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Abstract

The aim of this thesis is to develop the dimension theory of self-affine carpets in several directions.
Self-affine carpets are an important class of planar self-affine sets which have received a great deal of
attention in the literature on fractal geometry over the last 30 years. These constructions are impor-
tant for several reasons. In particular, they provide a bridge between the relatively well-understood
world of self-similar sets and the far from understood world of general self-affine sets. These carpets
are designed in such a way as to facilitate the computation of their dimensions, and they display
many interesting and surprising features which the simpler self-similar constructions do not have. For
example, they can have distinct Hausdorff and packing dimensions and the Hausdorff and packing
measures are typically infinite in the critical dimensions. Furthermore, they often provide exceptions
to the seminal result of Falconer from 1988 which gives the ‘generic’ dimensions of self-affine sets in a
natural setting. The work in this thesis will be based on five research papers I wrote during my time
as a PhD student, namely [Fr1, Fr2, Fr3, Fr4, Fr5].

The first contribution of this thesis will be to introduce a new class of self-affine carpets, which we call
box-like self-affine sets, and compute their box and packing dimensions via a modified singular value
function. This not only generalises current results on self-affine carpets, but also helps to reconcile
the ‘exceptional constructions’ with Falconer’s singular value function approach in the generic case.
This will appear in Chapter 2 and is based on the paper [Fr1], which appeared in Nonlinearity in 2012.

In Chapter 3 we continue studying the dimension theory of self-affine sets by computing the
Assouad and lower dimensions of certain classes. The Assouad and lower dimensions have not
received much attention in the literature on fractals to date and their importance has been more
related to quasi-conformal maps and embeddability problems. This appears to be changing, however,
and so our results constitute a timely and important contribution to a growing body of literature on
the subject. The material in this Chapter will be based on the paper [Fr4], which has been accepted
for publication in Transactions of the American Mathematical Society.

In Chapters 4–6 we move away from the classical setting of iterated function systems to con-
sider two more exotic constructions, namely, inhomogeneous attractors and random 1-variable
attractors, with the aim of developing the dimension theory of self-affine carpets in these directions.

In order to put our work into context, in Chapter 4 we consider inhomogeneous self-similar
sets and significantly generalise the results on box dimensions obtained by Olsen and Snigireva,
answering several questions posed in the literature in the process. We then move to the self-affine
setting and, in Chapter 5, investigate the dimensions of inhomogeneous self-affine carpets and prove
that new phenomena can occur in this setting which do not occur in the setting of self-similar sets.
The material in Chapter 4 will be based on the paper [Fr2], which appeared in Studia Mathematica
in 2012, and the material in Chapter 5 is based on the paper [Fr5], which is in preparation.

Finally, in Chapter 6 we consider random self-affine sets. The traditional approach to random
iterated function systems is probabilistic, but here we allow the randomness in the construction to be
provided by the topological structure of the sample space, employing ideas from Baire category. We
are able to obtain very general results in this setting, relaxing the conditions on the maps from ‘affine’
to ‘bi-Lipschitz’. In order to get precise results on the Hausdorff and packing measures of typical
attractors, we need to specialise to the setting of random self-similar sets and we show again that
several interesting and new phenomena can occur when we relax to the setting of random self-affine
carpets. The material in this Chapter will be based on the paper [Fr3], which has been accepted for
publication by Ergodic Theory and Dynamical Systems.
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1 Fractals and dimension theory

1.1 Fractal geometry

Since their popularisation in the 1970s via the works of Mandelbrot, for example [Ma1, Ma2], the
mathematics of fractals has become important both in theory and in practice. The theoretical side
has attracted a substantial amount of attention in the literature; connections being made with vari-
ous areas of mathematics, including: fractal geometry, geometric measure theory, dynamical systems,
number theory, differential equations and probability theory. However, the importance of fractals is
not restricted to abstract mathematics, with many naturally occurring physical phenomena exhibit-
ing a fractal structure such as graphs of random processes, percolation problems and fluid turbulence.
Thus, understanding the geometric structure of fractals from a mathematical point of view can help
in modelling real world phenomena which exhibit fractal properties. For example, modeling and un-
derstanding chaotic behaviour in numerous different areas of science often involves the use of fractal
techniques, see [PJS, Mc]. Roughly speaking, a fractal is an object which is detailed on arbitrar-
ily small scales, often with some degree of self-similarity. The most basic form of self-similarity is
found in self-similar sets. These are sets which are made up of uniformly scaled down copies of them-
selves. Self-similar sets have been studied intensively over the past 30 years and are now relatively
well-understood, except in the complicated ‘overlapping’ situation, see Section 1.3.2. A natural and
important generalisation of self-similar sets are self-affine sets. These too are made up of scaled down
copies of themselves, but the scaling may be by different amounts in different directions, and the copies
can be skewed and sheared. This not only makes self-affine sets much more difficult to study than
self-similar sets, but also makes them much more important as they occur more naturally in other
areas of science. For example, a physical process governed by a non-conformal dynamical system will
often display self-affinity on small scales. Self-affine sets, which are described in more detail in Section
1.3.3, are one of the key objects of study in this thesis.
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Figure 1: Two famous fractals. Left: The Mandelbrot set. Right: The (self-affine) Barnsley Fern.

1.2 Dimension theory

One of the most important notions connected with studying fractals from a rigorous mathematical
point of view is that of dimension. Roughly speaking, a dimension is a (usually non-negative real)
number which gives some geometric information concerning how the fractal set fills up space on small
scales. There are many different notions of dimension and these notions often come in pairs. In this
section we will give a rigorous account of the six notions of dimension that we will be concerned with
in this thesis and compare some of their basic properties. These six notions are grouped naturally
into three sets of two and so we thus divide this section accordingly. For a more detailed account
of dimension theory and the interplay between the different notions, the reader is referred to the
now standard texts [F8, Mat] and, for the less well-known Assouad and lower dimensions, the papers
[Lu, Fr4].

The dimensions described here are very much metric quantities and, as such, throughout this
section we will work in a metric space (X, d), which we assume to be compact for convenience,
although this is not necessary. Other, non-metric, notions of dimension exist, such as the topological
dimension, see [HW], although we will not concern ourselves with this here. Indeed, such non-metric
notions are not really suitable for studying fractals; a fact highlighted by the elegant result of
Luukkainen [Lu], which states that any non-empty separable metric space can be re-metrized with a
compatible metric in such a way as to make all the six notions of dimension discussed here equal to
the topological dimension and thus an integer. Luukkainen thus argues that there is no topological
reason for a set to be called a fractal.

Central to the theory developed in this section are the notions of covers and packings of a set
F ⊆ X at some scale δ > 0. A collection {Ui}i∈I of subsets of X will be called a δ-cover of F if
each of the sets Ui is open and has diameter less than or equal to δ, and F is contained in the union⋃
i∈I Ui. Similarly, a collection {Ui}i∈I of subsets of X will be called a centered δ-packing of F if

each of the sets Ui are closed balls with radius less than or equal to δ and centres in F . Analysing
the behaviour of such covers and packings as δ converges to zero will be crucial in developing the
theory of dimension.

2



1.2.1 Hausdorff and packing dimension

Hausdorff dimension, named after Felix Hausdorff, who introduced the notion in 1918 [Hau], is
intrinsically linked with packing dimension, named due to its use of packings rather than the covers
used to define Hausdorff dimension, which was introduced many years later in 1982 by Claude Tricot
[T]. These two dimensions have probably received the most attention in the literature on fractals and
have found their way into various different fields. They both have a convenient definition in terms of
measures, which leads to a mathematically beautiful theory but can often make them very difficult
to compute directly.

Let F be a subset of X. For s > 0 and δ > 0 we define the δ-approximate s-dimensional
Hausdorff measure of F by

Hsδ(F ) = inf

{∑
i∈I
|Ui|s : {Ui}i∈I is a countable δ-cover of F

}
and the s-dimensional Hausdorff (outer) measure of F by Hs(F ) = limδ→0Hsδ(F ). The Hausdorff
dimension of F is

dimH F = inf
{
s > 0 : Hs(F ) = 0

}
= sup

{
s > 0 : Hs(F ) =∞

}
.

If F is compact, then we may define the Hausdorff measure of F in terms of finite covers. Packing
measure, defined in terms of packings, is a natural dual to Hausdorff measure, which was defined in
terms of covers. For s > 0 and δ > 0 we define the δ-approximate s-dimensional packing pre-measure
of F by

Ps0,δ(F ) = sup

{∑
i∈I
|Ui|s : {Ui}i∈I is a countable centered δ-packing of F

}
and the s-dimensional packing pre-measure of F by Ps0(F ) = limδ→0 Ps0,δ(F ). To ensure countable
stability, the packing (outer) measure of F is defined by

Ps(F ) = inf

{∑
i

Ps0(Fi) : F ⊆
⋃
i

Fi

}
and the packing dimension of F is

dimP F = inf
{
s > 0 : Ps(F ) = 0

}
= sup

{
s > 0 : Ps(F ) =∞

}
.

The extra step in the definition of packing measure and dimension often makes it considerably
more awkward to work with than Hausdorff measure. In a certain situation, this awkwardness can
be overcome by an equivalent formulation of packing dimension given in the following section, see
Proposition 1.1.

It is possible to consider a ‘finer’ definition of Hausdorff and packing dimension. We define a
gauge function to be a function, G : (0,∞) → (0,∞), which is continuous, monotonically increasing,
and satisfies limt→0G(t) = 0. We then define the Hausdorff measure, packing pre-measure and
packing measure with respect to the gauge G as

HG(F ) = lim
δ→0

inf

{∑
i∈I

G(|Ui|) : {Ui}i∈I is a countable δ-cover of F

}
,

PG0 (F ) = lim
δ→0

sup

{∑
i∈I

G(|Ui|) : {Ui}i∈I is a countable centered δ-packing of F

}
and

PG(F ) = inf

{∑
i

PG0 (Fi) : F ⊆
⋃
i

Fi

}
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respectively. Note that if G(t) = ts then we obtain the standard Hausdorff and packing measures.
The advantage of this approach is that, in the case where the measure of a set is zero or infinite
in its dimension, one may be able to find an appropriate gauge for which the measure is positive
and finite. For example, with probability 1, Brownian trails in R2 have Hausdorff dimension 2, but
2-dimensional Hausdorff measure equal to zero. However, with probability 1, they have positive and
finite HG-measure with respect to the gauge G(t) = t2 log(1/t) log log log(1/t), see [F8, Chapter 16],
and the references therein.

For a given gauge function G and a constant c > 0 we define

D−(G, c) = inf
t>0

G(c t)

G(t)
and D+(G, c) = sup

t>0

G(c t)

G(t)
.

Notice that, if c 6 1, then D+(G, c) 6 1. It is easy to see that if 0 < D−(G, c) 6 D+(G, c) < ∞ for
some c > 0, then 0 < D−(G, c) 6 D+(G, c) <∞ for all c > 0 and in this case we say that the gauge
is doubling. The standard gauge is clearly doubling, with D−(G, c) = D+(G, c) = cs.

For a more detailed discussion of this finer approach to dimension, see [F8, Section 2.5] or
[Rog, Chapter 2].

1.2.2 Box dimensions

A less sophisticated but nevertheless very useful notion of dimension is box dimension. The lower and
upper box dimensions of a set F ⊆ X are defined by

dimBF = lim inf
δ→0

logNδ(F )

− log δ
and dimBF = lim sup

δ→0

logNδ(F )

− log δ
,

respectively, where Nδ(F ) is the smallest number of sets required for a δ-cover of F . If
dimBF = dimBF , then we call the common value the box dimension of F and denote it by
dimB F . It is useful to note that we can replace Nδ with a myriad of different definitions all based
on covering or packing the set at scale δ, see [F8, Section 3.1]. For example, Nr(F ) can be taken
as the maximal size of a centered δ-packing of F . We will usually denote this particular alternative
definition by Mδ. If defining box dimension in a non-compact space, then usually one restricts to
totally bounded sets in order to preclude the situation where Nδ(F ) =∞.

One undesirable property of the box dimensions is that they are not countably stable, see
Section 1.2.4. In order to remedy this, one could try to redefine box dimension by breaking the set
up into countably many bits, taking the supremum of the box dimension of the bits and then taking
the infimum over the different ways of splitting the set up. Amazingly, this new definition simply
returns the packing dimension. We obtain

dimP F = inf

{
sup
i

dimBFi : F ⊆
∞⋃
i=1

Fi

}
where the infimum is taken over all countable partitions {Fi}i of F , see [F8, Chapter 3.4]. This
alternative definition for packing dimension has the following very useful consequence.

Proposition 1.1. Let F ⊆ X be a compact set such that for every open set U ⊂ X which intersects
F , we have dimB(F ∩ U) = dimBF . Then dimP F = dimBF .

For a proof of this see [F8, Chapter 3.4]. Finally we note that what we call the box dimension is
sometimes referred to as the box-counting dimension, Minkowski dimension, or entropy dimension.
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1.2.3 Assouad and lower dimension

If the dimensions described in the previous two sections give fine, but global, geometric information,
then the Assouad and lower dimension give coarse, but localised, geometric information. As such we
find their interplay with the other dimensions particularly fascinating.

The Assouad dimension was introduced by Patrice Assouad in the 1970s [A1, A2], see also
[La1]. The Assouad dimension of a non-empty subset F of X is defined by

dimA F = inf

{
α : there exist constants C, ρ > 0 such that,

for all 0 < r < R 6 ρ, we have sup
x∈F

Nr
(
B(x,R) ∩ F

)
6 C

(
R

r

)α }
.

Although interesting in its own right, the importance of the Assouad dimension thus far has been
its relationship with quasi-conformal mappings and embeddability problems rather than as a tool
in the dimension theory of fractals, see [He, Lu, MT, Ro]. However, this seems to be changing,
with several recent papers appearing which study Assouad dimension and its relationship with the
other well-studied notions of dimension: Hausdorff, packing and box dimension; see, for example,
[Fr4, KLV, M, O5, Ols]. The lower dimension is a natural dual to the Assouad dimension, and
was introduced by Larman [La1], where it was called the minimal dimensional number, but it has
been referred to by other names, for example: the lower Assouad dimension by Käenmäki, Lehrbäck
and Vuorinen [KLV] and the uniformity dimension (Tuomas Sahlsten, personal communication). We
decided on lower dimension to be consistent with the terminology used by Bylund and Gudayol
in [ByG], but we wish to emphasise the relationship with the well-studied and popular Assouad
dimension. The lower dimension of F is defined by

dimL F = sup

{
α : there exist constants C, ρ > 0 such that,

for all 0 < r < R 6 ρ, we have inf
x∈F

Nr
(
B(x,R) ∩ F

)
> C

(
R

r

)α }
.

Indeed, the Assouad dimension and the lower dimension often behave as a pair, with many of their
properties being intertwined. The lower dimension has received little attention in the literature on
fractals, but despite this, we believe it is a very natural definition and should have a place in the study
of dimension theory and fractal geometry. We summarise the key reasons for this below:

• The lower dimension is a natural dual to the well-studied Assouad dimension and dimensions
often come in pairs. For example, the rich and complex interplay between Hausdorff dimension
and packing dimension has become one of the key concepts in dimension theory. Also, the
popular upper and lower box dimensions are a natural ‘dimension pair’. Dimension pairs are
important in several areas of geometric measure theory, such as the dimension theory of product
spaces, see the discussion on products in Section 1.2.4.

• The lower dimension gives some important and easily interpreted information about the fine
structure of the set. In particular, it identifies the parts of the set which are easiest to cover and
gives a rigorous gauge of how efficiently the set can be covered in these areas.

• One might argue that the lower dimension is not a sensible tool for studying sets which are highly
inhomogeneous in the sense of having some exceptional points around which the set is distributed
very sparsely in comparison with the rest of the set. For instance, sets with isolated points have
lower dimension equal to zero. However, it is perfect for studying attractors of iterated function
systems (IFSs) as the IFS construction forces the set to have a certain degree of homogeneity.
In fact the difference between the Assouad dimension and the lower dimension can give an
insight into the amount of homogeneity present. For example, for self-similar sets satisfying the
open set condition the two quantities are equal, indicating that the set is as homogeneous as
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possible. However, in Chapter 3 we will demonstrate that, for more complicated self-affine sets
and self-similar sets with overlaps, the quantities can be, and often are, different.

The Assouad dimension and lower dimensions are much more sensitive to the local structure of the set
around particular points, whereas the other dimensions give more global information. The Assouad
dimension will be ‘large’ relative to the other dimensions if there are points around which the set is
‘abnormally difficult’ to cover and the lower dimension will be ‘small’ relative to the other dimensions
if there are points around which the set is ‘abnormally easy’ to cover. This phenomenon is best
illustrated by an example. Let X = {1/n : n ∈ N} ∪ {0}. Then

dimLX = 0,

dimBX = dimBX = 1/2

and
dimAX = 1.

The lower dimension is zero due to the influence of the isolated points in X. Indeed the set is locally
very easy to cover around isolated points and it follows that if a set, X, has any isolated points, then
dimLX = 0. This could be viewed as an undesirable property for a ‘dimension’ to have because it
causes it to be non-monotone and means that it can increase under Lipschitz mappings. We are not
worried by this, however, as the geometric interpretation is clear and useful.

Finally, note that we can replace Nr in the definition of the Assouad and lower dimensions
with any of the standard covering or packing functions, see [F8, Section 3.1]. For example, if F is a
subset of Euclidean space, then Nr(F ) could denote the number of squares in an r-mesh orientated
at the origin which intersect F or the maximum number of sets in an r-packing of F . We also obtain
equivalent definitions if the ball B(x,R) is taken to be open or closed, although we usually think of
it as being closed.

1.2.4 Basic properties of the dimensions and some notation

In this section we will describe some basic properties which one might hope for a ‘dimension’ to
satisfy and we will then summarise which of these properties are satisfied by the dimensions discussed
in this chapter. In order to do this we need to introduce the notion of Lipschitz maps and the
Hausdorff metric, which will be used throughout the thesis.

Let (X, dX) (Y, dY ) and be compact metric spaces. For a map T : X → Y define

Lip−(T ) = inf
x,y∈X,
x 6=y

dY
(
T (x), T (y)

)
dX(x, y)

and Lip+(T ) = sup
x,y∈X,
x 6=y

dY
(
T (x), T (y)

)
dX(x, y)

.

If Lip+(T ) < ∞, then we say T is Lipschitz and if, in addition, Lip−(T ) > 0, then we say T is
bi-Lipschitz. If Lip+(T ) < 1, then we say T is a contraction and if Lip−(T ) = Lip+(T ), then we write
Lip(T ) to denote the common value and say that T is a similarity.

Write K(X) to denote the set of all non-empty compact subsets of X and endow K(X) with
the Hausdorff metric, dH, defined by

dH(E,F ) = inf{ε > 0 : E ⊆ Fε and F ⊆ Eε}

for E,F ∈ K(X) and where Eε denotes the ε-neighbourhood of E. It turns out that (K(X), dH) is a
complete metric space. The following is a list of basic properties which dimensions may satisfy:

Monotonicity: dim is said to be monotone if E ⊆ F ⇒ dimE 6 dimF for all E,F ⊆ X.

Finite stability: dim is said to be finitely stable if dim(E ∪ F ) = max{dimE, dimF} for all
E,F ⊆ X.
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Countable stability: dim is said to be countably stable if dim
⋃
iEi = supi dimEi for all countable

collections of sets {Ei} in X.

Stability under Lipschitz maps: dim is said to be stable under Lipschitz maps if dim f(E) 6 dimE
for all E ⊆ X and all Lipschitz maps f on X.

Stability under bi-Lipschitz maps: dim is said to be stable under bi-Lipschitz maps if dim f(E) = dimE
for all E ⊆ X and all bi-Lipschitz maps f on X.

Stability under taking closures: dim is said to be stable under taking closures if dim = dimE
for all E ⊆ X.

Open set property: dim is said to satisfy the open set property if for any bounded open set
U ⊂ Rn, dimU = n.

Measurability: dim is said to be measurable if it is a Borel measurable function from (K(X), dH) to R.

The following table summarises which properties are satisfied by which dimensions.

Property dimH dimP dimB dimB dimL dimA

Monotone X X X X × X
Finitely stable X X × X × X
Countably stable X X × × × ×
Stable under Lipschitz maps X X X X × ×
Stable under bi-Lipschitz maps X X X X X X
Stable under taking closures × × X X X X
Open set property X X X X × X
Measurable X × X X X X

For proofs of these facts, see [F8, Chapters 2-3] which gives details on the first seven properties for
the Hausdorff, packing and box dimensions. For details on the Assouad dimension, see [Lu, Fr4],
and for the lower dimension, see [Fr4]. The measurability property is somewhat more involved. For
the Hausdorff, packing and box dimensions see [MM], and for the lower and Assouad dimensions see
[Fr4].

One further geometric property that will be relevant in this thesis is how dimension behaves
under taking the product of two metric spaces, (X, dX) and (Y, dY ). There are many natural ‘product
metrics’ to impose on the product space X × Y , but any reasonable choice is bi-Lipschitz equivalent
to the metric dX×Y on X × Y defined by

dX×Y
(
(x1, y1), (x2, y2)

)
= max{dX(x1, x2), dY (y1, y2)},

for example, and so we need not specify which precise metric we use. ‘Dimension pairs’ are intimately
related to the dimension theory of products and there is a pleasant symmetry in the formulae. We
have

dimHX + dimH Y 6 dimH(X × Y ) 6 dimHX + dimP Y 6 dimP(X × Y ) 6 dimPX + dimP Y,

dimBX + dimBY 6 dimB(X × Y ) 6 dimBX + dimBY 6 dimB(X × Y ) 6 dimBX + dimBY

and

dimLX + dimL Y 6 dimL(X × Y ) 6 dimLX + dimA Y 6 dimA(X × Y ) 6 dimAX + dimA Y.

The Hausdorff-packing result is due to Howroyd [How], the box dimension result is easily derived
from the definition, and the lower-Assouad result was proved in [Fr4] - apart from the final inequality
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which is due to Assouad. Finally, we summarise the relationships between our six dimensions. For a
set F ⊆ X, we have

dimL F 6 dimBF 6 dimBF 6 dimA F.

In general the lower dimension is not comparable to the Hausdorff dimension or packing dimension.
However, if F is compact, then dimL F 6 dimH F . This was proved by Larman [La1, La2]. In
particular, this means that the lower dimension provides a practical way of estimating the Hausdorff
dimension of compact sets from below, which is often a difficult problem. For compact F , we have

dimP F

6
6

dimL F 6 dimH F dimBF 6 dimA F.
6 6

dimBF

1.3 Iterated function systems

1.3.1 General iterated function systems and the symbolic space

Let (X, d) be a compact metric space. One of the most important ways of constructing fractals
is via iterated function systems. An iterated function system (IFS) is a finite collection {Si}i∈I of
contracting self-maps on X. It is a fundamental result in fractal geometry, dating back to Hutchinson’s
seminal 1981 paper [Hut], that for every IFS there exists a unique non-empty compact set F , called
the attractor, which satisfies

F =
⋃
i∈I

Si(F ).

This can be proved by an elegant application of Banach’s contraction mapping theorem. Define a map
Φ : K(X)→ K(X) by

Φ(K) =
⋃
i∈I

Si(K).

It follows from the fact that each of the maps Si is a contraction on (X, d) that Φ is a contraction on
(K(X), dH) and hence Φ has a unique fixed point F ∈ K(X).

If an IFS consists solely of similarity transformations, then the attractor is called a self-similar set.
Likewise, if X is a Euclidean space and the mappings are all translate linear (affine) transformations,
then the attractor is called self-affine. These classes of sets will be the fundamental objects of study
in this thesis and will be discussed in more detail in Sections 1.3.2–1.3.3.

Often an attractor of an IFS has a more complicated structure and is more difficult to anal-
yse if the pieces {Si(F )}i∈I overlap too much. As such, separation conditions are often imposed to
make calculations easier. The following separation condition is fundamental in the theory of IFSs.

Definition 1.2. An IFS, {Si(F )}i∈I , with attractor F satisfies the strong open set condition (SOSC),
if there exists a non-empty open set, U , with F ∩ U 6= ∅ and such that⋃

i∈I
Si(U) ⊆ U

with the union disjoint.

A celebrated result of Schief [Sc1] is that the SOSC is equivalent to the weaker open set condition
(OSC) if X ⊂ Rd and the maps in the IFS are similarities. The OSC is the same as the SOSC but
without the requirement that F ∩ U 6= ∅.
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Figure 2: Two attractors of IFSs. Left: The Sierpiński Triangle. Right: An attractor of a nonlinear
IFS. Observe that each of the attractors pictured above is made up of three scaled down copies of itself.
The mappings used on the left are strict similarities and thus the Sierpiński Triangle is self-similar,
whereas the mappings used on the right are more complicated nonlinear contractions.

Frequently in the study of attractors of IFSs, one uses a symbolic space built from the index set I.
The reason for this is that often it is more convenient to work with the geometry of this symbolic space
than the actual geometry of the attractor and there is a straightforward way to transfer information
from one space to the other. We will now briefly describe this technique and fix some notation which
will be used throughout the thesis whenever a fixed IFS indexed by I is present. Let I∗ =

⋃
k>1 Ik

denote the set of all finite sequences with entries in I and for

i =
(
i1, i2, . . . , ik

)
∈ I∗

write
Si = Si1 ◦ Si2 ◦ · · · ◦ Sik .

Write IN to denote the set of all infinite I-valued strings and for i ∈ IN or Il with l > k write i |k ∈ Ik
to denote the restriction of i to its first k entries. Let Π : IN → F be the natural surjection from the
‘symbolic’ space to the ‘geometric’ space defined by

Π(i) =
⋂
k∈N

Si |k(X).

For i , j ∈ I∗, we will write i ≺ j if j |k = i for some k 6 |j |, where |j | is the length of the string j .
For

i = (i1, i2, . . . , ik−1, ik) ∈ I∗

let
i = (i1, i2, . . . , ik−1) ∈ I∗ ∪ {ω},

where ω is the empty word. For notational convenience the map Sω is taken to be the identity map.
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1.3.2 Self-similar sets

This thesis is primarily concerned with self-affine sets, however, self-similar sets in Euclidean space
are a very special class of self-affine sets and so we will briefly discuss some of their key properties.
Non-Euclidean self-similar sets will also crop up in a few contexts in later chapters.

The key reason why self-similar sets are so much easier to deal with than self-affine sets and
more general attractors is that the images of the set under compositions of maps from the IFS form
natural covers for the original set since everything scales down uniformly. This leads to a beautiful
and simple formula for the dimensions of a self-similar set. Given an IFS, {Si}i∈I , consisting
of contracting similarities, the similarity dimension is defined to be the unique solution to the
Hutchinson-Moran formula ∑

i∈I
Lip(Si)

s = 1. (1.1)

The similarity dimension is always an upper bound for the upper box dimension of the attractor (but
not the Assoaud dimension, see the example in Section 3.4.1). However, if the IFS satisfies the SOSC,
then all of the dimensions discussed in this thesis are equal to the similarity dimension, see [F8,
Section 9.3] and [Fr4] for the Assouad and lower dimension case. This formula first appeared in [Mo]
(see also [E2, Chapter 13]) and later in [Hut] giving the Hausdorff dimension of Euclidean self-similar
sets. For the non-Euclidean case, see [Sc2]. Furthermore, if the SOSC is satisfied then both the
Hausdorff and packing measure of the attractor are positive and finite in the critical dimensions.

The case when the OSC is not satisfied is far from understood. In Rn, a ‘dimension drop’
can occur if different iterates of maps in the IFS overlap exactly, but it is a major open problem to
decide if this is the only way the dimension can drop, see for example [PS]. Recently an important
step towards solving this conjecture has been made by Hochman [Ho]. Hochman verifies that the
only cause for a dimension drop is exact overlaps, provided we are working in R and the defining
parameters for the IFS are algebraic.

1.3.3 Self-affine sets

Self-affine sets are attractors of IFSs where all of the maps are contracting affine self-maps on
some Euclidean space. An affine map is simply a map consisting of two parts: a linear part and
a translation. Self-affine sets are notoriously difficult to handle in comparison with self-similar sets
and there are still many fascinating open problems in the area. The study of the dimension theory
of self-affine sets has really taken off in the literature since the early works of Mandelbrot in the
mid-1980s. Since then, the study of self-affine sets has split into two parts: the generic case and
the specific case. The generic case was pioneered by Falconer, beginning with the seminal papers
[F2, F4] from 1988 and 1992 respectively. Here the linear parts of the mappings are fixed and the
translates allowed to vary, and Falconer computed the dimensions for generic translations. The
specific case began with the work of Bedford [Be1] and McMullen [McM] in 1984, where a much less
general special case was considered, a class now known as the Bedford-McMullen carpets. The lack
of generality in this specific case had the advantage that the simplicity of the model allowed exact
calculation of the dimensions. This strategy led on to various different classes of self-affine carpet
being introduced, with increasing levels of generality. We will describe both lines of research in detail
in this section. The recent survey paper [F10] also describes both approaches as well as other areas
connected with the dimension theory of self-affine sets.

The generic case: The singular values of a linear map, A : Rn → Rn, are the positive
square roots of the eigenvalues of ATA. Viewed geometrically, these numbers are the lengths of
the semi-axes of the image of the unit ball under A. Thus, roughly speaking, the singular values
correspond to how much the map contracts (or expands) in different directions. For s ∈ [0, n] define
the singular value function φs(A) by

φs(A) = α1α2 . . . αdse−1α
s−dse+1
dse (1.2)
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where α1 > . . . > αn are the singular values of A. This function has played a vital role in the study
of self-affine sets over the past 25 years. Let {Ai : i ∈ I} be a finite collection of contracting linear
self-maps on Rn, write m = |I| and let

d = d(Ai : i ∈ I) = inf

{
s :

∞∑
k=1

∑
Ik

φs(Ai1 ◦ · · · ◦Aik) <∞
}
. (1.3)

This number is called the affinity dimension of F and is always an upper bound for the upper box
dimension of F , see [F2] and also [DO], but not the Assouad dimension of F , see Chapter 3. Moreover,
Falconer proved the following celebrated result in the 1988 paper [F2]. We write Lmn to denote the
m-fold product of n-dimensional Lebesgue measure, supported on the space ×i∈IRn.

Theorem 1.3. Suppose each of the linear maps {Ai : i ∈ I} has Lipschitz constant strictly less than
1/2. Then, for Lmn-almost all (t1, . . . , tm) ∈ ×i∈IRn, the unique non-empty compact set F satisfying

F =

m⋃
i=1

(Ai + ti)(F )

has
dimB F = dimP F = dimH F = min{n, d}.

In fact, the initial proof required that the Lipschitz constants be strictly less than 1/3 but this was
relaxed to 1/2 by Solomyak [So], who also noted that 1/2 is the optimal constant, based on an example
of Przytycki and Urbański [PU].

Figure 3: Three self-affine sets with the same linear part but different translations. Falconer’s theorem
implies that they all have the same Hausdorff dimension, unless of course we have been very unlucky
and chosen some ‘exceptional parameters’.

Despite the elegance of the above result, it seems difficult to calculate the exact dimension of
a self-affine set in general. That being said, some work has been done on establishing sufficient
conditions for the validity of Falconer’s formula: see [Fr1, HL, KS] and Corollary 2.6 in Chapter 2,
for example.

Given Theorem 1.3, a natural question is: can one remove the condition that the Lipschitz
constants be strictly less than 1/2 by adding more randomness in the construction? This question
was asked by Jordan, Pollicott and Simon [JPS], and moreover they gave a positive answer in the
case where one randomly perturbs the translations at each stage of the construction. Indeed, the
Lipschitz condition can be completely removed with the only requirement being that the maps are
contractions. This idea was recently used by Falconer to study Bernoulli measures on such sets [F9],
where the phrase ‘almost self-affine set ’ was coined to describe these systems.
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The specific case: We first recall the construction introduced independently by Bedford and Mc-
Mullen in 1984. Take the unit square, [0, 1]2, and divide it up into an m× n grid for some m,n ∈ N
with 1 < m 6 n. Then select a subset of the rectangles formed by the grid and consider the IFS
consisting of the affine maps which map [0, 1]2 onto each chosen rectangle, preserving orientation.
Bedford [Be1] and McMullen [McM] independently obtained explicit formulae for the box-counting,
packing and Hausdorff dimensions of the attractor and, more recently, Mackay [M] computed the
Assouad dimension. In general the Hausdorff dimension and box dimension can be different and can
be strictly less than the affinity dimension. However, if the maps are chosen such that the projection
onto the horizontal axis is an interval (having dimension 1), then the box dimension equals the affinity
dimension. Our results, Corollaries 2.6 and 2.7 in Chapter 2, help to formalise this observation for a
much larger class of self-affine sets. We will briefly recall the dimension formulae given by Bedford,
McMullen and Mackay. For a Bedford-McMullen IFS {Si}i∈I with attractor F , let N be the number
of maps in the IFS and for the ith column, let Ni be the number of maps chosen in that column and,
finally, let N0 = #{i = 1, . . . ,m : Ni 6= 0}.

Theorem 1.4 (Bedford-McMullen, Mackay). Let F be a Bedford-McMullen carpet. Then

dimB F = dimP F =
logN0

logm
+

log(N/N0)

log n
,

dimH F =
log
∑m
i=1N

logm/ logn
i

logm

and

dimA F =
logN0

logm
+ max

i=1,...,m

logNi
log n

.

Note that s1 = logN0

logm is the dimension of the projection of F onto the horizontal axis and logNi
logn is the

dimension of the self-similar attractor of the one-dimensional IFS induced by the ith column. These
numbers can be computed via the Hutchinson-Moran formula (1.1). As such the box dimension of F
satisfies ∑

i∈I
(m−1)s1(n−1)dimB F−s1 = 1.

This version of the formula for box dimension is particularly useful to keep in mind whilst reading
this thesis. Finally note that the Hausdorff, packing and box dimensions are equal if and only if Ni is
constant whenever it is non-zero. In this case we say that the construction has uniform vertical fibres.
In particular, in the typical situation, the Hausdorff, packing and Assouad dimensions are different, in
stark contrast to the self-similar setting. Another important difference between self-affine carpets and
self-similar sets satisfying the OSC is that the packing and Hausdorff measures need not be positive
and finite. Indeed, Peres [P1, P2] proved that in the uniform vertical fibres case the measures are
positive and finite, but in all other cases the measures are both infinite in the critical dimensions.

Figure 4: A self-affine Bedford-McMullen carpet with m = 4, n = 5. The shaded rectangles on the
left indicate the 6 maps in the IFS. Note that this construction has uniform vertical fibres and thus
the attractor has equal Hausdorff and packing dimension.
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Gatzouras and Lalley [GL1] generalised the Bedford-McMullen construction by allowing the columns
to have varying widths and be divided up, independently, with the only restriction being that the base
of each chosen rectangle had to be strictly greater than the height. If we relax the ‘strictly greater
than’ to ‘greater than or equal’ then we obtain a slightly more general class, not studied by Lalley
and Gatzouras, which we will refer to as the extended Lalley-Gatzouras class. In the non-extended
case they found an explicit formula for the box dimension and gave a variational principle for the
Hausdorff dimension. Mackay [M] computed the Assouad dimension for this class. Barański [B2]
studied another class where he divided the unit square up into an arbitrary mesh of rectangles by
slicing horizontally and vertically a finite number of times (at least once in each direction). Again
he gave an explicit formula for the box dimension and gave a variational principle for the Hausdorff
dimension. Also, Feng and Wang [FeW] considered a construction where the rectangles did not have
to be ‘aligned’ as in the Barański type IFSs. This added complication meant that the box dimension
of the attractor was given in terms of the dimensions of its projection onto the horizontal and vertical
axes, which may be difficult to compute as they are self-similar sets which no longer need to satisfy
the OSC. The biggest difference between the Lalley-Gatzouras class and the Barański class is that
for the Barański class the maps can sometimes contract more in the vertical direction and sometimes
more in the horizontal direction. This property makes this class much more difficult to deal with and
will be a common theme of this thesis. It is interesting to note that Bedford-McMullen obtained an
explicit formula for the Hausdorff dimension, whereas in the other classes the Hausdorff dimension
is only given via a variational principle and may be difficult to compute or even estimate. We do
not present the results found by Lalley-Gatzouras, Barański and Feng-Wang here, but we will discuss
some of them later in the thesis when they are especially relevant for our proofs.

Figure 5: Three examples of IFSs of the types considered by Lalley-Gatzouras, Barański and Feng-
Wang, respectively. The shaded rectangles represent the affine maps.

Barański [B2] also computes the Hausdorff, box and packing dimensions of a more general class of
sets which he calls ‘rectangle-like constructions’. These are not strictly self-affine, but their dimension
theory can be modeled by a self-affine Barański type carpet; for example the flexed Sierpiński triangle,
see [B2, Section 7] and [B1].

The Bedford-McMullen and Lalley-Gatzouras classes are discussed in some detail in [Pe], Sec-
tion 16, as well as a generalisation known as ‘geometric constructions with rectangles’. These are
usually not self-affine, but display some of the same characteristics as the Lalley-Gatzouras class
while allowing the rectangles in the construction to be slightly rotated. We note here that, although
the rectangles can be slightly rotated, the construction forces the rotations to become less significant
at later stages in the construction.

In all of the aforementioned examples the affine maps are orientation-preserving. In Chapter
2 of this thesis we relax this requirement by allowing the maps to have non-trivial rotational and
reflectional components. We refer to the attractors of such systems as “box-like” sets and give
their formal definition in Section 2.1.1. In Section 2.2 we compute the packing and box-counting
dimensions by means of a pressure type formula based on the singular values of the maps. As in
[FeW] the dimension of projections will be significant. In Chapter 3 we compute the Assouad and
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lower dimensions of the Lalley-Gatzouras and Barański carpets.

1.3.4 Inhomogeneous iterated function systems

Inhomogeneous iterated function systems are generalisations of the IFSs described above. Indeed, one
might call the attractors of the standard systems homogeneous attractors. Let (X, d) be a compact
metric space, let I = {Si}i∈I be a standard IFS, and fix a compact set C ⊆ X, sometimes called the
condensation set. Analogous to the homogeneous case, there is a unique non-empty compact set, FC ,
satisfying

FC =
⋃
i∈I

Si(FC) ∪ C, (1.4)

which we refer to as the inhomogeneous attractor (with condensation C). Note that homogeneous
attractors are inhomogeneous attractors with condensation equal to the empty set. From now on we
will assume that the condensation set is non-empty. Inhomogeneous attractors were introduced and
studied in [BD] and are also discussed in detail in [Ba2] where, among other things, Barnsley gives
applications of these schemes to image compression. Define the orbital set, O, by

O = C ∪
⋃
i∈I∗

Si (C),

i.e., the union of the condensation set, C, with all images of C under compositions of maps in the
IFS. The term orbital set was introduced in [Ba2] and it turns out that this set plays an important
role in the structure of inhomogeneous attractors and, in particular,

FC = F∅ ∪ O = O, (1.5)

where F∅ is the homogeneous attractor of the IFS, I.

Figure 6: A flock of birds from above (left). The ‘flock’ is represented by an inhomogeneous self-similar
set. The large bird in the middle is the condensation and there are three similarity mappings in the
IFS all with contraction ratio 1/3. The corresponding homogeneous attractor is shown on the right.
This is a totally disconnected self-similar set with all the dimensions equal to 1.

The relationship (1.5) was proved in [Sn, Lemma 3.9] in the case where X is a compact subset of
Rd and the maps are similarities. We note here that their arguments easily generalise to obtain the
general case stated above. When considering the dimension dim of FC , one expects the relationship

dimFC = max{dimF∅, dimC} (1.6)
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to hold. Indeed, if dim is countably stable, monotone and stable under Lipschitz maps, then

max{dimF∅, dimC} 6 dimFC = dim(F∅ ∪ O)

= max
{

dimF∅, C ∪
⋃
i∈I∗

Si (C)
}

6 max{dimF∅, dimC}

and so the formula holds trivially. Thus, studying the Hausdorff and packing dimensions of inhomoge-
neous attractors is equivalent to studying the Hausdorff and packing dimensions of the corresponding
homogeneous attractor, and thus is not an interesting problem in its own right. However, the upper
and lower box dimensions, Assouad dimension and lower dimension are not countably stable and
so computing these dimensions in the inhomogeneous case is interesting and (perhaps) challenging,
although one may still expect, somewhat näıvely, that the relationship (1.6) should hold for these
dimensions.

In this thesis, we wish to investigate inhomogeneous attractors where the corresponding homo-
geneous attractor is a self-affine carpet. Since the Hausdorff and packing dimensions are easy to
compute we will focus on the box dimensions, and in Chapter 5 we compute the box dimensions of
inhomogeneous self-affine carpets in the Barański and Lalley-Gatzouras class. Despite our primary
interest being the self-affine case, there are still some interesting open questions in the self-similar
case and so to put our results on inhomogeneous self-affine carpets into context, we first investigate
inhomogeneous self-similar sets in Chapter 4. Moreover, some of our results in the self-affine case
rely on our results in Chapter 4.

The box dimensions were considered by Snigireva and Olsen. In [OSn, Corollary 2.6] and [Sn,
Theorem 3.10 (2)] it was proved that if X ⊂ Rd; each of the Si are similarities; and the sets
S1(FC), . . . , SN (FC), C are pairwise disjoint, then

dimBFC = max{dimBF∅, dimBC}.

The authors then asked the following question, see [OSn, Question 2.7] and [Sn, Question 3.12].

Question 1.5. Does the above formula for upper box dimension remain true if we relax the separation
conditions to only the inhomogeneous open set condition (IOSC)?

In Chapter 4 we give an affirmative answer to this question and, furthermore, prove that it holds
assuming only that the IFS, I, satisfies the strong open set condition (which is equivalent to the open
set condition if X ⊂ Rd), see Corollary 4.2, and even without assuming any separation conditions
it holds generically, see Corollary 4.3. We remark here that the definitions of the IOSC given in
[OSn, Sn] are slightly different. Rather than give both of the technical definitions we simply remark
that we are able to answer Question 1.5 using significantly weaker separation conditions than either
version of the IOSC. In particular, the condensation set can have arbitrary overlaps with the basic
sets in the construction of the homogeneous attractor.

In [OSn, Sn] the authors also point out that they are not aware whether the corresponding
formula holds for lower box dimension. The following question is asked in [Sn, Question 3.11].

Question 1.6. If X ⊂ Rd, each of the Si are similarities and the sets S1(FC), . . . , SN (FC), C are
pairwise disjoint, then is it true that

dimBFC = max{dimBF∅, dimBC}?

We prove that the answer to this question is no, see Theorem 4.9 and Proposition 4.12 (2). We also
give some sufficient conditions for the answer to be yes, see Corollary 4.6, Corollary 4.11, Theorem
4.10 and Proposition 4.12 (1).
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1.3.5 Random iterated function systems

Random iterated function systems (RIFSs) are another generalisation of the standard IFSs and are
based on fixing a finite set of IFSs and then ‘randomly choosing’ which one to use at each stage in
the construction. There are many different ways of defining this randomisation, in particular, see the
work on V -variable fractals by Barnsley, Hutchinson and Stenflo [BHS1, BHS2]. To keep in line with
this terminology we point out that in this thesis we are only concerned with 1-variable randomness,
which we will now describe in detail.

Let (X, d) be a compact metric space. We define a random iterated function system (RIFS)
to be a set I = {I1, . . . , IN}, where each Ii is a deterministic IFS, Ii = {Si,j}j∈Ii , for a finite index
set, Ii, and each map, Si,j , is a contracting self-map on X. We define a continuum of attractors of I
in the following way. Let D = {1, . . . , N}, Ω = DN and let ω = (ω1, ω2, . . . ) ∈ Ω. Define the attractor
of I corresponding to ω by

Fω =
⋂
k

⋃
i1∈Iω1

,...,ik∈Iωk

Sω1,i1 ◦ · · · ◦ Sωk,ik(X).

So, by ‘randomly choosing’ ω ∈ Ω, we ‘randomly choose’ an attractor Fω. Attractors of RIFSs can
enjoy a much richer and more complicated structure than attractors of IFSs. We provide some pictures
to help illustrate this construction; see also Section 6.5.3.

Figure 7: The attractors of deterministic IFSs I1 (top-left) and I2 (top-right) along with two ran-
dom attractors of I = {I1, I2} corresponding to ω = (1, 2, 2, 1, 1, 1, . . . ) (bottom-left) and ω =
(2, 2, 1, 2, 1, 2, . . . ) (bottom-right). The attractor on the top-left is a variant of the Sierpiński Tri-
angle and the attractor on the top-right is a Bedford-McMullen carpet.

We wish to make statements about the generic nature of Fω. In particular, what is the generic dimen-
sion of Fω? The most common approach to studying random fractals is to associate a probability mea-
sure with the space of possible attractors and then make almost sure statements. For some examples
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based on conformal systems, see [F1, LW, O1, BHS1, BHS2, Ba2]; and for non-conformal (self-affine)
systems, see [GuLi1, GuLi2, GL2, O6, FO]. Associate a probability vector, p = (p1, . . . , pN ), with I.
Then, to obtain our random attractor, we choose each entry in ω randomly and independently with
respect to p. This induces a probability measure, P, on Ω given by

P =
∏
N

N∑
i=1

pi δi,

where δi is the Dirac measure concentrated at i ∈ D = {1, . . . , N}. We say that a property of the
random attractors is generic (in a probabilistic sense) if it occurs for P-almost all ω ∈ Ω. This approach
has attracted much attention in the literature with the ergodic theorem often playing a key role in
the analysis, utilising the fact that P is ergodic with respect to the left shift on Ω. We give a couple of
examples for which we will need to generalise the standard OSC to the RIFS situation in the following
way.

Definition 1.7. We say that I satisfies the uniform open set condition (UOSC), if each deterministic
IFS satisfies the SOSC and the open set can be chosen uniformly, i.e. there exists a non-empty open
set U ⊆ X such that, for each i ∈ D, we have⋃

j∈Ii

Si,j(U) ⊆ U

with the union disjoint.

The UOSC also appears in [BHS1], for example.

Theorem 1.8 ([Ha, BHS1]). Let I = {I1, . . . , IN} be an RIFS consisting of similarity maps on Rn
with associated probability vector p = (p1, . . . , pN ). Assume that I satisfies the UOSC and let s be the
solution of

N∏
i=1

(∑
j∈Ii

Lip(Si,j)
s

)pi
= 1. (1.7)

Then, for P-almost all ω ∈ Ω, dimH Fω = dimB Fω = dimP Fω = s.

Equation (1.7) should be viewed as a randomised version of the Hutchinson-Moran formula (1.1).
Here the almost sure dimension is ‘some sort of weighted average’ of the dimensions of the attractors
of Ii. For a proof of Theorem 1.8, see [Ha, BHS1] or alternatively [Ba2, Chapter 5.7] and the
references therein.

Self-affine sets often provide examples of strange behaviour not observed in the self-similar
setting. We will now describe a random Bedford-McMullen carpet, a construction which will be
used to provide several interesting examples in Chapter 6. Take N deterministic IFSs, Ii, built by
dividing the unit square into an mi × ni grid with mi 6 ni and an associated probability vector
p = (p1, . . . , pN ). The following dimension formula was given in [GuLi2] and can also be derived
from results in [FO].

Theorem 1.9 ([FO], [GuLi2]). For j = 1 . . .mi, let Ni,j ∈ {0, . . . ,mi} denote the number of rectangles
chosen in the jth column in the ith IFS. Let

ν1 = mp1
1 · · ·m

pN
N and ν2 = np11 · · ·n

pN
N .

Then, for P-almost all ω ∈ Ω,

dimH Fω =

N∑
i=1

pi

(
1

log ν1
log

( mi∑
j=1

N
log ν1/ log ν2
i,j

))
.
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We note that in [FO] a higher dimensional analogue of Theorem 1.9 was obtained where one begins
the construction with the unit cube in Rd rather than the unit square. Notice that if mi = m and
ni = n for all i, then the above dimension formula simplifies to

dimH Fω =

N∑
i=1

pi

(
1

logm
log

( m∑
j=1

N
logm/ logn
i,j

))
=

N∑
i=1

pi si,

where si is the Hausdorff dimension of the attractor of Ii given by Bedford and McMullen, see
Theorem 1.4. In this case, the almost sure Hausdorff and box dimension were computed in [GuLi1].
If the mi and ni are not chosen uniformly, then we have a nonlinear dependence on the probability
vector p. An example using Theorem 1.9 will be given in Section 6.4.3.

In Chapter 6, we will study random self-affine carpets using an alternative notion of random-
ness, where ω is chosen according to the topological properties of Ω, rather than the probabilistic
properties. This approach leads to a starkly different theory and in fact allows us to consider much
more general systems than simply those based on self-affine carpets, although self-affine carpets will
be used to demonstrate some key phenomena.
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2 Box-like self-affine sets

2.1 Introduction

The aim of this chapter is to unify and generalise the classes of exceptional self-affine set described in
Section 1.3.3 by considering a more general construction which, in particular, allows the generating
maps to have non-trivial rotational and reflectional components. Our motivation is not simply gener-
ality for generality’s sake but also to reconcile the ‘exceptional constructions’ with Falconer’s almost
sure formula. As such, we introduce a modified singular value function and use it to compute the
packing and box-counting dimensions assuming a natural separation condition.

2.1.1 Box-like self-affine sets and notation

We call a self-affine set box-like if it is the attractor of an IFS consisting of contracting affine maps
which take the unit square, [0, 1]2, to a rectangle with sides parallel to the axes. The affine maps
which make up such an IFS are necessarily of the form S = T ◦L+ t, where T is a contracting linear
map of the form

T =

(
a 0
0 b

)
for some a, b ∈ (0, 1); L is a linear isometry of the plane for which L([−1, 1]2) = [−1, 1]2; and t ∈ R2

is a translation vector. Note that there are 8 possible choices for L and if, for all maps in the IFS, we
let L be the identity map, then we obtain the class of self-affine sets considered by Feng and Wang
[FeW].

Let {Si}i∈I be an IFS consisting of maps of the form described above for some finite index
set I, with |I| > 2, and let F be the corresponding attractor, i.e., the unique non-empty compact set
satisfying

F =
⋃
i∈I

Si(F ).

We refer to F as the box-like self-affine set. It is clear that we may choose a compact square Q ⊂ R2

such that
⋃
i∈I Si(Q) ⊆ Q. Without loss of generality we will assume throughout that we may choose

Q = [0, 1]2. Let
IA = {i ∈ I : Si maps horizontal lines to horizontal lines}

and
IB = {i ∈ I : Si maps horizontal lines to vertical lines}.

If IB = ∅, then we will say F is of separated type and otherwise we will say that F is of non-separated
type. It will become clear why we make this distinction in the following section.
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Let α1(i) > α2(i) be the singular values of the linear part of the map Si . Note that, for all
i ∈ I∗, the singular values, α1(i) and α2(i), are just the lengths of the sides of the rectangle
Si

(
[0, 1]2

)
. Finally, let

αmin = min{α2(i) : i ∈ I}

and
αmax = max{α1(i) : i ∈ I}.

2.2 Results

In this section we will state our main results of this chapter. The dimension formula, which relies on
the knowledge of the dimensions of the projection of F onto the horizontal and vertical axes, will be
given in Section 2.2.1. In Section 2.2.2 we will discuss the problem of calculating the dimensions of
the relevant projections.

2.2.1 The dimension formula

Let π1, π2 : R2 → R be defined by π1(x, y) = x and π2(x, y) = y respectively. Also, let

s1 = dimB π1(F )

and
s2 = dimB π2(F ).

It can be shown that both dimB π1(F ) and dimB π2(F ) exist using the ‘implicit theorems’ found in
[F3, McL], or, alternatively, see Lemma 2.8 in Section 2.2.2. For i ∈ I∗, let b(i) = |π1

(
Si

(
[0, 1]2

))
|

and h(i) = |π2

(
Si

(
[0, 1]2

))
| denote the length of the base and height of the rectangle Si

(
[0, 1]2

)
respectively and define πi : R2 → R by

πi =


π1 if i ∈ IA and b(i) > h(i)
π2 if i ∈ IA and b(i) < h(i)
π1 if i ∈ IB and b(i) < h(i)
π2 if i ∈ IB and b(i) > h(i)

Finally, let s(i) = dimB πiF . In fact, s(i) is simply the box dimension of the projection of Si (F )
onto the longest side of the rectangle Si

(
[0, 1]2

)
and is always equal to either s1 or s2.

For s > 0 and i ∈ I∗, we define the modified singular value function, ψs, of Si by

ψs
(
Si

)
= α1(i)s(i) α2(i)s−s(i), (2.1)

and for s > 0 and k ∈ N, we define a number Ψs
k by

Ψs
k =

∑
i∈Ik

ψs(Si ).

Lemma 2.1 (multiplicative properties).

a) For s > 0 and i, j ∈ I∗ we have

a1) If s < s1 + s2, then ψs(Si ◦ Sj) 6 ψs(Si)ψ
s(Sj);

a2) If s = s1 + s2, then ψs(Si ◦ Sj) = ψs(Si)ψ
s(Sj);

a3) If s > s1 + s2, then ψs(Si ◦ Sj) > ψs(Si)ψ
s(Sj).

b) For s > 0 and k, l ∈ N we have

b1) If s < s1 + s2, then Ψs
k+l 6 Ψs

k Ψs
l ;

b2) If s = s1 + s2, then Ψs
k+l = Ψs

k Ψs
l ;
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b3) If s > s1 + s2, then Ψs
k+l > Ψs

k Ψs
l .

We will prove Lemma 2.1 in Section 2.4.2. It follows from Lemma 2.1 and standard properties of sub-
and super-multiplicative sequences that we may define a function P : [0,∞)→ [0,∞) by

P (s) = lim
k→∞

(Ψs
k)1/k

where, in fact,

lim
k→∞

(Ψs
k)1/k =


infk∈N (Ψs

k)1/k if s ∈ [0, s1 + s2)

Ψs
1 if s = s1 + s2

supk∈N (Ψs
k)1/k if s ∈ (s1 + s2,∞)

Our function P is related to the notion of topological pressure in dynamical systems and in particular
non-additive topological pressure. Although the spirit of this chapter is not dynamical, we can view
our self-affine attractors as repellers of certain expanding dynamical systems (provided we have some
separation conditions). For example, if a box-like self-affine set F satisfies the strong separation
condition, then we can define an expanding map, f , on F such that the inverse branches of f coincide
with the contractions in the defining IFS. Assuming s 6 s1 + s2 and writing Dxf

n to denote the
Jacobian of fn at x ∈ F , the sequence

{
logψs

(
(Dxf

n)−1
)}
n

gives a subadditive valuation on F and
a simple calculation yields

logP (s) = Ptop

(
f,
{

logψs
(
(Dxf

n)−1
)})

where Ptop

(
f,
{

logψs
(
(Dxf

n)−1
)})

is the topological pressure of the sequence
{

logψs
(
(Dxf

n)−1
)}
n

with respect to f in the sense of Falconer [F5]. Non-additive versions of the thermodynamic formalism
have attracted substantial attention over the last 15 years. For more details the reader is referred to,
for example, [Pe, Ba, FH].

Lemma 2.2 (Properties of P ).

(1) For all s, t > 0 we have
αsminP (t) 6 P (s+ t) 6 αsmaxP (t)

and furthermore, setting t = 0, for all s > 0 we have

0 < αsminP (0) 6 P (s) 6 αsmaxP (0) < ∞,

where P (0) ∈ [|I|,∞) is a constant;

(2) P is continuous on [0,∞);

(3) P is strictly decreasing on [0,∞);

(4) There is a unique value s > 0 for which P (s) = 1.

We will prove Lemma 2.2 in Section 2.4.3. The following separation condition, which we will need to
obtain the lower bound in our dimension result, was introduced in [FeW].

Definition 2.3. An IFS {Si}mi=1 satisfies the rectangular open set condition (ROSC) if there exists a
non-empty open rectangle, R = (a, b)× (c, d) ⊂ R2, such that {Si(R)}mi=1 are pairwise disjoint subsets
of R.

We can now state our main result concerning the packing and box-counting dimensions for box-like
self-affine sets.

Theorem 2.4. Let F be a box-like self-affine set. Then dimP F = dimBF 6 s where s > 0 is the
unique solution of P (s) = 1. Furthermore, if the ROSC is satisfied, then dimP F = dimB F = s.

We will prove Theorem 2.4 in Section 2.5. We will now give two corollaries of Theorem 2.4 which
show that the dimension formula can be simplified in certain situations. The first of which deals with
the case where s1 = s2. This will occur, for example, if F is of non-separated type (see Lemma 2.8).
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Corollary 2.5. Let F be a box-like self-affine set which satisfies the ROSC and is such that s1 =
s2 =: t. Then dimP F = dimB F = s, where s satisfies

lim
k→∞

(∑
i∈Ik

α1(i)t α2(i)s−t
)1/k

= 1.

The second corollary deals with the case where s1 = s2 = 1. Some easily verified sufficient conditions
for this to occur are given in Lemma 2.9.

Corollary 2.6. Let F be a box-like self-affine set which satisfies the ROSC and is such that s1 =
s2 = 1. Then

dimP F = dimB F = d

where d is the affinity dimension (1.3).

To prove Corollary 2.6 simply observe that, if s1 = s2 = 1, then our modified singular value function
(2.1) coincides with the singular value function (1.2) in the range s ∈ [1, 2]. Furthermore, it is clear
that the dimension lies in this range and therefore the unique value of s satisfying P (s) = 1 is the
affinity dimension. The converse of Corollary 2.6 is not true. In particular, it is not true that, if both
s1 and s2 are strictly less than 1, then the packing dimension is strictly less than the affinity dimension
(for example, some self-similar sets). However, it is possible to give simple sufficient conditions for the
packing dimension to drop below the affinity dimension. For example, if both s1 and s2 are strictly
less than min{1, d}, where d is the affinity dimension, and there exists a constant η ∈ (0, 1) such that
for all k ∈ N and all i ∈ Ik, α2(i) 6 ηkα1(i), then the packing dimension of the attractor is strictly
less than the affinity dimension. To see this let ε = min{1, d} −max{s1, s2} > 0 and d be the affinity
dimension and note that

P (d) = inf
k

( ∑
i∈Ik

ψd(Si )

)1/k

6 inf
k

( ∑
i∈Ik

φd(Si )

(
α2(i)

α1(i)

)ε)1/k

6 ηε < 1

from which it follows that dimP F < d.

Since dimBF 6 s1 + s2, it is clear that the solution of P (s) = 1 always lies in the range
[0, s1 + s2]. Even in the case where s1 and s2 can be computed it still may be very difficult to
compute the solution of P (s) = 1 explicitly. However, since the solution lies in the submultiplicative
region, it can be numerically estimated from above by considering the sequence {ŝk}k∈N where
each ŝk is defined by Ψŝk

k = 1 and is an upper bound for the dimension. Unfortunately, without
establishing some sort of ‘quasimultiplicativity’ for the sequence {Ψs

k}, it is difficult to say anything
about the rate of convergence of the sequence {ŝk}. In [FS] this problem was addressed in the case
where standard singular value functions are used in place of modified singular value functions and a
quasimultiplicativity condition was derived, provided that a certain technical condition was satisfied
by the linear parts of the mappings.

We will now present one final corollary of Theorem 2.4 which shows that for a certain class of
box-like self-affine sets of separated type the dimension may be calculated explicitly due to the
modified singular value function being multiplicative for all s rather than sub- or supermultiplicative.

Corollary 2.7. Let F be a box-like self-affine set of separated type which satisfies the ROSC. Fur-
thermore, assume that each map, Si, in the IFS has singular values α1(i) > α2(i) where the larger
singular value, α1(i), corresponds to contracting in the horizontal direction. Then

dimP F = dimB F = s

where s is the unique solution of ∑
i∈I

α1(i)s1 α2(i)s−s1 = 1.

Furthermore, if s1 = 1, then s is the affinity dimension.
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Proof. It may be gleaned from the proof of Lemma 2.1 (a1), case (i), that, in the situation described
above, the modified singular value function is multiplicative. It follows that the unique solution of
P (s) = 1 satisfies Ψs

1 = 1.

Corollary 2.7 is similar to Corollary 1 in [FeW] but our result covers a much larger class of sets
since we allow the maps in the IFS to have non-trivial reflectional and rotational components
(whilst ensuring that F is of separated type). Although in a different context, a problem related to
Corollary 2.7 was studied in [Hu]. There the author proved a version of Bowen’s formula for a class
of non-conformal C2 expanding maps for which the expansion is stronger in one particular direction.

The idea to study box-like self-affine sets came from the paper [FO]. There the authors con-
sider self-similar sets and, in particular, how varying the rotational or reflectional component of
the mappings affects the attractor. Their approach relies on various group theoretic techniques.
One thing to note is that, given the OSC, changing the rotational or reflectional component of
the mappings in an IFS of similarities does not change the dimension. As we have shown (and
unsurprisingly) the situation is more complicated in the self-affine case, see the examples below.
It would be interesting to conduct an analysis similar to that found in [FO] in the self-affine case
with the added complication that one could consider changes in dimension as well as changes in the
symmetry of the (self-affine) attractor.

Finally, we remark that our dimension formula gives nothing but an upper bound for the
Hausdorff dimension of box-like self-affine sets. It would be of great interest to investigate the
Hausdorff dimension in more detail, especially in the non-separated case. Also, it would be interesting
to allow our maps to include rotations other than multiples of π/2. In this situation the basic sets
in the construction would cease to be rectangles and the non-separated/separated dichotomy would
become more complicated as one might have to look to the dimension of projections in many different
directions.

2.2.2 Dimensions of projections

The dimension formula given in Section 2.2.1 depends on knowledge of s1 and s2, i.e., the dimensions
of the projections of F onto the horizontal and vertical axes, respectively. A priori, s1 and s2 are
difficult to calculate explicitly, or even to obtain good estimates for. In this section we examine this
problem and show that it is possible to compute s1 and s2 explicitly in a number of cases.

Lemma 2.8. If F is of separated type, then π1(F ) and π2(F ) are self-similar sets. If F is of non-
separated type, then π1(F ) and π2(F ) are a pair of graph-directed self-similar sets and, moreover, the
associated adjacency matrix for the graph-directed system is irreducible. In this second case, it follows
that s1 = s2.

We will prove Lemma 2.8 in Section 2.4.1. It follows from Lemma 2.8 that the box dimensions
of the projections exist and so s1 and s2 are well-defined. The problem with calculating the
dimension of π1(F ) and π2(F ) is that the IFSs alluded to in Lemma 2.8 may not satisfy the open
set condition (OSC), or graph-directed open set condition (GDOSC). However, in certain cases we
will be able to invoke the finite type conditions introduced in [JY, LN, NW] and generalised to
the graph-directed situation in [NWD]. In this situation, despite the possible failure of the OSC
or GDOSC, we can view the projections as attractors of alternative IFSs or graph-directed IFSs
where the necessary separation conditions are satisfied. We can then compute s1 and s2 using a
standard formula, see, for example, [F7, Corollary 3.5]. An example of this will be given in Section
2.3.1. For more details on graph-directed sets, see [F7, Chapter 3]; [E1, Chapters 4 and 6], and [MW2].

There is one further situation where, even if the previously mentioned finite type conditions
are not satisfied, we can still compute s1 and s2. In this case we will say that F is of block type.
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Lemma 2.9 (block type). Let H be any closed, path connected set which contains F and is not
contained in any vertical or horizontal line. If

π1

( ⋃
i∈I

Si(H)
)

= π1(H) (2.2)

and
π2

( ⋃
i∈I

Si(H)
)

= π2(H), (2.3)

then s1 = s2 = 1.

Proof. This follows immediately since, by (2.2) and (2.3), π1(F ) and π2(F ) are intervals.

2.3 Examples

In order to illustrate our results we will now present two examples and compute the packing and box
dimensions. We will also examine what effect the rotational and reflectional components have on the
dimension. In both cases it will be clear that the ROSC is satisfied, taking R = (0, 1)2. All rotations
are taken to be clockwise about the origin and all numerical estimations were calculated in Maple
using the method outlined at the end of Section 2.2.

2.3.1 Non-separated type

In this section we consider an example of a box-like self-affine set of non-separated type. Let F be
the attractor of the IFS consisting of the maps which take [0, 1]2 to the 3 shaded rectangles on the
left hand part of Figure 3, where the linear parts have been composed with: rotation by 270 degrees
(top right); rotation by 90 degrees (bottom right); and reflection in the vertical axis (left).

Figure 8: Levels 1, 3 and 7 in the construction of F .

Here, π1(F ) and π2(F ) are a pair of graph-directed self-similar sets of finite type. It is easy to see
that in fact

π1(F ) =
(

2
5 −

2
5π1(F )

)
∪
(

2
5π2(F ) + 3

5

)
and

π2(F ) =
(

1
4π1(F )

)
∪
(

1
2π2(F ) + 1

4

)
∪
(
1− 1

4π1(F )
)
.

with the GDOSC satisfied for this system. The associated adjacency matrix is

A(t) =

 ( 2
5 )t ( 2

5 )t

2 ( 1
4 )t ( 1

2 )t


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and solving ρ
(
A(t)

)
= 1, where ρ

(
A(t)

)
is the spectral radius of A(t), for t yields s1 = s2 =: t ≈

0.890959, see [F7, Corollary 3.5]. Theorem 2.4 now gives that dimP F = dimB F = s where s > 0 is
the unique solution of

lim
k→∞

( ∑
i∈Ik

α1(i)t α2(i)s−t
)1/k

= 1.

If we considered the same construction but with no rotations or reflections, then we would have a
self-affine set of the type considered by Barański. In this case, results in [B2] give us that the box
dimension is approximately 1.11349, which is strictly larger than the dimension we obtained for our
construction. To see this we computed ŝ10 = 1.09557 . . . which is an upper bound for s. In fact, our
numerical estimates, {ŝk}, appear to converge to about 1.09.

2.3.2 Block type

In this section we consider an example of a box-like self-affine set of block type. Let F be the attractor
of the IFS consisting of the maps S1, S2 and S3 defined by

S1 =

(
1
2 0
0 3

10

)
◦R1 +

(
0
1

)
,

S2 =

(
1
2 0
0 1

5

)
◦R2 +

(
1/4
7/10

)
,

and

S3 =

(
1
4 0
0 3

5

)
◦R3 +

(
1
0

)
,

where R1 is reflection in the horizontal axis, R2 is rotation by 90 degrees and R3 is reflection in the
vertical axis.

Figure 9: Levels 4, 5 and 6 in the construction of F . The boxes in the first image on the left indicate
the mappings.

It is clear that F is of block type, taking H = [0, 1]2 in Lemma 2.9, and so s1 = s2 = 1. Theorem 2.4
now gives that dimP F = dimB F = s where s > 0 is the unique solution of

lim
k→∞

( ∑
i∈Ik

α1(i)1 α2(i)s−1

)1/k

= 1,

which, by Corollary 2.6, coincides with the affinity dimension. Again, let us consider the same con-
struction but with no rotational or reflectional components in the mappings. In this case we have
a self-affine set of the type considered by Feng and Wang and results in [FeW] give that the box
dimension is approximately 1.18405, which is again larger than for our construction. To see this we
computed ŝ10 = 1.17348 . . . which is an upper bound for s. In fact, our numerical estimates, {ŝk},
appear to converge to about 1.16.
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2.4 Proofs of preliminary lemmas

Note that we prove Lemma 2.8 before Lemma 2.1 because we will use Lemma 2.8 in the proof of
Lemma 2.1.

2.4.1 Proof of Lemma 2.8

Let I1, I2 : [0, 1]→ [0, 1]2 be defined by
I1(x) = (x, 0)

and
I2(y) = (0, y).

Also, for i ∈ I and a, b ∈ {1, 2}, we define a contracting similarity mapping S̃a,bi : [0, 1]→ [0, 1] by

S̃a,bi = πa ◦ Si ◦ Ib.

For certain choices of a, b and i the image S̃a,bi ([0, 1]) is a singleton, but we will not be interested in
these maps. Also, let X = π1(F ) and Y = π2(F ). It is clear that

X =

( ⋃
i∈IA

S̃1,1
i (X)

)
∪
( ⋃
i∈IB

S̃1,2
i (Y )

)
(2.4)

and

Y =

( ⋃
i∈IA

S̃2,2
i (Y )

)
∪
( ⋃
i∈IB

S̃2,1
i (X)

)
. (2.5)

It follows that if IB = ∅, then X and Y are the self-similar attractors of the IFSs {S̃1,1
i }i∈I and

{S̃2,2
i }i∈I respectively and if IB 6= ∅, then X and Y are a pair of graph-directed self-similar sets

with an associated adjacency matrix defined by (2.4–2.5). This matrix is clearly irreducible since the
existence of an element in IB ensures that we can find a directed cycle in the associated directed
graph which contains both vertices. This proves Lemma 2.8.

2.4.2 Proof of Lemma 2.1

We will first prove part (a) by a case by case analysis. Part (b) will then follow easily.

Proof of (a).

a1) Let s ∈ [0, s1 + s2) and let i , j ∈ I∗. Firstly, assume that F is of non-separated type. It
follows from Lemma 2.8 that s1 = s2 =: t. We have

ψs(Si ◦ Sj ) = α1(i j )tα2(i j )s−t

=
(
α1(i j )α2(i j )

)s−t
α1(i j )2t−s

=
(
α1(i)α2(i)α1(j )α2(j )

)s−t
α1(i j )2t−s

6
(
α1(i)α2(i)

)s−t (
α1(j )α2(j )

)s−t (
α1(i)α1(j )

)2t−s
since 2t− s > 0

= ψs(Si )ψ
s(Sj )

proving (a1) in the non-separated case. Secondly, assume that F is of separated type and assume, in
addition, that b(i) > h(i), recalling that b(i) and h(i) are the lengths of the base and height of the
rectangle Si

(
[0, 1]2

)
respectively. The case where b(i) < h(i) is analogous. We now have the following

three cases:
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(i) b(j ) > h(j ) and b(ij ) > h(ij );

(ii) b(j ) < h(j ) and b(ij ) > h(ij );

(iii) b(j ) < h(j ) and b(ij ) < h(ij ).

The key property that we will utilise here is that, since F is of separated type, b(ij ) = b(i) b(j ) and
h(ij ) = h(i)h(j ). Note that this precludes the case: b(j ) > h(j ) and b(ij ) < h(ij ). To complete the
proof of (a1) we will show that, in each of the above cases (i-iii), we have

ψs(Si ◦ Sj )

ψs(Si )ψs(Sj )
6 1.

(i) We have
ψs(Si ◦ Sj )

ψs(Si )ψs(Sj )
=

b(ij )s1h(ij )s−s1

b(i)s1h(i)s−s1b(j )s1h(j )s−s1
= 1.

(ii) Similarly

ψs(Si ◦ Sj )

ψs(Si )ψs(Sj )
=

b(ij )s1h(ij )s−s1

b(i)s1h(i)s−s1h(j )s2b(j )s−s2
=

(
b(j )

h(j )

)s1+s2−s

6 1.

(iii) Finally

ψs(Si ◦ Sj )

ψs(Si )ψs(Sj )
=

h(ij )s2b(ij )s−s2

b(i)s1h(i)s−s1h(j )s2b(j )s−s2
=

(
h(i)

b(i)

)s1+s2−s

6 1.

The proofs of (a2) and (a3) are similar and, therefore, omitted.

Proof of (b).

This follows easily by noting that, for all k, l ∈ N, we have

Ψs
k+l =

∑
i∈Ik+l

ψs(Si ) =
∑
i∈Ik

∑
j∈Il

ψs(Si ◦ Sj )

and

Ψs
k Ψs

l =

( ∑
i∈Ik

ψs(Si )

)(∑
i∈Il

ψs(Sj )

)
=
∑
i∈Ik

∑
j∈Il

ψs(Si )ψ
s(Sj )

and applying part (a).

2.4.3 Proof of Lemma 2.2

(1) Let s, t ∈ [0,∞). We have

P (s+ t) = lim
k→∞

( ∑
i∈Ik

α1(i)s(i) α2(i)s+t−s(i)

)1/k

6 lim
k→∞

(
αksmax

∑
i∈Ik

α1(i)s(i) α2(i)t−s(i)

)1/k

= αsmaxP (t).

The proof of the left hand inequality is similar. Furthermore, note that

∞ > inf
k>0

(Ψ0
k)

1
k = P (0) = lim

k→∞

( ∑
i∈Ik

α1(i)s(i) α2(i)−s(i)

)1/k

> lim
k→∞

( ∑
i∈Ik

1

)1/k

= |I|
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and together with setting t = 0 above gives the second chain of inequalities.

(2) The continuity of P follows immediately from (1).

(3) Let t, ε > 0. Since P (t+ ε), P (t) ∈ (0,∞), by (1) we have

P (t+ ε)

P (t)
6 αεmax < 1

and so P is strictly decreasing on [0,∞).

(4) It follows from (1) that P (0) > |I| > 1 and that P (s) < 1 for sufficiently large s. These
facts, combined with parts (2) and (3), imply that there is a unique value of s for which P (s) = 1.

2.5 Proof of Theorem 2.4

We will now prove our main result, that the packing and box-counting dimensions of F are equal
to the unique s which satisfies P (s) = 1. We will prove this in the box dimension case and it is
well-known that, since F is compact and every open ball centered in F contains a bi-Lipschitz image
of F , dimP F = dimBF , see [F8, Corollary 3.9] or Proposition 1.1 .

Let s > 0 be the unique solution of P (s) = 1. For δ ∈ (0, 1] we define the δ-stopping, Iδ, as
follows:

Iδ =
{
i ∈ I∗ : α2(i) < δ 6 α2(i)

}
.

Note that for i ∈ Iδ we have
αmin δ 6 α2(i) < δ. (2.6)

Lemma 2.10. Let t > 0.

(1) If t > s, then there exists a constant K(t) <∞ such that∑
i∈Iδ

ψt(Si) 6 K(t)

for all δ ∈ (0, 1].

(2) If t < s, then there exists a constant L(t) > 0 such that∑
i∈Iδ

ψt(Si) > L(t)

for all δ ∈ (0, 1].

Proof. (1) Let t > s and δ ∈ (0, 1]. We have

∑
i∈Iδ

ψt(Si ) 6
∑
i∈I∗

ψt(Si ) =

∞∑
k=1

∑
i∈Ik

ψt(Si ) =

∞∑
k=1

Ψt
k <∞

since limk→∞(Ψt
k)1/k = P (t) < 1. The result follows, setting K(t) =

∑∞
k=1 Ψt

k.

(2) Let t < s. Consider two cases according to whether t is in the submultiplicative region
[0, s1 + s2], or supermultiplicative region (s1 + s2,∞). We will be able to deduce retrospectively
that s 6 s1 + s2 and so the second case is, in fact, vacuous. It would be possible to prove part
(2) only in the submultiplicative case and then deduce that the dimension is min{s, s1 + s2}, but
in order to conclude that the dimension is simply s, we include the proof in the supermultiplicative case.
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(i) 0 6 t 6 s1 + s2. We remark that an argument similar to the following was used in [F2].

Let δ ∈ (0, 1] and assume that ∑
i∈Iδ

ψt(Si ) 6 1. (2.7)

To obtain a contradiction we will show that this implies that t > s. Let k(δ) = max{|i | : i ∈ Iδ},
where |i | denotes the length of the string i , and define Iδ,k by

Iδ,k =
{
i1 . . . im : i j ∈ Iδ for all j = 1, . . . ,m,

|i1 . . . im| 6 k but |i1 . . . imim+1| > k for some im+1 ∈ Iδ
}
.

For all i ∈ I∗ we have, by the submultiplicativity of ψt,∑
j∈Iδ

ψt(Si j ) 6
∑
j∈Iδ

ψt(Si )ψ
t(Sj )

= ψt(Si )
∑
j∈Iδ

ψt(Sj )

6 ψt(Si )

by (2.7). It follows by repeated application of the above that, for all k ∈ N,∑
i∈Iδ,k

ψt(Si ) 6 1. (2.8)

Let i ∈ Ik for some k ∈ N. It follows that i = j 1 j 2 for some j 1 ∈ Iδ,k and some j 2 ∈ I∗ ∪ {ω} with
|j 2| 6 k(δ) and by the submultiplicativity of ψt,

ψt(Si ) = ψt(Sj 1 j 2) 6 ψt(Sj 1)ψt(Sj 2) 6 ck(δ) ψ
t(Sj 1),

where ck(δ) = max{ψt(Si ) : |i | 6 k(δ)} < ∞ is a constant which depends only on δ. Since there are

at most |I|k(δ)+1 elements j 2 ∈ I∗ ∪ {ω} with |j 2| 6 k(δ) we have

Ψt
k =

∑
i∈Ik

ψt(Si ) 6 |I|k(δ)+1 ck(δ)

∑
i∈Iδ,k

ψt(Si ) 6 |I|k(δ)+1 ck(δ)

by (2.8). Since this is true for all k ∈ N we have

P (t) = lim
k→∞

(
Ψt
k

)1/k
6 1

from which it follows that t > s. So, if t 6 s1 + s2, then we may set L(t) = 1.

(ii) t > s1 + s2.

Since t < s it follows that
∑

i∈Ik ψ
t(Si ) → ∞ as k → ∞. Therefore, we may fix a k ∈ N

such that ∑
i∈Ik

ψt(Si ) > 1. (2.9)

Fix δ ∈ (0, 1] and define

Ik,δ =
{
i1 . . . im : i j ∈ Ik for all j = 1, . . . ,m,

α2(i1 . . . im) > δ but α2(i1 . . . imim+1) < δ for some im+1 ∈ Ik
}
.
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For all i ∈ I∗ we have, by the supermultiplicativity of ψt,∑
j∈Ik

ψt(Si j ) >
∑
j∈Ik

ψt(Si )ψ
t(Sj )

= ψt(Si )
∑
j∈Ik

ψt(Sj )

> ψt(Si )

by (2.9). It follows by repeated application of the above that∑
i∈Ik,δ

ψt(Si ) > 1. (2.10)

Let i ∈ Iδ. It follows that i = j 1j 2 for some j 1 ∈ Ik,δ and some j 2 ∈ I∗. Since α2(i) > δ αmin by
(2.6) and α2(j 1) 6 δα−kmin we have

α2(j 1) 6 α2(i)α
−(k+1)
min 6 α2(j 1)α|j 2|maxα

−(k+1)
min (2.11)

which yields |j 2| 6 (k + 1) logαmin

logαmax
. Setting ck = min

{
ψt(Si ) : |i | 6 (k + 1) logαmin

logαmax

}
> 0, it follows

from (2.11), (2.10) and the supermultiplicativity of ψt that∑
i∈Iδ

ψt(Si ) > ck
∑

i∈Ik,δ

ψt(Si ) > ck.

We have now proved part (2) setting L(t) = min{1, ck} = ck. Note that although L(t) appears to
depend on k, recall that we fixed k at the beginning of the proof of (2)(ii) and the choice of k depended
only on t.

We are now ready to prove Theorem 2.4. It follows immediately from the definition of box dimension
that for all ε > 0 there exists a constant Cε > 1 such that for all δ ∈ (0, α−1

min] we have

1
Cε
δ−s1+ε/2 6 Nδ(π1F ) 6 Cε δ

−s1−ε/2 (2.12)

and
1
Cε
δ−s2+ε/2 6 Nδ(π2F ) 6 Cε δ

−s2−ε/2. (2.13)

For i ∈ I∗, we will write Fi = Si (F ).

Upper bound (assuming no separation conditions)

Let ε > 0, δ ∈ (0, 1] and suppose that, for each i ∈ Iδ, {Ui ,j}Nδ(Fi )
j=1 is a δ-cover of Fi . Since

F =
⋃

i∈Iδ Fi it follows that ⋃
i∈Iδ

Nδ(Fi )⋃
j=1

{Ui ,j}

is a δ-cover for F . Hence,

0 6 δs+εNδ(F ) 6 δs+ε
∑
i∈Iδ

Nδ
(
Fi

)
= δs+ε

∑
i∈Iδ

Nδ/α1(i)

(
πiF

)
since α2(i) < δ

6 δs+ε
∑
i∈Iδ

Cε

(
δ

α1(i)

)−s(i)−ε/2
by (2.12–2.13)
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6 Cε α
−s−ε
min

∑
i∈Iδ

α1(i)s(i)+ε/2α2(i)s+ε−s(i)−ε/2 by (2.6)

6 Cε α
−s−ε
min

∑
i∈Iδ

ψs+ε/2(i)

6 Cε α
−s−ε
min K

(
s+ ε

2

)
by Lemma 2.10 (1). It follows that dimBF 6 s+ ε and, since ε > 0 was arbitrary, we have the desired
upper bound.

Lower bound (assuming the ROSC)

Let ε ∈ (0, s), δ ∈ (0, 1] and U be any closed square of sidelength δ. Also, let R be the open
rectangle used in the ROSC and let r− denote the length of the shortest side of R. Finally, let

M = min
{
n ∈ N : n > (αminr−)−1 + 2

}
.

Since {Si (R)}i∈Iδ is a collection of pairwise disjoint open rectangles each with shortest side having
length at least αminδr−, it is clear that U can intersect no more than M2 of the sets {Fi}i∈Iδ . It
follows that, using the δ-mesh definition of Nδ, we have∑

i∈Iδ

Nδ
(
Fi

)
6M2Nδ(F ).

This yields

δs−εNδ(F ) > δs−ε 1
M2

∑
i∈Iδ

Nδ
(
Fi

)
= δs−ε 1

M2

∑
i∈Iδ

Nδ/α1(i)

(
πiF

)
since α2(i) < δ

> δs−ε 1
M2

∑
i∈Iδ

1
Cε

(
δ

α1(i)

)−s(i)+ε/2
by (2.12–2.13)

> 1
M2Cε

∑
i∈Iδ

α2(i)s−ε αmin α2(i)−s(i)+ε/2 α1(i)s(i)−ε/2 by (2.6)

= 1
M2Cε

αmin

∑
i∈Iδ

α1(i)s(i)−ε/2 α2(i)s−ε/2−s(i)

> 1
M2Cε

αmin

∑
i∈Iδ

ψs−ε/2(i)

> 1
M2

1
Cε
αmin L

(
s− ε

2

)
by Lemma 2.10 (2). It follows that dimBF > s − ε and, since ε ∈ (0, s) was arbitrary, we have the
desired lower bound.
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3 Assouad and lower dimensions of self-
affine carpets

3.1 Introduction

In this chapter we continue to investigate the dimension theory of the standard self-affine carpets.
Recently, Mackay [M] computed the Assouad dimension for the Lalley-Gatzouras class which contains
the Bedford-McMullen class. We will compute the Assouad dimension and lower dimension for the
Barański class, which also contains the Bedford-McMullen class, and we will complement Mackay’s
result by computing the lower dimension for the Lalley-Gatzouras class. We also devote some time to
comparing these new dimension formulae with the formulae for the Hausdorff and packing dimensions.

3.2 Dimension results for self-affine carpets

In this section we state our main results on the Assouad and lower dimensions of self-affine sets.
Self-affine sets often exhibit a high degree of inhomogeneity because the mappings can stretch by
different amounts in different directions. We will only consider self-affine carpets which are attractors
of IFSs in the Lalley-Gatzouras or Barański class, which have at least one map which is not a
similarity. The reason we assume that one of the mappings is not a similarity is so that the sets
are genuinely self-affine. The dimension theory for genuinely self-affine sets is very different from
self-similar sets and we intentionally keep the two classes separate, see [Fr4] for more details on the
self-similar situation. We will divide the class of self-affine carpets into three subclasses, horizontal,
vertical and mixed, which will be described below.

In order to state our results, we need to introduce some notation. Throughout this section F
will be a self-affine carpet which is the attractor of an IFS {Si}i∈I for some finite index set I, with
|I| > 2. The maps Si in the IFS will be translate linear orientation-preserving contractions on [0, 1]2

of the form
Si
(
(x, y)

)
= (cix, diy) + t i

for some contraction constants ci ∈ (0, 1) in the horizontal direction and di ∈ (0, 1) in the vertical
direction and a translation t i ∈ R2. We will say that F is of horizontal type if ci > di for all i ∈ I;
of vertical type if ci 6 di for all i ∈ I; and of mixed type if F falls into neither the horizontal or
vertical classes. We remark here that the horizontal and vertical classes are equivalent as one can just
rotate the unit square by 90o to move from one class to the other. The horizontal (and hence also
vertical) class is precisely the Lalley-Gatzouras class and the Barański class is split between vertical,
horizontal and mixed, with carpets of mixed type being considerably more difficult to deal with and
represent the major advancement of the work of Barański [B2] over the much earlier work by Lalley
and Gatzouras [GL1].
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Let π1 denote the projection mapping from the plane to the horizontal axis and π2 denote
the projection mapping from the plane to the vertical axis. Also, for i ∈ I let

Slice1,i(F ) = the vertical slice of F through the fixed point of Si

and let
Slice2,i(F ) = the horizontal slice of F through the fixed point of Si.

Note that the sets π1(F ), π2(F ), Slice1,i(F ) and Slice2,i(F ) are self-similar sets satisfying the open
set condition and so their box dimension can be computed via the Hutchinson-Moran formula. We
can now state our dimension results.

Theorem 3.1. Let F be a self-affine carpet. If F is of horizontal type, then

dimA F = dimB π1(F ) + max
i∈I

dimB Slice1,i(F );

if F is of vertical type, then

dimA F = dimB π2(F ) + max
i∈I

dimB Slice2,i(F );

and if F is of mixed type, then

dimA F = max
i∈I

max
j=1,2

(
dimB πj(F ) + dimB Slicej,i(F )

)
.

We will prove Theorem 3.1 for the mixed class in Section 3.6.2 and for the horizontal and vertical
classes in Section 3.6.3. If F is in the (non-extended) Lalley-Gatzouras class, then the above result
was obtained in [M].

Theorem 3.2. Let F be a self-affine carpet. If F is of horizontal type, then

dimL F = dimB π1(F ) + min
i∈I

dimB Slice1,i(F );

if F is of vertical type, then

dimL F = dimB π2(F ) + min
i∈I

dimB Slice2,i(F );

and if F is of mixed type, then

dimL F = min
i∈I

min
j=1,2

(
dimB πj(F ) + dimB Slicej,i(F )

)
.

We will prove Theorem 3.2 for the mixed class in Section 3.6.4 and for the horizontal and vertical
classes in Section 3.6.5. We remark here that the formulae presented in Theorems 3.1 and 3.2 are
completely explicit and can be computed easily to any required degree of accuracy. It is interesting to
investigate conditions for which the dimensions discussed here are equal or distinct. Mackay [M] noted
a fascinating dichotomy for the Lalley-Gatzouras class in that either the Hausdorff dimension, box
dimension and Assouad dimension are all distinct or are all equal. We obtain the following extension
of this result.

Corollary 3.3. Let F be a self-affine carpet in the horizontal or vertical class. Then either

dimL F < dimH F < dimB F < dimA F

or
dimL F = dimH F = dimB F = dimA F.

We will prove Corollary 3.3 in Section 3.6.6. It is natural to wonder if this dichotomy also holds for
the mixed class. In fact it does not and in Section 3.4.2 we provide an example of a self-affine set in
the mixed class for which dimL F < dimH F = dimB F = dimA F . We do obtain the following slightly
weaker result.
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Corollary 3.4. Let F be a self-affine carpet. Then either

dimL F < dimB F

or
dimL F = dimH F = dimB F = dimA F.

We will prove Corollary 3.4 in Section 3.6.7. Theorems 3.1-3.2 provide explicit means to estimate,
or at least obtain non-trivial bounds for, the Hausdorff dimension and box dimension. The formulae
for the box dimensions given in [GL1, B2] are completely explicit, but the formulae for the Hausdorff
dimensions are not explicit and are often difficult to evaluate. As such, our results concerning lower
dimension provide completely explicit and easily computable lower bounds for the Hausdorff dimen-
sion. Finally we note that, despite how apparently easy it is to have lower dimension equal to zero,
it is easy to see from Theorem 3.2 that the lower dimension of a self-affine carpet is always strictly
positive, indeed, bigger than or equal to min{dimB π1(F ),dimB π2(F )}. A set with strictly positive
lower dimension is called uniformly perfect and we note that in fact all self-affine sets which are not
just a singleton are uniformly perfect, see [XYS].

3.3 Dimension results for quasi-self-similar sets

In this section we take a short detour to investigate the Assouad and lower dimensions of sets displaying
some degree of quasi-self-similarity, in particular, self-similar sets. We do this for two reasons: to put
our results on self-affine sets into context; and because we will use the results in this section to portray
interesting phenomena later in the chapter. We will be particularly interested in conditions which
guarantee the equality of certain dimensions. Throughout this section (X, d) will be a compact metric
space. Recall that (X, d) is called Ahlfors regular if dimHX < ∞ and there exists a constant λ > 0
such that, writing HdimHX to denote the Hausdorff measure in the critical dimension,

1
λ r

dimHX 6 HdimHX
(
B(x, r)

)
6 λ rdimHX

for all x ∈ X and all 0 < r < diam(X), see [He, Chapter 8]. A metric space is called locally Ahlfors
regular if the above estimates on the measure of balls holds for sufficiently small r > 0. It is easy to
see that a compact locally Ahlfors regular space is Ahlfors regular. In a certain sense Ahlfors regular
spaces are the most homogeneous spaces. This is reflected in the following proposition.

Proposition 3.5. If (X, d) is Ahlfors regular, then

dimLX = dimAX.

For a proof of this see, for example, [ByG]. We will now consider the Assouad and lower dimensions
of quasi-self-similar sets, which are a natural class of sets exhibiting a high degree of homogeneity. We
will define quasi-self-similar sets via the implicit theorems of Falconer [F3] and McLaughlin [McL].
These results allow one to deduce facts about the dimensions and measures of a set without having
to calculate them explicitly. This is done by showing that, roughly speaking, parts of the set can be
‘mapped around’ onto other parts without too much distortion.

Definition 3.6. A non-empty compact set F ⊆ (X, d) is called quasi-self-similar if there exists a > 0
and r0 > 0 such that the following two conditions are satisfied:

(1) for every set U that intersects F with |U | 6 r0, there is a mapping g : F ∩ U → F satisfying

a |U |−1 |x− y| 6 |g(x)− g(y)| (x, y ∈ F ∩ U)

(2) for every closed ball B with centre in F and radius r 6 r0, there is a mapping g : F → F ∩ B
satisfying

a r |x− y| 6 |g(x)− g(y)| (x, y ∈ F )

Writing s = dimH F , it was shown in [McL, F3] that condition (1) is enough to guarantee that
Hs(F ) > as > 0 and dimBF = dimBF = s and it was shown in [F3] that condition (2) is enough to
guarantee Hs(F ) 6 4s a−s <∞ and dimBF = dimBF = s. Also see [F7, Chapter 3]. Here we extend
these implicit results to include the Assouad and lower dimensions.
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Theorem 3.7. Let F be a non-empty compact subset of X.

(1) If F satisfies condition (1) in the definition of quasi-self-similar, then

dimL F 6 dimH F = dimP F = dimB F = dimA F.

(2) If F satisfies condition (2) in the definition of quasi-self-similar, then

dimL F = dimH F = dimP F = dimB F 6 dimA F.

(3) If F satisfies conditions (1) and (2) in the definition of quasi-self-similar, then we have

dimL F = dimH F = dimP F = dimB F = dimA F

and moreover, F is Ahlfors regular.

The proof of Theorem 3.7 is fairly straightforward, but we defer it to Section 3.7. We obtain the fol-
lowing corollary which gives useful relationships between the Assouad, lower and Hausdorff dimensions
in a variety of contexts.

Corollary 3.8. The following classes of sets are Ahlfors regular and, in particular, have equal Assouad
and lower dimension:

(1) self-similar sets satisfying the open set condition;

(2) graph-directed self-similar sets satisfying the graph-directed open set condition;

(3) mixing repellers of C1+α conformal mappings on Riemann manifolds;

(4) Bedford’s recurrent sets satisfying the open set condition, see [Be2].

The following classes of sets have equal Assouad dimension and Hausdorff dimension:

(5) sub-self-similar sets satisfying the open set condition, see [F6];

(6) boundaries of self-similar sets satisfying the open set condition.

The following classes of sets have equal lower dimension and Hausdorff dimension regardless of sepa-
ration conditions:

(7) self-similar sets;

(8) graph-directed self-similar sets;

(9) Bedford’s recurrent sets, see [Be2];

Proof. This follows immediately from Theorem 3.7 and the fact that the sets in each of the classes
(1)-(4) are quasi-self-similar, see [F3]; the sets in each of the classes (5)-(6) satisfy condition (1) in the
definition of quasi-self-similar, see [F3, F6] and the sets in each of the classes (7)-(9) satisfy condition
(2) in the definition of quasi-self-similar, see [F3].

We do not claim that all the information presented in the above corollary is new. For example,
the fact that self-similar sets satisfying the open set condition are Ahlfors regular dates back to
Hutchinson, see [Hut]. Also, Olsen [O5] recently gave a direct proof that graph-directed self-similar
sets (more generally, graph-directed Moran constructions) have equal Hausdorff dimension and
Assouad dimension. Corollary 3.8 unifies previous results and demonstrates further that sets with
equal Assouad dimension and lower dimension should display a high degree of homogeneity.

Finally, we remark that Theorem 3.7 is sharp, in that the inequalities in parts (1) and (2)
cannot be replaced with equalities in general. To see this note that the inequality in (1) is sharp
as the unit interval union a single isolated point satisfies condition (1) in the definition of quasi-
self-similar, but has lower dimension strictly less than Hausdorff dimension; and the inequality in
(2) is sharp because self-similar sets which do not satisfy the open set condition can have Assouad
dimension strictly larger than Hausdorff dimension and such sets satisfy condition (2) in the definition
of quasi-self-similar. We will prove this latter fact in Section 3.4.1 by providing an example.

35



3.4 Examples

In this section we give two examples and compute their Assouad and lower dimensions. Each example
is designed to illustrate an important phenomenon.

3.4.1 A self-similar set with overlaps

Self-similar sets with overlaps are currently at the forefront of research on fractals and are notoriously
difficult to deal with. For example, a recent paper of Hochman [Ho] has made a major contribution to
the famous problem of when a ‘dimension drop’ can occur, in particular, when the Hausdorff dimension
of a self-similar subset of the line can be strictly less than the minimum of the similarity dimension
and one. In this section we provide an example of a self-similar set F ⊂ [0, 1] with overlaps for which

dimL F = dimH F = dimB F < dimA F.

This answers a question of Olsen [O5, Question 1.3] which asked if it was possible to find a graph-
directed Moran fractal F with dimB F < dimA F . Self-similar sets are the most commonly studied
class of graph-directed Moran fractals, see [O5] for more details. We also use this example to show
that Assouad dimension can increase under Lipschitz maps and, in particular, projections. Although
this example is slightly incongruous with the material in this chapter, we note that constructing
‘weak tangents’ to sets will be an important technique for us in the coming sections and so we in-
clude this section to give a straightforward example of the power of weak tangents in a simpler setting.

Let α, β, γ ∈ (0, 1) be such that (log β)/(logα) /∈ Q and define similarity maps S1, S2, S3 on
[0, 1] as follows

S1(x) = αx, S2(x) = βx and S3(x) = γx+ (1− γ).

Let F be the self-similar attractor of {S1, S2, S3}. We will now prove that dimA F = 1 and, in
particular, the Assouad dimension is independent of α, β, γ provided they are chosen with the above
property. We will use the following proposition due to Mackay and Tyson, see [MT, Proposition 6.1.5].

Proposition 3.9 (Mackay-Tyson). Let X ⊂ R be compact and let F be a compact subset of X. Let Tk
be a sequence of similarity maps defined on R and suppose that Tk(F )∩X →dH F̂ for some non-empty
compact set F̂ ∈ K(X). Then dimA F̂ 6 dimA F . The set F̂ is called a weak tangent to F .

We will now show that [0, 1] is a weak tangent to F in the above sense. Let X = [0, 1] and assume
without loss of generality that α < β. For each k ∈ N let Tk be defined by

Tk(x) = β−kx.

We will now show that Tk(F ) ∩ [0, 1]→dH [0, 1]. Since

Ek :=
{
αmβn : m ∈ N, n ∈ {−k,−k + 1, . . . ,∞}

}
∩ [0, 1] ⊂ Tk(F ) ∩ [0, 1]

for each k it suffices to show that Ek →dH [0, 1]. Indeed, we have

Ek →dH

⋃
k∈N

Ek ∩ [0, 1]

= {αmβn : m ∈ N, n ∈ Z} ∩ [0, 1]

= [0, 1].

It now follows from Proposition 3.9 that dimA F = 1. To see why {αmβn : m ∈ N, n ∈ Z}∩[0, 1] = [0, 1]
we apply Dirichlet’s Theorem in the following way. It suffices to show that

{m logα+ n log β : m ∈ N, n ∈ Z}
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is dense in (−∞, 0). We have

m logα+ n log β = n logα

(
m

n
+

log β

logα

)
and Dirichlet’s Theorem gives that there exists infinitely many n such that∣∣∣m

n
+

log β

logα

∣∣∣ < 1/n2

for some m, see [Sch, Theorem 1A, Corollary 1B]. Since log β/ logα is irrational, we may choose m,n
to make

0 < |m logα+ n log β| < |logα|
n

with n arbitrarily large, and thus make m logα + n log β arbitrarily small. We can therefore find
arithmetic progressions {εk : k = −1,−2, . . . } ⊂ {m logα + n log β : m ∈ N, n ∈ Z} for arbitrarily
small ε > 0, which gives density and completes the proof.

Clearly we may choose α, β, γ with the desired properties making the similarity dimension
arbitrarily small. In particular, the similarity dimension is the unique solution, s, of

αs + βs + γs = 1

and if we choose α, β, γ such that s < 1, then it follows from Corollary 3.8 (7), the above argument,
and the fact that the similarity dimension is an upperbound for the upper box dimension of any
self-similar set, that

dimL F = dimH F = dimB F 6 s < 1 = dimA F.

We give an example with s ≈ 0.901 below.

Figure 10: The first level iteration and the final attractor for the self-similar set with α = 2−
√

3,
β = 1/2 and γ = 1/10. The tangent structure can be seen emerging around the origin.

The construction in this section has another interesting consequence. Let α, β, γ ∈ (0, 1) be chosen as
before and consider the similarity maps T1, T2, T3 on [0, 1]2 defined as follows

T1(x, y) = (αx, αy), T2(x, y) = (βx, βy) + (0, 1− β) and T3(x) = (γx, γy) + (1− γ, 0)

and let E be the attractor of {T1, T2, T3}. Now if α, β, γ are chosen such that α+β, β+γ, α+γ 6 1 and
with the similarity dimension s < 1, then {T1, T2, T3} satisfies the open set condition and therefore by
Corollary 3.8 (7) the Assouad dimension of E is equal to s defined above. However, note that F is the
projection of E onto the horizontal axis but dimA F > dimAE. This shows that Assouad dimension
can increase under Lipschitz maps. This is already known, see [Lu, Example A.6 2], however, our
example extends this idea in two directions as we show that the Assouad dimension can increase under
Lipschitz maps on Euclidean space and under projections, which are a very restricted class of Lipschitz
maps.
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Figure 11: The set E and its projection F for α = 2−
√

3, β = 1/2 and γ = 1/10.

3.4.2 A self-affine carpet in the mixed class

In this section we will give an example of a self-affine carpet in the mixed class for which
dimL F < dimH F = dimB F = dimA F . This is not possible in the horizontal or vertical classes by
Corollary 3.3 and thus demonstrates that new phenomena can occur in the mixed class. In particular,
the dichotomy seen in Corollary 3.3 does not extend to this case.

For this example we will let {Si}i∈I be an IFS of affine maps corresponding to the shaded
rectangles in Figure 1 below. Here we have divided the unit square horizontally in the ratio 1/5 : 4/5
and vertically into four strips each of height 1/4.

Figure 12: The defining pattern for the IFS (left) and the corresponding attractor (right).

It is easy to see that
dimB π1(F ) = dimB π2(F ) = 1,

dimB Slice1,i(F ) = 0.5 and dimB Slice2,i(F ) = 0

for all i ∈ I and therefore by Theorems 3.1-3.2, we have dimL F = 1 and dimA F = 1.5. Furthermore,
the formulae in [B2] plus a simple calculation gives dimB F = dimH F = 1.5.
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3.5 Open questions and discussion

In this section we will briefly outline what we believe are the key questions for the future and discuss
some of the interesting points raised by the results in this chapter.

There are many natural ways to attempt to generalise our results on the Assouad and lower
dimensions of self-affine sets. Firstly, one could try to compute the dimensions of more general
carpets.

Question 3.10. What is the Assouad dimension and lower dimension of the more general self-affine
carpets considered by Feng and Wang [FeW] and Fraser [Fr1]?

Whilst the classes of self-affine sets considered in [FeW, Fr1] are natural generalisations of the Lalley-
Gatzouras and Barański classes, one notable difference is that there is no obvious analogue of ap-
proximate squares, on which the methods used in this chapter heavily rely. In order to generalise
our results one may need to ‘mimic’ approximate squares in a delicate manner or adopt a different
approach. Perhaps the most interesting direction for generalisation would be to look at arbitrary
self-affine sets in a generic setting.

Question 3.11. Can we say something about the Assouad dimension and lower dimension of self-
affine sets in the generic case in the sense of Falconer, see [F2] and Theorem 1.3, or Jordan-Pollicott-
Simon, see [JPS]?

An interesting consequence of Mackay’s results [M] and Theorem 3.1 is that the Assouad dimension,
unlike the upper box dimension, is not bounded above by the affinity dimension (1.3). Are the
Assouad and lower dimensions almost surely equal? If they are, then this almost sure value must
indeed be the affinity dimension. If they are not almost surely equal, then are they at least almost
surely equal to two different constants?

In the study of fractals one is often concerned with measures supported on sets rather than
sets themselves. Although their definitions depend only on the structure of the set, the Assouad and
lower dimensions have a fascinating link with certain classes of measures. Luukkainen and Saksman
[LuS] (see also [KV]) proved that the Assouad dimension of a compact metric space X is the infimum
of s > 0 such that there exists a locally finite measure µ on X and a constant cs > 0 such that for
any 0 < ρ < 1, x ∈ X and r > 0

µ(B(x, r)) 6 csρ
−sµ(B(x, ρr)). (3.1)

Dually, Bylund and Gudayol [ByG] proved that the lower dimension of a compact metric space X is
the supremum of s > 0 such that there exists a locally finite measure µ on X and a constant ds > 0
such that for any 0 < ρ < 1, x ∈ X and r > 0

µ(B(x, r)) > dsρ
−sµ(B(x, ρr)). (3.2)

As such, our results give the existence of measures supported on self-affine carpets with useful scaling
properties. In particular, if F is a self-affine carpet, then for each s > dimA F there exists a measure
supported on F satisfying (3.1) and for each s < dimL F there exists a measure supported on F
satisfying (3.2). It is natural to ask if ‘sharp’ measures exist.

Question 3.12. Let F be a self-affine carpet. Does there exist a measure supported on F satisfying
(3.1) for s = dimA F and a measure supported on F satisfying (3.2) for s = dimL F?

As mentioned above, it is interesting to examine the relationship between the Assouad and lower
dimensions and the other dimensions discussed here. In particular, for a given class of sets one can
ask what relationships are possible between the dimensions? For example, for Ahlfors regular sets
all the dimensions are necessarily equal. The following table summarises the possible relationships
between the Assouad and lower dimensions and the box dimension for the classes of sets we have been
most interested in.
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Configuration horizontal/vertical class mixed class self-similar class
dimL F = dimB F = dimA F possible possible possible
dimL F = dimB F < dimA F not possible not possible possible
dimL F < dimB F = dimA F not possible possible not possible
dimL F < dimB F < dimA F possible possible not possible

The information presented in this table can be gleaned from Corollary 3.8, Corollary 3.3, Corollary 3.4
and the examples in Sections 3.4.1 and 3.4.2. Interestingly, the configuration dimL F < dimB F =
dimA F is possible for self-affine carpets, but not for self-similar sets (even with overlaps) and the
configuration dimL F = dimB F < dimA F is not possible for self-affine carpets, but is possible
for self-similar sets with overlaps. Roughly speaking, the reason for this is that the non-uniform
scaling present in self-affine carpets allows one to ‘spread’ the set out making certain places easier to
cover and thus making the lower dimension drop and one can use overlaps to ‘pile’ the set up making
certain places harder to cover and thus raising the Assouad dimension. It would be interesting to add
Hausdorff dimension to the above analysis, but there are some configurations for which we have been
unable to determine if they are possible or not.

Question 3.13. Are any of the entries marked with a question mark in the following table possible in
the relevant class of sets? The rest of the entries may be gleaned from Corollary 3.8, Corollary 3.3,
Corollary 3.4 and the examples in Sections 3.4.1 and 3.4.2.

Configuration horizontal/vertical class mixed class self-similar
dimL F = dimH F = dimB F = dimA F possible possible possible
dimL F = dimH F = dimB F < dimA F not possible not possible possible
dimL F = dimH F < dimB F = dimA F not possible ? not possible
dimL F = dimH F < dimB F < dimA F not possible ? not possible
dimL F < dimH F = dimB F = dimA F not possible possible not possible
dimL F < dimH F = dimB F < dimA F not possible ? not possible
dimL F < dimH F < dimB F = dimA F not possible ? not possible
dimL F < dimH F < dimB F < dimA F possible possible not possible

3.6 Proofs

3.6.1 Preliminary results and approximate squares

In this section we will introduce some notation and give some basic technical lemmas. Let F be a
self-affine carpet, which is the attractor of an IFS {Si}i∈I . We will assume that F is not contained
in a horizontal or vertical line, as otherwise it is self-similar and the results are obvious. Write
α1(i) > α2(i) for the singular values of the linear part of the map Si . Note that, for all i ∈ I∗, the
singular values, α1(i) and α2(i), are just the lengths of the sides of the rectangle Si

(
[0, 1]2

)
. Also, let

αmin = min{α2(i) : i ∈ I}

and
αmax = max{α1(i) : i ∈ I}.

A subset I0 ⊂ I∗ is called a stopping if for every i ∈ I∗ either there exists j ∈ I0 such that i ≺ j or
there exists a unique j ∈ I0 such that j ≺ i . An important class of stoppings will be ones where the
members are chosen to have some sort of approximate property in common. In particular, r-stoppings
are stoppings where the smallest sides of the corresponding rectangles are approximately equal to r.
For r ∈ (0, 1] we define the r-stopping, Ir, by

Ir =
{
i ∈ I∗ : α2(i) < r 6 α2(i)

}
.

Note that for i ∈ Ir we have
αmin r 6 α2(i) < r. (3.3)

We will now fix some notation for the dimensions of the various projections and slices we will be
interested in. Let

s1 = dimB π1(F ),
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s2 = dimB π2(F ),

t1 = max
i∈I

dimB Slice1,i(F ),

t2 = max
i∈I

dimB Slice2,i(F ),

u1 = min
i∈I

dimB Slice1,i(F ),

and
u2 = min

i∈I
dimB Slice2,i(F ).

Note that all of these values can be easily computed as they are the dimensions of self-similar sets
satisfying the open set condition. We will be particularly interested in estimating the precise value of
the covering function Nr applied to the projections. It follows immediately from the definition of box
dimension that for all ε > 0 there exists a constant Cε > 1 such that for all r ∈ (0, 1] we have

1
Cε
r−s1+ε 6 Nr(π1F ) 6 Cε r

−s1−ε (3.4)

and
1
Cε
r−s2+ε 6 Nr(π2F ) 6 Cε r

−s2−ε. (3.5)

Since the basic rectangles in the construction of F often become very long and thin, they do not
provide ‘natural’ covers for F , unlike in the self-similar setting. For this reason, we need to introduce
approximate squares, which are now a standard concept in the study of self-affine carpets. The basic
idea is to group together the construction rectangles into collections that look roughly like a square.
Let i ∈ IN and r > 0. Let k1(i , r) equal the unique number k ∈ N such that

ci |k+1
< r 6 ci |k

and k2(i , r) equal the unique number k ∈ N such that

di |k+1
< r 6 di |k .

Finally, we define the approximate square Q(i , r) ‘centred’ at Π(i), with ‘radius’ r in the following
way. If k1(i , r) < k2(i , r), then

Q(i , r) = Si |k1(i,r)

(
[0, 1]2

)
∩
{
x ∈ [0, 1]2 : π1(x) ∈ π1

(
Si |k2(i,r)

(
[0, 1]2

))}
,

if k1(i , r) > k2(i , r), then

Q(i , r) = Si |k2(i,r)

(
[0, 1]2

)
∩
{
x ∈ [0, 1]2 : π2(x) ∈ π2

(
Si |k1(i,r)

(
[0, 1]2

))}
,

and if k1(i , r) = k2(i , r) = k, then
Q(i , r) = Si |k

(
[0, 1]2

)
.

We will write
IQ(i ,r) =

{
j ∈ Imax{k1(i ,r), k2(i ,r)} : Sj (F ) ⊆ Q(i , r)

}
.

The following lemma gives some of the basic properties of approximate squares.

Lemma 3.14. Let i ∈ IN and r > 0.

(1) If k1(i, r) > k2(i, r), then for j ∈ IQ(i,r) we have

r 6 cj 6 c−1
max r.

(2) If k1(i, r) 6 k2(i, r), then for j ∈ IQ(i,r) we have

r 6 dj 6 d−1
max r.
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(3) The approximate square Q(i, r) is a rectangle with sides parallel to the coordinate axes and
with base length in the interval [r, c−1

max r] and height in the interval [r, d−1
max r], so is indeed

approximately a square.

(4) We have

Q(i, r) ⊂ B
(
Π(i),

√
2α−1

min r
)
.

(5) For any x ∈ F , the ball B(x, r) can be covered by at most 9 approximate squares of radius r and
the constant 9 is sharp.

Proof. These facts follow immediately from the definition of approximate squares and are omitted.

Note that (4) and (5) together imply that we may replace Nr(B(x,R)) with Nr(Q(i , R)) in the
definitions of Assouad and lower dimension. Barański [B2] defined the numbers DA and DB to be the
unique real numbers satisfying∑

i∈I
cs1i d

DA−s1
i = 1 and

∑
i∈I

ds2i c
DB−s2
i = 1

respectively. He then proved that dimB F = max{DA, DB}. The following lemma relates the numbers
DA and DB to the numbers s1, s2, u1, u2, t1 and t2.

Lemma 3.15. We have
s1 + u1 6 DA 6 s1 + t1

and
s2 + u2 6 DB 6 s2 + t2.

Proof. We will prove that s1 + u1 6 DA. The other inequalities are proved similarly. Suppose that
DA < s1 + u1. Write m and n for the number of non-empty columns and rows respectively, counting
columns from the left and rows from the bottom, and for i ∈ {1, . . . ,m} write

Ci = {j ∈ I : Sj([0, 1]2) is found in the ith non-empty column of the defining pattern}

and for i ∈ {1, . . . , n} write

Ri = {j ∈ I : Sj([0, 1]2) is found in the ith non-empty row of the defining pattern}.

A useful consequence of splitting I up into columns and rows is that if i, j are in the same column,
then ci = cj and if i, j are in the same row, then di = dj . As such, for i ∈ {1, . . . ,m} we will write ĉi
for the common base length in the ith column and for i ∈ {1, . . . , n} we will write d̂i for the common
height in the ith row. We have

1 =
∑
i∈I

cs1i d
DA−s1
i >

∑
i∈I

cs1i d
s1+u1−s1
i =

m∑
i=1

ĉs1i
∑
j∈Ci

du1
j >

m∑
i=1

ĉs1i = 1

which is a contradiction.

Lemma 3.16. Let I0 be a stopping. Then∑
i∈I0

cs1i d
DA−s1
i =

∑
i∈I0

ds2i c
DB−s2
i = 1

Proof. This follows immediately from the definitions of DA and DB .

Let r > 0 and i = (i1, i2, . . . ) ∈ IN. We call I0 ⊂ I∗ a Q(i , r)-pseudo stopping if the following
conditions are satisfied.

(1) For each j ∈ I0, we have imin{k1(i ,r),k2(i ,r)} ≺ j ,

(2) For each j ∈ I0, we have |j | 6 max{k1(i , r), k2(i , r)},
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(3) For every i ′ ∈ Imax{k1(i ,r),k1(i ,r)} there exists a unique j ∈ I0 such that j ≺ i ′.

The important feature of a Q(i , r)-pseudo stopping, I0, is that the sets {Sj ([0, 1]2)}j∈I0 intersect
the approximate square Q(i , r) in such a way as to induce natural IFSs of similarities on [0, 1]. For
instance, if max{k1(i , r), k2(i , r)} = k1(i , r), then each of the base lengths of the sets {Sj ([0, 1]2)}j∈I0
are greater than or equal to the base length of the approximate square. We then focus on the vertical
lengths and, after scaling these up by the height of Q(i , r), use these as similarity ratios for a set of 1-
dimensional contractions on [0, 1]. It is easy to see that in this ‘vertical case’, the similarity dimension
of the induced IFS lies in the interval [u1, t1]. This trick is illustrated in the following lemma and will
be used frequently in the subsequent proofs.

Lemma 3.17. Let r > 0, i ∈ IN and let I0 be a Q(i, r)-pseudo stopping and assume that k1(i, r) >
k2(i, r). Then, for any t > t1, we have ∑

j∈I0

(dj/r)
t 6 d−tmin

and for any u 6 u1, we have ∑
j∈I0

(dj/r)
u > 1.

Proof. This proof is straightforward and we will only sketch it. Let t > t1 and let k1 = k1(i , r) >
k2(i , r) = k2. We have∑

j∈I0

(dj /r)
t =

∑
j∈I0

(di1 . . . djk2/r)
t (djk2+1

. . . djk1 )t

6 d−tmin

∑
j∈I0

(djk2+1
. . . djk1 )t by Lemma 3.14 (2)

6 d−tmin

since viewing the (djk2+1
. . . djk1 ) as contraction ratios of a 1-dimensional IFS of similarities and noting

that this IFS has similarity dimension less than or equal to t1, yields∑
i∈I0

(djk2+1
. . . djk1 )t 6 1.

The second estimate is similar. For u 6 u1, we have∑
j∈I0

(dj /r)
u =

∑
j∈I0

(dj1 . . . djk2 /r)
u (djk2+1

. . . djk1 )u

>
∑
i∈I0

(djk2+1
. . . djk1 )u by Lemma 3.14 (2)

> 1

since viewing the (djk2+1
. . . djk1 ) as contraction ratios of a 1-dimensional IFS of similarities and noting

that this IFS has similarity dimension greater than or equal to u1, yields∑
j∈I0

(djk2+1
. . . djk1 )u > 1.

This completes the proof.

Note that there are obvious analogues of the above Lemma in the case k1(i , r) < k2(i , r), but
we omit them here. Two natural examples of Q(i , r)-pseudo stoppings are the ‘extreme cases’
{i |min{k1(i ,r), k2(i ,r)}} and IQ(i ,r). We give an example of an intermediate Q(i , r)-pseudo stopping
in the following figure.
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Figure 13: A binary tree giving a graphical representation of a pseudo stopping, I0, with black dots
representing the elements of the pseudo stopping (left) and an indication of how the grey rectangles
{Sj ([0, 1]2)}j∈I0 intersect the approximate square Q(i , r) (right).

3.6.2 Proof of Theorem 3.1 for the mixed class

Upper bound. The key to proving the upper bound for dimA F is to find the appropriate way to
cover approximate squares. Fix i ′ ∈ IN, R > 0 and r ∈ (0, R) and consider the approximate square
Q(i ′, R). Without loss of generality assume that k1(i ′, R) > k2(i ′, R) and to simplify notation let
k = k1(i ′, R). Furthermore we may assume that there exists j1, j2 ∈ I such that cj1 > dj1 and
cj2 < dj2 as otherwise we are in the horizontal or vertical class, which will be dealt with in Section
3.6.3. Let s = maxi∈I maxj=1,2

(
dimB πj(F ) + dimB Slicej,i(F )

)
. It suffices to prove that for all

ε ∈ (0, 1), there exists a constant C(ε) such that

Nr

(
Q(i ′, R) ∩ F

)
6 C(ε)

(
R

r

)s+ε
.

Let ε ∈ (0, 1). Writing
IQ = IQ(i ′,R) =

{
j ∈ Ik : Sj (F ) ⊆ Q(i ′, R)

}
,

we first split the approximate square Q(i ′, R) up as

Q(i ′, R) ∩ F =
⋃

i∈IQ

Si (F ).

Secondly, we group together the sets Si (F ) for which di < r and cover their union separately. Within
the other sets, Si (F ), we iterate the IFS until one side of the rectangle Sij

(
[0, 1]2

)
⊇ Sij (F ) is smaller

than r. This is reminiscent of the techniques used in Chapter 2. We then cover each of the resulting
copies of F individually. This is especially convenient because covering the part of F which lies in
such a rectangle by sets of radius r is equivalent to covering a scaled down copy of the projection of
F onto either the horizontal or vertical axis. Finally, we split the sets Sij (F ) which we are covering
individually into two groups according to whether the short side of Sij

(
[0, 1]2

)
is vertical or horizontal.

We have

Nr

(
Q(i ′, R) ∩ F

)
6 Nr

( ⋃
i∈IQ:

di<r

Si (F )

)
+

∑
i∈IQ:

di>r

∑
j∈I∗:
ij∈Ir

Nr

(
Sij (F )

)

6 Nr

( ⋃
i∈IQ:

di<r

Si (F )

)

44



+
∑
i∈IQ:

di>r

∑
j∈I∗:
ij∈Ir,

α2(ij )=dij

Nr

(
Sij (F )

)
+
∑
i∈IQ
di>r

∑
j∈I∗:
ij∈Ir,

α2(ij )=cij

Nr

(
Sij (F )

)

= Nr

( ⋃
i∈IQ:

di<r

Si (F )

)

+
∑
i∈IQ:

di>r

∑
j∈I∗:
ij∈Ir,

α2(ij )=dij

Nr/cij
(
π1(F )

)
+

∑
i∈IQ:

di>r

∑
j∈I∗:
ij∈Ir,

α2(ij )=cij

Nr/dij
(
π2(F )

)

Now that we have established a natural way to cover Q(i ′, R), we need to show that this yields the
correct estimates. We will analyse each of the three above terms separately. Write

I<rQ =
{
i ∈ IQ : di < r

}
.

For the first term, we have

Nr

( ⋃
i∈IQ:

di<r

Si (F )

)
= Nr

( ⋃
i∈I<rQ

Si (F )

)

= Nr

( ⋃
j∈Ir:

∃i∈I<rQ , j≺i

Sj (F ) ∩Q(i ′, R)

)

6
∑
j∈Ir:

∃i∈I<rQ , j≺i

Nr

(
Sj (F ) ∩Q(i ′, R)

)

=
∑
j∈Ir:

∃i∈I<rQ , j≺i

Nr/cj
(
π1(F )

)

6
∑
j∈Ir:

∃i∈I<rQ , j≺i

Cε

(
cj
r

)s1+ε

by (3.4)

6 Cε c
−2
max

(
R

r

)s1+t1+ε ∑
j∈Ir:

∃i∈I<rQ , j≺i

(r/R)t1 by Lemma 3.14(1)

6 Cε c
−2
max α

−1
min

(
R

r

)s1+t1+ε ∑
j∈Ir:

∃i∈I<rQ , j≺i

(dj /R)t1 by (3.3)

6 Cε c
−2
max α

−1
min d

−t1
min

(
R

r

)s1+t1+ε
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by Lemma 3.17 since {j ∈ Ir : there exists i ∈ I<rQ such that j ≺ i} is clearly contained in some

Q(i ′, R)-pseudo stopping. For the second term, by (3.4), we have∑
i∈IQ:

di>r

∑
j∈I∗:
ij∈Ir,

α2(ij )=dij

Nr/cij
(
π1(F )

)
6

∑
i∈IQ:

di>r

∑
j∈I∗:
ij∈Ir,

α2(ij )=dij

Cε

(cicj
r

)s1+ε

6 Cε

(
1

r

)s1+ε ∑
i∈IQ:

di>r

cs1+ε
i

∑
j∈I∗:
ij∈Ir,

α2(ij )=dij

cs1j

6 Cε

(
1

r

)s1+ε ∑
i∈IQ:

di>r

(c−1
maxR)s1+ε

∑
j∈I∗:
ij∈Ir,

α2(ij )=dij

cs1j

(
di dj r

−1 α−1
min

)t1

by Lemma 3.14(1) and (3.3)

6 Cε c
−2
max α

−1
min

(
R

r

)s1+ε(
1

r

)t1 ∑
i∈IQ:

di>r

dt1i

∑
j∈I∗:
ij∈Ir,

α2(ij )=dij

cs1j dt1j

6 Cε c
−2
max α

−1
min

(
R

r

)s1+t1+ε ∑
i∈IQ

(di/R)t1
∑
j∈I∗:
ij∈Ir

cs1j dDA−s1j

by Lemma 3.15

6 Cε c
−2
max α

−1
min

(
R

r

)s1+t1+ε ∑
i∈IQ

(di/R)t1 by Lemma 3.16

6 Cε c
−2
max α

−1
min d

−t1
min

(
R

r

)s1+t1+ε

by Lemma 3.17 since IQ is a Q(i ′, R)-pseudo stopping. Finally, for the third term, by (3.5), we have∑
i∈IQ:

di>r

∑
j∈I∗:
ij∈Ir,

α2(ij )=cij

Nr/dij
(
π2(F )

)
6

∑
i∈IQ

∑
j∈I∗:
ij∈Ir,

α2(ij )=cij

Cε

(didj
r

)s2+ε

6 Cε

(
1

r

)s2+ε ∑
i∈IQ

ds2+ε
i

∑
j∈I∗:
ij∈Ir,

α2(ij )=cij

ds2j

6 Cε

(
1

r

)s2+ε ∑
i∈IQ

ds2+ε
i

∑
j∈I∗:
ij∈Ir,

α2(ij )=cij

ds2j

(
cj ci r

−1 α−1
min

)t2
by (3.3)
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= Cε α
−1
min

(
1

r

)s2+ε(
1

r

)t2 ∑
i∈IQ

ds2+ε
i ct2i

∑
j∈I∗:
ij∈Ir,

α2(ij )=cij

ds2j ct2j

6 Cε α
−1
min

(
1

r

)s2+t2+ε

Rs2+ε
∑
i∈IQ

(di/R)s2 (c−1
maxR)t2

∑
j∈I∗:
ij∈Ir

ds2j cDB−s2j

by Lemma 3.14 (1) and Lemma 3.15

6 Cε c
−2
max α

−1
min

(
R

r

)s2+t2+ε ∑
i∈IQ

(di/R)s2 by Lemma 3.16

6 Cε c
−2
max α

−1
min d

−s2
min

(
R

r

)s2+t2+ε

by Lemma 3.17 since IQ is a Q(i ′, R)-pseudo stopping and s2 > t1. Since both s1 + t1 and s2 + t2 are
less than or equal to s, combining the above estimates for the three terms appearing in the natural
cover for Q(i ′, R) which were introduced at the beginning of the proof yields

Nr

(
Q(i ′, R) ∩ F

)
6 3Cε c

−2
max α

−1
min d

−1
min

(
R

r

)s+ε
which upon letting ε→ 0 gives the desired upper bound.

Lower bound. The proof of the lower bound will employ some of the techniques used in
Mackay [M]. In particular, we will construct weak tangents with the desired dimension. Weak
tangents were used in Section 3.4.1 to find a lower bound for the dimension of a self-similar set with
overlaps. Here we require the 2 dimensional version, which also follows from [MT, Proposition 6.1.5],
which we state here for the benefit of the reader.

Proposition 3.18 (Mackay-Tyson). Let X ⊂ R2 be compact and let F be a compact subset of X.
Let Tk be a sequence of similarity maps defined on R2 and suppose that Tk(F ) ∩ X →dH F̂ . Then
dimA F̂ 6 dimA F .

The set F̂ in the above lemma is called a weak tangent to F . We are now ready to prove the lower
bound.

Proof. Let F be a self-affine set in the mixed class. Without loss of generality we may assume that

max
i∈I

max
j=1,2

(
dimB πj(F ) + dimB Slicej,i(F )

)
= dimB π1(F ) + Slice1,i(F )

for some i ∈ I which we now fix. Also fix j ∈ I with cj > dj which we may assume exists as otherwise
we are in the horizontal or vertical class, which will be dealt with in the following section. Let k ∈ N,
let

i(k) = (j, j, . . . , j︸ ︷︷ ︸
k times

, i, i, . . . ) ∈ IN

and let X = [0, c−1
i ] × [0, 1]. We will consider the sequence of approximate squares {Q(i(k), dkj )}k.

Note that for k ∈ N, we have k2(i(k), dkj ) = k and let k1(i(k), dkj ) = k + l(k) for l(k) ∈ N satisfying

ckj c
l(k)+1
i < dkj 6 ckj c

l(k)
i .

For each k ∈ N, let Tk be the unique homothetic similarity on R2 with similarity ratio d−kj which

maps the approximate square Q(i(k), dkj ) to [0, d−kj cki c
l(k)
j ]× [0, 1] ⊆ X, mapping the left vertical side
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of Q(i(k), dkj ) to {0} × [0, 1].

Note that we may take a subsequence of the Tk such that d−kj cki c
l(k)
j → 1. To see this ob-

serve that if log(dj/cj)/(log ci) ∈ Q, then there exists a subsequence where d−kj cki c
l(k)
j = 1 for all

k and if log(dj/cj)/(log ci) /∈ Q, then the d−kj cki c
l(k)
j are uniformly distributed on (1, c−1

i ). Using

this and the fact that
(
K(X), dH

)
is compact, we may extract a subsequence of the Tk for which

Tk(F ) ∩X converges to a weak tangent F̂ ⊆ X and d−kj cki c
l(k)
j → 1.

Lemma 3.19. The weak tangent F̂ constructed above contains the set π1(F )× π2

(
Slice1,i(F )

)
.

Proof. It suffices to show that Tk
(
Q(i(k), dkj )∩F

)
converges to π1(F )×π2

(
Slice1,i(F )

)
in the Hausdorff

metric. The IFS I induces an IFS of similarities on the vertical slice through Π(i) (which is the
fixed point of Si). It is easy to see that the attractor of this IFS is isometric to Slice1,i(F ). Let
Ek denote the l(k)th level in the construction of Slice1,i(F ) via the induced IFS. We claim that

the set Tk
(
Q(i(k), dkj ) ∩ F

)
will never be further away than d−kj cki c

l(k)
j − 1 + d

l(k)
max from the set

π1(F ) × π2(Ek) in the Hausdorff metric. To see this observe that if we scale Tk
(
Q(i(k), ckj ) ∩ F

)
horizontally by dkj c

−k
i c
−l(k)
j it becomes a set, π1(F )×Hk for some set Hk ⊆ π2(Ek) with the property

that Hk intersects every basic interval in π2(Ek). Since each basic interval in π2(Ek) has length no

greater than d
l(k)
max we have that π1(F )×π2(Ek) is contained in the d

l(k)
max neighbourhood of π1(F )×Hk.

Hence

dH

(
Tk
(
Q(i(k), dkj ) ∩ F

)
, π1(F )× π2(Ek)

)
6 dH

(
Tk
(
Q(i(k), dkj ) ∩ F

))
, π1(F )×Hk

)
+ dH

(
π1(F )×Hk, π1(F )× π2(Ek)

)
6 d−kj cki c

l(k)
j − 1 + dl(k)

max.

It follows from the claim that

dH

(
Tk
(
Q(i(k), dkj ) ∩ F

)
, π1(F )× π2

(
Slicej(F )

))
6 dH

(
Tk
(
Q(i(k), dkj ) ∩ F

)
, π1(F )× π2(Ek)

)
+ dH

(
π1(F )× π2(Ek), π1(F )× π2

(
Slicej(F )

))
6

(
d−kj cki c

l(k)
j − 1 + dl(k)

max

)
+ dl(k)

max

→ 0

as k →∞, since

l(k) > k
log(dj/cj)

log ci
− 1→∞ and d−kj cki c

l(k)
j → 1

which completes the proof of Lemma 3.19.

We can now complete the proof of the lower bound by estimating the Assouad dimension of F from
below, using the fact that F̂ is a product of two self-similar sets.

dimB π1(F ) + dimB Slice1,i(F ) = dimB

(
π1(F )× π2

(
Slice1,i(F )

))
6 dimB F̂ by Lemma 3.19

6 dimA F̂ 6 dimA F

by Proposition 3.18.
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3.6.3 Proof of Theorem 3.1 for the horizontal and vertical classes

This is similar to the proof in the mixed case and so we only briefly discuss it.

Upper bound. We break up Nr
(
Q(i , R) ∩ F

)
in the same way except in this case we may

omit either the second or the third term as the smallest singular value always corresponds to either
the vertical contraction (in the horizontal class) or the horizontal contraction (in the vertical class).
The rest of the proof proceeds in the same way.

Lower bound. One can construct a weak tangent with the required dimension. The key dif-
ference to Mackay’s argument [M] is that, since we may be in the extended Lalley-Gatzouras case,
we may not be able to fix a map at the beginning to ‘follow into the construction’. Either one can
iterate the IFS to find a genuinely affine map which one can ‘follow in’ to find a weak tangent with
dimension arbitrarily close to the required dimension, or one can follow our proof in the previous
section and choose a genuinely affine map for the first k stages and then switch to a map in the
correct column.

3.6.4 Proof of Theorem 3.2 for the mixed class

Upper bound. Since lower dimension is a natural dual to Assouad dimension and tends to ‘mirror’
the Assouad dimension in many ways, one might expect, given that weak tangents provide a very
natural way to find lower bounds for Assouad dimension, that weak tangents might provide a way
of giving upper bounds for lower dimension. In particular, in light of Proposition 3.18, one might
näıvely expect the following statement to be true:

“Let X ⊂ R2 be compact and let F be a compact subset of X. Let Tk be a sequence of simi-
larity maps defined on R2 and suppose that Tk(F ) ∩X →dH F̂ . Then dimL F̂ > dimL F .”

However, it is easy to see that this is false as one can often find weak tangents with isolated
points, and hence lower dimension equal to zero, even if the original set has positive lower dimension.
However, we will now state and prove what we believe is the natural analogue of Proposition 3.18
for the lower dimension. Note that we also give a slight strengthening of Proposition 3.18 in that we
relax the conditions on the maps {Tk} from similarity maps to certain classes of bi-Lipschitz maps.
This change is specifically designed to deal with the lower dimension because we can now make the
weak tangent precisely equal to the limit of scaled versions of approximate squares. This is necessary
because lower dimension is not monotone and so an analogue of Lemma 3.19 would not suffice.
We include the statement for Assouad dimension for completeness. The key feature for the lower
dimension result is the existence of a constant θ ∈ (0, 1] with the properties described below. This is
required to prevent the unwanted introduction of isolated points or indeed any points around which
the set is inappropriately easy to cover. We call the ‘tangents’ described in the following proposition
very weak tangents.

Proposition 3.20 (very weak tangents). Let X ⊂ Rn be compact and let F be a compact subset of
X. Let Tk be a sequence of bi-Lipschitz maps defined on Rn with Lipschitz constants ak, bk > 1 such
that

ak|x− y| 6 |Tk(x)− Tk(y)| 6 bk|x− y| (x, y ∈ Rn)

and
sup
k

bk/ak = C0 < ∞

and suppose that Tk(F ) ∩X →dH F̂ . Then

dimA F̂ 6 dimA F.

If, in addition, there exists a uniform constant θ ∈ (0, 1] such that for all r ∈ (0, 1] and x̂ ∈ F̂ , there
exists ŷ ∈ F̂ such that B(ŷ, rθ) ⊆ B(x̂, r) ∩X; then

dimL F 6 dimL F̂ 6 dimA F̂ 6 dimA F.
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Proof. Let F ⊆ X be a compact set and assume that dimL F > 0. If dimL F = 0, then the lower
estimate is trivial. Let F̂ be a very weak tangent to F , as described above, and let α, β ∈ (0,∞) with
α < dimL F 6 dimA F < β. It follows from the fact that the Tk are bi-Lipschitz maps with Lipschitz
constants bk > ak > 1 satisfying supk bk/ak = C0 < ∞ that there exists uniform constants
C1, C2, ρ > 0 such that for all k ∈ N, all 0 < r < R 6 ρ and all x ∈ Tk(F ) we have

C1 C
−α
0

(
R

r

)α
6 Nr

(
B(x,R) ∩ Tk(F )

)
6 C2 C

β
0

(
R

r

)β
.

Fix 0 < r < R 6 ρ and fix x̂ ∈ F̂ . Choose k ∈ N such that dH(Tk(F ) ∩ X, F̂ ) < r/2. It follows
that there exists x ∈ Tk(F ) ∩X such that B(x̂, R) ∩ F̂ ⊆ B(x, 2R) and hence, given any r/2-cover of
B(x, 2R) ∩ Tk(F ), we may find an r-cover of B(x̂, R) ∩ F̂ by the same number of sets. Thus

Nr
(
B(x̂, R) ∩ F̂

)
6 Nr/2

(
B(x, 2R) ∩ Tk(F )

)
6 C2 C

β
0

(
2R

r/2

)β
= C2 C

β
0 4β

(
R

r

)β
which proves that dimA F̂ 6 dimA F .

For the lower estimate assume that there exists θ ∈ (0, 1] satisfying the above property and
fix x̂ ∈ F̂ . We may thus find ŷ ∈ F̂ such that B(ŷ, Rθ) ⊆ B(x̂, R) ∩ X. Choose k ∈ N such
that dH(Tk(F ) ∩ X, F̂ ) < min{r/2, Rθ/2}. It follows that there exists y ∈ Tk(F ) ∩ X such that
B(y,Rθ/2) ⊆ B(ŷ, Rθ) ⊆ B(x̂, R) ∩X and hence, given any r-cover of B(x̂, R) ∩ F̂ , we may find an
2r-cover of B(y,Rθ/2) ∩ Tk(F ) ∩X = B(y,Rθ/2) ∩ Tk(F ) by the same number of sets. Thus

Nr
(
B(x̂, R) ∩ F̂

)
> N2r

(
B(y,Rθ/2) ∩ Tk(F )

)
> C1 C

−α
0

(
Rθ/2

2r

)α
= C1 C

−α
0 (θ/4)α

(
R

r

)α
which proves that dimL F̂ > dimL F .

We will now turn to the proof of Theorem 3.2. Let F be a self-affine set in the mixed class. Without
loss of generality we may assume that

min
i∈I

min
j=1,2

(
dimB πj(F ) + dimB Slicej,i(F )

)
= dimB π1(F ) + Slice1,i(F )

for some i ∈ I which we now fix. Also assume that the column in the construction pattern which
contains the rectangle corresponding to i contains at least one other rectangle. Why we assume this
will become clear during the proof and we will deal with the other case afterwards. Now fix j ∈ I
with cj > dj which we may assume exists as otherwise we are in the horizontal or vertical class, which
will be dealt with in the following section. Let k ∈ N and let

i(k) = (j, j, . . . , j︸ ︷︷ ︸
k times

, i, i, . . . ) ∈ IN

and let X = [0, 1]2. We will consider the sequence of approximate squares {Q(i(k), dkj )}k. For each

k ∈ N, let Tk be the unique linear bi-Lipschitz map on R2 which maps the approximate square
Q(i(k), dkj ) to X, mapping the left vertical side of Q(i(k), dkj ) to {0} × [0, 1] and the bottom side

of Q(i(k), dkj ) to [0, 1] × {0}. Note that this sequence of maps {Tk} satisfies the requirements of

Proposition 3.20 with C0 = α−1
min, say. Since

(
K(X), dH

)
is compact, we may extract a subsequence

of the Tk for which Tk(F ) ∩X converges to a very weak tangent F̂ ⊆ X.

Lemma 3.21. The very weak tangent, F̂ , constructed above is equal to π1(F )× π2

(
Slice1,i(F )

)
and,

furthermore, there exists θ ∈ (0, 1] with the desired property from Proposition 3.20.

Proof. To show that F̂ = π1(F )×π2

(
Slice1,i(F )

)
, it suffices to show that Tk

(
Q(i(k), dkj )∩F

)
converges

to π1(F )× π2

(
Slice1,i(F )

)
in the Hausdorff metric. This follows by a virtually identical argument to

that used in the proof of Lemma 3.19 and is therefore omitted. It remains to show that there exists
θ ∈ (0, 1] such that for all r ∈ (0, 1] and x̂ ∈ F̂ , there exists ŷ ∈ F̂ such that B(ŷ, rθ) ⊆ B(x̂, r) ∩X.
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We will first prove that the one dimensional analogue of this property holds for self-similar subsets
of [0, 1]. In particular, let E ⊆ [0, 1] be the self-similar attractor of an IFS consisting of N > 2
homothetic similarities with similarity ratios {c1, . . . , cN} ordered from left to right by translation
vector and write cmin for the smallest contraction ratio. We will prove that there exists θ ∈ (0, 1] such
that for all r ∈ (0, 1] and x ∈ E, there exists y ∈ E such that B(y, rθ) ⊆ B(x, r)∩ [0, 1]. If E ⊆ (0, 1),
then we may choose θ = infx∈E,y=0,1|x− y| > 0 and then for any x ∈ E, we may choose y = x. Thus
we assume without loss of generality that 0 ∈ E and so c1 is the contraction ratio of a map which fixes
0. Also, write z = supx∈E |x|. It suffices to prove the result in the case x = 0 and r ∈ (0, z]. Observe
that ck1z ∈ E for all k ∈ N0 and let

k = min
{
l ∈ N0 : cl1z < r(1− cmin)

}
,

y = ck1z ∈ E and θ = cmin(1− cmin). To see that this choice of y and θ works, observe that

y + θr = ck1z + cmin(1− cmin)r < r(1− cmin) + cminr = r

and

y − θr = ck1z − cmin(1− cmin)r > c1r(1− cmin)− cmin(1− cmin)r > r(1− cmin)(c1 − cmin) > 0

and so B(y, rθ) ⊆ B(x, r) ∩ [0, 1] = [0, r). Finally, observe that our set F̂ is the product of two self-
similar sets, E1 and E2, of the above form with constants θ1 and θ2 giving the desired one dimensional
property. Now let r ∈ (0, 1] and x̂ = (x1, x2) ∈ F̂ = E1 × E2. By the above argument, there exists
y1 ∈ E1 and y2 ∈ E2 such that B(y1, rθ1) ⊆ B(x1, r)∩ [0, 1] and B(y2, rθ2) ⊆ B(x2, r)∩ [0, 1]. Setting
ŷ = (y1, y2) ∈ F̂ , it follows that B

(
ŷ, rmin(θ1, θ2)

)
⊆ B(x̂, r) ∩ [0, 1]2, which completes the proof.

We can now complete the proof of the upper bound by estimating the lower dimension of F from
above using the fact that F̂ is a very weak tangent to F and is the product of two self-similar sets.
We have

dimB π1(F ) + dimB Slice1,i(F ) = dimB

(
π1(F )× π2

(
Slice1,i(F )

))
= dimB F̂ by Lemma 3.21

> dimL F̂ > dimL F

by Proposition 3.20. Finally, we have to deal with the case where i corresponds to a rectangle which
is alone in some column in the construction. In this case we can construct a very weak tangent to F
as above, but we may not be able to find a constant θ with the desired properties. In particular, if
the rectangle corresponding to i is at the top or bottom of the column, then the very weak tangent
will lie on the boundary of X. However, this problem is easily overcome. Let ε > 0 and note that
by iterating the IFS we may produce a new IFS, corresponding to I ′, with the same attractor which
has some i′ ∈ I ′ for which dimB π1(F ) + Slice1,i′(F ) < dimB π1(F ) + Slice1,i(F ) + ε and does not
correspond to a rectangle which is in a column by itself. We can then construct a very weak tangent
to F in the above manner with dimension ε-close to the desired dimension which is sufficient to
complete the proof of the upper bound.

Lower bound. The following proof is in the same spirit as the proof of the upper bound in
Theorem 3.1. Fix i ′ ∈ IN, R > 0 and r ∈ (0, R) and as before we will consider the approximate
square Q(i ′, R). Without loss of generality assume that k1(i ′, R) > k2(i ′, R) and let k = k1(i ′, R).
Furthermore we may assume that there exists j1, j2 ∈ I such that cj1 > dj1 and cj2 < dj2 as otherwise
we are not in the mixed class. Let

s = min
i∈I

min
j=1,2

(
dimB πj(F ) + dimB Slicej,i(F )

)
.

It suffices to prove that, for all ε ∈ (0, 1), there exists a constant C(ε) such that

Nr

(
Q(i ′, R) ∩ F

)
> C(ε)

(
R

r

)s−ε
.
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Let ε ∈ (0, 1). As before, writing

IQ = IQ(i ′,R) =
{
j ∈ Ik : Sj (F ) ⊆ Q(i ′, R)

}
,

and
I<rQ =

{
i ∈ IQ : di < r

}
,

we have

Nr

(
Q(i ′, R) ∩ F

)
= Nr

( ⋃
i∈I<rQ

Si (F ) ∪
⋃

i∈IQ:

di>r

Si (F )

)
.

At this point in the proof of the upper bound in Theorem 3.1, we iterated the IFS within each of the
sets {Si (F ) : i ∈ IQ s.t. di > r} to decompose F into small ‘rectangular parts’ with smallest side
comparable to r. If we proceed in this way here, then the ‘third term’ causes problems. In particular,
we end up with a term containing ∑

i∈IQ

(di/R)s2−ε

which we wish to bound from below, but cannot as s2 − ε may be too large. This problem does not
occur in the proof of the upper bound in Theorem 3.1 as the term∑

i∈IQ

(di/R)s2+ε

can be bounded from above. This was a surprising and interesting complication. To overcome this
we need to engineer it so that the third term disappears. As such we will iterate only using maps Si

which have ci > di . Fortunately we are able to do this by introducing a new IFS {Si}i∈Iε with the
properties outlined in the following lemma.

Lemma 3.22. There exists an IFS {Si}i∈Iε of affine maps on [0, 1]2 with attractor Fε which has the
following properties:

(1) Fε is of ‘horizontal type’, i.e., ci > di for all i ∈ Iε,

(2) Iε is a subset of some stopping I ′ created from the original IFS,

(3) Fε is a subset of F and is such that dimB Fε > s1 + u1 − ε.

Proof. Let
I0 = {i ∈ I∗ : ci > di and @j ≺ i s.t. j 6= i and cj > dj }

and let
Ik = {i ∈ I0 : |i | 6 k}.

It is clear that Ik satisfies properties (1) and (2) and that k can be chosen large enough to ensure
that property (3) is satisfied.

We treat Iε like I and write (Iε)∗ =
⋃
k>1(Iε)k to denote the set of all finite sequences with entries

in Iε and
αε,min = min{α2(i) : i ∈ Iε} > 0,

which clearly depends on ε. We have

Nr

(
Q(i ′, R) ∩ F

)
= Nr

( ⋃
j∈Ir:

∃i∈I<rQ ,

j≺i

(
Sj (F ) ∩Q(i ′, R)

)
∪

⋃
i∈IQ:

di>r

⋃
j∈(Iε)∗:

α2(ij )<r6α2(i j )

Sij (F )

)
.
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Let U be any r × r closed square with sides parallel to the coordinate axes and let

Mε = min{n ∈ N : n > α−1
ε,min + 2}.

Observe that each of the sets Sj (F ) ∩Q(i ′, R) and Sij (F ) inside the above unions lies in a rectangle
whose smallest side is of length at least αε,minr and the interiors of these rectangles are pairwise
disjoint. It follows from this that U can intersect no more than M2

ε of the sets Sj (F ) ∩Q(i ′, R) and
Sij (F ). Hence, using the r-grid definition of Nr,

M2
ε Nr

(
Q(i ′, R) ∩ F

)
>

∑
j∈Ir:

∃i∈I<rQ ,

j≺i

Nr

(
Sj (F ) ∩Q(i ′, R)

)
+

∑
i∈IQ:

di>r

∑
j∈(Iε)∗:

α2(ij )<r6α2(i j )

Nr

(
Sij (F )

)

>
∑
j∈Ir:

∃i∈I<rQ ,

j≺i

Nr/cj (π1(F )) +
∑
i∈IQ:

di>r

∑
j∈(Iε)∗:

α2(ij )<r6α2(i j )

Nr/cij
(
π1(F )

)

As before, we will analyse each of the above terms separately. For the first term, we have∑
j∈Ir:

∃i∈I<rQ ,

j≺i

Nr/cj (π1(F )) >
∑
j∈Ir:

∃i∈I<rQ ,

j≺i

1
Cε

(
R

r

)s1−ε
by (3.4) and Lemma 3.14 (1)

> 1
Cε

(
R

r

)s1+u1−ε ∑
j∈Ir:

∃i∈I<rQ ,

j≺i

(r/R)u1

> 1
Cε

(
R

r

)s−ε ∑
j∈Ir:

∃i∈I<rQ ,

j≺i

(dj /R)u1 by (3.3)

For the second term, we have∑
i∈IQ:

di>r

∑
j∈(Iε)∗:

α2(ij )<r6α2(i j )

Nr/cij
(
π1(F )

)
>

∑
i∈IQ:

di>r

∑
j∈(Iε)∗:

α2(ij )<r6α2(i j )

1
Cε

(cicj
r

)s1−ε
by (3.4)

> 1
Cε

(
1

r

)s1−ε ∑
i∈IQ:

di>r

cs1−εi

∑
j∈(Iε)∗:

α2(ij )<r6α2(i j )

cs1j

> 1
Cε

(
R

r

)s1−ε ∑
i∈IQ:

di>r

∑
j∈(Iε)∗:

α2(ij )<r6α2(i j )

cs1j
(
didj r

−1
)u1

by Lemma 3.14 (1) and since r > α2(ij ) = didj

> 1
Cε

(
R

r

)s1−ε(1

r

)u1 ∑
i∈IQ:

di>r

du1

i

∑
j∈(Iε)∗:

α2(ij )<r6α2(i j )

cs1j d
u1

j
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> 1
Cε

(
R

r

)s1+u1−ε ∑
i∈IQ:

di>r

(di/R)u1

∑
j∈(Iε)∗:

α2(ij )<r6α2(i j )

cs1j d
dimB Fε+ε−s1
j

by Lemma 3.22 (3)

> 1
Cε

(
R

r

)s1+u1−ε ∑
i∈IQ:

di>r

(di/R)u1 dεj
∑

j∈(Iε)∗:

α2(ij )<r6α2(i j )

cs1j d
dimB Fε−s1
j

> 1
Cε
αε,min

(
R

r

)s−2ε ∑
i∈IQ:

di>r

(di/R)u1

by Lemma 3.16 and the fact that dj > (r/di )αε,min > (r/R)αε,min. Combining the estimates for the
two terms introduced above yields

M2
ε Nr

(
Q(i ′, R) ∩ F

)
> 1

Cε

(
R

r

)s−ε ∑
j∈Ir:

∃i∈I<rQ ,

j≺i

(dj /R)u1 + 1
Cε

αε,min

(
R

r

)s−2ε ∑
i∈IQ:

di>r

(di/R)u1

> 1
Cε
αε,min

(
R

r

)s−2ε ∑
j∈I0

(dj /R)u1

where
I0 := {j ∈ Ir : ∃i ∈ I<rQ s.t. j ≺ i} ∪ {i ∈ IQ : di > r}.

Observe that I0 is a Q(i ′, R)-pseudo stopping, and so by Lemma 3.17 we have∑
j∈I0

(dj /R)u1 > 1

which yields

Nr

(
Q(i ′, R) ∩ F

)
> 1

M2
ε

1
Cε
αε,min

(
R

r

)s−ε
.

It follows that dimL F > s− 2ε and letting ε→ 0 completes the proof.

3.6.5 Proof of Theorem 3.2 for the horizontal and vertical classes

This is similar to the proof in the mixed case, so we only briefly discuss it.

Upper bound. As in the mixed class, one can construct a lower weak tangent with the
required dimension. The proof is slightly simpler in that for the horizontal class, for example, we nec-
essarily have that s = dimB π1(F )+Slice1,i(F ) for some i ∈ I and that there exists j ∈ I with cj > dj .

Lower bound. The proof is greatly simplified in this case because we do not have the added
complication alluded to above. In particular, we do not have to introduce the ‘horizontal subsystem’
Iε, and we can just iterate using I as before with no third term appearing.
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3.6.6 Proof of Corollary 3.3

In this section we will rely on some results from [GL1] which, technically speaking, were not proved in
the extended Lalley-Gatzouras case. However, it is easy to see that their arguments can be extended
to cover this situation and give the results we require. Without loss of generality, let F be a self-
affine attractor of an IFS in the horizontal class, and assume that dimL F < dimA F . It follows from
Theorems 3.1 and 3.2 that

min
i∈I

dimB Slice1,i(F ) < max
i∈I

dimB Slice1,i(F )

which means that we do not have uniform vertical fibres, and it follows from [GL1] that dimH F <
dimB F . We will now show that dimL F < dimH F . We will use the formula for the Hausdorff
dimension given in [GL1], so we must briefly introduce some notation. Suppose we have m non-empty
columns in the construction and we have chosen ni rectangles from the ith column. For the jth
rectangle in the ith column, write ci for the length of the base and dij for the height. Notice that the
length of the base depends only on which column we are in. Then the Hausdorff dimension of F is
given by

dimH F = max

{∑
i

∑
j pij log pij∑

i

∑
j pij log dij

+
∑
i

qi log qi

(
1∑

i qi log ci
− 1∑

i

∑
j pij log dij

)}

where the maximum is taken over all associated probability distributions {pij} on the set
{

(i, j) : i ∈
{1, . . . ,m}, j ∈ {1, . . . , ni}

}
and qi =

∑
j pij . Notice that this formula may be rewritten as

max

{∑
i

∑
j pij log

(
qi/pij

)∑
i

∑
j pij log(dij)−1

+

∑
i qi log qi∑
i qi log ci

}

which clearly demonstrates that if we continuously decrease a particular dij , then the Hausdorff
dimension continuously decreases. Note that we may continuously decrease any particular dij without
affecting any other rectangle in the construction.

If mini∈I dimB Slice1,i(F ) = 0, then the result is clear. However, if mini∈I dimB Slice1,i(F ) > 0, then,
although we have already noted that F does not have uniform horizontal fibres, we may continuously
decrease the dij to obtain a new IFS with index set I1, with the same number of rectangles and the
same base lengths, which has an attractor F1 where dimB Slice1,j(F1) = mini∈I dimB Slice1,i(F ) for
each j ∈ I1. It follows from the above argument and Theorems 3.1 and 3.2 that

dimL F = dimH F1 < dimH F.

It remains to show that dimB F < dimA F . However, this follows from a dual argument observing
that the box dimension of F is given by the unique solution s of

m∑
i=1

ni∑
j=1

cs1i d
s−s1
ij = 1

(see [GL1] for the basic case or [FeW, Fr1] for the extended case), and so we may continuously increase
the dij independently (while keeping dij 6 ci) and, if necessary, add new maps to certain columns, to
form a new construction F2 with uniform vertical fibres and such that

dimB F < dimB F2 = dimA F.
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3.6.7 Proof of Corollary 3.4

Let F be in the mixed class. The result for the horizontal and vertical classes follows from Corollary
3.3. Suppose F is such that dimL F = dimB F . It follows from Lemma 3.15 that DA = DB =
dimL F 6 sj + dimB Slicej,i(F ) for all j ∈ {1, 2} and i ∈ I. Hence, using the notation from the proof
of Lemma 3.15,

1 =
∑
i∈I

cs1i d
DA−s1
i >

m∑
i=1

ĉs1i
∑
j∈Ci

d
dimB Slice1,j(F )
j = 1

and

1 =
∑
i∈I

ds2i c
DB−s2
i >

n∑
i=1

d̂s2i
∑
j∈Ri

c
dimB Slice2,j(F )
j = 1

and so we have equality throughout in the above two lines which implies that

DA = DB = dimL F = max
i∈I

max
j=1,2

(
dimB πj(F ) + dimB Slicej,i(F )

)
= dimA F,

which completes the proof. We remark here that the key reason that a symmetric argument cannot be
used to show that if dimA F = dimB F , then dimA F = dimL F , is that dimA F = dimB F only implies
that max{DA, DB} > sj + dimB Slicej,i(F ) for all j ∈ {1, 2} and i ∈ I. Indeed, such an implication
is not true, as shown by the example in Section 3.4.2.

3.7 Proof of Theorem 3.7

In this section we will prove Theorem 3.7. Let (X, d) be a metric space, and let F be a compact subset
of (X, d). It follows immediately from the definition of box dimension that for all ε, ρ > 0 there exists
a constant Cε,ρ > 1 such that for all r ∈ (0, ρ] we have

1
Cε,ρ

r−dimBF+ε 6 Nr(F ) 6 Cε,ρ r
−dimBF−ε. (3.6)

Recall that for a map f : A→ B, for metric spaces (A, dA), (B, dB) we will write

Lip−(f) = inf
x,y∈A:
x 6=y

dB
(
f(x), f(y)

)
dA(x, y)

.

Proof of (1). Suppose F satisfies (1) from Definition 3.6 with given parameters a, r0 and write
s = dimH F = dimBF . Let 0 < r < R 6 r0/2 and x ∈ F . By condition (1) in the definition of
quasi-self-similar, there exists an injection g1 : B(x, r) ∩ F → F with Lip−(g1) > a (2R)−1. If {Ui} is
an ar/2R cover of g1(B(x, r) ∩ F ), then {g−1

1 (Ui)} is an r cover of B(x, r) ∩ F . It follows from this
and (3.6) that

Nr
(
B(x, r) ∩ F

)
6 Nar/2R

(
g1(B(x, r) ∩ F )

)
6 Nar/2R(F ) 6 Cε,a/2(2/a)s+ε

(
R

r

)s+ε
which gives that dimA F 6 s+ ε and letting ε→ 0 completes the proof.

Proof of (2). Suppose F satisfies (2) from Definition 3.6 with given parameters a, r0 and
write s = dimH F = dimBF . Let 0 < r < R 6 r0/2 and x ∈ F . By condition (2) in the definition of
quasi-self-similar, there exists an injection g2 : F → B(x, r) ∩ F with Lip−(g2) > aR. If {Ui} is an r
cover of g2(F ), then {g−1

2 (Ui)} is an r/aR cover of F . It follows from this and (3.6) that

Nr
(
B(x, r) ∩ F

)
> Nr

(
g2(F )

)
> Nr/aR(F ) > 1

Cε,1/a
as−ε

(
R

r

)s−ε
which gives that dimL F > s− ε and letting ε→ 0 completes the proof.
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Proof of (3). Let F ⊆ (X, d) be a quasi-self-similar set with given parameters a, r0 from Defi-
nition 3.6 and write s = dimH F . Note that it follows from (1)-(2) above that dimL F = dimA F ;
however, it does not follow immediately that F is Ahlfors regular, so we will prove that now. It
follows from the results in [F3] that

as 6 Hs(F ) 6 4s a−s. (3.7)

Let r ∈ (0, r0/2) and x ∈ F and consider the set B(x, r) ∩ F := B(x, r) ∩ F . By condition (1) in the
definition of quasi-self-similar, there exists a map g1 : B(x, r) ∩ F → F with Lip−(g1) > a (2r)−1. It
follows from this, (3.7) and the scaling property for Hausdorff measure, that

Hs(B(x, r) ∩ F ) 6 Lip−(g1)−sHs
(
g1(B(x, r) ∩ F )

)
6 a−s (2r)sHs(F ) 6 8s a−2s rs. (3.8)

Furthermore, by condition (2) in the definition of quasi-self-similar, there exists a map g2 : F →
B(x, r) ∩ F with Lip−(g2) > a r. It follows from this, (3.7) and the scaling property for Hausdorff
measure, that

Hs(B(x, r) ∩ F ) > Hs
(
g2(F )

)
> Lip−(g2)sHs(F ) > as rsHs(F ) > a2s rs. (3.9)

It follows from (3.8) and (3.9) that F is locally Ahlfors regular setting λ = 8s a−2s and, since F is
compact, we have that it is, in fact, Ahlfors regular.
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4 Inhomogeneous self-similar sets

4.1 Introduction

In this chapter we investigate the upper and lower box dimensions of inhomogeneous self-similar sets.
We extend some results of Olsen and Snigireva [OSn, Sn] by computing the upper box dimensions
assuming some mild separation conditions. We show that in our setting the upper box dimension
behaves in the same way as the countably stable dimensions, in particular the relationship (1.6)
holds. Secondly, we investigate the more difficult problem of computing the lower box dimension.
We give some non-trivial bounds on the lower box dimension and prove that it does not behave as
the other dimensions. In particular, the lower box dimension is not in general the maximum of the
lower box dimensions of the homogeneous self-similar set and the condensation set. We introduce a
quantity which we call the covering regularity exponent which is designed to give information about
the oscillatory behaviour of the covering function Nδ and use it to study the lower box dimensions.
We believe the covering regularity exponent will be a useful quantity in other circumstances where
one needs finer information about the asymptotic properties of Nδ, or indeed other function where
the asymptotic oscillations are important.

4.2 Results

In this section we will state our main results for this chapter. Let (X, d) be a compact metric
space. Fix an IFS I = {S1, . . . , SN} where each Si is a similarity on (X, d), fix a non-empty compact
condensation set C ⊆ X and let s denote the similarity dimension of F∅. Our results concerning upper
box dimension will be given in Section 4.2.1 and those concerning lower box dimension will be given
in Section 4.2.2. We will write B(x, r) to denote the open ball of radius r centered at x.

4.2.1 Upper box dimension

In this section we significantly generalise the results in [OSn, Sn] concerning upper box dimension,
which were obtained as Corollaries to results on the Lq-dimensions of inhomogeneous self-similar
measures. Our proofs are direct and deal only with sets. Our first result bounds the upper box
dimension of an inhomogeneous self-similar set, without assuming any separation conditions.

Theorem 4.1. We have

max{dimBF∅, dimBC} 6 dimBFC 6 max{s, dimBC}.

Although the bounds given in Theorem 4.1 are not tight in general, we can apply them in two useful
situations to obtain an exact result. The following Corollary answers Question 1.5 in the affirmative
and, in fact, proves something stronger in that the separation conditions can be severely weakened
and we can work in an arbitrary compact metric space.
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Corollary 4.2. Suppose that the IFS, I, satisfies the SOSC. Then

dimBFC = max{dimBF∅, dimBC}.

Proof. This follows immediately from Theorem 4.1 since if I satisfies the SOSC, then s = dimBF∅, see
[Sc2].

Of course, if X ⊆ Rd then the SOSC is equivalent to the OSC. We can also obtain an exact result in
a generic sense.

Corollary 4.3. Let d ∈ N and fix linear contracting similarities, {T1, . . . , TN}, each mapping Rd
to itself, and assume that Lip(Ti) < 1/2 for all i and fix a compact condensation set C ⊂ Rd. For
t = (t1, . . . , tN ) ∈ ×Ni=1Rd, let Ft,∅ denote the homogeneous attractor satisfying

Ft,∅ =

N⋃
i=1

(
Ti(Ft,∅) + ti

)
and let Ft,C denote the inhomogeneous attractor satisfying

Ft,C =

N⋃
i=1

(
Ti(Ft,C) + ti

)
∪ C.

Then, writing LdN for the N -fold product of d-dimensional Lebesgue measure, we have

dimBFt,C = max{dimBFt,∅, dimBC}

for LdN -almost all t = (t1, . . . , tN ) ∈ ×Ni=1Rd.

Proof. This follows immediately from Theorem 4.1 since, for LdN -almost all t = (t1, . . . , tN ) ∈ ×Ni=1Rd,
we have that dimBFt,∅ is equal to the solution of

N∑
i=1

Lip(Ti)
s = 1

which is also the similarity dimension of Ft,∅. This is a special case of Falconer’s theorem, Theorem
1.3.

We conclude this section with two open questions:

Question 4.4. Is it true that

dimBFC = max{dimBF∅, dimBC}

even if dimBF∅ < s? In particular, such systems cannot satisfy the SOSC.

Question 4.5. Is it true that

dimBFC = max{dimBF∅, dimBC}

even if FC is a more general inhomogeneous attractor, i.e., if the contractions are not similarities?

We will address Question 4.5 in Chapter 5 for certain classes of inhomogeneous self-affine sets.
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4.2.2 Lower box dimension

In this section we examine the lower box dimension. Theorem 4.1 gives us the following immediate
Corollary which gives (basically trivial) bounds on the lower box dimension.

Corollary 4.6. We have

max{dimBF∅, dimBC} 6 dimBFC 6 dimBFC 6 max{s, dimBC}

and if I satisfies the SOSC, then

max{dimBF∅, dimBC} 6 dimBFC 6 dimBFC 6 max{dimBF∅, dimBC}.

So we can compute the lower box dimension in three easy cases:

(1) If the box dimension of C exists and dimB C > s, then

dimBFC = dimBFC = dimB C;

(2) If the box dimension of C exists and I satisfies the SOSC, then

dimBFC = dimBFC = max{dimB F∅, dimB C};

(3) If I satisfies the SOSC and dimBC 6 s, then

dimBFC = dimBFC = s = dimB F∅.

Note that in each of the above cases the answer to Question 1.6 is yes, i.e.,

dimBFC = max{dimBF∅, dimBC}.

Even when I satisfies the SOSC, computing dimBFC appears to be a subtle and difficult problem if
max{s, dimBC} < dimBC. We will now briefly outline the reason for this. Firstly, note that since
lower box dimension is stable under taking closures, it follows from (1.5) that

dimBFC = dimBO = dimBO.

We can thus restrict our attention to the orbital set. However, computing the dimension of O is
difficult as it consists of copies of C scaled by different amounts. If the box dimension of C does not
exist, then the growth of the function Nδ(C) can vary wildly as δ → 0. It turns out that the lower
box dimension of O depends not only on dimB, dimB and s, but also on the behaviour of the function
δ 7→ Nδ(C). In order to analyse the behaviour of Nδ(C), we introduce a quantity which we call the
covering regularity exponent (CRE). For t > 0 and δ ∈ (0, 1], the (t, δ)-CRE of C is defined as

pt,δ(C) = sup
{
p ∈ [0, 1] : Nδp(C) > δ−pt

}
(4.1)

and the t-CRE is
pt(C) = lim inf

δ→0
pt,δ(C).

Roughly speaking, pt,δ(C) tells you at scale δ how much you have to ‘scale up’ to find a scale δ0 > δ
where you need at least δ−t0 sets to cover C, i.e., how far back you have to go to find a scale where the
set is ‘hard’ to cover. In fact, the smaller pt,δ(C) is, the further you have to go back. The constant
pt(C) tells you the ‘furthest away’ you ever are from a scale where your set is ‘hard to cover’, as you
let δ tend to zero. The following Lemma gives some simple but useful properties of the CREs.
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Lemma 4.7.

(1) For all t, δ > 0, we have pt,δ(C), pt(C) ∈ [0, 1];

(2) pt(C) is decreasing in t and if t < dimBC, then pt(C) = 1 and if t > dimBC, then pt(C) = 0;

(3) For all δ > 0 we have
N
δpt,δ(C)(C) > δ−pt,δ(C)t,

i.e., the supremum in (4.1) is obtained;

(4) For all t > dimBC, we have

pt(C) 6
dimBC

t
< 1;

(5) For dimBC < s < t < dimBC we have

pt(C) 6
s

t
ps(C);

(6) Suppose X is doubling, i.e. has finite Assouad dimension. For all t ∈ (dimBC, dimBC), we
have

pt(C) 6
dimBC

t

dimAX − t
dimAX − dimBC

.

Figure 14: Left: A plot of logNδ(C)/(− log δ) for a set C with distinct upper and lower box dimension.
A horizontal line is included at a value t between the upper and lower box dimensions. At the indicated
point, δ, we have that Nδ(C) < δ−t and so we have to ‘scale up’ to δ0 = δpt,δ(C) to find a scale where
Nδ0(C) > δ−t0 . Right: A typical graph of pt(C) for a set C with lower box dimension 0.2 and upper
box dimension 0.8.

We will prove Lemma 4.7 in Section 4.3.2. We will now use the CREs to obtain non-trivial bounds
on the lower box dimension of FC . From now on we will assume that we are in the difficult case:
max{s, dimBC} < dimBC.

We adapt the SOSC to the case of inhomogeneous attractors in the following way.

Definition 4.8. An IFS, {S1, . . . , SN}, together with a compact set C ⊆ X, satisfies the condensation
open set condition (COSC), if the IFS, {S1, . . . , SN}, satisfies the SOSC and the open set, U , can be
chosen such that C ⊆ U .
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The following theorem gives a lower bound on the lower box dimension of FC and gives some sufficient
conditions for the answer to Question 1.6 to be no.

Theorem 4.9. Suppose (X, d) is Ahlfors regular and that I together with C satisfies the COSC. For
all t > 0 we have

dimBFC > pt(C) t + (1− pt(C)) s.

In particular, if for some t > max{s, dimBC} we have

pt(C) > max
{

0,
dimBC − s

t− s

}
,

then
dimBFC > max{dimBF∅, dimBC}.

We will prove Theorem 4.9 in Section 4.3.4. The next theorem gives an upper bound on the lower box
dimension of FC and gives some sufficient conditions for the answer to Question 1.6 to be yes.

Theorem 4.10. For all t > max{s, dimBC} we have

dimBFC 6 max{t, s+ pt(C) t}

and, in particular, if pt(C) = 0 for t > max{s, dimBC}, then

dimBFC 6 max{s, dimBC}

and if, furthermore, the SOSC is satisfied, then

dimBFC = max{dimBF∅, dimBC}.

We will prove Theorem 4.10 in Section 4.3.5. We obtain the following (perhaps surprising) corollary
in a very special case.

Corollary 4.11. If dimBC = 0 and I satisfies the SOSC, then

dimBFC = max{dimBF∅, dimBC} = dimBF∅ = s.

Proof. This follows immediately from Theorem 4.10 since Lemma 4.7 (4) gives that pt(C) = 0 for all
t > 0.

The following proposition proves the existence of compact sets with the extremal behaviour described
in Theorems 4.9–4.10. In particular, Proposition 4.12 (2) combined with Theorem 4.9 gives a negative
answer to Question 1.6.

Proposition 4.12. Let X = [0, 1]d for some d ∈ N.

(1) For all 0 < b < t < B 6 d, there exists a compact set C ⊆ X such that dimBC = b < B = dimBC
and pt(C) = 0 for all t > b;

(2) For all 0 < b < B 6 d, there exists a compact set C ⊆ X such that dimBC = b < B = dimBC
and

pt(C) =
b

t

d− t
d− b

.

for all t ∈ (b, B). In particular, such a C shows that the upper bound in Lemma 4.7 (6) is sharp.

We will prove Proposition 4.12 in Section 4.3.6. Although we specialise to the case where X is the
unit cube, the result applies in much more general situations. However, as we only require them to
provide examples, we omit any further technical details.

The case where the condensation set is constructed as in Proposition 4.12 (2) is an interesting
case. Not only does it provide a negative answer to Question 1.6, but we also obtain an explicit
(non-trivial) formula for pt(C). We obtain the following corollary in this situation.
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Corollary 4.13. Let X = [0, 1]d, let I = {S1, . . . , SN} be an IFS of similarities on X and fix a
non-empty compact set C ⊂ [0, 1]d such that

pt(C) =
dimBC

t

d− t
d− dimBC

for all t ∈ (dimBC, dimBC). Furthermore assume that I together with C satisfies the COSC. Then

dimBC

t

d− t
d− dimBC

(t − s) + s 6 dimBFC 6 max
{
t, s + dimBC

d− t
d− dimBC

}
for all t ∈ (dimBC, dimBC).

Write L(t) and U(t) for the lower and upper bounds for dimBFC given in the above Corollary. We
will now provide a plot of these as functions of t in two typical situations. Of course, the best lower
and upper bounds for dimBFC are really the supremum and infimum of L(t) and U(t) respectively. In
both cases we let X = [0, 1]5. For the plot on the left, we let dimBC = 1, s = 1.5 and dimBC = 4.5.
For the plot on the right, we let dimBC = s = 1 and dimBC = 2. In the first case, the trivial bounds
from Corollary 4.6 have been improved from [1.5, 4.5] to [1.756, 2.2] and, in the second case, the trivial
bounds have been improved from [1, 2] to [1.375, 1.8].

Figure 15: Two graphs showing the upper and lower bounds on the lower box dimension of FC .
U(t) and L(t) are plotted as solid lines, and the trivial bounds from Corollary 4.6 are plotted as
dashed lines. We can clearly see a significant improvement on the trivial bounds, and in both cases
dimBFC > max{dimBF∅, dimBC}.

We will present one final corollary which summarises the ‘bad behaviour’ of the lower box dimension
of inhomogeneous self-similar sets.

Corollary 4.14. Regardless of separation conditions, the lower box dimension of FC is not in general
given by a function of the numbers:

dimBC, dimBC, dimH C, dimP C, dimB F∅ and s.

This is in stark contrast to the situation for the countably stable dimensions and the upper box dimen-
sion.

Proof. This follows from the results in this section.
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4.3 Proofs

4.3.1 Preliminary results and notation

Fix an IFS I = {S1, . . . , SN} where each Si is a similarity and fix a compact condensation set, C ⊆ X.
Write I = {1, . . . , N}, Lmin = mini∈I Lip(Si) and Lmax = maxi∈I Lip(Si). For δ ∈ (0, 1], define a
δ-stopping, Iδ, by

Iδ =
{
i ∈ I∗ : Lip(Si ) < δ 6 Lip(Si )

}
,

where we assume for convenience that Lip(Sω) = 1, where ω is the empty word.

Lemma 4.15. For all δ ∈ (0, 1], we have

δ−s 6 |Iδ| 6 L−smin δ
−s.

Proof. Repeated application of the Hutchinson-Moran formula (1.1) gives∑
i∈Iδ

Lip(Si )
s = 1

from which we deduce

1 =
∑
i∈Iδ

Lip(Si )
s >

∑
i∈Iδ

(δ Lmin)s = |Iδ| (δ Lmin)s (4.2)

and
1 =

∑
i∈Iδ

Lip(Si )
s 6

∑
i∈Iδ

δs = |Iδ| δs. (4.3)

The desired upper and lower bounds now follow from (4.2) and (4.3) respectively.

Lemma 4.16. For all t > s we have ∑
i∈I∗

Lip(Si)
t = bt < ∞

for some constant bt depending only on t.

Proof. This is a standard fact but we include the simple proof for completeness and to define the
constant bt. Since t > s we have

∑
i∈I Lip(Si)

t < 1. It follows that

∑
i∈I∗

Lip(Si )
t =

∞∑
k=1

∑
i∈Ik

Lip(Si )
t =

∞∑
k=1

(∑
i∈I

Lip(Si)
t

)k
<∞,

which proves the Lemma, setting bt =
∑∞
k=1

(∑
i∈I Lip(Si)

t
)k

.

Lemma 4.17. For all δ ∈ (0, 1), we have

|{i ∈ I∗ : δ 6 Lip(Si)}| 6
log δ

logLmax
δ−s.

Proof. Let δ ∈ (0, 1) and suppose i ∈ I∗ is such that δ 6 Lip(Si ). It follows that δ 6 L
|i |
max and hence

|i | 6 log δ

logLmax
. (4.4)

Repeatedly applying the Hutchison-Moran formula (1.1) gives

log δ
logLmax

>
∑
l∈N:

l6 log δ
logLmax

1 >
∑
l∈N:

l6 log δ
logLmax

∑
i∈Il

Lip(Si )
s
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>
∑
l∈N:

l6 log δ
logLmax

∑
i∈Il:

δ6Lip(Si )

Lip(Si )
s

>
∑
l∈N:

l6 log δ
logLmax

∑
i∈Il:

δ6Lip(Si )

δs

= |{i ∈ I∗ : δ 6 Lip(Si )}| δs

by (4.4), which proves the result.

4.3.2 Proof of Lemma 4.7

Proof of (1): This follows immediately from the definition of pt,δ(C) and the fact that the set{
p ∈ [0, 1] : Nδp(C) > δ−pt

}
is never empty as it always contains the point 0.

Proof of (2): It is clear that pt(C) is decreasing in t. If t < dimBC, then there exists δ0 ∈ (0, 1] such
that for all δ < δ0 we have

Nδ(C) > δ−t

which implies that if δ < δ0, then pt,δ(C) = 1, which completes the proof. The proof that if
t > dimBC, then pt(C) = 0 is similar and omitted.

Proof of (3): Let t > 0 and δ ∈ (0, 1] and without loss of generality assume that pt,δ(C) > 0.
Assume that the required supremum is not obtained and thus, by the definition of pt,δ(C), we may
choose arbitrarily small ε ∈

(
0, pt,δ(C)

)
, such that

N
δpt,δ(C)−ε(C) > δ−(pt,δ(C)−ε)t. (4.5)

It follows from this that

N
δpt,δ(C)(C) > N

δpt,δ(C)−ε(C) > δ−(pt,δ(C)−ε)t = δ−pt,δ(C)t δεt

and letting ε→ 0 through values satisfying (4.5) proves the result by contradiction.

Proof of (4): Let t > dimBC and ε ∈ (0, t − dimBC). By the definition of lower box dimen-
sion, there exists arbitrarily small δ > 0 such that

Nδ(C) 6 δ−(dimBC+ε).

Fix such a δ ∈ (0, 1) and since Nδ(C) increases as δ decreases,

δ−pt,δ(C)t 6 N
δpt,δ(C)(C) 6 Nδ(C) 6 δ−(dimBC+ε).

Taking logs and dividing by −t log δ yields

pt,δ(C) 6
dimBC + ε

t

and since we can find arbitrarily small δ satisfying the above inequality, the desired upper bound
follows.
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Proof of (5): Let dimBC < s < t < dimBC. It follows from Lemma 4.7 (4) above that ps(C) < 1
and so we may choose ε ∈ (0, 1 − ps(C)]. It follows that there exists δ ∈ (0, ε) such that ps,δ(C) <
ps(C) + ε 6 1. This implies that

Nδps(C)+ε(C) < δ−(ps(C)+ε)s.

Using this, Lemma 4.7 (3), and the fact that Nδ(C) increases as δ decreases, we have

δ−pt,δ(C)t 6 N
δpt,δ(C)(C) 6 Nδps(C)+ε(C) < δ−(ps(C)+ε)s.

Taking logs and dividing by −t log δ yields

pt,δ(C) 6
s

t
(ps(C) + ε)

and since we can find arbitrarily small δ satisfying the above inequality, the desired upper bound
follows.

Proof of (6): Let t ∈ (dimBC, dimBC) and ε ∈ (0, t − dimBC). Following the argument used
in the proof of Lemma 4.7 (4), we can find arbitrarily small δ ∈ (0, 1) such that

Nδ(C) 6 δ−(dimBC+ε) and pt,δ(C) 6
dimBC + ε

t
6 1. (4.6)

Fix such a δ. By the definition of Assouad dimension, it follows that there exists constants K > 1
and ρ ∈ (0, 1] such that any ball of radius δ < ρ can be covered by fewer than

K
( δ
δ0

)dimAX

(4.7)

balls of radius δ0 6 δ < ρ. Let

m = max

{
1,

logK

(dimAX − t) log δ
+

dimAX − dimBC − ε
dimAX − t

}
. (4.8)

Let δ′ = δq ∈ (δm, δ) for some q ∈ (1,m). A simple calculation combining (4.6, 4.7, 4.8) yields that

Nδ′(C) = Nδq (C) 6 K
( δ
δq

)dimAX

Nδ(C) 6 K
( δ
δq

)dimAX

δ−(dimBC+ε) < δ−qt = (δ′)−t.

Note that if m = 1, then this is vacuously true, but indeed m > 1 for sufficiently small ε and δ. It
follows that

Nδ′(C) < (δ′)−t

for all δ′ ∈ (δm, δ) ∪ [δ, δpt,δ(C)) = (δm, δpt,δ(C)). This, combined with the fact that

N
(δm)pt,δ(C)/m(C) = N

δpt,δ(C)(C) > δ−pt,δ(C)t = (δm)−(pt,δ(C)/m)t

by the definition of pt,δ(C), yields that pt,δm(C) = pt,δ(C)/m. Hence

pt,δm(C) =
pt,δ(C)

m
6

dimBC + ε

t

(
logK

(dimAX − t) log δ
+

dimAX − dimBC − ε
dimAX − t

)−1

by (4.6, 4.8). Letting δ → 0 through values satisfying (4.6) yields

pt(C) 6
dimBC + ε

t

dimAX − t
dimAX − dimBC − ε

and finally letting ε→ 0 we have

pt(C) 6
dimBC

t

dimAX − t
dimAX − dimBC

as required.
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4.3.3 Proof of Theorem 4.1

By monotonicity of upper box dimension, we have max{dimBF∅, dimBC} 6 dimBFC . We will now
prove the other inequality. Since upper box dimension is finitely stable, it suffices to show that

dimBO 6 max{s, dimBC}.

Let t > max{s, dimBC}. It follows from the definition of upper box dimension that there exists a
constant ct > 0 such that

Nδ(C) 6 ct δ
−t (4.9)

for all δ ∈ (0, 1]. Also note that since X is compact, the number of balls of radius 1 required to cover
X is a finite constant N1(X). Let δ ∈ (0, 1]. We have

Nδ(O) = Nδ

(
C ∪

⋃
i∈I∗

Si (C)

)

6
∑
i∈I∗:

δ6Lip(Si )

Nδ
(
Si (C)

)
+ Nδ

( ⋃
i∈I∗:

δ>Lip(Si )

Si (C)

)
+ Nδ(C)

6
∑
i∈I∗:

δ6Lip(Si )

Nδ/Lip(Si )(C) + Nδ

( ⋃
i∈Iδ

Si (X)

)
+ Nδ(C)

6
∑
i∈I∗:

δ6Lip(Si )

ct
(
δ/Lip(Si )

)−t
+
∑
i∈Iδ

Nδ/Lip(Si )(X) + ct δ
−t by (4.9)

6 ct δ
−t

∑
i∈I∗:

δ6Lip(Si )

Lip(Si )
t + N1(X) |Iδ| + ct δ

−t

6 ct δ
−t
∑
i∈I∗

Lip(Si )
t + N1(X)L−smin δ

−s + ct δ
−t by Lemma 4.15

6
(
ct bt + N1(X)L−smin + ct

)
δ−t

by Lemma 4.16, from which it follows that dimBFC = dimBO 6 t and since t can be chosen arbitrarily
close to max{s, dimBC}, we have proved the theorem.

4.3.4 Proof of Theorem 4.9

Suppose (X, d) is Ahlfors regular and that I, together with C, satisfies the COSC. We begin with two
simple technical lemmas.

Lemma 4.18. Let a, b > 0, let {Ui} be a collection of disjoint open subsets of X and suppose that
each Ui contains a ball of radius ar and is contained in a ball of radius br. Then any ball of radius r
intersects no more than

λ2
(1 + 2b

a

)dimHX

of the closures {U i}.

This is a trivial modification of a standard result in Euclidean space, see [F8, Lemma 9.2], but for
completeness we include the simple proof.
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Proof. For each i let Bi denote the ball of radius ar contained in Ui and note that these balls are
pairwise disjoint. Fix x ∈ X and suppose B(x, r) ∩ U i 6= ∅ for some i. It follows that U i ⊆
B
(
x, (1 + 2b)r

)
. Suppose the number of i such that B(x, r) ∩ U i 6= ∅ is equal to N . Then

N 1
λ (ar)dimHX 6

∑
i:B(x,r)∩Ui 6=∅

HdimHX
(
Bi
)

6 HdimHX
(
B
(
x, (1 + 2b)r

))
6 λ

(
(1 + 2b)r

)dimHX

and solving for N proves the lemma.

Lemma 4.19. Let δ ∈ (0, 1] and i, j ∈ Iδ with i 6= j. Writing U for the open set used in the COSC,
we have

Si(U) ∩ Sj(U) = ∅.

Proof. This is a simple consequence of the COSC (in fact the OSC is enough) and the fact that neither
i nor j is a subword of the other.

We now turn to the proof of Theorem 4.9.

Proof. If 0 6 t 6 max{s,dimBC}, then the result is clearly true (and not an improvement on
Corollary 4.6) so assume that t > max{s,dimBC} and let ε ∈ (0, 1]. Choose δ0 ∈ (0, 1] such that
for all δ ∈ (0, δ0] we have pt,δ(C) > pt(C) − ε. Fix δ ∈ (0, δ0] and finally, to simplify notation, write
pt,δ = pt,δ(C) and pt = pt(C). We will now consider two cases.

Case 1: Assume that δ1−pt,δ L−1
min 6 1.

Let U be the open set used for the COSC and choose a, b > 0 such that U contains a ball of
radius a and is contained in a ball of radius b. It follows that for each i ∈ I(δ1−pt,δ L−1

min) the image
Si (U) is an open set which contains a ball of radius a δ1−pt,δ and is contained in a ball of radius
b L−1

min δ
1−pt,δ . Furthermore, it follows from Lemma 4.19 that the sets{

Si (U) : i ∈ I(δ1−pt,δ L−1
min)

}
are pairwise disjoint. Since, for each i ∈ I(δ1−pt,δ L−1

min), we have Si (C) ⊆ Si (U), it follows from
Lemma 4.18 that any ball of radius δ1−pt,δ , and hence any set of diameter δ, can intersect no more
than

κ := λ2
(1 + 2bL−1

min

a

)dimHX

of the sets {
Si (C) : i ∈ I(δ1−pt,δ L−1

min)
}
.

Hence

Nδ(O) = Nδ

(
C ∪

⋃
i∈I∗

Si (C)

)
> κ−1

∑
i∈I(δ1−pt,δ L−1

min)

Nδ
(
Si (C)

)
= κ−1

∑
i∈I(δ1−pt,δ L−1

min)

Nδ/Lip(Si )(C)

> κ−1
∑

i∈I(δ1−pt,δ L−1
min)

Nδpt,δ (C)

> κ−1 δ−tpt,δ |I(δ1−pt,δ L−1
min)| by Lemma 4.7 (3)

> κ−1 δ−tpt,δ (δ1−pt,δ L−1
min)−s by Lemma 4.15

= κ−1 Lsmin δ
−
(
pt,δt+(1−pt,δ)s

)
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> κ−1 Lsmin δ
−
(

(pt−ε)t+(1−(pt−ε))s
)

from which it follows that dimBFC = dimBO > (pt − ε)t+ (1− (pt − ε))s.

Case 2: Assume that δ1−pt,δ L−1
min > 1.

Note that our assumption implies that 1 > δ−(1−pt,δ)s Lsmin. It follows that

Nδ(O) > Nδpt,δ (C) > δ−pt,δt > δ−(1−pt,δ)s Lsmin δ
−pt,δt > Lsmin δ

−
(

(pt−ε)t+(1−(pt−ε))s
)

from which it follows that dimBO > (pt − ε)t+ (1− (pt − ε))s.

Combining Cases 1–2 and letting ε tend to zero proves the theorem.

4.3.5 Proof of Theorem 4.10

We begin with a simple technical Lemma.

Lemma 4.20. Let t > 0. If pt(C) < 1, then for all ε ∈
(
0, 1− pt(C)

)
, there exists δ ∈ (0, ε) such that

pt(C)− ε < pt,δ(C) < pt(C) + ε

and, for all δ0 ∈ [δ, δpt(C)], we have
Nδ0(C) 6 δ−t0 .

Proof. Since pt(C) < 1, it follows that for all ε ∈
(
0, 1 − pt(C)

)
, there exists δ ∈ (0, ε) such that

pt(C) − ε < pt,δ(C) < pt(C) + ε < 1. By the definition of pt,δ(C) this implies that for all δ0 ∈
[δ, δpt(C)+ε] we have

Nδ0(C) 6 δ−t0

which completes the proof.

We will now turn to the proof of Theorem 4.10.

Proof. Let t > max{s, dimBC}. By Lemma 4.7 (4), we have pt(C) 6 dimBC/t < 1 and so by Lemma
4.20, for all ε ∈

(
0, 1− pt(C)

)
, there exists δ ∈ (0, ε) such that

pt(C)− ε < pt,δ(C) < pt(C) + ε (4.10)

and for all δ0 ∈ [δ, δpt(C)] we have
Nδ0(C) 6 δ−t0 . (4.11)

Fix ε ∈ (0, 1−pt(C)) and choose δ ∈ (0, ε) satisfying (4.10, 4.11). Write pt,δ = pt,δ(C) and pt = pt(C).
We have

Nδ(O) = Nδ

(
C ∪

⋃
i∈I∗

Si (C)
)

6
∑
i∈I∗:

δ1−pt,δ−ε6Lip(Si)< 1

Nδ
(
Si (C)

)
+

∑
i∈I∗:

δ6Lip(Si)<δ
1−pt,δ−ε

Nδ
(
Si (C)

)

+ Nδ

( ⋃
i∈I∗:

Lip(Si )<δ

Si (C)

)
+ Nδ(C)

6
∑
i∈I∗:

δ1−pt,δ−ε6Lip(Si)< 1

Nδ/Lip(Si )(C) +
∑
i∈I∗:

δ6Lip(Si)<δ
1−pt,δ−ε

Nδ/Lip(Si )(C)
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+ Nδ

( ⋃
i∈Iδ

Si (X)

)
+ Nδ(C)

6
∑
i∈I∗:

δ1−pt,δ−ε6Lip(Si)< 1

(
δ/Lip(Si )

)−t
+

∑
i∈I∗:

δ6Lip(Si)<δ
1−pt,δ−ε

Nδpt,δ+ε(C)

+
∑
i∈Iδ

Nδ/Lip(Si )(X) + δ−t by (4.10, 4.11)

6 δ−t
∑
i∈I∗:

δ1−pt,δ−ε6Lip(Si)< 1

Lip(Si )
t +

∑
i∈I∗:

δ6Lip(Si)<δ
1−pt,δ−ε

δ−(pt,δ+ε)t + N1(X) |Iδ|

+ δ−t by (4.10, 4.11)

6 δ−t
∑
i∈I∗

Lip(Si )
t + |{i ∈ I∗ : δ 6 Lip(Si)}| δ−(pt,δ+ε)t

+ N1(X) δ−s + δ−t by Lemma 4.15

6
(
bt +N1(X) + 1

)
δ−t +

log δ

logLmax
δ−s δ−(pt,δ+ε)t by Lemmas 4.16 and 4.17

6
(
bt +N1(X) + 1

)
δ−t +

log δ

logLmax
δ−(s+(pt+2ε)t)

from which it follows that dimBFC = dimBO 6 max{t, s+(pt+2ε)t} and letting ε tend to zero yields
the desired upper bound. Note that we do not obtain an upper bound for the upper box dimension
here as we only find a sequence of δs tending to zero for which the above estimate holds.

4.3.6 Proof of Proposition 4.12

Let X = [0, 1]d for some d ∈ N and let 0 < b < B 6 d. We will first describe a general way of con-
structing sets C ⊆ [0, 1]d which gives us the required control over the oscillations of the function Nδ(C).

For k ∈ N, let Qk be the set of closed 2−k × · · · × 2−k cubes formed by imposing a 2−k grid
on [0, 1]d orientated at the origin. For each k select a subset of these cubes and call their union Qk.
We assume that [0, 1]d ⊇ Q1 ⊇ Q2 ⊇ . . . and that if a cube is chosen at the kth step, then at least
one sub-cube is chosen at the (k + 1)th stage. Finally, we set C = ∩k∈NQk. Let M2−k(C) denote the
number of cubes in Qk which intersect C. We will only choose cubes at the kth level in two different
ways:

Method 1 : at the (k + 1)th stage we choose precisely one cube from each kth level cube;

and

Method 2 : at the (k + 1)th stage we choose all sub-cubes from within each kth level cube.

For δ ∈ (0, 1), let k(δ) = max
{
k ∈ N ∪ 0 : δ 6 2−k

}
. It is easy to see that

3−dM2−k(δ)(C) 6 Nδ(C) 6M2−(k(δ)+1+d)(C).

Also, for all k ∈ N,
M2−k(C) 6M2−(k+1)(C) 6 2dM2−k(C)
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and these bounds are tight as if at the (k+ 1)th stage we use Method 1, then we attain the left hand
bound, and if at the (k + 1)th stage we use Method 2, then we attain the right hand bound.

Figure 16: The first four steps in the construction of a compact set C ⊂ [0, 1]2 using Methods 2, 1, 2,
1 respectively.

Proof of (1): The key to constructing a compact set C ⊆ X with pt(C) = 0 for all t > b is to force
Nδ(C) to be strictly smaller than δ−b for increasingly long periods of time as δ → 0. Let N (2, k)
denote the number of times we use Method 2 in the first k steps in the construction of C and let

N (2) = lim sup
k→∞

N (2, k)

k

and

N (2) = lim inf
k→∞

N (2, k)

k
.

Observe that
M2−k(C) = 2dN (2,k)

and hence
dimBC = dN (2) and dimBC = dN (2). (4.12)

Also observe that if δ > 0 is such that N (2, k(δ) + d+ 1) < bk(δ)/d, then

Nδ(C) 6M2−(k(δ)+1+d)(C) = 2dN (2,k(δ)+d+1) < 2bk(δ) 6 δ−b. (4.13)

It is clear that we may alternate between Methods 1 and 2 when constructing C in such a way as to
ensure that

N (2) = B/d, N (2) = b/d

and for infinitely many k0 ∈ N, we have, for all k = k0, . . . , k
2
0, that

N (2, k + d+ 1) < bk/d.

It follows from (4.12) and (4.13) that such a compact set C has the desired properties. To show that
pt(C) = 0 for all t > b it suffices to prove that pb(C) = 0 since pt(C) is decreasing in t (Lemma 4.7
(2)). To see that pb(C) = 0 observe that if δ > 0 is such that k(δ) = k2

0 for such a k0 described above,
then

Nδ′(C) < (δ′)−b

for all δ′ ∈ [δ, 2−k0 ] by (4.13). Hence,

(2−k
2
0 )pb,δ(C) > δpb,δ(C) > 2−k0

which yields pb,δ(C) 6 1/k0 and letting k0 tend to infinity (and thus δ tend to zero) proves that
pb(C) = 0.
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Proof of (2): The key to constructing a compact set C ⊆ X with

pt(C) =
b

t

d− t
d− b

for all t ∈ (b, B) is to force Nδ(C) to oscillate as fast as possible as δ → 0. We alternate between
choosing cubes according to Method 1 and 2 as fast as we can making sure that the lower box dimension
is b and the upper box dimension is B. Unfortunately, there is a bound on how quickly we can do
this (seen in Lemma 4.7 (6)). We construct C in the following way. Use Method 1 from step 1 until
k1 where k1 ∈ N is the first time that

M2−k1 (C) 6 2k1b

then change to Method 2 from step k1 + 1 until k2 > k1 where k2 ∈ N is the next occasion where

M2−k2 (C) > 3d 2B 2k2B

then change back to Method 1. Repeat this process as k →∞ to obtain an infinite increasing sequence
{kn}n∈N where

M2−k2n−1 (C) 6 2k2n−1b (4.14)

and
M2−k2n (C) > 3d 2k2nB (4.15)

for each n ∈ N. Furthermore, it is clear that

2−b 2kb 6M2−k(C) 6 3d 2d 2kB

for all k ∈ N and it follows from this and (4.14, 4.15) that b = dimBC < dimBC = B. Let t ∈ (b, B)
and observe that

pt(C) 6
b

t

d− t
d− b

by Lemma 4.7 (6). We will now show the opposite inequality. For each k2n above, let k2n be the
biggest integer less than or equal to Bt−1k2n and let k2n be the smallest integer greater than or equal
to (d−B)(d− t)−1k2n. It follows that for each n ∈ N we have

N2−k2n (C) > 3−dM2−k2n (C) > 3−dM2−k2n (C) > 3−d 3d 2k2nB > 2k2nt =
(
2−k2n

)−t
and

N2−k2n (C) > 3−dM2−k2n (C) > 3−d 2(k2n−k2n)dM2−k2n (C) > 3−d 2(k2n−k2n)d3d 2k2nB >
(
2−k2n

)−t
.

Clearly for δ ∈ (2−k2n , 2−k2n) we have Nδ(C) > δ−t. This implies that, asymptotically, pt,δ(C) cannot

be smaller than the case where δ = 2
−k2(n+1) and, writing p = p

t,2
−k2(n+1) (C),

2
−k2(n+1)p = 2−k2n ,

i.e. if p = k2n/k2(n+1). This yields

pt(C) > lim inf
n→∞

k2n

k2(n+1)
> lim inf

n→∞

k2n

k2(n+1)

(
B/t− 1/k2n

)
(

(d−B)/(d− t) + 1/k2(n+1)

)
>

B

t

d− t
d−B

lim inf
n→∞

k2n

k2(n+1)
. (4.16)
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Fix n ∈ N and observe that

2(k2(n+1)−k2n+1)d 2k2n+1b−b 6 2(k2(n+1)−k2n+1)dM2−k2n+1 (C) 6M
2
−k2(n+1) (C) 6 3d 2d 2k2(n+1)B

6 23d+k2(n+1)B

from which it follows that

(k2(n+1) − k2n+1)d+ k2n+1b− b 6 3d+ k2(n+1)B

and hence
k2n+1

k2(n+1)
>

d−B
d− b

− b+ 3d

k2(n+1)(d− b)
. (4.17)

Also, we have

2−b 2(k2n+1−1)b 6M
2−(k2n+1−1)(C) = M2−k2n (C) 6 3d 2d 2k2nB 6 23d+k2nB

from which it follows that
(k2n+1 − 1)b− b 6 3d+ k2nB

and hence
k2n

k2n+1
>

b

B
− 2b+ 3d

k2n+1B
. (4.18)

It follows from (4.16, 4.17, 4.18) that

pt(C) >
B

t

d− t
d−B

lim inf
n→∞

k2n

k2(n+1)
>

B

t

d− t
d−B

b

B

d−B
d− b

=
b

t

d− t
d− b

which is the desired lower bound and completes the proof.
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5 Inhomogeneous self-affine carpets

5.1 Introduction

In this chapter we continue to investigate inhomogeneous attractors, focusing on verifying or
disproving the relationship (1.6) for dimensions which are not countably stable. In particular, we
analyse inhomogeneous self-affine carpets of the Barański and Lalley-Gatzouras class and consider
the box dimensions.

We find that the relationship (1.6) does not hold in general (even though the IFSs involved
satisfy the OSC) and give some specific conditions for (1.6) to hold, or not hold, depending on
the dimensions of the projections of the condensation set C. Thus the self-affine case displays new
phenomena not observed in the self-similar setting.

5.2 Results

In this section we will state our results. Let I = {Si}i∈I be an IFS in the Barański or Lalley-Gatzouras
class and fix a compact condensation set C ⊆ [0, 1]2. We adopt the terminology used in Chapter 3 to
split up such self-affine carpets into horizontal, vertical or mixed classes and assume that at least one
of the mappings Si is not a similarity. If all the maps are similarities, then we are in the setting of
inhomogeneous self-similar sets, which was dealt with in the previous chapter. Also, as in Chapter 3,
we write ci and di to denote the horizontal and vertical contractions of the map Si. Let F∅ denote
the homogeneous attractor of I and FC denote the inhomogeneous attractor of I together with C. We
will say that FC is in the horizontal/vertical/mixed class if F∅ is in the horizontal/vertical/mixed class.

As in the dimension theory of homogeneous self-affine carpets, the dimensions of orthogonal
projections play an important role. Let π1, π2 denote the orthogonal projections from the plane onto
the first and second coordinates respectively. Write

s1(F∅) = dimB π1(F∅),

s2(F∅) = dimB π2(F∅),

s1(C) = dimBπ1(C),

s1(C) = dimBπ1(C),

s2(C) = dimBπ2(C)

and
s2(C) = dimBπ2(C).
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Note that s1(F∅) and s2(F∅) exist and can be easily computed because they are the box dimensions of
self-similar sets satisfying the OSC, whereas the equalities s1(C) = s1(C) and s2(C) = s2(C) may not
hold, even if the box dimension of C exists. Finally, let sA, sA, sB and sB , be the unique solutions of∑

i∈I
c
max{s1(F∅),s1(C)}
i d

sA−max{s1(F∅),s1(C)}
i = 1,

∑
i∈I

c
max{s1(F∅),s1(C)}
i d

sA−max{s1(F∅),s1(C)}
i = 1,

∑
i∈I

d
max{s2(F∅),s2(C)}
i c

sB−max{s2(F∅),s2(C)}
i = 1

and ∑
i∈I

d
max{s2(F∅),s2(C)}
i c

sB−max{s2(F∅),s2(C)}
i = 1,

respectively. If sA = sA or sB = sB , then write sA and sB respectively for the common values.
Unfortunately, we need to make the following assumption to obtain a sharp formula for the upper
box dimension of FC .

Assumption (A): dimA πi(C) 6 max{si(C), si(F∅)}, for i = 1, 2.

We can now state our results.

Theorem 5.1. Assume (A). If FC is in the horizontal class, then

max{sA,dimBC} 6 dimBFC 6 dimBFC = max{sA,dimBC}.

If FC is in the vertical class, then

max{sB ,dimBC} 6 dimBFC 6 dimBFC = max{sB ,dimBC}.

If FC is in the mixed class, then

max{sA, sB ,dimBC} 6 dimBFC 6 dimBFC = max{sA, sB ,dimBC}.

Furthermore, if we do not assume (A), then the same results are true but with the final equalities
replaced by greater than or equal to.

We will prove Theorem 5.1 in Section 5.4. It is regrettable that we need to assume (A) and we
certainly conjecture that it is not required. In a certain sense it is not important that we need this
assumption, because the main purpose of this chapter is to show that the expected relationship (1.6)
can fail for inhomogeneous carpets and, since we only need assumption (A) for the upper bound, this
does not change the situations where we can demonstrate this failure. Also, we note that without
assumption (A) our methods would yield an upper bound for dimBFC where we use the Assouad
dimensions of projects instead of upper box dimensions in the definition of sA and sB , but we omit
further discussion of this.

Notice that we obtain a precise formula for the upper box dimension, but only estimates for
the lower box dimension. We saw in Chapter 4 that calculating the lower box dimension of
inhomogeneous attractors is a subtle and difficult problem, even in the simpler setting of self-similar
sets. To obtain better estimates here, one could analyse the behaviour of the oscillations of the
function δ 7→ Nδ(C) using CREs, for example, but we do not pursue this and instead focus more
on the upper box dimension and, in particular, the fact that the relationship (1.6) can fail. The
following corollaries are immediate and include some simple sufficient conditions for the relationship
(1.6) to hold, or not hold.
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Corollary 5.2. Suppose the box dimensions of C and the orthogonal projections of C exist and assume
(A). If FC is in the horizontal class, then

dimB FC = max{sA,dimB C}.

If FC is in the vertical class, then

dimB FC = max{sB ,dimB C}.

If FC is in the mixed class, then

dimB FC = max{sA, sB ,dimB C}.

Corollary 5.3. Assuming (A), the relationship (1.6) holds for upper box dimension, i.e.

dimBFC = max{dimBF∅,dimBC},

in each of the following cases:

(1) If FC is in the horizontal class and s1(C) 6 s1(F∅)

(2) If FC is in the vertical class and s2(C) 6 s2(F∅)

(3) If FC is in the mixed class, s1(C) 6 s1(F∅) and s2(C) 6 s2(F∅)

Corollary 5.4. The relationship (1.6) fails for lower box dimension, i.e.

dimBFC > max{dimBF∅,dimBC},

in each of the following cases:

(1) If FC is in the horizontal class, sA > dimBC and s1(C) > s1(F∅)

(2) If FC is in the vertical class, sB > dimBC and s2(C) > s2(F∅)

(3) If FC is in the mixed class, max{sA, sA} > dimBC, s1(C) > s1(F∅) and s2(C) > s2(F∅).

Similarly, the relationship (1.6) fails for upper box dimension, i.e.

dimBFC > max{dimBF∅,dimBC},

in each of the following cases:

(1) If FC is in the horizontal class, sA > dimBC and s1(C) > s1(F∅)

(2) If FC is in the vertical class, sB > dimBC and s2(C) > s2(F∅)

(3) If FC is in the mixed class, max{sA, sA} > dimBC, s1(C) > s1(F∅) and s2(C) > s2(F∅).

In a certain sense, Corollary 5.4 is the most interesting as it gives simple, and easily constructible,
conditions for the relationship (1.6) to fail. We will construct such an example in section 5.3.1.

Although the underlying homogeneous IFSs automatically satisfy the OSC, it is worth remarking
that our results impose no further separation conditions concerning the condensation set C. In
particular, C may have arbitrary overlaps with F∅.

It would be interesting to extend the results in this case to the more general carpets intro-
duced by Feng and Wang or, indeed, the box-like sets we introduced in Chapter 2. However, there
are some additional difficulties in these cases. Indeed, the Feng-Wang case is intimately related to
the question of whether the relationship (1.6) holds for self-similar sets not satisfying the OSC, see
Question 4.4 in Chapter 4. In particular, the sets π1(FC) and π2(FC) are inhomogeneous self-similar
sets and knowledge of their dimension is crucial in the subsequent proofs. Furthermore, in the box-like
case, one would need to extend the results on inhomogeneous self-similar sets to the graph-directed
case. There is certainly scope for future research here, and it is easily seen that our methods give
solutions to the more general problem in certain cases and can always provide non-trivial estimates;
however, we omit further discussion.
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5.3 Examples

5.3.1 Inhomogeneous fractal combs

We give a construction of an inhomogeneous Bedford-McMullen carpet, which we refer to as an
inhomogeneous fractal comb which exhibits some interesting properties. The underlying homogeneous
IFS will be a Bedford-McMullen construction where the unit square has been divided into 2 columns
of width 1/2, and n > 2 rows of height 1/n. The IFS is then made up of all the maps which correspond
to the left hand column. The condensation set for this construction is taken as C = [0, 1] × {0}, i.e.
the base of the unit square. The inhomogeneous attractor is termed the inhomogeneous fractal comb
and is denoted by FnC .

It follows from Theorem 5.1 that dimBF
n
C = dimBF

n
C is the unique solution of

n 2−1 n1−s = 1

which gives
dimBF

n
C = dimBF

n
C = 2− log 2/ log n > 1.

However,
max{dimBF∅, dimBC} = 1

and thus our fractal comb provides a simple example showing that the ‘expected relationship’ for
upper box dimension (1.6) can fail for self-affine sets, even if the homogeneous IFS satisfies the OSC.
This is in stark contrast to the self-similar setting, see Corollary 4.2.

This example has another interesting property: it shows that dimBF
n
C does not just depend

on the sets F∅ and C, but also depends on the IFS itself. To see this observe that F∅ and C do not
depend on n, but dimBF

n
C does. In fact F∅ = {0} × [0, 1], i.e. the left hand side of the unit square,

for any n. Again, this behaviour is not observed in the self-similar setting.

Finally, observe that, although the inhomogeneous fractal combs are subsets of R2 and the ex-
pected box dimension is 1, we can find examples where the achieved box dimension is arbitrarily close
to 2, demonstrating that, in this case, there is no limit to how ‘badly’ the relationship (1.6) can fail.

Figure 17: Two fractal combs: the inhomogeneous fractal combs F 8
C , with box dimension 5/3 (left);

and F 4
C , with box dimension 3/2 (right).
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5.3.2 A more exotic example

In this section we provide an example with a slightly more exotic looking structure. Despite this,
however, it is perhaps less interesting than the previous one as the relationship (1.6) holds. The
underlying homogeneous IFS will be in the mixed class and will consist of the mappings

S1 =

(
3
10 0
0 3

10

)
,

S2 =

(
3
10 0
0 7

10

)
+

(
0
3
10

)
and

S3 =

(
7
10 0
0 3

10

)
+

(
3
10
0

)
and the condensation set will be the Sierpiński triangle.

Figure 18: The homogeneous Barański type carpet described above (left) and the corresponding
inhomogeneous carpet with condensation set based on the Sierpiński triangle (right).

One can easily see that sA = sB = s is the solution of(
3
10

)(
3
10

)s−1
+
(

3
10

)(
7
10

)s−1
+
(

7
10

)(
3
10

)s−1
= 1

which is s = 1.2647 . . . and it follows from Theorem 5.1 that

dimBFC = dimBFC = max{s,dimB C} = max{s, log 3/ log 2} =
log 3

log 2
= 1.5849 . . .

5.4 Proofs

5.4.1 Preliminary results

In this section we will introduce some notation and establish some simple estimates before beginning
the main proofs.

For i ∈ I∗, let

πi =

{
π1 if ci > di
π2 if ci < di

si (F∅) =

{
s1(F∅) if ci > di
s2(F∅) if ci < di
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si (C) =

{
s1(C) if ci > di
s2(C) if ci < di

si (C) =

{
s1(C) if ci > di
s2(C) if ci < di

The sets π1(O) and π2(O) are inhomogeneous self-similar sets with condensation sets π1(C) and π2(C)
respectively. The underlying IFSs (derived in the obvious way from the original IFS) satisfy the OSC
and so it follows from Corollary 4.6 that

max{s1(F∅), s1(C)} 6 dimBπ1(O) 6 dimBπ1(O) = max{s1(F∅), s1(C)}

and
max{s2(F∅), s2(C)} 6 dimBπ2(O) 6 dimBπ2(O) = max{s2(F∅), s2(C)}.

It follows that, for all ε ∈ (0, 1], there exists a constant Cε > 1 such that for all i ∈ I∗ and all
δ ∈ (0, α−1

min] we have

C−1
ε δ−max{si (C),si (F∅)}+ε 6 Nδ

(
πi (O)

)
6 Cεδ

−max{si (C),si (F∅)}−ε (5.1)

For δ ∈ (0, 1] we define the δ-stopping, Iδ, as follows:

Iδ =
{
i ∈ I∗ : α2(i) < δ 6 α2(i)

}
.

Note that for i ∈ Iδ we have
αmin δ 6 α2(i) < δ. (5.2)

5.4.2 Proof of the lower bound for the lower box dimension in Theorem 5.1

In this section we will prove that if F is in the mixed class, then max{sA, sB ,dimBC} 6 dimBFC .
The proof of the analogous inequality for the horizontal and vertical classes is similar and omitted.
Since lower box dimension is monotone, it suffices to show that max{sA, sB} 6 dimBFC , and we will
assume without loss of generality that max{sA, sB} = sA.

Let ε ∈ (0, sA), δ ∈ (0, 1] and U be any closed square of sidelength δ. Also, let

M = min
{
n ∈ N : n > α−1

min + 2
}
.

Since {Si

(
[0, 1]2

)
}i∈Iδ is a collection of pairwise disjoint open rectangles each with shortest side having

length at least αminδ, it is clear that U can intersect no more than M2 of the sets {Si(O)}i∈Iδ since
Si(O) ⊆ Si

(
[0, 1]2

)
for all i ∈ Iδ. It follows that, using the δ-mesh definition of Nδ, we have

∑
i∈Iδ

Nδ
(
Si (O)

)
6 M2Nδ

( ⋃
i∈Iδ

Si (O)

)
6 M2Nδ(O).

This yields

Nδ(O) > 1
M2

∑
i∈Iδ

Nδ
(
Si (O)

)
= 1

M2

∑
i∈Iδ

Nδ/α1(i)

(
πi (O)

)
since α2(i) < δ

> 1
M2

∑
i∈Iδ

C−1
ε

(
α1(i)

δ

)max{si (C),si (F∅)}−ε

by (5.1)

= 1
M2Cε

δ−sA+ε
∑
i∈Iδ

α1(i)max{si (C),si (F∅)}δsA−max{si (C),si (F∅)}
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> 1
M2Cε

δ−sA+ε
∑
i∈Iδ

α1(i)max{si (C),si (F∅)}α2(i)sA−max{si (C),si (F∅)}

by (5.2). We now claim that for all i ∈ Iδ we have

α1(i)max{si (C),si (F∅)}α2(i)sA−max{si (C),si (F∅)} > c
max{s1(C),s1(F∅)}
i d

sA−max{s1(C),s1(F∅)}
i .

If ci > di , then we trivially have equality, so assume that ci < di , in which case

α1(i)max{si (C),si (F∅)}α2(i)sA−max{si (C),si (F∅)} = d
max{s2(C),s2(F∅)}
i c

sA−max{s2(C),s2(F∅)}
i

= c
max{s1(C),s1(F∅)}
i d

sA−max{s1(C),s1(F∅)}
i

·
(
di
ci

)max{s1(C),s1(F∅)}+max{s2(C),s2(F∅)}−sA

> c
max{s1(C),s1(F∅)}
i d

sA−max{s1(C),s1(F∅)}
i

since it is easily seen that sA 6 max{s1(C), s1(F∅)} + max{s2(C), s2(F∅)}. Combining this with the
above estimate yields

Nδ(O) > 1
M2Cε

δ−sA+ε
∑
i∈Iδ

c
max{s1(C),s1(F∅)}
i d

sA−max{s1(C),s1(F∅)}
i

= 1
M2Cε

δ−(sA−ε)

by repeated application of the definition of sA. This proves that dimBFC = dimBO > sA − ε and
letting ε tend to zero gives the desired lower bound.

5.4.3 Proof of the upper bound for the upper box dimension in Theorem 5.1

In this section we will prove that if FC is in the mixed class and satisfies assumption (A), then
dimBFC 6 max{sA, sB ,dimBC}. The proof of the analogous inequality for the horizontal and vertical
classes is similar and omitted. Let s = max{sA, sB ,dimBC} and ε > 0. Since FC = O and upper box
dimension is stable under taking closures, it suffices to estimate dimBO. We have

Nδ(O) = Nδ

( ⋃
i∈Iδ

Si (O) ∪
⋃

i∈I∗∪{ω}:

α2(i)>δ

Si (C)

)

6
∑
i∈Iδ

Nδ
(
Si (O)

)
+

∑
i∈I∗∪{ω}:

α2(i)>δ

Nδ
(
Si (C)

)
.

We will analyse these two terms separately. For the first term∑
i∈Iδ

Nδ
(
Si(O)

)
=

∑
i∈Iδ

Nδ/α1(i)

(
πi (O)

)
since α2(i) < δ

6
∑
i∈Iδ

Cε

(
α1(i)

δ

)max{si (C),si (F∅)}+ε

by (5.1)

= Cε δ
−s−ε

∑
i∈Iδ

α1(i)max{si (C),si (F∅)}δs−max{si (C),si (F∅)}

6 Cε α
−2
min δ

−s−ε
∑
i∈Iδ

α1(i)max{si (C),si (F∅)}α2(i)s−max{si (C),si (F∅)} by (5.2)
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6 Cε α
−2
min δ

−s−ε

(∑
i∈Iδ

c
max{s1(C),s1(F∅)}
i d

sA−max{s1(C),s1(F∅)}
i

+
∑
i∈Iδ

d
max{s2(C),s2(F∅)}
i c

sB−max{s2(C),s2(F∅)}
i

)

6 2Cε α
−2
min δ

−(s+ε)

by repeated application of the definitions of sA and sB . The second term is awkward as we have to
estimate Nδ

(
Si (C)

)
for i with various different values of α2(i) > δ. This is the only occasion in the

proof where we require assumption (A).

Lemma 5.5. Assume (A), let ε > 0 and let δ ∈ (0, 1]. There exists a constant Dε > 0 such that for
all i ∈ I∗ ∪ {ω} such that α2(i) > δ, we have

Nδ
(
Si(C)

)
6 Dε δ

−(s+ε) α1(i)max{si(C),si(F∅)}α2(i)s+ε/2−max{si(C),si(F∅)}

Proof. First take a cover of C by fewer than

D1,ε

(
α2(i)

δ

)s+ε
balls of diameter δ/α2(i), where D1,ε is a universal constant depending only on ε. Taking images of
these sets under Si gives a cover of Si (C) by ellipses with minor axis δ and major axis δα1(i)/α2(i).
Projecting each of these ellipses under πi gives an interval of length δα1(i)/α2(i), the intersection of
which with πi

(
Si (C)

)
may be covered by fewer than

D2,ε

(
δα1(i)/α2(i)

δ

)dimA πi (C)+ε/2

= D2,ε

(
α1(i)

α2(i)

)dimA πi (C)+ε/2

intervals of radius δ, where D2,ε is a universal constant depending only on ε. Pulling each of these
intervals back up to Si (C) and applying assumption (A) gives a δ cover of Si (C) by fewer than

D1,ε

(
α2(i)

δ

)s+ε
D2,ε

(
α1(i)

α2(i)

)dimA πi (C)+ε/2

6 D1,εD2,ε δ
−(s+ε) α1(i)max{si (C),si (F∅)}α2(i)s+ε/2−max{si (C),si(F∅)}

which proves the lemma.

We can now estimate the awkward second term. We have∑
i∈I∗∪{ω}:

α2(i)>δ

Nδ
(
Si (C)

)
6 Dε δ

−(s+ε)
∑

i∈I∗∪{ω}:

α2(i)>δ

α1(i)max{si (C),si (F∅)}α2(i)s+ε/2−max{si (C),si (F∅)}

by Lemma 5.5

6 Dε δ
−(s+ε)

∞∑
k=0

αkε/2max

( ∑
i∈Ik

c
max{s1(C),s1(F∅)}
i d

sA−max{s1(C),s1(F∅)}
i

+
∑
i∈Ik

d
max{s2(C),s2(F∅)}
i c

sB−max{s2(C),s2(F∅)}
i

)

6 2Dε δ
−(s+ε)

∞∑
k=0

(
αε/2max

)k
by the definitions of sA and sB
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6
2Dε

1− αε/2max

δ−(s+ε).

Combining the two estimates given above yields

Nδ(O) 6

(
2Cε α

−2
min +

2Dε

1− αε/2max

)
δ−(s+ε)

which proves that dimBFC = dimBO 6 s+ε and letting ε tend to zero gives the desired upper bound.

5.4.4 Proof of the lower bound for the upper box dimension in Theorem 5.1

In this section we will prove the lower bounds for the the upper box dimension of inhomogeneous
self-affine carpets, which, combined with the upper bound in the previous section, yields a precise
formula. We will begin by proving the result in a special case.

Proposition 5.6. Let FC be in the horizontal class and assume that ci = c > d = di for all i ∈ I.
Then

dimBFC > max{sA,dimBC}.

Proof. Since upper box dimension is monotone, it suffices to show that dimBFC > sA. Since
π1(O) is an inhomogeneous self-similar set which satisfies the OSC, we know from Corollary 4.2
that dimBπ1(O) = max{s1(C), s1(F∅)}. It follows that for all ε > 0 we can find infinitely many k ∈ N
such that

N(d/c)k
(
π1(O)

)
>
(
(d/c)k

)−(max{s1(C),s1(F∅)}−ε). (5.3)

Fix such a k, let ε ∈ (0, sA), and U be any closed square of sidelength dk. Since {Si

(
[0, 1]2

)
}i∈Ik is a

collection of pairwise disjoint open rectangles each with shortest side having length dk which is strictly
less than the longer side, it is clear that U can intersect no more than 6 of the sets {Si(O)}i∈Ik since
Si(O) ⊆ Si

(
[0, 1]2

)
for all i ∈ Ik. It follows that, using the δ-mesh definition of Nδ, we have

∑
i∈Ik

Ndk
(
Si (O)

)
6 6Ndk

( ⋃
i∈Ik

Si (O)

)
6 6Ndk(O).

This yields

Ndk(O) > 1
6

∑
i∈Ik

Ndk
(
Si (O)

)
= 1

6

∑
i∈Ik

N(d/c)k
(
π1(O)

)
since α2(i) = dk

> 1
6

∑
i∈Ik

(
(d/c)k

)−(max{s1(C),s1(F∅)}−ε) by (5.3)

> 1
6 (dk)−sA+ε

(∑
i∈I

cmax{s1(C),s1(F∅)}dsA−max{s1(C),s1(F∅)}

)k

> 1
6 (dk)−(sA−ε)

by the definition of sA, which proves that dimBFC > dimBO > sA− ε and letting ε tend to zero gives
the desired lower bound.

We will now use Proposition 5.6 to prove the result in the general case. The key idea is to approximate
the IFS ‘from within’ by subsytems which fall into the subclass used in Proposition 5.6. This approach
is reminiscent of that used by Ferguson, Jordan and Shmerkin when studying projections of carpets
[FJS, Lemma 4.3]. There the authors prove that for all ε > 0 any Lalley-Gatzouras or Barański
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system, I, has a finite subsystem Jε ⊆ Im (for some m ∈ N), with the following properties: Jε consists
only of maps with linear part of the form (

c 0
0 d

)
for some constants c, d ∈ (0, 1) depending on ε; the Hausdorff dimension of the attractor of Jε is no
more than ε smaller than the Hausdorff dimension of the attractor of I; and Jε has uniform fibres
(either vertical or horizontal, depending on the relative size of c and d). It is interesting to note that
one cannot approximate the box and packing dimensions ‘from within’ in the same way. To see this
observe that in the uniform fibres case the Hausdorff, box and packing dimensions coincide. As such
if these dimensions did not coincide in the original construction, then one cannot find subsystems for
which they coincide but get arbitrarily close to the box dimension. It is natural to ask if one can do
this if the uniform fibres condition is dropped. We have been unable to show this and it seems that the
problem is somehow linked to the fact that the packing dimension does not behave well with respect
to fixing prescribed frequencies of maps in the IFS. For examples of such bad behaviour, we note
that for Bedford-McMullen carpets there does not usually exist a Bernoulli measure with full packing
dimension and the packing spectrum of Bernoulli measures supported on self-affine carpets need not
peak at the ambient packing dimension (Thomas Jordan, personal communication). In contrast to
this, there is always a Bernoulli measure with full Hausdorff dimension and the Hausdorff spectrum
always peaks at the ambient Hausdorff dimension, [Ki, JR]. Also, see the related work of Nielsen [N]
on subsets of carpets consisting of points where the digits in the expansions occur with prescribed
frequencies. Fortunately, for the purposes of this chapter, we do not need to approximate the box
dimension from within, but rather approximate the quantities sA and sB , which we can do.

Proposition 5.7. Let FC be an inhomogeneous self-affine carpet in the horizontal or mixed class and
assume that s1(C) > s1(F∅). Then for all ε > 0, there exists a finite subsystem Jε = {Si}i∈Jε for
some Jε ⊆ Im and m ∈ N, with the property that for all i ∈ Jε we have ci = c, di = d for some
constants c, d ∈ (0, 1) depending on ε; and the number sA defined by Jε is no more than ε smaller
than the number sA defined by I.

Proof. We will use a version of Stirling’s approximation for the logarithm of large factorials. This
states that for all n ∈ N \ {1} we have

n log n− n 6 log n! 6 n log n− n+ log n. (5.4)

For i ∈ I, let

pi = c
s1(C)
i d

sA−s1(C)
i

and for k ∈ N, let

m(k) =
∑
i∈I
bpikc ∈ N

and note that k − |I| 6 m(k) 6 k. Consider the m(k)th iteration of I and let

Jk =
{
j = (j1, . . . , jm(k)) ∈ Im(k) : #{n : jn = i} = bpikc

}
.

It is straightforward to see that

|Jk| =
m(k)!∏
i∈Ibpikc!

(5.5)

and for each j ∈ Jk we have

cj =
∏
i∈I

c
bpikc
i =: c

and
dj =

∏
i∈I

d
bpikc
i =: d.

Indeed, these facts were observed in [FJS]. We can now use this information to estimate the number
sA corresponding to Jk, which we will denote by sA(Jk) to differentiate it from the number sA
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corresponding to I, which we will denote by sA(I). Since Jk is a subsystem of I and since s1(C) >
s1(F∅), it follows by definition that

sA(I) > sA(Jk) =
log|Jk|
− log d

+ s1(C)

(
1− log c

log d

)

=
logm(k)!−

∑
i∈I logbpikc!

− log d
+ s1(C)

(
1− log c

log d

)
by (5.5)

>
m(k) logm(k)−m(k)−

∑
i∈I

(
bpikc logbpikc − bpikc+ logbpikc

)
− log d

+ s1(C)

(
1− log c

log d

)
by Stirling’s approximation (5.4)

=
m(k) logm(k)−

∑
i∈Ibpikc logbpikc

− log d
+ s1(C)

(
1− log c

log d

)

+

∑
i∈I logbpikc

log d

>
m(k) logm(k)−

∑
i∈Ibpikc log kc

s1(C)
i d

sA(I)−s1(C)
i

− log d
+ s1(C)

(
1− log c

log d

)

+

∑
i∈I logbpikc

log d

>
−
∑
i∈Ibpikc log c

s1(C)
i d

sA(I)−s1(C)
i

− log d
+ s1(C)

(
1− log c

log d

)

+

∑
i∈I logbpikc −m(k) log(m(k)/k)

log d

= s1(C)
−
∑
i∈Ibpikc log ci

− log d
+
(
sA(I)− s1(C)

)−∑i∈Ibpikc log di

− log d

+ s1(C)

(
1− log c

log d

)
+

∑
i∈I logbpikc −m(k) log(m(k)/k)

log d

= s1(C)
log c

log d
+
(
sA(I)− s1(C)

)
+ s1(C)

(
1− log c

log d

)

+

∑
i∈I logbpikc −m(k) log(m(k)/k)

log d

= sA(I) +

∑
i∈I logbpikc −m(k) log(m(k)/k)

log d

→ sA(I)

as k → ∞. It follows that for any ε > 0, we can choose k large enough to ensure that the IFS
Jk = {Si}i∈Jk satisfies the properties required by Jε, which completes the proof.

We can now complete the proof of the lower bound for the upper box dimension in Theorem 5.1. We
will prove this in the case when FC is an inhomogeneous self-affine carpet in the horizontal class or
in the mixed class with sA > sB . The other cases can clearly be shown by a symmetric argument.

Proof. We wish to show that dimBFC > max{sA,dimBC}. If s1(C) 6 s1(F∅), then the result follows
by the monotonicity of upper box dimension since in this case sA 6 dimBF . If s1(C) > s1(F∅), then
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we may apply Propositions 5.6-5.7 in the following way. Let ε > 0. Then by Proposition 5.7 there
exists a subsystem Jε of the type considered in Proposition 5.6 for which the number sA = sA(Jε)
defined by the system Jε is no more than ε smaller than the number sA = sA(I) defined for the
original system I. Writing FC(Jε) for the attractor of the IFS corresponding to Jε, it follows from
Proposition 5.6 that

dimBFC > dimBFC(Jε) > sA(Jε) > sA(I)− ε

and letting ε tend to zero completes the proof.

85



6 Dimension and measure for typical ran-
dom fractals

6.1 Introduction

In this chapter we consider the dimension and measure of typical attractors of very general random
iterated function systems (RIFSs). Much work has been done on computing the ‘almost sure’
dimensions of these random attractors, where ‘almost sure’ refers to a probability measure on
the sample space Ω induced from a probability vector associated with the finite list of IFSs, see
Section 1.3.5. One expects the dimension to be ‘some sort of weighted average’ of the dimensions
corresponding to the attractors of the deterministic IFSs. Here we consider a topological approach,
based on Baire category, to computing the generic dimensions and obtain results in stark contrast
to those obtained using the probabilistic approach. We are able to obtain very general results, only
requiring that our maps are bi-Lipschitz and assuming no separation conditions. We compute the
typical Hausdorff, packing and box dimensions of the random attractors (in the sense of Baire) and
also study the typical Hausdorff and packing measures with respect to different gauge functions.
Finally, we give a number of illustrative examples based on self-affine carpets.

We find that the dimensions of typical attractors behave rather well. In particular, the typi-
cal Hausdorff and lower box dimension are always as small as possible and the typical packing and
upper box dimensions are always as large as possible. In comparison, the typical Hausdorff and
packing measures behave rather badly. We provide examples where the typical Hausdorff measure in
the critical dimension is as small as possible and examples where it is as large as possible (with similar
examples concerning packing measure). We find that in the simpler setting of random self-similar
sets, the behaviour of the typical Hausdorff and packing measures is more predictable.

6.1.1 The topological approach to randomness

In this chapter we will investigate the generic dimension and measure of Fω from a topological point
of view using Baire category. In this section we will recall the basic definitions and theorems.

Let (X, d) be a complete metric space. A set N ⊆ X is nowhere dense if for all x ∈ N and
for all r > 0 there exists a point y ∈ X \N and t > 0 such that

B(y, t) ⊆ B(x, r) \N.

A set M is said to be of the first category, or, meagre, if it can be written as a countable union of
nowhere dense sets. We think of a meagre set as being small and the complement of a meagre set as
being big. A set T ⊆ X is residual or co-meagre, if X \ T is meagre. A property is called typical if
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the set of points which have the property is residual. In Section 6.3 we will use the following theorem
to test for typicality without mentioning it explicitly.

Theorem 6.1. In a complete metric space, a set T is residual if and only if T contains a countable
intersection of open dense sets or, equivalently, T contains a dense Gδ subset of X.

Proof. See [Ox].

In order to consider typical properties of members of Ω, we need to topologize Ω in a suitable way.
We do this by equipping it with the metric dΩ where, for u = (u1, u2, . . . ) 6= v = (v1, v2, . . . ) ∈ Ω,

dΩ(u, v) = 2−k

where k = min{n ∈ N : un 6= vn}. The space (Ω, dΩ) is complete. For a more detailed account of
Baire category the reader is referred to [Ox].

It is worth noting that one could also formulate the topological approach using the set {Fω : ω ∈ Ω},
equipped with the Hausdorff metric, instead of Ω. In fact, this leads to an equivalent analysis but,
since we do not use this approach directly, we defer discussion of it until Section 6.6 (9).

6.2 Results

In this section we state our results. In Section 6.2.1 we state results which apply in very general
circumstances, namely, the random iterated function systems introduced in Section 1.1. Theorem 6.2
is the main result of the chapter and gives the typical Hausdorff, packing and upper and lower box
dimensions of Fω and, furthermore, gives sufficient conditions for the typical Hausdorff and packing
measures with respect to any (doubling) gauge function to be zero or infinite. In Section 6.2.2 we
specialise to the self-similar setting.

6.2.1 Results in the general setting

Let I = {I1, . . . , IN} be a RIFS where all the maps involved are bi-Lipschitz. This is a very general
setting and includes all random self-similar sets and random self-affine sets as well as many other
nonlinear examples. Our main result is the following.

Theorem 6.2. Let G : (0,∞)→ (0,∞) be a gauge function.

(1) If infu∈Ω HG(Fu) = 0, then for a typical ω ∈ Ω, we have HG(Fω) = 0;

(2) If G is doubling and supu∈Ω PG(Fu) =∞, then for a typical ω ∈ Ω, we have PG(Fω) =∞;

(3) The typical Hausdorff dimension is infimal, i.e., for a typical ω ∈ Ω, we have

dimH Fω = inf
u∈Ω

dimH Fu;

(4) The packing dimension and upper box dimension are supremal and, in fact, for a typical ω ∈ Ω,
we have

dimBFω = dimP Fω = sup
u∈Ω

dimBFu = sup
u∈Ω

dimP Fu;

(5) The lower box dimension is infimal, i.e, for a typical ω ∈ Ω, we have

dimBFω = inf
u∈Ω

dimBFu.

We will prove Theorem 6.2 part (1) in Section 6.3.2; part (2) in Section 6.3.3; and part (5) in Section
6.3.4. Choosing G such that G(t) = ts, part (3) follows from part (1) and part (4) follows from part
(2) combined with the observation that the packing and upper box dimension coincide for all random
attractors, see Lemma 6.10.
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At first sight, it is slightly unsatisfactory that in Theorem 6.2 part (1) we do not get a pre-
cise value for the typical Hausdorff measure if the infimal Hausdorff measure is positive and finite;
and similarly, in part (2) we do not get a precise value for the typical packing measure if the supremal
packing measure is positive and finite. In keeping with the rest of the results and what is ‘usually’
expected when dealing with Baire category, one might expect that either: the typical Hausdorff
measure will be the infimal value and the typical packing measure will be the supremal value; or,
even though Fω will typically be ‘small’ in terms of Hausdorff dimension and ‘large’ in terms of
packing dimension, due to the influence of deterministic IFSs with non-extremal attractors, they will
be ‘large’ in terms of Hausdorff measure and ‘small’ in terms of packing measure. Surprisingly, both
of these phenomena are possible. In the following two theorems we identify a large class of RIFS
where the second type of behaviour occurs. Theorem 6.4 refers to Hausdorff measure and Theorem
6.5 refers to packing measure. Before stating the result, we need to introduce a separation condition.

Definition 6.3. Let µ be a Borel measure supported on X. We say that I satisfies the µ-measure
separated condition (µ-MSC), if, for all ω ∈ Ω, l ∈ D and i, j ∈ Il with i 6= j, we have

µ
(
Sl,i(Fω) ∩ Sl,j(Fω)

)
= 0.

The µ-MSC means that µ will be additive on the subsets of Fω corresponding to images of finite
(distinct) sequences of maps, Sω1,i1 , . . . , Sωk,ik . We will use the µ-MSC with µ equal to either the
Hausdorff or packing measure.

Theorem 6.4. Write h = infu∈Ω dimH Fu and assume that I satisfies the Hh-MSC and that there
exists v = (v1, v2, . . . ) ∈ Ω such that

lim
l→∞

∑
j1∈Iv1 ,...,jl∈Ivl

Lip−(Sv1,j1 ◦ · · · ◦ Svl,jl)h =∞. (6.1)

Then,

(1) If infu∈Ω Hh(Fu) = 0, then for a typical ω ∈ Ω, we have Hh(Fω) = 0;

(2) If infu∈Ω Hh(Fu) > 0, then for a typical ω ∈ Ω, we have Hh(Fω) =∞.

Note that part (1) follows from Theorem 6.2 without the additional assumptions given above. We
will prove Theorem 6.4 (2) in Section 6.3.5. Although condition (6.1) seems a little contrived, what it
really means is that, for some v ∈ Ω, we can give a simple lower bound for the Hausdorff dimension
of Fv which is strictly bigger than the infimal Hausdorff dimension, h.

Theorem 6.5. Write p = supu∈Ω dimP Fu and assume that there exists v = (v1, v2, . . . ) ∈ Ω such
that

lim
k→∞

∑
j1∈Iv1 ,...,jk∈Ivk

Lip+(Sv1,j1 ◦ · · · ◦ Svk,jk)p = 0. (6.2)

Then,

(1) If supu∈Ω Pp(Fu) =∞, then for a typical ω ∈ Ω, we have Pp(Fω) =∞;

(2) If supu∈Ω Pp(Fu) <∞, then for a typical ω ∈ Ω, we have Pp(Fω) = 0.

Note that in Theorem 6.5 we do not require any separation conditions. Part (1) follows from Theorem
6.2 without the additional assumptions given above. We will prove Theorem 6.5 (2) in Section 6.3.6.
Similar to above, condition (6.2) seems a little contrived at first sight but what it really means is
that, for some v ∈ Ω, we can give a simple upper bound for the packing dimension of Fv which is
strictly smaller than the supremal packing dimension, p.

With the previous two theorems in mind, one might be tempted to think that something
much more general is true. Namely, that for s > 0, we might have

(1) If infu∈Ω Hs(Fu) > 0, then for a typical ω ∈ Ω, we have Hs(Fω) = supu∈Ω Hs(Fu);

(2) If supu∈Ω Ps(Fu) <∞, then for a typical ω ∈ Ω, we have Ps(Fω) = infu∈Ω Ps(Fu).

However, this is false. We will demonstrate this by constructing two simple examples in Section 6.4.1.
This ‘bad behaviour’ of the typical packing and Hausdorff measures disappears to a certain extent if
the mappings in the RIFS are similarities. This idea will be developed in the following section.
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6.2.2 Results in the self-similar setting

In this section we extend the results of the previous section in the self-similar setting. It turns out
that for random self-similar sets we can obtain more precise information and, furthermore, many of
the strange phenomena which we observe in the general setting no longer occur. The first example of
this is that, given the UOSC, the dimensions of Fω are bounded by the dimensions of the attractors
of the deterministic IFSs. This allows us to get our hands on the extremal quantities, see Theorem
6.6. Unfortunately, this rather neat property does not always hold in the general situation. In Section
6.4.3 we will give an example of a RIFS satisfying the UOSC for which the infimal (and thus typical)
Hausdorff dimension is strictly less than the minimum Hausdorff dimension of the attractors of the
deterministic IFSs. Secondly, given the UOSC and certain measure separation, we can compute the
exact value of the typical Hausdorff and packing measure, see Theorem 6.7, which we are unable to
do in the general situation.

Throughout this section let I be a RIFS consisting of finitely many deterministic IFSs of simi-
larity mappings on Rn. For each i ∈ D, let si be the solution of∑

j∈Ii

Lip(Si,j)
si = 1

and write smin = mini∈D si and smax = maxi∈D si.

Theorem 6.6. Assume the UOSC is satisfied. Then

(1) 0 < supω∈Ω Psmax(Fω) <∞;

(2) supω∈Ω dimP Fω = supω∈Ω dimBFω = smax;

(3) 0 < infω∈Ω Hsmin(Fω) <∞;

(4) infω∈Ω dimH Fω = infω∈Ω dimBFω = smin.

We will prove Theorem 6.6 parts (1) and (3) in Section 6.3.7. Part (2) follows from part (1) and part (4)
follows from part (3). Given certain measure separation, we can also compute the exact packing and
Hausdorff measure for typical Fω. Write Hmin = infω∈Ω Hsmin(Fω) and Pmax = supω∈Ω Psmax(Fω).

Theorem 6.7. Assume that I satisfies the UOSC and the Psmin-MSC. Then

(1) If smin = smax = s, then for a typical ω ∈ Ω,

dimH Fω = dimP Fω = s

and
0 < Hs(Fω) = Hmin 6 Pmax = Ps(Fω) <∞;

(2) If smin < smax, then for a typical ω ∈ Ω,

dimH Fω = smin < smax = dimP Fω,

Hsmin(Fω) =∞

and
Psmax(Fω) = 0.

We will prove Theorem 6.7 (1) in Section 6.3.8. Note that part (2) follows immediately from
Theorems 6.4 and 6.5. In Section 6.5.1 we construct a simple example where we can apply Theorem
6.7.

It is worth noting here that it is possible to give easily checkable sufficient conditions for the
Psmin-MSC to hold. In particular, if we say that I satisfies the uniform strong open set condition
(USOSC) if the UOSC is satisfied and the open set U can be chosen such that, for every ω ∈ Ω, we
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have U ∩ Fω 6= ∅, then we can use an argument similar to that used by Lalley in [L, Section 6], to
show that the Psmin-MSC is satisfied. Unfortunately, the USOSC is not equivalent to the UOSC as
in the deterministic case, see [Sc1].

We can also obtain a partial result concerning packing measure without assuming any separa-
tion conditions.

Theorem 6.8. Each deterministic IFS, Ii ∈ I, has an attractor with dimension di and similarity
dimension si > di. Assume that smin < maxi di. Write p = supu∈Ω dimP Fu. Then, for a typical
ω ∈ Ω, dimP Fω = p, but Pp(Fω) = 0.

Proof. This follows immediately from Theorem 6.5.

6.3 Proofs

Throughout this section let G : (0,∞)→ (0,∞) be a gauge function.

6.3.1 Preliminary observations

In this section we will gather together some simple preliminary results and observations which will
be used in the subsequent sections without being mentioned explicitly. The proofs are elementary (or
classical) and are omitted.

Lemma 6.9 (scaling properties). Let φ : X → X be a bi-Lipschitz map and F ⊆ X. Then

D−(G,Lip−(φ))HG(F ) 6 HG(φ(F )) 6 D+(G,Lip+(φ))HG(F ),

D−(G,Lip−(φ))PG0 (F ) 6 PG0 (φ(F )) 6 D+(G,Lip+(φ))PG0 (F )

and
D−(G,Lip−(φ))PG(F ) 6 PG(φ(F )) 6 D+(G,Lip+(φ))PG(F ).

In particular, using the standard gauge,

Lip−(φ)sHs(F ) 6 Hs(φ(F )) 6 Lip+(φ)sHs(F ),

Lip−(φ)s Ps0(F ) 6 Ps0(φ(F )) 6 Lip+(φ)s Ps0(F )

and
Lip−(φ)s Ps(F ) 6 Ps(φ(F )) 6 Lip+(φ)s Ps(F ).

Lemma 6.9, says that if the gauge is doubling, then mapping a set under a bi-Lipschitz map only
changes the measure by a constant. Clearly, if φ is bi-Lipschitz, then dimφ(F ) = dimF , where dim
can be any of the four dimensions used here. We can also deduce that, for all ω ∈ Ω, the upper box
dimension and packing dimension coincide.

Lemma 6.10 (packing and upper box dimension). For all ω ∈ Ω, dimP Fω = dimBFω.

To prove this, simply note that all balls centered in Fω contain a bi-Lipschitz image of F(ωk,ωk+1,... )

for some sufficiently large k and, furthermore, Fω can be written as a finite union of bi-Lipschitz
images of F(ωk,ωk+1,... ) and since upper box dimension is finitely stable, dimBF(ωk,ωk+1,... ) = dimBFω
and the result follows. See the discussion on sufficient conditions for the equality of packing and
upper box dimension given in Section 1.2.4 and, in particular, Proposition 1.1.

The following lemma will allow us to approximate Fω in K(X) by approximating ω in Ω,
which will be of vital importance in the subsequent proofs.

Lemma 6.11 (continuity properties). The map Ψ :
(
Ω, dΩ

)
→
(
K(X), dH

)
defined by Ψ(ω) = Fω is

continuous.

Finally, we will state a version of the mass distribution principle which we use to estimate the Hausdorff
and packing measures of random self-similar sets in Section 6.3.7.

90



Proposition 6.12 (mass distribution principle). Let µ be a Borel probability measure supported on a
Borel set F ⊂ Rn and let λ ∈ (0,∞). Then

(1) If lim supr→0 µ
(
B(x, r)

)
r−s 6 λ for all x ∈ F , then Hs(F ) > λ−1;

(2) If lim infr→0 µ
(
B(x, r)

)
r−s > λ for all x ∈ F , then Ps(F ) 6 λ−1 2s.

For a proof of this, see [F7, Proposition 2.2] or [Mat, Theorems 6.9 and 6.11].

6.3.2 Proof of Theorem 6.2 (1)

Suppose infu∈Ω HG(Fu) = 0. We will show that the set

H = {ω ∈ Ω : HG(Fω) = 0}

is residual. Writing Hm,n = {ω ∈ Ω : HG1/m(Fω) < 1
n}, we have

H =
⋂

m,n∈N
Hm,n,

so it suffices to prove that each Hm,n is open and dense in (Ω, dΩ). Fix m,n ∈ N.

(i) Hm,n is open.

Let ω ∈ Hm,n. It follows that there exists a finite (1/m)-cover of Fω by open sets, {Ui},
satisfying ∑

i

G(|Ui|) < 1
n .

Let U = ∂
(
∪i Ui

)
be the boundary of the union of the covering sets, {Ui}, and let

η = min
x∈U,y∈Fω

d(x, y)

which is strictly positive by the compactness of Fω. Now choose r > 0 sufficiently small to ensure
that if u ∈ B(ω, r), then dH(Fω, Fu) < η/2. Let u ∈ B(ω, r) and observe that {Ui} is a (1/m)-cover
for Fu giving thatHG1/m(Fu) 6

∑
iG(|Ui|) < 1

n . It follows that B(ω, r) ⊆ Hm,n and that Hm,n is open.

(ii) Hm,n is dense.

Let ω = (ω1, ω2, . . . ) ∈ Ω and ε > 0. Choose k ∈ N such that 2−k < ε and choose u = (u1, u2, . . . ) ∈ Ω
such that

HG(Fu) <
1/n

|Iω1
| · · · |Iωk |

.

Let v = (ω1, . . . , ωk, u1, u2, . . . ). It follows that dΩ(ω, v) < ε and, since

Fv =
⋃

j1∈Iω1
,...,jk∈Iωk

Sω1,j1 ◦ · · · ◦ Sωk,jk(Fu),

it follows that

HG1/m(Fv) 6 HG(Fv) = HG
( ⋃
j1∈Iω1

,...,jk∈Iωk

Sω1,j1 ◦ · · · ◦ Sωk,jk
(
Fu
))

6
∑

j1∈Iω1
,...,jk∈Iωk

HG
(
Fu
)

6 |Iω1
| · · · |Iωk |HG

(
Fu
)

< 1/n

and so v ∈ Hm,n, proving that Hm,n is dense.
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6.3.3 Proof of Theorem 6.2 (2)

Assume that G is a doubling gauge and that supu∈Ω PG(Fu) =∞. We will show that the set

P = {ω ∈ Ω : PG(Fω) =∞}

is residual. The extra step in the definition of packing measure causes it to be more awkward to work
with than Hausdorff measure. To circumvent these difficulties, we need the following two technical
lemmas.

Lemma 6.13. Suppose F ⊂ X is such that for all open V which intersect F , PG0 (F ∩V ) =∞. Then
PG(F ) =∞.

Proof. Let {Fi}i be a countable sequence of sets such that F ⊂ ∪iFi. The Baire category Theorem
implies that for some i and some open set V , F ∩ V ⊆ Fi and hence, since packing pre-measure is
stable under taking closures, PG0 (Fi) = PG0 (Fi) = ∞. This means that, for every countable cover of
F by closed sets, at least one of the closed sets must have infinite packing pre-measure, proving the
result.

We will use Lemma 6.13 to prove the following Lemma, which will allow us to work with packing
pre-measure instead of packing measure.

Lemma 6.14. We have P = {ω ∈ Ω : PG0 (Fω) =∞}.

Proof. It is clear that P ⊆ {ω ∈ Ω : PG0 (Fω) = ∞}. We will now prove the opposite inclusion. Let
ω ∈ Ω be such that PG0 (Fω) = ∞ and let V be an open set which intersects Fω. Choose k large
enough to ensure that for some i1 ∈ Iω1

, . . . , ik ∈ Iω1
we have

Sω1,i1 ◦ · · · ◦ Sωk,ik
(
F(ωk+1,ωk+2,... )

)
⊆ F ∩ V.

Write φ = Sω1,i1 ◦· · ·◦Sωk,ik and u = (ωk+1, ωk+2, . . . ). Since packing pre-measure is finitely additive,
we have

∞ = PG0 (Fω) = PG0

( ⋃
i1∈Iω1

,...,ik∈Iωk

Sω1,i1 ◦ · · · ◦ Sωk,ik(Fu)

)

6
∑

i1∈Iω1
,...,ik∈Iωk

PG0 (Fu)

6 |Iω1
| · · · |Iωk | PG0 (Fu)

and therefore

PG0 (F ∩ V ) > PG0 (φ(Fu))

> D−
(
G,Lip−(φ)

)
PG0 (Fu)

= ∞.

Finally, by Lemma 6.13, we have that PG(Fω) =∞ and hence ω ∈ P .

Writing Pm,n = {ω ∈ Ω : PG0, 1/m(Fω) > n}, it follows from Lemma 6.14 that

P = {ω ∈ Ω : PG0 (Fω) =∞} =
⋂

m,n∈N
Pm,n,

so it suffices to prove that each Pm,n is open and dense in (Ω, dΩ). Fix m,n ∈ N.
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(i) Pm,n is open.

Let ω ∈ Pm,n. It follows that there exists a finite centered (1/m)-packing of Fω by closed
balls, {Ui}, satisfying ∑

i

G(|Ui|) > n.

Let
η = min

i 6=j
min

x∈Ui,y∈Uj
d(x, y)

which is strictly positive since the sets Ui are closed. Now choose r > 0 sufficiently small to ensure
that, if u ∈ B(ω, r), then dH(Fω, Fu) < η/2 and fix such a u ∈ B(ω, r). It follows that we can find
a centered (1/m)-packing, {Ũi}, of Fu, where Ũi is centered in Fu and has the same diameter as Ui.
It follows that PG0, 1/m(Fu) >

∑
iG(|Ui|) > n and therefore B(ω, r) ⊆ Pm,n, proving that Pm,n is open.

(ii) Pm,n is dense.

Let ω = (ω1, ω2, . . . ) ∈ Ω and ε > 0. Choose k ∈ N such that 2−k < ε and choose u = (u1, u2, . . . ) ∈ Ω
such that

PG0 (Fu) >
n

maxj1∈Iω1
,...,jk∈Iωk D

(
G,Lip−

(
Sω1,j1 ◦ · · · ◦ Sωk,jk

))
Let v = (ω1, . . . , ωk, u1, u2, . . . ). It follows that dΩ(ω, v) < ε and, since

Fv =
⋃

j1∈Iω1 ,...,jk∈Iωk

Sω1,j1 ◦ · · · ◦ Sωk,jk(Fu),

it follows that

PG0, 1/m(Fv) > PG0 (Fv) = PG0

( ⋃
j1∈Iω1

,...,jk∈Iωk

Sω1,j1 ◦ · · · ◦ Sωk,jk(Fu)

)

> max
j1∈Iω1

,...,jk∈Iωk
PG0
(
Sω1,j1 ◦ · · · ◦ Sωk,jk(Fu)

)
> max

j1∈Iω1
,...,jk∈Iωk

D
(
G,Lip−

(
Sω1,j1 ◦ · · · ◦ Sωk,jk

))
PG0 (Fu)

> n

and so v ∈ Pm,n, proving that Pm,n is dense.

6.3.4 Proof of Theorem 6.2 (5)

It is well-known that lower box dimension is not finitely stable, see [F8, Chapter 3], i.e., it is not true
in general that dimBE ∪ F 6 max{dimBE, dimBF}. To get around this problem in the following
proof, we begin with a simple technical lemma.

Lemma 6.15. Let F ⊂ X be such that dimBF = s and let {φi}i∈S be a finite collection of Lipschitz
contractions. Then

dimB

⋃
i∈S

φi(F ) 6 s.

Proof. For all δ > 0 we have

Nδ

( ⋃
i∈S

φi(F )

)
6
∑
i∈S

Nδ
(
φi(F )

)
6
∑
i∈S

Nδ/Lip+(φi)(F ) 6 |S|Nδ(F ).

Taking logs, dividing by − log δ and computing the limes inferior completes the proof.
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We now turn to the proof of Theorem 6.2 (5). Let b = infu∈Ω dimBFu. We will show that the set

B = {ω ∈ Ω : dimBFω 6 b}

is residual, from which Theorem 6.2 (5) follows. Writing

Bn =
⋃

δ∈(0,1/n)

{
ω ∈ Ω : Nδ(Fω) 6 δ−(b+

1
n )
}
,

we have

B =
⋂
n∈N

⋃
δ∈(0,1/n)

{
ω ∈ Ω :

logNδ(Fω)

− log δ
6 b+ 1

n

}
=
⋂
n∈N

Bn,

so it suffices to prove that each Bn is open and dense in (Ω, dΩ). Fix n ∈ N.

(i) Bn is open.

Let ω ∈ Bn. It follows that for some δ < 1/n there exists a δ-cover of Fω by fewer than

δ−(b+
1
n ) open sets, {Ui}. Let U = ∂

(
∪i Ui

)
be the boundary of the union of the covering sets, {Ui},

and let
η = min

x∈U,y∈Fω
d(x, y)

which is strictly positive by the compactness of Fω. Now choose r > 0 sufficiently small
to ensure that if u ∈ B(ω, r), then dH(Fω, Fu) < η/2. Let u ∈ B(ω, r) and observe that {Ui} is

a δ-cover for Fu giving that Nδ(Fu) 6 δ−(b+
1
n ). It follows that B(ω, r) ⊆ Bn and therefore Bn is open.

(ii) Bn is dense.

Let ω = (ω1, ω2, . . . ) ∈ Ω and ε > 0. Let u = (u1, u2, . . . ) ∈ Ω be such that dimBFu < b+ 1/n. Now
choose k ∈ N such that 2−k < ε and let v = (ω1, . . . , ωk, u1, u2, . . . ). It follows that dΩ(v, ω) < ε and,
furthermore,

Fv =
⋃

j1∈Iω1
,...,jk∈Iωk

Sω1,j1 ◦ · · · ◦ Sωk,jk(Fu).

and since, for all j1 ∈ Iω1
, . . . , jk ∈ Iωk the map Sω1,j1 ◦ · · · ◦ Sωk,jk is a Lipschitz contraction, it

follows from Lemma 6.15 that dimBFv 6 dimBFu < b+ 1/n and so v ∈ Bn, proving that Bn is dense.

6.3.5 Proof of Theorem 6.4 (2)

Write h = infu∈Ω dimH Fu and assume that infu∈Ω Hh(Fu) = H0 > 0, v = (v1, v2, . . . ) ∈ Ω satisfies
condition (6.1) and that the RIFS satisfies the Hh-MSC. We will show the set

M = {ω ∈ Ω : Hh(Fω) <∞}

is meagre, from which the result follows. Writing Mn = {ω ∈ Ω : Hh(Fω) < n}, we have

M =
⋃
n∈N

Mn,

so it suffices to show that each Mn is nowhere dense. Fix n ∈ N, ω ∈Mn and r > 0. Now choose k ∈ N
such that 2−k < r. It follows that the open ball Bl = B

(
(ω1, . . . , ωk, v1, v2, . . . ), 2−l

)
is contained in

B(ω, r) for all l > k. Let u ∈ Bl, and note that

u = (ω1, . . . , ωk, v1, . . . , vl−k, u1, u2, . . . )

for some (u1, u2, . . . ) ∈ Ω. Noting that the RIFS satisfies the Hh-MSC and that Lip− is supermulti-
plicative, we have
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Hh(Fu)

= Hh
( ⋃
i1∈Iω1

,...,ik∈Iωk

⋃
j1∈Iv1 ,...,jl−k∈Ivl−k

Sω1,i1 ◦ · · · ◦ Sωk,ik ◦ Sv1,j1 ◦ · · · ◦ Svl−k,jl−k
(
F(u1,u2,... )

))

=
∑

i1∈Iω1
,...,ik∈Iωk

∑
j1∈Iv1 ,...,jl−k∈Ivl−k

Hh
(
Sω1,i1 ◦ · · · ◦ Sωk,ik ◦ Sv1,j1 ◦ · · · ◦ Svl−k,jl−k

(
F(u1,u2,... )

))

>
∑

i1∈Iω1 ,...,ik∈Iωk

∑
j1∈Iv1 ,...,jl−k∈Ivl−k

Lip−(Sω1,i1 ◦ · · · ◦ Sωk,ik ◦ Sv1,j1 ◦ · · · ◦ Svl−k,jl−k)h Hh
(
F(u1,u2,... )

)

> H0

( ∑
i1∈Iω1 ,...,ik∈Iωk

Lip−(Sω1,i1 ◦ · · · ◦ Sωk,ik)h

)( ∑
j1∈Iv1 ,...,jl−k∈Ivl−k

Lip−(Sv1,j1 ◦ · · · ◦ Svl−k,jl−k)h

)

→∞

as l → ∞. It follows that we may choose l large enough to ensure Bl ⊆ B(ω, r) \Mn and so Mn is
nowhere dense.

6.3.6 Proof of Theorem 6.5 (2)

Write p = supu∈Ω dimP Fu and assume that supu∈Ω Pp(Fu) = P0 <∞ and that v = (v1, v2, . . . ) ∈ Ω
satisfies condition (6.2). We will show the set

N = {ω ∈ Ω : Ph(Fω) > 0}

is meagre, from which the result follows. Writing Nn = {ω ∈ Ω : Pp(Fω) > 1/n}, we have

N =
⋃
n∈N

Nn,

so it suffices to show that each Nn is nowhere dense. Fix n ∈ N, ω ∈ Nn and r > 0. Now choose k ∈ N
such that 2−k < r. It follows that the open ball Bl = B

(
(ω1, . . . , ωk, v1, v2, . . . ), 2−l

)
is contained in

B(ω, r) for all l > k. Let u ∈ Bl, and note that

u = (ω1, . . . , ωk, v1, . . . , vl−k, u1, u2, . . . )

for some (u1, u2, . . . ) ∈ Ω. Noting that Lip+ is submultiplicative, we have

Pp(Fu)

= Pp
( ⋃
i1∈Iω1 ,...,ik∈Iωk

⋃
j1∈Iv1 ,...,jl−k∈Ivl−k

Sω1,i1 ◦ · · · ◦ Sωk,ik ◦ Sv1,j1 ◦ · · · ◦ Svl−k,jl−k
(
F(u1,u2,... )

))

6
∑

i1∈Iω1
,...,ik∈Iωk

∑
j1∈Iv1 ,...,jl−k∈Ivl−k

Pp
(
Sω1,i1 ◦ · · · ◦ Sωk,ik ◦ Sv1,j1 ◦ · · · ◦ Svl−k,jl−k

(
F(u1,u2,... )

))
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6
∑

i1∈Iω1
,...,ik∈Iωk

∑
j1∈Iv1 ,...,jl−k∈Ivl−k

Lip+(Sω1,i1 ◦ · · · ◦ Sωk,ik ◦ Sv1,j1 ◦ · · · ◦ Svl−k,jl−k)p Pp
(
F(u1,u2,... )

)

6 P0

( ∑
i1∈Iω1 ,...,ik∈Iωk

Lip+(Sω1,i1 ◦ · · · ◦ Sωk,ik)p

)( ∑
j1∈Iv1 ,...,jl−k∈Ivl−k

Lip+(Sv1,j1 ◦ · · · ◦ Svl−k,jl−k)p

)

→ 0

as l → ∞. It follows that we may choose l large enough to ensure Bl ⊆ B(ω, r) \ Nn and so Nn is
nowhere dense.

6.3.7 Proof of Theorem 6.6

The proof of Theorem 6.6 is a standard application of the mass distribution principle, Proposition
6.12. Similar arguments can be found in, for example, [F8, Chapter 9].

For each i ∈ D, let si be as in Section 6.2.2 and write c = mini∈D, j∈Ii Lip(Si,j). We will
now define a mass distribution on Fω which will be used in the subsequent proofs. First define a
measure, µsym

ω , on the symbolic space,
∏∞
l=1 Iωl , by

µsym
ω

({
(j1, j2, . . . ) : j1 = i1, . . . , jk = ik

})
= Lip(Sω1,i1)sω1 · · ·Lip(Sωk,ik)sωk

for each (i1, . . . , ik) ∈
∏k
l=1 Iωl . Now transfer µsym

ω to a Borel probability measure µω, supported on
Fω, by

µω(E) = µsym
ω

({
(i1, i2, . . . ) ∈

∞∏
l=1

Iωl :
⋂
k

Sω1,i1 ◦ · · · ◦ Sωk,ik(X) ∈ E
})

for Borel sets E ⊆ X.

Proof of (1)

Since each deterministic IFS satisfies the OSC, it is clear that supω∈Ω Psmax(Fω) >
supω∈ΩHsmax(Fω) > 0. We will now show that supω∈Ω Psmax(Fω) < ∞. Fix ω = (ω1, ω2, . . . ) ∈ Ω,
let x ∈ Fω and r > 0. Now let l ∈ N and i1 ∈ Iω1

, . . . , il ∈ Iωl be such that

x ∈ Sω1,i1 ◦ · · · ◦ Sωl,il(Fω)

and
Lip(Sω1,i1) · · ·Lip(Sωl,il)|X| < r 6 Lip(Sω1,i1) · · ·Lip(Sωl−1,il−1

)|X|.

It follows that

µω(B(x, r)) r−smax > µω

(
Sω1,i1 ◦ · · · ◦ Sωl,il(Fω)

)
r−smax

> Lip(Sω1,i1)sω1 · · ·Lip(Sωl,il)
sωl r−smax

>

(
Lip(Sω1,i1) · · ·Lip(Sωl,il)

r

)smax

>

(
r c |X|−1

r

)smax

=
(
c/|X|

)smax
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and by Proposition 6.12 (2) it follows that Psmax(Fω) 6
(
2 |X|/c

)smax
<∞ and, in particular,

0 < sup
ω∈Ω
Psmax(Fω) <∞

which completes the proof.

Proof of (3)

We will need the following lemma which appears as Lemma 9.2 in [F8].

Lemma 6.16. Let {Vi} be a collection of disjoint open subsets of Rn such that each Vi contains a
ball of radius a1r and is contained in a ball of radius a2r. Then any ball, B, of radius r intersects at
most (1 + 2a2)na−n1 of the closures V i.

Let U be the open set used in the UOSC and let a1, a2 be such that U contains a ball of radius a1 and
is contained in a ball of radius a2. Let I∗ω =

⋃
k∈N

∏k
l=1 Iωl and, for r > 0, let Irω be an r-stopping

defined by

Irω =
{

(i1, i2, . . . , il) ∈ I∗ω : Lip(Sω1,i1) · · ·Lip(Sωl,il) 6 r < Lip(Sω1,i1) · · ·Lip(Sωl−1,il−1
)
}
.

Note that

(1)
{
Sω1,i1 ◦ · · · ◦ Sωl,il(U) : (i1, i2, . . . , il) ∈ Irω

}
is a collection of disjoint open subsets of Rn;

(2) Each Sω1,i1 ◦ · · · ◦ Sωl,il(U) contains a ball of radius c a1r and is contained in a ball of radius
a2r;

(3) For each (i1, i2, . . . , il) ∈ Irω, we have

Sω1,i1 ◦ · · · ◦ Sωl,il(F(ωl+1,ωl+2,... )) ⊆ Sω1,i1 ◦ · · · ◦ Sωl,il(U).

Since each deterministic IFS satisfies the OSC, it is clear that infω∈ΩHsmin(Fω) < ∞. We will now
show that infω∈ΩHsmin(Fω) > 0. Fix ω = (ω1, ω2, . . . ) ∈ Ω, let x ∈ Fω and r > 0. It follows from
(1)–(3) and Lemma 6.16 that

µω(B(x, r)) r−smin = r−smin µω
(
B(x, r) ∩ F

)
= r−smin µsym

ω

({
(i1, i2, . . . ) ∈

∞∏
l=1

Iωl :
⋂
k

Sω1,i1 ◦ · · · ◦ Sωk,ik(X) ∈ B(x, r) ∩ F
})

6 r−smin µsym
ω

( ⋃
(i1,i2,...,il)∈Irω:

B(x,r)∩Sω1,i1
◦···◦Sωl,il (U)6=∅

{
(j1, j2, . . . ) : j1 = i1, . . . , jl = il

} )

6 r−smin

∑
(i1,i2,...,il)∈Irω:

B(x,r)∩Sω1,i1
◦···◦Sωl,il (U)6=∅

Lip(Sω1,i1)sω1 · · ·Lip(Sωl,il)
sωl

6 r−smin

(
Lip(Sω1,i1) · · ·Lip(Sωl,il)

)smin

(1 + 2a2)n(c a1)−n

6 (1 + 2a2)n(c a1)−n

< ∞

and by Proposition 6.12 (1) it follows that Hsmin(Fω) > (1 + 2a2)−n(c a1)n > 0 and, in particular,

0 < inf
ω∈Ω
Hsmin(Fω) <∞

which completes the proof.
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6.3.8 Proof of Theorem 6.7 (1)

Write Hmin = infω∈Ω Hsmin(Fω) and Pmax = supω∈Ω Psmax(Fω) and let s = smin = smax.

Hausdorff measure

We will show that the set
H = {ω ∈ Ω : Hs(Fω) = Hmin}

is residual. Writing Hm,n = {ω ∈ Ω : Hs1/m(Fω) < Hmin + 1
n}, we have

H =
⋂

m,n∈N
Hm,n,

so it suffices to prove that each Hm,n is open and dense in (Ω, dΩ). Fix m,n ∈ N. It can be shown
that Hm,n is open using a similar approach to that used in the proof of Theorem 6.2 (1). We will
now prove that Hm,n is dense.

Let ω = (ω1, ω2, . . . ) ∈ Ω and ε > 0. Choose k ∈ N such that 2−k < ε and choose u = (u1, u2, . . . ) ∈ Ω
such that

Hs(Fu) < Hmin + 1
n .

Let v = (ω1, . . . , ωk, u1, u2, . . . ). It follows that dΩ(ω, v) < ε and, furthermore,

Hs1/m(Fv) 6 Hs(Fv) = Hs
( ⋃
j1∈Iω1

,...,jk∈Iωk

Sω1,j1 ◦ · · · ◦ Sωk,jk
(
Fu
))

6
∑

j1∈Iω1
,...,jk∈Iωk

Lip(Sω1,j1)s · · ·Lip(Sωk,jk)s Hs
(
Fu
)

<
(
Hmin + 1

n

) ∑
j1∈Iω1

,...,jk∈Iωk

Lip(Sω1,j1)s · · ·Lip(Sωk,jk)s

= Hmin + 1
n

where the final equality is due to the fact that s is a solution to the Hutchinson-Moran formula (1.1)
for each deterministic IFS. It follows that v ∈ Hm,n, proving that Hm,n is dense.

Packing measure

We will show that the set P = {ω ∈ Ω : Ps(Fω) = Pmax} is residual. It was proved in
[FHW] that if a compact set has finite packing pre-measure, then the packing measure and packing
pre-measure coincide. Writing Pm,n = {ω ∈ Ω : Ps0, 1/m(Fω) > Pmax − 1

n}, it follows that

P ⊇ {ω ∈ Ω : Ps0(Fω) = Pmax} =
⋂

m,n∈N
Pm,n,

so it suffices to prove that each Pm,n is open and dense. Fix m,n ∈ N. It can be shown using a
similar approach to that used in the proof of Theorem 6.2 (2) that Pm,n is open. We will now show
that it is also dense.

Let ω = (ω1, ω2, . . . ) ∈ Ω and ε > 0. Choose k ∈ N such that 2−k < ε and choose u = (u1, u2, . . . ) ∈ Ω
such that Ps(Fu) > Pmax − 1

n . Let v = (ω1, . . . , ωk, u1, u2, . . . ). It follows that dΩ(ω, v) < ε and,
furthermore,
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Ps0,1/m(Fv) > Ps(Fv) = Ps
( ⋃
j1∈Iω1

,...,jk∈Iωk

Sω1,j1 ◦ · · · ◦ Sωk,jk
(
Fu
))

=
∑

j1∈Iω1 ,...,jk∈Iωk

Lip(Sω1,j1)s · · ·Lip(Sωk,jk)s Ps
(
Fu
)

>
(
Pmax − 1

n

) ∑
j1∈Iω1

,...,jk∈Iωk

Lip(Sω1,j1)s · · ·Lip(Sωk,jk)s

= Pmax − 1
n

where the final equality is due to the fact that s is a solution to to the Hutchinson-Moran formula
(1.1) for each deterministic IFS. It follows that u ∈ Pm,n, proving that Pm,n is dense.

6.4 Self-affine examples with interesting properties

In this section we provide a number of self-affine examples designed to illustrate some of the key points
made in Section 6.2.

6.4.1 Typical Hausdorff measure

In this section we give a simple example which shows that the Hausdorff measure can typically
be positive and finite even if the supremal Hausdorff measure is infinite. The existence of such an
example is slightly surprising in view of Theorem 6.4 and the behaviour observed in the self-similar
setting, see Theorem 6.7.

Let I = {I1, I2} be a RIFS where I1 and I2 are IFSs of orientation-preserving affine self-maps
on [0, 1]2 corresponding to the figure below.

Figure 19: The defining pattern for a random Sierpiński carpet with N = 2, m1 = m2 = 2 and
n1 = n2 = 4.

It is clear that infω∈Ω dimH Fω = 1 and infω∈ΩH1(Fω) = 1 < ∞ = supω∈ΩH1(Fω). It follows
from Theorem 6.2 that the typical Hausdorff dimension is 1. We will now show that the typical
Hausdorff measure is also infimal and, in particular, positive and finite. We will show that the set
H = {ω ∈ Ω : H1(Fω) = 1} is a dense Gδ set and thus residual. It can be shown that H is Gδ using a
very similar approach to that used in the proof of Theorem 6.2 (1). It remains to show that H is dense.

Let ω = (ω1, ω2, . . . ) ∈ Ω and ε > 0. Choose k ∈ N such that 2−k < ε and let v = (ω1, . . . , ωk, 2, 2, . . . ).
It follows that dΩ(ω, v) < ε and, furthermore, since F(2,2,... ) = {0} × [0, 1], we have

Fv =
⋃

j1∈Iω1
,...,jk∈Iωk

Sω1,j1 ◦ · · · ◦ Sωk,jk
(
{0} × [0, 1]

)
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and, since the vertical component of every map in I is a similarity with contraction ratio 1/4 and both
deterministic IFSs consist of 4 maps, we have

H1(Fv) 6
∑

j1∈Iω1
,...,jk∈Iωk

H1

(
Sω1,j1 ◦ · · · ◦ Sωk,jk

(
{0} × [0, 1]

))
= 4k 4−k H1

(
{0} × [0, 1]

)
= 1

and so v ∈ H, proving that H is dense.

6.4.2 Typical packing measure

In this section we give a simple example which shows that the packing measure can typically be positive
and finite even if the infimal packing measure is zero. The existence of such an example is slightly sur-
prising in view of Theorem 6.5 and the behaviour observed in the self-similar setting, see Theorem 6.7.

Let I = {I1, I2} be a RIFS where I1 and I2 are IFSs of orientation-preserving affine self-maps
on [0, 1]2 corresponding to the figure below.

Figure 20: The defining pattern for a random Sierpiński carpet with N = 2, m1 = m2 = 2 and
n1 = n2 = 4.

We claim that infω∈Ω P1(Fω) = 0 < 1 6 supω∈Ω P1(Fω) 6 4 and it follows that supω∈Ω dimP Fω = 1.
The only inequality which is not obvious is supω∈Ω P1(Fω) 6 4, which we will now prove. Fix ω ∈ Ω
and define a mass distribution, µω, on Fω by assigning each level k rectangle mass 2−k in a similar
way to the construction of the measures in Section 6.3.7. It is easy to see that for all x ∈ Fω we
have lim infr→0 µ(B(x, r)) r−1 > 1/2, and it follows from Proposition 6.12 (2) that P1(Fω) 6 4.
Theorem 6.2 gives that the typical packing dimension is 1. We will now show that the typical packing
measure is greater than or equal to 1 and, in particular, positive and finite. We will show that the
set P = {ω ∈ Ω : P1(Fω) > 1} is a dense Gδ set and thus residual. It follows from the main result in
[FHW] and Lemma 6.14 that P = {ω ∈ Ω : P1

0 (Fω) > 1} and it can thus be shown that P is Gδ using a
very similar approach to that used in the proof of Theorem 6.2 (2). It remains to show that P is dense.

Let ω = (ω1, ω2, . . . ) ∈ Ω and ε > 0. Choose k ∈ N such that 2−k < ε and let v = (ω1, . . . , ωk, 2, 2, . . . ).
It follows that dΩ(ω, v) < ε and, furthermore, since F(2,2,... ) = [0, 1]× {0}, we have

Fv =
⋃

j1∈Iω1
,...,jk∈Iωk

Sω1,j1 ◦ · · · ◦ Sωk,jk
(
[0, 1]× {0}

)
and, since the horizontal component of every map in I is a similarity with contraction ratio 1/2 and
both deterministic IFSs consist of 2 maps, we have

P1
0 (Fv) = P1(Fv) =

∑
j1∈Iω1 ,...,jk∈Iωk

P1

(
Sω1,j1◦· · ·◦Sωk,jk

(
[0, 1]×{0}

))
= 2k 2−k P1

(
[0, 1]×{0}

)
= 1

and so u ∈ P , proving that P is dense.

Remark 6.17. We believe that a more delicate application of the mass distribution principle will yield
that, in fact, supω∈Ω P1(Fω) = 1, but since the important thing for our purposes is that the typical
value is positive and finite, we omit further calculation.
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6.4.3 Dimension outside range

In this section we give a simple example which shows that in the non-conformal setting the dimension
of the random attractor need not be bounded below by the minimum dimension of the deterministic
attractors. This is in stark contrast to Theorem 6.6, concerning random self-similar sets. Furthermore,
infu∈Ω dimH Fu is not attained by any finite combination of the determinsitic IFSs. Let I = {I1, I2}
be a RIFS where I1 and I2 are IFSs of orientation-preserving affine self-maps on [0, 1]2 corresponding
to the figure below.

Figure 21: The defining pattern for a random Sierpiński carpet with N = 2, m1 = 2, n1 = 3, m2 = 3
and n2 = 4.

The results of [Be1, McM] give that for both deterministic attractors the Hausdorff, box and packing
dimensions are all equal to 1 + log 2/ log 3 ≈ 1.63. For p ∈ [0, 1], associate a probability vector
(p, 1 − p) with this system. By the result of [FO], given here as Theorem 1.9, the almost sure
Hausdorff dimension of Fω is given by

dimH Fω =
p

log 2p31−p log

(
2log 2p31−p/ log 3p41−p

+ 2log 2p31−p/ log 3p41−p
)

+
1− p

log 2p31−p log

(
4log 2p31−p/ log 3p41−p

+ 4log 2p31−p/ log 3p41−p
)

=
log 2

log 2p31−p + (2− p) log 2

log 3p41−p .

In fact, since each deterministic IFS has uniform vertical fibres, it follows from results in [GuLi2] that
the above formula also gives the almost sure box and packing dimensions of Fω. Plotting this as a
function of p, we obtain

Figure 22: A graph of the almost sure Hausdorff dimension as a function of p. The grey line shows
the dimension of the deterministic attractors.
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Notice the nonlinear dependence on p and the fact that for p ∈ (0, 1) the almost sure dimension is
lower than the minimum dimension of the two deterministic attractors. In particular, the dimension of
Fω is not bounded below by the minimum Hausdorff dimension of the deterministic attractors, despite
the fact that the UOSC is satisfied. As such, it is not at all clear what the infimal (and thus typical)
Hausdorff dimension is. This is in stark contrast to the self-similar setting, see Theorem 6.6 (4). It
is natural to ask if the infimal dimension is attained by an attractor of a deterministic IFS given by
a finite combination of the original deterministic IFSs, I1 and I2. We will argue now that it is not.
Finite combinations of I1, I2 give deterministic IFSs with attractors equal to Fω for some ‘rational’
ω ∈ Ω, i.e., some ω which consists of a finite word over D repeated infinitely often. Fix such a finite
combination, let N1 be the number of times we have used I1 and let N2 be the number of times we have
used I2. It is clear, and in fact it follows from the results in [GuLi2], that the Hausdorff dimension
of the attractor is equal to the almost sure Hausdorff dimension of the attractor corresponding to
p = N1/(N1 + N2) ∈ Q. However, elementary optimisation reveals that the minimum almost sure
Hausdorff dimension (seen as the minimum of the graph above) is attained by p = 2−

√
2 /∈ Q.

6.5 Some fun examples

6.5.1 Typical measure not positive and finite

In this section we will give a straightforward example which has the interesting property that,
although the Hausdorff and packing measures of the attractors of the deterministic IFSs in the
appropriate dimension are positive and finite, the typical Hausdorff and packing measures are infinity
and zero, respectively.

Let S1, S2, S3 : [0, 1]→ [0, 1] be defined by

S1(x) = x/3, S2(x) = x/3 + 1/3, and S3(x) = x/3 + 2/3.

Let I be the RIFS consisting of the two deterministic IFSs, {S1, S3} and {S1, S2, S3}. The attractors
for these systems are the middle 1/3 Cantor set, C1/3, and the unit interval, [0, 1], respectively. Also,
since the first IFS is contained in the second, for all ω ∈ Ω,

C1/3 ⊆ Fω ⊆ [0, 1]

from which it follows that dimensions are bounded between s = log 2
log 3 and 1 and that

inf
u∈Ω
Hs(Fu) = Hs(C1/3) = 1

and
sup
u∈Ω
P1(Fu) = P1([0, 1]) = 1.

It follows from Theorem 6.7 that, for a typical ω ∈ Ω, the set Fω has Hausdorff and lower box dimension
equal to log 2

log 3 and packing and upper box dimension equal to 1 but log 2
log 3 -dimensional Hausdorff measure

equal to ∞ and 1-dimensional packing measure equal to 0. It is clear that the P log 2/ log 3-MSC is
satisfied.

6.5.2 A nonlinear example: random cookie cutters

Although the previous examples illustrate some of the key phenomena we wish to discuss, they have
all been based on RIFSs consisting of translate linear (affine) maps. Of course, Theorems 6.2, 6.4
and 6.5 apply in far more general circumstances than this. In this section we construct a more
complicated example using nonlinear maps to which we can apply Theorems 6.4 and 6.5 to deduce
that neither the typical Hausdorff nor packing measures are positive and finite in the appropriate
dimensions.

Let f1, f2 : [0, 1]→ R be defined by

f1(x) = −5x(x− 1) and f2(x) = 9(x− 1/6)(x− 5/6)
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respectively. We will now construct a RIFS using the inverse branches of f1 and f2.

Figure 23: Graphs of the maps f1 (left) and f2 (right) restricted to the unit square.

Observe that f1 maps each of the intervals X1,1 =
[
0, 1

2 −
1
10

√
5
]

and X1,2 =
[

1
2 + 1

10

√
5, 1

]
bijectively

onto [0, 1] and furthermore f ′1 is continuous with

2 6 |f ′1(x)| 6 5 (6.3)

for x ∈ X1,1 ∪ X1,2. Similarly, f2 maps each of the intervals X2,1 =
[

1
2 −

1
3

√
2, 1

6

]
and X2,2 =[

5
6 ,

1
2 + 1

3

√
2
]

bijectively onto [0, 1], f ′2 is continuous and

6 6 |f ′2(x)| 6 9 (6.4)

for x ∈ X2,1 ∪X2,2. The dynamical properties of f1 and f2 are interesting in their own right, but we
will be particularly interested in the sets

F1 =
⋂
k>0

f−k1

(
[0, 1]

)
and F2 =

⋂
k>0

f−k2

(
[0, 1]

)
which are the dynamical repellers for the maps f1 and f2 respectively. Repellers of this type are often
called cookie cutters and the Hausdorff and packing dimension can be computed via the thermody-
namical formalism, see for example [F7, Chapters 4–5], or [R]. We can view F1 and F2 as attractors of
deterministic IFSs consisting of the inverse branches of f1 and f2. In particular, the inverse branches
of f1 are given by

S1,1(x) = 1
2 −

1
2

√
1− 4

5x and S1,2(x) = 1
2 + 1

2

√
1− 4

5x

and the inverse branches of f2 are given by

S2,1(x) = 1
2 −

1
3

√
1 + x and S2,2(x) = 1

2 + 1
3

√
1 + x.

Let I be the RIFS consisting of I1 = {S1,1, S1,2} and I2 = {S2,1, S2,2}. Here F1 corresponds to
the choice (1, 1, . . . ) ∈ Ω and F2 corresponds to the choice (2, 2, . . . ) ∈ Ω. For an arbitrary ω =
(ω1, ω2, . . . ) ∈ Ω, we obtain a random cookie cutter

Fω =
⋂
k>0

f−1
ω1
◦ · · · ◦ f−1

ωk

(
[0, 1]

)
=
⋂
k>0

⋃
i1,...,ik∈{1,2}

Sω1,i1 ◦ · · · ◦ Sωk,ik
(
[0, 1]

)
.

Write h = infu∈Ω dimH Fu and p = supu∈Ω dimP Fu. It follows from (6.3–6.4), the fact that f ′1, f
′
2 are

continuous and the mean value theorem that, for i = 1, 2,

1/5 6 Lip−(S1,i) 6 Lip+(S1,i) 6 1/2 and 1/9 6 Lip−(S2,i) 6 Lip+(S2,i) 6 1/6

and applying standard estimates for the dimension gives

h 6 dimH F2 6
log 2

log 6
<

log 2

log 5
6 dimP F1 6 p,
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see [F8, Propositions 9.6–9.7]. Furthermore,∑
i1,...,ik∈{1,2}

Lip−(S1,i1 ◦ · · · ◦ S1,ik)h >
(
2 · 5−h

)k →∞
and ∑

i1,...,ik∈{1,2}

Lip+(S2,j1 ◦ · · · ◦ S2,jk)p 6
(
2 · 6−p

)k → 0

as k → ∞. It follows from Theorem 6.2, 6.4 and 6.5 that, for a typical ω ∈ Ω, dimH Fω = h < p =
dimP Fω, but

Hh(Fω) =

 0 if infu∈Ω Hh(Fu) = 0

∞ if infu∈Ω Hh(Fu) > 0

and

Pp(Fω) =

 0 if supu∈Ω Pp(Fu) <∞

∞ if supu∈Ω Pp(Fu) =∞

In particular, for a typical ω ∈ Ω, the random cookie cutter Fω is ‘dimensionless’ in the sense that
neither the s-dimensional Hausdorff measure nor the s-dimensional packing measure are positive and
finite for any s > 0.

6.5.3 Pictorial examples

In this section we give some pictorial examples of attractors of RIFSs to illustrate some of the rich
and complicated structures we can expect to see. Although our results apply in both examples, we
do not perform any calculations.

Figure 24: The attractors of deterministic IFSs I1 (top-left) and I2 (top-right) along with two
random attractors of I = {I1, I2} corresponding to ω = (1, 1, 1, 2, 1, 2, . . . ) (bottom-left) and
ω = (2, 1, 1, 2, 2, 2, . . . ) (bottom-right).
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Figure 25: The attractors of deterministic IFSs I′1 (top-left) and I′2 (top-right) along with two
random attractors of I′ = {I′1, I′2} corresponding to ω = (1, 1, 2, 2, 1, 2, . . . ) (bottom-left) and
ω = (2, 1, 1, 2, 1, 1, . . . ) (bottom-right).

6.6 Discussion

In this section we collect and discuss some of the questions raised by the results in this chapter.

(1) Is the typical measure always extremal? We have shown that the typical dimensions be-
have rather well in that the typical Hausdorff and lower box dimensions are always infimal and the
typical packing and upper box dimensions are always supremal. The typical Hausdorff and packing
measures behave rather worse, and our examples show that they can both be either infimal or
supremal. However, we have not proved that they are always extremal.

(2) Computing the extremal dimensions. Theorem 6.2 tells us that the typical dimensions are
extremal in very general circumstances. However, it gives no indication of how one might compute
the extremal dimensions. This may be a very difficult problem, and the example in Section 6.4.3
sheds some light on that difficulty. Given a RIFS, can we say anything non-trivial about the
extremal dimensions in general? Theorem 6.6 tells us how to compute the extremal dimensions in
the self-similar setting, assuming the UOSC.

(3) The bi-Lipschitz requirement. Throughout this chapter we assumed that all of our maps
are bi-Lipschitz. It is easily seen, however, that not all of our proofs require this. In fact, Theorem
6.2 parts (1), (3) and (5) go through assuming that the maps are simply contractions. Also, a slightly
weaker version of Theorem 6.5 can be proved, which states that if there exists v ∈ Ω satisfying
conditon (6.2) and supu∈Ω Pp(Fu) <∞, then for a typical ω ∈ Ω, we have Pp(Fω) = 0.

(4) Strengthening of Theorem 6.6. In view of the non-conformal example given in Section 6.4,
it seems that the validity of the bounds given in Theorem 6.6 depend on two things: conformality;
and separation properties. It seems likely that one could prove an analogous result using conformal
mappings instead of similarities and replacing each si with the solution of Bowen’s formula corre-
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sponding to the IFS, Ii. What could be a more interesting question is whether or not the UOSC
condition is required in the self-similar case.

(5) Doubling gauges. At first sight it is somewhat curious that in Theorem 6.2 we require
that the gauge is doubling for the result concerning packing measure, but can use arbitrary gauges
for Hausdorff measure. In fact, it is not uncommon that doubling gauges play an important role
when studying packing measure, see, for example, [JP, WW].

(6) Dimension outside range. The example in Section 6.4.3 shows that the dimensions can be
strictly less than the minimum of the dimensions of the attractors of the deterministic IFSs. We have
not, however, proved that the dimensions can be bigger than the maximum of the dimensions of the
attractors of the deterministic IFSs

(7) Separation properties in the self-similar case. In Theorems 6.6 and 6.7 we assumed vari-
ous separation properties. In fact, some parts of these theorems go through assuming slightly weaker
conditions. For example, in Theorem 6.7 (1) we require only the Hsmin-MSC to prove that the typical
Hausdorff measure is infimal and positive and finite. We choose to state these theorems using the
stronger separation properties in order to simplify exposition and not shroud the key ideas.

(8) More randomness. It is possible to introduce more randomness into our construction. In
particular, one might relax the requirement that at the kth level of the construction we use the
same IFS within each kth level iterate of X. In this case our sequence space, Ω, would be replaced
by a space of infinite rooted trees. We believe that although this is a significantly more general
construction, the topological properties of Ω would not change significantly and most of our
arguments should generalise without too much difficulty. One might also consider the intermediate
levels of randomness given by V-variable fractals introduced in [BHS2] and discussed in detail in [Ba2].

(9) Typical versus almost sure. An interesting consequence of Theorem 6.2 is that our topo-
logical approach gives drastically different results to the probabilistic (or measure theoretic)
approach. For example, compare Theorem 1.8 with our result, Theorem 6.7. A similar comparison
has cropped up in a wide variety of situations with, roughly speaking, the topological approach
favouring divergence and the probabilistic approach favouring converegence. Indeed, our results
on dimension are of this nature. A similar phenomenon has arisen in, for example: dimensions of
measures [H, O4]; dimensions of graphs of continuous functions [FH, MW1, HP]; and frequency
properties of expansions of real numbers [S]. These references are given as a sample of some of the
situations where a contrast between topological and probabilistic approaches have been observed
and are by no means a complete list. For example, generic dimensions of measures and graphs of
continuous functions have been studied extensively and, for a more complete survey, the reader is
referred to [O4] and [FH] and the references therein. Concerning our results on the typical Hausdorff
and packing measures of random self-similar sets, a recent result of Balka, Farkas, Fraser and Hyde
[BFFH] has unearthed a remarkably similar phenomenon in a completely different context. Fix a
compact metric space X and consider the Banach space of continuous functions from X into Rn for
some n ∈ N, denoted by Cn(X). They consider the dimension and measure of the image f(X) for
typical f ∈ Cn(X) and obtain the following result.
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Theorem 6.18 ([BFFH]). Let dimTX denote the topological dimension of X (which never exceeds
the Hausdorff dimension and is always an integer). We have the following dichotomy:

(1) If n 6 dimTX, then for a typical f ∈ Cn(X), we have

dimP f(X) = dimH f(X) = n

and
0 < Hn(f(X)) = Pn(f(X)) < ∞.

(2) If n > dimTX, then for a typical f ∈ Cn(X), we have

dimH f(X) = dimTX < n = dimP f(X)

HdimTX(f(X)) =∞

and
Pn(f(X)) = 0

and, moreover, the measure HdimTX |f(X) is not σ-finite.

This result should be compared to our Theorem 6.7, which gives a similar dichotomy where, in one
situation, the typical Hausdorff and packing measures are positive and finite; and, in the other, the
typical Hausdorff measure in the typical Hausdorff dimension is infinite and the typical packing
measure in the typical packing dimension is zero.

(10) Choice of topological space. Baire category theory can be used in much more general
spaces than just complete metric spaces. In fact, all one needs is a Baire topological space, i.e., a
topological space where the intersection of any countable collection of open dense sets is dense. In
Section 6.1.1 we introduced a topology on Ω to allow us to examine the size of subsets of Ω using
Baire category. Of course we could have formulated our analysis in terms of the set Λ = {Fω : ω ∈ Ω}
equipped with the topology induced by the Hausdorff metric. We note here that these two approaches
are essentially equivalent. Define an equivalence relation, R, on Ω by ωRu ⇔ Fω = Fu and
let q : Ω → Ω/R be the quotient map, where Ω/R is equipped with the quotient topology. Let
Ψ : Ω → K(K) be defined by Ψ(ω) = Fω and Ψ̂ : Ω/R → K(K) be defined by Ψ̂([ω]) = Fω and
observe that Ψ is continuous by Lemma 6.11 and that Ψ̂ is clearly well-defined. The following
diagram commutes

Ω Ω/R

Λ

// //q

��

����

Ψ̂

�� ��?
??

??
??

??
??

??
??

??
??

??

Ψ

and furthermore, Ψ̂ is a homeomorphism. It is easy to see that Ω/R, and hence Λ, are Baire and that
images of residual subsets of Ω under q are residual in Ω/R. It follows that all of our results could be
phrased as ‘for a typical set Fω ∈ Λ...’ instead of ‘for a typical ω ∈ Ω...’.
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List of symbols and abbreviations

α1(A) > . . . > αn(A) the singular values of a linear map A on Rn

B(x, r) a metric ball centered at x with radius r which can be taken to be open or closed

COSC condensation open set condition

CRE covering regularity exponent

D−(G, c) lower doubling constant for a gauge function G and a positive real number c

D+(G, c) upper doubling constant for a gauge function G and a positive real number c

dim an unspecified dimension

dimA Assouad dimension

dimB lower box dimension

dimB upper box dimension

dimB box dimension

dimH Hausdorff dimension

dimL lower dimension

dimP packing dimension

dimT topological dimension

dH Hausdorff metric

dΩ standard metric on the symbolic space Ω

FC inhomogeneous attractor with condensation C

Fω random attractor corresponding to ω

G gauge function

HGδ δ-approximate Hausdorff measure in the gauge G

HG Hausdorff measure in the gauge G

Hs Hausdorff measure in the standard gauge x 7→ xs

I a finite index set for an iterated function system (IFS)

I∗ the set of all finite sequences with entries in I
IN the set of all infinite sequences with entries in I
I a random iterated functions system (RIFS)

I an iterated functions system (IFS)

IFS iterated function system

K(X) set of all non-empty compact subsets of X

Lip−(T ) lower Lipschitz constant of a map T

Lip+(T ) upper Lipschitz constant of a map T

Lip(T ) Lipschitz constant of a similarity map T

Ln n-dimensional Lebesgue measure

MSC measure separation condition
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Mδ(F ) maximum number of sets in a centered δ-packing of a set F

N the natural numbers (which do not include 0)

N0 the natural numbers union {0}
Nδ one of the standard covering or packing functions at scale δ

O the orbital set for an inhomogeneous attractor

Ω the set of all infinite sequences with entries in a finite digit set D

OSC open set condition

pt(C) t-covering regularity exponent of a compact set C

pt,δ(C) (t, δ)-covering regularity exponent of a compact set C

PG0 packing pre-measure in the gauge G

PG0,δ δ-approximate packing pre-measure in the gauge G

Ps0 packing pre-measure in the standard gauge x 7→ xs

Ps0,δ δ-approximate packing pre-measure in the standard gauge x 7→ xs

Ps packing measure in the standard gauge x 7→ xs

PG packing measure in the gauge G

φs(A) singular value function of a linear map A : Rn → Rn

ψs(A) modified singular value function of a linear map A : R2 → R2

P a probability measure on Ω induced by a probability vector p

Q the rational numbers

Q(i , r) approximate cube centered at Π(i) with radius r

R the real numbers

RIFS random iterated function system

ROSC rectangular open set condition

SOSC strong open set condition

(X, d) a compact metric space

Z the integers
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