter, all atoms

who hold commodity 2 demand a null amount of this commodity at a Walras

equilibrium but not at a Cournot-Nash equilibrium whereas, in the former, they

also demand a null amount of commodity 2 at a Cournot-Nash equilibrium. The

following theorem generalises Examples 6 and 7 as it shows that demanding a null

amount of one of the two commodities by all the atoms is a necessary and sufficient

condition for a Cournot-Nash allocation to be a Walras allocation.

Theorem 6. Under Assumptions 1, 2, 3, and 4, let ŝ be a Cournot-Nash equi-

librium and let p̂ = p(ŝ) and x̂(t) = x(t, ŝ(t), p(ŝ)), for each t ∈ T . Then, the

pair (p̂, x̂) is a Walras equilibrium if and only if x̂1(t) = 0 or x̂2(t) = 0, for each

t ∈ T \ T0.

Proof. Let ŝ be a Cournot-Nash equilibrium and let x̂(t) = x(t, ŝ(t), p(ŝ)), for

each t ∈ T , and p̂ = p(ŝ). Suppose that the pair (p̂, x̂) is a Walras equilibrium.

Moreover, suppose that x̂(τ)� 0, for an atom τ ∈ T \T0. Then, x̂ is not a Cournot-

Nash allocation, by Theorem 5, a contradiction. Hence, x̂1(t) = 0 or x̂2(t) = 0, for

each t ∈ T \T0. Conversely, suppose that x̂1(t) = 0 or x̂2(t) = 0, for each t ∈ T \T0.

Consider an atom τ ∈ T \ T0. First, assume that w1(τ) = 0 and w2(τ) > 0.

Consider the case where x̂1(τ) = 0. Then, b̂(τ) = 0 and x̂(τ) = (0,w2(τ)). We

have that p̂x̂(τ) = p̂w(τ) since

p̂1x̂1(τ) + p̂2x̂2(τ) = p̂10 + p̂2(w2(τ)− 0) = p̂2w2(τ).

Let x̂2(x1) be a function such that uτ (x1, x2(x1)) ≡ uτ (x̂(τ)), for each 0 ≤ x1 ≤
w2(τ)
p̂1

. We have that

∂uτ (x̂(τ))

∂x1

¯̂
b− b̂(τ)µ(τ)

¯̂
b

1

p̂1

− ∂uτ (x̂(τ))

∂x2

≤ 0

as b̂(τ) = 0. Then,
∂uτ (x̂(τ))

∂x1

1

p̂1

− ∂uτ (x̂(τ))

∂x2

≤ 0

as
¯̂
b−0

¯̂
b

= 1. But then, dx̂2(0)
dx1
≥ −p̂1. Consider the case where dx̂2(0)

dx1
= −p̂1. Then,

uτ (x̂(τ)) ≥ uτ (y), for each y ∈ {x ∈ R2
+ : p̂x = p̂w(τ)}, as uτ is quasi-concave, by
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Assumption 2. Consider now the case where dx̂2(0)
dx1

> −p̂1. Then, dx̂2(x1)
dx1

> −p̂1, for

each 0 ≤ x1 ≤ w2(τ)
p̂1

, as uτ is quasi-concave, by Assumption 2. Suppose that there

exists a commodity bundle x̃ ∈ {x ∈ R2
+ : p̂x = p̂w(τ)} such that uτ (x̃) > uτ (x̂(τ)).

Then, x̃2 > x̂2(x̃1) as uτ is strongly monotone, by Assumption 2. But then, by the

Mean Value Theorem, there exists some x̄1 such that 0 < x̄1 < x̃1 and such that

dx̂2(x̄1)

dx1

=
x̂2(0)− x̂2(x̃1)

0− x̃1

< −p̂1,

a contradiction. Therefore, uτ (x̂(τ)) ≥ uτ (y) for each y ∈ {x ∈ R2
+ : p̂x = p̂w(τ)}.

Consider now the case where x̂2(τ) = 0. Then, b̂(τ) = w2(τ) and x̂(τ) = (w2(τ)
p̂1

, 0).

We have that p̂x̂(τ) = p̂w(τ) since

p̂1x̂1(τ) + p̂2x̂2(τ) = p̂1
w2(τ)

p̂1

+ p̂2(w2(τ)−w2(τ)) = p̂2w2(τ).

Let x̂2(x1) be a function such that uτ (x1, x̂2(x1)) ≡ uτ (x̂(τ)), for each 0 ≤ x1 ≤
w2(τ)
p̂1

. We have that

∂uτ (x̂(τ))

∂x1

¯̂
b− b̂(τ)µ(τ)

¯̂
b

1

p̂1

− ∂uτ (x̂(τ))

∂x2

≥ 0

as b̂(τ) = w2(τ). Then,

∂uτ (x̂(τ))

∂x1

1

p̂1

− ∂uτ (x̂(τ))

∂x2

> 0

as
¯̂
b−w2(τ)µ(τ)

¯̂
b

< 1. But then, dx̂2(x1)
dx1

< −p̂1, for each 0 ≤ x1 ≤ w2(τ)
p̂1

, as uτ is

quasi-concave, by Assumption 2. Suppose that there exists a commodity bundle

x̃ ∈ {x ∈ R2
+ : p̂x = p̂w(τ)} such that uτ (x̃) > uτ (x̂(τ)). Then, x̃2 > x̂2(x̃1) as uτ

is strongly monotone, by Assumption 2. But then, by the Mean Value Theorem,

there exists some x̄1 such that x̃1 < x̄1 <
w2(τ)
p̂1

and such that

dx̂2(x̄1)

dx1

=
x̂2(x̃1)− x̂2(w2(τ)

p̂1
)

x̃1 − w2(τ)
p̂1

> −p̂1,

a contradiction. Therefore, uτ (x̂(τ)) ≥ uτ (y), for each y ∈ {x ∈ R2
+ : p̂x = p̂w(τ)}.

Now, assume that w1(τ) > 0 and w2(τ) = 0. Then, the previous argument leads,

mutatis mutandis, to the same kind of contradictions. We then conclude that

p̂x̂(t) = p̂w(t) and ut(x̂(t)) ≥ ut(y) for each y ∈ {x ∈ R2
+ : p̂x = p̂w(t)}, for each

t ∈ T \ T0. Finally, it is straightforward to show (see the proof of Theorem 2) that

p̂x̂(t) = p̂w(t) and ut(x̂(t)) ≥ ut(y), for each y ∈ {x ∈ R2
+ : p̂x = p̂w(t)}, for each

t ∈ T0. Hence, the pair (p̂, x̂) is a Walras equilibrium.
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Examples 6 and 7 show that Theorem 6 is non-vacuous when atoms demand,

at a Cournot-Nash equilibrium, a null amount of the commodity they hold. The

following two examples show that it is also non-vacuous when atoms demand, at

a Cournot-Nash equilibrium, a null amount of the commodity they do not hold.

The structure of the following example differs from that of Example 6 for a

further competitive fringe which holds commodity 2 and is not of the same type

as the monopolist. At the unique Walras equilibrium, both the monopolist and

the competitive fringe with traders of the same type as the monopolist demand a

null amount of commodity 1 and this unique Walras allocation is also the unique

allocation in the core and the unique Cournot-Nash allocation.

Example 8. Consider the following specification of the exchange economy satisfy-

ing Assumptions 1, 2, and 3. T0 = [0, 3], A1 = {4}, T0 is taken with Lebesgue mea-

sure, µ(4) = 1, w(t) = (4, 0), ut(x) =
√
x1 +

√
x2, for each t ∈ [0, 1], w(t) = (0, 4),

ut(x) =
√
x1 +

√
x2, for each t ∈ [1, 2], w(t) = (0, 4), ut(x) = 1

4
x1 +

√
x2, for each

t ∈ [2, 3], w(4) = (0, 4), u4(x) = 1
4
x1 +

√
x2. Then, there is a unique allocation in

the core which is also the unique Walras allocation and the unique Cournot-Nash

allocation.

Proof. The unique Walras equilibrium is the pair (p∗,x∗), where (p∗1, p
∗
2) = (1, 1),

(x∗1(t),x∗2(t)) = (2, 2), for each t ∈ [0, 1], (x∗1(t),x∗2(t)) = (2, 2), for each t ∈ [1, 2],

(x∗1(t),x∗2(t)) = (0, 4), for each t ∈ [2, 3], (x∗1(4),x∗2(4)) = (0, 4). Then, by Theorem

3, the unique Walras allocation is also the unique allocation in the core as |A| = 1,

|A1| = 1, and µ(τ11)
µ(T1)

< 1. The unique Cournot-Nash equilibrium is the strategy

selection ŝ where (q̂(t), b̂(t)) = (2, 0), for each t ∈ [0, 1], (q̂(t), b̂(t)) = (0, 2), for

each t ∈ [1, 2], (q̂(t), b̂(t)) = (0, 0), for each t ∈ [2, 3], and (q̂(4), b̂(4)) = (0, 0). But

then x∗(t) = x(t, ŝ(t), p(ŝ)), for each t ∈ T . Hence, the unique Walras allocation

is also the unique Cournot-Nash allocation.

The structure of the following example differs from that of Example 7 for a

further competitive fringe which holds commodity 2 and is not of the same type

as the two oligopolists. At the unique Walras equilibrium, the two oligopolists

demand a null amount of commodity 1 and this unique Walras allocation is also

the unique allocation in the core and the unique Cournot-Nash allocation.

Example 9. . Consider the following specification of the exchange economy satis-

fying Assumptions 1, 2, and 3. T0 = [0, 2], A1 = {3, 4}, T0 is taken with Lebesgue

measure, µ(3) = µ(4) = 1, w(t) = (4, 0), ut(x) =
√
x1 +

√
x2, for each t ∈ [0, 1],
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w(t) = (0, 4), ut(x) =
√
x1 +

√
x2, for each t ∈ [1, 2], w(3) = w(4) = (0, 4),

u3(x) = u4(x) = 1
4
x1 +

√
x2. Then, there is a unique allocation in the core which

is also the unique Walras allocation and the unique Cournot-Nash allocation.

Proof. The unique Walras equilibrium is the pair (p∗,x∗), where (p∗1, p
∗
2) = (1, 1),

(x∗1(t),x∗2(t)) = (2, 2), for each t ∈ [0, 1], (x∗1(t),x∗2(t)) = (2, 2), for each t ∈ [1, 2],

(x∗1(3),x∗2(3)) = (x∗1(4),x∗2(4)) = (0, 4). Then, by Theorem 4, the unique Walras

allocation is also the unique allocation in the core as |A| = 1 and |A1| = 2. The

unique Cournot-Nash equilibrium is the strategy selection ŝ where (q̂(t), b̂(t)) =

(2, 0), for each t ∈ [0, 1], (q̂(t), b̂(t)) = (0, 2), for each t ∈ [1, 2], (q̂(3), b̂(3)) =

(q̂(4), b̂(4)) = (0, 0). But then x∗(t) = x(t, ŝ(t), p(ŝ)), for each t ∈ T . Hence, the

unique Walras allocation is also the unique Cournot-Nash allocation.

4.5 Necessary conditions for an equivalence

In all the examples of the previous section, preferences are represented by

additively separable utility functions, i.e., utility functions of the form u(x) =

v1(x1) + v2(x2), for each x ∈ R2
+. In this section, we first provide a necessary

condition for Theorem 6 to hold when atoms’ preferences are of this kind.

Proposition 1. Under Assumptions 1, 2, 3, and 4, let ŝ be a Cournot-Nash equi-

librium and let x̂(t) = x(t, ŝ(t), p(ŝ)), for each t ∈ T . Then, for each t ∈ T \ T0

such that ut(x) = vt1(x1) + vt2(x2), x̂1(t) = 0 only if −∂ut(0,x2)
∂x1

/∂u
t(0,x2)
∂x2

> −∞, for

each x2 ∈ R+, and x̂2(t) = 0 only if −∂ut(x1,0)
∂x1

/∂u
t(x1,0)
∂x2

< 0, for each x1 ∈ R+.

Proof. Let ŝ be a Cournot-Nash equilibrium and let x̂(t) = x(t, ŝ(t), p(ŝ)), for

each t ∈ T . Moreover, let p̂ = p(ŝ). Consider an atom τ ∈ T \ T0 such that

uτ (x) = vτ1 (x1) + vτ2 (x2). Suppose that x̂1(τ) = 0. By the same argument used in

the proof of Theorem 6, it follows that

−
∂uτ (x̂(τ))

∂x1
∂uτ (x̂(τ))

∂x2

≥ −p̂1.

Then,

−
∂uτ (0,x̂2(τ))

∂x1
∂uτ (0,x̂2(τ))

∂x2

> −∞.

But then, ∂uτ (0,x̂2(τ))
∂x1

=
∂vτ1 (0)

∂x1
= ∂uτ (0,x2)

∂x1
< +∞, for each x2 ∈ R+. Moreover,

∂uτ (0,x2)
∂x2

> 0, for each x2 ∈ R+, as uτ is strongly monotone, by Assumption 2.
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Therefore, −∂uτ (0,x2)
∂x1

/∂u
τ (0,x2)
∂x2

> −∞, for each x2 ∈ R+. Suppose that x̂2(τ) = 0.

By the same argument used in the proof of Theorem 6, it follows that

−
∂uτ (x̂(τ))

∂x1
∂uτ (x̂(τ))

∂x2

< −p̂1.

Then,

−
∂uτ (x̂1(τ),0)

∂x1
∂uτ (x̂1(τ),0)

∂x2

< 0.

But then, ∂u
τ (x̂1(τ),0)
∂x2

=
∂vτ2 (0)

∂x2
= ∂uτ (x1,0)

∂x2
< +∞, for each x1 ∈ R+. Moreover,∂u

τ (x1,0)
∂x1

> 0, for each x1 ∈ R+, as uτ is strongly monotone, by Assumption 2. Therefore,

−∂uτ (x1,0)
∂x1

/∂u
τ (x1,0)
∂x2

< 0, for each x1 ∈ R+. Hence, for each t ∈ T \ T0 such that

ut(x) = vt1(x1) + vt2(x2), x̂1(t) = 0 only if −∂ut(0,x2)
∂x1

/∂u
t(0,x2)
∂x2

> −∞, for each

x2 ∈ R+, and x̂2(t) = 0 only if −∂ut(x1,0)
∂x1

/∂u
t(x1,0)
∂x2

< 0, for each x1 ∈ R+.

In Examples 4, 5, 6, 7, 8, and 9, atoms’ preferences are represented by quasi-

linear utility functions in commodity 2, i.e., utility functions of the form u(x) =

v(x1)+k x2, for each x ∈ R2
+. We finally provide a necessary condition for Theorem

6 to hold when atoms’ preferences are of this kind and atoms’ initial endowment

are such that w1(t) = 0 and w2(t) > 0.

Proposition 2. Under Assumptions 1, 2, 3, and 4, let ŝ be a Cournot-Nash equi-

librium and let x̂(t) = x(t, ŝ(t), p(ŝ)), for each t ∈ T . Then, for each t ∈ T \ T0

such that ut(x) = vt(x1) + k x2, w1(t) = 0, and w2(t) > 0, x̂2(t) = 0 only if

−∂ut(x1,0)
∂x1

/∂u
t(x1,0)
∂x2

< −w2(t)
w̄1

, for each x1 ∈ R+, with w̄1 =
∫
T

w1(t)dµ.

Proof. Let ŝ be a Cournot-Nash equilibrium and let x̂(t) = x(t, ŝ(t), p(ŝ)), for

each t ∈ T . Moreover, let p̂ = p(ŝ). Consider an atom τ ∈ T \ T0 such that

uτ (x) = vτ (x1) + k x2, w1(τ) = 0, and w2(τ) > 0. Suppose x̂2(τ) = 0. Then

b̂(τ) = w2(τ) and x̂(τ) = (w2(τ)
p1

, 0). By the same argument used in the proof of

Theorem 6, it follows that

−
∂uτ (x̂(τ))

∂x1
∂uτ (x̂(τ))

∂x2

≤ −p̂1.

Since p̂1 = b̄
q̄
, p̂1 ≥ w2(τ)

w̄1
. Let x̂2(x1) be a function such that uτ (x1, x2(x1)) ≡

uτ (x̂(τ)), for each 0 ≤ x1 ≤ w2(τ)
p̂1

. Then, dx̂2(x1)
dx1

< −w2(τ)
w̄1

, for each 0 ≤ x1 ≤ w2(τ)
p̂1

,

as uτ is quasi-concave, by Assumption 2. But then

−
∂uτ (x1,0)

∂x1
∂uτ (x1,0)

∂x2

< −w2(τ)

w̄1

,
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for each x1 ∈ R+, as uτ is quasi-linear in x2. Hence, for each t ∈ T \ T0 such

that ut(x) = vt1(x1) + k x2, x̂2(t) = 0 only if −∂ut(x1,0)
∂x1

/∂u
t(x1,0)
∂x2

< −w2(t)
w̄1

, for each

x1 ∈ R+.

4.6 Discussion of the model

Here, we address the question whether, in the mixed bilateral oligopoly frame-

work considered so far, the result of Theorem 6 also holds for the model of non-

cooperative exchange considered by Amir et al. (1990). Dubey and Shubik (1978)

distinguished between commodity money and all other commodities. Then, there

is one market (trading post) for each commodity where commodity money can be

exchanged directly for one of the other commodities. The direct exchange between

any other two commodities is ruled out. Differently Amir et al. (1990) (Model 2

hereafter) analysed a model where markets are complete, i.e., all commodities can

be used for trade. In this model, there is a market for each pair of commodities

with the price in a market being the ratio of the total amount of bids in each of

the two commodities which are exchanged in that market.

In general, with more than two commodities, the sets of Cournot-Nash alloca-

tions of the two models differ as, in Model 1, only commodity money can be used

for trade whereas, in Model 2, all commodities can be used for trade. Furthermore,

since in this model prices are determined for each pairs of commodities, they are

not necessarily consistent through pairs of markets in which the same commodity

is exchanged.

We now introduce Model 2. A strategy correspondence is a correspondence

B : T → P(R4
+) such that, for each t ∈ T , B(t) = {b ∈ R4

+ :
∑2

j=1 bij ≤
wi(t), i = 1, 2}, where bij represents the amount of commodity i that trader t

offers in exchange for commodity j. A strategy selection is an integrable function

b : T → R4
+, such that, for each t ∈ T , b(t) ∈ B(t). Given a strategy selection b,

we define the aggregate matrix B̄ = (
∫
T

bij(t)dµ). Moreover, we denote by b \ b(t)
the strategy selection obtained from b by replacing b(t) with b(t) ∈ B(t).8

Given a strategy selection b, the 2× 2 matrix P is said to be the price matrix

generated by b if

pij =

{
b̄ij
b̄ji

if b̄ji 6= 0,

0 if b̄ji = 0,

8In order to save in notation, with some abuse, we denote by b(t) both a strategy selection of
a trader t in Model 2 and an action of a trader t in Model 1. The context should clarify whether
b(t) is a trader’s strategy selection or a trader’s action.
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with i, j = 1, 2. We denote by P (b) a function which associates with each strategy

selection b the price matrix P generated by b. Given a strategy selection b and a

price matrix P , consider the assignment determined as follows

xj(t,b(t), p) = wj(t)−
2∑
i=1

bji(t) +
2∑
i=1

bij(t)pij,

for j = 1, 2, for each t ∈ T . Given a strategy selection b and the function P (b), the

traders’ final holdings are determined according with this rule and consequently

expressed by the assignment

x(t) = x(t,b(t), P (b)),

for each t ∈ T .9 It is straightforward to show that this assignment is an allocation.

We are now able to define a notion of Cournot-Nash equilibrium for Model 2.

Definition 2. A strategy selection b̃ such that ¯̃b12 > 0 and ¯̃b21 > 0 is a Cournot-

Nash equilibrium if

ut(x(t, b̃(t), P (b̃))) ≥ ut(x(t, b̃ \ b(t), P (b̃ \ b(t)))),

for each b(t) ∈ B(t) and for each t ∈ T .10

A Cournot-Nash allocation of Model 2 is an allocation x̃ such that x̃(t) =

x(t, b̃(t), P (b̃)), for each t ∈ T , where b̃ is a Cournot-Nash equilibrium of Model

2.

The following theorem shows an equivalence between the sets of Cournot-Nash

allocations of Model 1 and Model 2.

Theorem 7. Under Assumptions 1, 2, and 3, the sets of Cournot-Nash allocations

of Model 1 and Model 2 coincide.

Proof. Let x̂ be a Cournot-Nash allocation of Model 1. Then, there is a strategy

selection ŝ which is a Cournot-Nash equilibrium of Model 1 and is such that x̂(t) =

x(t, ŝ(t), p(ŝ)), for each t ∈ T . Consider the strategy selection b̂ of Model 2 such

that b̂11(t) = b̂22(t) = 0, b̂12(t) = q̂(t), and b̂21(t) = b̂(t). It is straightforward

to show that p12 = 1
p1

and p21 = p1. Then x̂(t) = x(t, b̂(t), P (b̂)), for each t ∈ T .

9In order to save in notation, with some abuse, we denote by x both the function x(t) and
the function x(t,b(t), P (b)).

10Note that this definition of a Cournot-Nash equilibrium refers only to equilibria at which
the markets for commodities 1 and 2 are active.
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Suppose that x̂ is not a Cournot-Nash allocation of Model 2. Then, there exist a

trader t ∈ T and a strategy b(t) ∈ B(t) such that

ut(x(t, b̂ \ b(t), P (b̂ \ b(t)))) > ut(x(t, b̂(t), P (b̂))).

Consider a strategy s(t) such that q(t) = b12(t) and b(t) = b21(t). Let p2 = 1

and it is straightforward to show that p1 = p21. Then, x(t, ŝ \ s(t), p(ŝ \ s(t))) =

x(t, b̂ \ b(t), P (b̂ \ b(t))). But then,

ut(x(t, ŝ \ s(t), p(ŝ \ s(t)))) > ut(x(t, ŝ(t), p(ŝ))),

a contradiction. Therefore, x̂ is a Cournot-Nash allocation of Model 2. Let x̃

be a Cournot-Nash allocation of Model 2. Suppose that x̃ is not a Cournot-Nash

allocation of Model 1. Then, the previous argument leads, mutatis mutandis, to the

same kind of contradictions. Therefore, x̃ is a Cournot-Nash allocation of Model 1.

Hence, the sets of Cournot-Nash allocations of Model 1 and Model 2 coincide.

The following corollary shows that Theorem 6 holds, mutatis mutandis, for

Model 2.

Corollary 1. Under Assumptions 1, 2, 3, and 4, let b̃ be a Cournot-Nash equi-

librium of Model 2 and let p̃ = (
¯̃
b21
¯̃
b12
, 1) and x̃(t) = x(t, b̃(t), P (b̃)), for each t ∈ T .

Then, the pair (p̃, x̃) is a Walras equilibrium if and only if x̃1(t) = 0 or x̃2(t) = 0,

for each t ∈ T \ T0.

Proof. Let b̃ be a Cournot-Nash equilibrium of Model 2 and let p̃ = (
¯̃
b21
¯̃
b12
, 1) and

x̃(t) = x(t, b̃(t), P (b̃)), for each t ∈ T . By Theorem 7, there exists a Cournot-

Nash equilibrium of Model 1, s̃, such that q̃(t) = b̃12(t) and b̃(t) = b̃21(t), for each

t ∈ T , for which x̃(t) = x(t, s̃(t), p(s̃)) and p̃ = p(s̃) = (
¯̃
b21
¯̃
b12
, 1). Then, x̃(t) is a

Cournot-Nash allocation for Model 1. Hence, by Theorem 6, the pair (p̃, x̃) is a

Walras equilibrium if and only if x̃1(t) = 0 or x̃2(t) = 0, for each t ∈ T \ T0.

4.7 Conclusion

In this paper, we have reconsidered, in the framework of bilateral oligopoly,

the problem raised by Okuno et al. (1980) about the non-cooperative foundation

of oligopolistic behaviour in general equilibrium. We can now summarize the im-

plications of the previous analysis. The condition which requires that the atoms

are not “too” big, introduced by Gabszewicz and Mertens (1971), is not necessary

for the equivalence between the core and the set of Walras allocations, as shown
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by Theorem 4, but it is sufficient for this equivalence, by Theorem 3; moreover,

it is neither necessary nor sufficient for a non-empty intersection between the sets

of Walras and Cournot-Nash allocations as shown, respectively, by Examples 7

and 4. The condition which requires that there are only atoms of the same type,

introduced by Shitovitz (1973), is not necessary for the equivalence between the

core and the set of Walras allocations, as shown by Theorem 3, but it is sufficient

for this equivalence, by Theorem 4; moreover, it is neither necessary nor sufficient

for a non-empty intersection between the sets of Walras and Cournot-Nash allo-

cations as shown, respectively, by Examples 6 and 5. Theorem 6 states that the

condition which characterises the non-empty intersection of the sets of Walras and

Cournot-Nash allocations requires that each atom demands a null amount of one

commodity. Moreover, Examples 6, 7, 8, and 9 show that this characterisation

condition is non-vacuous. Propositions 1 and 2 provide a rationale for these exam-

ples by exhibiting necessary conditions, expressed in terms of bounds on atoms’

marginal rates of substitution, for Theorem 6 to hold when atoms’ preferences are

represented by additively separable utility functions and quasi-linear utility func-

tion respectively. We leave as an open problem for further research the generali-

sation of this proposition, namely, the determination of more general assumptions

on traders’ size, endowments, and preferences under which our characterisation

condition holds. This analysis could help to understand more deeply which are

the differences between atoms’ Walrasian behaviour in a cooperative and in a non-

cooperative framework. We have also proved that Theorem 6 can be extended, in

bilateral oligopoly, to the model of non-cooperative exchange introduced by Amir

at al. (1990). Some further research should also be devoted to the possibility of

generalising the results achieved in this paper to an exchange economy with more

than two commodities.
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