
 

 
 

 
 
 
 
 
 

 
Stedman, Richard James (2017) Deformations, extensions and symmetries 
of solutions to the WDVV equations. PhD thesis. 
 
 
 
http://theses.gla.ac.uk/8011/  
 
 
 
 

Copyright and moral rights for this work are retained by the author 

A copy can be downloaded for personal non-commercial research or study, without prior 
permission or charge 

This work cannot be reproduced or quoted extensively from without first obtaining 
permission in writing from the author 

The content must not be changed in any way or sold commercially in any format or 
medium without the formal permission of the author 

When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given 

 
 
 
 
 
 
 
 

Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

http://theses.gla.ac.uk/8011/
http://theses.gla.ac.uk/
http://theses.gla.ac.uk/
mailto:theses@gla.ac.uk


Deformations, Extensions and
Symmetries of Solutions to the

WDVV equations

by

Richard James Stedman

A thesis submitted to
The University of Glasgow

for the degree of
Doctor of Philosophy

School of Mathematics and Statistics
The University of Glasgow
March 2017



Abstract

We investigate almost-dual-like solutions of the WDVV equations for which the metric,

under the standard definition, is degenerate. Such solutions have previously been con-

sidered in [21] as complex Euclidean ∨-systems with zero canonical form but were not

regarded as solutions since a non-degenerate metric is required for a solution. We have

found that, in every case we considered, we can impose a metric and hence recover a

solution. We also found that for the deformed An(c) family (first appearing in [8]) with

the choice of parameters that renders the metric singular we can also recover a solution.

The generalised root system A(n−1, n) (as it appears in our notation) has zero canonical

form but we found that by restricting the covectors we can again recover a solution which

we generalise to a family with (n+ 1) parameters which we denote as Pn.

We next look at extended ∨-systems. These are root-systems which possess the small

orbit property (as defined in [36]) which we then extend into a dimension perpendicular

to the original system. We then impose the ∨-conditions onto these systems and obtain

1-parameter infinite families of ∨-systems. We also find that for the Bn family we can

extend into two perpendicular directions.

We then go on to look at a generalisation of the Legendre transformations (which

originally appeared in [13])which map solutions to WDVV to other solutions. We find that

such transformations are generated not only by constant vector fields but by functional

vector fields too and we find a very simple rule which such vector fields must obey. Finally
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we link our work on extended ∨-systems and on generalised Legendre transformations to

that on extended affine Weyl groups found in [16] and [17].
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Introduction

The origin of the WDVV equations was in 2D topological field theory at the end of

the 1980s. They are systems of PDEs expressed in terms of the matrices of the third

derivatives of a function F of n variables (x1, . . . , xn)

FiF
−1
j Fk = FkF

−1
j Fi, i, j, k = 1, . . . , n,

where

(Fi)jk =
∂3F

∂xi∂xj∂xk
.

In the original formulation of the equations an additional requirement that there must

exist a marked variable, let us call it x1, such that the matrix F1 has constant entries

was made. An example of a solution (due to Kontsevich) for n = 3 with this additional

assumption is

F (x1, x2, x3) =
1

2
x1x

2
2 +

1

2
x21x3 +

∞∑
k=0

Nk

3k − 1
x3k−13 ekx2 ,

where the recursion relation

Nk

(3k − 4)!
=
∑
a+b=k

a2b(3b− 1)b(2a− b)
(3a− 1)!(3b− 1)!

NaNb,
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guarantees that this is a solution to the WDVV equations. Here the numbers Na, examples

of Gromov-Witten invariants, give the number of rational curves of degree k passing

through 3k − 1 points in complex projective space of dimension 2.

A few years later it was found that the prepotential of Seiberg-Witten theory satisfies

a version of WDVV but without the assumption of a marked variable. An example of

such a solution is

F =
∑
α∈R

(α · z)2log(α · z), (1)

where R is any root system of a finite Coxeter group. Boris Dubrovin was able to unite

these seemingly disconnected worlds of solutions via his concept of almost duality. This

provided a systematic way of obtaining an ‘almost dual’ solution in which all of the

variables are on an equal footing from a solution which had a marked variable. Going the

other way, or reconstructing a solution, is fraught with much more difficulty. Dubrovin

had formulated the WDVV equations in a geometric form as Frobenius manifolds and it

was in this setting that almost duality was discovered.

At the end of the 1990s Veselov derived geometric conditions, called the ∨-conditions,

which collections of covectors (called ∨-systems, the root systems in (1) for example) must

satisfy in order to provide a solution to WDVV in the almost dual world. He also found

both entirely new ∨-systems as well as deformations to some of the known root-system

solutions which are not almost dual to any solution.

In this thesis, after two preliminary chapters outlining the background of the area, we

discuss work in three distinct areas. The first, in Chapter 3, looks at recovering solutions

in the almost-dual world when the canonical bilinear form defined for all ∨-systems (and

which plays an essential role in providing a solution to the WDVV equations) is identically

zero. Work had already been done in this direction in [4] where solutions were recovered

for two ∨-systems whose canonical form, for certain values of their parameters, became

identically zero. We show that the same can be done for various other ∨-systems and,
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most significantly, in Subsection 3.1.2 that we can recover a solution from the generalised

root system A(n− 1, n) as defined in [36]. We have verified computationally that we can

recover a solution for n 6 9 and conjecture that we can for all n. We also conjecture that

there exist generalised ∨-conditions that can be applied not only to ∨-systems with the

canonical bilinear form but also to those for which we must ‘impose’ a metric. We also

present some preliminary findings on similar work on polynomial solutions in Section 3.3.

In Chapter 4 we define extended ∨-systems. These utilise the small-orbit property

of root systems defined in [36] to obtain an (n + 1)-dimensional ∨-system from an n-

dimensional one. Note that this does not give us previously unknown ∨-systems (they are

subsets of the families of deformed ∨-systems found in [40]) but are significant in that, up

to a Legendre transformation, they are almost-dual to Dubrovin and Zhang’s extended

affine Weyl solutions found in [16] (which we show in Chapter 5). In Section 4.3 we show

that systems of B-type can be extended into 2 dimensions. This raises the question of

whether the corresponding affine Weyl solutions can be extended into 2 dimensions also.

Chapter 5 builds on the work found in [9] and [30]. In both of these works what we call

generalised Legendre fields were discussed. In the former they were thought of as maps

between connections on F -manifolds (a generalisation of Frobenius manifolds) while in

the latter they feature in the construction of an integrable hierarchy of hydrodynamic

type, a generalisation of Dubrovin’s principal hierarchy [13]. We show that we can gen-

eralise Dubrovin’s Legendre transormations defined in [13] which were generated by only

flat vector fields to those generated by any generalised Legendre field (see Propositions

5.3 and 5.14). In Section 5.3 we consider twisted Legendre transformations. These are

the transformations induced between the almost-dual counterparts of a solution and its

Legendre transformation. These had been considered in [9] and [33]. In the former even-

tual identities, vector fields which provide a new multiplication on an F -manifold were

considered whereas we consider the special case of the Euler vector field as the eventual
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identity. We find the criterion for the twisted Legendre field to be flat also. In Section

5.4 we unite our work in Chapter 4 on extended ∨ systems and that on generalised Leg-

endre transformations to show that extended ∨-systems are, up to a twisted Legendre

transformation, almost-dual to Dubrovin and Zhang’s extended affine Weyl solutions.

Finally, in Chapter 6 we consider possible avenues for further work.
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Chapter 1

The WDVV Equations and

Frobenius Manifolds

The subjects under consideration in this chapter are the Witten - Dijkgraaf - Verlinde -

Verlinde (WDVV) equations which first appeared in the papers [11] and [42] in the con-

text of two-dimensional topological field theory and their very closely related geometrical

interpretation, Frobenius manifolds, which first appeared in [12].

1.1 The WDVV equations of associativity

The WDVV equations of associativity are an over-determined system of PDE which arise

from the condition that the pair (F, η) where the function F = F (t), t = (t1, . . . , tn), is

called the prepotential and η is a non-degenerate n × n matrix called the metric (which

will be used, along with its inverse ηαβ := (ηαβ)−1 to lower and raise indices, respectively)

define, via the functions (Einstein summation is assumed throughout this thesis)

cγαβ(t) := ηγεcεαβ(t),
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where cαβγ is the (0, 3)-tensor of third derivatives of F

cαβγ(t) :=
∂3F (t)

∂tα∂tβ∂tγ
, (1.1)

a structure of an associative algebra At (which is also commutative by (1.1)) by

eα · eβ = cγαβ(t)eγ,

for any t in the n-dimensional space with basis e1, . . . , en.

In other words we must have

(eα · eβ) · eγ = eα · (eβ · eγ),

cµαβ(t)[eµ · eγ] = cµβγ(t)[eα · eµ],

[cµαβ(t)cλµγ(t)]eλ = [cµβγ(t)c
λ
αµ(t)]eλ,

cαβν(t)η
νµcµγλ(t) = cβγν(t)η

νµcαµλ(t),

or

∂3F (t)

∂tα∂tβ∂tν
ηνµ

∂3F (t)

∂tµ∂tγ∂tλ
=

∂3F (t)

∂tβ∂tγ∂tν
ηνµ

∂3F (t)

∂tα∂tµ∂tλ
, (1.2)

for all α, β, γ, λ from 1 to n. It is this system which is called the WDVV equations of

associativity.

As discussed in the introduction in some contexts we have the additional assumption

that there exists a marked variable, t1, such that the metric given by

ηαβ := c1αβ, (1.3)

is constant.
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1.1.1 Quasihomogeneity and the Euler Vector Field

We will also often want to impose quasihomogeneity on F . A näıve definition of this is

that we must have

F (λd1t1, . . . , λdntn) = λdFF (t1, . . . , tn), (1.4)

for some numbers d1, . . . , dn, dF (called the degrees of the ti) for all λ 6= 0. Note that if

all of the degrees are equal then this condition reduces to homogeneity.

By differentiating this equation with respect to λ and then setting λ = 1 we obtain

d1t1
∂F

∂t1
+ . . .+ dntn

∂F

∂tn
= dFF (t1, . . . , tn),

(which is a generalisation of Euler’s theorem) and we can see that this may be written

LEF (t) = dFF (t),

where

E =
n∑
i=1

dit
i∂i,

is called the Euler vector field and LE is the Lie derivative along E (note that the short-

hand ∂α will refer to ∂
∂tα

throughout this thesis). We may normalise the di so that d1 = 1.

We can generalise the quasihomoegenity condition by considering the addition of a

non-homogeneous quadratic function of t1, . . . , tn to F . This would render the cαβγ(t),

and hence the algebras At, and also the metric, unchanged. The condition now reads

LEF (t) = dFF (t) + Aαβt
αtβ +Bαt

α + C. (1.5)
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Furthermore, if we add a quadratic form to F

F ′(t) = F (t) + A′αβt
αtβ +B′αt

α + C ′,

we have

LEF ′(t) = LEF (t) + (dα + dβ)A′αβt
αtβ + dαB

′
αt
α, (1.6)

and

dFF
′(t) = dF (F (t) + A′αβt

αtβ +B′αt
α + C ′), (1.7)

so on substituting (1.5) and (1.7) into (1.6)

LEF ′(t) = dFF
′(t) + (Aαβ − dFA′αβ)tαtβ + (Bα − dFB′α)tα + (C − dFC ′)

+ (dα + dβ)A′αβt
αtβ + dαB

′
αt
α, (1.8)

= dFF
′(t) + [Aαβ + A′αβ(dα + dβ − dF )]tαtβ

+ [Bα +B′α(dα − dF )]tα + (C − dFC ′), (1.9)

so we can recover

LEF ′(t) = dFF
′(t),

as long as

dF 6= dα + dβ, dF 6= dα, dF 6= 0,

for all α and β.

The notion of quasihomogeneity may be extended in another way (see [13]) to include
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instances where some of the di = 0. In that case we have

E =
n∑
i=1

dit
i∂i +

∑
i|di=0

ri∂i.

The Euler vector field is conformal (see [13]), in other words

LEηαβ = Dηαβ, (1.10)

and in our case D = dF − 1. We can rewrite (1.10) as

E(η(∂α, ∂β))− η([E, ∂α], ∂β)− η(∂α, [E, ∂β]) = (dF − 1)η(∂α, ∂β), (1.11)

and since

[E, ∂α] = −dα∂α,

we have

η(dα∂α, ∂β) + η(∂α, dβ∂β) = (dF − 1)η(∂α, ∂β)

that is

(dα + dβ − dF + 1)ηαβ = 0.

So ηαβ = 0 unless dα + dβ = dF − 1. This means that if we choose the di such that

dα + dn−α+1 = dF − 1 the metric has the antidiagonal form

ηαβ = δα+β,n+1. (1.12)

Integrating (1.3) yields the prepotential

F (t) =
1

2
(t1)2tn +

1

2
t1

n−1∑
α=2

tαtn−α+1 + f(t2, . . . , tn), (1.13)
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for some function f(t2, . . . , tn).

The only other possibility which gives a different prepotential is if η11 6= 0. This is

only possible if dF = 3d1 and the prepotential obtained is

F (t) =
c

6
(t1)3 +

1

2
t1

n−1∑
α=1

tαtn−α+1 + f(t2, . . . , tn), (1.14)

where c is a non-zero constant and dα + dn−α+1 = 2.

1.1.2 Solutions for n = 2 with the assumption of a marked vari-

able and quasihomogeneity

Since the algebras At are unital the WDVV equations of associativity are automatically

satisfied. It is only the definition of the metric and quasihomogeneity which constrain the

solutions. First consider the case η11 = 0. We only consider the case d1 6= 0 (so d1 = 1).

We also assume, for the moment, that d2 6= 0. From eqn. (1.13)

F (t1, t2) =
1

2
(t1)2t2 + f(t2),

and eqn. (1.5) reads;

t1
∂F

∂t1
+ d2t

2∂F

∂t2
= dFF + α(t2)2 + βt2 + γ,

where α, β and γ are constants. Thus

(t1)2t2 +
d2
2

(t1)2t2 = dF (t1)2t2 ( =⇒ d2 = dF − 2),

and

d2t
2f ′(t2) = dFf(t2) + α(t2)2 + βt2 + γ,

10



so

t2f ′(t2)− dF
dF − 2

f(t2) = α̃(t2)2 + β̃t2 + γ̃,

putting k = dF
dF−2

, multiplying by (t2)−k−1 and rearranging gives

(t2)−kf(t2) =

∫ (
α̃

(t2)k−1
+

β̃

(t2)k
+

γ̃

(t2)k+1

)
dt2.

Integrating yields (ignoring quadratic terms)

F (t1, t2) =
1

2
(t1)2t2 + tk2, dF 6= 0, 2, 4, (1.15)

F (t1, t2) =
1

2
(t1)2t2 + logt2, dF = 0, (1.16)

F (t1, t2) =
1

2
(t1)2t2 + (t2)2logt2, dF = 4. (1.17)

In the case d2 = 0 eqn. (1.5) reads;

t1
∂F

∂t1
+ r

∂F

∂t2
= dFF + α(t2)2 + βt2 + γ,

so

(t1)2t2 =
dF
2

(t1)2t2 ( =⇒ dF = 2),

and then

f ′(t2)− 2

r
f(t2) = −r

2
(t1)2 + α̃(t2)2 + β̃t2 + γ̃, r 6= 0,

f(t2) = α̃(t2)2 + β̃t2 + γ̃, r = 0.

These give, again ignoring quadratic terms

F (t1, t2) =
1

2
(t1)2t2 + e

2
r
t2 , r 6= 0, (1.18)
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F (t1, t2) =
1

2
(t1)2t2, r = 0. (1.19)

In the case η11 6= 0 eqn. (1.14) gives

F (t1, t2) =
c

6
(t1)3 +

1

2
(t1)2t2 + f(t2),

and degrees d1 = d2 = 1. Substituting F (t1, t2) into eqn. (1.5) gives

c

2
(t1)3 + (t1)2t2 +

1

2
(t1)2t2 + t2f ′(t2) = dF

[
c

6
(t1)3 +

1

2
(t1)2t2 + f(t2)

]
+ α(t2)2 + βt2 + γ,

hence

c

2
(t1)3 =

cdF
6

(t1)3, ( =⇒ dF = 3),

and hence

t2f ′(t2)− 3f(t2) = α(t2)2 + βt2 + γ.

This equation can be solved to give

F (t1, t2) =
c

6
(t1)3 +

1

2
(t1)2t2 + (t2)3. (1.20)

This completes the list of quasihomogeneous solutions to the WDVV equations of asso-

ciativity in 2 dimensions.

1.2 Frobenius manifolds

Frobenius algebras began to be studied in the 1930s by Richard Brauer and his student

Cecil James Nesbitt and were named by them in [7]. More recently interest in them

has intensified due to their importance in topological quantum field theories (see [5]). It

was shown in [10] that when these topological field theories are two-dimensional they

are equivalent to Frobenius algebras. Frobenius manifolds, objects which possess the
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structure of a Frobenius algebra as outlined below, were introduced by Boris Dubrovin

in [12]. They have a very intimate connection with solutions of the WDVV equations of

associativity which are also quasihomogeneous.

Definition 1.21 (Frobenius algebra) [13] An algebra A defined over a field k is said to

be Frobenius if it associative, unital and is equipped with a non-degenerate bilinear form

η : A×A 7→ k which satisfies

η(X ◦ Y, Z) = η(X, Y ◦ Z),

∀X, Y, Z ∈ A where ◦ is the multiplication associated with A.

We will be exclusively concerned with Frobenius algebras which are also commutative.

Definition 1.22 (Frobenius manifold) A manifold M is called Frobenius if the tangent

space TtM at a point t ∈M is a Frobenius algebra that varies smoothly with t and

• the invariant (with respect to ◦) inner product η is flat. This means that there must

exist a set of coordinates (distinguished up to a Euclidean transformation), called

the flat coordinates of η, in which the components of η are constants,

• the unity element, e, of TtM, is covariantly constant with respect to the Levi-Civita

connection of η,

• the (0,4)-tensor ∇W c(X, Y, Z) is totally symmetric ∀W,X, Y, Z ∈ TtM where

c(X, Y, Z) = η(X ◦ Y, Z),

• the Euler vector field, E, may be determined on M such that ∇(∇E) = 0 (so E is

linear in the flat coordinates) and LEη = Dη, for a constant D, LE◦ = ◦ and

LEe = −e.
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We now show that the definition of a Frobenius manifold is equivalent to the WDVV

equations of associativity and quasihomogeneity.

Associativity of ◦ gives eqn. (1.2). In the flat coordinates covariant derivatives are just

partial derivatives so we have ∂W c(X, Y, Z) is totally symmetric. Successive applications

of the Poincaré lemma demonstrates the existence of the prepotential F (t) that satisfies

eqn. (1.1).

Since e is covariantly constant we can choose e = ∂1 and we have

η(∂1 ◦X, Y ) = η(X, Y ) = c(∂1, X, Y ),

which is eqn. (1.3).

Finally we need to show that F (t) satisfies eqn.(1.5). From LEe = −e we have

that [∂1, E] = ∂1, hence ∂1 is an eigenvector of the operator Q = ∇E with eigenvalue

1 or d1 = 1. From LEη = Dη, we have that the constant matrix
(
Qα
β

)
must satisfy

Qαβ = Dηαβ for some constant D. Using LEη = Dη again along with LE◦ = ◦ gives

LEcαβγ = (1 +D)cαβγ,

and using eqn. (1.1) this is

∂α∂β∂γ[E
ε∂εF − (1 +D)F ] = 0,

which, on integrating, is eqn. (1.5).

1.3 The Dubrovin connection

In this section and the next we follow the approach found in [26]. Let∇ be the Levi-Civita

connection of the metric η.
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Definition 1.23 (Dubrovin connnection) The Dubrovin connection is the pencil of con-

nections along a vector field X of another vector field Y

λ∇X(Y ) := ∇X(Y ) + λX ◦ Y.

for a constant λ.

Note λ∇ is torsion-free. This follows from the torsion free property of the Levi-Civita

connection and the commutativity of the multiplication.

Theorem 1.24 For a manifold M equipped with metric η and multiplication ◦ there

exists a prepotential F such that

cabd(t) =
∂3F (t)

∂ta∂tb∂td
,

and ◦ is associative if and only if λ∇ is flat.

Proof. Consider the curvature of λ∇,

R(X, Y )Z := ([λ∇X ,
λ∇Y ]− λ∇[X,Y ])Z.

We express it as

R(X, Y )Z = λ2R2(X, Y )Z + λR1(X, Y )Z,

(there is no constant term since ∇ is flat).

It is sufficient to work with flat vector fields ∂a, ∂b. From the λ-terms in

[∇∂a + λ∂a◦,∇∂b + λ∂b◦]∂d =
{
∇∂a(λ∂b◦) + λ∂a ◦ (∇∂b) + λ2∂a ◦ (∂b◦)−

∇∂b(λ∂a◦)− λ∂b ◦ (∇∂a)− λ2∂b ◦ (∂a◦)
}
∂d, (1.25)
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we see that R1 = 0 if and only if

∂ac
e
bd = ∂bc

e
ad,

thus, by the Poincaré lemma there exists an F such that

cabd(t) =
∂3F (t)

∂ta∂tb∂td
. (1.26)

From the λ2-terms in (1.25) we see that R2 = 0 if and only if

∂a ◦ (∂b ◦ ∂d) = ∂b ◦ (∂a ◦ ∂d),

in other words, if ◦ is associative and thus, with (1.26), we have the WDVV equations.�

1.4 Semi-simple Frobenius manifolds

We will be primarily concerned with semi-simple Frobenius manifolds throughout this

thesis. This means that the Frobenius algebra at a generic point t on the manifold is

semi-simple.

Definition 1.27 (Semi-simple algebra) An n-dimensional algebra A with multiplication

◦ is said to be semisimple if it is isomorphic, as a C-algebra, to Cn with component-

wise multiplication. This means that a basis, e1, . . . , en of the algebra can be chosen with

multiplication given by

ei ◦ ej = δji ei.

The coordinates on a Frobenius manifold on whose tangent space this multiplication holds,

u1, . . . , un are called canonical.

Theorem 1.28 [26] Canonical coordinates on a semi-simple Frobenius manifold (M, η, ◦)

always exist.
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Proof. Since M is Frobenius we have, by Theorem (1.24), that

[λ∇ei ,
λ∇ej ](ek) = λ∇[ei,ej ](ek). (1.29)

Also since M is associative and assuming η is flat (we will derive the conditions for this

to be true) we need only consider the terms linear in λ in this equation. Define the

Riemannian connection coefficients of η for the basis ek:

∇ei(ek) =
∑
q

Γ q
ikeq. (1.30)

The left side of (1.29) yields the λ-terms

λei ◦ ∇ej(ek) + λ∇ei(ej ◦ ek) − (i↔ j),

or

λei ◦
∑
q

Γ q
jkeq + λ

∑
q

δkjΓ
q
ikeq − (i↔ j),

or

λ
∑
q

(δiqΓ
q
jk + δkjΓ

q
ik − δ

q
jΓ

q
ik − δ

k
i Γ

q
jk)eq. (1.31)

Now introduce the obstructions to the commutativity of the ei, the f qij by

[ei, ej] =
∑
q

f qijeq.

The right of (1.29) is

λ∇[ei,ej ](ek) = ∇[ei,ej ](ek) + λ[ei, ej] ◦ ek,
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and so yields λ-terms

λ[ei, ej] ◦ ek = λ
∑
q

f qijeq ◦ ek

and this must equal 0 since the coefficient of ek in (1.31) vanishes. Hence the f qij = 0, the

ei pairwise commute and hence canonical coordinates exist (ei = ∂ui). �

In fact the left side of (1.29) vanishes. We will use this fact to help us show when

the metric in canonical coordinates is flat. First let us compute the metric in canonical

coordinates. We have

η(∂i, ∂j) = η(∂i ◦ ∂i, ∂j) = η(∂i, ∂i ◦ ∂j) = η(∂i, ∂iδ
j
i ) = δji η(∂i, ∂i).

So the metric is diagonal. We will denote η(∂i, ∂i) by H2
i and introduce the rotation

coefficients

γij :=
∂iHj

Hi

.

Definition 1.32 (Egoroff metric) A diagonal metric

η =
∑

ηii(du
i)2,

is said to be Egoroff if there exists a function Φ(u1, . . . , un) called the metric potential

such that

ηii =
∂Φ

∂ui
.

Lemma 1.33 The rotation coefficients, γij, are symmetric in i and j if and only if the

metric is Egoroff.

Proof. For an Egoroff metric

γij =
∂j
√
∂iΦ√
∂jΦ

=
1

2

∂i∂jΦ√
∂iΦ
√
∂jΦ

,
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conversely, for γij symmetric in i and j we have

∂j
√
ηii√
ηjj

=
∂i
√
ηjj√
ηii

,

1

2

∂jηii√
ηjjηii

=
1

2

∂iηjj√
ηjjηii

,

∂jηii = ∂iηjj,

as required. �

We will find the conditions on Φ such that the metric is flat in the next subsection but

first we state and prove

Theorem 1.34 Flatness of the metric on a semi-simple Frobenius manifold implies that

it is Egoroff.

Proof. For any metric η =
∑
ηijdu

iduj the coefficients of the Levi-Civita connection are

given by

Γ k
ij =

∑
l

Γijlη
lk,

where

Γijk =
1

2
(∂iηjk − ∂kηij + ∂jηki).

So the non-zero connection coefficients of η =
∑
H2
i (dui)2 are (i 6= j):

Γ i
ii =

∂iHi

Hi

= γii, Γ j
ii = −Hi

H2
j

∂jHi = −Hi

Hj

γji, and Γ i
ij = Γ i

ji =
∂jHi

Hi

=
Hj

Hi

γji.

Hence by (1.30) we have

∇i(∂i) = (γii)∂i −

(∑
l 6=i

Hi

Hl

γli

)
∂l, (1.35)
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and

∇i(∂j) =

(
Hj

Hi

γji

)
∂i +

(
Hi

Hj

γij

)
∂j. (1.36)

Now, the vanishing of the λ-terms on the left of (1.29) means that

∂i ◦ ∇∂j(∂k) +∇∂i(∂j ◦ ∂k) = ∂j ◦ ∇∂i(∂k) +∇∂j(∂i ◦ ∂k).

This equation is trivially satisfied for i = j and i 6= j 6= k 6= i but on substituting (1.35)

and (1.36) for the case i 6= j = k gives

∂i ◦

{
(γjj)∂j −

(∑
l 6=i

Hj

Hl

γlj

)
∂l

}

+

(
Hj

Hi

γji

)
∂i +

(
Hi

Hj

γij

)
∂j = ∂j ◦

{(
Hj

Hi

γji

)
∂i +

(
Hi

Hj

γij

)
∂j

}
,

(
−Hj

Hi

γij +
Hj

Hi

γji

)
∂i +

(
Hi

Hj

γij

)
∂j =

(
Hi

Hj

γij

)
∂j,

γij = γji,

the result follows from Lemma (1.33) (the case of j 6= i = k is identical). �

Proposition 1.37 In canonical coordinates the unity field is

e =
∑
i

∂i, (1.38)

and the Euler field is

E =
∑
i

ui∂i.

Proof. The first statement is easily seen from

(∑
i

∂i

)
◦ ∂i = ∂i ◦ ∂i = ∂i.
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The second statement follows from the requirements that LE◦ = ◦ and LEη = Dη. The

first of these is equivalent to

[E,X ◦ Y ]− [E,X] ◦ Y −X ◦ [E, Y ] = X ◦ Y,

for all vector fields X, Y . Evaluating this with E =
∑
Ei∂i, X = ∂k and Y = ∂l gives

∂kE
i = δik, so Ei = ui + ci,

where the ci are constants. Similarly (1.11) with X = ∂i and Y = ∂j is equivalent to

E∂iΦ = (D − 2)∂iΦ.

Since E∂i = ∂iE − ∂i this can be integrated to give

EΦ = (D − 1)Φ + const,

and so the canonical coordinates can be normalised to give the result. �

1.4.1 The Darboux-Egoroff equations

It remains to find the conditions the rotation coefficients must satisfy to ensure the met-

ric is flat. These are called the Darboux-Egoroff equations. We will now derive them.

Substituting (1.35) and (1.36) into

∇i∇j(∂k) = ∇j∇i(∂k), (1.39)
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gives, for i 6= j = k

∇i

{
γjj∂j −

(∑
l 6=j

Hj

Hl

γlj

)
∂l

}
= ∇j

{(
Hj

Hi

γji

)
∂i +

(
Hi

Hj

γij

)
∂j

}
,

∂i(γjj)∂j + γjj

{(
Hj

Hi

γji

)
∂i +

(
Hi

Hj

γij

)
∂j

}
− ∂i

(∑
l 6=j

Hj

Hl

γlj

)
∂l

−
(
Hj

Hi

γij

){
(γii)∂i −

(∑
m 6=i

Hi

Hm

γmi

)
∂m

}
−
∑
p 6=i,j

(
Hj

Hp

γpj

{[
Hp

Hi

γpi

]
∂i +

[
Hi

Hp

γip

]
∂p

})
= ∂j

(
Hj

Hi

γji

)
∂i +

(
Hj

Hi

γji

){(
Hi

Hj

γij

)
∂j +

(
Hj

Hi

γji

)
∂i

}
+ ∂j

(
Hi

Hj

γij

)
∂j +

(
Hi

Hj

γij

){
(γjj) ∂j −

(∑
q 6=j

Hj

Hq

γqj

)
∂q

}
. (1.40)

Equating the coefficients of ∂i,

γjj
Hj

Hi

γji − ∂i
(
Hj

Hi

γij

)
− Hj

Hi

γijγii −
∑
m 6=i,j

(
Hj

Hi

γmjγmi

)
= ∂j

(
Hj

Hi

γji

)
+

(
H2
j

H2
i

γ2ji

)
− γ2ij,

performing the differentiation,

Hj

Hi

γjjγji −
Hj

Hi

∂i(γij)− γij
Hi∂iHj −Hj∂iHi

H2
i

− Hj

Hi

γijγii

−
∑
m6=i,j

(
Hj

Hi

γmjγmi

)
=
Hj

Hi

∂i(γji) + γji
Hi∂jHj −Hj∂jHi

H2
i

+
H2
j

H2
i

γ2ji − γ2ij,

multiplying by Hi
Hj

and rearranging,

∂i(γij) + ∂j(γji) +
∑
m 6=i,j

(γmjγmi) = γjjγji

− γij
(
Hi

Hj

γij − γii
)
− γijγii − γji

(
γjj −

Hj

Hi

γji

)
− Hj

Hi

γ2ji +
Hi

Hj

γ2ij,
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∂i(γij) + ∂j(γji) +
∑
m6=i,j

(γmjγmi) = 0. (1.41)

The coefficient of ∂j in (1.40) is

∂i(γjj)− ∂j
(
Hi

Hj

γij

)
≡ ∂i∂jHj

Hj

− ∂iHj∂jHj

H2
j

− γij
(
Hj∂jHi −Hi∂jHj

H2
j

)
− Hi

Hj

(
Hi∂j∂iHj − ∂iHj∂jHi

H2
i

)
,

=
∂i∂jHj

Hj

− Hi

Hj

γijγjj − γij
(
γji −

Hi

Hj

γjj

)
− ∂j∂iHj

Hj

+ γijγji = 0.

Equating coefficients of ∂l, (l 6= i, j) in (1.40) gives

−∂i
(
Hj

Hl

γlj

)
+
Hj

Hl

γijγli −
HiHj

H2
l

γilγlj = −Hi

Hl

γijγlj,

−γlj
(
Hi

Hl

γij −
HjHi

H2
l

γil

)
− Hj

Hl

∂i(γlj) +
Hj

Hl

γijγli −
HiHj

H2
l

γilγlj = −Hi

Hl

γijγlj,

∂i(γlj) = γijγli. (1.42)

Similar calculations show that (1.39) is satisfied for i 6= j 6= k 6= i as long as (1.41) and

(1.42) hold (there is nothing to prove for i = j).

Since the rotation coefficients are symmetric we can substitute (1.42) into (1.41) to

obtain ∑
m

∂mγij = 0,

or

e(γij) = 0. (1.43)

Corollary 1.44 The rotation coefficients are quasihomogeneous with degree −1.

Proof. Recall from Proposition (1.37) we had
∑
k

uk∂i∂kΦ = (D− 2)Φi. Applying ∂j gives
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∑
k

uk∂j∂i∂kΦ = (D − 3)Φij.These can be rewriiten as

∑
k

uk∂kH
2
i = (D − 2)H2

i ,

or ∑
k

uk∂kHi =
D − 2

2
Hi,

and ∑
k

uk∂j∂kH
2
i = (D − 3)∂jH

2
i ,

∑
k

uk(2∂jHi∂kHi + 2Hi∂j∂kHi) = (D − 3)∂jH
2
i ,

∂jHi

Hi

∑
k

uk∂kHi +
∑
k

uk∂j∂kHi = (D − 3)∂jHi,

or ∑
k

uk∂j∂kHi =

(
D − 4

2

)
∂jHi.

Using these results we see that

E(γij) =
∑
k

uk∂k(γij) =
∑
k

uk∂k

(
∂iHj

Hi

)
,

=
∑
k

uk
(
Hi∂k∂iHj − ∂iHj∂kHi

H2
i

)
,

=
∂jHi

Hi

(
D − 4

2

)
− ∂jHi

Hi

(
D − 2

2

)
,

E(γij) = −γij. (1.45)

�

(1.42), (1.43) and (1.45) are the Darboux-Egoroff equations and their satisfaction is equiv-

alent to the existence of a Frobenius structure.
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1.5 The intersection form

Another metric exists on a Frobenius manifold called the intersection form. It is defined

on the cotangent bundle T ∗M by

g∗(dti, dtj) := iE(dti ◦ dtj),

where iE means contraction of a 1-form with the Euler vector field, so

(dti, dtj) = Ekcijk .

Let us denote the intersection form by gij. Its matrix inverse (where it exists), gij, defines

a metric on the tangent bundle, related to the original metric via

g(∂i, ∂j) = η
(
E−1 ◦ ∂i, ∂j

)
, (1.46)

and so is not defined where E is not invertible. (We will henceforth use the shorthand

g(·, ·) := (·, ·) and η(·, ·) :=< ·, · >).

To see this note that

(∂i, ∂j) = csij
〈
E−1, ∂s

〉
= csij

(
E−1

)p
< ∂p, ∂s >= csij

(
E−1

)p
ηps

hence

giagaj = Ekciak c
s
aj

(
E−1

)p
ηps,

= ciak cajpE
k
(
E−1

)p
,

= ciajc
a
kpE

k
(
E−1

)p
,
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by associativity

= ciaj (∂k ◦ ∂p)aEk
(
E−1

)p
,

= ciaj
(
Ek∂k ◦

(
E−1

)p
∂p
)a
,

= ciaje
a = (ea∂a ◦ ∂j)i = ci1j = c1jbη

bi = ηjbη
bi = δij.

Definition 1.47 (Flat pencil of metrics) Consider a manifold supplied with two non-

proportional metrics on its cotangent bundle T ∗M given in a coordinate system by their

components gij1 and gij2 and with Christoffel symbols of their contravariant Levi-Civita

connections Γ ij
1k and Γ ij

2k. The two metrics are said to form a flat pencil if

• the metric

gij := gij1 + λgij2 ,

is flat ∀λ and

• the contravariant Levi-Civita connection of this metric is given by

Γ ij
k = Γ ij

1k + λΓ ij
2k.

We will show that gαβ and ηαβ form a flat pencil but first let us recall some basic facts of

differential geometry. The Levi-Civita connection of a metric gαβ is uniquely determined

by

∇kg
ij := ∂kg

ij + Γ i
ksg

sj + Γ j
ksg

is = 0,

and

Γ k
ij = Γ k

ji,
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or, in terms of the contravariant components Γ ij
k := −gisΓ j

sk

∂kg
ij = Γ ij

k + Γ ji
k , (1.48)

and

gisΓ jk
s = gjsΓ ik

s . (1.49)

The Riemann curvature tensor in terms of the contravariant components is [14]

Rijk
l := gisgjtRk

slt = gis
(
∂sΓ

jk
l − ∂lΓ

jk
s

)
+ Γ ij

s Γ
sk
l − Γ ik

s Γ
sj
l .

Lemma 1.50 ( [13], Appendix D) If, for a flat metric in a coordinate system x1, . . . , xn

both the components gij(x) of the metric and Γ ij
k (x) of the corresponding contravariant

Levi-Civita connection depend linearly on the coordinate x1 then the metrics

gij1 := gij and gij2 := ∂1g
ij,

form a flat pencil, provided det
(
gij2
)
6= 0. The corresponding Levi-Civita connections are

Γ ij
1k := Γ ij

k , Γ ij
2k := ∂1Γ

ij
k .

Proof. The equations (1.48), (1.49) and the vanishing of the Riemann curvature tensor

have constant coefficients. So the transformation

gij(x1, . . . , xn) 7→ gij(x1 + λ, . . . , xn), Γ ij
k (x1, . . . , xn) 7→ Γ ij

k (x1 + λ, . . . , xn),

for an arbitrary λ maps the solutions of these equations to themselves. By the assumption
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we have

gij(x1 + λ, . . . , xn) = gij1 (x) + λgij2 (x), Γ ij
k (x1 + λ, . . . , xn) = Γ ij

1k + λΓ ij
2k(x). �

Theorem 1.51 ηαβ and gαβ form a flat pencil of metrics

Proof. We proceed as in [29]. This will be proved by showing that

P = g + λη

satisfies the criteria of Lemma (1.50).

Firstly, to see that P is non-degenerate recall that for Euler vector fields with d1 = 1

we can chose flat coordinates in such a way that

gαβ(t) = E1cαβ1 +
n∑
i=2

Eicαβi = t1ηαβ + g̃αβ(t2, . . . , tn). (1.52)

So

gαβ(t) + ληαβ = ηαβ(t1 + λ) + g̃αβ(t2, . . . , tn) (1.53)

is non-degenerate ∀λ. Equation (1.52) also shows that g depends linearly on t1. We also

have that the contravariant Christoffel symbols of the intersection form are (see [15])

∂

∂t1
gΓαβ

γ =
∂

∂t1

{(
d− 1

2
δεγ + (∇E)εγ

)
cαβγ

}
= 0,

since ∂1c
αβ
γ = 0.

Finally we need to show that the curvature of P is zero. By (1.48) we have, in the flat

coordinates of η

∂

∂tγ
Pαβ =

∂

∂tγ
(
gαβ + ληαβ

)
=

∂

∂tγ
gαβ = gΓαβ

γ + gΓ βα
γ .
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(1.49) for P reads

(gαε(t) + ληαε)PΓ βκ
ε = (gβε(t) + ληβε)PΓακ

ε ,

or, on using (1.53)

(ηαε(t1 + λ) + g̃αε(t2, . . . , tn))PΓ βκ
ε = (ηβε(t1 + λ) + g̃αε(t2, . . . , tn))PΓακ

ε ,

equating coefficients of t1,

(ηαε)PΓ βκ
ε = (ηβε)PΓακ

ε =⇒ (gαε)PΓ βκ
ε = (gβε)PΓακ

ε .

Hence

PΓαβ
γ = gΓαβ

γ =⇒ PRα
βγδ = gRα

βγδ,

and gRα
βγδ = 0. �

We can, with the additional conditions of quasihomogeneity and regularity, go the other

way and show that a flat pencil of metrics gives rise to a Frobenius structure. We refer

the reader to [14] for a comprehensive discussion.

1.6 The Landau-Ginsburg superpotential

For any semi-simple Frobenius manifold, M , one may construct a function of one variable

(which may depend on t = (t1, . . . , tn)), λ(z; t), called the Landau-Ginsburg superpotential,

in terms of which the Frobenius structure may be expressed thus [13]:
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Theorem 1.54

< ∂α, ∂β > = −
∑

res
dλ=0

{
∂αλ(z)∂βλ(z)

λ′(z)
ω

}
,

c(∂α, ∂β, ∂γ) = −
∑

res
dλ=0

{
∂αλ(z)∂βλ(z)∂γλ(z)

λ′(z)
ω

}
,

(∂α, ∂β) = −
∑

res
dλ=0

{
∂α log λ(z)∂β log λ(z)

(log λ)′(z)
ω

}
,

c∗(∂α, ∂β, ∂γ) = −
∑

res
dλ=0

{
∂α log λ(z)∂β log λ(z)∂γ log λ(z)

(log λ)′(z)
ω

}
.

where ∂α, ∂β and ∂γ are arbitrary tangent vectors on M and ω is the primary differential,

different choices of which lead to Frobenius manifolds related by Legendre transformations

(see Section 5.4).

The c∗(∂α, ∂β, ∂γ) refers to almost dual Frobenius manifolds whose multiplication is defined

in terms of the intersection form (and which will be the subject of Chapter 3).

For the full details of why the above formulae hold we refer the reader to [13] and

outline the reasoning here. The critical values of λ(z, t) are the canonical coordinates on

the semi-simple Frobenius manifold:

λ(qi, t) = ui,

dλ

dz

∣∣∣∣
z=qi

= 0.

Near a critical point λ must have an expansion

λ = ui −
(z − qi)2

2ηii(u)
+O(z − qi)3.

If we now consider

−
∑

res
dλ=0

∂iλ∂jλ

dλ
dz,
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(where the choice of primary differential ω = dz has been made) we can see that the

points at which dλ = 0 are the qi. Also, at each z = qk we have

∂iλ|z=qk = δik.

So the residues are zero except when i = j = k. Thus

< ∂i, ∂i > = − res
z=qi

1

λ′
,

= res
z=qi

1
2(z−qi)
2ηii

+O(z − qi)2
,

= − res
z=qi

1

z − qi
1

1
ηii

+O(z − qi)
,

=
1

1
ηii

+O(z − qi)

∣∣∣∣∣
z=qi

,

= ηii.

So

< ∂i, ∂j >= δijηii,

as required. The other three formulae are found similarly.

We are now in a position to present an important and well-known construction due

to Dubrovin that gives Frobenius manifolds in all dimensions. It is intimately related to

the family of Coxeter groups An, the details of which, along with all other finite Coxeter

groups, will be explored in the next chapter.

Example 1.55 Consider the n-dimensional manifold, M , identified with the space of

polynomials

λ(z) = zn+1 + a1z
n−1 + a2z

n−2 + . . .+ an, (1.56)
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with coordinate functions a1, . . . , an such that the derivative
dλ

dz
has no repeated roots.

The tangent plane to M at a point a = (a1, . . . , an) consists of all polynomials of degree

strictly less than n.

M is a semi-simple Frobenius manifold with canonical coordinates, ui, given by the

critical points of λ(z):

ui = λ(αi) where λ′(αi) = 0, for i = 1, . . . , n.

To see this first observe

δji =
∂ui
∂uj

=
∂λ

∂uj
(αi) + λ′(αi)

∂αi
∂uj

=
∂λ

∂uj
(αi) since λ′(αi) = 0.

This tells us that we must have

∂λ

∂uj
=
∏
r 6=j

z − αr
αj − αr

, (1.57)

since both sides have the same degree, n− 1, and agree at n-points, α1, . . . , αn.

If we now define a metric (with reference to the start of this section) by

ηij = − res
dλ=0

∂λ

∂ui

∂λ

∂uj

dz

λ′
,

we see that
∂λ

∂ui

∂λ

∂uj
is divsible by λ′(z) = (n+ 1)(z − α1) . . . (z − αn) for i 6= j and so the
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residue vanishes. For i = j we have

ηii = − res
z=αi

∏
s 6=i

(z−αs)2
(αi−αs)2

(n+ 1)
∏

l(z − αl)
dz,

= − res
z=αi

∏
s 6=i

(z−αs)
(αi−αs)2

(n+ 1)(z − αl)
dz,

= − 1

n+ 1

∏
s 6=i

(z − αs)
(αi − αs)2

∣∣∣∣
z=α1

,

= − 1

n+ 1

∏
s 6=i

1

αi − αs
,

and since

λ′′(z) = (n+ 1)
∑
t

∏
m 6=t

(z − αm),

we have

ηii = − 1

λ′′(αi)
.

To see that the metric is Egoroff consider an alternative, to (1.57), expression

∂λ

∂uj
=

n∑
r=1

∂ar
∂uj

zn−r,

and equate coefficients of zn−1:

∂a1
∂uj

=
1∏

r 6=j
(αj − αr)

or

∂a1
∂uj

= −(n+ 1)ηjj,
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so the metric is Egoroff with potential

Φ = − a1
n+ 1

.

Recall (1.38) that the unity field in canonical coordinates is e =
∑

i ∂i so summing

δji =
n∑
r=1

∂ar
∂uj

zn−r

∣∣∣∣∣
z=αi

,

tells us that
n∑
r=1

e(ar)z
n−r is a polynomial of degree (n − 1) and has value 1 at z =

α1, . . . , αn and so must be identically 1. So we have

e =
∂

∂an
.

A similar calculation [26] gives the Euler vector field as

E =
1

n+ 1

∑
r

(r + 1)ar
∂

∂ar
.

It remains to show that η is a flat metric: introducing a new function λ(z) = wn+1,

inverting gives a Puiseaux series as z →∞

z(w, t) = w +
t1
w

+
t2
w2

+ . . .+
tn
wn

+ . . . ,

and so

η

(
∂λ

∂ti
,
∂λ

∂tj

)
= − res

z=∞

(
∂λ

∂ti
,
∂λ

∂tj

)
dz

λ′(z)
= − res

z=∞

λ′(z)2dz

wi+jλ′(z)
= − res

w=∞
(n+ 1)wn−i−jdw,

which gives constant coefficients [24].
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We will return to this approach of calculating prepotentials from superpotentials in Chap-

ter 3 when we consider almost-dual-like Frobenius manifolds and then again in Chapter

5 when we consider extended affine Weyl orbit spaces.
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Chapter 2

Finite Coxeter Groups and

Polynomial Frobenius Manifolds

This chapter is concerned with the class of solutions to the WDVV equations with the

assumption that there exists a marked variable and which are quasihomogeneous and

which have polynomial prepotentials. That these solutions are related to the finite Coxeter

groups was first noted by V. I. Arnold [13] who observed, for n = 3, that the degrees of

the polynomials were 1 more than the Coxeter numbers of the groups of symmetries of

the Platonic solids (4 for the tetrahedron, 6 for the cube and 10 for the icosahedron).

We will see, via the Saito construction, how to obtain these polynomial prepotentials

from a given Coxeter group but first we will discuss the classification of the finite Coxeter

groups.

2.1 Finite Coxeter groups

In this section we summarise some of the key points from the first two chapters of [25].

Recall that we say a reflection, sα, of Rn equipped with a positive definite symmetric bi-

linear form (µ, ν), in a vector α ∈ Rn sends α to its negative whilst leaving the hyperplane
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Hα orthogonal to α unchanged. For an arbitrary λ ∈ Rn we have

sαλ := λ− 2(λ, α)

(α, α)
α.

Definition 2.1 (Root system) A root system, Φ is a finite set of non-zero vectors in Rn

such that

1. Φ ∩ kα = {α,−α} ∀α ∈ Φ, k ∈ R,

2. sαΦ = Φ ∀α ∈ Φ.

We define its associated reflection group W as that generated by all reflections sα, α ∈ Φ.

It turns out that the situation can be considerably simplified by considering only a system

of simple roots, ∆. Such a system is a linearly independent subset of Φ such that all α ∈ Φ

is a linear combination of members of ∆ with coefficients all of the same sign. In fact

W is generated by reflections in the simple roots: if we denote the order of the product

of reflections sα and sβ by m(α, β) (so, for example m(α, α) = 1) we can say that W is

generated by the set S = {sα, α ∈ ∆} subject only to the relations

(sαsβ)m(α,β) = 1. (2.2)

For a Coxeter group some of the m(α, β) can be infinite, [6], but all finite Coxeter groups

have a presentation subject only to the relations (2.2). More precisely the pair (W,S) is

called a Coxeter system. It turns out that finite Coxeter groups are precisely the finite

reflection groups.

2.1.1 Coxeter graphs

We have seen that W is determined by the m(α, β). A way to encode this information is

via a Coxeter graph. Such a graph has a set of vertices in one-to-one correspondence with
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∆ and has vertices joined by an edge whenever m(α, β) > 3 and labelled as such (but not

when m(α, β) = 3 since it occurs so frequently). For all vertices without an edge between

them m(α, β) = 2.

The Coxeter system (W,S) is irreducible if its Coxeter graph is connected. In other

words, [6], S is non-empty and there exists no partition of S into two distinct subsets S ′

and S ′′ such that every element of S ′ commutes with every element of S ′′.

Theorem 2.3 [6, 25] The graph of any irreducible finite Coxeter system (W,S) is iso-

morphic to one of the following;

An ◦ − ◦ − · · · − ◦ − ◦ (n > 1)

Bn ◦ − ◦ − · · · − ◦
4
− ◦ (n > 2)

Dn ◦ − ◦ − · · · −
◦
|
◦ − ◦ (n > 4)

E6 ◦ − ◦ −
◦
|
◦ − ◦ −◦

E7 ◦ − ◦ −
◦
|
◦ − ◦ − ◦ −◦

E8 ◦ − ◦ − ◦ − ◦ −
◦
|
◦ − ◦ −◦

F4 ◦ − ◦
4
− ◦ −◦

G2 ◦
6
−◦

H3 ◦
5
− ◦ −◦

H4 ◦
5
− ◦ − ◦ −◦

I2(p) ◦
p
− ◦ (p = 5 or p > 7)
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2.1.2 Crystallographic reflection groups and root systems

Finite Coxeter groups can be subdivided according to whether they are crystallographic

reflection groups or not. This is the same as saying whether the finite Coxeter group

stabilizes a lattice L ∈ Rn (the Z-span of a basis of Rn) or not. Considering the fact

that the atoms in a crystal occupy the nodes of a regular lattice indicates the origin of

the name. It turns out that W is crystallographic if m(α, β) = 2, 3, 4, 6 for all α 6= β.

We see immediately from Theorem (2.3) that the crystallographic reflection groups are

the infinite families An, Bn and Dn and the exceptional groups E6, E7, E8, F4 and G2.

Crystallographic reflection groups are also called Weyl groups which explains the choice

of W for a finite reflection froup in this chapter.

Definition 2.4 A root system, Φ is said to be crystallographic if, in addition to the

conditions of Definition 2.1 it also satisfies

2(α, β)

(β, β)
∈ Z for all α, β ∈ Φ.

Crystallographic root systems are very closely related to crystallographic reflection groups

but with a subtle difference: there are distinct crystallographic root systems Bn and Cn

each having as Weyl group the group labelled above as Bn. Defining the coroots

α∨ :=
2α

(α, α)
,

the set Φ∨ of all coroots is also a crystallographic root system in Rn and, in most cases,

is isomorphic to Φ. However, the root systems of Bn and Cn are dual to each other.

39



2.1.3 A description of the An, Bn and Dn families

We now present an explicit description of root systems of the infinite families of finite

Coxeter groups. These will be studied in more detail in Chapter 3 when we examine

∨-systems.

• An

W is the symmetric group Sn+1. This can be seen by considering a permutation

acting on Rn+1 by permuting the standard basis vectors ε1, . . . , εn. The transposi-

tion (ij) acts as a reflection, sending εi− εj to its negative and fixing pointwise the

orthogonal complement, those vectors in Rn having equal ith and jth components.

Since Sn+1 is generated by transpositions it is therefore a reflection group.

Sn+1 fixes pointwise the line spanned by ε1 + . . . + εn+1 and leaves stable the or-

thogonal complement, the hyperplane consisting of vectors whose coordinates add

up to 0. In other words, Sn+1 acts on Rn as a group generated by reflections.

We define Φ to be the set of all vectors of squared length 2 in the intersection of

this hyperplane with the standard lattice Zε1 + . . . + Zεn+1. Hence Φ consists of

the n(n+ 1) vectors

εi − εj (1 6 i 6= j 6 n+ 1).

• Bn

Other reflections can be defined by sign changes of the εi. These sign changes

generate a group isomorphic to (Z/2Z)n (normalised by Sn). W is the semi-direct

product of this and Sn.

Define Φ to be the set of all vectors in the standard lattice of squared length 1 or

2 and thus is comprised of the 2n short roots ±εi and the 2n(n − 1) long roots

±εi ± εj (i < j).
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• Dn

W is the subgroup of the group of type Bn involving an even number of sign changes,

the semidirect product of Sn and (Z/2Z)n−1.

Define Φ as the set of vectors of squared length 2 in the standard lattice and thus

is comprised of the 2n(n− 1) roots ±εi ± εj (i < j).

For a similar description of the exceptional Coxeter groups see [6] or [25].

2.2 Polynomial Frobenius manifolds

We have already seen (Example 1.55) examples of Frobenius manifolds with polynomial

Frobenius structures. That example found Frobenius manifolds corresponding to the

Coxeter group An. In this section we will extend this idea to outline how to construct

a Frobenius manifold from any finite Coxeter group. All such manifolds have polyno-

mial Frobenius structures. In fact it was proved by Hertling in [23] that all semi-simple

polynomial Frobenius manifolds arise from finite Coxeter groups.

2.2.1 Frobenius structures on Coxeter group orbit spaces

We now consider the action of a Coxeter group W on polynomial functions of the co-

ordinates of the vector space V , x1, . . . , xn (which are defined by a choice of basis for

V ) on which W acts. We denote by S(V ) the ring of such polynomial functions and by

R = S(V )W that subring of polynomials which is invariant under the action of W . It

turns out that this subring has an interesting basis, determined by W .

Theorem 2.5 (Chevalley [25]) Let R be the subalgebra of R[x1, . . . , xn] consisting of

W -invariant polynomials. Then R is generated as an R-algebra by n homogeneous, alge-

braically independent elements y1, . . . , yn of positive degree, (together with 1). The degrees

of these generators are uniquely determined by the Coxeter group W .
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Table 2.1 lists the orders of the invariant polynomials for all the finite Coxeter groups.

Coxeter Group dn, . . . , d1
An 2,3,. . . ,n+1
Bn 2,4,6,. . . ,2n
D2k 2, 4, . . . , 2k − 2, 2k, 2k, 2k + 2 . . . , 4k − 2
D2k+1 2, 4, . . . , 2k, 2k + 1, 2k + 2, 2k + 4, . . . , 4k
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30
F4 2, 6, 8, 12
G2 2, 6
H3 2, 6, 10
H4 2, 12, 20, 30
I2(k) 2, k

Table 2.1: The degrees of the invariant polynomials of the finite Coxeter groups

Example 2.6 (Polynomial solutions for n = 3) Extending the calculations of subsection

(1.1.2) to n = 3 requires us to consider associativity. We now look for solutions of the

form

F (t) =
1

2
(t1)2t3 +

1

2
t1(t2)2 + f(t2, t3).

Associativity imposes the single constraint on f = f(x, y) (see [13])

f 2
xxy = fyyy + fxxxfxyy. (2.7)

Recall that we normalise the degrees so d1 = 1 and that dα + dn−α+1 = dF − 1. So this

gives d2 = (dF − 1)/2 and d3 = dF − 2. Substituting these along with

f(x, y) =
∑
p,q∈N

apqx
pyq
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into (1.4) gives

1

2
cdF [(t1)2t3 + t1(t2)2] +

∑
p,q∈N

apqc
p(dF−1)/2(t2)pcq(dF−2)(t3)q =

cdF [
1

2
(t1)2t3 +

1

2
t1(t2)2 +

∑
p,q∈N

apq(t
2)p(t3)q].

So we only have apq 6= 0 for

dF

(p
2

+ q − 1
)

=
p

2
+ 2q.

We consider the case where the degrees are real positive numbers which means dF > 2.

So we require

2 <
p+ 4q

p+ 2q − 2
,

and since we are only interested in terms in which p + q > 4 (recalling that the flat

coordinates are only defined up to linear transformations) this inequality reduces to

p < 4.

We therefore look for a function of the form

f = a1x
3yα + a2x

2yβ + a3xy
γ + a4y

δ,
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subject to the constraints α > 1, β > 2, γ > 3 and δ > 4. It turns out that the only

3-dimensional polynomial Frobenius manifolds are

F1(t) =
1

2
(t1)2t3 +

1

2
t1(t2)2 + a21(t

2)2(t3)2 +
4

15
a41(t

3)5,

F2(t) =
1

2
(t1)2t3 +

1

2
t1(t2)2 + a2(t

2)3t3 + 6a22(t
2)2(t3)3 +

216

35
a42(t

3)7, (2.8)

F3(t) =
1

2
(t1)2t3 +

1

2
t1(t2)2 + a3(t

2)3(t3)2 +
27

15
a23(t

2)2(t3)5 +
9

11
a43(t

3)11.

for arbitrary constants a1, a2, a3. We can eliminate the arbitrary constants in each of the

above by putting

t1 → a
2

deg(Fi)

i t1,

t2 → a
− 1

deg(Fi)

i t2,

t3 → a
− 4

deg(Fi)

i t3.

These polynomials correspond to the Coxeter groups A3, B3 and H3. This can be seen

by reference to Table 2.1. For A3 we see that t3, t2 and t1 are invariant polynomials of

degrees 2, 3 and 4 respectively. Hence each term of the first of the prepotentials (2.8)

has degree 10. Similarly for B3, t3, t2 and t1 have orders 2, 4 and 6 and each term in the

second prepotential has degree 14 and for H3 the polynomials have degrees 2, 6 and 10

and each term in the third prepotential has degree 22.

Definition 2.9 Writing di :=deg yi we define

h = d1 > d2 > . . . > dn−1 > dn = 2.

h is called the Coxeter number of W .
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The degrees satisfy the duality condition

di + dn−i+1 = h+ 2, i = 1, . . . , n.

Remark 2.10 The coordinate y1 and hence the vector field ∂
∂y1

are fixed up to a scalar

multiple. Also, every Coxeter group has a degree 2 invariant polynomial which is a scalar

multiple of the distance from the origin and can be chosen to be

yn =
1

2h

n∑
i=1

(xi)2.

By a standard transformation of a (0, 2)-tensor we have

gij(y) =
∂yi

∂xa
∂yj

∂xa
, (2.11)

and the corresponding contravariant Levi-Civita connection

Γ ij
k (y)dyk =

∂yi

∂xa
∂2yj

∂xa∂xb
dxb. (2.12)

The Saito metric, introduced in [34], is given by

ηij(y) := ∂1g
ij(y). (2.13)

From Lemma (1.50) we see that if we can show that gij(y) and Γ ij
k (y) depend at most

linearly on y1 and that det(ηij(y)) 6= 0 then gij and ηij form a flat pencil.

Proposition 2.14 (4.1 in [13]) gij(y) and Γ ij
k (y) depend linearly on y1.

Proof. From (2.11) and (2.12) we see that gij(y) and Γ ij
k (y) are graded homogeneous
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polynomials of degrees

deggij(y) = di + dj − 2, (2.15)

degΓ ij
k = di + dj − dk − 2.

Since di + dj 6 2h = 2d1 these polynomials can be at most linear in y1. �

We now show the non-degenerateness of ηij(y) following [13].

Theorem 2.16 The Saito metric has the form

ηij = 0, i+ j > n+ 1,

with constant anti-diagonal elements

ci := ηi(n+1−i).

Also

c := det(ηij)

is a non-zero constant.

Proof. From (2.13) and (2.15) we have

deg ηij(y) = di + dj − 2− h.

So from the duality condition we have deg ηi(n−i+1) = 0 and deg ηij < 0 for i+ j > n+ 1

and hence the first two assertions of the theorem.

To show the third we consider

D(y) := det(gij(y)),
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as a polynomial in y1,

D(y) = c(y1)n + a1(y
1)n−1 + . . .+ an,

where a1, . . . , an are quasihomogeneous polynomials in y2, . . . , yn of degree h, 2h, . . . , nh

respectively. Let λ be the eigenvector of a Coxeter transformation T with eigenvalue e
2πi
h

(see [6], Chap. V). Then

yk(λ) = yk(Tλ) = yk(e
2πi
h λ) = e

2πidk
h yk(λ).

So we have

yk(λ) = 0, k = 2, . . . , n,

but D(λ) 6= 0 (again see [6]) so we must have c 6= 0. �

Further more, if the flat pencil is regular and quasihomogenous then there must be a

unique Frobenius structure on the space of orbits of the Coxeter group (see [14])). A full

discussion of this area is beyond the scope of this thesis so we quote a result from [13]

and refer the reader there for a full treatment.

Theorem 2.17 Let t1, . . . , tn be the flat coordinates of ηαβ (called the Saito flat coordi-

nates) on the space of orbits of a finite Coxeter group and

ηαβ = ∂1(dt
α, dtβ)∗,

be the corresponding constant Saito metric. Then there exists a quasihomogeneous poly-

nomial F (t) of degree 2h+ 2 such that

(dtα, dtβ)∗ =
(dα + dβ − 2)

h
ηαληβµ∂λ∂µF (t). (2.18)
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F (t) determines on the space of orbits a polynomial Frobenius structure with the structure

constants

cγαβ = ηγε∂α∂β∂εF (t),

the unity field

e = ∂1,

the Euler vector field

E =
∑(

1− degtα

h

)
tα∂α,

and the invariant inner product η.

Example 2.19 (Dihedral groups I2(k)) The Coxeter group I2(k) is the symmetry group

of a regular k-gon in R2 centered at the origin and arranged symmetrically about the real

axis. It is generated by the reflection z → z and the rotation z → e2πi/kz. The basic

invariant polynomials generating R are

y1 = zk + zk,

and

y2 =
1

2k
zz.

the components of gij are given by

g11(y) = (dy1, dy1) = 4
∂y1

∂z

∂y1

∂z
= 4k2(zz)k−1 = (2k)k+1(y2)k−1,

g12(y) = (dy1, dy2) = 2

(
∂y1

∂z

∂y2

∂z
+
∂y2

∂z

∂y1

∂z

)
= (zk + zk) = y1 (= g21(y)),

g22 = 4
∂y2

∂z

∂y2

∂z
=

2

k
y2.
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Therefore the Saito metric is given by

ηij =

 0 1

1 0

 ,

and so, in this instance, y1 and y2 coincide with the Saito flat coordinates. (2.18) gives

(2k)k+1(y2)k−1 =
2k − 2

k
∂2∂2F (t),

y1 = ∂1∂2F (t),

and

y2 = ∂1∂1F (t).

Thus on integrating we obtain

F =
1

2
(y1)2(y2) +

(2k)k+1

2(k2 − 1)
(y2)k+1.

Note that this coincides (up to a linear transformation) with (1.15).

So we have two different methods of constructing polynomial Frobenius manifolds: via

the residue calculations as seen in Example 1.55 and via the Saito construction utilising

invariant theory as we have just seen. The former is computationally simpler.
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Chapter 3

Almost Duality and ∨-systems

Dubrovin, in [15], introduced what are called almost dual Frobenius manifolds. These

utilise the intersection form and a new multiplication on the tangent space of a Frobenius

manifold to construct a new entity which satisfies all of the axioms of Frobenius manifolds

except the covariant constancy of the unity. The new multiplication, ? is defined by

u ? v := E−1 ◦ u ◦ v,

for u, v ∈ TtM and t ∈ M\Σ where Σ is called the discriminant and is where E is not

invertible.

Clearly ? is associative, commutative and has unity element E. Also, by (1.46)

(u ? v, w) = (E−1 ◦ u ◦ v, w) =
〈
E−2 ◦ u ◦ v, w

〉
=
〈
E−1 ◦ u,E−1 ◦ v ◦ w

〉
= (u, v ? w),

in other words the matrix inverse of the intersection form is invariant with respect to ?.

It remains to prove that

∇γcαβρ = gγε∂εc
αβ
ρ − Γ γα

ε cεβρ − Γ γβ
ε cαερ + Γ γε

ρ c
αβ
ε
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is symmetric in α, β and γ, where ∇ is the Levi-Civita connection of the intersection form.

We follow the proof in [15]. We can rewrite

gγε∂εc
αβ
ρ = gγε∂ρc

αβ
ε = ∂ρ

(
cαβε gεγ

)
− cαβε

(
Γ γε
ρ + Γ εγ

ρ

)
,

to obtain

∇γcαβρ = ∂ρ
(
cαβε gεγ

)
− Γ γα

ε cεβρ − Γ γβ
ε cαερ − cαβε Γ εγ

ρ .

Using the result (from [15]) that

Γαβ
γ =

(
1

2
− V

)β
ε

cαεγ ,

where V := 2−d
2
−∇ηE we have

∇γcαβρ = ∂ρ
(
cαβε gεγ

)
−
(

1

2
− V

)α
λ

cγλε c
εβ
ρ −

(
1

2
− V

)β
λ

cγλε c
αε
ρ −

(
1

2
− V

)γ
λ

cαβε cελρ .

By associativity

∇γcαβρ = ∂ρ
(
cαβε gεγ

)
−

{(
1

2
− V

)α
λ

cγβε c
ελ
ρ +

(
1

2
− V

)β
λ

cαγε c
ελ
ρ +

(
1

2
− V

)γ
λ

cαβε cελρ

}
.

Clearly the second term is symmetric in α, β and γ. Symmetry of the first term follows

from

cαβε gεγ = iE(cαβε dtε ◦ dtγ) = iE(dtα ◦ dtβ ◦ dtγ).

That E is also the Euler vector field of the new algebra structure follows from the formulae

for the Lie derivatives

LEgαβ = (d− 1)gαβ, LEcαβγ = (d− 1)cαβγ .
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Proposition 3.1 There exists a function F ∗(z) defined by

∂3F ∗(z)

∂zi∂zj∂zk
= GiaGjb

∂tγ

∂zk
∂za

∂tα
∂zb

∂tβ
cαβγ (t), (3.2)

where z1, . . . , zn are flat coordinates of the intersection form, Gij is the intersection form

expressed in these coordinates, which satisfies the associativity equations

∂3F ∗

∂zi∂zj∂za
Gab ∂3F ∗

∂zb∂zk∂zl
=

∂3F ∗

∂zl∂zj∂za
Gab ∂3F ∗

∂zb∂zk∂zi
(i, j, k, l = 1, . . . , n).

Proof. We have shown above that all of the axioms of a Frobenius manifold (except

covariant constancy of the unity) are satisfied and hence such a prepotential must exist.

Since ? and ◦ are the same on T ∗M we have

cαβγ (t) = c∗αβγ ,

and the definition of F ∗ follows from a change of coordinates of this (2,1)-tensor and

lowering the indices with Gij. �

3.1 ∨-systems

In the 1990s it was found that, in the context of Seiberg-Witten theory (see [1]), there

existed solutions of what are known as the generalised WDVV equations. What distin-

guishes these equations from those discussed thus far is the absence of a need for one of

the matrices of third derivatives of F to be independent of the coordinates of F and hence

composed entirely of constant entries. It was found that such solutions take the form

F =
∑
α∈R

(α · z)2log(α · z), (3.3)
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where R is any finite Coxeter root system (see [27] and [28]). This class of solutions

became ever broader as deformations of the An and Bn families found in [8], deformed

root systems related to Lie superalgebras in [37] and restrictions of Coxeter systems

along any parabolic subgroup in [22] were all found to yield prepotentials that solved the

WDVV equations. These deformed solutions are no longer dual to a Frobenius manifold

with covariantly constant unity and so are known as almost-dual-like solutions.

In [40] Veselov derived geometric conditions, the ∨-conditions, that any system of

covectors must satisfy in order for (3.3) to solve the generalised WDVV equations. Such

systems are called ∨-systems:

Definition 3.4 (∨-system) Let V be a real vector space and A be a finite set of covectors

spanning the dual space V ∗. We associate the canonical form GA on V :

GA(x, y) =
∑
α∈A

α(x)α(y), (3.5)

where x, y ∈ V . This is a non-degenerate scalar product which establishes the isomorphism

ϕA : V → V ∗,

and we denote

ϕ−1A (α) := α∨.

A is called a ∨-system if, for any α ∈ A (which we will refer to as ‘the pivot’), and any

2-plane π containing α we have

∑
β∈π∩A

β(α∨)β∨ = λα∨, (3.6)

for some constant λ = λ(α, π).
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Remark 3.7 When π contains 3 or more covectors λ must be the same no matter the

choice of pivot, see [4].

This was expanded to include complex vector spaces in [21]. For real vector spaces the

only condition on the elements of A for the metric to be non-degenerate is that they span

V ∗. That the metric is non-degenerate is a stronger assumption for complex vector spaces,

however. We have found examples of systems for which the metric under this definition

is degenerate but which still solve the WDVV equations with another metric imposed on

them. We detail these solutions in Subsection 3.1.3 and Section 3.2.

It will often be convenient to express covectors in the factorised form
√
hαα, in which

case we will refer to hα as the multiplicity of the covector (since, by (3.3), this is how

it appears in the prepotential). The multiplicity is not unique (obviously, any covector

can be factorised in infinitely many ways) and does not contain any extra data. For

instance, say (i, i, i) is a member of a ∨-system. The term that this would contribute to

the prepotential is

(iz1+iz2+iz3)
2Log(iz1+iz2+iz3) ' (−z21−z22−z23−2z1z2−2z1z3−2z2z3)Log(z1+z2+z3)

(the prepotential is only defined up to quadratic terms) and we could say that the covector

is (1, 1, 1) with multiplicity −1. A negative multiplicity implies a complex ∨-system.

3.1.1 The deformed An and Bn ∨-systems

In [32] the last of the residue formulae in Theorem 1.54 was used to derive the almost-

dual-like prepotential corresponding to the superpotential

λ(z) =
n∏
i=0

(z − zi)ci
∣∣∣∣∣ n∑
i=0

cizi=0

. (3.8)

54



Note that when the ci = 1 this is a factorisation of (1.56). (The restriction
∑
zi = 0

is equivalent to the coefficient of the zn term being 0 in (1.56)).When at least 1 of the

c1 6= 1, however, the construction in Example 1.55 no longer holds and we do not have

a Frobenius manifold. Remarkably, though, we are still able to obtain almost-dual-like

solutions with the zi being the flat coordinates. We now summarise the calculations that

appeared there.

The initial calculation involved another restriction on the values the ci could take,

namely the superpotential had the form

λ(z) =
m∏
i=0

(z − zi)ci
∣∣∣∣∣ m∑
i=0

cizi=0

and
∑
ci = n+ 1. Residues were then calculated to obtain the following results.

Lemma 3.9 For i, j, k distinct

c∗ijk = −cicjck
c20

m∑
r=1

cr
z0 − zr

− cicjck
c0

(
1

z0 − zi
+

1

z0 − zj
+

1

z0 − zk

)
,

with precisely two of the indices identical we have

c∗iij = −c
2
i cj
c20

m∑
r=1

cr
z0 − zr

− c2i cj
c0

(
2

z0 − zi
+

1

z0 − zj

)
+ cicj

(
1

zi − z0
− 1

zi − zj

)
,

and with three identical indices

c∗iii = −c
3
i

c30

m∑
r=1

cr
z0 − zr

− 3c3i
c0

1

z0 − zi
+ 3c2i

1

zi − z0
+ ci

∑
s 6=i

cs
zi − zs

.
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These expressions may then be integrated to obtain the prepotential

F ∗ =
1

8

m∑
r=0

∑
s 6=r

crcs(z
r − zs)2log(zr − zs)2

∣∣∣∣∣ m∑
i=0

cizi=0

.

It was then shown that this result could be generalised to remove the restriction on

the sum of the ci resulting in the almost-dual-like prepotential

F ∗ =
1

8

n∑
r=0

∑
s 6=r

crcs(z
r − zs)2log(zr − zs)2

∣∣∣∣∣ n∑
i=0

cizi=0

.

From this prepotential we can extract the deformed An ∨-system found in [8]

An(c) =


√
cjck(ej − ek), 1 6 j < k 6 n− 1,

√
cjej, j = 1, . . . , n− 1,

(3.10)

where, without loss of generality, the restriction zn = 0 has been applied as well as putting

cn = 1. However, in [8] the ci are restricted to being positive but in [32] there is no such

restriction to which the geometric interpretation that the negative ci determine which

Hurwitz space one is dealing with and the positive ci determine which discriminant the

solution comes from was given.

Similarly for the Bn superpotential

λ(z) = z2c0
N∏
i=1

(
z2 − (zi)2

)ci , (3.11)

one obtains the solution

F =
N∑
i=1

2ci(c0 + ci)(z
i)2 log zi +

∑
i 6=j

cicj
(
zi ± zj

)2
log
(
zi ± zj

)
,
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from which we can extract the ∨-system found in [8]

Bn(c) =


√
cicj(ei ± ej), 1 6 i < j 6 n,√
2ci(ci + c0)ei, i = 1, . . . , n.

(3.12)

In [8] it was required that the ci are arbitrary real positive constants and c0 > −ci ∀i but

again in the superpotential approach no such stipulations are made.

3.1.2 Generalised root systems

There are certain special values of the deformation parameters in (3.10) and (3.12) which

yield systems, called generalised root systems, that will be of particular interest to us in

the next chapter and which Serganova in [36] defined thus:

Definition 3.13 Let V be a finite-dimensional complex vector space with a non-degenerate

bilinear form ( , ) . The finite set U ⊂ V \ {0} is called a generalized root system if the

following conditions are fulfilled:

1. U spans V and U = −U ;

2. if α , β ∈ U and (α, α) 6= 0 then 2 (α,β)
(α,α)

∈ Z and rα(β) = β − 2 (α,β)
(α,α)

α ∈ U ;

3. if α ∈ U and (α, α) = 0 then for any β ∈ U such that (α, β) 6= 0 at least one of the

vectors β + α or β − α belongs to U .

The classification of irreducible generalised root systems was given in [36] and coincides

with the list of basic classical Lie superalgebras given in [41]. When all of the ci in (3.12)

and (3.10) are ±1 these systems satisfy the above conditions. We now detail them.
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• The series A(m,n), m 6= n− 1

Consider the following data:

U = {αij := ei − ej , i 6= j , i, j = 0 , . . . , n+m}|∑ εjzj=0 ,

εi =


+1 if i = 0 , . . . ,m ,

−1 if i = m+ 1 , . . . , n+m

,

g =
m+n∑
i=0

εi(dz
i)2

∣∣∣∣∣∑
εjzj=0

.

This constitutes a generalized root system (recall, elements of U are covectors and

the metric g defines the vectors) and, as may be easily verified, a ∨-system with

multiplicities hαij = εiεj . Note

(α∨ij, α
∨
ij) = εi + εj ,

so the squared lengths can be +2 , 0 or −2 , reflecting the split signature of the

metric g . If n = 0 the system reduces to the standard Coxeter root system for Am .

• The series B(m,n)

Consider the following data:

U = {±ei ± ej , i 6= j , i, j = 1 , . . . , n+m} ∪ {ei , i = 1 , . . . , n+m} ,

εi =


+1 if i = 1 , . . . ,m ,

−1 if i = m+ 1 , . . . , n+m

,

g =
m+n∑
i=1

εi(dz
i)2 .
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This constitutes a generalized root system (recall, elements of U are covectors and

the metric g defines the vectors) and, as may be easily verified, a ∨-system with

multiplicities h±ei±ej = hεiεj and h±ei = 2εi(2εi + γ) . Note

(α∨ij, α
∨
ij) = εi + εj , (α∨i , α

∨
i ) = εi ,

(where αij = ±ei ± ej and αi = ±ei) so the squared lengths can be +2 ,+1 , 0 ,−1

or −2 , reflecting the split signature of the metric g . If n = 0 the system reduces to

the standard Coxeter root system for Bm .

• The case of A(n− 1, n)

When m = n− 1 (and so equal numbers of the εi equal 1 and −1) the metric under

the above definition (and which coincides with (3.5)) is singular and so the system

is not a ∨-system. In fact, all of the covectors lie on the plane

2n−1∑
i=1

zi = 0,

and so do not span V inevitably leading to a degenerate metric. However, we can

still recover a solution to WDVV by restricting for a second time and so the metric

is

g =
2n−1∑
i=1

εi(dz
i)2

∣∣∣∣∣2n−1∑
j=1

εjjz=0

,

and we have a (2n− 2)-dimensional system of of n(2n− 1) covectors.

Example 3.14 A(2, 3) after the restrictions z5 → z0 + z1 + z2 − z3 − z4 and z4 →
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z0 + z1 + z2 − z3 have been applied becomes

Arestr(2, 3) =



ei − ej, 1 6 i < j 6 3,

−e1 − e2 − e3 + 2e4,

e4,

e1 + e2 + e3 − e4,

ei − e4, i = 1, 2, 3,

−ei − ej + e4, 1 6 i < j 6 3,

ei, i = 1, 2, 3

with the multiplicity of the first 6 covectors being 1 and of the other 9 being -1. The metric

is

G−1 =



0 −1 −1 1

−1 0 −1 1

−1 −1 0 1

1 1 1 −2


.

In fact, we can generalise this system by introducing arbitrary constants ci which take

the rôle of the εi as well as featuring in the covectors themselves. The system is now

Arestr(n− 1, n; c) =



√
−Scicj(ei − ej), 1 6 i < j 6 2n− 2,√
−Scj
c2n−1

(c2n−1ej +
∑
ckek), j = 1, . . . , 2n− 2,

S
√
cjej, j = 1, . . . , 2n− 2,

S√
c2n−1

2n−2∑
j=1

cjej,

60



where S =
2n−1∑
i=1

ci and the metric is

g =
2n−2∑
i=1

[ci(dz
i)2] +

1

c2n−1

(
2n−2∑
i=1

cidz
i

)
,

which reduces to the above example for n = 3, c1 = c2 = c3 = 1, c4 = c5 = −1. We

have verified, computationally that this system solves the WDVV equations up to n = 9

and conjecture that it does so for all n. Note that the metric of this system by the usual

definition (3.5) is identically zero.

See [37] for a comprehensive discussion of all of the generalised root systems appearing

in [36] as well as a complete list of what are known as their admissible deformations (which

also yield ∨-systems, see [21]).

3.1.3 Complex Euclidean ∨-systems

As we have already seen the above definition of a ∨-system excludes some of the gener-

alised root systems (A(n − 1, n) as outlined above but also others, see [21]). In [21] this

discrepancy was rectified by the introduction of complex Euclidean ∨-systems (which may

or may not be ∨-systems):

Definition 3.15 Let V be a complex Euclidean space, which is a complex vector space

with a non-degenerate bilinear form B. Let A be a finite set of vectors in V . We say

A is a complex Euclidean ∨-system if the canonical form (3.5) is proportional to B and

any of its two-dimensional subsystems is either reducible or the restriction of (3.5) is

proportional to the restriction of B on that plane.

Crucially, the constant of proportionality is allowed to be 0 and so this definition includes

systems with identically zero canonical form (although they can not be called ∨-systems,

again see [21]).
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However, as we have just seen, we are able to recover a solution to the WDVV equa-

tions by imposing a metric on such a system. Note that Arestr(n−1, n; c) is not, in general,

a complex Euclidean ∨-system: for arbitrary ci two-dimensional subsystems of it do not

have canonical forms (in their corresponding plane) proportional to the Euclidean bilinear

form. We now generalise the infinite family of systems of covectors with zero canonical

form Arestr(n− 1, n; c), show how to recover a solution to WDVV and will show, in Sec-

tion 3.2, that we can recover solutions to WDVV from many other systems for which the

canonical form is singular.

3.1.4 A further generalisation of Arestr(n− 1, n; c)

The family Arestr(n− 1, n; c) just discussed can be generalised still further to include all

dimensions (not just even ones) and, as we shall see, there exists an even more general

system (which we call Pn) spanning an n-dimensional subspace of an (n+ 1)-dimensional

space (from which Arestr(n− 1, n; c) can be recovered). Such a ‘parent’ system is, in fact,

much easier to describe.

Definition 3.16 Pn (n > 3) is the (n+ 1)-parameter family of (n+1)(n+2)
2

covectors :

Pn(c) =


ej − ek, 1 6 j < k 6 n+ 1,

(−S + cj)ej +
∑
m6=j

cmem, j = 1, . . . , n+ 1,

where S is as defined above, the multiplicities of the ej−ek-type covectors are −Scjck and

those of the others are cj. This system solves the WDVV equations with any metric of

the form

g =
n+1∑
j=1

(cidz
i)2 +B

(
n+1∑
i=1

cidz
i

)2

with B an arbitrary constant.
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We have verified computantionally that this system solves the WDVV equations up to

n = 7 and again conjecture that it does so for all n. The canonical form for Pn is

identically zero (this is clear since it does not span the space in which it is expressed) and

it is not a complex Euclidean ∨-system for arbitrary ci. We can obtain Arestr(n
2
, n
2

+ 1; c)

(and also precisely analogous odd-dimensional systems) by sending

zn+1 → 1

cn+1

n∑
i=1

ciz
i.

The reason that we say Pn is more general than Arestr(n − 1, n; c) is that this is not the

only way we can obtain a system in an n-dimensional space from Pn. We can also send

(for simplicity we consider the case where the ci = 1),

zn+1 → 1−
√
n+ 1

n

n∑
j=1

zj,

which gives

Prestr
n =



ej − ek, 1 6 j < k 6 n,

(
√
n+ 1− 1)

∑
i

ei + nej, j = 1, . . . , n,

(n+ 1−
√
n+ 1)

∑
i

ei − n(n+ 1)ej, j = 1, . . . , n,

∑
i

ei,

with multiplicites for the the first two types of covector being −n2(n+ 1), 1 for the third

and n2(n + 1) for the last. This system solves the WDVV equations with the Euclidean

metric.
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An analogue to Pn with the 2-plane structure of Bn+1 only exists for n = 3, 4:

P(B)
n =



−nei +
∑
j 6=i

ej, i = 1, . . . , n+ 1,

(n+ 1)(ei − ej), 1 6 i < j 6 n+ 1,

(1− n)ei + (1− n)ej + 2
∑
k 6=i,j

ek, 1 6 i < j 6 n+ 1,

with metric

g =
n+1∑
j=1

(dzi)2 +B

(
n+1∑
i=1

dzi

)2

where B is an arbitrary constant and the multiplicites of the three types of covector are

(in the above order) 1, m2 and 4+m2

8
(where m is an arbitrary constant) for n = 3 and

5, 25 and 10 for n = 4. These turn out to be the ∨-systems F3(t) and (E8, A4) respectively

(see [22]).

Since all the systems in this subsection have zero canonical form we must impose

metrics on them to obtain a solution to the WDVV equations. The ∨-conditions do not

apply to them since the ‘natural’ metric is central to the derivation of the ∨-conditions.

We have shown that they solve the WDVV equations with the use of the computing

package Mathematica but, of-course, this does not constitute a rigorous proof. Such a

proof would require a new formulation of the ∨-conditions that included the case where

a metric is imposed on a system of covectors.

Conjecture 3.17 There exists a generalised version of the ∨-conditions which includes

those cases where the canonical form is identically zero but a solution to the WDVV

equations can be recovered by imposing a metric.

We hope to prove this in future work.
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3.2 More instances of imposing a metric to recover a

solution to WDVV

We have already seen examples of complex Euclidean ∨-systems (Subsection 3.1.4) for

which the canonical form (3.5) is zero (and hence are not ∨-systems) but for which we

can impose a metric to recover a solution to WDVV.

There has already been work done in this direction in [4] where the equivalence of the

∨-conditions and a vector space V with non-degenerate bilinear form g and a collection

of rank one endomorphisms {ρH := αH⊗α∨H}H∈H where the set V = {α}α∈V span V ∗ and

H = {H}H∈H is a set of hyperplanes defined by H = Ker(α) having the Kohno condition

[
∑

H∈H, L⊂H

ρH , ρK ] = 0,

for each ρK with K ∈ L where L is a linear subspace of codimension 2 obtained by

intersection of members of H, was shown. Also in that paper two examples of ∨-systems

which have zero canonical form for certain values of their parameters were discussed

(D3(t, s) with s + t + 1 = 0 and G3(t) with t = −1/2) and it was shown that, at the

singularity, they lose their unity field

∑
α∈V

ρHα = Id,

where Hα is the hyperplane defined by α.

Below we list several other instances for which we can recover a solution. It is natural to

conjecture that we can recover a solution from all systems whose canonical form becomes

singular for certain values of their parameters. Such singular counterparts do not appear

to exist for the classical Dn family of ∨-systems or for the exceptional E6, E7 and E8
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∨-systems. A possible direction of future work could be to derive the condition(s) a

∨-system must satisfy in order for it to have a corresponding singular solution or even

to derive generalised ∨-conditions that are satisfied not only by the known ∨-systems

but also by these systems which solve WDVV with an imposed metric. We now list the

different cases.

• The case of the Bn(c) family

The metric of (3.12) is identically zero when c0 +
∑
ci = 0 but we can recover

a solution by dividing the metric by c0 +
∑
ci, and then evaluating the inverse

metric at c0 +
∑
ci = 0. The relative squared-lengths of and angles between the

covectors are just what we have in the non-singular case with this relation between

the parameters.

• The case of F3(
i√
2
) (see [35])

With t2 = −1
2

the first three covectors vanish and the metric is identically zero. We

can recover a solution with the Euclidean metric, however.

• The case of F4(
−i√
2
) (see [22])

The system of 24 covectors

F̂4 =


2ej, 1 6 j 6 4,

i
√

2(ej ± ek), 1 6 j < k 6 4,

e1 ± e2 ± e3 ± e4,

where the signs can be chosen arbitrarily solves the WDVV equations with the

Euclidean metric. The relative lengths-squared of the covectors are 1 and −1 as

opposed to 2 and 1 in the real case. The angles between the covectors are the same

in both cases.

66



• The case of AB(1, 3)

The ∨-system related to the Lie superalgebra AB(1, 3) (see [22]) consists of the 18

covectors

AB(1, 3) =



aej, 1 6 j 6 3,

be4,

(ej ± ek), 1 6 j < k 6 3,

c(e1 ± e2 ± e3 ± e4), (signs chosen arbitrarily),

where

a2 = 2(2c2 + 1), b2 =
2c2(2c2 − 1)

c2 + 1
.

If we set c2 = −1
2

the first three covectors vanish and the metric is identically zero.

However, we can recover a solution with the metric

G = (dz1)2 + (dz2)2 + (dz3)2 − (dz4)2.

• The case of the An(c)

The An(c) family’s canonical form is singular when
∑
ci + 1 = 0. We can recover

a solution, however, simply by dividing the metric by
∑
ci + 1, finding the inverse

metric and then evaluating this at
∑
ci+1 = 0. The relative squared-lengths of and

angles between the covectors are just the same as in the non-singular case but with

this relationship between the parameters substituted. There is an extra subtlety

in this case to those previously encountered in that this inverse metric is actually

singular itself.
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3.3 A similar strategy applied to polynomial solu-

tions

Inspired by the above solutions for which the conventional metric is singular we revisit

the polynomial solutions of Example 2.6 and perform a similar operation: we look for

prepotentials for which the metric defined in the usual way,

ηαβ = c1αβ

is singular but when equipped with the antidiagonal metric (1.12) solves the WDVV

equations. First consider prepotentials of the form

F = a1t
α
1 + a2t

β
2 + a3t

γ
3 + a12t

δ
1t
ε
2 + a13t

ζ
1t
η
3 + a23t

θ
2t
λ
3 + a123t

µ
1 t
ν
2t
ρ
3,

where the coefficients and indices are arbitrary constants. We can make the metric singular

by having F linear in t1 or by putting the coefficients a12 and a123 or a13 and a123 equal to

0. By doing so we find three families of solutions to the WDVV equations (each equipped

with the anti-diagonal metric) which are quasihomogeneous for certain values of their

parameters but, since we have divorced the metric from the multiplication, no longer

have a unity vector field and so do not have the structure of Frobenius manifolds.

Type I

F = a1t1t
α
3 + a2t2t

β
3 + a3t

γ
3 α, β > 2, γ > 3.

This family is always quasihomogeneous.
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Type II

F = a1t1t
α
3 + a2t2t

β
3 + a3

α

2
t22t

α−1
3 + a4t

γ
3 α, β > 2, γ > 3.

This family is quasihomogenous when γ = 2β − α + 1.

Type III

F = a1t
α
1 + a2t1t

2
3 + a3t

γ
3 + a4t

δ
2 α, γ, δ > 3.

This family is quasihomogeneous when α = γ
γ−2 .

It is interesting that, as in the non-singular case, we find that there are 3 different

types of polynomial solutions (albeit multiparameter familes in the singular case) but

an association with the three 3-dimensional Coxeter groups A3, B3 and H3 (see Example

(2.6)) is not immediately apparent.

Of course, it is not only polynomial solutions that can have a singular metric under

the old definition, for instance the prepotential

F = t1e
a1t1+a2t2−a2

a21
t3
, (3.18)

solves WDVV with the antidiagonal metric.

We have also found instances of solutions where the metric is not flat, for example

F = a1t
3
1 + a2t1t

2
3 + a3t

α
3 + a4t

β
2 , α, β > 3,
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ηab = ∂ta∂tbF =


3a1t1 0 a2t3

0 1
2
(β − 1)βa4t

β−2
2 0

a2t3 0 a2t1

 .

A future direction of work would be to find what other functional forms which have

singular metric under the old definition solve the WDVV equations with the anti-diagonal

metric and to find the conditions that a pair (F, η) must possess in order to provide a

solution.
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Chapter 4

Extended ∨-systems

This chapter builds upon the superpotential approach found in Subsection 3.1.1. When

the ci = 1 for all i in (3.10) and (3.12) these reduce to the well-known An and Bn

solutions, with configurations being the root vectors of these Coxeter groups. Introducing

multiplicities, either in the zeros or poles of the superpotential - depending on the sign of

the ci - destroys this interpretation, and also introduces a split signature metric. From

the analysis of the case when

cext = {c , 1 , . . . , 1︸ ︷︷ ︸
m

,−1 , . . . ,−1︸ ︷︷ ︸
n

}

it was found that the configuration could be interpreted as an extension into a perpen-

dicular direction of the lower dimensional configuration defined by

c = {1 , . . . , 1︸ ︷︷ ︸
m

,−1 , . . . ,−1︸ ︷︷ ︸
n

} .

The origin of this configuration - which defines a generalized root system - from a ra-

tional superpotential aids in the interpretation of its symmetries: the superpotential is

invariant under interchange of zeros and of poles. Isotropic roots can be interpreted as

an interchange of zeros and poles
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The structure of the chapter is as follows. Firstly we construct extended ∨-systems.

Starting with a ∨-system we extend the configuration into a one-dimension higher space

by adding a one-dimensional orthogonal direction and adding certain special covectors

to the original configuration. We then derive the (extra)-conditions required for this

extended configuration to be a ∨-system. This construction utilizes the idea of a small-

orbit, as introduced by Serganova [36]. Thus extended ∨-systems are ∨-systems, but

in one dimension higher than the original system. We then consider the case of the

generalised root systems.

We will return to these extended ∨-systems in the next chapter where we will perform

Legendre transformations on them and see their connection to the extended affine Weyl

group orbit spaces studied in [16] and [17].

Example 4.1 Consider the following solution to the WDVV equations [33],

F ? =
1

4

(
x2 log x+ y2 log y − (x− y)2 log(x− y)

)
with g = 2dx dy . This solution is the almost dual to the Frobenius manifold defined by the

prepotential

F =
1

2
t21t2 + t22 log t2 .

The configuration of vectors {±(1, 0) ,±(0, 1) ,±(1,−1)} seems somewhat asymmetric.

Figure 4.1: The geometry of the ∨-configuration
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However this does not take into account the split signature of the metric. If one rotates the

diagram and superimposes the light-cone, this iluminates the geometry of the configuration:

Figure 4.2: The geometry of the ∨-configuration, rotated with superimposed light cone

The vectors {±(1, 0) ,±(0, 1)} are null and the vectors ±(1,−1) are spacelike.

This example also motivates the main construction. We start with a configuration

U = {±(1,−1)} spanning a space V (i.e. the configuration is the roots system for the

Coxeter group A1) and extend into a perpendicular direction defined by the normal vector

n = 1
2
(1, 1) . With this one obtains an extended space V ext , and an extended space of

configurations U ext may be constructed by extending certain vectors into the perpendicular

direction, so

(0, 1) =
1

2
(−1, 1) + n ,

(1, 0) =
1

2
(1,−1) + n .

What makes the vectors ±1
2
(1,−1) special is the following important property: their

difference lies in U . This is known as the small orbit property and its existence will be

crucial to what follows.

Thus given a space V and configuration U we extend into a perpendicular space

V ext and form a new configuration U ext by extending vectors in the small orbit of U .

Imposing the ∨-conditions on the extended configuration then constrains the various

objects, notably the constants ha associated to each covector.

Definition 4.2 Let U be a ∨-system.
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(a) A small orbit ϑs of the ∨-system is a finite set of covectors such that

w1 − w2 ∈ U

for all w1 , w2 ∈ ϑs , with w1 6= w2.

(b) An invariant small orbit is a particular case of a small orbit and consists of pairs

(w, hw), where w is a small orbit covector with associated multiplicity hw, which

satisfy the additional conditions:

(i)
∑

w∈ϑs hww(z)2 = hs(z, z) ,

(ii)
∑

w∈ϑs hww(z) = 0

for all z ∈ V .

The first part of the definition is just an adaption of the concept of a small orbit for Weyl

groups [36], and the adjective ‘orbit’ reflects this origin. In applications this set could be

invariant under the action of the Weyl group (and hence a bone-fide orbit), but even if

there is no such group we keep this adjective. In the second part of the definition, the

adjective ‘invariant’ is used since, if U is a Coxeter configuration (i.e. the root system of

a Coxeter group, with multiplicities equal on each orbit), the two conditions in part (b)

are, by basic properties of invariant theory, automatically satisfied.

Let us recall

Definition 4.3 The set of fundamental weight vectors, wi, for a Coxeter group W with

simple roots αi, . . . , αn is given by

2
(wi, αj)

(αj, αj)
= δji .
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Small orbits for Coxeter configurations were introduced and classified by Serganova

[36]:

Theorem 4.4 Let ωi be the fundamental weight vectors for a finite Coxeter group W .

The small orbits of rank > 2 are given by:

1. An : ϑs = Wω1 or Wωn ;

2. Bn , BCn , Cn(n > 4) : ϑs = Wω1 ;

3. B2 : ϑs = Wω1 ;

4. B3 : ϑs = Wω1 or Wω3 ;

5. BC2 : ϑs = Wω1 or 2Wω2 ;

6. C3 , BC3 : ϑs = Wω1 ;

7. Dn(n > 3 , n 6= 4) : ϑs = Wω1 ;

8. D4 ;ϑ = Wω1 ,Wω3 or Wω4 ;

9. G2 : ϑs = Wω1 .

It is interesting to note that the exceptional Coxeter groups do not have any small orbits.

In the following construction of extended ∨-systems the existence of a small orbit is shown

to be sufficient but it is not necessary, see Example 4.16 where a variation of an extended

∨-system is constructed for the F4 root system.

The main construction in the first part of this chapter may be explained by the fol-

lowing example.

Example 4.5 We begin with the root system (automatically a ∨-system) for the Coxeter

group A2 . This is shown in the left-hand diagram in Figure 4.3. The small-orbit is given,
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Figure 4.3: The roots of A2 and the small orbit superimposed on the roots

by Theorem 4.4, by the orbit of a weight vector, and this orbit is shown, superimposed on

the root system, in the right-hand diagram in Figure 4.3.

We now extend the configuration into a third dimension by adding a normal vector to the

end of each small-orbit vector and adding its negative. For A2 this is shown in Figure 4.4.

Figure 4.4: The (partial) construction of an extended ∨-system

Repeating the construction gives an extended configuration. For A2 this is shown in Figure

4.5.

As in the previous example, the metric in the 3-dimensional space, and in particular its

signature, depends on the geometry and multiplicities of these new extended vectors.

This extended configuration is not, at present, a ∨-system. One now imposes the ∨-
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Figure 4.5: An extended ∨-system

conditions to obtain algebraic conditions which restricts the new data. It is at this stage

that the small-orbit condition comes directly into play - it enables one to understand the

2-dimensional configurations on each two-plane Π . These algebraic conditions are given

in Lemma 4.8 and Theorem 4.13.

4.1 Extended ∨-systems

4.1.1 Extended configurations

We begin by extending V by a 1-dimensional space V ⊥ ,

V ext = V ⊕ V ⊥

where V ⊥ = span{n∨} and V and V ⊥ are perpendicular subspaces of V ext . The metric

( , )ext on V ext is determined by the original metric on V and the value (n∨, n∨)ext which
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defines the perpendicular scale. Thus

(zo + z⊥, zo + z⊥)ext = (zo, zo) + (z⊥, z⊥)ext , zo ∈ V , z⊥ ∈ V ⊥ . (4.6)

With this one can define the covector n . Once this extended space has been defined one

can define the extended configuration U ext .

Definition 4.7 Let U be a ∨-system with an invariant small orbit ϑs . The extended

configurations U ext are defined as:

U ext = U ∪ {±(w + n) , w ∈ ϑs} ∪ {±n} .

We exclude reducible configurations, i.e. trivial extensions of the type U ∪ {±n}. The

corresponding multiplicities for the new covectors will be denoted hw (corresponding to the

new covectors ±(w + n) and hn (corresponding to the new covectors ±n).

We now have two metrics on V ext, the canonical metric given by (3.5) (now summed

over the extended configuration) and the orthogonal decomposition given by (4.6). The

following Lemma gives necessary and sufficient conditions for these to be equal.

Lemma 4.8 Let U be a ∨-system with an invariant small orbit ϑs . The two metrics

agree, i.e.

hUext(x, y)ext =
∑
α∈Uext

hα α(x)α(y) , x , y ∈ V ext ,

if and only if

hU + 2hϑs = 2{hn +
∑
w∈ϑs

hw}(n∨, n∨) .

With this, hUext = hU + 2hs .

Proof. We prove this in the case x = y , the full result then follows from polarization.
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Decomposing z = zo + z⊥ gives

∑
α∈Uext

hαα(z)2 =
∑
α∈U

hαα(z)2 +
∑
w∈ϑs

(
hw [(w + n)(z)]2 + hw [−(w + n)(z)]2

)
+hn [n(z)]2 + hn [−n(z)]2 ,

=
∑
α∈U

hαα(zo)
2 + 2

∑
w∈ϑs

hw
[
w(zo) + n(z⊥)

]2
+ 2hnn(z⊥)2 ,

= (hU + 2hs) (zo, zo) + (2hn +
∑
w∈ϑs

hw)n(z⊥)2

where the invariant conditions have been used to derive the last line.

Since dimV ⊥ = 1 , z⊥ = µn∨ for some scalar µ , so

(n∨, z⊥)2 = (n∨, n∨)(z⊥, z⊥) .

Thus ∑
α∈Uext

hαα(z)2 = (hU + 2hs) (zo, zo) + (2hn +
∑
w∈ϑs

hw)(n∨, n∨)(z⊥, z⊥) .

Since (z, z) = (zo, zo) + (z⊥, z⊥) the result follows. �

Example 4.9 Let U = RAn . We assume for now (these conditions will follow on the

imposition of the ∨-conditions) that hn = 0 , hα = 1 for α ∈ RAn (this fixes hU = 2(n+1) ,

the (dual) Coxeter number of An), and hw = constant for w ∈ ϑs . We first find the

constant hs . From symmetry/invariant theory it follows that

∑
w∈ϑs

hww(zo)
2 = hs(zo, zo) ,∑

w∈ϑs

hww(zo) = 0

for zo ∈ V . Thus the invariant conditions are automatically satisfied. To find hs we let
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zo = α and sum over α ∈ RAn . Thus

hw
∑
w∈ϑs

∑
α∈RAn

(w, α)2 = hs
∑
RAn

(α, α) .

Since (α, α) = 2 and
∑

α∈RAn
(w, α)2 = 2(n + 1)(w,w) , together with #RAn = n(n + 1),

#ϑs = n+ 1 and (w,w) = n/(n+ 1) , it follows that hs = hw . The number of elements in

ϑs follows from Serganova’s classification and standard properties of weight vectors.

Having found hs the result of Lemma 4.8 yields the condition

(n∨, n∨) =
1

hw
+

1

1 + n
.

Thus the construction gives a 1-parameter family of configurations, controlled by hw (or

alternatively, controlled by the perpendicular scale - the length (n∨, n∨)).

Example 4.1 falls into this class, with n = 1, hw = −1 This gives (n∨, n∨) = −1
2

reflecting the split signature of the metric.

4.1.2 Imposition of the ∨-conditions

To impose the ∨-conditions on the extended configuration U ext it is first necessary to

classify the 2-dimensional arrangements. Since U is a priori a ∨-system one only has to

understand plane arrangements through the origin and including some combination of the

vectors ±(w + n) ,±n . It is here that the small orbit condition comes into play. Given

wi , wj ∈ ϑs , consider the plane containing the vectors wi + n ,wj + n . Since

wi − wj ∈ span{wi + n ,wj + n}

it follows from the small orbit condition that the plane also contains an element α ∈ U .

The set of planes for which one needs to impose the ∨ conditions depends on the geometric
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properties of the small orbit.

As is apparent from Figure 4.3, unlike roots, the negative of a small orbit vector may,

or may not, be a small orbit vector. If it is not, then the pure normal vectors in the

extended configuration must be absent.

Lemma 4.10 Let w ∈ ϑs and suppose −w 6∈ ϑs . Then

U ext = U ∪ {±(w + n) , w ∈ ϑs} .

Proof. Consider the intersection of the planes containing {±n} with U . Such configura-

tions take the form

Figure 4.6: 2-plane configuration including the normal direction

where the vectors ±(w+ n) and/or ±n may, or may not, be present in the configuration.

If ±(w + n) are not present the remaining vectors are perpendicular and the ∨-

conditions are vacuous.

If ±(w + n) are present (so hw 6= 0) the vectors ±α may or may not be present. In

either case the ∨-conditions imply that hw = 0 and so such configurations cannot occur

(it is here that the assumption −w 6∈ ϑs is used. Without this additional terms could

appear).

Thus one arrives at a reducible configuration so by definition of U ext (which excludes
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such reducible configurations),

U ext = U ∪ {±(w + n) , w ∈ ϑs} . �

Since the small orbit vectors of Bn have the property that ±w ∈ ϑs and the small orbits

vectors of An do not (as proved in [36]) we define the following:

Definition 4.11 For all w ∈ ϑs :

(a) if −w 6∈ ϑs then U ext is said to be of A-type;

(b) if −w ∈ ϑs then U ext is said to be of B-type.

Example 4.12

• (RAn)ext is of A-type;

• (RBn)ext is of B-type;

In fact, with specific choices of normalizations;

(RAn)ext ∼= RAn+1 ,

(RBn)ext ∼= RBn+1 ,

One now has to impose the ∨ conditions on the planes span{wi + n ,wj + n} and in

particular on vectors in the intersection span{wi +n ,wj +n}∩U . In general one can not

say much about this intersection. It is at this stage that the small-orbit property comes

into play again : it enables one to know what vectors are in this set. One obtains the

2-plane configurations shown in Figure 4.7 and in the following theorem the ∨-conditions

are applied to these 2-plane configurations.
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Note that, since we are considering collections of covectors with multiplicities, imposi-

tion of the ∨-conditions will, in general, yield 1 or more-parameter families of ∨-systems.

Note also that small orbits are defined for collections of covectors without multiplicities

and we merely use the small orbit property to identify the different 2-plane configurations

whose constituent covectors, along with their multiplicites, we then apply the ∨-conditions

to. Lastly note that the following theorem is applicable only to those ∨-systems which

contain no other collinear covectors to α and −α.

Figure 4.7: 2-plane configurations

Theorem 4.13 The following constraints on the data {hwi , hn , n∨} are necessary and

sufficient for the extended configurations U ext to satisfy the ∨-conditions:

hwi
[
(w∨i , w

∨
i )− (w∨i , w

∨
j )
]

= hwj
[
(w∨j , w

∨
j )− (w∨i , w

∨
j )
]
,

hwi
[
(w∨i , w

∨
j ) + (n∨, n∨)

]
= hα

[
(w∨j , w

∨
j )− (w∨i , w

∨
j )
]
,

hwj
[
(w∨i , w

∨
j ) + (n∨, n∨)

]
= hα

[
(w∨i , w

∨
i )− (w∨i , w

∨
j )
]
,

where α = wj − wi , and (if the system is of B-type):
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hn(n∨, n∨) = hα(w∨, w∨) + 2hw {(w∨, w∨)− (n∨, n∨)} .

Also, if there exist roots α that are not of the form α = wi − wj then we must have

(α∨, w∨i ) = 0 (except, obviously, the case of wi = α).

Proof. Applying the ∨-condition (3.6) to a plane containing two extended small orbit

covectors (wi + n) and (wj + n) and a root α = wj − wi (as on the left of Figure 4.7) we

have, pivoting on (wi + n),

hwi [(wi + n)(w∨i + n∨)](w∨i + n∨) + hwj [(wj + n)(w∨i + n∨)](w∨j + n∨)

+ hα[(wj − wi)(w∨i + n∨)](w∨j − w∨i ) = λ(w∨i + n∨).

Equating coefficients of w∨j gives

hwj [(wj + n)(w∨i + n∨)] + hα[(wj − wi)(w∨i + n∨)] = 0,

or

hwj [(w
∨
j , w

∨
i ) + (n∨, n∨)] = hα[(w∨i , w

∨
i )− (w∨i , w

∨
j )],

(the third of the above constraints) and equating coefficients of n∨

hwi [(wi + n)(w∨i + n∨)] + hwj [(wj + n)(w∨i + n∨)] = λ,

or

hwi [(w
∨
i , w

∨
i ) + (n∨, n∨)] + hwj [(w

∨
j , w

∨
i ) + (n∨, n∨)] = λ.
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Applying the same condition but pivoting on (wj + n) gives

hwi [(wi + n)(w∨j + n∨)](w∨i + n∨) + hwj [(wj + n)(w∨j + n∨)](w∨j + n∨)

+ hα[(wj − wi)(w∨j + n∨)](w∨j − w∨i ) = λ(w∨j + n∨).

Equating coefficients of w∨j gives

hwi [(wi + n)(w∨j + n∨)]− hα[(wj − wi)(w∨j + n∨)] = 0,

or

hwi [(w
∨
i , w

∨
j ) + (n∨, n∨)] = hα[(w∨j , w

∨
j )− (w∨i , w

∨
j )],

(the second of the above constraints) and equating coefficients of n∨

hwi [(wi + n)(w∨j + n∨)] + hwj [(wj + n)(w∨j + n∨)] = λ,

or

hwi [(w
∨
i , w

∨
j ) + (n∨, n∨)] + hwj [(w

∨
j , w

∨
j ) + (n∨, n∨)] = λ,

and since λ is constant on a given plane we can equate this expression with that above to

obtain

hwi [(w
∨
i , w

∨
i ) + (n∨, n∨)] + hwj [(w

∨
j , w

∨
i ) + (n∨, n∨)]

= hwi [(w
∨
i , w

∨
j ) + (n∨, n∨)] + hwj [(w

∨
j , w

∨
j ) + (n∨, n∨)],

or

hwi [(w
∨
i , w

∨
i )− (w∨i , w

∨
j )] = hwj [(w

∨
j , w

∨
j )− (w∨i , w

∨
j )],

(the first of the above constraints).
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For systems of B-type we also have planes represented by the right of Figure 4.7

consisting of two extended small orbit covectors (w + n) and (−w + n), a root (which is

also a small orbit covector) w and the pure normal covector n. Applying the ∨-condition,

pivoting on w gives

hαw(w∨)w∨+hnn(w∨)n∨+hw(w+n)(w∨)(w∨+n∨)+hw(−w+n)(w∨)(−w∨+n∨) = λw∨.

Equating coefficients of w∨ yields

hα(w∨, w∨) + 2hw(w∨, w∨) = λ.

Similarly pivoting on n∨ and equating coefficients of n∨ gives

hn(n∨, n∨) + 2hw(n∨, n∨) = λ.

Putting these two expressions for λ equal then gives the fourth constraint.

For the last condition consider a 2-plane spanned by an extended small orbit covector

β = wi+n and a root α where α 6= wi−wj for any j. Then β and α are the only covectors

in the 2-plane and so the ∨-condition reads (pivoting on β)

hwiβ(β∨)β∨ + hαα(β∨)α∨ = λβ∨.

Equating coefficients of α∨ gives α(β∨) = 0 and thus (α∨, w∨i ) = 0. �

Note that this over-constrains the data {hw , n∨} but the constraints are completely de-

termined by the geometry of small orbits.
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Example 4.14 Let U = RAn . Then from standard properties of weight vectors,

(w∨i , w
∨
j ) = δij −

1

n+ 1
.

With these one obtains hwi = hwj , i.e. all the hwi are constants, and, with the normal-

ization hα = 1 , α ∈ U , the condition

(n∨, n∨) =
1

hw
+

1

1 + n
.

Example 4.15 Let U = RG2 . We normalise these roots - generated by simple roots α

and β by the conditions (α, α) = 2 , (α, β) = −3 , (β, β) = 6 . From (3.5) one finds

6hs + 18hl = hU ,

where hs and hl are the multiplicities of the short and long roots. From [36] the small

orbit is the A2-subsystem generated by the set {±α ,±(α+ β) ,±(2α+ β)} and using this

one finds

hϑs = 6hw .

Lemma 4.8 implies

3hs + 9hl + 6hw = (hn + 6hw) (n∨, n∨) .

Theorem 4.13 then implies the equation

−3hl + hn {−1 + (n∨, n∨)} = 0 ,

−2hs − 4hw + {hn + 2hw} (n∨, n∨) = 0 .

Assuming hw 6= 0 (otherwise the construction collapses) one can solve equations to obtain
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the extended configuration data in terms of the original ∨-data {hs , hl} :

hw =
1

2
(hs − 3hl) ,

hn =
3(hs − 3hl)

2

hs + 3hl
,

(n∨, n∨) =
hs + 3hl
hs − 3hl

.

Note that one requires a slight constraint on the original data: hs 6= ±3hl . This extended

∨-system coincides, after some linear algebra and redefinitions, to the system G3(t) pre-

sented in [21].

Example 4.16 Let U = RF4 . Consider the subset of U , ei ± ej, 1 6 i < j 6 4. This

subset has the property that either the difference or the sum of any two members is propor-

tional to a root. It turns out that we can extend this subset into a perpendicular dimension

just as we did for the above small orbits and, after applying the ∨-conditions to find the

multiplicities we obtain the ∨-system

F4
(ext) =



ei, i = 1, . . . 4,

ei ± ej, 1 6 i < j 6 4

1
2
(e1 ± e2 ± e3 ± e4),

1√
2
(ei ± ej ± e5), 1 6 i < j 6 4

√
3 e5,

where the signs are chosen arbitrarily. This is not a new ∨-system, however, it is the

system (E8, A
3
1) found in [22].
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4.2 Extensions of generalized root systems

Returning to the generalised root systems defined in the last chapter, the small orbit for

the series A(m,n) is defined as [36]:

ϑ =

{
wi := ei +

1

n−m+ 1

m+n∑
r=0

εrer

}

(so trivially, αij = wi − wj). That this is the only small orbit (up to sign) was proved

in [36].

Applying Theorem 4.13 gives the multiplicities hwi = εihw for some hw , and with this

the invariant conditions imply that hϑ = hw . Finally one obtains the condition

1

hw
+

1

m+ 1− n
= (n∨, n∨) .

This then gives an extended ∨-system U ext , with one free parameter: hw fixes the per-

pendicular scale, or vice-versa.

For the series B(m,n) the small orbit is defined as [36]

ϑ = {±ei}

That this is the only small orbit (up to sign) was proved in [36].

Applying Lemma 4.8 and Theorem 4.13 gives the multiplicities hwi = εihw and the

conditions

hw =
h

(n∨, n∨)
,

hn =
2h

(n∨, n∨)
+

hγ

(n∨, n∨)
.
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This then gives an extended ∨-system U ext , with one free parameter: the perpendicular

scale.

4.2.1 Symmetries of the extended configurations

Consider again the extended configuration shown in Figure 4.5. The original configuration

U = RA2 is by definition invariant under reflections - the group A2 - as are the small orbit

vectors (which form an irregular orbit). The reflections generated by these roots can

be extended to the whole space (acting trivially in the perpendicular direction). Thus

the whole 3-dimensional configuration is invariant under A2 but not, in general, under

reflections generated by the new roots ±(w + n) . Clearly this idea generalises - any

symmetry is inherited by the extended configuration.

However, we now have to consider the generalized root system of A(m,n) which has

roots of positive, negative and zero length. On writing αrs = wr − ws the non-isotropic

roots define reflections in the hyperplanes αij(z) = 0 and the whole configuration U ext is

invariant under reflections in the original roots.

More explicitly, if αij is a non-isotropic root then it is easy to show, using the small-

orbit property, that

rαij(wk) =


wk if i, j, k, distinct,

wi if j = k ,

wj if i = k ,

and the reflection rαij(αrs) can then be found using linearity. However, as an abstract

group, one may define a transformation rαij for all roots (including isotropic roots) by the

above formulae. While
(
rαij
)2

= id , the lengths of the covectors are not preserved under

the action of rαij . For example, since

(w∨i , w
∨
j ) = εiδij +

1

n− (m+ 1)
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a ‘reflection’ in an isotropic root will change the length of the roots. With this interpreta-

tion/definition of rαij the whole extended configuration U ext is invariant under the above

action of rαij .

If one extends the action of rαij to the multiplicities εi via the formula

rαij(εk) =


εk if i, j, k, distinct,

εi if j = k ,

εj if i = k ,

then the plane
∑
εiz

i = 0 is invariant under the action of rαij (which now interchanges

both zi with zj and εi with εj).

A model for this comes from the space of rational functions

λ
(
{zk}, {εk} : z

)
=

m+n∏
k=0

(z − zk)εk
∣∣∣∣∣∑

εjzj=0

.

So for all roots αij ,

λ
(
{rαijzi}, {rαijεi} : z

)
= λ

(
{zi}, {εi} : z

)
.

If n = 0 then one recovers the standard invariant polynomial model for Am

λ(z) =
m∏
i=0

(z − zi)

∣∣∣∣∣∑
zr=0

which is invariant under the interchange of zeros. Repeating the argument for B(m,n)

results in the rational function

λ
(
{zk}, {εk} : z

)
=

m+n∏
k=1

(
z2 − (zk)2

)εk .
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If n = 0 then one recovers the standard invariant polynomial model for Bm .

4.3 Extending into two dimensions

We have found that this technique of extending the small orbit vectors into a perpendicular

dimension can be, for B-type configurations, generalised to extending them into two

perpendicular dimensions. We now extend V by a 2-dimensional space V ⊥ which is

spanned by perpendicular vectors n∨ and m∨ and our configurations are defined thus

Definition 4.17 For a B-type ∨-system U with invariant small orbit ϑs the two dimen-

sional extended configurations are given by

U ext = U ∪ {±(w ± n±m) , w ∈ ϑs} ∪ {±n} ∪ {±m} ∪ {±n±m}.

Such as system can be easily seen to be equivalent to (3.12) with all the ci equal for i > 1:

Theorem 4.18 The system of n2 covectors

B2D
n (c, k) =



√
c(ei), 1 6 i 6 2,√
2(k+4)

c
ei, 3 6 i 6 n+ 2,√

c+k
2

(e1 ± e2),

2√
c
(ei ± ej), 3 6 i < j 6 n+ 2,

±e1 ± e2 ± ei, 3 6 i 6 n+ 2 (0 or 1minus sign)

(4.19)

where c and k are arbitrary real positive constants is a ∨-system for n > 2.

Proof. By making the linear transformation f1 = e1 + e2, f2 = e − 1 − e2 and putting

c = 4c21, k = 4c0c1 we have (3.12) with the ci equal for i > 1. �
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Chapter 5

Generalised Legendre-type

Transformations

Legendre-type transformations were defined in [13]. They are a map from one solution

of the WDVV equations to another generated by the vector field ∂tκ , κ = 1, . . . , n via

∂tα = ∂tκ ◦ ∂t̂α where t̂α are the new coordinates. We have found that the generating

vector field of these transformations need not be constant but needs to satisfy certain

conditions which we will prove.

In this chapter we will first review the Legendre transformations as discussed in [13]

and then go on to show how they can be generalised to include those generated by func-

tional vector fields. We then find exactly what generalised Legendre fields there are for the

2-dimensional Frobenius manifolds of Chapter 1 and that they exist for the A3 Frobenius

manifold.

Next, we perform a Legendre transformation on an extended ∨-system. Such Legen-

dre transformations are symmetries of the WDVV-equations, and hence map solutions

to solutions [13]. To perform such a transformation requires the choice of a direction,

and for extended ∨-systems there is a natural choice of direction, namely the newly in-

troduced orthogonal direction perpendicular to the original space. Using this direction
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for the Legendre transformation maps rational solutions, i.e. those of the form (3.3) to

trigonometric systems, that is, to solutions of the form

F = cubic +
∑
α∈U

hαLi3(e
α(z)) , (5.1)

where Li3 is the tri-logarithm function

Li3 :=
∞∑
r=1

zr

r3
.

A separate theory of trigonometric ∨-systems has been developed by M.Feigin [20].

Finally, we make the connection between extended ∨-systems and the almost-dual

Frobenius manifolds for the extended affine Weyl group orbit spaces as constructed and

studied in [16] and [17]. In particular the following is proved:

Theorem 5.2 Let W be a finite irreducible classical Coxeter group of rank N and let W̃

be the extended affine Weyl group of W with arbitrary marked node. Then up to a Legendre

transformation, the almost dual prepotentials of the classical extended affine Weyl group

orbit spaces CN+1/W̃ are, for specific values of the free data, the extended ∨-systems of

the ∨-system RW .

Proposition 5.3 (Legendre-type transformations) Given a prepotential F expressed

in coordinates tα and equipped with metric ηαβ which satisfies the WDVV equations a Leg-

endre transformation yields another solution with new prepotential F̂ given by

∂2F̂

∂t̂α∂t̂β
=

∂2F

∂tα∂tβ
,

and new co-ordinates given by

t̂α = ∂α∂κF (t),
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whilst the new metric < ·, · >κ, related to the old via

< ∂a, ∂b >κ=< ∂κ ◦ ∂κ, ∂a ◦ ∂b >,

remains invariant.

Proof. The metric is invariant since, by the Frobenius property

< ∂α, ∂β >κ = < ∂κ ◦ ∂α, ∂κ ◦ ∂β >,

= < ∂α, ∂β > .

Rewriting

∂κ ◦ ∂α̂ =
∂tσ

∂t̂α
cµκσ

∂

∂tµ
,

but

∂κ ◦ ∂α̂ =
∂

∂tα
= δµα

∂

∂tµ
,

so we have

∂tσ

∂t̂α
cµκσ = δµα.

On multiplying by ∂t̂α

∂tν

∂t̂α

∂tν
∂tσ

∂t̂α
cµκσ =

∂t̂µ

∂tν
,

but

∂t̂α

∂tν
∂tσ

∂t̂α
= δσν ,

so

cµκν =
∂t̂µ

∂tν
,
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or

cκνµ =
∂t̂µ
∂tν

,

(since ηµα = η̂µα), integrating with respect to tν gives

t̂µ =
∂2F

∂tκ∂tµ
,

up to a constant which may be ignored.

For the remaining part of the proposition observe that

< ∂α ◦ ∂β, ∂γ > = cαβγ,

< ∂α̂ ◦ ∂β̂, ∂γ̂ >κ = cα̂β̂γ̂.

Now ∂
∂t̂σ

< ∂α̂ ◦∂β̂, ∂γ̂ >κ is totally symmetric in α, β, γ and σ. So, by the Poincaré lemma

∃F̂ such that

∂3F̂

∂α̂∂β̂∂γ̂
=< ∂α̂ ◦ ∂β̂, ∂γ̂ >κ .

So

∂3F̂

∂α̂∂β̂∂γ̂
= < ∂α ◦ ∂β, ∂γ̂ >,

=
∂tµ

∂t̂γ
< ∂α ◦ ∂β, ∂µ >,

=
∂tµ

∂t̂γ
∂

∂tµ
Fαβ,

=
∂

∂t̂γ
Fαβ,

∂2F̂

∂α̂∂β̂
=

∂2F

∂α∂β
. �
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Example 5.4 (B.1 in [13]) Take the prepotential

F =
1

2
(t1)2t2 + et

2

.

Performing S2 yields new coordinates

t̂1 = t1,

t̂2 = et
2

,

or, on raising the indices

t̂1 = et
2

,

t̂2 = t1.

The second derivatives of the new prepotential are

F̂1̂1̂ = t2 = log t̂1 ,

F̂1̂2̂ = t1 = t̂2 ,

F̂2̂2̂ = et
2

= t̂1 ,

which, on integrating gives the new prepotential,

F̂ =
1

2
(t̂2)2t̂1 +

1

2
(t̂1)2

(
log t̂1 − 3

2

)
.

5.1 Generalised Legendre-type transformations

Legendre-type transformations as defined above are restricted to those transformations

generated by the constant vector fields ∂κ. The new metric is given by η(X, Y ) = η̃(∂κ ◦

X, ∂κ ◦ Y ). We have found that the notion of a Legendre-type transformation may be
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broadened to include transformations which are generated by functional vector fields [9].

Note that there is no requirement to impose a homogeneity condition on the generalised

Legendre field (see Example 5.18).

Definition 5.5 Suppose η̃ is a metric and ∇̃ its Levi-Civita connection. Define

η(X, Y ) = η̃(∂ ◦X, ∂ ◦ Y ),

and

∇XY = ∂−1 ◦ ∇̃X(∂ ◦ Y ).

Definition 5.6 (generalised Legendre field) A vector field ∂ on a Frobenius manifold

(M, η,∇, ◦, e, E) (see Definition 1.22) is said to be a generalised Legendre field if

Y ◦ ∇̃X∂ = X ◦ ∇̃Y ∂,

for all X, Y ∈ TM.

Such vector fields have been studied before: in [9] where their ability to provide a map

between torsion-free metric connections was investigated and here we extend those ideas

to show that generalised Legendre fields generate transformations between solutions of

the WDVV equations and, in Proposition 5.14, we give a coordinate description of the

transformation between flat coordinate systems which is a direct generalisation of the

original transformation a defined in [13] ; and in [30] where they appeared in the theory

of hydrodynamics systems associated to F -manifolds as generators of commuting flows

ut = ∂ ◦ uX ,

which generalises the principal hierarchy defined by Dubrovin in the case of Frobenius

manifolds [13]. The role of ∂ here is somewhat different: it plays a role in defining
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a symmetry between different principal hierarchies. The use of conservation laws to

define new sets of variables for hydrodynamic systems is well established and the theory

developed here may be seen as a generalisation of this idea (in the sense that the hierachies

as defined above have an underlying connection, and hence one can use ∂ to provide a

map between such connections). Further, since the Legendre condition comes from the

preservation of the torsion-fee condition, the theory could be developed to more general

situations where one has torsion-free, but not metric, connections [3].

Definition 5.7 (generalised Legendre transformation) A generalised Legendre transfor-

mation is a map, generated by a generalised Legendre field, from a Frobenius manifold with

metric, connection and multiplication (η̃, ∇̃, ◦) to one with similar structures (η,∇, ◦) (as

defined above).

The following four propositions show that such a transformation yields a solution to the

WDVV equations.

Proposition 5.8 ∇ is the Levi-Civita connection of η if and only if ∂ is a generalised

Legendre field.

Proof. By definition

(∇Xη)(Y, Z) = X[η(Y, Z)]− η(∇XY, Z)− η(Y,∇XZ),

= X[η̃(∂ ◦ Y, ∂ ◦ Z)]− η̃(∂ ◦ ∂−1 ◦ ∇XY, ∂ ◦ Z)− η̃(∂ ◦ Y, ∂ ◦ ∂−1 ◦ ∇XZ),

= X[η̃(∂ ◦ Y, ∂ ◦ Z)]− η̃(∇̃X(∂ ◦ Y ), ∂ ◦ Z)− η̃(∂ ◦ Y, ∇̃X(∂ ◦ Z)),

= (∇̃X η̃)(∂ ◦ Y, ∂ ◦ Z).
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So it follows that ∇ is a metric connection of η. Also by definition

T∇ = ∇XY −∇yX − [X, Y ],

= ∂−1 ◦ ∇̃X(∂ ◦ Y )− ∂−1 ◦ ∇̃Y (∂ ◦X)− [X, Y ].

By assumption (∇̃◦) is totally symmetric so

∇̃X(Y ◦ Z)− (∇̃XY ) ◦ Z − (∇̃XZ) ◦ Y = ∇̃Y (X ◦ Z)− (∇̃YX) ◦ Z − (∇̃YZ) ◦X,

or (on putting Z = ∂)

∇̃X(∂ ◦ Y )− ∇̃Y (∂ ◦X) = (∇̃XY ) ◦ ∂ + (∇̃X∂) ◦ Y − (∇̃YX) ◦ ∂ − (∇̃Y ∂) ◦X.

So we have

T∇(X, Y ) = ∂−1 ◦
{

(∇̃XY ) ◦ ∂ + (∇̃X∂) ◦ Y − (∇̃YX) ◦ ∂ − (∇̃Y ∂) ◦X
}
− [X, Y ],

=
{
∇̃XY − ∇̃YX − [X, Y ]

}
+ ∂−1 ◦

{
(∇̃X∂) ◦ Y − (∇̃Y ∂) ◦X

}
,

= T ∇̃(X, Y ) + ∂−1
{

(∇̃X∂) ◦ Y − (∇̃Y ∂) ◦X
}
,

so ∇ is torsion-free if and only if (∇̃X∂) ◦ Y = (∇̃Y ∂) ◦X. �

Proposition 5.9 η̃ is a flat metric if and only if η is a flat metric.
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Proof. The Riemann curvature tensor of η is

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

= ∂−1 ◦ ∇̃X(∂ ◦ ∇YZ)− ∂−1 ◦ ∇̃Y (∂ ◦ ∇XZ)− ∂−1 ◦ ∇̃[X,Y ](∂ ◦ Z),

= ∂−1 ◦ ∇̃X

{
∇̃Y (∂ ◦ Z)

}
− ∂−1 ◦ ∇̃Y

{
∇̃X(∂ ◦ Z)

}
− ∂−1 ◦ ∇̃[X,Y ](∂ ◦ Z),

= ∂−1 ◦
{
∇̃X∇̃Y − ∇̃Y ∇̃X − ∇̃[X,Y ]

}
(∂ ◦ Z),

= ∂−1 ◦ R̃(X, Y )(∂ ◦ Z). �

Proposition 5.10 ∇◦ is totally symmetric if and only if ∇̃◦ is totally symmetric and ∂

is a generalised Legendre field.

Proof. By definition

(∇X◦)(Y, Z)− (∇Y ◦)(X,Z) = ∇X(Y ◦ Z)− Y ◦ (∇XZ)− Z ◦ (∇XY )

+∇Y (X ◦ Z)−X ◦ (∇YZ)− Z ◦ (∇YX),

= ∂−1 ◦ ∇̃X(∂ ◦ Y ◦ Z)− Y ◦
{
∂−1 ◦ ∇̃X(∂ ◦ Z)

}
− Z ◦

{
∂−1 ◦ ∇̃X(∂ ◦ Y )

}
+

∂−1 ◦ ∇̃Y (∂ ◦X ◦ Z)−X ◦
{
∂−1 ◦ ∇̃Y (∂ ◦ Z)

}
− Z ◦

{
∂−1 ◦ ∇̃Y (∂ ◦X)

}
,

= ∂−1{∇̃X(∂ ◦ Y ◦ Z)− Y ◦ ∇̃X(∂ ◦ Z)− Z ◦ ∇̃X(∂ ◦ Y )

− ∇̃Y (∂ ◦X ◦ Z) +X ◦ ∇̃Y (∂ ◦ Z) + Z ◦ ∇̃Y (∂ ◦X)}. (5.11)

Also, by assumption

(∇̃x◦)(Y, ∂ ◦ Z)− (∇̃Y ◦)(X, ∂ ◦ Z) = 0,
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so similarly

0 = ∇̃X(∂ ◦ Y ◦ Z)− Y ◦ ∇̃X(∂ ◦ Z)− ∂ ◦ Z ◦ ∇̃X(∂ ◦ Y )

− ∇̃Y (∂ ◦X ◦ Z) +X ◦ ∇̃Y (∂ ◦ Z) + ∂ ◦ Z ◦ ∇̃Y (∂ ◦X). (5.12)

(5.11)+∂−1◦(5.12) yields

(∇X◦)(Y, Z)− (∇Y ◦)(X,Z) = ∂−1 ◦ {∂ ◦ Z ◦ ∇̃XY − ∂ ◦ Z ◦ ∇̃YX−

Z ◦ ∇̃X(∂ ◦ Y ) + Z ◦ ∇̃Y (∂ ◦X)},

= Z ◦ (∇̃XY − ∇̃YX)− Z ◦ ∂−1 ◦ {∇̃X(∂ ◦ Y )− ∇̃Y (∂ ◦X)},

= Z ◦ [X, Y ]− Z ◦ [∇XY −∇YX],

(since T∇ = T ∇̃ = 0)

= Z ◦ [X, Y ]− Z ◦ [X, Y ] = 0,

(since ∂ is a generalised Legendre field). �

Corollary 5.13 From Proposition 5.9 we have that if λ∇XY := ∇XY + λX ◦ Y and

λ∇̃XY := ∇̃XY + λX ◦ Y then.

R
λ∇(X, Y )Z = ∂−1 ◦Rλ∇̃(X, Y )(∂ ◦ Z).

Since the flatness of λ∇ is equivalent to having a solution to WDVV we have a new solution

but only defined implicitly at this stage. We now go on to give an explicit coordinate

dependent realisation of this abstract result. The following proposition states how a

generalised Legendre-type transformation generated via ∂ ◦ ∂t̂α = ∂tα may be perfomed.

Proposition 5.14 (Generalised Legendre-type transformations) Given a solution
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to the WDVV equations as in Proposition (5.3) and a generalised Legendre field ∂ a gen-

ralised Legendre-type transformation yields a new solution where the new prepotential and

new metric transform precisely analogously to those in a Legendre-type transformation.

The new co-ordinates are given by

∂t̂α
∂tβ

= ∂γcαβγ. (5.15)

Proof. Whereas we had

∂tσ

∂t̂α
cµκσ = δµα,

in Proposition (5.3) we now have

∂β
∂tσ

∂t̂α
cµβσ = δµα.

On multiplying by ∂t̂α

∂tν

∂β
∂t̂α

∂tν
∂tσ

∂t̂α
cµβσ =

∂t̂µ

∂tν
,

but

∂t̂α

∂tν
∂tσ

∂t̂α
= δσν ,

so

∂βcµβν =
∂t̂µ

∂tν
,

or

∂βcβνµ =
∂t̂µ
∂tν

,

(since ηµα = η̂µα). Using the symmetry of cβµν it follows that

∂t̂µ
∂tν

=
∂t̂ν
∂tµ

,
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and hence t̂µ = ∂tµh for some locally defined function h. �

5.1.1 Infinite families of generalised Legendre fields

The geometry of the deformed flat connection encodes a canonical class of Legendre fields.

Expanding a flat section (λ)∇Xs = 0 as a power series

s =
∞∑
n=0

λn∂(n)

and equating coefficients gives

∇X∂(0) = 0 , (5.16)

∇X∂(n) = X ◦ ∂(n−1) . (5.17)

Thus each of the fields ∂(n) are Legendre fields. Conversely, starting from a flat vector

field ∂(0) one may recursively construction the flat section, with each ∂(n) being a Legendre

field. If ∂(0) = ∂
∂tκ

for some κ one obtains an infinite family of Legendre fields labelled by

(n, κ) . This is similar to the procedure, outlined in [30], of defining recursively the higher

flows of an integrable hierarchy of systems of hydrodynamic type from the primary flows

defined using a basis of flat vector fields.

Note that, when written in coordinate form (5.17) takes the form

∂

∂tα
∂β(n,κ) = cβασ∂

σ
(n−1,κ) .

Furthermore, it was shown in [13] that the vector field may be written in terms of (scalar)

Hamiltonian densities

∂(n,κ) = ηαβ
∂h(n,κ)
∂tα

∂

∂tβ
.
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With this the coordinate transformation takes a simple form:

∂t̃α

∂tβ
= ∂σ(n,κ)c

α
σβ ,

=
∂

∂tβ
∂α(n+1,κ)

and hence t̃α = ∂α(n+1,κ) or t̃α =
∂h(n+1,κ)

∂tα
(on lowering an index with the metric η).

Example 5.18 Returning to the two-dimensional example with prepotential

F =
1

2
x2y + ey,

and Euler vector field

E = x∂x + 2∂y,

we now look for Legendre fields of the form

∂L = a(x, y)∂x + b(x, y)∂y.

If we now apply the condition (∇̃x∂L) ◦ ∂y = (∇̃y∂L) ◦ ∂x we have, on equating coefficients

and recalling that ∂x is the identity and ∂y ◦ ∂y = cαyy∂α = ey∂x,

∂y : ∂xa = ∂yb, (5.19a)

∂x : ey∂xb = ∂ya. (5.19b)

If we additionally impose homogeneity LE∂L = µ∂L (equivalent to [E, ∂L] = µ∂L) we

105



obtain, by equating coefficients

∂x : x
∂a

∂x
+ 2

∂a

∂y
− a = µa,

∂y : x
∂b

∂x
+ 2

∂b

∂y
= µb.

Substituting trial functions a(x, y) = xµ+1A
(
ey

x2

)
, b(x, y) = xµB

(
ey

x2

)
into (5.19) and

putting z = ey

x2
yields

1) (µ+ 1)A(z)− 2zA′(z) = zB′(z),

2) µB(z)− 2zB′(z) = A′(z).

Differentiating both of these equations and eliminating B(z) gives

z(1− 4z)A′′(z) + 2(2µ− 1)zA′(z)− µ(µ+ 1)A(z) = 0,

putting w = 4z we obtain

w(1− w)A′′(w) +
2µ− 1

2
wA′(w)− µ(µ+ 1)

4
A(w) = 0,

and see that this is of the form of the hypergeometric differential equation

w(1− w)A′′(w) + [c− (a+ b+ 1)w]A′(w)− abA(w) = 0,

with a = −µ
2
, b = −µ+1

2
and c = 0 which has singular points at w = 0, 1 and ∞. The

solutions to this differential equation are constructed from the hypergeometric function

2F1(a, b; c;w) =
∞∑
n=0

(a)n(b)n
(c)n

wn

n!
,
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where the rising Pochhammer symbol

(q)n =

 1, n = 0

q(q + 1) · · · (q + n− 1), n > 0
.

There exists two linearly independent solutions around each of the singular points [2]:

A1(0)(w) = w 2F1(a+ 1, b+ 1; 2;w),

A2(0)(w) = w 2F1(a+ 1, b+ 1; 2;w)lnw+

w
∞∑
n=1

{
wn

(a+ 1)n(b+ 1)n
(2)nn!

n∑
s=1

[
1

s+ a
+

1

s+ b
− 1

s+ 1
− 1

s

]}
+

1

ab
,

A1(1)(w) = 2F1(a, b; 1 + a+ b− c; 1− w),

A2(1)(w) = (1− w)c−a−b 2F1(c− a, c− b; 1 + c− a− b; 1− w),

A1(∞)(w) = w−a 2F1(a, 1 + a− c; 1 + a− b;w−1),

A2(∞)(w) = w−b 2F1(b, 1 + b− c; 1 + b− a;w−1).

(Note that if any of a, b, c−a or c−b is an integer one or more of the above hypergeometric

series terminates and the solution is of the form wα(1 − w)βpn(w) where pn(w) is a

polynomial of order n. This is called the degenerate case of the hypergeometric differential

equation, see [19] for full details.)

Similarly for the hypergeometric differential equation for B(w) we have a = −µ
2
, b =

1−µ
2

and c = 1. Due to the value of c the solutions around w = 0 are

B1(0)(w) = 2F1(a, b; 1;w),

B2(0)(w) = 2F1(a, b; 1;w)lnw+

∞∑
n=1

{
wn

(a)n(b)n
(n!)2

n−1∑
s=0

[
1

s+ a
+

1

s+ b
− 2

s+ 1

]}
,
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the solutions around w = 1 and w =∞ take the same form as those for A(w).

For particular values of µ these solutions reduce to much simpler expressions. For

instance when µ = −1

A(z) =
C1

2
√

1− 4z
+ C2,

B(z) =
−C1√
1− 4z

,

and when µ = 0

A(z) = C1

√
1− 4z,

B(z) = −2C1ArcTan
√

1− 4z + C2.

We now summarise similar results for the other two-dimensional prepotentials (see

subsection (1.1.2)):

• F (x, y) = 1
2
x2y

The treatment for this prepotential is considerably simpler than that above and does

not involve the hypergeometric differential equation. We find

a(x, y) = C1x
µ+1,

b(x, y) = C1(µ+ 1)y + C2.

• F (x, y) = 1
2
x2y + y2logy

The independent variable in the hypergeometric differential equations for both A(w)

and B(w) is w = y
8x2

. For A(w) we have a = −µ
4
, b = −1+µ

2
and c = 1 (and so

solutions of the same form as for B(w) above), and for B(w), a = 1
8
(−6 − 3µ +√

(2− 7µ)(2 + µ)), b = 1
8
(−6−3µ−

√
(2− 7µ)(2 + µ)) and c = 0 (and so solutions

of the same form as for those of A(w) above).
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• F (x, y) = 1
2
x2y + yk

For A(w) we have w = 8k(2−k)
k−1

yk−1

x2
+ 1,

a = 1
4

{
(2µ− 3)(k − 1)−

√
k[35+(3−2µ)2(k2−3k)+8µ(µ−4)]−25

k−1

}
,

b = 1
4

{
(2µ− 3)(k − 1) +

√
k[35+(3−2µ)2(k2−3k)+8µ(µ−4)]−25

k−1

}
,

and c = k(µ− 3
2
)−µ+ 1

2
. When c is not an integer the solutions around z = 0 take

the form

A1(0)(w) = 2F1(a, b; c;w),

A2(0)(w) = z1−c 2F1(a− c+ 1, b− c+ 1; 2− c;w).

When c = 0 or 1 the solutions take the form discussed above and similar expressions

for other integral values of c (see [2]).

For B(w) we have w = 8(2−k)
k−1

yk−1

x2
+ 1,

a = 1
4

{
k(3− 2µ)− 6k−2

k−1 −
√

k3(3−2µ)2−4+4k[14+µ(µ−7)]−k2[8µ(µ−5)+45]
k−1

}
,

b = 1
4

{
k(3− 2µ)− 6k−2

k−1 +
√

k3(3−2µ)2−4+4k[14+µ(µ−7)]−k2[8µ(µ−5)+45]
k−1

}
,

and c = kµ + k(3k−7)
2(1−k) and the solutions depend on the integrality of c, precisely as

for A(w).

• F = 1
2
x2y + logy

For A(w) we have w = − 24
13+12µ

x2y + 1,

a = 1
4

(
−µ−

√
−µ(4 + 3µ)

)
,

b = 1
4

(
−µ+

√
−µ(4 + 3µ)

)
,

c = 2−µ
2

+ 1
13−12µ ,

and the solutions depend on the integrality of c as in the previous example.
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For B(w) we have w = 24
13+12µ

z and solutions of the form

B(w) =
(1− w)

µ−2
26+24µ

w
2F1(a, b; c;w),

where

c = 12(µ+ 1)(2− µ),

a = 18− 6µ2 −
√

348 + µ(169 + 6µ(13 + µ(25 + 6µ))),

b = 18− 6µ2 +
√

348 + µ(169 + 6µ(13 + µ(25 + 6µ))),

and so the solutions depend on the integrality of c as in the above examples.

5.1.2 Generalised Legendre fields for A3

The prepotential of the Frobenius manifold associated with the Coxeter group A3 is

F =
1

2
x2z +

1

2
xy2 + y2z2 +

4

15
z5,

and has Euler vector field

E = x
∂

∂x
+

3

4
y
∂

∂y
+

1

2
z
∂

∂z
.

We now look look for Legendre fields of the form

∂L = a(x, y, z)∂x + b(x, y, z)∂y + c(x, y, z)∂z.
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Applying homogeneity, [E, ∂L] = µ∂L we obtain

x
∂a

∂x
+

3

4
y
∂a

∂y
+

1

2
z
∂a

∂z
− a = µa, (5.20)

x
∂b

∂x
+

3

4
y
∂b

∂y
+

1

2
z
∂b

∂z
− 3

4
b = µb, (5.21)

x
∂c

∂x
+

3

4
y
∂c

∂y
+

1

2
z
∂c

∂z
− 1

2
c = µc. (5.22)

Applying the condition

∂β ◦ ∇α∂L = ∂α ◦ ∇β∂L,

for α, β = x, y, z (α 6= β), yields nine relations by equating coefficients of ∂xx, ∂y and ∂z

which can be reduced to six linearly independent ones:

∂b

∂z
= 4y

∂c

∂z
+ 4z

∂c

∂y
,

∂b

∂y
=
∂c

∂z
+ 4z

∂c

∂x
,

∂b

∂x
=
∂c

∂y

∂a

∂z
= 4y

∂c

∂y
+ 16z2

∂c

∂x
,

∂a

∂y
= 4y

∂c

∂x
+ 4z

∂c

∂y
,

∂a

∂x
=
∂c

∂z
.

Introducing the variables w = y
x3/4

, v = z
x1/2

the homogeneity relations are satisfied by

a = x1+µh(v, w), b = x3/4+µg(v, w) and c = x1/2+µf(v, w),

where f, g, h are functions to be found. The six relations then become

∂g

∂v
= 4(1/2 + µ)wf − 2wv

∂f

∂v
+
∂f

∂w
(4v − 3w2),

∂g

∂w
= 4(1/2 + µ)vf − 3wv

∂f

∂w
+
∂f

∂v
(1− 2v2),

(3/4 + µ)g − 3/4w
∂g

∂w
− 1/2v

∂g

∂v
=
∂f

∂w
,

∂h

∂v
= 16v2(1/2 + µ)f − 8v3

∂f

∂v
+
∂f

∂w
(4w − 12v2w),

111



∂h

∂w
= 4w(1/2 + µ)f − 2wv

∂f

∂v
+
∂f

∂w
(4v − 3w2),

(1 + µ)h− 3/4w
∂h

∂w
− 1/2v

∂h

∂v
=
∂f

∂v
.

These equations can be rearranged to obtain

∂g

∂v
=

4{4f̃wC3 + g̃C2 − h̃wC1}
A

,

∂g

∂w
=

8f̃C2 − g̃w(C1 + 4C6) + 8h̃C5

A
,

∂f

∂v
=

8f̃C4 − g̃wC1 − 4h̃w(8v2 + 4− 15vw2)

A
,

∂f

∂w
=

2{−2f̃wC1 + g̃C5 − h̃C6}
A

,

∂h

∂v
=

8{−f̃ [v2(3(C2 − C4) + 4v(8v − 9w2)) + 9w4] + g̃(C3 − 2) + 2h̃C4}
A

,

∂h

∂w
=

4{4f̃w(C3 − 2) + g̃C2 − h̃wC1}
A

,

where C1 = 24v3 + 9w2− 20v, C2 = 3w2 + 4v(4v4− vw2− 1), C3 = 3v(2v− 4v3 +w2),

C4 = 8v3 + 16v5 + 3w2 − 19v2w2, C5 = 8v4 + 3vw2 − 2, C6 = 10v2 − 3,

A = 16(2v2 − 1)(2v2 + 1)2 + 16vw(9− 14v2)− 27w4,

and f̃ = (1 + 2µf), g̃ = g(3 + 4µ), h̃ = h(1 + µ).

The system is now in the form

∂u

∂x
= ψux(v, w, f, g, h), x = v, w, u = f, g, h,

and lengthy calculations show that

∂ψαv
∂w
− ∂ψαw

∂v
+
∑

u=f,g,h

(
∂ψαv
∂u

ψuw −
∂ψαw
∂u

ψuv

)
= 0,

for each of α = f, g, h and hence satisfies the conditions of
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Theorem 5.23 (Frobenius [18]) The necessary and sufficient conditions for the unique

solution uα = uα(x) to the system

∂uρ

∂xi
= ψρi (x, u), i = 1, . . . , n, ρ = 1, . . . , N,

such that u(x0) = u0 to exist for any initial data (u0, x0) ∈ Rn+N is that the relations

∂ψαi
∂xj
−
∂ψαj
∂xi

+
∑
β

(
∂ψαi
∂uβ

ψβj −
∂ψαj
∂uβ

ψβi

)
= 0, i, j = 1, . . . , n α, β = 1, . . . , N

hold.

Hence the equations generated by the generalised Legendre condition are consistent and

so generalised Legendre fields for A3 exist.

Legendre transformations are maps between solutions of the WDVV equations and so

may be applied to standard solutions as well as almost-dual-like solutions.

5.2 Legendre transformations and trigonometric ∨-

systems

In this section we apply such a Legendre transformation to the solution of the WDVV

equations given by extended ∨-systems, as constructed in the last chapter. Such systems

have a distinguished vector that may be used to define the Legendre transformation,

namely the vector in the perpendicular, or extended, direction ∂ = ∂
∂z⊥

.

Since U ext = U ∪ U ′ , the new variables are given purely in terms of the small-orbit

data. In particular:

ẑα =
∂2

∂zα∂z⊥

{∑
β∈U ′

hββ(z)2 log β(z)

}
(5.24)

since terms involving α(z) with α ∈ U are z⊥ independent. The difficulty in applying such
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a transformation is computational: one has to invert the above change of variables. In the

following example we invert these equations for the case when U = RAn . The procedure

is very general and may easily be applied to other systems.

Example 5.25 We study the case when U = RAn , when the the original system is the

set of roots of the An Coxeter group. To do this we utilisze the fact that for An we have

#ϑs = n + 1 so we can use n of them as a a basis for V . We label these covectors

wi , i = 0 , . . . , n with w0 = −
∑n

i=1wi .

Using this basis we define (recall z = zo + z⊥)

zi = wi(z) , i = 0 , . . . , n

z⊥ = n(z) .

Note that
∑n

i=0 zi = 0 . With this, the change of variables given by (5.24) reduces to

ẑi =
∂2

∂zi∂z⊥

{
n∑
r=0

2hβ(zi + z⊥)2 log(zi + z⊥)

}
,

ẑ⊥ =
∂2

∂(z⊥)2

{
n∑
r=0

2hβ(zi + z⊥)2 log(zi + z⊥)

}
.

On absorbing constants, or, using the quadratic freedom in the definition of F one obtains

the simple system

ẑi = 4hβ {log(zi + z⊥)− log(z0 + z⊥)} ,

ẑ⊥ = 4hβ

n∑
r=0

log(zi + z⊥)
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which is straightforward to invert. This yields

zi + z⊥ = e
1

4hβ(n+1)
(ẑ0+ẑ⊥)

. e
1

4hβ
ẑi
, i = 1 , . . . , n ,

z0 + z⊥ = e
1

4hβ(n+1)
(ẑ0+ẑ⊥)

.

One could go further and solve these, but this is not actually required. All that is required

are the terms α(z) and β(z) . In fact, the above formula are precisely the β(z)-terms, and

to find the α(z)-terms one can again use the small-orbit property and write each α as the

difference of two small-orbit covectors. Thus if α = wi − wj then

α(z) = (wi − wj)(z) ,

=


zi − zj if i , j 6= 0 ,

z0 − zj if i = 0 , j 6= 0 .

=


e

1
4hβ(n+1)

(ẑ0+ẑ⊥)
(
e

1
4hβ

ẑi − e
1

4hβ
ẑj
)
, if i , j 6= 0 ,

e
1

4hβ(n+1)
(ẑ0+ẑ⊥)

(
1− e

1
4hβ

ẑi
)
, if i = 0 , j 6= 0 .

To complete the Legendre transformation one has to integrate the equations to find F̂

Using these formulae one finds, schematically, that

∂2F̂

∂ẑi∂ẑj
= linear term +

∑
σ

terms involving
{

log
[
1− eσ(ẑ)

]}
with similar formulae for the ẑ⊥-derivatives. It is important to note that ẑ⊥ only occurs in

the linear terms in these expressions. Integrating yields a solution of the WDVV equation
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of trigonometric type,

F̂ = cubic term +
∑
σ∈Û

cσLi3
(
eσ(z)

)
where, again, ẑ⊥ only occurs in the cubic term.

Explicit examples of this kind may be found in [20,33].

Example 5.26 Applying this Legendre transformation to Example 4.1 yields the prepo-

tential [33]

F̂ =
1

24
z3⊥ −

1

8
z⊥z

2 +
1

2

{
Li3 (ez) + Li3

(
e−z
)}

.

This is the almost-dual prepotential associated to the potential

F =
1

2
t21t2 + et2 ,

which is construction from the extended affine Weyl group A
(1)
1 .

The above example shows a connection between extended ∨-systems and extended affine

Weyl groups. This link - via a Legendre transformation - will form the subject of the next

section.

5.3 Twisted Legendre-type transformations

As we saw in Chapter 3 given a Frobenius manifold F we have an almost-dual manifold

F ? . We may also apply a Legendre transformation to F to get a new manifold F̂ and

apply almost duality to that. Schematically we have

(F ; η̃, ∇̃)
Sκ−→ (F̂ ; η,∇)

almost duality ↓ ↓

(F ?; ĝ, ∇̂)
Ŝκ−→ (F̂ ?; ǧ, ∇̌)
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where η and η̃, and ∇ and ∇̃ are related as in Definition (5.5) and Ŝκ is the twisted

Legendre transformation constructed in [33] and generated by the vector field

∂̂ = E ◦ ∂ ,

i.e the generating field ∂ twisted by multiplication by the Euler vector field. Ŝκ is a

generalised Legendre transformation generated by ∂̂ (see Theorem 5.29). Generally ∂̂ is

not a flat vector field but we find the condition for it to be so in this section.

From [23] (Theorem 9.4(a),(e)) ∇̂ is related to ∇̃ by

∇̂X(Y ) = E ◦ ∇̃(E−1 ◦ Y )− ∇̃E−1◦Y (E) ◦X +
1

2
(D + 1)X ◦ Y ◦ E−1, (5.27)

where D is the constant given by

LE(g̃) = Dg̃,

so we have

∇̌X(Y ) = E ◦ ∇X(E−1 ◦ Y )−∇E−1◦Y (E) ◦X +
1

2
(Ď + 1)X ◦ Y ◦ E−1,

= E ◦
{
∂−1 ◦ ∇̃X(∂ ◦ E−1 ◦ Y )

}
−
{
∂−1 ◦ ∇̃E−1◦Y (∂ ◦ E)

}
◦X +

1

2
(Ď + 1)X ◦ Y ◦ E−1,

= ∂−1 ◦
{
∇̂X(∂ ◦ Y ) + ∇̃E−1◦∂◦Y (E) ◦X − 1

2
(D + 1)X ◦ Y ◦ E−1

}
− ∂−1 ◦ ∇̃E−1◦Y (∂ ◦ E) ◦X +

1

2
(Ď + 1)X ◦ Y ◦ E−1,

(on substituting (5.27) for the first term)

= ∂−1 ◦ ∇̂X(∂ ◦ Y ) + ∂−1
{
∇̃E−1◦∂◦Y (E)− ∇̃E−1◦Y (∂ ◦ E)

}
◦X +

1

2
(Ď−D)X ◦ Y ◦E−1.
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In [9] it was shown that

∇̃Y (u ◦ E−1) = ∇̃u◦Y (E−1) + U ◦ Y,

with

U = [E , u] + [e, E ] ◦ u.

So with E → E−1, u→ ∂ and Y → E−1 ◦ Y we have

∇̃E−1◦Y (∂ ◦ E) = ∇̃E−1◦∂◦Y (E) + U ◦ E−1 ◦ Y,

with

U = [E, ∂] + [e, E] ◦ ∂,

thus

∇̌X(Y ) = ∂−1 ◦ ∇̂X(∂ ◦ Y ) + ∂−1 ◦
{
−U ◦ E−1 ◦ Y

}
◦X +

1

2
(Ď −D)X ◦ Y ◦ E−1.

To find U recall that

E =
∑
i

dit
i∂i +

∑
a:da=0

ra∂a,

e = ∂1,

∂ = ∂κ,

thus [e, E] = e, [E, ∂] = −dκ∂ and so U = (1−dκ)∂. Also recall D = 2−d and Ď = 2− ď.

So

∇̌X(Y ) = ∂−1 ◦ ∇̂X(∂ ◦ Y ) + ∂−1 ◦
{
−(1− dκ)∂ ◦ E−1 ◦ Y

}
◦X +

1

2
(d− ď)X ◦ Y ◦ E−1,
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= ∂−1 ◦ ∇̂X(∂ ◦ Y ) +

[
1

2
(d− ď)− (1− dκ)

]
X ◦ Y ◦ E−1.

From [13], Appendix B we have that

d = −2µ1,

so

ď = −2µκ

and

dκ = 1− qκ = 1− (µκ − µ1).

Therefore

1

2
(d− ď)− (1− dκ) =

1

2
(−2µ1 + 2µκ)− 1 + 1− (µκ − µ1) = 0,

hence

∇̌X(Y ) = ∂−1 ◦ ∇̂X(∂ ◦ Y ).

Hence if we know flat vector fields for ∇̂ then we can construct flat vector fields for ∇̌.

Moreover we can find out when ∂̂ = E ◦ ∂ is flat for ∇̂ from (5.27)

∇̂X ∂̂ = E ◦ ∇̃X(E−1 ◦ ∂̂)− ∇̃E−1◦∂̂(E) ◦X +
1

2
(D + 1)X ◦ ∂̂ ◦ E−1,

= E ◦ ∇̃X(∂)− ∇̃∂(E) ◦X +
1

2
(D + 1)X ◦ ∂,

the first term on the right is 0 since ∂ is flat for ∇̃ and since ∇̃ is torsion-free

∇̃∂E − ∇̃E∂ − [∂,E] = 0,

∇̃∂E = [∂,E],
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again since ∂ is flat for ∇̃. So

∇̂X ∂̂ =

{
[E, ∂] +

1

2
(3− d)∂

}
◦X,

and since

[E, ∂] =
∑
i

[dit
i∂i, ∂κ] = −dκ∂,

we have that

∇̂X ∂̂ =

[
−dκ +

1

2
(3− d)

]
∂ ◦X.

On substituting

dκ = 1− qκ = 1− (µκ − µ1),

d = −2µ1,

we see that

∇̂X ∂̂ =

(
µκ +

1

2

)
∂ ◦X, (5.28)

and so ∂̂ is flat for ∇̂ when µκ = −1
2

and there is a twisted Legendre transformation

that is actually a standard Legendre transformation when −1
2

is in the spectrum of the

Frobenius manifold.

Theorem 5.29 ∂̂ is a generalised Legendre field for ∇̂.

Proof. From (5.28) we have

Y ? ∇̂X ∂̂ =

(
µκ +

1

2

)
∂ ◦ E−1 ◦X ◦ Y.
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The right side of this equation is symmetric in X and Y so we have

Y ? ∇̂X ∂̂ = X ? ∇̂Y ∂̂. �

Example 5.30 Consider the prepotential

F =
1

4
t22t3 +

1

2
t1t

2
3 +

1

2
t21logt2,

with Euler vector field

E = 2t1∂t1 +
3

2
t2∂t2 + t3∂t3 .

This has µ1 = −1
2
. We will return to this Frobenius manifold in Example 5.35.

5.4 Extended ∨-systems and almost duality for ex-

tended affine Weyl orbit spaces

One of the main problems in the theory of almost-dual type solutions to the WDVV

equations (this class including ∨-systems) is to indentfy those which are precisely the

almost-dual prepotentials to some Frobenius manifold. In [15] a reconstruction theorem

was proved, but the theorem is extremely difficult to use in practice. It relies on solving a

linear Lax pair, and finding a vector field (to play the rôle of e) which acts on this solution

in a specific way. In this section we bypass this reconstruction theorem and prove the

following.

Theorem 5.31 Let W be a finite irreducible classical Coxeter group of rank N and let

W̃ be the extended affine Weyl group of W with arbitrary marked node. Then up to

a Legendre transformation, the almost dual prepotentials of the classical extended affine

Weyl group orbit spaces CN+1/W̃ are, for specific values of the free data, the extended

∨-systems of the ∨-system RW . In particular:
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• The almost dual prepotential corresponding to the orbit space

Cl+1/W̃ (k)(Al)

is the Legendre transformation, along the extended direction, of the extended ∨-

system with:

(i) original ∨-system

U = RAl ,

hα = 1 ∀α ∈ U ;

(ii) data for extension (of A-type):

ϑs = {w(ω1) |w ∈ W (Al)} ,

hw = −(l + 1− k) ∀w ∈ U ext .

(iii) superpotential data: The superpotential for the extended ∨-system is given by

(3.8) with

cext = {−(l + 1− k) , 1 , . . . , 1︸ ︷︷ ︸
l+1

} .

• The almost dual prepotential corresponding to the orbit space

Cl+1/W̃ (k)(Cl)

with flat structure defined by the constant m, where 0 6 m 6 l − k, is the Legendre

transformation, along the extended direction, of the extended ∨-system with (where

s = −2(l − (k +m)) , :
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(i) original ∨-system

U = RBl ,

hαshort = 1 + s

hαlong = 1

for all αshort/long ∈ U ;

(ii) data for extension (of B-type):

ϑs = {w(ω1) |w ∈ W (Bl)} ,

hw = −2k ∀w ∈ U ext ,

hn = −2k(s+ 2k) .

(iii) superpotential data: The superpotential for the extended ∨-system is given by

(3.11) with

cext = {−2k , 1 , . . . , 1︸ ︷︷ ︸
l

} .

The proof will utilize a Hurwitz space construction. For extended affine Weyl groups

of type A this construction was given in [16]. For types B ,C ,D this was given in [17].

Hurwitz spaces are moduli spaces of pairs (C, λ) , where C is a Riemann surface of

degree g and λ is a meromorphic function on C of degree N . It was shown in [13] that

such spaces may be endowed with the structure of a Frobenius manifold. The g = 0

case is particularly simple - meromorphic functions from the Riemann sphere to itself are

just given by rational functions. It is into this category of Frobenius manifolds that the

examples constructed above fall.
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More specifically, the Hurwitz space Hg,N(k1 , . . . , kl) is the space of equivalence classes

[λ : C → P1] of N -fold branched covers1 with:

• M simple ramification points P1, . . . , PM ∈ L with distinct finite images l1, . . . , lM ∈

C ⊂ P1;

• the preimage λ−1(∞) consists of l points: λ−1(∞) = {∞1, . . . ,∞l}, and the ramifi-

cation index of the map p at the point ∞j is kj (1 6 kj 6 N).

The Riemann-Hurwitz formula implies that the dimension of this space is M = 2g + l +

N − 2 . One has also the equality k1 + · · · + kl = N . For g > 0 one has to introduce a

covering space, but this is unnecessary in the g = 0 case that will be considered here.

In this construction there is a certain ambiguity; one has to choose a so-called primary

differential (also known as a primitive form). Different choices produce different solutions

to the WDVV equations, but such solutions are related by Legendre transformation Sκ .

The Hurwitz data {λ, ω} from which one constructs a solution F{λ,ω} consists of the map

λ (also known as the superpotential) and a particular primary differential ω [13]. Thus,

again schematically, one has:

F{λ,ω}
Sκ←→ F̂{λ,ω̂}

(note the map λ does not change, though it might undergo a coordinate transformation).

The metrics <,> , (, ) and multiplications ◦ , ? are determined by Theorem 1.54.

We divide the proof into the A case and the B ,C ,D cases.

5.4.1 Extended Affine Weyl orbit spaces of type A

In [16] it was shown, given an extended affine group W̃ (k)(Al), that the orbit space

Cl+1/W̃ (k)(Al) maybe endowed with the structure of a Frobenius manifold. Addition-

ally, it was shown that this space is isomorphic to the space of trigonometric polynomials

1Dubrovin uses the different notation Hg,k1−1 ,... ,kl−1 .
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of bi-degree (k, l + 1− k), namely, functions of the form

λ(z̃) = eikz̃ + a1e
i(k−1)z̃ + · · ·+ al+1e

−i(l+1−k)z̃ (5.32)

with the Frobenius manifold structures being given by Theorem 1.54 with the choice of

primary differential ω = dz̃ .

This space is related, via a Legendre transformation, to the Hurwitz space Mk,l+1−k

of rational functions of the form

λ(z) = zk + α1z
k−2 + . . .+

t◦

z − z◦
+ . . .+

αl+1

(z − z◦)l+1−k (5.33)

with primary differential ω = dz . The coefficient t◦ turns out, by evaluating certain

residues, to be a flat coordinate and hence a change in primary differential is given by

dz̃ = {∂t◦λ(z)} dz

so z̃ = log(z− z◦) , and this induces the Legendre transformation between the two Frobe-

nius manifolds, i.e. this change of primary differential induces a change of variable that

maps (5.32) to (5.33). Thus the Frobenius manifold structures on Cl+1/W̃ (k)(Al) and

Mk,l+1−k are related by a Legendre transformation.

Rewriting the rational function (5.33) in this form

λ(z) =

∏l+1
i=1(z − zi)

(z − z◦)l+1−k

∣∣∣∣∣∑l+1
i=1 zi−(l+1−k)z◦=0

thus gives a ∨-system which is of extended type, i.e. an extension of the Al ∨-system

constructed above, with the zeros of the superpotential being flat coordinates for the
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metric g . This is a special case, with

k = {−(l + 1− k) , 1 , . . . , 1︸ ︷︷ ︸
l+1

}

of the general superpotential (3.8).

At this stage one could directly calculate the almost-dual prepotential from the trigono-

metric superpotential, and the result is a solution which is derived from a trigonometric

∨-system [33]. However, we will take a different approach and perform the twisted Leg-

endre transformation.

Mk,l+1−k
Legendre transformation←−−−−−−−−−−−−→ Cl+1/W̃ (k)(Al)

y
y


almost dual

prepotential of

rational type


twisted Legendre transformation←−−−−−−−−−−−−−−−−−→


almost dual

prepotential of

trigonometric type


It turns out that, with the choice ∂ = ∂t◦ the twisted Legendre field is actually constant.

Lemma 5.34 The twisted Legendre field E ◦ ∂
∂t◦

is constant in the {zi}-variables. More-

over, the field is perpendicular to the space

TV = span

{
∂

∂wi
, i = 1 , . . . , l

}
,
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where the variables zi and wi are related by the linear change of variables

wi = zi − 1

l + 1

l+1∑
j=1

zj , j = 1 , . . . , l + 1 ,

w⊥ =
1

l + 1− k

l+1∑
j=1

zj ,

together with the constraint
∑l+1

i=1w
i = 0 .

Proof. We calculate

g

(
E ◦ ∂

∂t◦
,
∂

∂zi

)
Using the above formulae,

g

(
E ◦ ∂

∂t◦
,
∂

∂zi

)
= η

(
∂

∂t◦
,
∂

∂zi

)
,

=
∑

resdλ=0

{
∂λ
∂t◦

∂λ
∂zi

λ′
dz

}
,

=
∑

resdλ=0

{
1

(z − z◦)
∂λ

∂zi
λ

λ′
dz

}
.

A standard residue calculation gives

g

(
E ◦ ∂

∂t◦
,
∂

∂zi

)
= − 1

l + 1− k
.

In these coordinates,

g =
l+1∑
i=1

(dzi)2 − 1

l + 1− k

(
l+1∑
j=1

dzj

)2

,

127



and hence

E ◦ ∂
∂t◦

=
1

k

l+1∑
j=1

∂

∂zj
.

In the wi variables,

E ◦ ∂
∂t◦

=
l + 1

k(l + i− k)

∂

∂w⊥
.

and

g =
l∑

i=1

(dwi)2

∣∣∣∣∣∑
wi=0

− k(l + 1− k)

l + 1
(dw⊥)2

and hence the twisted Legendre field is perpendicular to the space TV . �

The following example illustrates Theorem 5.31 and also points to the above theory being

more widely applicable than we have thus far shown. It shows that, indeed, the Legendre

transformation along the extended direction (z3 in the notation of the example) of the

prepotential of the extended A2 ∨-system is almost dual to the prepotential of the orbit

space C3/W̃ (1)(A2) and that the Legendre field (∂t̂1) generating the Legendre transforma-

tion from the prepotential of the Hurwitz spaceM1,2 to that of C3/W̃ (1)(A2) induces a flat

twisted Legendre field to generate the (hence standard, not generalised) Legendre trans-

formation from the extended A2 ∨-system (see the end of the example). It also shows,

however, that the same is true when we perform a different Legendre transformation on

the prepotential of C3/W̃ (1)(A2) and for which the twisted Legendre field is not flat. We

hope to find which Legendre transformations of extended affine Weyl orbit spaces give

prepotentials which have extended ∨-systems as their almost-dual in future work.

Example 5.35 The extended A2 Frobenius manifold found in [16] has prepotential

F =
1

2
t21t3 +

1

4
t1t

2
2 + t2e

t3 − 1

96
t42,
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and Euler vector field

E = t1∂1 +
1

2
t2∂2 +

3

2
∂3.

The flat coordinates, zi, of the intersection form are given, implicitly, by

t1 = e
2
3
z3(ez1 + e−z2 + ez2−z1),

t2 = e
1
3
z3(ez2 + e−z1 + ez1−z2),

t3 = z3.

We can thus use (3.2) to find the almost dual prepotential:

F ∗ =
1

2

[
Li3(e

2z2−z1) + Li3(e
z1−2z2)

]
+

1

2

[
Li3(e

z2−2z1) + Li3(e
2z1−z2)

]
+

1

2

[
Li3(e

z1+z2) + Li3(e
−z1−z2)

]
+

1

4
z1z2(z1 − z2)−

2

3
(z21 − z1z2 + z22) +

2

27
z33 ,

and can perform generalised Legendre transformations generated by the vector fields

∂̂ti = E ◦ ∂ti i = 2, 3.

Calculating these vector fields gives

∂̂2 =
3

2
et3∂1 +

(
t1 −

t22
4

)
∂2 +

1

4
t2∂3,

∂̂3 = 2t2e
t3∂1 + 3et3∂2 + t1∂3,

or in the z-coordinates

∂̂2 =
e
z3
3

2

[
1

3

(
−ez1−z2 + 2e−z1 − ez2

)
∂z1 +

1

3

(
ez1−z2 + e−z1 − 2ez2

)
∂z2+

1

2

(
ez1−z2 + e−z1 + ez2

)
∂z3

]
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∂̂3 = e
2z3
3

[
1

3

(
e−z2 + ez2−z1 − 2ez1

)
∂z1 +

1

3

(
2e−z2 − ez2−z1 − ez1

)
∂z2+(

e−z2 + ez2−z1 + ez1
)
∂z3
]
.

We can now perform the transformations as outlined in Proposition 5.14.

Transformation ∂̂2

From

∂ẑα
∂zβ

= ∂γcαβγ,

we obtain new coordinates (indices are written subscript for typographical clarity)

ẑ1 = e
1
3
z3(ez1−z2 − 2e−z1 + ez2),

ẑ2 = −e
1
3
z3(ez1−z2 + e−z1 − 2ez2),

ẑ3 = −3

2
e

1
3
z3(ez1−z2 + e−z1 + ez2).

which can be inverted

z1 = log

(
(3ẑ2 − 2ẑ3)(3ẑ1 − 3ẑ2 − 2ẑ3)

(3ẑ1 + 2ẑ3)2

) 1
3

,

z2 = log

(
−(3ẑ2 − 2ẑ3)

2

(3ẑ1 + 2ẑ3)(3ẑ1 − 3ẑ2 − 2ẑ3)

) 1
3

,

z3 = log

(
− 1

93
(3ẑ2 − 2ẑ3)(3ẑ1 − 3ẑ2 − 2ẑ3)(3ẑ1 + 2ẑ3)

)
.

Then from

∂2F̂ ∗

∂ẑa∂ẑb
=

∂2F ∗

∂za∂zb

we derive the prepotential

F̂ ∗(2) =
∑
α∈R

(α · z)2log(α · z) +
∑
β∈W2

(β · z)2log(β · z)
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where (after the linear transformation z2 → −z2)

R =


(1, 2, 0)

(1,−1, 0) ,

(2, 1, 0)

the roots of the A2 system and

W2 =


±(1, 0, 2/3)

±(0, 1, 2/3) ,

±(−1,−1, 2/3)

one of the small orbits of the A2 system plus 2/3 in the perpendicular direction, and the

other small orbit minus 2/3 in the perpendicular direction.

Transformation ∂̂3

Similarly we find

ẑ1 = e
2
3
z3(ez2−z1 − 2ez1 + e−z2),

ẑ2 = e
2
3
z3(ez2−z1 + ez1 − 2e−z2),

ẑ3 = −3e
2
3
z3(ez2−z1 + ez1 + e−z2),
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inverting,

z1 = log

(
(3ẑ1 − ẑ3)2

(3ẑ2 + 2ẑ3)(3ẑ1 − 3ẑ2 + ẑ3)

) 1
3

,

z2 = log

(
−(3ẑ1 − ẑ3)(3ẑ1 − 3ẑ2 + ẑ3)

(3ẑ1 + ẑ3)2

) 1
3

,

z3 = log

(
− 1

93
(3ẑ1 − ẑ3)(3ẑ1 − 3ẑ2 + ẑ3)(3ẑ1 + ẑ3)

) 1
2

.

and the prepotential is

F̂ ∗(3) =
∑
α∈R

(α · z)2log(α · z)− 2
∑
β∈W3

(β · z)2log(β · z)

where R is as above but now

W3 =


±(1, 0,−1/3)

±(0, 1,−1/3) ,

±(−1,−1,−1/3)

the small orbits plus or minus 1/3 in the perpendicular direction.

We can perform the standard Legendre transformations S2 and S3 to obtain, respec-

tively, the prepotentials

F̂(2) =
1

12
t̂32 + t̂1t̂2t̂3 +

1

2
t̂21logt̂1 +

1

3
t̂1t̂

3
3,

F̂(3) =
1

4
t̂22t̂3 +

1

2
t̂1t̂

2
3 +

1

2
t̂21logt̂2.
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Schematically, then, we have

F̂(3)
S3←− F

S2−→ F̂(2)

↓ ↓ ↓

F̂ ∗(3)
Ŝ3←− F ∗

Ŝ2−→ F̂ ∗(2)

By composing the three relevant coordinate transformations we find, for S2,

t̂1 = − 1

93
(3ẑ1 + 2ẑ3)(3ẑ1 − 3ẑ2 − 2ẑ3)(3ẑ2 − 2ẑ3),

t̂2 =
1

27
[ẑ23 − 3(ẑ21 − ẑ1ẑ2 + ẑ22)],

t̂3 = −1

3
ẑ3,

and can verify, with (3.2), that F̂ ∗(2) is indeed almost dual to F̂(2). Similarly for S3,

t̂1 =
1

27
[ẑ23 − 3(ẑ21 − ẑ1ẑ2 + ẑ22)],

t̂2 =
2

27

√
(3ẑ1 − ẑ3)(3ẑ1 − 3ẑ2 + ẑ3)(3ẑ2 + ẑ3),

t̂3 = −1

3
ẑ3,

and again can check that F̂ ∗(3) is almost dual to F̂(3). Also, performing the Legendre trans-

formation S1 on F̂(3) takes us back to F and µ1 = −1/2. Writing E in the t̂−coordinates

we have

E = 2t̂1∂t̂1 +
3

2
t̂2∂t̂2 + t̂3∂t̂3 ,

and calculating the generating field, E ◦ t̂1, for the generalised Legendre transform of F̂ ∗(3)

gives

E ◦ ∂t̂1 = t̂3∂t̂1 +
t̂1

t̂2
∂t̂2 +

3

2
∂t̂3 ,
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which, in the ẑ−coordinates is

E ◦ ∂t̂1 = −9

2
∂ẑ3 ,

so is flat and thus generates a ‘standard’ Legendre transformation.

5.4.2 Extended Affine Weyl orbit spaces of type B ,C ,D

In a similar way, given an extended affine Weyl group of type B ,C ,D there exists Frobe-

nius manifold structures on the corresponding orbit space. In [16] this was constructed for

a specific choice of marked node and in [17] this construction was generalized to the case

of an arbitrary marked node. Thus given a extended affine Weyl goup of C-type, W̃ (k)(Cl)

one can construct a Frobenius manifold structure on the orbit space Cl+1/W̃ (k)(Cl) . How-

ever, unlike the A-case, there is an additional freedom in the choice of flat structure on the

orbit space, and this freedom is defined in terms of an additional integer 0 6 m 6 l − k .

Thus the Frobenius manifold structure on the orbit space - defined by the pair (k, l) -

depends on the triple (k, l,m) . This Frobenius manifold will be denoted Mk,m(Cl) .

This construction also covers the orbit spaces, and their Frobenius manifold structures,

for the extended affine Weyl groups W̃ (k)(Bl) and W̃ (k)(Dl) . The ring of invariant polyno-

mials (freely generated by an appropriate Chevalley-type theorem) for these groups may

be obtained from those constructed for the group W̃ (k)(Cl) by simple changes of variable,

and this leads to isomorphic Frobenius manifolds. thus it suffices to study the orbit space

Cl+1/W̃ (k)(Cl) with the Frobenius manifold structure Mk,m(Cl) .

Furthermore, it was shown thatMk,m(Cl) coincides with the Frobenius manifold struc-

ture on the space of cosine-Laurent series of tri-degree (2k, 2m, 2l) , namely functions of

the form

λ(z̃) =
1

(cos2 z̃ − 1)m

l∑
j=0

aj cos2(k+m−j)(z̃) , (5.36)

with the choice of primary differential ω = dz̃ .

134



This space is related, via a Legendre transformation, to a space of Z2-invariant rational

functions of the form

λ(z) = z2m + αm−1z
2(m−1) + . . .+ α0 +

l−(k+m)∑
r=1

βr
z2r

+
k∑
s=1

γs
(z2 − (z◦)2)s

(5.37)

with primary differential ω = dz . We denote this space MZ2

m,l−(k+m),k .

The coefficient t◦, defined by the term

λ(z) = . . .+
z◦t◦

(z2 − (z◦)2)
+ . . .

turns out, by evaluating certain residues, to be a flat coordinate and hence a change in

primary differential is given by

dz̃ = {∂t◦λ(z)} dz .

so (up to an overall constant that may be ignored) z = iz◦ cot z̃ , and this induces the

Legendre transformation between the two Frobenius manifolds, i.e. this change of primary

differential induces a change of variable that maps (5.36) to (5.37). Thus the Frobenius

manifold structures onMk,l(Cl) and the Z2-graded Hurwitz spaceMZ2

m,l−(k+m),k are related

by a Legendre transformation.

As in the A-case, the twisted Legendre transformation between the corresponding

almost dual manifolds turns out to a normal Legendre transformation. The extended-∨-

systems may be easily calculated by writing the superpotential in the form

λ(z) =

l∏
i=1

(
z2 − (zi)2

)
z2(l−(k+m))

(
z2 − (z◦)2

)2k .
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Unlike the A-case the zo variable is not constrained: the flat coordinates for the metric

are zi , i = 0 , . . . , l . This is a special case, with s = −2 (l − (k +m)) and

k = {−2k , 1 , . . . , 1︸ ︷︷ ︸
l

}

of the general superpotential (3.11).

Lemma 5.38 The twisted Legendre field E ◦ ∂
∂t◦

is constant in the {zi}-variables. More-

over, the field is perpendicular to the space

TV = span

{
∂

∂zi
, i = 1 , . . . , l

}
.

Proof. Since

4k
∂λ

∂t◦
=
∂ log λ

∂zo

it immediately follows that, for all i = 0 , . . . , l :

g

(
E ◦ ∂

∂t◦
,
∂

∂zi

)
= g

(
1

4k

∂

∂z◦
,
∂

∂zi

)
.

Hence

E ◦ ∂
∂t◦

=
1

4k

∂

∂z◦
.

In these variables

g =
l∑

i=1

(dzi)2 − 2k(dz◦)2 ,
�

and hence it follows that the twisted Legendre field is perpendicular to the space TV .

We end by noting two things:
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(1) To make the connection with Section 4.1

TV is spanned by

{
∂

∂wi
for A type

}
,

{
∂

∂zi
for B,C,D type

}
TV ⊥ is spanned by

{
∂

∂w⊥
for A type

}
,

{
∂

∂z⊥
for B,C,D type

}

So the twisted Legendre field E◦ ∂
∂to

is perpendicular to the space TV (the constraint

in the A-case,
∑l+1

i=1w
i = 0 , is just the manifestation of the standard representation

of the Al roots system as a hyperplane in Rl+1 .

(2) Since ∂̃ is constant in these (flat)-coordinates, the twisted Legendre transforma-

tion is actually a normal Legendre transformation, and such a normal Legendre

transformation has already been performed in Section 5.2

The choice of original Legendre field ∂ = ∂t◦ was very special - others choices would

have resulted in a non-constant twisted Legendre field. As was shown in Section 5.3 this

special property comes from the fact that µ = −1
2

lies in the spectrum of the underlying

Frobenius manifold [31].

Example 5.39 We have also found trigonometric ∨-systems related to those Bn systems

extended into 2 dimensions (see (4.19)), for instance

F = 512Li3(e
z1
4 ) + 512Li3(e

z2
4 )− 80Li3(e

z1
2 )− 80Li3(e

z2
2 )

+ 32Li3(e
z1−z2

4 ) + 32Li3(e
z2−z1

4 ) + 64Li3(e
z1+z2

4 ) +
1

4
(z21z2 + z1z

2
2)− 1

12
(z31 + z32)

± 1

4
√

2
(z23z4 + z3z

2
4)± 1

12
√

2
(z33 + z34)± 1

2
√

2
(z3 + z4)(z

2
1 + z22).

The existence of such prepotentials immediately raises the question of what (if anything)

they are almost-dual to. It is logical to conjecture that the construction of the extended

affine Weyl groups in [16] can be similarly extended.
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Chapter 6

Conclusions

An obvious question that arises from our work on almost-dual-like solutions that have

singular canonical form under the usual definition is whether there exists a generalised

version of the ∨-conditions which are satisfied by both ∨-systems and these new solutions

(both complex Euclidean ∨-systems with zero canonical form and other systems with

simgular metric). Since the canonical form plays a central rôle in derivation of the ∨-

conditions an entirely new approach would be required in the derivation of the generalised

version.

The classification of ∨-systems is still open (even in dimension and 3 and restricted to

the real case, see [35]) and we have shown that there exists new solutions whose canonical

form is identically zero but for which we can recover a solution by imposing a metric. We

have computationally found that these solve the WDVV equations for certain values of n

and an important future direction would be to prove, or otherwise, that they do for all n

A deeper understanding of these new solutions may therefore shed light on the ‘standard’

∨-systems themselves.

We also saw that our approach of investigating what happens to solutions when the

conventional metric becomes singular is not restricted to the logarithmic solutions (1).

We found new, multi-parameter polynomial solutions in dimension 3 and a new functional
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form of solutions (3.18) simply by considering functions that has identically zero metric

under the old definition. Not all such functions give a solution, however, so an important

question to ask is what are the other conditions a function must satisfy in order to provide

a solution. Also how, if at all, are these solutions related to the logarithmic solutions with

zero canonical form.

As remarked earlier, and as is apparent from Figure 4.4, an extended ∨-system, based,

say, on the root system RW of a classical Weyl group W of rank n, is invariant under

the action of W . But on performing a Legendre transformation one obtains configuration

invariant under an extended affine Weyl group of rank n+1 . It is therefore natural to ask

what is the origin of this extra symmetry that does not appear in the extended ∨-system.

The answer lies in the precise nature of the Legendre transformation ẑ ↔ z . For example,

in the An example the perpendicular direction z⊥ is invariant under the affine translation

ẑ⊥ 7→ ẑ⊥ + 8πihβ(n+ 1)

since the transformation is exponential. Thus in ẑ-space one has a symmetry that is not

apparent in the original z-space. Together with the original action of W , one thus obtains

an extended affine group action.

The construction in this thesis is dependent on the existence of a small orbit and for

exceptional Coxeter groups such orbits do not exist. However the construction in [16],

coupled with almost-duality, guarantees a trigonometric ∨-system for such exceptional

cases (for a specific marked node in [16], and conjecturally for an arbitrary marked node).

Whether such systems are the Legendre-transformed versions of some extended rational

∨-system is unknown, though it is natural to conjecture that they are. More generally, a

natural question to ask is whether there is some direct map between rational ∨-systems

and trigonometric ∨-systems, and if not, to find under what conditions it does exist.
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Further examples too would be of interest. there has been recent work on the classifi-

cation of ∨-systems [3,35] and it would be interesting to see if extended versions of these

system exist. One could ask, for example, how the matroid for the extended systems can

be constructed from the matroid of the original system. The complex-reflection/Shephard

group examples recently constructed in [3] would be a good place to start: these already

have interesting symmetry groups automatically build into their construction.

The small orbit property also provides an explanation of the ad-hoc construction of

elliptic ∨-systems [39] and elliptic solutions to the WDVV equations. These solutions

have, as their leading term, a function that by itself is a solution to the WDVV equations

of the form (3.3), but an irregular orbit had to be added, but which irregular orbit was

unclear. It turns out that the irregular orbit are precisely small orbits. One observation

coming from these results is that, for Coxeter groups, the existence of an irreducible

quartic invariant polynomial is equivalent to the existence of a small orbit. Whether this

is significant or just accidental is unclear.

The WDVV-equations and the rational solutions come from the commutativity, or

zero-curvature relations, for the deformed connection

∇a = ∂a + κ
∑
α∈U

(α, a)

(α, z)
α∨ ⊗ α .

The construction in this chapter can also be thought of in terms of extending such a

connection into a dimension higher. The geometry of such a construction also deserves

to be studied. Such questions also appear in the Hurwitz space description. For example,

consider the An-example and its extension. This construction corresponds to adding an

extra term to the superpotential:

n∏
i=0

(z − zi)

∣∣∣∣∣∑n
i=1 z

i=0

7→
∏n

i=0(z − zi)
(z − z◦)k

∣∣∣∣∑n
i=0 zi−nz◦=0

140



and the geometry of Hurwitz theory requires that k ∈ ±N . Algebraically this restriction

is not required in the ∨-system. It is here that the sign of k effects the geometry (but

not the algebra). If k is positive this generates the extended affine Weyl orbit space and

a solution that is almost dual to the corresponding Frobenius manifold. If k is negative

the superpotential no longer has a pole, but a multiple root. This corresponds to the

induced Frobenius structures on discriminant surfaces with a larger manifold [38]. That

such induced structures on discriminant generate solutions to the WDVV equations of

the form (3.3) was proved in [22].

Finally, root systems and ∨-systems appear in many other places in mathematical

physics: in the theory of Calogero-Moser and Schrödinger operators, for example [37],

and there are rational and trigonometric versions of both of these. Whether these are

connected by a suitable Legendre transformation is unknown.

All these questions require further work.

141



List of References

[1] A. Morozov A. Marshakov, A. Mironov. WDVV-like equations in N=2 SUSY Yang-
Mills theory. Phys. Lett. B, 389:43–52, 1996.

[2] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Dover, 1964.

[3] A. Arsie and P. Lorenzoni. Complex reflection groups, logarithmic connections and
bi-flat F-manifolds. arXiv:1604.04446.

[4] A. Arsie and P. Lorenzoni. Purely non-local Hamiltonian formalism, Kohno connec-
tions and ∨-systems. Journal of mathematical physics, 55(113510):1 – 16, 2014.

[5] M. Atiyah. Topological quantum field theories. Publ. Math. I.H.E.S., 68:175–186,
1988.

[6] N. Bourbaki. Lie groups and Lie algebras chapters 4-6. Springer, 1968.

[7] R. Brauer and C. J. Nesbitt. On the regular representations of algebras. Proc. Nat.
Acad. Sci. USA, 23:236–240, 1937.

[8] O. A. Chalykh and A. P. Veselov. Locus configurations and ∨−systems. Phys. Lett.
A, 285:339 – 349, 2001.

[9] Liana David and Ian A. B. Strachan. Symmetries of F-manifolds with eventual
identities and special families of connections. Amm. Sc. Norm. Super. Pisa Cl. Sci
(5), 2012.

[10] R. Dijkgraaf. A geometrical approach to two-dimensional Conformal field theory.
PhD thesis, Utrecht, 1989.

[11] R. Dijkgraaf, H. Verlinde, and E. Verlinde. Notes on topological string theory and 2d
quantum gravity. In String Theory and Quamtum Gravity, Proceedings of the Trieste
Spring School, pages 91–156. World Scientific, 1990.

[12] B. Dubrovin. Integrable systems in topological field theory. Nucl. Phys. B, 379:627–
689, 1992.

142



[13] B. Dubrovin. Geometry of 2D topological field theories. Integrable Systems and
Quantum Groups, 1996.

[14] B. Dubrovin. Flat pencils of metrics and Frobenius manifolds. In Integrable systems
and algebraic geometry (Kobe/Kyoto 1997), pages 47–72. World Sci. Publishing, 1998.

[15] B Dubrovin. On almost duality for Frobenius manifolds. In Geometry, topology and
mathematical physics, pages 75–132. American mathematical society, 2004.

[16] B. Dubrovin and Y. Zhang. Extended affine Weyl groups and Frobenius manifolds.
Composito Mathematica, 111:167 – 219, 1998.

[17] Strachan I.A.B. Zhang Y. Dubrovin, B.A. and D. Zuo. Extended affine Weyl
groups of BCD type, Frobenius manifolds and their Landau-Ginzburg superpoten-
tials. arXiv:1510.08690.

[18] M. Dunajski. Overdetermined pdes. Course notes, University of Cambridge, June
2008.
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