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Preface

The dissertation brings together three papers that were written during my PhD studies,
each dealing with a specific robust mechanism design problem. The objective of this preface
is to discuss briefly the term “robust mechanism design” used in literature, and to outline
the framework of the three papers.

The mechanism design literature has been a great success during the last thirty years;
however since the very beginning of the theoretic development, it has been argued the the
mechanisms working in theory are not “robust”–i.e. they are too sensitive to fine details that
will not be available to the designer in practice. Robust mechanism design responds to the
concerns from various aspects, and to different degrees. In all of the papers collected here,
a completely prior-free approach is adopted, that is, both prior-free solution concepts and
prior-free objective functions are imposed. The mechanisms obtained are hence immune to
uncertainties about private information held by each agent.

In an environment where common value is assumed (Chapter 1), ex-post implementabil-
ity is imposed as the solution concept; in the other environments where private value is
assumed (Chapter 2 and 3), dominant-strategy implementability, a.k.a. strategy-proof, is
imposed. The objective set up in the first two chapters is worst-case guarantee, and in the
last chapter Pareto efficiency.

Due to the fundamental work of Bergemann and Morris[9], it is known that the two
strong solution concepts are exactly what are required for a well-defined “robustness to
private information” in each setting respectively. The worst-case guarantee, in which a ratio
that compares the absolute gain (or loss) to some reference point is concerned, is imposed in
a seemly “ad hoc” way. This “maxmin-ratio” objective, however, is a well established and
widely used criterion. (See Chapter 1 and 2 for more discussion). While a decision-theory-
based justification is still absent and would be very welcomed, its merit as an objective lies
largely in its intrinsic simplicity and desirability.



Abstract

Chapter 1: Under the average common value function, we select almost uniquely the
mechanism that gives the seller the largest portion of the true value in the worst situation
among all the direct mechanisms that are feasible, ex-post implementable and individually
rational.

Chapter 2: Strategy-proof, budget balanced, anonymous, envy-free linear mechanisms
assign p identical objects to n agents. The efficiency loss is the largest ratio of surplus loss
to efficient surplus, over all profiles of non-negative valuations. The smallest efficiency loss
n−p
n2−n is uniquely achieved by the following simple allocation rule: assigns one object to
each of the p− 1 agents with the highest valuation, a large probability to the agent with
the pth highest valuation, and the remaining probability to the agent with the (p+ 1)th
highest valuation. When “envy freeness” is replaced by the weaker condition “voluntary
participation”, the optimal mechanism differs only when p is much less than n.

Chapter 3: One group is to be selected among a set of agents. Agents have preferences
over the size of the group if they are selected; and preferences over size as well as the
“stand-outside” option are single-peaked. We take a mechanism design approach and search
for group selection mechanisms that are efficient, strategy-proof and individually rational.
Two classes of such mechanisms are presented. The proposing mechanism allows agents
to either maintain or shrink the group size following a fixed priority, and is characterized
by group strategy-proofness. The voting mechanism enlarges the group size in each voting
round, and achieves at least half of the maximum group size compatible with individual
rationality.
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Chapter 1

Maxmin mechanism in a simple common
value auction

1.1 Introduction

Auction mechanisms have been widely used in selling goods and services; one of the most
commonly used formats is the sealed bid first price auction. In this format, bidders simul-
taneously submit bids, and the one with the highest bids wins and pays her bid. When the
object being sold is of common value to all the bidders, there is a well-documented phe-
nomenon called “winner’s curse”: the winner is tend to be the one who over-estimates the
true value. Though “winner’s curse” is not supposed to happen in the equilibrium, the liter-
ature on common value auctions found that bidders have difficulty learning to avoid it (see
[38] for a comprehensive discussions).

“Winner’s curse” can turn out to be a curse for the auctioneer. Consider a government
auctioning oil fields. It is quite possible that the winning buyer, suffering from the winner’s
curse, will eventually go bankrupt and leave a huge mess for the government. Instead of
maximizing the revenue from the auction, the government may be more interested in avoid-
ing the risk caused by winner’ curse, while obtaining a reasonably high share of the value
generated by the oil fields.

One auction format that many organizations have been using to achieve these goals is
the average bidding auction. In its most standard format, the winner is the one who bids
closest to the average bid and the price is the average bid. The naive argument is that the
average bid is likely to be close to the true value. However, there is no guarantee that agents
will truthfully submit their estimation. In fact, bidders have incentive to all submit identical
bids, and a continuum of Nash equilibria in which all bidder submit the same low-enough
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bid exists.
While the effectiveness of the average bidding auction are still being debated (see [2],

[19], [21], [25]), we think it is worthwhile carrying out a mechanism design directly. The
objective of the auctioneer is to maximize the worst share of value, under the restriction
that the mechanism is truth-reporting and bidders never lose money. More specifically, the
true value of the object for each bidder is v, unknown to everybody ex-ante. Each agent
i ∈ {1,2, · · · ,n} gets a private signal si and v = ∑si

n . The worst share is defined to be the
smallest ratio of the revenue to the true value of the object, over all the non-negative signal
vectors. Note that by using the worst share, we avoid distribution assumptions of the signal
profiles, and make sure that the auctioneer gets something (as long as the worst share is
positive) under any signal profiles.

We show that the seller can achieve the largest worst share using the simple Maxmin
mechanism. The Maxmin mechanism randomly assigns the object to one agent and charges
the agent i who gets the object a price ∑ j ̸=i s j

n . It is easy to see that this mechanism is ex-post
implementable and individually rational; and the seller will get n−1

n of the true value v under
any signal profiles. In fact, n−1

n is the largest worst share that can be achieved by any ex-post
implementable and individually rational mechanism, and is achieved (almost) uniquely by
the Maxmin mechanism.

One disadvantage of the Maxmin mechanism is the lack of strict incentive for truth-
telling: agents get the same outcomes irrespective of their own reports. An easy way to
modify it is to randomly assign the object to an agent with the first mth highest signals,
where m is an integer between 1 and n; and the worst share under such mechanism is m−1

m .
We have to trade worst share for incentive.

literature review

The literature on (pure) common value auction largely focus on the Mineral Right Model
[64]. In this model the true value of the object is a random variable V . Given a realization
v of V , each agent i gets private signal si generated from the distribution F(si|v), and the
signals are usually assumed to be mutually independent. [46] shows that it is possible for
the auctioneer to extract almost all the surplus in this setting. A simple and special case is
the following: suppose the bidders can construct unbiased estimated z(si) of v from their
signal si and si is independent of s j, given v, then the mechanism assigning the object to
i and charging her z( j) extracts all the rents. A more detailed review on auctions with
interdependent value can be found in [42].

Our paper takes the true value to be the average of all the signals, as in several other
papers ([10], [27], [14], [40], [34]). We offer some justification for the average value func-
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tion form. Suppose that for each bidder the true value of the object is v, a parameter that is
unknown to everybody. Each agent i ∈ {1, · · · ,n} gets a private signal si that is a realization
of a random variable Si with E(Si) = v. There are different ways to estimate v, depending on
the specific assumptions on the distributions of {Si : i = 1,2, · · · ,n}. We argue that a focal
point is the Ordinary Least Square (OLS) estimation, i.e., v̂ = 1

n ∑
n
i si. Hence the assumption

under the average value function is that all the agents, as well as the seller, agree on that
true value is nothing more than the most reasonable estimation, and take OLS estimation to
be that reasonable estimation. Note that the data generating process here is modeled based
on the classical approach in statistical inference, while the Mineral Right Model follows
Bayesian inference.

We use the worst case analysis to find desirable mechanisms. This approach has been
successfully applied in mechanism design with private value. (See [41], [29], [50], [28].)
However, its application in common value case is not known to us. Common value assump-
tion makes it possible to guarantee the seller a fixed portion of the true value of the object,
which is not possible in the private value setting no matter how many copies of the objects
are being sold (see [28]).

We could also set the objective to be the well-established revenue maximization, as
in [54]. If we assume that {Si : i = 1,2, · · · ,n} are mutually independent and identically
distributed according to some regular distribution function G(·), then the mechanism that
maximize the seller’s expected revenue is found in [54]: if no bid is higher than the reser-
vation price, then the seller keeps the object; otherwise the bidder with the highest bid wins
and pays either the reservation price or

s(2)+∑k≥2 s(k)
n , whichever is higher, where s(k) is the

kth highest signal. The worst share is zero in this mechanism.
This paper is organized as the following. In section 1.2 we set up the model and give

the axioms we impose on the mechanisms. In section 1.3 we select the Maxmin mecha-
nism, the mechanism that has the best performance in the worse case when revenue share is
concerned. Section 1.4 concludes.

1.2 Setting and Axioms

An indivisible object is to be sold to at most one of n agents, where n is fixed; the value of
the object is the same among agents. Denote the set of agents by I = {1,2, · · · ,n}; agents
are risk neutral. Each agent i ∈ I has a private signal (individual estimation) si ∈ Si = R+

about the value of the object. Let s ∈ S =Rn
+ be a signal profile. The notation s−i stands for

the vector obtained form s by deleting si, and (s̃i;s−i) stands for the signal profile obtained
from s by replacing the signal si with s̃i. For any s, the true value of the object for each agent
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is the average of s, i.e., v(s) = 1
n ∑

n
i=1 si. The object has no value for the seller if it is not

sold. Note that (1) we only restrict signals to be non-negative and do not specify probability
distribution of the signal space; (2) No efficiency issue occurs in this common value setting
as long as the object is sold.

We focus on direct mechanisms, that is, agents report their own signals and the allocation
only depends on the reported profile of signals.

Definition 1.1. A direct mechanism µ is a pair (a, t) such that

a : S → [0,1]n, t : S → Rn;

for each s ∈ S, ai(s) is the probability that agent i gets the object and ti(s) is her expected
payment.

Assuming risk neutral preference, agent i’s expected utility under µ is ai(s) · v(s)− ti(s)
for any s ∈ S. We define some standard axioms for direct mechanisms.

Definition 1.2. A direct mechanism µ = (a, t) is feasible if

∑
i∈I

ai(s)≤ 1, ∀s ∈ S.

This is simply saying that the seller has only one object to sell.

Definition 1.3. A direct mechanism µ = (a, t) is ex-post implementable if

a(s) · v(s)− ti(s)≥ ai(s̃i;s−i) · v(s)− ti(s̃i;s−i),

∀i ∈ I,∀s ∈ S,∀s̃i ∈ Si.

A direct mechanism is ex-post implementable if each agent has no incentive to misreport
his or her signal when she is assured that other agents report truthfully.

Definition 1.4. A direct mechanism µ = (a, t) is individually rational if

ai(s) · v(s)− ti(s)≥ 0, ∀i ∈ I,∀s ∈ S.

Let M be the class of direct mechanisms that are feasible, ex-post implementable and
individually rational. We give a standard characterization of M by the following lemma.

Lemma 1.1. A direct mechanism µ =(a, t) is in M iff for all i∈ I, for all s∈ S, ∑i∈I ai(si)≤
1; for all i ∈ I, for all s−i ∈ Rn−1

+ , ai(si;s−i) is non-decreasing in si; and
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ti(si;s−i) = ai(si;s−i) · v(s)−
1
n

∫ si

0
ai(xi;s−i)dxi +hi(s−i),

where hi : Rn−1
+ → R and hi(s−i)≤ 0 for all i ∈ I, all s−i ∈ Rn−1

+ .

Proof. We omit the proof, which is an easy modification of the proof of Lemma 2 in [54].

Note 1. (1) any seller who likes more revenue than less will simply set hi(s−i) = 0 for all
i ∈ I, all s−i ∈ Rn−1

+ , so we will ignore the hi(·) part of any µ ∈ M from now on; (2)
ti(si;s−i) ≥ 0 if hi(s−i) = 0, that is, the seller will get non-negative expected revenue from
each agent and hence non-negative expected revenue under µ .

1.3 Maxmin mechanism

Our goal in this section is to find the mechanisms within M that give the seller the largest
portion of the true value under the worst situation, when expected revenue is concerned.

First we introduce some notation. For any mechanism µ ∈M , for any s∈ S, let Aµ(s) be
the revenue the seller gets under µ when the signal profile is s. Note that for a give s, Aµ(s)
is a random variable whose outcomes are not specified if µ is a randomized mechanism;
however, the expected revenue is known for sure: E[Aµ(s)] =∑

n
i=1 ti(s). For any mechanism

µ ∈ M , we define worst share Q(µ) to be the minimum portion of the true value that the
seller gets among all signal profiles, that is, Q(µ) = infs∈S+ E[Aµ(s)]

/
v(s), where S+ =

S\{0}. Note that in order to define Q(µ), we take out the zero profile, in which case any
mechanism in M gives the seller zero revenue.

Using lemma 1.1, our problem can be written as the following:

sup
a(·)

inf
s∈S+

E[Aµ(s)]
v(s)

(1.1)

s.t.


ai(s)≥ 0 ∀i,∀s

∑i∈I ai(s)≤ 1 ∀s

ai(si;s−i) non−decreasingw.r.t.si ∀i,∀s−i

where

E[Aµ(s)] = ∑
i∈I

ai(s) · v(s)−
1
n ∑

i∈I

∫ si

0
ai(xi;s−i)dxi.
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First Note that for any µ ∈ M , 0 ≤ E[Aµ(s)] ≤ ∑i∈I ai(s) · v(s) ≤ v(s) for all s ∈ S+,
hence 0 ≤ Q(µ)≤ 1.

Lemma 1.2. For any µ = (a, t) ∈ M ,

Q(µ)≤ sup
s∈S+

n

∑
i=1

ai(s)− sup
i∈I,s∈S+

ai(s);

if ∑i∈I ai(s) = 1 for all s ∈ S+, then Q(µ) = 1− supi∈I,s∈S+ ai(s).

Proof. See Appendix.

Corollary 1.1. For any mechanism µ ∈ M , Q(µ)≤ n−1
n .

Proof. For any mechanism µ =(a, t)∈M , if ai(s)> 1
n for some s and i, since sups∈S+ ∑

n
i=1 ai(s)≤

1, we have that

sup
s∈S+

n

∑
i=1

ai(s)− sup
i∈I,s∈S+

ai(s)<
n−1

n
;

if ai(s)≤ 1
n for all s and i, we have sups∈S+ ∑

n
i=1 ai(s)≤ 1

n . Then

Q(µ)≤ sup
s∈S+

n

∑
i=1

ai(s)− sup
i∈I,s∈S+

ai(s)

≤ n · sup
i∈I,s∈S+

ai(s)− sup
i∈I,s∈S+

ai(s)

= (n−1) · sup
i∈I,s∈S+

ai(s)≤
n−1

n
.

Therefore Q(µ)≤ n−1
n .

Now we give the definition of the Maxmin mechanism.

Definition 1.5. The Maxmin mechanism µ∗ = (a∗, t∗) is the following:

a∗i (s) =
1
n
, t∗i =

1
n2 ∑

j ̸=i
s j, ∀i ∈ I,∀s ∈ S.

Note that µ∗ ∈ M . As stated by Theorem 1.1, it is the “almost” unique solution of
problem 1.1, i.e., it is the “almost” unique mechanism in M that guarantees the seller n−1

n
of the true value in any signal profile, which justifies its name.

Theorem 1.1. Q(µ∗) = n−1
n ; for any µ = (a, t)∈M such that a(s) ̸= a∗(s) for some s∈ S

′
+,

where S
′
+ = {s ∈ S+ : ∃i, j ∈ I s.t. i ̸= j and si · s j > 0}, we have Q(µ)< Q(µ∗),
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Proof. See Appendix.

Note 2. (1) For any µ ∈ M , Q(µ) = n−1
n only if µ coincides with µ∗ in almost every signal

profiles, more precisely, in every signal profile with at least two positive arguments. We
allow some flexibility in the allocation rule when the signal profile has only one positive
argument; see the proof for detailed description. However since that is highly knife edge
case, we conclude that Maxmin mechanism is the “almost” unique solution of problem 1.1.

(2) For the second part of the Theorem, if we assume that ∑i∈I ai(s) = 1 for any s ∈ S+,
then it is much easier to prove since we know in any solution ai(s)≤ 1

n for all i ∈ I, s ∈ S+.
However, it is not clear at all why ∑i∈I ai(s) = 1 for any s ∈ S+ must hold in any solution.
By induction on the number of zero arguments in signal profiles, we show a slightly more
general result first, which gives both upper bounds and lower bounds of ai(s) for each i ∈ I,
s ∈ S+. These bounds converge to 1

n when Q(µ) approaches to n−1
n ; hence our Theorem

is proved. However, the lower bounds reduce to non-negative restrictions quickly when
decreasing Q(µ) from n−1

n and hence we do not know much about what a mechanism in M

with Q(µ) less than n−1
n must look like. On the other hand, if the mechanism always sells

the object, we have an explicit expression of Q(µ), which is the second part of Lemma 1.2.

1.4 Discussion and conclusion

Now consider the outcomes of the Maxmin mechanism. Since t∗i (·) is the average payment
for agent i, there are many ways to assign payments for outcomes in which he or she wins or
loses respectively. A natural way is to let agent i pay 1

n ∑ j ̸=i s j when he or she wins, and pay
0 when loses. As a result, if the worst outcome of the mechanism for the seller is realized,
that is, agent with the highest signal gets the object, the seller will end up getting 1

n ∑
n
i=2 s(i),

where s(1),s(2), · · · ,s(n) is a reordering of s1,s2, · · · ,sn with s(1) ≥ s(2) ≥ ·· · ≥ s(n). Fixed
s(2), · · ·s(n), 1

n ∑
n
i=2 s(i)/v(s) goes to zero as s(1) goes to infinity; hence the Maxmin mech-

anism with this natural payment schedule does not guarantee the seller a (positive) fixed
portion of the true value in all realizations of the lottery in assigning the object and for all
s ∈ S+. A second thought may yield a payment schedule that works: since the expected pay-
ment of agent i is 1

n2 ∑ j ̸=i s j for all i ∈ I, we could ask each agent to pay this same amount
no matter he or she wins or loses; as a result, the seller will get n−1

n ·v(s) for sure. The draw-
back with this payment schedule is that agents will get negative utilities if they lose, which
is of high probability. In fact we could further avoid this undesirability. Since the expected
utility of agent i is 1

n2 · si, we could ask each agent to pay (or receive) certain amounts in
different outcomes so that he or she gets this same utility no matter he or she wins or loses;
as a result, the seller will get n−1

n · v(s) for sure. This works because we are in the common
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value world, i.e., no matter which agent wins, the total surplus to be divided between the
seller and agents is the same. Therefore if each agent gets the same utility in each outcome
of the lottery, the seller will also get the same revenue in each outcome of the lottery.

We conclude our paper with possible extensions. First note that the procurement model
in which a buyer is buying an object from a set of bidders can not be treated similarly when
worst case analysis is applied. The difference is largely due to the signal space Rn

+, which
is bounded below but not above. In an auction, the lower bound makes it possible to define
the Maxmin mechanism, and the lack of upper bound makes the situation that one agent
gets a very, very high signal the biggest concern. In a procurement, however, we cannot
define a parallel mechanism due to the lack of upper bound, and the lower bound restrict the
exploitation of the extreme case.

Second, other forms of value functions also arise naturally in reality. One possible
extension is the weighted average, with the weight of each agent a common prior, i.e.,
v(s) = α1s1 + · · ·+αnsn, where αi > 0 for all i ∈ I and ∑i∈I αi = 1. This does not change
our analysis since we could ask each agent i ∈ I to report his or her adjusted signal aisi;
another extension also takes the form of weighted average, with the weights a common prior;
however the weights are given to the order statistics, that is, v(s) = β1s(1)+ · · ·+ βns(n),
where s(1), · · · ,s(n) is a reordering of s1, · · · ,sn with s(1) ≥ ·· · ≥ s(n), βi ≥ 0 for all i ∈ I and

∑i∈I βi = 1. Functions like Max, Min, Median, Average are all special cases. It is interesting
to see whether the random allocation rule is still uniquely optimal in our worst case analysis
with such function forms.

1.5 Appendix

1.5.1 Proof of Lemma 1.2.

Proof. The first part:
For any µ = (a, t) ∈ M , suppose for the sake of contradiction, there exists i ∈ I such

that ai(s) = 1
m > supz∈S+ ∑

n
i=1 ai(z)−Q(µ) for some s = (si;s−i) . Since (a, t) is ex-post

implementable, ai(zi;s−i)≥ 1
m ∀zi ≥ si. Let s̃ = (s̃i;s−i) = (λ · si;s−i), where λ > 1, then

∑
n
i=1

∫ s̃i
0 ai(xi; s̃−i)dxi

∑
n
i=1 s̃i

≥
1
m(λ −1) · si +∑ j ̸=i

∫ s̃ j
0 a j(x j; s̃− j)dx j

λ · si +∑−i s j
.

The last expression goes to 1
m when λ goes to infinity. Therefore, there exist s̃ = (λ ·

si;s−i) with λ large enough that
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∑
n
i=1

∫ s̃i
0 ai(xi; s̃−i)dxi

∑
n
i=1 s̃i

> sup
z∈S+

n

∑
i=1

ai(z)−Q(µ).

That is

1
n

n

∑
i=1

∫ s̃i

0
ai(xi; s̃−i)dxi > ( sup

z∈S+

n

∑
i=1

ai(z)) · v(s̃)−Q(µ) · v(s̃).

Therefore

E[A (s̃)] =
n

∑
i=1

ai(s̃) · v(s̃)−
n

∑
i=1

1
n

∫ s̃i

0
ai(xi;s−i)dxi

≤ ( sup
z∈S+

n

∑
i=1

ai(z)) · v(s̃)−
n

∑
i=1

1
n

∫ s̃i

0
ai(xi;s−i)dxi

< Q(µ) · v(s̃).

We get Q(µ)> E[A (s̃)]/v(s̃), contradicting with the definition of Q(µ).
The second part:
If ∑i∈I ai(s) = 1 for any s ∈ S+, we know from the first statement that Q(µ) ≤ 1 −

supi∈I,s∈S+ ai(s). We show that Q(µ)≥ 1− supi∈I,s∈S+ ai(s). For all s ∈ S+,

E[A (s)] =
n

∑
i=1

ai(s) · v(s)−
n

∑
i=1

1
n

∫ si

0
ai(xi;s−i)dxi

= v(s)−
n

∑
i=1

1
n

∫ si

0
ai(xi;s−i)dxi

≥ v(s)− 1
n ∑

i∈I
si · sup

i∈I,s∈S+
ai(s)

= v(s) · (1− sup
i∈I,s∈S+

ai(s))

Therefore we have Q(µ)≥ 1− supi∈I,s∈S+ ai(s).

1.5.2 Proof of Theorem 1.1.

Proof. Q(µ∗) = n−1
n is easy to see. We show the second part by proving a slightly more

general result.
For any s ∈ S+, let |s|= #{i ∈ I : si > 0}, i.e., |s| is the number of positive arguments in

s. Let Sk = {s ∈ S+ : |s|= k} for k = 1,2, · · · ,n, i.e., Sk is the set of signal profiles that have
k positive arguments. For any µ ∈ M , let Xk = {ai(s) : i ∈ I, s ∈ Sk} for k = 1,2, · · · ,n. For
any c ∈R, We write Xk ≥ c if each element in Xk is no less than c; Xk ≤ c if each element in
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Xk is no greater than c.
We show that for any k = 2,3, · · · ,n,

k ·b+ Q(µ)

n−1
≤ Xk ≤ 1−Q(µ),

where b = Q(µ)−(n−1) ·(1−Q(µ)). Note that if Q(µ) = n−1
n , then b = 0 and 1

n =
Q(µ)
n−1 ≤

Xk ≤ 1−Q(µ) = 1
n for k = 2, · · · ,n, which is the second part of Theorem 2;

First by Lemma 2, Xk ≤ 1−Q(µ) for any k = 1,2, · · · ,n.
Consider profile s = (0, · · · ,0,sn), where sn ≥ 0. Then E[A (s)]/v(s) equals

∑
1≤i≤n−1

ai(0, · · · ,0,sn)+an(0, · · · ,0,sn)−
1
n
·
∫ sn

0
an(0, · · · ,0,xn)dxn/sn

Since {an(0, · · · ,0,sn)−
∫ sn

0 an(0, · · · ,0;xn)dxn/sn} → 0 as sn → 0, under the condition
“equal treatments of equal signals1”, we have

ai(0, · · · ,0,sn)≥
Q(µ)

n
assn → 0, ∀i ̸= n. (1.2)

Now consider profile s = (0, · · · ,0,sn−1,sn), where sn−1, sn > 0. Fix any sn−1 > 0, by
the non-decreasing property of ai, an−1(0, · · · ,0,sn−1,sn)≥ Q(µ)

n as sn → 0.
Then E[A (s)]/v(s) is

∑
i∈I

ai(0, · · · ,0,sn−1,sn)

−
∫ sn−1

0 an−1(0, · · · ,0,xn−1,sn)dxn−1 +
∫ sn

0 an(0, · · · ,0,sn−1,xn)dxn

sn−1 + sn
.

As sn → 0,

∫ sn−1
0 an−1(0, · · · ,0,xn−1,sn)dxn−1 +

∫ sn
0 an(0, · · · ,0,sn−1,xn)dxn

sn−1 + sn
≥ Q(µ)

n
.

Since E[A (s)]/v(s)≥ Q(µ) and X2 ≤ 1−Q(µ), we have for all i ∈ I,

ai(0, · · · ,0,sn−1,sn)≥ Q(µ)− (n−1) · (1−Q(µ))+
Q(µ)

n
, assn → 0.

Especially, an(0, · · · ,0,sn−1,sn)≥Q(µ)−(n−1) ·(1−Q(µ))+ Q(µ)
n = b+ Q(µ)

n as sn →
0.

1This symmetry condition is needed for 1.2. However, if Q(µ) = n−1
n , this condition is not needed for the

conclusion that ai(0, ·,0,sn)≥ 1
n for all i ̸= n since we must have ai(0, ·,0,sn)≤ 1

n by Lemma 2.
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Therefore by the non-decreasing property of an, we have

an(0, · · · ,0,sn−1,sn)≥ b+
Q(µ)

n
∀sn > 0.

By varying sn−1, we get that

an(0, · · · ,0,sn−1,sn)≥ b+
Q(µ)

n
∀sn−1,sn > 0.

Changing the rule of n−1 and n, we get that

an−1(0, · · · ,0,sn−1,sn)≥ b+
Q(µ)

n
∀sn−1,sn > 0.

Now reconsider profile s = (0, · · · ,0,sn−1,sn), where sn−1, sn > 0. We have

∫ sn−1
0 an−1(0, · · · ,0,xn−1,sn)dxn−1 +

∫ sn
0 an(0, · · · ,0,sn−1,xn)dxn

sn−1 + sn
≥ b+

Q(µ)

n
.

Therefore for all i ∈ I,

ai(0, · · · ,0,sn−1,sn)≥ Q(µ)− (n−1) · (1−Q(µ))+(b+
Q(µ)

n
) = 2b+

Q(µ)

n
.

By the same argument, ai(s)≥ 2b+ Q(µ)
n for all i ∈ I, s ∈ S2. Hence X2 ≥ 2b+ Q(µ)

n .
Now consider profile s = (0, · · · ,0,sn−2,sn−1,sn) where sn−2, sn−1, sn > 0. By the non-

decreasing property of ai, we have ai(0, · · · ,0,sn−2,sn−1,sn)≥ 2b+ Q(µ)
n for i = n−2, n−1

and n. Using the same logic, we must have for all i ∈ I,

ai(0, · · · ,sn−2,sn−1,sn)≥ Q(µ)− (n−1) · (1−Q(µ))+(2b+
Q(µ)

n
) = 3b+

Q(µ)

n
.

Hence X3 ≥ 3b+ Q(µ)
n .

Continue with signal profile from X4, · · · ,X5 and using the same argument, we could
show that Xk ≥ k ·b+ Q(µ)

n−1 for any k = 2, · · · ,n.

Note 3. (1) There is some flexibility in the allocation rule for s∈ S1. Consider s=(0, · · · ,0,sn)

with sn > 0. If we let ai(s) = 1
n for all i ̸= n, since ∑

n−1
i=1 ti(s) = n−1

n ·v(s), an(·) could be any
function that is non-decreasing w.r.t. sn and no greater than 1

n ; however, if tn(s) > 0 in at
least some sn, we could reduce ai(s) from 1

n slightly for i ̸= n and still achieve n−1
n of v(s).

This is why we do not have a simple necessary condition for the solution of problem (3.1)
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on S1. However, when expected revenue is concerned, the solution that cannot be improved
for each s ∈ S1 is to set ai(s) = 1

n for all i ̸= n and an(s) = 1
n for not all but some sn > 0.

(2) b < 0 if Q(µ) < n−1
n . Hence as k increases, the lower bound on Xk gets smaller.

In fact, if Q(µ) < 2(n−1)
2n+ 1

n−1
, all these inequalities on Xk for k = 2, · · · ,n simply reduce to

non-negative constraints.



Chapter 2

Budget balanced and almost efficient
assignment of multiple objects

2.1 Introduction

Uniform randomization (lottery) is common practice in assignment. When everyone has
equal claim, lottery is appealing in that it is simple and fair. However, it is also notably
inefficient, since people usually appreciate the same thing to different extent. If quasi-linear
preferences are assumed and money transfers are allowed, there is an easy way to improve
on efficiency while keeping the favorable aspects of the lottery: suppose one object is to be
assigned to n agents and vi ∈R+ is agent i’s private valuation; write v∗k to be the kth highest
valuation. Let agent with v∗1 get the object with probability n−1

n and pay n−2
n v∗2, agent with

v∗2 get the object with probability 1
n and pay nothing, all other agents receive 1

nv∗2. It is easy
to check that this mechanism is strategy-proof, budget balanced, anonymous, envy-free, and
each agent i gets at least 1

nvi: nice properties apparently shared by the lottery. When (ex-
ante) surplus is concerned, the current mechanism loses 1

nv∗1 at most; the lottery, however,
loses n−1

n v∗1 in the worst case.
We define worse efficiency loss or simply efficiency loss to be the largest ratio of sur-

plus loss to the efficient surplus, over all profiles of non-negative valuations1. We show
that the above mechanism is the unique one to achieve the smallest efficiency loss among
all strategy-proof, budget balanced, anonymous, envy-free linear mechanisms. By linear
mechanism, we mean mechanism whose allocation rule can be represented by a vector
(a1,a2, · · · ,an), where ak is the probability that agent with the kth highest valuation gets
an object.

1The worst case analysis has been applied to different settings, see the introduction of [49] for a brief
survey.
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In general, if p identical mechanisms are to be assigned to n agents (p < n) and each
agents demands at most one, then the optimal mechanism gives one object to each of the
p−1 agents with the highest evaluations, a large probability to the agent with the pth highest
valuation, and the remaining probability to the agent with the (p+ 1)th highest valuation.
The optimal efficiency loss is n−p

n2−n . Note that for p = 1, the optimal mechanism is the same
as “randomly picking one agent to be the residual claimer of the pivotal mechanism run
among the other agents (proposed in [26])”; for p > 1, the two are different.

We also find out the optimal efficiency loss when “envy freeness” is replaced by “volun-
tary participation”, a weaker requirement in our setting. It turns out the above mechanism
remains optimal when p is larger than p̄(n), a threshold less than n

2 . For p no greater than
p̄(n), an optimal voluntary mechanism will assign an equally small probability to a group
of agents (rather than just one agent) following the agent with the pth highest valuation, and
the optimal efficiency loss is bounded away from n−p

n2−n .
To solve for the optimal efficiency loss, we first characterize the whole class of anony-

mous, strategy-proof, and budget balanced linear mechanisms. This class, to our best knowl-
edge, appears the first time in literature. It turns out that in order to be budge balanced, the
coordinates of the allocation vector only need to satisfy one linear equality. As showed in
the paper, when budget balance is a hard constraint, this class is a nice starting point for
further exploration.

literature review

When allocating objects among a group of agents, allocation efficiency requires to assign the
objects to the agents with the highest valuations; however it is well know that no truth-telling
mechanism can be allocation efficient and budget balanced at the same time. Different
approaches exist in encountering the impossibility.

Several papers enforce allocation efficiency and explore the idea of redistributing VCG
payments while respecting incentives. (See [15], [49] [31]). [49] and [31] find indepen-
dently the VCG mechanisms that minimize (relative) budget surplus. In particular, [49]
points out that if participation is voluntary, no VCG mechanism guarantees that budget sur-
plus remains relatively small when p is close to n; and in the most dramatic p = n−1 case,
we may lose all the welfare if all budget surplus has to be burned.

In [30], [51], [23], etc., welfare loss is defined to be the sum of efficient allocation loss
and budget surplus. [30] compute the optimal (relative) efficiency loss in the restricted class
of linear mechanisms. [51] explores the trade-offs between k-fairness (a concept of equity
first proposed by [58]) and the optimal efficiency loss in the general class of (deterministic)
strategy-proof mechanism. [23] deals with a similar problem as in [30], in a Bayesian
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setting, for two agents. Interestingly, they find out that under a mild distribution assumption,
an optimal deterministic mechanism will be budget balanced.

Note that in all the papers mentioned above (except [23]), efficiency loss is defined
relative to the efficient surplus. Even if the worst efficiency loss, which is a ratio, is close to
zero, it is still possible that a huge amount of money will be burn if agents have high enough
valuations. While uniform randomization (lottery) is wildly used, one rarely observes in
reality allocations accompanied by burning money: mis-allocation seems to be more easily
tolerated for whatever reason. Our paper, inspired by the lottery, enforce budget balance as
a hard constraint and search for mechanisms that behave well in efficiency. Building on the
linear mechanism proposed in [30], we characterize the class of all budget balanced linear
mechanisms, and solve our optimization problems analytically. The optimal mechanism we
obtain share all the good aspects of the lottery (except for the “money-free” property), and
is hoped to be an easy alternative. Additionally, to compare with [51], we are able to bound
the efficiency loss of optimal voluntary mechanism by switching to a different problem,

[32] enforces budget balance in a pubic good provision setting. Budget balance is
achieved based on the idea proposed in [26]. That is, one agent is excluded at random
and is made the residual claimant of the payments collected by a VCG mechanism in the
market with only the remaining agents. In a public good provision setting with exclusion,
[36] studies the efficiency and fairness properties of the equal cost sharing with maximal
participation mechanism (the mechanism is budget balanced) and find out conditions in
which the mechanism is optimal. In a cost-sharing setting, [53], [37] discuss the trade-
off between budget balance and allocation efficiency for (group) strategyproof cost sharing
mechanisms. In a bilateral trading setting, two classic papers ([55], [33]) also enforce budget
balance: the former characterizes mechanisms that are Bayesian-Nash incentive compati-
ble, interim individually rational and budget balanced; the latter characterizes mechanisms
that are dominant strategy incentive compatible, ex-post individually rational and budget
balanced.

2.2 Setting

p identical objects are to be assigned to n agents; and 1 ≤ p < n. Each agent i ∈ N =

{1, · · · ,n} demands at most one object and has a private valuation vi ∈ R+ for the object.
For any profile of valuations v ∈ RN

+, for any i ∈ N, v−i stands for the vector obtained from
v by deleting vi, and (v′,v−i) stands for the valuation profile obtained from v by replacing vi

with v′i.
We consider direct mechanisms, that is, agents report their own valuations and the allo-
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cation only depend on the reported valuation profile.

Definition 2.1. A direct mechanism is a pair (σ , t) such that

σ : RN
+ → [0,1]n, t : RN

+ → Rn;

for any v ∈RN
+, for any i ∈ N, σi(v) is the probability that i gets an object and ti(v) is her

payment.

Assuming risk neutral preference, agent i’s utility under (σ , t) is ui(v) = σi(v) ·vi− ti(v)
for each v.

A direct mechanism (σ , t) is feasible if ∑i σi(v) ≤ p for any v; is strategy-proof if for
any i, for any vi, v′i, v−i, ui(vi,v−i) ≥ ui(v′i,v−i); is anonymous if σ(·) and t(·) are both
symmetric in all its variables; is budget balanced if ∑i ti(v) = 0 for any v; is envy-free if
σi(v) · vi − ti(v) ≥ σ j(v) · vi − t j(v) for any i, j, and for any v; is voluntary (or satisfies the
constraint of voluntary participation) if for any i, for any v, ui(v)≥ 0.

We further restrict our attention to linear mechanism whose allocation rule can be rep-
resented by a vector (a1,a2, · · · ,an) ∈ [0,1]n, where al is the probability of getting an object
for the agent with the lth highest valuation. The formal definition is given below.

For any v ∈ Rn
+, let ri(v) = {l ∈ N : |{ j ∈ N : v j > vi}| < l ≤ n−|{ j ∈ N : v j > vi}|}.

That is, ri(v) is agent i’s set of rankings.

Definition 2.2. A direct mechanism (σ , t) is a linear mechanism if there exists {al}n
l=1, with

al ∈ [0,1] constant for each l, such that σi(v) =
∑l∈ri(v)

al

|ri(v)| for any i, any v.

Now we write a linear mechanism as ({al}; t). Let M be the set of linear mechanisms
that are feasible, strategy-proof and anonymous.

Lemma 2.1. A linear mechanism ({al}; t) is in M if and only if

an ≤ an−1 ≤ ·· · ≤ a1;

∑
n
l=1 al ≤ p; and for any i, any v,

ti(v) = σi(v)vi −
∫ vi

0
σi(xi,v−i)dxi −h(v−i)

where σi(v) =
∑l∈ri(v)

al

|ri(v)| and h(·) is a symmetric function from Rn−1
+ to R.

Proof. See [30] for the proof of the an ≤ an−1 ≤ ·· · ≤ a1 part ; the proof of the remaining
part is omitted.
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Now we use ({al};h) to refer to a mechanism in M . Let V = {v ∈Rn
+ : v1 ≥ v2 ≥ ·· · ≥

vn andv1 > 0}. For any x ∈ Rn−1
+ , let x∗1,x∗2, · · · ,x∗(n−1) be a reordering of x1,x2, · · · ,xn−1

with x∗1 ≥ x∗2 ≥ ·· · ≥ x∗(n−1).

Lemma 2.2. A mechanism ({al};h) ∈ M is budget balanced iff for all x ∈ Rn−1
+ , h(x) =

∑
n−1
k=1 δkx∗k for some {δk}n−1

k=1 that satisfy the following system of linear equations:

kδk +(n− k−1) ·δk+1 = k(ak −ak+1) (2.1)

for all 0 ≤ k ≤ n−1, where δ0 = δn = a0 = 0.

Proof. By Lemma 2.1, we have that for all v ∈ V ,

n

∑
i=1

ti(v) =
n

∑
i=1

aivi −
n

∑
i=1

n

∑
j=i

(v j − v j+1)a j −
n

∑
i=1

h(v−i)

=
n−1

∑
i=1

i · (ai −ai+1)vi+1 −
n

∑
i=1

h(v−i)

. (2.2)

We show in the appendix (Lemma 2.6) that ∑i ti(v) = 0 for all v ∈ V implies that h(·)
takes a “linear” form. That is, for any x ∈ Rn−1

+ ,

h(x) = δ1x∗1 +δ2x∗2 + · · ·+δn−1x∗(n−1).

Since for any v ∈ V ,

n

∑
i=1

h(v−i) =
n

∑
i=1

((i−1)δi−1 +(n− i)δi)vi ,

with δ0 = δn = 0, it is easy to see that ∑i ti(v) = 0 for all v ∈ V if and only if the system
of linear equations (2.1) holds.

Remark 2.1. The system of linear equations (2.1) have n−1 unknowns {δk}n−1
k=1 and n equa-

tions. By straightforward calculation (see Lemma 2.7 in the appendix for details) the linear
system has a solution if and only if the following constraint on {al}n

l=1 holds:

n

∑
l=1

(−1)l−1 · γl ·al = 0, (2.3)

where γl = C n−2
l−2 +C n−2

l−1 for n > 2 and l = 2, · · · ,n−1, and γ1 = γn = 1.

Let M b be the set of budget balanced mechanisms in M . Now we use ({al};{δk}) to
refer to a mechanism in M b. The worst efficiency loss, or simply the efficiency loss for any
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mechanism ({al};{δk}) ∈ M b is the largest ratio of surplus loss to efficient surplus, over
all profiles of non-negative valuations:

max
v∈V

{1− ∑
n
l=1 al · vl

∑
p
l=1 vl

} (2.4)

Lemma 2.3. For any a1 ≥ a2 ≥ ·· · ≥ an ≥ 0,

∑
p
l=1 al

p
= min

v∈V

∑
n
l=1 alvl

∑
p
l=1 vl

. (2.5)

Proof. For any v ∈ V , for any i, j, we have

(ai −a j)(vi − v j)≥ 0.

That is

aivi +a jv j ≥ aiv j +a jvi.

Adding up all pairs of (i, j), we have

p(a1v1 +a2v2 + · · ·+apvp)≥ (a1 +a2 + · · ·+ap)(v1 + v2 + · · ·+ vp).

Therefore for any v, we have

∑
n
l=1 alvl

∑l≤p vl
≥

∑l≤p alvl

∑l≤p vl
≥

∑l≤p al

p
. (2.6)

If we take v1 = v2 = · · · = vp > 0, and vp+1 = vp+2 = · · · = vn = 0, we have that (2.6)
hold with equality. Therefore we have (2.5).

Remark 2.2. By Lemma 2.3 and the definition of efficiency loss, we see that minimizing
efficiency loss within M b is equivalent to maximizing ∑

p
l=1 al of ({al},{δk}) ∈ M b.

Lemma 2.4. A mechanism ({al};{δk}) ∈ M b is envy-free iff δk ≥ 0 for all 1 ≤ k ≤ n−1.

Proof. First we show the “only if” part. Suppose vl+1 > vl > vl+1 > vl+2, then by Lemma
2.1 and Lemma 2.2, we have

tl − tl+1 = (al −al+1)vl+1 −δl(vl+1 − vl) = δlvl +(al −al+1 −δl)vl+1.

Envy-freeness says that al+1vl+1− tl+1 ≥ alvl+1− tl . And al ≥ al+1. Therefore we have

tl − tl+1 ≥ (al −al+1)vl+1 ≥ 0.
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Therefore we must have δl ≥ 0; otherwise tl − tl+1 ≥ 0 will fail for vl >> vl+1.
Now we show the “if” part. Suppose δk ≥ 0 for all 1 ≤ k ≤ n− 1, then according to

(2.1),

ak −ak+1 −δk =
n− k−1

k
δk+1 ≥ 0.

Suppose vi+1 > vi > v j > v j+1 (hence i < j)2, then

ti − t j =
j−1

∑
l=i

(al −al+1)vl+1 +δivi −
j−2

∑
l=i

(δl −δl+1)vl+1 −δ j−1v j

= δivi +
j−2

∑
l=i

(al −al+1 −δl +δl+1)vl+1 +(a j−1 −a j −δ j−1)v j

.

Since al − al+1 − δl + δl+1 ≥ al − al+1 − δl ≥ 0 for any i ≤ l ≤ j− 2 and a j−1 − a j −
δ j−1 ≥ 0 for any j, we have that

ti − t j ≤ δivi +
j−2

∑
l=i

(al −al+1 −δl +δl+1)vi +(a j−1 −a j −δ j−1)vi = (ai −a j)vi,

and

ti − t j ≥ δiv j +
j−2

∑
l=i

(al −al+1 −δl +δl+1)v j +(a j−1 −a j −δ j−1)v j = (ai −a j)v j.

Therefore no envy occurs between i and j.

Lemma 2.5. A mechanism ({al};{δk}) ∈ M b is voluntary iff for all 1 ≤ k ≤ n−1,

k

∑
j=1

δ j ≥ 0. (2.7)

Proof. First note that a mechanism ({al};h) ∈M is voluntary iff h(x)≥ 0 for all x ∈Rn−1
+ .

Hence a mechanism ({al};{δk}) ∈ M b is voluntary iff ∑
n−1
k=1 δkx∗k ≥ 0 for all x ∈ Rn−1

+ .
This condition holds iff ∑

k
j=1 δ j ≥ 0 for all 1 ≤ k ≤ n−1.

Remark 2.3. A mechanism is envy-free implies that it is voluntary, but not visa verse.

2We omit in the proof the case when ties exist.
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2.3 Optimal envy-free mechanism

Let M b
e be the set of envy-free mechanisms in M b.

Definition 2.3. The Optimal Envy-free (OE) mechanism ({a⋆l };{δ ⋆
k }) is the following:

a⋆l = 1 for all l < p, a⋆p+1 = 1−a⋆p =
(n−p)p
n2−n , a⋆l = 0 for all l > p+1;

δ ⋆
k = 0 for all k < p and k > p+1, δ ⋆

p = (p−1)p
n2−n , δ ⋆

p+1 =
(n−p)p
n2−n .

It is easy to check that the OE mechanism is in M b
e . Note that if p = 1, we have that

a⋆1 =
n−1

n and a⋆2 =
1
n , the mechanism pointed out in the introduction.

Proposition 2.1. For any v ∈ RN
+, the OE mechanism guarantees at least p

n · vi for each
agent i.

Proof. Without loss of generality assume v1 ≥ v2 ≥ ·· · ≥ vn. Note that we have a⋆p−a⋆p+1−
δ ⋆

p = n−p−1
p δ ⋆

p+1 > 0 by 2.1. Since

u⋆l = vl − (1−a⋆p)vp − (a⋆p −a⋆p+1 −δ
⋆
p)vp+1 ≥ [1− (1−a⋆p)− (a⋆p −a⋆p+1 −δ

⋆
p)]vl =

p
n
· vl, ∀l < p,

u⋆p = a⋆pvp − (a⋆p −a⋆p+1 −δ
⋆
p)vp+1 ≥ [a⋆p − (a⋆p −a⋆p+1 −δ

⋆
p)]vp =

p
n
· vp,

u⋆p+1 = a⋆p+1vp+1 +δ
⋆
pvp ≥ (a⋆p+1 +δ

⋆
p)vp+1 =

p
n
· vp+1,

u⋆l = δ
⋆
pvp +δ

⋆
p+1vp+1 ≥ (δ ⋆

p +δ
⋆
p+1)vl =

p
n
· vl, ∀l > p+1,

we are done.

Theorem 2.1. The OE mechanism is the unique mechanism that achieves the smallest effi-
ciency loss in M b

e .

Proof. Suppose there exists another mechanism ({al};{δk}) ∈ M b
e that achieves the same

or smaller worst efficiency loss, then by Lemma 2.3 we must have ap ≥ a⋆p, ap+1 ≤ a⋆p+1,
and ap −ap+1 > a⋆p −a⋆p+1.

Since (p+ 1)δp+1 + (n− p− 2)δp+2 = (p+ 1)(ap+1 − ap+2), and δp+2 ≥ 0 = δ ⋆
p+2,

ap+1 ≤ a⋆p+1, ap+2 ≥ 0 = a⋆p+2, we must have δp+1 ≤ δ ⋆
p+1.

Since (p−1)δp−1+(n− p)δp = (p−1)(ap−1−ap), and δp−1 ≥ 0 = δ ⋆
p−1, ap−1 ≤ 1 =

a⋆p−1, ap ≥ a⋆p, we have that δp ≤ δ ⋆
p . However since pδp+(n− p−1)δp+1 = p(ap−ap−1),

and δp ≤ δ ⋆
p , ap −ap+1 > a⋆p −a⋆p+1 , we must have δp+1 > δ ⋆

p+1. Contradiction!

Therefore the smallest efficiency loss Le(n, p) in M b
e is n−p

n2−n .
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Example 2.1. The OE mechanism for n = 4, p = 2.
a⋆1 = 1, a⋆2 =

2
3 , a⋆3 =

1
3 , a⋆4 = 0; since δ ⋆

1 = 0, δ ⋆
2 = 1

6 , δ ⋆
3 = 1

3 , the payment functions
(under the assumption that v1 > v2 > v3 > v4) are

t1 =(
1
3

v2 +
1
3

v3 +
1
3

v4)− (
1
6

v3 +
1
3

v4) =
1
3

v2 +
1
6

v3

t2 =
1
3

v3 +
1
3

v4 − (
1
6

v3 +
1
3

v4) =
1
6

v3

t3 =
1
3

v4 − (
1
6

v2 +
1
3

v4) =−1
6

v2

t4 = − 1
6

v2 −
1
3

v3

.

One can check that ∑
4
i=1 ti = 0 for all v. The smallest efficiency loss Le if 1

6 .

2.4 Optimal voluntary mechanism

Let M b
v be the set of voluntary mechanisms in M b. Let φ(n, p,s) =

C n−2
p+2s+C n−2

p−1
2s+1 . For p ≤

⌊n
2⌋, let s⋆(n, p) =min{s̃ : s̃∈ argmaxs∈{0,1,··· ,⌊ n−2−p

2 ⌋}φ(n, p,s)}. Let p̄(n) =max{p≤⌊n
2⌋ :

s⋆(n, p) ̸= 0} if the set is non-empty; p̄(n) = 0 otherwise.

Definition 2.4. The Optimal Voluntary (OV) mechanism ({ao
l };{δ o

k }) is the following:
if p > p̄(n), then ({ao

l };{δ o
k }) = ({a⋆l };{δ ⋆

k });
if p ≤ p̄(n), then

ao
1 = · · ·= ao

p−1 = 1, ao
p+1 = · · ·= ao

p+1+2s⋆ > 0, ao
p+2+2s⋆ = · · ·= a0

n = 0,

ap = 1− (1+2s⋆)ap+1 =
φ(n,p,s⋆)+C n−2

p−2

φ(n,p,s⋆)+C n−2
p−2+C n−2

p−1
, and {δ o

k } is the solution of (2.1).

It is easy to check that {ao
l } satisfies the budget balance constraint (2.3). The following

proposition shows that the OV mechanism differs with the OE mechanism if and only if
p ≤ p̄(n).

Proposition 2.2. (1) Suppose s⋆(n, p)> 0 for some p, then s⋆(n, p′)> 0 for all p′ < p.
(2) n−8

3 ≤ p̄(n)< ⌊n
2⌋.

Proof. See appendix.

Example 2.2. The OV mechanism for n = 15, p = 3. (Note that s⋆(15,3) = 1.)
ao

1 = ao
2 = 1, ao

3 = 6
7 , ao

4 = ao
5 = ao

6 = 1
21 , ao

7 = · · · = ao
15 = 0; and since δ o

1 = δ o
2 = 0,

δ o
7 = δ o

8 = · · ·= δ o
14 = 0, δ o

3 = 1
42 , δ o

4 = 3
14 ,δ o

5 =− 3
35 , δ o

6 = 1
21 , the payment functions (under

the assumption that v1 > v2 > · · ·> v15) are
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t1 =
1
7

v3 +
11
14

v4 −
3

14
v5 +

3
35

v6

t2 =
1
7

v3 +
11
14

v4 −
3

14
v5 +

3
35

v6

t3 =
11
14

v4 −
3
14

v5 +
3

35
v6

t4 =− 1
42

v3 −
3
14

v5 +
3

35
v6

t5 =− 1
42

v3 −
3
14

v4 +
3

35
v6

t6 =− 1
42

v3 −
3
14

v4 +
3

35
v5

t7 = · · ·= t15 =− 1
42

v3 −
3
14

v4 +
3

35
v5 −

1
21

v6

One can check that ∑ ti = 0 for any v. Since ∑
k
l=1 δ o

l ≥ 0 for all 1 ≤ k ≤ n− 1, the
mechanism is voluntary. And the efficiency loss is 1

21 ≈ 0.0476. We show below that the
the OV mechanism is voluntary for any p < n, and it achieves the smallest efficiency loss
among mechanisms in M b

v .

Proposition 2.3. The OV mechanism is voluntary.

Proof. We only need to show it for p≤ p̄(n). According to (2.1), we have δ o
1 = · · ·= δ o

p−1 =

0,δ o
p+2+2s⋆(p)= · · ·= δ o

n−1 = 0; and (δ o
p ,δ

o
p+1, · · · ,δ o

p+1+2s⋆) are of the signs (+,+,−,+,−, · · · ,+,−,+).
Furthermore, since p+1+2s⋆(p)≤ ⌊n

2⌋+1, we have |δ o
p |> |δ o

p+1|> · · ·> |δ o
p+1+2s⋆|, ac-

cording to (2.1). Hence ∑
k
l δ o

l ≥ 0 for all 1 ≤ k ≤ n−1.

Theorem 2.2. The OV mechanism achieves the optimal efficiency loss in M b
v .

Proof. The very long proof in the appendix is divided into three parts: first we find out the
mechanism that achieve the smallest efficiency loss in M b, by very careful perturbations.
Second we show that the optimal mechanism in M b is voluntary iff p < n− n̄(p) (hence it
is the same as the OV mechanism for p < n− n̄(p)). Finally we show that for p ≥ n− n̄(p),
the OV mechanism is optimal in M b

e , using the Duality Theorem.

Now we look at the smallest efficiency loss Lv(n, p) in M b
v .

For p > p̄(n)

Lv(n, p) =
(n− p)
n2 −n

;

for p ≤ p̄(n)
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Lv(n, p) =
1
p
·

C n−2
p−1

C n−2
p−2 +C n−2

p−1 +
C n−2

p−1+C n−2
p+2s⋆

1+2s⋆

.

Fix n, if p > p̄(n), then Lv(n, p) is decreasing with respect to p. However, the monotone
properties of Lv(n, p) otherwise remains an open question, though we do see a pattern in the
examples below.

Example 2.3. Optimal worst efficiency for n = 5, 15, 25, and p = 1, · · · ,n−1.
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In each graph the green line is Lv(n, p), and the blue line is Le(n, p). (When n = 5, the
two lines coincide.) And the yellow point is the largest Lv(n, p) as p changes from 1 to
n−1, and it is also the point where p = p̄(n)+1.

In the first and the fourth graphs, the red line represents the smallest efficiency loss with
voluntary participation in [49]. For n = 5, it is above Lv. In fact, one can check that this
domination holds for all n ≤ 5. For n > 5, however, no domination occurs. As showed in
the fourth graph, the OV mechanism does worse when p is much smaller than n, but much
better when p is close to n.
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2.5 Appendix

2.5.1 Lemma 2.6 and its proof

Lemma 2.6. Suppose a symmetric function h : Rn−1
+ → R satisfies the following functional

equation: for any (x1,x2, · · · ,xn) ∈ V ,

∑
i

h(x−i) =
n

∑
i=2

λixi,

where λi ≥ 0 for all i≥ 2, then h(z)= δ1z∗1+δ2z∗2+· · ·+δn−1z∗(n−1) for some (δ1, · · · ,δn−1)∈
Rn−1, where (z∗1,z∗2, · · · ,z∗n−1) is a reordering of (z1,z2, · · · ,zn) such that z∗1 ≥ z∗2 ≥ ·· · ≥
z∗(n−1).

Proof. We show it by induction. Since

λ2x2 +λ3x3 + · · ·+λnxn = h(x2,x3, · · · ,xn)

+h(x1,x3, · · · ,xn)

+ · · ·
+h(x1,x2, · · · ,xn−1)

,

taking x1 = · · · = xn = 0, we have h(0,0, · · · ,0) = 0. Taking x1 ≥ x2 = · · · = xn = 0,
we have h(x1,0, · · · ,0) = 0 , δ1x1. Now suppose h(x1,x2, · · · ,xk,0, · · · ,0) = δ ′

1x1 +δ ′
2x2 +

· · ·+ δ ′
kxk for x1 ≥ x2 ≥ ·· · ≥ xk ≥ 0, we show that h(x1,x2, · · · ,xk,xk+10, · · · ,0) = δ ′′

1 x1 +

δ ′′
2 x2 + · · ·+δ ′′

k xk +δ ′′
k+1xk+1.

Since

λ2x2 +λ3x3 + · · ·+λkxk +λk+1xk+1 = h(x2,x3, · · · ,xk+1,0, · · · ,0)
+h(x1,x3, · · · ,xk+1,0, · · · ,0)
+ · · ·
+h(x1,x2, · · · ,xk,0, · · · ,0)
+(n− k−1)h(x1,x2, · · · ,xk,xk+1,0, · · · ,0)

,

It is easy to see that h(x1,x2, · · · ,xk,xk+1,0, ...,0) = δ ′′
1 x1 +δ ′′

2 x2 + · · ·δ ′′
k xk +δ ′′

k+1xk+1.
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2.5.2 Lemma 2.7 and its proof

Lemma 2.7. The system of linear equations (2.1) of {δ1,δ2, · · · ,δn−1} has a solution if and
only if the constraint (2.3) on {ai} holds.

Proof. The system of linear equations (2.1) have n−1 unknowns and n equations.
We show the “only if” part. According to the first n− 1 equations of the system, we

have

δn−1 = (−1)n−1 ·
n−2

∏
i=1

λi ·a1 +(−1)n−2 · (
n−2

∏
i=1

λi +
n−3

∏
i=1

λi) ·a2 +(−1)n−3 · (
n−3

∏
i=1

λi +
n−4

∏
i=1

λi) ·a3

+ · · ·+(−1)2 · (
2

∏
i=1

λi +λ1) ·an−2 +(−1) ·λ1 ·an−1

(2.8)
where λi =

n−i−1
i . Note that ∏

m
i=1 λi = C n−2

m = C n−2
n−2−m = ∏

n−2−m
i=1 λi.

According to the last equation of the system, we have

δn−1 = an−1 −an. (2.9)

Combining (2.8) and (2.9), we have (2.3).
Now the “if” part is easy to see.

2.5.3 Proof for Proposition 2.2

Proof. (1) Suppose that s⋆(n, p)> 0, we show that s⋆(n, p′)> 0 for p′ = p−1.
Since s⋆ > 0, we have that φ(n, p,s⋆)> φ(n, p,0), that is, C n−2

p+2s⋆ −C n−2
p > 2s(C n−2

p +

C n−2
p−1 ). We show below that φ(n, p− 1,s⋆) > φ(n, p− 1,0), that is, C n−2

p−1+2s⋆ −C n−2
p−1 >

2s(C n−2
p−1 +C n−2

p−2 ). Note that

C n−2
p−1+2s⋆ −C n−2

p−1 =
p+2s⋆

n−2− p−2s⋆+1
C n−2

p+2s⋆ −
p

n−2− p+1
C n−2

p

>
p+2s⋆

n−2− p−2s⋆+1
(C n−2

p+2s⋆ −C n−2
p )

;

and

C n−2
p−1 +C n−2

p−2 =
p

n−2− p+1
C n−2

p +
p−1

n−2− (p−1)+1
C n−2

p−1

<
p+2s⋆

n−2− p−2s⋆+1
(C n−2

p +C n−2
p−1 )

.
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We are done.
(2) First note that

φ(n, p,s)=
(C n−2

p+2s −C n−2
p+2(s−1))+(C n−2

p+2(s−1)−C n−2
p+2(s−2))+ · · ·+(C n−2

p+2 −C n−2
p )+(C n−2

p +C n−2
p−1 )

2s+1
.

Let s̄(n, p)=min{s : s∈ argmaxs∈{1,2,··· ,⌊ n−2−p
2 ⌋}(C

n−2
p+2s−C n−2

p+2(s−1))}. Suppose (C n−2
p+2 −

C n−2
p )/2>C n−2

p +C n−2
p−1 , that is p< n−5

3 , then s⋆(n, p)= s̄(n, p); suppose (C n−2
p+2 −C n−2

p )/2≤
C n−2

p +C n−2
p−1 , that is, p ≥ n−5

3 , then s⋆ = 0 or s̄(n, p). Therefore we have that p̄(n) ≥
n−5

3 −1 = n−8
3 . It is easy to see that p̄(n)< ⌊n

2⌋.

2.5.4 Proof of Theorem 2.2

2.5.4.1 Optimal mechanism in M b

We first solve the following problem:

max
{al}n

l=1

p

∑
l=1

al (2.10)

such that

∑
n
l=1 al ≤ p, 0 ≤ an ≤ ·· · ≤ a2 ≤ a1 ≤ 1 ;

and (2.3).
For p > ⌊n

2⌋, let s⋆(n, p) = s⋆(n,n− p).

Definition 2.5. {ai}n
i=1 is called the Optimal Budget balanced (OB) solution if:

(1) for p ≤ ⌊n
2⌋,

a1 = · · ·= ap−1 = 1, ap+1 = · · ·= ap+1+2s⋆ > 0, ap+2+2s⋆ = · · ·= an = 0,

ap = 1− (1+2s⋆)ap+1 =
φ(n,p,s⋆)+C n−2

p−2

φ(n,p,s⋆)+C n−2
p−2+C n−2

p−1
.

(2) for p > ⌊n
2⌋,

a1 = · · ·= ap−1−2s⋆ = 1, ap−2s⋆ = · · ·= ap > 0, ap+2 = · · ·= an = 0,
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ap+1 = (1+2s⋆)(1−ap) =
C n−2

p−1

φ(n,n−p,s⋆)+C n−2
p +C n−2

p−1

We write the OB solution as {aφ

i }n
i=1. Note that the OB solution coincides with the

allocation part of the OV mechanism {ao
l } for p < n− n̄(p).

Lemma 2.8. {aφ

i }n
i=1 is an optimal solution of the problem (2.10).3

Proof. The very long proof is left in the next section 2.5.4.2.

Remark 2.4. Since the optimal solution {aφ

i } is the allocation part of the optimal mechanism
in M b, we look at it more carefully.

When p ≤ ⌊n
2⌋, the OB solution assigns one object to each of the (p− 1) agents with

the highest valuations, and a substantial portion to the agent with the pth highest valuation.
The remaining portion will be distributed to a group of agent immediately behind, and each
receives an equal slice. The size of this “equal-group” depends on p and n.

When p > ⌊n
2⌋, the OB solution assigns a slight portion to the agent with (p+ 1)th

highest valuation, and an equally substantial portion to each agent in a group immediately
before her, and one object to each of the agent before the group. Again the size of the
“equal-group” depends on p and n.

Interestingly, the solution of the p > ⌊n
2⌋ case can be constructed directly using the p ≤

⌊n
2⌋ case: first rank agents from the lowest valuation to the highest valuation and “distribute”

n− p ≤ ⌊n
2⌋ “null objects” to agents according to the OB solution (Hence agents with the

lower valuations are the ones receiving “null objects”); then assign each agent 1 minus the
portion of the “null object”. Formally, let {bφ

i }n
i=1 be the OB solution of the problem (2.10)

with p replaced by n− p. Then we have for i = 1, · · · ,n, aφ

i = 1− bφ

n+1−i. Intuitively,
allocating p objects as efficiently as possible is equivalent to allocating n− p “null-objects”
as efficiently as possible.

Mathematically, the above Lemma reduces the original complicated maximization prob-
lem (2.10) to a small one: choosing s to maximize φ(n, p,s). Since 1+2s is the size of the
“equal-group”, so by choosing s we are determining the optimal size of the “equal-group”.
We know from Proposition 2.2 that when p̄(n) < p < n− p̄(n), s⋆(n, p) = 0; that is, the
“equal-group” reduces to a singleton.

2.5.4.2 Proof for Lemma 2.8

Proof. We could write an optimal solution as:

3If S⋆(n, p) is a singleton, then {aφ

i }n
i=1 is the optimal solution. If S⋆(n, p) contains more than one elements,

then the optimal solutions all have the same structure and differ only in the size of the “equal-group”.
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(a1,a2, · · · ,an) = (1,1, · · · ,1,al+1, · · · ,an−m,0, · · · ,0)

with 1 > al+1 ≥ an−m > 0. Note that l is the number of agents who get one object; m

is the number of agents who get zero object; and n−m− l is the number of agents who
get part of an object. We know that l ∈ {1,2, · · · , p− 1} (since first best is impossible),
m ∈ {1,2, · · · ,n−1} (since zero vector is obviously not an optimal solution) and l+m ≤ n.
Let k = ⌊n

2⌋.
Case 1: p ≤ k.
Step 1: We show that in any optimal solution,∑n

i=1 ai = p.
Suppose not, increase al+1,al+2 by εl+1 and εl+2 respectively, where εl+2 =

γl+1
γl+2

·εl+1 <

εl+1. (Since l +1 ≤ p ≤ k, we have γl+1 < γl+2). We can take εl+1 small enough so that all
constraints still hold and the value of the objective function increases.

Step 2: We show that ak+2 = ak+3 = · · ·= an = 0.
Suppose not, consider an−m and an−m−1. Decrease an−m and an−m−1 by εn−m and

εn−m−1, where εn−m = γn−m−1
γn−m

· εn−m−1 > εn−m−1. (Since n−m ≥ k+2, We have γn−m−1 >

γn−m.) What we get is still an optimal solution since all the constraints still hold and the
the value of the objective function does not change. However we now have ∑

n
i=1 ai < p,

contradicting step 1.
Step 3: We show that n−m− p is odd, that is, the size of the tail group is an odd number.
First we know that ap+1 ̸= 0. Otherwise we will have ∑

n
i=1 ai = ∑

p
i=1 ai < p, contra-

dicting step 1. Now suppose ap+1 ≥ ap+2 > 0 and n−m− p is even. We could decrease
ap+1, · · · ,an−m each by εn−m, increase an−m+1 by εn−m+1 and increase al+1, · · · ,ap each by
εp such that εp = (εn−m(γn−m − ·· ·+ γp+1)− εn−m+1γn−m+1)/(γp − γp−1 +(−1)p−lγl+1).
Note that we can choose εn−m and εn−m+1 properly so that εp < [εn−m(n−m− p)−εn−m+1]/(p−
l). (Take εn−m+1 = 0, if εp < εn−m(n−m− p)/(p− l), then we are done; if not, since
εp < 0 if we take εn−m+1 = εn−m, there exists some εn−m+1 < εn−m such that 0 < εp <

εn−m(n−m− p)/(p− l) by continuity.) Hence the reduction is greater than the increase.
And all the constraints still hold and the objective function increases.

Step 4: We show that ap > ap+1.
Since a′1 = a′2 = · · ·= a′p−1 = 1, a′p = 1− (n−p)p

n2−n , a′p+1 =
(n−p)p
n2−n (it is easy to check that

a′p+1 < a′p), a′p+2 = a′p+3 · · · = a′n = 0 is a feasible solution, any optimal solution {ai} that
is different has to increase a′p , and decrease a′1 + · · ·+a′p−1 by a less or equal margin. This
cannot be achieved if ap = ap+1 since we then have to increase a′p and a′p+1 simultaneously.

Step 5: We show that if [γn−m − γn−m−1 + · · ·− γp+2 + γp+1]/(n−m− p) < γp+1, then
n−m− p = 1.
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Suppose [γn−m−γn−m−1+ · · ·−γp+2+γp+1]/(n−m− p)< γp+1, if ap+2 ≥ ap+3 ≥ ·· · ≥
an−m > 0, we could increase ap+1 (since ap > ap+1) by εp+1, decrease ap+2, · · · ,an−m each
by εn−m, where εn−m = γp+1εp+1/[γn−m − γn−m−1 + · · · − γp+2], and keep all constraints
hold. Now we have that εn−m · (n−m− p− 1) > εp+1, that is, reduction is larger than
increase. However we have now ∑

n
i=1 ai < p, contradicting step 1; hence we must have

n−m− p = 1.
Step 6: We show that if [γn−m − γn−m−1 + · · ·− γp+2 + γp+1]/(n−m− p) > γp+1, then

n−m− p = 1+2s′(n, p) for some s′(n, p) ∈ S⋆(n, p).
Now suppose n − m − p > 1 + 2s′(n, p) for all s′(n, p) ∈ S⋆(n, p)We could decrease

ap+1+2s′(n,p)+1, ap+1+2s′(n,p)+2, · · · , an−m each by εn−m and increase ap+1, ap+2, ap+3,· · · ,
ap+1+2s′(n,p) each by εp+1,where εp+1 = {[n−m− p−1−2s′(n, p)][γn−m− γn−m−1+ · · ·+
γp+1+2s′(n,p)+2−γp+1+s′(n,p)+1]εn−m}/{[1+2s′(n, p)][γp+1+2s′(n,p)−γp+1+2s′(n,p)+· · ·−γp+2+

γp+1]}, and keep all constraints hold. Now we have εp+1 · [1+2s′(n, p)]< εn+m · [n−m− p−
1−2s′(n, p)], that is, reduction is larger than increase. Therefore we have now ∑

n
i=1 ai < p,

contradicting step 1; hence we must have n−m− p ≤ 1+2s′(n, p). Using similar argument,
we can conclude that n−m− p≥ 1+2s′(n, p). Therefore we have n−m− p= 1+2s′(n, p).

Step 7: We show that if [γn−m − γn−m−1 + · · · − γp+2 + γp+1]/(n−m− p) > γp+1, and
s′(n, p) = (n−m− p−1)/2, then ap+1 = ap+2 = · · ·= ap+1+2s′(n,p).

7a) First we show that ap+2s = ap+2s+1 for all 1 ≤ s ≤ s′(n, p).
If not, we reduce ap+2s by ε and reduce an−m by ε ′, where ε ′ = γp+2sε/γn−m < ε . We

can make ε small enough so that all the constraints still hold and the value of the objective
function does not change. We have now that ∑

n
i=1 ai < p, contradicting step 1.

7b) Then we show that ap+2 = ap+3 · · ·= ap+1+s′(n,p).
Now suppose that ap+1+2s̃+1 = ap+1+2s̃+2 > ap+1+2s̃+3 = ap+1+2s̃+4 for some s̃≤ s′(n, p)−

2, then we could reduce both ap+1+2s̃+1 and ap+1+2s̃+2 by ε , increase both ap+1+2s̃+3

and ap+1+2s̃+4 by ε ′, where ε = [γp+1+2s̃+4 − γp+1+2s̃+3]ε
′/[γp+1+2s̃+2 − γp+1+2s̃+1] > ε ′.

(Note that γp+1+2s̃+4− γp+1+2s̃+3 > γp+1+2s̃+2− γp+1+2s̃+1 since s̃ ≤ s′(n, p)−2.) All con-
straint still hold and we now have ∑

n
i=1 ai < p, contradicting step 1; hence we must have

ap+2 = ap+3 · · ·= ap+1+2s′(n,p).
7c) Finally we show that ap+1 = ap+2.
If ap+1 > ap+2, we could reduce ap+1 by εp+1 and increase ap+2, · · · ,an−m each by

εn−m, where εn−m = γp+1εp+1/[γn−m − γn−m−1 + · · ·− γp+2], and keep all constraints hold.
Now we have that εn−m · (n−m− p− 1) < εp+1, that is, reduction is larger than increase.
Therefore we have now ∑

n
i=1 ai < p, contradicting step 1; Hence we have ap+1 = ap+2.

Step 8: We show that l = p−1, i.e. a1 = a2 = · · ·= ap−1 = 1.
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Using the results from the above steps, we can write (2.3) as

C1a1 +C2a2 + · · ·+Cpap = pC, (2.11)

where C = (γn−m−γn−m−1+ · · ·−γp+2+γp+1) and Ci =C+(−1)p−iγi for i = 1, · · · , p.
Note that Ci <Cp for all i < p. And notice we have ∑

p
i=1 ai < p.

Suppose l < p−1. We could increase al+1 by εl+1 and decrease ap by εp (since ap > 0)
such that εp =

Cl+1
Cp

< εl+1 and ∑
p
i=1 ai < p still holds. Now all the constraints still hold and

the objective function increases. Hence we must have a1 = · · · = ap−1 = 1 in any optimal
solution.

Case 2: p > k.
Step 1: We show that ∑

n
i=1 ai = p

If l < k− 1, the same argument in Step 1 of Case 1 applies. We get ∑
n
i=1 ai = p. Now

we assume l ≥ k−1.
1a) We first show that ap+2 = · · ·= an = 0; and p+1− l is even.
Suppose ap+2 > 0. If n−m− l is even, then we decrease both an−m and an−m−1 (note that

l +1 ≤ p) by εn−m, and increase al+1 by γn−m−1−γn−m
γl+1

· εn−m < εn−m (since γl+1 ≥ γn−m−1 >

γn−m) ; if n−m− l is odd, then we decrease an−m by εn−m, and increase al+1 by γn−m
γl+1

·εn−m <

εn−m (since γl+1 > γn−m). All the constraints still hold but the objective function increases.
So we must have ap+2 = · · ·= an = 0; and if p+1− l is odd, we must also have ap+1 = 0.

1b) We then show that p+1− l is even.
If for the sake of contradiction p+ 1− l is odd, since ap+1 = ap+2 = · · · = an = 0, we

have ∑
n
i=1 ap = ∑

p
i=1 < p. We first show that ap−1 = ap, ap−3 = ap−2, · · · , al+1 = al+2.

Suppose al−1+2s > al+2s for some 1 ≤ s ≤ (p− l)/2, then we can increase al+1, al+2,· · · ,
al−1+2s by ε , and increase al+2s by ε ′ = (γl+1− γl+2+ · · ·+ γl−1+2s)(2s−1)ε/γl+2s, where
ε is small enough such all the constraints still hold. However the value of the objective
function increases. Contradiction!

Now the budget balanced constraint becomes (γl+1 − γl+2)al+1 + (γl+3 − γl+4)al+3 +

· · ·+(γp−1 − γp)ap−1 = γl − γl−1 + γl−2 − γl−3 + · · ·+(−1)l−1γ1. The left side is less than
C n−2

l −C n−2
p−2 (take al+1 = al+3 = · · · = ap−1 = 1), and less than the right side, which is

C n−2
l−1 . Contradiction! Therefore p+1− l is even.

1c) We now show that ∑
n
i=1 ai = p. First note that in any optimal solution we have

ap > ap+1, which can be proved using the same argument in Step 5 of Case 1. Suppose

∑
p
i=1 ai < p, we can increase al+1, · · · ,ap each by ε and increase ap+1 by γl+1−γl+2+···−γp

γp+1
·ε >

ε , where ε is small enough such that all constraints still hold. But the value of the objective
function increases. Contradiction!
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Step 2: We finish the proof for case 2 by showing that solving for some p > k is essen-
tially the same as solving for n− p.

Let bi = 1−an+1−i, our problem can be written as

max{b1,b2,··· ,bn}(b1 +b2 + · · ·+bn−p) (2.12)

s.t.

0 ≤ bn ≤ bn−1 ≤ ·· · ≤ b1 ≤ 1

n

∑
i=1

bi = n− p

γ1bn − γ2bn−1 + · · ·+(−1)n−1
γnb1 = 0

Note that γn = γ1, γn−1 = γ2, · · · ; the budget constraint can be written as

γ1b1 − γ2b2 + · · ·+(−1)n−1
γnbn = 0

Now we have the same problem as in Case 1 since n− p < k. This symmetry comes
from the fact that if we are going to allocate p objects as efficient as possible, it is the
same as allocating n− p “non-objects” as efficient as possible. And notice we must show

∑
n
i=1 ai = p in both cases to conclude that the two cases are essentially the same. Suppose

(b1,b2, · · · ,bn) is an optimal solution as described in Case 1 for the problem (2.12), then
(1−bn,1−bn−1, · · · ,1−b1) is an optimal solution of the original problem (2.10).

2.5.4.3 When voluntary participation holds

Now we look at the problem with voluntary participation:

max
({al};{δk})

p

∑
l=1

al (2.13)

such that

∑
n
l=1 al ≤ p, 0 ≤ an ≤ ·· · ≤ a2 ≤ a1 ≤ 1 ;

and (2.1), (2.7).
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Proposition 2.4. OB solution is part of a feasible solution to the problem (2.13) if and only
if p < n− p̄(n).

Proof. Let {δk} be the solution of (2.1) for {al}= {aφ

l }. We only need to show that ∑
k
l δl ≥

0 for all k = 1,2, · · · ,n−1 does not hold if p ≥ n− p̄(n).
According to (2.1), we have δ1 = · · ·= δp−1−2t⋆(p)= 0,δp+2 = · · ·= δn = 0; and (δp−2t⋆(p), · · · ,δp,δp+1)

are of the signs (+,−,+,−, · · · ,+,−,+,+). And

|δp−2t⋆(p)|< |δp+1−2t⋆(p)|< |δp+2−2t⋆(p)|< · · ·< |δp|< |δp+1|.

Since |δp−2t⋆(p)|< |δp+1−2t⋆(p)|, we know that ∑
k
l δl ≥ 0 for all k = 1,2, · · · ,n−1 does

not hold.

2.5.4.4 Optimal voluntary mechanism for p ≥ n− p̄(n).

We show that for p ≥ p̄(n), the OV mechanism (solution) is an optimal solution for the
problem (2.13).

We first prove the following lemma.

Lemma 2.9. For p > p̄(n), there exists an optimal solution {a1, · · · ,an;δ1, · · · ,δn−1} of
problem (2.13) such that ap+2 = ap+3 = · · ·= an = 0, and δp+2 = δp+3 = · · ·= δn−1 = 0.

Proof. If p = n− 1, then the statement holds obviously. Now assume p < n− 1. Suppose
we have an optimal solution {ai}, where j = max{i : ai > 0} ≥ p+2. Then we reduce both
a j−1 and a j by ε j−1 and ε j respectively, with ε j = a j and ε j−1 =

γ j
γ j−1

ε j < ε j. Then all the
constraints of problem (2.10) still hold and the value of objective function remains the same.
We check that VP constraint (2.7) still holds. Since a1, · · · ,a j−2 remain the same, so does
δ2, · · · ,δ j−2. And δ j+1, · · · ,δn−1 also remain to be 0. We only need to pay attention to the
changes of δ j−1 and δ j . Since

( j−2)δ j−2 +(n− j+1)δ j−1 = ( j−2)(a j−2 −a j−1)

( j−1)δ j−1 +(n− j)δ j = ( j−1)(a j−1 −a j)

jδ j = ja j

,

it is easy to see that 1) δ j decreases by ε j = a j and becomes zero; 2) δ j−1 increases.
Since VP constraint (2.7) holds originally, it still holds under such changes of δ j and δ j−1.
Hence we get another optimal solution in which a j = 0. We can use the same trick to reduce
all ap+2, ap+3, · · · , a j−1 to zero and get an optimal solution as required.
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By the above Lemma, it is enough to show that the truncated OV solution, which is
({ao

l }
p+1
l=1 ,{δ o

k }
p+1
k=1 ), is an optimal solution for the following truncated problem:

max
(a1,a2,··· ,ap+1;δ1,δ2,··· ,δp,δp+1)

(a1 +a2 + · · ·+ap) (2.14)

s.t.

0 ≤ ap+1 ≤ ·· · ≤ a2 ≤ a1 ≤ 1

p+1

∑
i=1

ai ≤ p

(n−1) ·δ1 = 0

δ1 +(n−2) ·δ2 = (a1 −a2)

2δ2 +(n−3) ·δ3 = 2(a2 −a3)

...
...

p ·δp +(n− p−1) ·δp+1 = p · (ap −ap−1)

(p+1) ·δp+1 = (p+1) ·ap+1

δ1 ≥ 0

δ1 +δ2 ≥ 0

δ1 +δ2 +δ3 ≥ 0
...

δ1 +δ2 + · · ·+δp+1 ≥ 0

We rewrite the problem:
Let
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

t1
t2
t3
...

tp−1

tp


=



δ2

δ2 +δ3

δ2 +δ3 +δ4
...

δ2 +δ3 + · · ·+δp

δ2 +δ3 + · · ·+δp +δp+1


=



1 0 0 · · · 0 0
1 1 0 · · · 0 0
1 1 1 · · · 0 0
...

...
...

...
...

1 1 1 · · · 1 0
1 1 1 · · · 1 1


·



δ2

δ3

δ4
...

δp

δp+1


and 

x1
x2
2
x3
3
...

xp
p

xp+1
p+1


=



a1 −a2

a2 −a3

a3 −a4
...

ap −ap+1

ap+1


=



1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 −1
0 0 0 · · · 0 1


·



a1

a2

a3
...

ap

ap+1


Hence

a1 +a2 + · · ·+ap = x1 + x2 + · · ·+ xp +
p

p+1
xp+1

and

a1 +a2 + · · ·+ap +ap+1 = x1 + x2 + · · ·+ xp + xp+1.

First we take care of the constraint 0 ≤ ap+1 ≤ ap ≤ ·· · ≤ a1 ≤ 1, which can be written
as the following: 

1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
... 0 0

0 0 0 · · · −1 1
0 0 0 · · · 0 −1


·



a1

a2

a3
...

ap

ap+1


≤



1
0
0
...
0
0


.

This is equivalent to
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

1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
... 0 0

0 0 0 · · · −1 1
0 0 0 · · · 0 −1


·



1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 −1
0 0 0 · · · 0 1



−1

·



x1
x2
2
x3
3
...

xp
p

xp+1
p+1


≤



1
0
0
...
0
0


.

That is 

1 1 1 · · · 1 1
−1 0 0 · · · 0 0
0 −1 0 · · · 0 0
...

...
...

...
...

0 0 0 0 −1 0
0 0 0 0 0 −1


·



x1
x2
2
x3
3
...

xp
p

xp+1
p+1


≤



1
0
0
...
0
0


.

Next we take care of the BB constraint:
Since 

n−2 0 0 · · · 0 0
2 n−3 0 · · · 0 0
0 3 n−4 · · · 0 0
...

...
...

...
...

0 0 0 · · · p n− p−1
0 0 0 · · · 0 p+1


·



δ2

δ3

δ4
...

δp

δp+1


=



x1

x2

x3
...

xp

xp+1


,

we have



n−2 0 0 · · · 0 0
2 n−3 0 · · · 0 0
0 3 n−4 · · · 0 0
...

...
...

...
...

0 0 0 · · · p n− p−1
0 0 0 · · · 0 p+1


·



1 0 0 · · · 0 0
1 1 0 · · · 0 0
1 1 1 · · · 0 0
...

...
...

...
...

1 1 1 · · · 1 0
1 1 1 · · · 1 1



−1

·



t1
t2
t3
...

tp−1

tp


=



x1

x2

x3
...

xp

xp+1


.
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That is



n−2 0 0 0 · · · 0 0 0
5−n n−3 0 0 · · · 0 0 0
−3 7−n n−4 0 · · · 0 0 0
0 −4 9−n n−5 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · −p 2p+1−n n− p−1
0 0 0 0 · · · 0 −(p+1) p+1


·



t1
t2
t3
...

tp−1

tp


=



x1

x2

x3
...

xp

xp+1


.

(2.15)
Therefore, our problem (2.14) can be written as the following:

max
(t1,t2,··· ,tp;x1,x2,··· ,xp+1)

(x1 + x2 + · · ·+ xp +
p

p+1
xp+1) (2.16)

s.t.

t j ≥ 0, ∀ j = 1, · · · , p
xi ≥ 0, ∀i = 1, · · · , p+1

x1 + x2 + · · ·+ xp + xp+1 ≤ p
x1 +

x2
2 + · · ·+ xp

p +
xp+1
p+1 ≤ 1

and (2.15).
Note that the feasible solution of this problem which corresponds to the OV solution of

the problem (2.13) is the following:

x0
1 = · · ·= x0

p−2 = 0

x0
p−1 =

p(p−1)(n− p)
n(n−1)

,x0
p = p[1− 2p(n− p)

n(n−1)
],x0

p+1 =
p(p+1)(n− p)

n(n−1)

t0
1 = · · ·= t0

p−2 = 0, t0
p−1 =

p(p−1)
n(n−1)

, t0
p =

p(n−1)
n(n−1)

. (2.17)

Let A =
[
A1, A2

]
, where



2.5 Appendix 37

A1 =



0 0 0 0 · · · 0 | 0 0
0 0 0 0 · · · 0 | 0 0

n−2 0 0 0 · · · 0 | 0 0
5−n n−3 0 0 · · · 0 | 0 0
−3 7−n n−4 0 · · · 0 | 0 0
0 −4 9−n n−5 · · · 0 | 0 0
...

...
...

...
... | ...

...
0 0 0 0 · · · 2p−1−n | n− p 0
0 0 0 0 · · · −p | 2p+1−n n− p−1
0 0 0 0 · · · 0 | −(p+1) p+1



A2 =



1 1 1 · · · | 1 1 1
1 1

2
1
3 · · · | 1

p−1
1
p

1
p+1

−1 0 0 · · · | 0 0 0
0 −1 0 · · · | 0 0 0
0 0 −1 · · · | 0 0 0
...

...
... | ...

...
...

0 0 0 · · · | −1 0 0
0 0 0 · · · | 0 −1 0
0 0 0 · · · | 0 0 −1


b =

[
p 1 0 0 · · · 0 0

]T

c =
[
0 0 · · · 0 0 1 1 · · · 1 1 p

p+1

]T
.

We can write the dual problem as

min
y=(y1,y2,··· ,yp+3)

bT ·y (2.18)

s.t.

yT ·A ≥ cT

y1 ≥ 0,y2 ≥ 0
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Now we show that (2.17) is an optimal solution of the original problem (2.16) by duality
theorem. That is, we will find a feasible vector y of the dual problem (2.18) such that
bT ·y = x0

1 + x0
2 · · ·+ x0

p +
p

p+1x0
p+1.

Since t0
p−1, t

0
p,x

0
p−1,x

0
p,x

0
p+1 > 0, by the Complementary Slackness Theorem, if such a y

exists, we must have

yT · (A1
(p−1),A1

p,A2
(p−1),A2

p,A2
p+1) = (cT

(p−1),c
T
p ,c

T
(2p−1),c

T
2p,c

T
2p+1,),

where Mk is the kth column of the matrix M, for M = A1,A2,cT .
That is 

0 0 n− p 2p+1−n −(p+1)
0 0 0 n− p−1 p+1
1 1

p−1 −1 0 0

1 1
p 0 −1 0

1 1
p+1 0 0 −1

 ·


y1

y2

yp+1

yp+2

yp+3

=


0
0
1
1
p

p+1

 .

Solving it we get 
y1

y2

yp+1

yp+2

yp+3

=



n−p
n

p(p−1)
n−1

p
n(n−1)

− n−p
n(n−1)

(n−p−1)(n−p)
(p+1)n(n−1)


.

Now we check that bT ·y = x0
1 + x0

2 · · ·+ x0
p +

p
p+1x0

p+1. That is,

py1 + y2 = x0
1 + · · ·+ x0

p +
p

p+1
x0

p+1 =
p(n− p)

n
+

p(p−1)
n−1

.

The remaining work is to show that the above (y1,y2,yp+1,yp+2,yp+3) is part of a feasible
solution of the problem (2.18). Since y1,y2 ≥ 0, we only need to show that given the value
of y1,y2,yp+1,yp+2,yp+3, yTA ≥ cT has a feasible solution. That is
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

y3

y4

y5

· · ·
yp−2

yp−1

yp


≤



y1 + y2 −1
y1 +

y2
2 −1
...

y1 +
y2

p−5 −1

y1 +
y2

p−4 −1

y1 +
y2

p−3 −1

y1 +
y2

p−2 −
p

p+1


,

and



y3

y4

y5

· · ·
yp−2

yp−1

yp



T

·



n−2 0 0 0 · · · 0 0 0
5−n n−3 0 0 · · · 0 0 0
−3 7−n n−4 0 · · · 0 0 0
0 −4 9−n n−5 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 2p−5−n n− p+2 0
0 0 0 0 · · · −(p−2) 2p−3−n n− p+1
0 0 0 0 · · · 0 −(p−1) 2p−1−n
0 0 0 0 · · · 0 0 −p
0 0 0 0 · · · 0 0 0



≥



0
0
...
0
0

(p−1)yp+1

pyp+2 − (2p−1−n)yp+1



T

.

Let y3 = y4 = · · ·= yp−3 = y1 +
y2

p−5 −1. Note that since y1 +
y2
p = 1 and y1,y2 > 0, we

have y1+y2−1 > y1+
y1
2 −1 > · · ·> y1+

y2
p−5 −1 > 0. We only need to find yp−2,yp−1,yp

such that yp−2

yp−1

yp

≤

 y1 +
y2

p−4 −1

y1 +
y2

p−3 −1

y1 +
y2

p−2 −
p

p+1


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and

(n− p+2)yp−4 +(2p−3−n)yp−3 +(−p+1)yp−2 ≥ (p−1)yp+1

(n− p+1)yp−3 +(2p−1−n)yp−2 +(−p)yp−1 ≥ pyp+2 − (2p−1−n)yp+1

Taking yp << yp−1 << yp−2 << 0, the above inequality system is satisfied.
Hence (y1,y2,yp+1,yp+2,yp+3) is part of a feasible solution. The proof is completed.



Chapter 3

Group selection under single-peaked
preference: a mechanism design
approach

3.1 Introduction

Human beings are social animals, yet to varying degrees: some more gregarious, some more
solitary. It is therefore no surprise that they have different ideas about the optimal group size
when sharing a facility or taking a common task. Our paper is about how to select the group
among people with different preferences over group size.

This issue of selecting a group is barely new in real life; however, the current literature
on group formation focus mainly on the strategic interactions among agents and the decen-
tralized formation of coalitions.1 Our paper takes a mechanism design approach, which has
been successfully adopted in matching and school choice, and works in a novel setting that
is becoming increasingly relevant with the rise of the “open source project”2, in which a set
of volunteers are attracted to contribute. One remarkable example is the “Wikiproject”3 of
Wikipedia, that is, a group of contributors who work together as a team to assess articles’
importance and quality in a specific topic area. Having a group assembling mechanism that
takes the size preference seriously is of special importance.

In general, when people share a facility, such as students sharing a study room, guests

1See [11] for a recent survey, see [22] for more exhaustive surveys and see [60] for a recent monograph on
coalition formation.

2See https://en.wikipedia.org/wiki/Open-source_movement for more information. Prime examples of
open-source products include Mozilla Firefox, Google Chromium, Android.

3See https://en.wikipedia.org/wiki/WikiProject for more information.

https://en.wikipedia.org/wiki/Open-source_movement
https://en.wikipedia.org/wiki/WikiProject
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sharing a swimming pool, size effect mainly comes from two sources: comradeship effect
on the positive side, congestion effect on the negative side. The trade-off is the same for
everyone; the optimum differs. When people take a shared task, such as volunteers devel-
oping a software, coauthors working on a joint paper, an additional source of size effect
appears: individual contribution and individual cost. Both decrease as the group grows and
again the balance differs. Though identities of companions often matter, size effect may
dominate in situations when agents in the group do not interact with others much, or when
cooperation and interaction happen among strangers, which becomes common in societies
more and more connected by smart-phones.

The above situations share the following formal structure: a group is to be selected
among a set N of agents; each agent i ∈ N has strict preference Ri over the size of the group
if i is a member of the group, and over the “stand-outside” option. We say that i is in a group
of size zero in the latter case. Furthermore preferences are assumed to be single-peaked over
the set S = {0,1, · · · ,n} of sizes.4

We impose three standard designing constraints on group selection mechanisms. First,
efficiency, i.e., the allocation can not be Pareto improved for each preference profile. Sec-
ond, individual rationality, also known as voluntary participation, acknowledging the fact
that agents cannot be forced to stay in the group. Third, the mechanisms must be robust to
manipulations: we require strategy-proof mechanisms.5

In our model, these three criteria are compatible: two classes of desirable (direct) mech-
anisms are proposed, each with additional nice properties.

In the “Proposing in turn” mechanism, agents are ordered in a queue to make choices
one by one. Observing the current group size, which is determined by the agents before
her, an agent either walks away or joins the group; if she joins the group, she either ends
the process (hence excluding all agents behind her), or continues and waits for new agents
to join. The mechanism makes sure that the final group size does not exceed her peak. For
instance, the first agent joins the group with peak 4, the second agent joins the group with
peak 3, the third agent walks away, and the fourth agent joins with a peak larger than 3 (the
specific number is irrelevant), then the process ends.

Our first result reads as follows: the “proposing in turn” mechanism is efficient, individ-
ually rational and group-strategyproof; conversely, if we generalize the mechanism slightly
by allowing for more complicated priority, in which agents could have different successors
depending on whether or not she joins the group, then the generalized class is characterized

4See [4, 12, 45] for single-peaked preferences over the group size. However, size 0, which did not appear
in their papers, plays an important role in ours. See appendix for more discussions.

5See [48] and [5] for general introductions to the axioms. For applications on specific settings, see [1],
[61], [3], [44], [39], [43], [52] etc.
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by efficiency, individual rationality and group strategy-proofness.
The mechanism can also be interpreted as follows: starting with the grand coalition and

following the priority, each agent has the power to either maintain or shrink the current group
size. Therefore the resulting group size may be much smaller than the maximum group size
compatible with individual rationality, which is a legitimate concern in many situations. Our
second mechanism, though more complicated, brings us closer to the maximum group size.

To describe this “Voting on ascending-size” mechanism, we start with an intuitive yet
flawed procedure, and revise it only later. The intuitive procedure mimics the usual ascend-
ing auction, in which agents “bid” on group size. In each round k (k ≥ 1), agents are asked
to vote on group size k and only agents who say “yes” continue to vote in any future rounds.
If the number qk of agents who vote “yes” is strictly larger than k, round k+1 begins; oth-
erwise the procedure stops and the final outcome is the following: if qk = k, then a group
with size k forms, containing all the qk agents who vote “yes” to size k; if qk < k, then a
group with size k− 1 forms, selecting among the qk−1(note that qk−1 > k− 1) agents who
vote “yes” to size k−1 by a fixed ordering σ of agents.

If agents say “yes” to size k when size k is preferred to size 0, the above procedure will
lead to a group with the maximum group size. The problem is that agents have incentive to
misreport, which can be easily illustrated by an example with two agents. Suppose there are
two agents {a,b} and σ = (a,b). Suppose both agents vote “yes” in round 1. In round 2,
if both vote “yes” for group size 2, then {a,b} is the final group; otherwise {a} is the final
group. When size 1 is better than size 2, agent a will vote “no” for size 2 even if she prefers
size 2 to size 0.

Our “voting on ascending-size” mechanism offers the right incentive by ending the “auc-
tion” earlier in certain situations. In each round k, agents are asked to vote for size k, and
then to compare size k− 1 to size k. Eve if qk ≥ k, a group of size k− 1 will form when a
coalition of agents preferring size k−1 to size k can collectively misreport at round k (vote
“no” to size k instead of the true answer “yes”) and join a size k − 1 group; otherwise a
group of size k will form if qk = k, and round k+1 will start if qk > k.

In the above two agents example, whenever a can benefit by voting “no” to size 2 instead
of her honest answer “yes”, she can get the same benefit by truthfully answering the two
questions (vote “yes” for size 2 and then say size 1 is preferred to size 2); thus the incentive
problem in the original procedure is removed. This is not an accident, but a key feature
of the mechanism that provides agents with the right incentive. The reader will find in
the paper a more detailed description of the incentive problem, which becomes thornier
as the number of agents increases, and will have a better understanding of this particular
design (say, why consider a coalition?), whose validity relies crucially on the single-peaked
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preference assumption. The mechanism is efficient, individually rational, and weakly group
strategy-proof; it enlarges the group size in each round and guarantees at least one-half of
the maximum group size.

The remaining paper is organized as follows. We end the introduction by a literature
review. In section 3.2 we introduce the setting and the main criteria for group selection
mechanisms. In section 3.3 we first describe the “proposing in turn” mechanism and show
that it is efficient, strategy-proof and individually rational; then we generalize the priority,
define the proposing mechanism associated with a priority tree, and characterize the mech-
anism by group strategy-proofness. Section 3.4 focuses on the “voting on ascending-size”
mechanism: we first show that it is efficient, strategy-proof and individually rational, and
then discuss its properties on group size. Section 3.5 concludes. The appendix contains a
discussion on extensions of preference domain and all omitted proofs.

3.1.1 Relation to the literature

Our paper is related to [35] and [45]. In all three paper, a club (group) is to be formed
among a set of agents, and agents care about the club size. The difference is, in their
paper an alternative consumed collectively by the club has to be decided along with the
membership, while in our paper we assume hedonic club6 and focus solely on the effect of
club size. In [35], agents have single-peaked preference over the alternatives (position on
an interval); the size effect is assumed to be either pure “cost-sharing" (larger size is always
preferred to smaller size), or pure congestion (smaller size is always preferred to larger
size), or that there exists common optimal size among agents. A fundamental result is that
in all three cases efficient and strategy-proof mechanisms must fix the club size and not
allow it to vary with agents’ preferences; and if there is heterogeneity in agents’ preference
over the optimal size, then only dictatorial mechanisms satisfy strategy-proofness, Pareto
efficiency and outsider independence (a partial non-bossiness condition). In [45], agents
have arbitrary preference over the alternatives, and for each alternative, they always prefer
the set of users becomes larger. They show that no efficient and stable (no agents can be
forced to be a user and no agent who wants to be a user can be excluded) mechanisms
can be Nash-implemented, and propose instead a two-stage sequential mechanism whose
unique sub-game perfect equilibrium outcome is efficient and stable. Our paper, on the
contrary, yields positive results by looking solely at the effect of group size and assuming

6We borrow the term “hedonic” from the literature on “hedonic games”, see [12] for the definition. Just as
hedonic game is a hedonic reduction of more general cooperative games, in which an alternative is consumed
by each coalition, our setting is a hedonic reduction of the more general one-club formation problem discussed
in these two paper.
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single-peaked preferences over sizes.
Our paper is also related to [20], in which they propose an ascending auction-like mech-

anism for selecting the club and sharing among the club members the cost of the club good.
If we fix the cost sharing mechanism to be the average cost sharing mechanism and do not
allow money transfer among agents, then the preferences of agents can be described as over
group sizes, and their mechanism reduces to a group selection mechanism (see appendix for
more discussions). Though largely complicated by the potential manipulations induced by
tie-breaking, our “voting on ascending size” mechanism is partly inspired by their auction-
like mechanism and still bears similar spirit.

It is interesting to note that although single-peaked preference is essential for our positive
results, the way it works is quite novel. As a result, our mechanisms are very different
from the well known mechanisms associated with single-peaked preferences. That is, the
generalized median voting mechanism and its variations in the public choice setting (see
[47], [6], [7], etc.) and the uniform mechanism in the private goods division setting (see
[62], [18], [39]). A recent paper by [52] treated a general collective decision problem where
preferences are single-peaked over one-dimensional allocation space, including the above
two settings as two special cases. The mechanism proposed there equalizes in the leximin
sense individual gains from an arbitrary benchmark allocation. Again our mechanisms work
differently. Since our setting is neither purely public nor purely private, our results further
confirm the salience of single-peaked preferences in strategy-proof mechanism design.7

3.2 Setting

Given a set of agents N, with |N|= n≥ 2, a subset G of N will be selected. If agent i belongs
to G, i is in a group of size |G|. If agent i does not belong to G, for convenience we say that
i is in a group of size zero. Each agent only cares about the size of the group she belongs
to and the preference over sizes is strict. That is, the preference Ri of agent i is a reflexive,
transitive, complete and anti-symmetric binary relation8 over the set S = {0,1, · · · ,n}. The
associated strict relation is denoted by Pi; we write kPil if kRil and k ̸= l. Let R = {Ri}i∈N

be a preference profile; R−i be a preference profile of all the agents except for i; and for any
M ⊆ N, let RM be a preference profile of all agents in M, and R−M be a preference profile
for all the agents in N\M. let U be the set of all preference profiles.

For each Ri, denote by T (Ri) the upper contour set of size zero, i.e., T (Ri) = {k ∈ S :

7For the salience of single-peaked preferences in public choice setting, see [16], [17].
8Reflexive: for all k ∈ S, kRik; transitive: for all k, l,h ∈ S, kRil and lRih imply kRih; complete: for all

k, l ∈ S, kRil or lRik; and anti-symmetric: for all k, l ∈ S, kRil and lRik imply k = l.



3.2 Setting 46

kRi0}; denote by t(Ri) the largest element in T (Ri), i.e. the largest size that is not worse
than size zero; denote by p(Ri) the most preferred group size. A preference Ri is single
peaked if for any k, l ∈ S, k < l < p(Ri) implies lPik, and k > l > p(Ri) implies lPik. Note
that for any single-peaked preference Ri, T (Ri) is a integer interval, i.e, T (Ri) = {0, · · · ,k}
for some k = t(Ri) ≥ 0. Let P be the set of all preference profiles {Ri}i∈N such that Ri is
single-peaked for each i.

A group selection (direct) mechanism f is a set-valued functional f : R → 2N , where
R ⊆ U is the set of all admissible preference profiles. Note that f (R) = { /0} is allowed.9

We write fi(R) = 0 if i /∈ f (R), and fi(R) = | f (R)| if i ∈ f (R). Unless stated otherwise, we
take R = P .

Definition 3.1. (Efficiency)
A group selection mechanism f is efficient (Eff) if for any R, there dose not exist G ⊂ N

such that G as a chosen group Pareto dominates f (R), i.e., for all i ∈ G, |G|Ri fi(R), for all
i /∈ G, 0Ri fi(R), and for some j ∈ G, |G|Pj f j(R) or for some j /∈ G, 0Pj f j(R).

Definition 3.2. (Individual rationality)
A group selection mechanism f is individually rational (IR) if for all R, i ∈ N, fi(R)Ri0.

Definition 3.3. (Strategy-proofness)
A group selection mechanism f is strategy-proof (SP) if for all R, i∈N, and R′

i, fi(R)Ri fi(R′
i,R−i).

We present below two simple priority mechanisms; each fails a criterion.
Let Σ(N) be the set of permutations of N, and σ = (σ1, · · · ,σn)∈ Σ(N) be a permutation

(ordering) of agents, in which σi is the ith ranked agent.

Example 3.1. (A priority mechanism)
Fix an ordering σ of agents. For each R, if 0Ri1 for all i, then f (R) = { /0}; otherwise

f (R) = σk, where σk is the first agent preferring size 1 to size 0 in the ordering σ .

This mechanism is SP, IR, but not Eff, since it ignores any benefit agents may get from
accompanying each other.

Example 3.2. (Another priority mechanism)
Fix an ordering σ of agents. For each R, if 0Ri1 for all i, then f (R) = { /0}; otherwise

let σk be the first agent preferring size 1 to size 0 in the ordering σ . let p⋆ = p(Rσk). If
p⋆ ≥ n−k+1, then f (R) = {σs}s≥k. If p⋆ < n−k+1, select the first p⋆ agents who prefer

9 f (R) = { /0} iff T (Ri) = {0} for each i. If a task has to been done, i.e., f (R) cannot be { /0}, and agents are
symmetric in the sense that the set of admissible preference is the same for each agent, then we can model the
situation simply by getting rid of all preference profiles in which T (Ri) = {0} for some i.
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size p⋆ to size 0 by the priority σ ; if there are less than p⋆ agents who prefer size p⋆ to size 0,
select the remaining agents to be forced into the group by the priority (σn,σn−1, · · · ,σ1).10

This mechanism is the usual serial dictatorship, in which agents, one by one in the
priority list, are guaranteed their most preferred outcome that is still available. It is Eff, SP,
but not IR.

From now on we only consider group selection mechanisms that are individually ratio-
nal. Hence it is enough for us to focus on T (Ri) (the upper contour set of size zero) and
single-peaked preferences over T (Ri). We use an ordered list of sizes in T (Ri), such as
(3,2,0), to indicate a preferences from better to worse; in particular, (0) represents a (class
of) preference Ri such that T (Ri) = {0}.

3.3 “Proposing in turn”

We start with the two agents case and check the restrictions Eff, SP and IR impose on group
selection mechanisms.

Example 3.3. (Eff, SP and IR mechanisms for n = 2)
Let N = {a,b}; let f be an Eff, SP and IR mechanism. We first figure out how f behaves

in the following preference profiles.
(1) Ra = (1,0), Rb = (1,0)
(2) Ra = (1,0), Rb = (1,2,0)
(3) Ra = (1,2,0), Rb = (1,2,0)
(4) Ra = (1,2,0), Rb = (2,1,0)
(5) Ra = (2,1,0), Rb = (1,2,0)
We use R(k) to represent the preference profile (k). First by Eff and IR, f (R(1)) = {a} or

f (R(1)) = {b}. Assume f (R(1)) = {a}. Then by SP, f (R(2)) ̸= {b}; by IR, f (R(2)) ̸= {a,b};
and by Eff, f (R(2)) ̸= { /0}. Hence f (R(2)) = {a}. Then by SP, f (R(3)) = {a}. Again by SP,
f (R(4)) ̸= {b} and f (R(4)) ̸= {a,b}; and by Eff f (R(4)) ̸= { /0}. Hence f (R(4)) = {a}. Then
by SP, f (R(5)) ̸= {b}. By Eff, f (R(5)) ̸= {a} and f (R(5)) ̸= { /0}. Hence f (R(5)) = {a,b}.

10To be precise, for each l > k, σl ∈ f (R) iff (1) p⋆Rσl 0 and |{s ∈ {k, · · · , l} : p⋆Rσs 0}| ≤ p⋆, or (2) 0Rσl p⋆

and p⋆−|{s ∈ {k, · · · , l} : p⋆Rσs 0}| ≥ n− l +1.
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It is easy now to describe f fully:

f (R) =


{a} (i) p(Ra) = 1or(ii) p(Ra) = 2&0Rb2;

{a,b} p(Ra) = 2&2Rb0;

{b} Ra = (0)&1Rb0;

{ /0} Ra = Rb = (0).

Note first that f does not satisfy “free entry”.11 In fact, for each R, any group with a size
less than m⋆(R) := max{m ∈ S : |{i ∈ N : mRi0}| ≥ m} does not satisfy free entry. On the
other hand, any group with a size larger than m⋆(R) must violate IR; therefore we call m⋆

the maximum group size compatible with individual rationality.
Note also that agent a has all the privilege restricted only by the individual rationality of

agent b. If we change the role of agents a and b, that is, assume f (R1) = {b} in the above
example, we get another mechanism in which agent b has all the privilege. These are all the
direct mechanisms that are Eff, SP and IR for n = 2. For arbitrary n, we propose below a
class of mechanisms that satisfies Eff, SP, and IR, and is very easy to understand.

3.3.1 “Proposing in turn”

Definition 3.4. (“proposing in turn” mechanism)
Fix an ordering σ of agent. For any announced preference profile R, we find the group

as follows:
In each step 1 ≤ k ≤ n, if the algorithm has not yet ended, according to the announced

Ri, agent i = σk joins the group (J) if the size of the current group after her join is preferred
to size zero, or walks away (W) otherwise; if she joins, then she ends the process (E) if the
size of the current group after her join is no less than her peak, or continues the process (C)
otherwise. The algorithm ends when one of the following cases happens:

Case (i): an agent chooses “J and E”;
Case (ii): the number of the agents choosing “J and C” equals the minimum of the the

peaks of all the agents choosing J ;
Case (iii): all agents have made their choices.

Proposition 3.1. For any ordering σ , the “proposing in turn” mechanism ψσ is Pareto
efficiency, individually rational, and strategy proof.

11Free entry means that agents can join the group freely. Hence a group selection mechanism satisfying free
entry has the property that agents outside the final group always like to stay outside than to join the group. The
stability concept in [45] is equivalent to individual rationality plus free entry. Hence the n = 2 case shows that
in our setting stability is incompatible with efficiency and strategy-proofness.
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Proof. Individual rationality is easy to see since (1) an agent walks away if the size of the
current group after her join is worse than size zero and (2) the final size of the group will
not exceed her peak if she joins the group.

Now we show Pareto efficiency. Suppose an agent is selected into the original group,
then any other outcome in which she is not selected is worse for her. Hence we only need to
consider outcomes that contain the original selected group. Suppose the process ends under
either Case (i) or Case (ii), then enlarging the group is either impossible or will hurt someone
originally selected; suppose the process ends under case (iii), then enlarging the group is
either impossible, or will hurt someone that is added to the original group. Therefore no
Pareto improvement is possible.

Now we show strategy-proof. Suppose for the sake of contradiction there exists Ri, R′
i

and R−i such that ψσ
i (R

′
i,R−i)Piψ

σ
i (Ri,R−i). Since ψσ

i (R
′
i,R−i)Piψ

σ
i (Ri,R−i), we have that

ψσ
i (R

′
i,R−i) = |ψσ (R′

i,R−i)|> 0. Consider the following cases:
Case (1). Suppose |φ σ (R′

i,R−i)|< p(R′
i).

If p(Ri) > |φ σ (R′
i,R−i)|, then ψσ

i (R
′
i,R−i) = ψσ

i (Ri,R−i); if p(Ri) < |φ σ (R′
i,R−i)| <

p(R′
i), then ψσ

i (Ri,R−i) = p(Ri).
Case (2). Suppose p(R′)≤ |φ σ (R′

i,R−i)| ≤ t(R′
i).

If p(Ri)≤ |φ σ (R′
i,R−i)| ≤ t(Ri), then ψσ

i (R
′
i,R−i)=ψσ

i (Ri,R−i); if t(Ri)< |φ σ (R′
i,R−i)|,

then ψσ
i (Ri,R−i) = 0; if p(Ri)> |φ σ (R′

i,R−i)|, then ψσ
i (R

′
i,R−i)≤ ψσ

i (Ri,R−i)≤ p(Ri).
There is no case in which ψσ

i (R
′
i,R−i)Piψ

σ
i (Ri,R−i). Contradiction!

Remark 3.1. Note that for any Ri, R′
i such that t(Ri) = t(R′

i) and p(Ri) = p(R′
i), for any

R−i, we have ψσ (Ri,R−i) = ψσ (R′
i,R−i). That is, the information needed to carry out the

mechanism is p(Ri) and t(Ri) for each Ri.

3.3.2 Generalizing the priority

In the “proposing in turn” mechanism the priority of agents is specified by a fixed ordering,
or say, a queue. It is easy to generalize the priority queue into a priority tree, in which
agents may have different successors depending on whether she is in or out of the group,
and run the mechanism based on the priority tree. The structure of a priority tree for n = 4
is illustrated in the following example.

Example 3.4. (a priority tree for N = {a,b,c,d})
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a

b

c

d

in

d

out

in

d

c

in

c

out

out

in

c

d

b

in

b

out

in

b

d

in

d

out

out

out

Each node has two child nodes except the terminal nodes. And each node is labeled by
an agent, which gives messages of who is going to choose at a particular stage. Arcs are
labeled either "in" or "out", which together with the labels of the nodes, give a way to track
the history and decide what the current stage is.

The formal definition provides a precise description of the tree structure illustrated
above.12

Definition 3.5. (Priority tree)
A priority tree Γ = (V,Q;L ,H ) is a rooted tree with labels, where V is the set of

vertices, and Q ⊂ V ×V is the set of arcs: if (vi,v j) ∈ Q for vi,v j ∈ V , then there is an arc
from vi to v j; for each v∈V , L (v) is the label of v, and for each (vi,v j)∈Q, H (vi,v j) is the
label of (vi,v j). A Q-path from vs1 to vsr is a sequence {vs j}r

j=1, where r ≥ 2, such that for
all j = 1, · · · ,r−1, (vs j ,vs j+1) ∈ Q. The length of a Q-path is the number of the connecting
arcs. Since Γ is a rooted tree, Q is acyclic: if there is a Q-path from vi to v j, then (v j,vi) /∈Q,
i.e., there are no cycles. Furthermore, for all vi,v j ∈V , there is at most one Q-path from vi

to v j. Thus, if {vs j}r
j=1 is a Q-path, the distance of vsr from vs1 is unambiguously defined

by the length of the Q-path: d(vs1,vsr) = r−1. Finally Γ has a unique root v1 ∈ V , that is,
v1 is the only vertex such that there is no v ∈V with (v,v1) ∈ Q.

The following properties define the structure and dimensions of the priority tree:
(A.1) maxv∈V d(v1,v) = n−1.
(A.2) The number of arcs starting from v1 is 2.
(A.3) For all v ∈V such that there is a Q-path from v1 to v, with d(v1,v) = r < n−1, the

number of arcs starting from v is 2.
The following properties concern the labeling of vertices:
(B.1) All vertices are labeled by agents: for all v ∈V , L (v) ∈ N.

12The language used in the definition is borrowed from [56], to which we are very grateful. Since our
problem is quite different from the assignment problem studied there, our priority tree differs in many aspect
with the inheritance trees defined there.
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(B.2) Every vertex of a Q-path represents a different agent: for all vi,v j ∈ V such that
there is a Q-path from vi to v j, we have L (vi) ̸= L (v j).

The following properties concerns the labeling of arcs:
(C.1) All arcs are labeled either “in” or “out”: for all (vi,v j) ∈ Q, H (vi,v j) ∈ {in,out}.
(C.2) For any vertex that starts two arcs, one arc is labeled “in”, the other is labeled

“out”: for all vi,v j,vl ∈V such that (vi,v j)∈Q and (vi,vl)∈Q and j ̸= l, we have H (vi,v j)∪
H (vi,vl) = {in,out}

Let T be the set of priority trees. Then for each priority tree Γ, a proposing mechanism
associated with Γ can be thought of as carrying on a “proposing in turn” mechanism along
a particular path of Γ. In the above example, if agent a chooses W , then agent c is the next
to make choice; if agent c chooses “J and C”, then agent d is the next to act, etc.

In general, we say that a group selection mechanism f is a proposing mechanism if there
exists Γ ∈T such that f is the proposing mechanism associated with Γ. In this case we will
also say that Γ is an underlying priority tree for f . The formal definition of the proposing
mechanism is given below.

For any vertex vi that starts two arcs, we use −→vi
in to represent the vertex v j such that

(vi,v j)∈ Q and H (vi,v j) = in, and −→vi
out to represent the vertex vl such that (vi,vl)∈ Q and

H (vi,vl) = out.

Definition 3.6. (proposing mechanism associated with priority tree Γ)
Given a priority tree Γ.
Step 1: denote the peak of agent σ1 = L (v1) by p1. If p1 = 0, let G1 = /0, w1 = v1 and

move to step 2(a); if p1 = 1, the algorithm ends and the final outcome is {σ1}; if p1 > 1, let
G1 = {σ1}, w1 = v1 and move to step 2(b).

· · ·
Step k(a): denote the peak of agent σk = L (−−→wk−1

out) by pk. If pk < |Gk−1|+ 1, then
check whether she prefers |Gk−1|+1 to 0, if yes, the algorithm ends and the final outcome
is Gk−1 ∪{σk}, if no, let Gk = Gk−1, wk =

−−→wk−1
out and move to step (k+1)(a); If min{p j :

j ∈ Gk−1∪{σk}}= |Gk−1|+1, the algorithm ends and the final outcome is Gk−1∪{σk}; If
min{p j : j ∈ Gk−1 ∪{σk}}> |Gk−1|+1, let Gk = Gk−1 ∪{σk}, wk =

−−→wk−1
out and move to

step (k+1)(b).
Step k(b): denote the peak of agent σk = L (−−→wk−1

in) by pk. If pk < |Gk−1|+ 1, then
check whether she prefers |Gk−1|+1 to 0, if yes, the algorithm ends and the final outcome
is Gk−1 ∪{σk}, if no, let Gk = Gk−1, wk =

−−→wk−1
in and move to step (k+1)(a); If min{p j :

j ∈ Gk−1∪{σk}}= |Gk−1|+1, the algorithm ends and the final outcome is Gk−1∪{σk}; If
min{p j : j ∈ Gk−1 ∪{σk}} > |Gk−1|+ 1, let Gk = Gk−1 ∪{σk}, wk =

−−→wk−1
in and move to

step (k+1)(b).
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· · ·
Step n: check whether agent σn = L (−−→wn−1

in) (note that L (−−→wn−1
in) = L (−−→wn−1

out))

prefers |Gn−1|+ 1 to 0, if yes, the algorithm ends and the final outcome is Gn−1 ∪{σn}, if
no, the algorithm ends and the final outcome is Gn−1.

3.3.3 Characterization of the proposing mechanism

In this subsection we present a characterization of the proposing mechanism, in which non-
bossiness plays a key role.

Definition 3.7. (Non-bossiness)
A group selection mechanism f is non-bossy (NB) if for all R, i ∈ N, and R′

i, fi(R) =
fi(R′

i,R−i) implies f (R) = f (R′
i,R−i).

In our setting non-bossiness is nicely related to group strategy-proofness as in several
rather different models13.

Definition 3.8. (Group strategy-proofness)
A group selection mechanism f is group strategy-proof (GSP) if for all R, there does

not exists M ⊂ N and R′
M such that for all i ∈ M, fi(R′

M,R−M)Ri fi(R) and for some j ∈ M,
f j(R′

M,R−M)Pj f j(R).

Lemma 3.1. A group selection mechanism f is group strategy proof if and only if it is
strategy-proof and non-bossy.

Proof. We modify the proof in [56] to accommodate the single-peakedness of the prefer-
ences. See appendix for details.

Theorem 3.1. A proposing mechanism is efficient, group strategy-proof and individually
rational; furthermore, any group selection mechanism that is efficient, group strategy-proof
and individually rational is a proposing mechanism.

Proof. We omit the proof for the first half of the theorem since a large part of it is similar
to the proof of Proposition 3.1 and non-bossiness of the mechanism is easy to see. For the
second half, we show here any Eff, GSP and IR mechanisms are proposing mechanisms
for n = 3; the general arguments are presented in the appendix with the help of heavier
notation. The n = 3 case, though much simpler, does provide us the logic framework that
will be developed further in proving the general case.

13See the appendix of [63] for a list of models in which non-bossiness is (or is not) related to group strategy-
proofness.
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Suppose N = {a,b,c}. Fix any Eff, GSP and IR mechanism f . For simplicity we
write Rk

i = (k,k−1, · · ·1,0), that is, p(Rk
i ) = t(Rk

i ) = k; Rk
S = {Rk

i }i∈S for each S ⊆ N, and
Rk = {Rk

i }i∈N . We will prove the following two statements.
(i) If f (R1) = {a}, then {a} ⊂ f (R2).
(ii) If f (R1) = {a}, then f (R) = {a} for any R such that p(Ra) = 1; furthermore if

f (R2) = {a,b}, then f (R) = {a,b} for any R such that p(Ra)≥ 2, p(Rb)≤ 2, and 2Rb0.
Using the first statement, we can find out a priority tree associated with f as follows:

x = f (R1)

f (R2)\ f (R1)

N\ f (R2)

in out

in

y = f (R0
x ,R

1
−x)

in

N\{x,y}

out

out

The second statement then shows that the outcome of f coincides with “the proposing
in turn” mechanism running on the priority tree.

Now we show (i): First by efficiency we have | f (Rk)| = k for any k ∈ S. Suppose
for the sake of contradiction, f (R2) = {b,c}. Since f (R1

a,R
2
b,R

2
c) ̸= {a} by SP, we have

f (R1
a,R

2
b,R

2
c) = {b,c} by Eff and IR. Since f (R1) = {a}, f (R1

a,R
1
b,R

2
c) ̸= {c} by SP, and

| f (R1
a,R

1
b,R

2
c)| ≠ 2 by IR, we have f (R1

a,R
1
b,R

2
c)= {a} by NB of agent c. Hence f (R1

a,R
1
b, R̃

2
c)=

{a} for R̃2
c = (1,2,0) by similar argument. And by symmetry of agent b and c, we have

f (R1
a, R̃

2
b,R

1
c) = {a} for R̃2

b = (1,2,0). Hence f (R1
a, R̃

2
b, R̃

2
c) ̸= {b} or {c} by SP and NB.

Furthermore, since f (R1
a,R

2
b,R

2
c) = {b,c}, by GSP we have f (R1

a, R̃
2
b, R̃

2
c) = {b,c}.

However using the same argument in the two agent case (example 3.3), we know that
f (R0

a, R̃
2
b, R̃

2
c) ̸= {b,c}. Therefore agent a is bossy. Contradiction!

We show (ii): by the above argument, we know that f (R1
a,R

2
b,R

2
c) ̸= {b,c}. Hence

f (R1
a,R

2
b,R

2
c) = {a}. Hence by SP and NB, we have that f (R1

a,R
′
−a) for any R′

−a. And by
SP, we have f (R) = {a} for any R such that p(Ra) = 1.

Since f (R2)= {a,b}, we have that f (R3
a,R

2
b,R

3
c)= {a,b} by SP and NB. Then f (R3

a, R̃
3
b,R

3
c)=

{a,b} for R̃3
b = (2,3,1,0) by SP. Therefore f (R3

a, R̃b,R3
c) = {a,b} for R̃b such that p(R̃b)≤ 2

and 2Rb0. Therefore f (R) = {a,b} for any R such that p(Ra)≥ 2, p(Rb)≤ 2, and 2Rb0 .

Remark 3.2. The characterization is tight. In example 3.1 and example 3.2, we have mech-
anisms that fail Eff and IR respectively (both are non-bossy); and we will present a class of
mechanisms in the next section which satisfies Eff, SP and IR, but fails non-bossiness.
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An obvious feature of this mechanism is that the final group size could be much smaller
than the maximum group size m⋆. Though we know from the two agent case (example 3.3)
that any Efficient, SP and IR mechanism will yield group size smaller than m⋆ at some states,
it is still a significant fact that the final group size could be 1 while the maximum group size
be n.14 The mechanisms proposed in the next section will do much better in terms of group
size.

3.4 “Voting on ascending-size”

We present in this section another class of mechanisms that are Pareto efficient, individually
rational, and strategy-proof; furthermore, the final group size generated by each mechanism
in the class will be at least one half of the maximum group size.

We start with a intuitive procedure (to achieve the maximum group size m⋆): agents are
asked to approve for a group size in each round according to their announced preferences;
only agents votes “yes” remain active in any future rounds. Starting with size 1, in each
round, if more than enough agents are demanding that size (agents who vote “yes”), increase
the size by one and proceed to the next round. Since the demand is non-increasing with the
size, at some point, the group size being voted will equal or exceed the demand and we
find the maximum group size. Form a group with the maximum size, breaking ties when
necessary. However we already know from the two agents case (example 3.3) that no matter
what tie-breaking method we use, this procedure cannot be strategy-proof.

To see more clearly the incentive problem caused by tie-breaking, imagine the following
scenario. Suppose three agents a, b, c vote “yes” for group size 2; if all three agents vote
“yes” for group size 3, then a group of size 3 will form; if only two of them vote “yes”
for group size 3, then a group of size 2 will form among the three agents, using a tie-
breaking mechanism. Suppose ties are broken using a fixed ordering σ = (a,b,c), then
agent a would rather report (2,1,0) if her true preference is (2,3,1,0). If we modify the
ties-breaking mechanism in certain occasions to punish potential dishonesty, say, whenever
two vote “yes” and one votes “no”, the two “yes” will be selected, then agent c would rather
report (2,3,1,0) if her true preference is (2,1,0), when agent a votes “no” and agent b votes
“yes” to size 3.

Instead of modifying the fixed tie-breaking mechanism, we modify the procedure to
respect the priorities some agents have in tie-breaking, as showed in the following example.

Remember that for any m, for any R, ∆m(R) is the set of agents who prefer size m to
size 0. For any l such that |∆l(R)| ≥ l, for any ordering σ , let ∆̃σ

l (R) be the set containing l

14Say, if Rσ1 =(1,2, · · · ,n,0), Rσi =(n,n−1, · · · ,1,0) for all i= 2, · · · ,n. Then | f (R)|= 1 while m⋆(R)= n.
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agents selected from ∆l(R) by the priority σ . (We suppress R in the notation if no confusion
is caused.)

Example 3.5. (A direct mechanism for n = 3.)
Suppose N = {a,b,c}. Fixed an order of agent σ = (a,b,c). For any announced prefer-

ence profile R, the group is selected as follows.
Step 1: If |∆1| ≤ 1, then we select ∆1 and the algorithm ends. If |∆1| > 1, we move to

step 2.
Step 2: If |∆2| < 2, then select ∆̃σ

1 and the algorithm ends. If |∆2| = 2, and there exists
an agent in ∆̃σ

1 ∩∆2 who prefers size 1 to size 2, then select ∆̃σ
1 and the algorithm ends;

otherwise select ∆2 and the algorithm ends. If |∆2|> 2, move to step 3.
Step 3: If |∆3|< 3, then select ∆̃σ

2 and the algorithm ends. If |∆3|= 3, and there exists an
agents in ∆̃σ

2 who prefers size 2 to size 3, then select ∆̃σ
2 and the algorithm ends; otherwise

select ∆3 and the algorithm ends.

When |∆2|= 2 (or |∆3|= 3), some agents are pivotal in the sense that her report will de-
termine whether she ends up in a size-two group or a size-one group (a size-three group
or a size-two group). The above mechanism allows these pivotal agents to choose the
smaller size whenever any of them wants to. We will show later that for n = 3 this is
enough for truthful report. For n > 3, however, manipulation continues. To illustrate, let
N = {a,b,c,d}, and σ = (a,b,c,d). We already know that when exactly three agents are
supposed to vote for size 3, we have to form a group with size 2 if any of the three agents
who has priority to enter the size-two group prefers size 2 to size 3. Once we do that, how-
ever, we trigger a “manipulation-restoration-further manipulation” chain. Suppose now all
four agents are supposed to vote “yes” for group size 3. If agent a untruthfully says “no” to
size 3, she makes agent b pivotal. And then she could join a group of size 2 if agent b also
prefers size 2 to size 3. To maintain truthful report under this scenario, we cannot always
form a group of size 3 or size 4 even if all four agent vote “yes” for size 3; instead, we
compare size 2 with size 3, and form group {a,b} if both a and b prefer size 2 to size 3.
With more than four agents, the manipulation chain gets even longer.

To cut off this evil chain and restore truthful reports, the procedure stops when a coalition
of agents preferring size k−1 to size k can collectively misreport at round k (say “no” to size
k instead of the true answer “yes”) and join a size k−1 group, as showed in the following.

Definition 3.9. (“voting on ascending-size” or voting mechanism)
Fixed an ordering σ of agents. For any announced preference profile R, the group is

selected as follows.



3.4 “Voting on ascending-size” 56

Step 1: If |∆1| ≤ 1, then we select ∆1 and the algorithm ends. If |∆1| > 1, we move to
step 2.

Step k (2 ≤ k ≤ n):
If |∆k|< k, then select ∆̃σ

k−1 and the algorithm ends.
If |∆k| = k, and at least one agent in ∆̃σ

k−1 ∩∆k prefers size k− 1 to size k”, then select
∆̃σ

k−1 and the algorithm ends; otherwise select ∆k and the algorithm ends.
If |∆k| > k, and at least |∆k|− k+ 1 of agents in ∆̃σ

k−1 ∩∆k prefer size k− 1 to size k”,
then select ∆̃σ

k−1 and the algorithm ends; otherwise move to step k+1.

Remark 3.3. (1) Note that ∆̃σ
k−1 ∩∆k is the set of active agents in round k who also has the

priority to enter the group with size k−1. If enough of them prefer size k−1 to size k, the
process has to end. We can write the mechanism in a more concise way.

For any R ∈R, for any m ∈ S, let Λm(R) = {i ∈ ∆m : p(Ri)< m}; let κσ (R) = max{m ∈
S : |∆m|− |Λm ∩ ∆̃σ

m−1| ≥ m}. (We suppress R and σ in the notation when no confusion is
caused.) Then the selected group φ

σ (R) = ∆̃σ
κ . It is easy to check that |∆m|− |Λm ∩ ∆̃σ

m−1|
is non-increasing with m (due to the single-peakedness of preferences); hence κ is achieved
under the above mechanism.

(2) Note that if |∆2|> 2, then |∆2|− |Λ2 ∩ ∆̃σ
1 | ≥ 2, and hence κ ≥ 2. So the “voting on

ascending-size” mechanism for n = 3 is reduced to what is presented in the example 3.5.

Proposition 3.2. For any ordering σ , the voting mechanism φ σ is Pareto efficient, individ-
ually rational, and strategy-proof.

Proof. Since the final group is ∆̃σ
κ , individual rationality is clear. To show Pareto efficiency,

we only need to consider outcomes that contain the original selected group. If κ = m⋆, then
we either cannot enlarge the group or enlarging the group will violate individual rationality,
if κ < m⋆,then enlarging the group will hurt someone who is in the original group.

The formal proof of strategy-proofness is left in the appendix. We give some intuition
here. Consider an agent i with preference Ri such that (m−1)RimRi0 . And suppose she has
the priority to join a group with size m−1, that is, i ∈ ∆̃σ

m−1. Note that this is the situation
that causes trouble in the native procedure discussed at the beginning of the section. If
she misreports, saying that (m− 1)Ri0Rim, then both |∆m| and |Λm ∩ ∆̃σ

m−1| decrease by 1;
therefore |∆m|− |Λm ∩ ∆̃σ

m−1| does not change. Hence by misreporting she will not change
the outcome even if |∆m|− |Λm ∩ ∆̃σ

m−1|= m.

Remark 3.4. Note that for any Ri, R′
i such that t(Ri) = t(R′

i) and p(Ri) = p(R′
i), for any

R−i, we have φ σ (Ri,R−i) = φ σ (R′
i,R−i). Again the information needed to run the voting on

ascending-size mechanism is p(Ri) and t(Ri) for each Ri.
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Proposition 3.3. (Group size)
For any σ , for any R, |φ σ (R)| ≥ 1

2 ·m
⋆(R).

Proof. Suppose that |φ σ (R)| = k, then by definition of φ σ , k = max{m ∈ S : |∆m| ≥ m+

|Λm∩∆̃σ
m−1|}. We show that |∆k+1(R)| ≤ 2k. Suppose for the sake of contradiction |∆k+1(R)|>

2k, then we must have |∆k+1| ≥ k+1+ |Λk+1 ∩ ∆̃σ
k | since |∆̃σ

k |= k. Contradiction!
If m⋆(R)> k, then m⋆(R)≤ |∆k+1(R)| ≤ 2k, we have |φ σ (R)| ≥ 1

2 ·m
⋆(R).

We can see from the n = 3 case (example 3.5) that φ σ does not satisfy non-bossiness for
any ordering σ : say, σ = (a,b,c), then φ(R) = {b,c} for R such that Ra = (1,0), Rb = Rc =

(1,2), and φ(R′) = {b} for R′ such that R′
a = (0), Rb = Rc = (1,2). Agent a is bossy. It is

hence not group strategy-proof; however it satisfies weak group stratety-proofness, defined
below.

Definition 3.10. A group selection mechanism f is weakly group strategy-proof (w-GSP)
if for all R, there does not exists M ⊂ N and R′

M such that for all i ∈ M, fi(R′
M,R−M)Pi fi(R).

Proposition 3.4. For any ordering σ , φ σ is weakly group strategy-proof.

Proof. We show it by first showing that φ σ satisfied certain partial non-bossiness properties.
See appendix for details.

We end the section by an open question: can we achieve even larger group size by any
other Eff, IR and SP mechanisms? For n = 3 the answer is no, as showed in the following
proposition. However, the question remains open for n > 3.

Proposition 3.5. (Maximal group size) For n = 3 and for any fixed ordering σ , there is no
Eff, SP and IR mechanism g such that |g(R)| ≥ |φ σ (R)| for all R and |g(R′)|> |φ σ (R′)| for
some R′.

Proof. See Appendix.

3.5 Conclusion

This paper studies the group selection problem under single-peaked preferences, and pro-
poses two classes of mechanisms that are efficient, strategy-proof and individually rational.
There is a natural way to combine them and generate a class of hybrid mechanisms: parti-
tion the set N into two subsets N1 and N2. First run the “proposing in turn” mechanism in N1

and let O1 be the group chosen. If the mechanism ends under case (i) or (ii) (see Definition
3.4), then O1 is final group; otherwise run the “voting on ascending-size” mechanism on
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N2, starting with group size |O1|+1, ending at most at size p = mini∈O1 pi, keeping in mind
that the number of positions available for agents in N2 in each round is the group size minus
|O1|. Let O2 be the chosen group within N2. The final group is then O1 ∪O2.

This hybrid mechanism is Eff, SP and IR. Note that if we take N1 = N, then we get the
“proposing in turn” mechanism; if we take N1 = /0, then we get the “voting on ascending-
size” mechanism; if we take N1 = {i} for some i ∈ N, then we get the mechanism that favors
agent i mostly among all hybrid mechanisms.

We end the paper by a discussion of open questions and possible extensions:
In settings where private objects are to be allocated, strategy-proofness is usually not

enough to characterize a clearly-cut classes of mechanisms; more axioms (e.g. non-bossiness,
population monotonicity, resource monotonicity, etc.) are added to offer more structural re-
strictions (See [8], [24, 56, 57]). Our setting is similar to the private good setting in that
there are two different outcomes for agents; and bossiness is hence possible. The following
example offers a glimpse of mechanisms that are strategy-proof and bossy.

Example 3.6. N = {a,b,c}. Let σ = (a,b,c). Modify the tie-breaking rule in the mech-
anism presented in example 3.5 as follows: if |∆2| = 3, then ∆̃2 = {a,b} if 3Ra0, and
∆̃2 = {a,c} if 0Ra3.

Adding non-bossiness, we are able to characterize the proposing mechanism. Interest-
ingly, we find another class of mechanisms that is intuitively appealing and weakly group
strategy-proof. Weak group strategy-proofness, however, is not helpful in characterization
due to the fact that it cuts off an open set of mechanisms. In fact it is easy to check that the
mechanism in the above example is w-GSP. Since axioms like population monotonicity and
resouce monotonicity are largely irrelevant in our setting, how to characterize the voting
mechanism is a challenging question. Furthermore, our understandings towards the struc-
tural restrictions imposed by w-GSP is far from complete, both in our setting and in more
general terms. (see [59] and [63].) Needless to say, our model could serve as a motivation
for further theoretic inspection.

Finally, there are many situations in which more than one group could or should be
formed; it is both interesting and challenging to study group selection mechanism in those
settings.15

15For example, see [13], in which a fixed number (k = 1,2, · · · ,n) of facility have to be installed.
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3.6 Appendix

3.6.1 Universal preference domain: impossibility

In this subsection we take R = U and present an impossibility result.

Theorem 3.2. There is no group selection mechanism that is efficient, strategy-proof and
individually rational.

Proof. We prove the result for n = 2. The proof will be identical for n > 2: just endow the
two agents with the same preferences that we consider here, and let the preferences of all
others be (0).

Let N = {a,b}. Suppose for the sake of contradiction f is an Eff, SP and IR mechanism.
Consider the following preference profiles:

(1) Ra = (1,0), Rb = (2,0)
(2) Ra = (1,2,0), Rb = (2,0)
(3) Ra = (1,2,0), Rb = (2,1,0)
(4) Ra = (1,2,0), Rb = (1,2,0)
We use R(k) to represent the above profile (k). First by Eff and IR, f (R(1)) = {a}. By

SP, f (R(2)) = {a}. By SP, f (R(3)) ̸= {a,b}. And by Eff, f (R(3)) ̸= {b} and f (R(3)) ̸= { /0}.
Therefore f (R(3))= {a}. By SP, f (R(4)) ̸= {b} and f (R(4)) ̸= {a,b}. By Eff, f (R(4)) ̸= { /0}.
Therefore f (R(4)) = {a}. However, if we start with Ra = (2,0), Rb = (1,0), by similar
argument, we get that f (R(4)) = {b}. Contradiction!

The above result mechanisms out positive results in an interesting sub-domain P ′ ⊂U ,
where for each i, for each Ri, the strict upper contour set of size 0 is an integer interval
and preference restricted to the interval is single-peaked. The reduced preferences profiles
in [20] belongs to P ′, and in fact forms a sub-domain of P ′ in which larger group size is
always preferred to smaller size. And their auction-like mechanism is Eff, IR and SP (within
the sub-domain).

Note that our single-peaked preference domain P , by requiring any nonempty strict
upper contour set of size 0 for Ri be an integer interval starting with size 1, is another
sub-domain of P ′. And it is a maximum domain where efficient, individually rational and
strategy-proof group selection mechanisms exist (to see this, consider the n = 2 case in the
proof of Theorem 3.2).
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3.6.2 Proof

3.6.2.1 Proof for Lemma 3.1

Proof. Group strategy-proofness implies strategy-proofness and non-bossiness is obvious.
We prove the converse. Let f be strategy-proof and non-bossy. Let M ⊂ N, R and R′

M

be such that for all i ∈ M, fi(R′
M,R−M)Ri fi(R). For all i ∈ M, let R̂i be the preference

such that p(R̂i) = fi(R′
M,R−M) = p⋆ and for any b,c ∈ S such that p⋆Rib and p⋆Ric we

have bR̂ic iff bRic. (We leave for the reader to check that such R̂i always exists.) We first
show that fi(R) = fi(R̂i,R−i). Since p⋆Ri fi(R), and fi(R)Ri f (R̂i,R−i) by strategy-proofness,
we have p⋆Ri fi(R̂i,R−i). Since p⋆Ri fi(R) and p⋆Ri fi(R̂i,R−i), we have fi(R)Ri fi(R̂i,R−i)

iff fi(R)R̂i fi(R̂i,R−i). By strategy-proof, we must have fi(R) = fi(R̂i,R−i). Then f (R) =
f (R̂i,R−i) by non-bossiness. Repeating the same argument for individuals in M one by
one, we have f (R̂M,R−M) = f (R). On the other hand, we have f (R̂M,R−M) = f (R′

M,R−M)

by strategy-proof and non-bossiness. Thus f (R) = f (R′
M,R−M), which implies f is group

strategy-proof.

3.6.2.2 Proof for Theorem 3.1

First we introduce group non-bossiness, which is implied by group strategy-proofness and
will play a key role in the proof.

Definition 3.11. (Group non-bossiness)
A group selection mechanism f is group non-bossiness (GNB) if for all R, M ⊂ N, and

R′
M, fM(R) = fM(R′

M,R−M) implies f (R) = f (R′
M,R−M).

First, fix an Eff, GSP and IR mechanism f . For simplicity we write Rk
i = (k,k −

1, · · · ,1,0) and Rk = {Rk
i }i∈N for each k ∈ S; and for any M ( N, we write f (RM) instead

of f (RM,R0
−M).

Lemma 3.2. For any k ∈ S, | f (Rk)|= k; and f (R) = f (Rk) for all R such that p(Ri)≥ k for
all i ∈ f (Rk), and |{i ∈ N : (k+1)Ri0}|< k+1.

Proof. By Eff we have | f (Rk)| = k for any k ∈ S. To show the second half, first note that
| f (R)|< k+1 by IR. For j /∈ f (Rk), by SP and NB we have f (R j,Rk

− j) = f (Rk). Therefore
changing Rk

j to R j for each j /∈ f (Rk) one by one, and then changing Rk
j to R j for each

j ∈ f (Rk) one by one, we have f (R) = f (Rk) by SP and NB in each step.

Lemma 3.3. f (Rm
M)⊂ f (Rm+1

M ) for any 0 ≤ m ≤ n−1, any M ⊆ N.
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Proof. The statement holds for all cases such that |M| ≤m, in which cases f (Rm
M)= f (Rm+1

M )=

M. Hence we focus on cases such that |M|> m.
Suppose for the sake of contradiction the statement is not true. That is, there exists

M ⊆ N, and m < |M| such that f (Rm
M)\ f (Rm+1

M ) ̸= /0. Let A = f (Rm
M), B = f (Rm+1

M ), C =

f (Rm
M)\ f (Rm+1

M ), D = f (Rm
M)∪ f (Rm+1

M ). Then f (Rm+1
B ) = f (Rm+1

M ) = B; and by Lemma
3.2 f (Rm

D) = f (Rm
M) = A. Since f (Rm

B ) ⊂ B and | f (Rm
B )| = | f (Rm

D)| = m, there exists al ∈
f (Rm

B )\ f (Rm
D), and as ∈ f (Rm+1

B )\ f (Rm
B ). Let B′ = B\{al}, then f (Rm+1

B′ ,Rm
al
) = f (Rm

B ) by
Lemma 3.2. Let R̃m+1

i = (m,m+ 1,m− 1, · · · ,0) for i = al , then f (Rm+1
B′ , R̃m+1

al
) = f (Rm

B )

by SP.
However since D = B∪C ⊆ M, f (Rm

C ,R
m
B ) = A, and f (Rm+1

C ,Rm+1
B ) = B, we have that

f (Rm
C ,R

m+1
B′ , R̃m+1

al
) = f (Rm+1

B ) ̸= f (Rm
B ). This violates group non-bossiness of C.

With the help of the above lemma, we can construct the priority tree. Given a priority tree
Γ= (V,Q;L ,H ), we write a Q-path {vs}r

s=1 with length r−1 as v1
⋆1→ v2

⋆2→ v3
⋆3→··· ⋆r−1→ vr

, where ⋆i = H (vi,vi+1) for 1 ≤ i ≤ r−1.

Lemma 3.4. (Construction of the priority tree for f )
Fix a rooted tree (V,Q) with properties A.1, A.2 and A.3, and with arcs labeled accord-

ing to C.1 and C.2. Denote by H (vi,v j) the label of each (vi,v j)∈ Q. We label the vertices
by induction on the length of Q-path starting with v1:

First,L (v1) = f (R1); L (−→v1
in) = f (R2)\{i} and L (−→v1

out) = f (R1
N\{i}), where i =

L (v1).
For any k ∈ {2, · · · ,n−1}, suppose there is a Q-path starting with v1, with length k−1

and all vertices already labeled: v1 = vp1

⋆1→ vp2

⋆2→ vp3

⋆3→ ··· ⋆k−1→ vpk , where ⋆ j ∈ {in,out}
for all 1 ≤ j ≤ k−1. Let I = {L (vp j) : 0 ≤ j ≤ k−1,⋆ j = in} and t = |I|; O = {L (vp j) :
0 ≤ j ≤ k−1,⋆ j = out}. Then

L (−→vpk
in) = f (Rt+2

M )\(I ∪{vpk}), where M = N\O;
L (−→vpk

out) = f (Rt+1
M′ )\I, where M′ = N\(O∪{vpk}).

Then Γ = (V,Q;L ,H ) is a priority tree.

Proof. First by Lemma 3.3, L (·) is well defined. That is, | f (Rt+2
M )\(I ∪{vpk})| = 1, and

| f (Rt+1
M′ )\I| = 1. To show Γ = (V,Q;L ,H ) is a priority tree, we only need to show that

L (·) satisfies properties B.1 and B.2. First it is easy to see that B.1 is satisfied, that is, for
all v ∈ V , L (v) ∈ N. Second, since f (Rt+2

M )\(I ∪{vpk}) /∈ I ∪O and f (Rt+1
M′ )\I /∈ I ∪O,

property B.2 is satisfied, that is, every vertex of a Q-path represents a different agent.

Lemma 3.5. For any M ⊆ N, for any m < |M|, f (R) = f (Rm
M) for all R such that p(Rs) =

t(Rs) = m for some s ∈ f (Rm
M), p(Ri) = |M| for all i ∈ f (Rm

M)\{s},and Ri = (0) for i /∈ M.
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Proof. First we must have | f (R)| ≥ | f (Rm
M)| for any R as described in the statement. Sup-

pose | f (R)|= k < | f (Rm
M)|. Let A= f (R)\ f (Rm

M). By GSP we have that f (Rk
A,R−A) = f (R).

Now let B = f (Rm
M), then by NB of the group N\(A∪B), we have that f (Rk

A,RB) = f (R).
However, we know from Lemma 3.2 that f (Rk

A,R
m
B ) = B. Hence f (Rk

A,RB) = f (R) is
impossible by GSP. Suppose | f (R)| = | f (Rm

M)|, then by similar argument we must have
f (R) = f (Rm

M).
Hence we assume for the sake of contradiction that there exist R such that l = | f (R)|>

| f (Rm
M)|= m. Then s /∈ f (R) by IR. Let A = f (R)∪ f (Rm

M). Then by SP m < | f (RA\s, R̃l
s)|=

k ≤ l, where R̃l
s = (m,m+1, · · · , l −1, l,m−1,m−2, · · · ,1,0). And f (Rm

M) ⊂ f (RA\s, R̃l
s);

in particular, s ∈ f (RA\s, R̃l
s). By GSP we have that f (Rk

A\s, R̃
l
s) = f (RA\s, R̃l

s). Let B =

A\ f (Rk
A\s, R̃

l
am
). Note that B ̸= /0.

Since s∈ f (Rk−1
A\B), by Lemma 3.2 we have | f (Rk

A\(B∪s),R
k−1
s )|= k−1 and s∈ f (Rk

A\(B∪s),R
k−1
s ).

Therefore by SP, we have | f (Rk
A\(B∪s), R̃

l
s)| ≤ k−1 and s∈ f (Rk

A\(B∪s), R̃
l
s). Since | f (Rk

A\s, R̃
l
s)|=

k, group non-bossiness of B is violated.

Lemma 3.6. For any M ⊆ N, for any m < |M|, let f (Rm−1
M ) = {a1,a2, · · · ,am−1}, and

am = f (Rm
M)\ f (Rm−1

M ); then f (R) = f (Rm
M) for all R such that p(Ri) = |M| for all i ∈

{a1, · · · ,am−1}, p(Ri)< m, t(Ri) = m for i = am, and Ri = (0) for i /∈ M.

Proof. We omit the proof since it is very similar to the proof of Lemma 3.5.

Lemma 3.7. For any M ⊆ N with |M| = m, let {vps}n
s=1 be the Q-path of Γ such that

{L (vp j) : H (vp j ,vp j+1) = out}= N\M. Let σs = L (vps) for 1 ≤ s ≤ n. Let s⋆ = max{s :
σs ∈ M}, M̄ = {σs : 1 ≤ s ≤ s⋆}; and let ls = |{σt ∈ M : t ≤ s}| for s = {1, · · · ,n}. Then
f (R) = M for any R such that (1) p(Rσs)≥ m for all σs ∈ M, and 0R(ls +1) for all σs /∈ M,
or (2) p(Rσs) ≥ m for all σs ∈ M, p(Rσw) = m for some σw ∈ M, and 0Rσs(ls + 1) for all
σs ∈ M̄\M, or (3) p(Rσs)≥ m for all σs ∈ M\{σs⋆}, p(σs⋆)Rσs⋆mRσs⋆0, and 0Rσs(ls+1) for
all σs ∈ M̄\M.

Proof. Suppose R satisfies condition (1). First we show that if σs /∈ M, then σs /∈ f (R).
Suppose for the sake of contradiction there exists σs /∈ M and σs ∈ f (R), since 0Rσsls, by IR
we have | f (R)|< (ls +1). Since ls = |{σt ∈ M : t ≤ s}|, there exists k < s such that σk ∈ M
and σk /∈ f (R). Let A = f (R)∪{σk}; let h = | f (R)|. Since k < s, we have that σk ∈ f (Rh

A).
Since p(Rσk)≥ m ≥ ls > h, by SP, we must have σk ∈ f (Rσk ,R

h
A\{σk}). And by SP and NB,

we must have that σk ∈ f (R). Contradiction! Therefore if σs /∈ M, then σs /∈ f (R). Since
p(Rσs)≥ m for all σs ∈ M, by Eff, we have f (R) = M.

Suppose R satisfies condition (2) or (3). Using similar argument, we can show that
if σs ∈ M̄\M, then σs /∈ f (R). Then by NB f (RN\(M̄\M)) = f (R). And by Lemma 3.5
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and Lemma 3.6 (more accurately, a slight extension of the two Lemma), we have that
f (RN\(M̄\M)) = M. Therefore f (R) = M.

Now we show that f coincides with the proposing mechanism associated with Γ. For
any R, let M be the outcome generated by the proposing mechanism associated with Γ.
Let {vps}n

s=1 be the Q-path of Γ such that {L (vp j) : H (vp j ,vp j+1) = out} = N\M. Let
σs = L (vps) for 1 ≤ s ≤ n. Let s⋆ = max{s : σs ∈ M}, M̄ = {σs : 1 ≤ s ≤ s⋆}; and let
ls = |{σt ∈ M : t ≤ s}| for s = {1, · · · ,n}. We know from the definition of the proposing
mechanism that R satisfies condition (1) or condition (2) or condition (3) in Lemma 3.7.
And by Lemma 3.7, we have f (R) = M, as desired.

3.6.2.3 Proof for Proposition 3.2

Proof. We show strategy-proofness of φ σ . For simplicity we suppress σ in all the nota-
tion below. Suppose for the sake of contradiction there exists Ri, R′

i and R−i such that
φi(R′

i,R−i)Piφi(Ri,R−i). Write κ = κ(Ri,R−i) and κ ′ = κ(R′
−i,R−i). Consider the following

cases:
case (1): κ < p(Ri).
Suppose for the sake of contradiction we have κ ′ > κ . Note that ∆κ+1(R′

i,R−i) ⊆
∆κ+1(Ri,R−i). And since i /∈ Λκ+1(Ri,R−i), we have that Λκ+1(Ri,R−i)∩ ∆̃κ(Ri,R−i) ⊆
Λκ+1(R′

i,R−i)∩ ∆̃κ(R′
i,R−i). Therefore |∆κ+1(R′,R−i)| − |Λκ+1(R′

i,R−i)∩ ∆̃κ(R′
i,R−i)| ≤

|∆κ+1(R,R−i)|−|Λκ+1(Ri,R−i)∩∆̃κ(Ri,R−i)|< κ+1; hence κ ′< κ+1. Either i∈ ∆̃κ(Ri,R−i)

or i /∈ ∆̃κ(Ri,R−i), φi(R′
i,R−i)Piφi(Ri,R−i) is impossible.

case (2): κ > p(Ri) and i ∈ ∆̃κ(Ri,R−i).
Suppose for the sake of contradiction that κ ′ < κ and i ∈ ∆̃κ ′(R′

i,R−i). We first show
that κ ′ ≥ κ −1. Since κ ′ ≥ κ −2 (by changing from Ri to R′

i, we can reduce |∆κ(R,R−i)|−
|Λκ(Ri,R−i)∩ ∆̃κ−1(Ri,R−i)| by 2 at most), we have i ∈ ∆̃κ−2(R′

i,R−i) = ∆̃κ−2(Ri,R−i).
Now if i∈∆κ−1(R′

i,R−i), then ∆κ−1(R′
i,R−i)=∆κ−1(Ri,R−i) and Λκ−1(Ri,R−i)∩∆̃κ−2(Ri,R−i)⊇

Λκ−1(R′
i,R−i)∩ ∆̃κ−2(R′

i,R−i). Hence |∆κ−1(R′,R−i)|− |Λκ−1(R′
i,R−i)∩ ∆̃κ−2(R′

i,R−i)| ≥
|∆κ−1(R,R−i)|− |Λκ−1(Ri,R−i)∩ ∆̃κ−2(Ri,R−i)|> κ −1; hence κ ′ ≥ κ −1.

If i /∈ ∆κ−1(R′
i,R−i), then ∆κ−1(R′

i,R−i)| = ∆κ−1(Ri,R−i)\{i}, and Λκ−1(R′
i,R−i) =

Λκ−1(Ri,R−i)\{i}. Therefore |∆κ−1(R′,R−i)|−|Λκ−1(R′
i,R−i)∩∆̃κ−2(R′

i,R−i)|= |∆κ−1(R,R−i)|−
|Λκ−1(Ri,R−i)∩ ∆̃κ−2(Ri,R−i)|> κ −1. hence κ ′ ≥ κ −1.

Therefor κ ′ ≥ κ −1 and we have that i ∈ ∆̃κ−1(Ri,R−i) = ∆̃κ−1(R′
i,R−i).

Now if i∈∆κ(R′
i,R−i), then ∆κ(R′

i,R−i)=∆κ(Ri,R−i) and Λκ(Ri,R−i)∩∆̃κ−1(Ri,R−i)⊇
Λκ(R′

i,R−i)∩∆̃κ−1(R′
i,R−i). Hence |∆κ(R′,R−i)|−|Λκ(R′

i,R−i)∩∆̃κ−1(R′
i,R−i)| ≥ |∆κ(R,R−i)|−

|Λκ(Ri,R−i)∩ ∆̃κ−1(Ri,R−i)| ≥ κ; hence κ ′ ≥ κ .
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If i /∈∆κ(R′
i,R−i), then ∆κ(R′

i,R−i)|=∆κ(Ri,R−i)\{i}, and Λκ(R′
i,R−i)=Λκ(Ri,R−i)\{i}.

Therefore |∆κ(R′,R−i)|−|Λκ(R′
i,R−i)∩∆̃κ−1(R′

i,R−i)|= |∆κ(R,R−i)|−|Λκ(Ri,R−i)∩∆̃κ−1(Ri,R−i)| ≥
κ . hence κ ′ = κ .

Case (3): κ > p(Ri), t(Ri)> κ and i /∈ ∆̃κ(Ri,R−i).
Suppose for the sake of contradiction we have κ ′ > κ and i ∈ ∆̃κ ′(R′

i,R−i). Note that
again we have ∆κ+1(R′

i,R−i)⊆ ∆κ+1(Ri,R−i). Since i /∈ ∆̃κ(Ri,R−i) = ∆̃κ(R′
i,R−i), we have

that Λκ+1(Ri,R−i)∩∆̃κ(Ri,R−i)=Λκ+1(R′
i,R−i)∩∆̃κ(R′

i,R−i). Therefore |∆κ+1(R′,R−i)|−
|Λκ+1(R′

i,R−i)∩∆̃κ(R′
i,R−i)| ≤ |∆κ+1(R,R−i)|−|Λκ+1(Ri,R−i)∩∆̃κ(Ri,R−i)|< κ+1; hence

κ ′ < κ +1.
Case (4): κ > p(Ri), t(Ri)≤ κ and i /∈ ∆̃κ(Ri,R−i).
Then φi(R′

i,R−i)Piφi(Ri,R−i) is impossible.

3.6.2.4 Proof for Proposition 3.4

It is easy to check that φ σ satisfies non-bossiness of members, defined below; and it satisfies
the following weak non-bossiness of non-members condition16.

Definition 3.12. A group selection mechanism f is non-bossy for members (NBM) if for
all R,i ∈ N, and R′

i, fi(R) = fi(R′
i,R−i) ̸= 0 implies that f (R) = f (R′

i,R−i).

Definition 3.13. A group selection mechanism f is preference-restricted non-bossy of non-
members (PRNBN) if for all R, i ∈ N, R′

i such that T (R′
i) = T (R), fi(R) = fi(R′

i,R−i) = 0
implies that f (R) = f (R′

i,R−i).

Proof. We modify the proof for Lemma 1 to show that a SP and IR group selection mecha-
nism is weakly group strategy-proof if it satisfies NBM and PRNBN.

Let f be a mechanism that is SP, IR and satisfies NBM and PRNBN. Suppose for the sake
of contradiction, there exists M ⊂N, R and R′

M be such that for all i∈M, fi(R′
M,R−M)Pi fi(R).

Since f is individual rational, we must have p⋆ := fi(R′
M,R−M) > 0 and p⋆ ∈ T (Ri) for all

i ∈ M.
For all i ∈ M, let R̂i be the preference such that p(R̂i) = p⋆ , T (R̂) = T (R), and for

any b,c ∈ S such that p⋆Rib and p⋆Ric we have bR̂ic iff bRic. (We leave for the reader to
check that such R̂i always exists.) We first show that fi(R) = fi(R̂i,R−i). Since p⋆Ri fi(R),
and fi(R)Ri f (R̂i,R−i) by strategy-proofness, we have p⋆Ri fi(R̂i,R−i). Since p⋆Ri fi(R) and
p⋆Ri fi(R̂i,R−i), we have fi(R)Ri fi(R̂i,R−i) iff fi(R)R̂i fi(R̂i,R−i). By strategy-proof, we
must have fi(R) = fi(R̂i,R−i). If fi(R) > 0, then f (R) = f (R̂i,R−i) by non-bossiness of

16See the weak non-bossiness definition in [59]. Inspired by that paper, we propose this condition to show
in a more convenient way that our mechanism is weakly group strategy-proof.
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members; if fi(R) = 0, then f (R) = f (R̂i,R−i) by PRNBN. Repeating the same argument
for individuals in M one by one, we have f (R̂M,R−M) = f (R). On the other hand, we
have f (R̂M,R−M) = f (R′

M,R−M) by strategy-proof and non-bossiness for members. Thus
f (R) = f (R′

M,R−M). Contradiction!

3.6.2.5 Proof for Proposition 3.5

Proof. Let N = {a,b,c} and σ = (a,b,c). Suppose for the sake of contradiction, g is such a
mechanism. Then |g(R)| ≥ |φ(R)| for all R, and |g(R′)|> |φ(R′)| for some R′. We consider
the following two cases:

Case 1: |g(R′)|= 2, |φ(R′)|= 1. Since |g(R′)|= 2, we know that |{i : 2Ri0}| ≥ 2 by IR.
Since |φ(R′)| = 1, we know that |{i : 2Ri0}| ≤ 2 by the definition of φ (see (2) of Remark
3.3). Hence |{i : 2Ri0}|= 2.

Suppose g(R′) = {b,c}. Then for |φ(R′)| = 1, we must have R′
a = (0), p(R′

b) = 1.
However, we know already that any Eff, SP and IR mechanism will yield {b} as a outcome.
So g(R′) ̸= {b,c}.

Suppose g(R′) = {a,b}. Then for |φ(R′)| = 1, we must have p(R′
a) = 1. Then for

|g(R′)| = 2, we must have R′
c ̸= (0). Hence R′

c = (1,0). By SP and IR, we have that
g(R̃a,R′

b,R
′
c)∈{b,c}, where R̃a =(1,0). And g(R̃a,R′

b,R
′
c) ̸= {c}, otherwise g(R̃a,R′

b, R̃c)=

{c} for R̃c =(1,2,0) (then |g|= 1< |φ |). Therefore g(R̃a,R′
b,R

′
c)= {b}. Hence g(R̃a, R̃bR′

c)=

{b} for R̃b = (1,0) by SP. Then g(R̂a, R̃b,R′
c) ∈ {b,c} for R̂a = (2,1,0) by SP and IR.

However both {b} and {c} are impossible outcomes (suppose g(R̂a, R̃b,R′
c) = {b}, then

g(R̂a, R̂b,R′
c) = {b} for R̂b = (1,2,0). Then |g|= 1 < |φ |).

Suppose g(R′) = {a,c}. Using similar arguments as in the above, we get contradiction.
Case 2: |g(R′)|= 3, |φ(R′)|= 2. Then we must have that φ(R′) = {a,b} and either 2Ra3

or 2Rb3 or both.
Suppose 2Ra3. First we have g(R′

a, R̃b, R̃c) = {a,b,c} for R̃b = R̃c = (3,2,1,0) by
SP. Then g(R̂a, R̃b, R̃c) = {b,c} for R̂a = (2,1,0) by SP. Since φ(R̃a, R̃b, R̄c) = {a,b,c}
for R̃a = (3,2,1,0) and R̄c = (2,3,1,0), we must have g(R̃a, R̃b, R̄c) = {a,b,c}. Hence
g(R̃a, R̃b, R̂c) = {a,b} for R̂c = (2,1,0) by SP. So we must have g(R̂a, R̃b, R̂c) = {a,c} by
SP. Then we must have g(R̂a, R̂b, R̂c) = {a,c} for R̂b = (2,1,0). Since g(R̃a, R̂b, R̂c) = {a,b}
by SP, we must have c /∈ g(R̃a, R̂b, R̃c) by SP; similarly since g(R̂a, R̂b, R̃c) = {b,c} by SP,
we must have a /∈ g(R̃a, R̂b, R̃c) by SP. This is impossible since |g(R̃a, R̂b, R̃c)| = 2 by Eff
and IR.

Suppose 2Rb3. Using similar arguments as in the above, we get contradiction.
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