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Abstract

The word problem of a finitely generated group is commonly defined to be a

formal language over a finite generating set.

The class of finite groups has been characterised as the class of finitely

generated groups that have word problem decidable by a finite state automa-

ton.

We give a natural generalisation of the notion of word problem from finitely

generated groups to finitely generated semigroups by considering relations of

strings. We characterise the class of finite semigroups by the class of finitely

generated semigroups whose word problem is decidable by finite state au-

tomata.

We then examine the class of semigroups with word problem decidable

by asynchronous two tape finite state automata. Algebraic properties of semi-

groups in this class are considered, towards an algebraic characterisation.

We take the next natural step to further extend the classes of semigroups

under consideration to semigroups that have word problem decidable by a

finite collection of asynchronous automata working independently.

A central tool used in the derivation of structural results are so-Called

iteration lemmas.

We define a hierarchy of the considered classes of semigroups and connect

our original results with previous research.
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Prologue

“Bouncy trouncy flouncy pouncy, fun fun fun fun fun.

The most wonderful thing about tiggers is I’m the only one!”
—Tigger

(unique up to isomorphism)

Overview

At its core, this thesis is concerned with two disciplines within mathematics,

the theory of semigroups and the theory of formal languages and computation.

Only briefly we touch the topic of formal logic. Both disciplines are compar-

atively young, with both semigroups and computation attracting attention

only in the early 20th century. They are also both naturally intertwined on

many levels.

The main topic of this thesis are finitely generated semigroups that admit

a low complexity algorithm to solve the word problem. Low complexity in

our case means that there exists a finite state computation that determines

equality of elements represented by potentially different strings.

At face value we take a very theoretical point of view with no obvious

direct applications. It should be noted that, quite to the contrary, almost all

concepts are at least implementable as computer algorithms and therefore

available for applications in computational algebra.

vii



viii Prologue

For every lemma or theorem we give a proof if this is doable within the

bounds of this document, even if the result is well-known. Some proofs had

to be omitted since they would have taken up too much space or would have

required to divert too far to provide a full proof. Wherever proofs have been

omitted, a reference is given. Giving a proof is not equivalent to claiming

originality of the result, even if we give a proof and no reference, and most

well-known results should be considered folklore then.

As it is common for a document concerned with mathematics, we give

the very foundational definitions and conventions in Chapter . We will be

concerned with classical mathematics and only assume familiarity with the

notions of set and map. We note that it is maybe of interest to find equivalent

constructions in intuitionistic and constructive mathematics, and will further

hint at such possibilities in Chapter . One notion worth mentioning here is

the notion of specification which will be briefly touched in Section .. The

means of specification is usually not consciously noticed in mathematics, but

it has particular importance in computation: How is the input for an algo-

rithm specified, how is the output specified?

In the same way Chapter  goes on to define semigroups, monoids and

groups and gives a few theorems that are either referenced in later chapters or

give important insights into semigroup theory. Most of this sections contents

are standard in semigroup theory, and more detailed treatise of the material

can for example be found in [How].

The following Chapter  is solely concerned with subsets of semigroups

and introduces the notions of recognisable, rational, polyrational and extended

rational subsets and lays down the groundwork for everything in Chapters 

to . The notions of recognisable, rational, polyrational and extended ratio-

nal subset all share that they are strong finiteness conditions. On one hand

this leads to very restricted classes of sets, but on the other hand it leads to

strong results and in particular decidability results. Extensive treatment of
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recognisable and rational subsets of semigroups, monoids and groups can be

found in [Ber] and [Eila]. The latter offers some generalisations of the

notion of rational subsets of a given semigroup and the author hints at the

possibility of treating what we call extended rational and polyrational sub-

sets in the preface of [Eila]. One of the most important tools in the context

of examining these finiteness conditions are iteration lemmas, which are em-

ployed to show that a subset cannot fall into one of the mentioned classes.

Unfortunately Eilenberg has never finished Volume C of his book and to

our knowledge there has not been a thorough treatment of these notions. We

therefore define extended rational and polyrational subsets and claim origi-

nality of the surrounding results. Since the notion of extended rational sub-

sets of a semigroup are not central to our work, there is possibility for research

branching from here. The sections on rational, extended rational and polyra-

tional relations touch on methods of formal logic with definitions of syntax

and semantics by induction.

In Chapter  we define what we formally mean by the notion of computa-

tion. A computation is always carried out with finite state but there might be an

infinite set of configurations caused by the availability of memory or storage.

We will mainly be concerned with computation that can be carried out non-

deterministically by devices that only have a finite amount of memory. This

chapter is inspired and influenced by [Eila]. We give the known result that

the notions of rational subset and finite state computability are equivalent for

certain semigroups and monoids. We introduce our notion of a parallel finite

automaton and show that the notions of polyrational subsets and parallel fi-

nite computability are equivalent for certain semigroups and monoids. We

also take the time to introduce Eilenberg’s notion of a machine, mainly with

view on extensions of the presented material.

Chapter  gives specifications of semigroups that serve as examples through-

out the remainder of this work. We also prove some properties of the given
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semigroups.

Chapter  gets us to the main topic of this thesis: we give the motivation

for our work with roots in the work of Max Dehn in group theory in the early

20th century. We define what Max Dehn’s definition of the word problem of a

group is and give a natural generalisation of the word problem to semigroups

and relations on a semigroup. We also define the notion of coword problem.

In Chapter  we present an equivalent of Anisimov’s theorem for semi-

groups. Anisimov’s theorem first appeared in [Ani] and connects group

theory and formal language theory. Slightly more formally it states that the

word problem of a group is finite state computable if and only if the group is

finite. Anisimov’s theorem is widely considered to be the first of its kind. We

prove that the class of semigroups with finite state computable word problem

of a certain class is exactly the class of finite semigroups, therefore establish-

ing a generalisation of Anisimov’s theorem for the definition of word problem

we gave in . Although the proof of this theorem almost completely relies on

a result by Mezei, it is nonetheless a new result.

Chapter  is arguably the centre of this thesis and consists almost exclu-

sively of original research. We introduce a class of semigroups with finite

state computable word problem which we call semigroups with rational word

problem. The class of semigroups with rational word problem contains all

finite semigroups, and also some infinite semigroups. We find as many prop-

erties as possible for these semigroups, towards a characterisation. Since this

could not be achieved yet, we try bounding the class of semigroups with ratio-

nal word problem using properties of elements, subsets and Green’s relations.

As mentioned earlier, we make heavy use of iteration lemmas.

More specifically, we prove the following main results. Firstly, having

rational word problem does not depend on the choice of a finite generating

set. An infinite semigroup with rational word problem has an element of in-

finite order, and elements of finite order have to have bounded period. We
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conjecture that the index of such elements is bounded as well. We show that

Kleene’s theorem holds in semigroups of this class, and that as a consequence

all semigroups in the class are residually finite. We also give a proof that any

finitely generated semigroup in which all elements have regular sets of rep-

resentatives are residually finite. We show how having rational word prob-

lem passes through to subsemigroups and oversemigroups of finite Rees and

Green index. A section on product constructions show that the class of semi-

groups with rational word problem is not closed under taking direct products,

the proof of which employs an iteration lemma, but it is closed under semi-

group free products and zero unions. We also show that Green’s relations on

semigroups with rational word problem are polyrational and for semigroups

that are cancellative and have rational word problem we show that the Green’s

relations R and L are rational. The H-classes of a semigroup with rational

word problem have to be all finite. This is proven by employing an important

result discovered by Schützenberger, and again an iteration lemma. We also

hint at the appeal of semigroups with rational word problem with respect to

decidability of certain properties. Among these properties there is the word

problem, all Green’s relations word problems, triviality and finiteness. It is

also decidable whether a semigroup with rational word problem is a group.

Some results in this chapter can also be found in the paper [NPR] which

has been submitted for peer review and, at the time of this writing, is await-

ing referee’s feedback.

Since in particular the results about direct products in Chapter  are not

quite satisfactory we realise a slightly larger class of semigroups in Chap-

ter , the class of semigroups with polyrational word problem. This class is

shown to share many of the important properties of the class of semigroups

with rational word problem with the additional property that it is closed un-

der taking finite direct products. We show that there is an infinite hierarchy

of semigroups with ever increasing complexities of the word problem, very
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probably much like Eilenberg envisioned in [Eila]. To establish this infinite

hierarchy we again use an iteration lemma type argument. The results from

this chapter will appear in publication in the near future in cooperation with

Tara Brough and Nik Ruškuc.

In Chapter  we establish how our research and the classes of semigroups

found in the previous chapters fit into the known landscape of word problem

complexities. We refer to many surrounding results, proposing to establish a

fine-grained hierarchy of word problem complexities and filling white spots.

The closing chapter will then hint at the open questions asked throughout

this thesis and possible directions for future research.
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Concepts

In this chapter we fix notation and conventions for the basic mathematical

notions that are used. The most important being sets, with the natural numbers

being explicitly defined, maps and relations.

. Sets

We base our work on the system ZF, the Zermelo-Fränkel system of axioms

for set theory. In places we might need the axiom of choice or equally pow-

erful axioms, but these should be sparse and arguments should in general be

constructive.

Defining sets is the central topic of ZF and we refer the reader to a book

on the topic for further reference. One of the axioms of ZF ensures the exis-

tence of the powerset, the set of all subsets, of any given set X. We denote the

powerset of a set X by X̂.


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. Natural Numbers

The natural numbers capture the abstract concepts of quantity and of discrete

linear orders.

There is always discord about whether zero is a natural number or not. We

will make the following choices. We inductively define the set N of natural

numbers as follows

• {} ∈ N, and

• For n ∈ N, the set n ∪ {n} ∈ N.

We can give a decimal representation of every natural number by defining the

decimal representation of {} to be 0 and the decimal representation of n ∪ {n}

to be n+1. Therefore the natural numbers contain 0. Since we regularly refer

to N\ {0}, we denote this subset of N by N>0.

. Maps

A map from a set X to a set Y assigns to every element of X precisely one

element of Y. We use the following conventions.

Let X and Y be two sets. We denote a map f from X to Y by

X
f−−−−→Y.

We denote the element of Y which is assigned to x ∈ X by the map f by xf,

and we say that f is applied to the argument x.

If Y g−−−−→Z is another map then the composition of f and g is denoted by

fg or

X
f−−−−→ Y

g−−−−→ Z.

For any given set X the identity map X ιX−−−−→X is defined by

ιX : X −−−−→ X, x 7→ x,
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and the full transformation monoid TX is the set of all maps X f−−−−→X.

A map X f−−−−→Y is injective if for all maps Z g1−−−−→X and Z g2−−−−→X the

equality g1f = g2f implies g1 = g2, it is surjective if for all maps Y g1−−−−→Z and

Y
g2−−−−→Z the equality fg1 = fg2 implies g1 = g2 and it is bijective if there is a

map Y f ′−−−−→X such that ff ′ = ιX and f ′f = ιY .

. Relations

We adopt the definition of relations as used by Eilenberg in [Eila]. Relations

are a generalisation of a maps, since a relation between a set X and a set Y

relates any element of x with a subset of Y.

Definition ..

Let X and Y be sets. A relation ρ from X to Y, denoted X ρ−−−−→ Y is a map

X̂
ρ̂−−−−→ Ŷ such that for any family (Xi)i∈I of subsets of X(∪

i∈I
Xi

)
ρ̂ =

∪
i∈I

(Xiρ̂) .

It follows that a relation X ρ−−−−→ Y is defined by the images of ρ̂ on singleton

subsets of X. We will identify elements x ∈ X with the singleton subset {x} ⊂

X, and therefore can also view a relation X ρ−−−−→ Y as a map X ρ−−−−→ Ŷ. Note

also that for any map X f−−−−→Y we can define a relation X f−−−−→ Y by

f̂ : X̂ −−−−→ Ŷ, {x} 7→ {xf},

which justifies using the same notation for maps and relations and interpret-

ing maps as relations without explicitly stating this. For relations X ρ−−−−→Y

and X σ−−−−→ Y we write σ ⊂ ρ if for x ∈ X the image xσ is a subset of xρ.

For two relations X ρ−−−−→ Y and Y σ−−−−→ Z their composition X ρσ−−−−→ Z

can be straightforwardly defined by composition of the underlying maps:

ρ̂σ = ρ̂σ̂.

We will also need the following characterisation.
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Lemma ..

Let X ρ−−−−→ Y and Y σ−−−−→ Z be two relations. Then z ∈ xρσ if and only if there

exists y ∈ xρ such that z ∈ yσ.

For a given relation X ρ−−−−→ Y the domain dom ρ of ρ is the set

dom ρ = {x ∈ X | xρ ̸= ∅} ,

the image im ρ of ρ is the set

im ρ = {y ∈ Y | ∃x ∈ X with y ∈ xρ} .

The reverse ρr of ρ is defined by

yρr = {x ∈ X | y ∈ xρ} ,

and is itself a relation. The graph Gρ of ρ is the set of pairs

Gρ = {(x, y) ∈ X× Y | x ∈ X, y ∈ xρ} .

It is more common to define relations by their graphs.

For any set Xwe denote by RX the set of all relations X ρ−−−−→ X and call it

the full relation monoid on X.

Let X be a set and fix a subset A ⊂ X. Define the diagonal relation ∩A by

∩̂A : X̂ −−−−→ X̂, Y 7→ Y ∩A.

Note that the graph of ∩A is exactly the diagonal set {(a, a) | a ∈ A}.

The universal relation X µX−−−−→ X is defined by

µ̂X : X̂ −−−−→ X̂, Y 7→ X.

We prove this small lemma needed in a later proof, it is taken from [Eila].
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Lemma ..

Let X,Y1,Y2 be sets and X ρ−−−−→ Y1 × Y2 and X ρi−−−−→ Yi for i ∈ {1, 2} be relations

such that

xρ = (xρ1)× (xρ2)

for x ∈ X. Let Z ⊂ X and let Y1
σ−−−−→ Y2 be defined by the composition

Y1
ρr
1−−−−→ X

∩Z−−−−→ X
ρ2−−−−→ Y2.

Then Gσ = Zρ.

Proof. Let Y = Y1 × Y2 and Y πi−−−−→Yi for i ∈ {1, 2} be projections onto the

factors. Now ρi = ρπi and we can write σ as

Y1
πr
1−−−−→ Y

ρr−−−−→ X
∩Z−−−−→ X

ρ−−−−→ Y
π2−−−−→ Y2

which is equal to

Y1
πr
1−−−−→ Y

∩B−−−−→ Y
π2−−−−→ Y2.

where B = Zρ and the graph of the above composition is B.

We also define the intersection of a finite family of relations as we will need

this notion later. We note that the intersection of relations is in fact a relation.
Definition ..

Let X and Y be sets, k ∈ N and let X ρi−−−−→ Y for i ∈ k be relations. We define the

intersection
∩

1≤i≤k
ρi as

∩
1≤i≤k

ρi : X −−−−→ Y, x 7→ ∩
1≤i≤k

xρi.

. Equivalence Relations

Equivalence relations are an abstraction of equality. A relation X ρ−−−−→ X is

an equivalence relation, or equivalence for short, if

ιX ⊂ ρ, ρr ⊂ ρ, and ρρ ⊂ ρ. (.)



 Concepts

Writing x ∼ρ y instead of x ∈ yρ we get the familiar axioms for an equiv-

alence relation. For any x ∈ X the equivalence class of x with respect to the

equivalence relation ρ is now the image of {x} under the map ρ. The equiva-

lence classes partition the set X.

A cross section of ρ is a subsetD of X such that |D ∩ xρ| = 1 for all x ∈ X, in

other wordsD contains exactly one representative for each equivalence class.

We write X/ρ to denote the set of all equivalence classes of ρ. Note that

associated with every equivalence relation on a set X there is a natural map

πρ : X −−−−→ X/ρ, x 7→ xρ.

Conversely we note that any map X f−−−−→Y defines the equivalence relation

ker f onX as x ∼ker f y if and only if xf = yf. Furthermore funiquely factorises

into

X
πker f−−−−→ X/ker f

ι−−−−→ Y,

where ι is injective. This fact is the base of all isomorphism theorems in alge-

bra, and we will state it as a theorem explicitly as follows.

Theorem ..

Let X f−−−−→Y be a map. Then there is a surjective map X π−−−−→ X/ker f and an

injective map X/ker f
ι−−−−→Y such that f = πι, or equivalently, the following dia-

gram commutes.

..

..X . ..Y

. ..X/ker f

.

f

.
π

.
ι

. Linear Orders

A total linear order on a set X is a relation X λ−−−−→ X such that for all x, y, z ∈ X

• either y ∈ xλ or x ∈ yλ
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• y ∈ xλ and x ∈ yλ implies x = y

• y ∈ xλ and z ∈ yλ implies z ∈ xλ.

We write x ≤ y for y ∈ xλ for clarity.

We refer to the finite total linear order of size n by n. One convenient

model of n is ({1, . . . , n} ,≤) where ≤ is the restriction of the order ≤ on the

natural numbers, which in terms of the definition given in Section . is the

subset relation.

. Strings

We take the opportunity here to introduce the notion of strings over an alpha-

bet. We will use this notion in Chapter  as well as Chapter . Strings are

a central tool in the theory of computation, one of their main uses being en-

coding objects. Strings will also be used to demonstrate that computation is a

natural domain of the theory of semigroups. On one hand Turing machines,

one of the most general models of computation, use strings to encode input,

output and intermediate state, on the other hand the set of all strings forms

a very natural semigroup. To form strings we first need the basic building

blocks, which we call symbols. We choose a collection of symbols and call it

an alphabet. We allow for infinite alphabets for generality, but most commonly

alphabets will be finite.

Definition ..

Let A be an alphabet. A string of lengthm over A is a mapm s−−−−→A.

A convenient and consistent notation for all strings of length m over an al-

phabet A is now Am. We denote the set of all strings of any length over A by

A∗, which includes 0 εA−−−−→A, the empty string.
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Given any string s ∈ A∗, we denote by |s| the n ∈ N such that s ∈ An and

given a ∈ A and s ∈ A∗ we denote by |s|a the cardinality of the set as−1, or in

other words the number of occurrences of the letter a in the string s.

Given two stringsm s−−−−→A and n t−−−−→Awe define the concatenation st

of s and t by the juxtaposition of s and t. More formally letm i−−−−→m+ n and

n
j−−−−→m+ n be the embeddings of m and n into m+ n such that ki < lj

holds for all k ∈ m and l ∈ n.

The concatenation of s and t is now the map

st : m+ n −−−−→ A, k 7→

ki−1s k ∈ mi

kj−1t k ∈ nj
.

If we want to give a string explicitly we use the model ({1, . . . , n},≤) of n

and the notation s = [a . . . an] for a string swith is = ai for i ∈ {1, . . . , n}.

Let s ∈ A∗ be a string. We say that v ∈ A∗ is a prefix of s if there is a string

x ∈ A∗ such that s = vx, we say that v is a suffix of s if there is x ∈ A∗ such that

s = xv. We say v is an infix of s if there are strings x ∈ A∗ and z ∈ A∗ such that

s = xvz.

A substring v of s is the restriction of s to an arbitrary suborder of n. For

any subword of swe denote by supps v the subset of n that we restrict to.

. Specification

For every mathematical object there are natural ways of specifying, or describ-

ing, the object in a formal way. There are a number of ways to specify semi-

groups, the central object of this work. We choose to use the term specification

to avoid confusion, since terms like definition, presentation and representa-

tion are already widely used for related concepts that do not quite capture the

concept of specification.
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There are many types of specifications for semigroups, for example pre-

sentations or transformation representations. We call a type T of specification

universal if for any semigroup S there exists a specification of type T .

We will introduce presentations in Section . and transformation represen-

tations in Section . of Chapter . Most importantly we will show how semi-

groups can be specified by computational devices, in particular finite state

automata in Chapter . While the first two types are universal, the latter is

not. There are many more types of specification for semigroups, for example

matrices over Sumerian’s, rings or fields or rewriting systems.

Different types of specification have different strengths and weaknesses.

While transformation representations are very suitable for specifying finite

semigroups and efficiently doing computations on a computer, presentations

are more suited to specify infinite semigroups and make some computations

tractable. A particularly important property for computational algebra is that

a finite amount of information is needed to specify an infinite object.






◦ ◦ •

Semigroups

We introduce the notions of semigroup theory needed in later chapters. We

start with the definitions of semigroups, monoids and groups and the corre-

sponding morphisms in Section ..

Sections . and . give further basic definitions connected with semi-

groups. We will expand on subsets of semigroups in Chapter .

In Section . we define cancellativity, local finiteness and residual finite-

ness.

The following Section . treats Green’s relations which is ubiquitous in

the theory of semigroups and Section . gives the basic notions of congru-

ences and quotient structures of semigroups. Congruences describe the ker-

nels of semigroup morphisms and the possible quotients of a given semi-

group.

Free semigroups and presentations are the topic of Section ., and pro-

vide a universal type of specification for semigroups: we encode elements of

semigroups as strings over a generating set. Multiplication in the semigroup

is then done by concatenating representing strings. A very important task


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will be determining equality of elements represented by strings over a gener-

ating set. Encoding elements of semigroups as strings over an alphabet will

also be a key tool for computatioval considerations.

. Semigroups, Monoids and Groups

We define the notions of semigroup and semigroup morphism and extend to

monoids and groups.

Definition ..

A semigroup is an algebraic structure ⟨S, ·⟩ where S is a set and S× S ·−−−−→S is a

binary function such that

(∀a, b, c ∈ S) (a · b) · c = a · (b · c)

holds.

The property that the operation of a semigroup has is called associativity,

which is one of the properties of the composition of maps. For simplicity we

usually denote a semigroup ⟨S, ·⟩ by S, and omit the explicit notation for the

binary function, unless we want to emphasise its importance.

The binary function · is often called multiplication or concatenation. We

choose infix notation for · because it allows for clean notation. In some cases

where multiplication is understood we even leave · out completely and use

juxtaposition of elements.

Two special families of semigroups are the family of monoids and the fam-

ily of groups. Monoids possess a special element, the identity element.

Definition ..

A monoid mon⟨M, ·⟩ is a semigroup such that

(∃ e ∈M) (∀m ∈M) (e ·m = m)∧ (m · e = m)

holds.
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Groups are a family of monoids. They have the global property that every

element has a uniquely defined inverse element.
Definition ..

A group ⟨G, ·⟩ is a monoid such that

(∀m ∈M)
(
∃m ′ ∈M

) (
m ·m ′ = e

)
∧
(
m ′ ·m = e

)
holds.

Let X be a set. The set TX of all maps X f−−−−→X forms a monoid with mul-

tiplication being composition of maps, called the full transformation monoid.

The identity element is the identity map on X.

The set RX of all relations X ρ−−−−→ X forms a monoid with multiplication

being composition of relations, called the full relation monoid. The identity

element is the identity relation on X.

The subset of bijective maps in RX is the symmetric group on X.

With every algebraic structure comes the notion of morphisms as the al-

gebraic tool to compare structures. Semigroup morphisms are defined as fol-

lows.
Definition ..

Let ⟨S, ◦⟩ and ⟨T, ∗⟩ be semigroups. A map S φ−−−−→T is a semigroup morphism if(
∀s, s ′ ∈ S

)
(s ◦ s ′)φ = (sφ) ∗ (s ′φ).

A semigroup morphism S
φ−−−−→T is a monomorphism, if fφ = gφ im-

plies f = g for all semigroup morphisms U f−−−−→S and U g−−−−→S. A semi-

group morphism S
φ−−−−→T is an epimorphism if φf = φg implies f = g for

all semigroup morphisms T f−−−−→U and T g−−−−→U. A semigroup morphism

S
φ−−−−→T is an isomorphism if there exists a semigroup morphism T

φ−1

−−−−→S

such that φφ−1 = ιS and φ−1φ = ιT .

IfM andN are monoids, a semigroup morphismM
φ−−−−→N is a monoid

morphism if

eMφ = eN,
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where eM is the identity element ofM and eN is the identity element ofN. If

M and N are groups then φ is also a group morphism.

. Elements

In this section we introduce properties semigroup elements. Let in the fol-

lowing ⟨S, ·⟩ be a semigroup.

An element z ∈ S is a left zero if

(∀s ∈ S) (zs = z) ,

and z is a right zero if

(∀s ∈ S) (sz = z) .

An element z ∈ S is a zero if z is a left and a right zero. We denote a zero

element by z and note that if a semigroup S contains a zero element then it is

unique.

An element e ∈ S is a left identity if

(∀s ∈ S) (es = s) ,

and e is a right identity if

(∀s ∈ S) (se = s) .

An element e ∈ S is an identity if e is a left and a right identity. We note that

if S contains an identity it is uniquely defined and we sometimes denote the

identity by e.

Although a semigroup S need not contain a zero or an identity, we can

simply add elements to S and extend the operation accordingly. Note that we

can add a new zero or an identity to a semigroup that already contains a zero

or an identity respectively.

We denote by Sz the semigroup ⟨S ∪ {z}, ·z⟩ where z ·zs = s ·z z = z for all

s ∈ Sz and s ·z t = s · t for all s and t in S.
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We denote by Se the semigroup ⟨S ∪ {e}, ·e⟩ where e ·es = s ·e e = s for all

s ∈ Se and s ·e t = s · t for all s and t in S.

An element f of S is called idempotent if ff = f. Certainly identities and

zeros are idempotent. If s is an element of a semigroup S then either the

subset
{
si | i ∈ N>0

}
is infinite or there exist minimal i ∈ N>0 and k ∈ N>0

such that si+k = si. In the first case we say that s has infinite order in the

second case we say that s has index i and period k.

If for any two elements x and y of S the equation xy = yx holds we say

that x and y commute.

. Subsets

Let X and Y be subsets of a semigroup S. We define the product XY of X and Y

as

XY = {xy | x ∈ X, y ∈ Y} ⊂ S,

which is a subset of S again. It follows that for any semigroup S the power set

Ŝ is a semigroup with respect to the operation defined above. This semigroup

is called the power semigroup of S.

In accordance with our convention, in the case of X or Y being singletons

we also write xY or Xy instead of {x} Y or X {y}.

For a fixed element x from Swe define the map S ρx−−−−→S by

ρx : S −−−−→ S, s 7→ sx

and the map S λx−−−−→S by

λx : S −−−−→ S, s 7→ xs.

By extending ρx and λx to subsets X ⊂ S we get relations S ρX−−−−→ SX and

S
λX−−−−→ S. The relations ρrX and λrX assign to any element s ∈ S the set Y ⊂ S

of elements y ∈ S such that there is an x ∈ X with s = yx or s = xy. We can

think of this as a generalisation of quotients.
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For a monoid M and a subset X ⊂ M we inductively define for all n ∈ N

the subsets

• X0 = {e}

• Xn+1 = XXn

ofM, and denote the union of the previously defined subsets ofM as

X∗ =
∪
n∈N
Xn.

The set X∗ is sometimes called the Kleene star of X.

If S is a semigroup without an identity element, we can apply the above

definition to subsets of Se and the set

X+ =
∪

n∈N>0

Xn,

is then a subset of S.

. Subsemigroups

For a given semigroup S, any subset T of Swhich is itself a semigroup is called

a subsemigroup.

Definition ..

Let S be a semigroup. A non-empty subset T ⊂ S is a subsemigroup of S, denoted

T ≤ S if TT ⊂ T .

In group theory the notion of index is used to measure the relative size of

a subgroup inside a group. The index of a subgroup H of a group G is the

number of cosets of H, the size of the set {gH | g ∈ G}. In particular if H = {e}

then the index of H in G is the size of G.

In semigroup theory the definition of index as a measure of relative size

of a subsemigroup inside a semigroup is not as clear cut: While cosets parti-

tion a group, the set {sT | s ∈ S} can be a singleton, for example if T = z. As
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a consequence there have been multiple attempts at defining an index of a

subsemigroup inside a semigroup. The most straightforward notion of index

is the Rees index. For a semigroup S and a subsemigroup T the Rees index of

T in S is defined to be |S\T |.

Given a semigroup property P , a semigroup S and a subsemigroup T of

finite index, there are two natural questions to ask.

• If T has the property P , does S have the property P?

• if S has the property P , does T have the property P?

As an example, the following theorem from [Cam+] shows that both

questions can be answered in the positive for finite generation.

Theorem ..

Let S be a semigroup and let T ≤ S be a subsemigroup of S of finite Rees index. Then

S is finitely generated if and only if T is finitely generated.

Proof. If S is generated by some finite set A and T is a finite Rees index sub-

semigroup then the set

C = {xaz | x, z ∈ Se\T, a ∈ A, xa, xaz ∈ T }

is finite and generates T .

If T is generated by some finite set B then certainly B ∪ (S\T) is finite and

generates S.

We will define a further notion of index in a later section, the notion of

Green index, which has the property that it generalises the group index.

Some of the concepts of semigroup theory originate in ring theory. This

is because the reduct of a ring to multiplication forms a semigroup. One such

concept is that of an ideal. Unlike ideals in rings, ideals in semigroups do not

play the role of kernels of morphisms: With any ideal I of S we can associate

a semigroup morphism and therefore a congruence on S, but not every semi-

group morphism gives rise to an ideal.
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Definition ..

Let S be a semigroup. A non-empty subset I ⊂ S of S is a left ideal if SI ⊂ I, it is a

right ideal if IS ⊂ S. The subset I is an ideal if it is both a left and a right ideal.

If a semigroup S does not have any ideal I ⊂ S with I ̸= S, then S is simple. If

the only two ideals of S are {z} and S itself, then S is called 0-simple.

If S is a monoid, then there is a special subsemigroup, the group of units,

denoted U(S). It is the largest subsemigroup of S that contains the identity

element of S and is a group.

. Properties

In this section we define properties of semigroups that are more global in

nature, namely cancellativity and residual finiteness.

If a semigroup is cancellative, we can cancel common factors in a product.

This is made precise in the following definition.

Definition ..

A semigroup S is right-cancellative if

(∀x, y, a ∈ S) xa = ya⇒ x = y,

it is left-cancellative if

(∀x, y, a ∈ S) ax = ay⇒ x = y,

and it is cancellative if it is right- and left-cancellative

One can also define cancellativity in terms of ρx and λx; a semigroup is right-

cancellative if and only if ρx is injective for all x and it is left-cancellative if

and only if λx is injective for all x. All groups are cancellative, and all finite

cancellative semigroups are groups. There are also infinite cancellative semi-

groups that are not groups, for example the free semigroup on a non-empty
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set. It is well-known that in a cancellative monoid the complement of the

group of units is an ideal.

Lemma ..

Let M be a cancellative monoid and let U(M) be its unit group. Then M\U(M) is

an ideal ofM.

Proof. Let x ∈ M\U(M) and m ∈ M. For a contradiction assume that xm ∈

U(M). This means that there is u ∈ U(M) such that (xm)u = e, which im-

plies x(mu) = e. Now (mu)x(mu) = (mu) e, which implies (mu)x(mu) =

e(mu) and since M is assumed to be cancellative, (mu)x = e. Therefore

mu is a multiplicative inverse for x in contradiction to the assumption that

x ∈M\U(M).

Residual finiteness reflects in how far a semigroup can be locally approx-

imated by a finite semigroup. All finite semigroups are residually finite, but

there are also many infinite semigroups that are residually finite.

Definition ..

A semigroup S is residually finite if for any two elements a, b in Swith a ̸= b there

is a finite semigroup T and a semigroup morphism φ : S→ T such that aφ ̸= bφ.

. Congruences and Quotients

Congruences on a semigroup S are precisely the equivalence relations on S

such that the set of equivalence classes forms a semigroup. In other words

congruences on S are in one to one correspondence with quotients of S.

Definition ..

Let S be a semigroup. An equivalence relation S ρ−−−−→ S is a left congruence on S

if

(∀s, c ∈ S) c (sρ) ⊂ (cs) ρ,
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a right congruence on S, if

(∀s, c ∈ S) (sρ) c ⊂ (sc) ρ,

and a congruence on S if it is a left and a right congruence.

Two natural examples of congruences are the identity relation S ιS−−−−→ S

and the universal congruence S µ−−−−→ Swhere sµ = S for all s ∈ S.

A semigroup is congruence-free if there is no congruence on S other than ιS
and µ. In group theory groups that are congruence-free are commonly called

simple groups, and we note that this notion is fundamentally different from the

notion of simplicity in semigroup theory. A semigroup can be simple without

being congruence-free: every group is simple as a semigroup, but not every

group is a simple group. Simple groups are congruence-free as semigroups.

We show that the equivalence classes of a congruence ρ on a semigroup S

form a semigroup the quotient of S by ρ denoted S/ρ .

Lemma ..

Let S be a semigroup and let S ρ−−−−→ S be a congruence on S. Then S/ρ is a semi-

group with multiplication (sρ) (tρ) = (st)ρ.

Proof. Let sρ and tρ be elements of S/ρ and define (sρ) (tρ) = (st)ρ. We have

to show that this operation is well-defined: Let s, s ′, t and t ′ elements of S

with s ′ ∈ sρ and t ∈ tρ. By the definition of the product of subsets of S and

because S ρ−−−−→ S is a right congruence it holds that

(sρ) (tρ) =
∪
x∈tρ

(sρ) x ⊃
(
st ′
)
ρ, (.)

and because S ρ−−−−→ S is a left congruence it holds that

(sρ)
(
t ′ρ
)
=
∪
y∈sρ

y
(
t ′ρ
)
⊃
(
s ′t ′
)
ρ. (.)

Therefore

(st)ρ
def
= (sρ) (tρ)

.
⊃
(
st ′
)
ρ = (sρ)

(
t ′ρ
) .
⊃
(
s ′t ′
)
ρ,
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and in conclusion (st)ρ = (s ′t ′)ρ.

For any semigroup morphism S
φ−−−−→T define the following congruence S,

the kernel of φ.

Definition ..

Let S and T be semigroups and let S φ−−−−→T be a semigroup morphism. The kernel

ker φ of φ is defined as

ker φ : S −−−−→ S, s 7→ sφφ−1.

In group theory one usually defines the kernel of a group morphism to be just

eφ−1. This is consistent with our definition since x ∈ yφφ−1 if and only if

xφ = yφ which is the case if and only if (xφ)−1 (yφ) = e and therefore x−1y

is in eφ−1. Given a congruence ρ on a semigroup S the canonical map

π : S −−−−→ S/ρ, s 7→ sρ

is a semigroup morphism. The preceding paragraph described what can be

summarised as the well-known first isomorphism theorem for semigroups.

Theorem ..

Let S and T be semigroups and let S φ−−−−→T be a semigroup morphism. There exists a

surjective morphism S π−−−−→ S/ker φ and an injective morphism S/ker φ
ι−−−−→T

such that φ = πι, or equivalently the following diagram commutes.

..

..S . ..T

. ..S/ker φ

.

φ

.
π

.
ι

Proof. We let

π : S −−−−→ S/ker φ, s 7→ sρ,

so π is a surjective semigroup morphism. We further define

ι : S/ker φ −−−−→ T, sρ 7→ sφ.
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We have to show that ι is well-defined and injective. For s, s ′ ∈ S it holds that

s ′ ∈ s (ker φ) if and only if sφ = s ′φ so ι is well-defined and injective. To

show that the diagram commutes let s ∈ S, then sπι = (sρ) ι = sφ.

The isomorphism theorem for semigroups is a tool to characterise quotients

of a semigroup by surjective morphisms. The second isomorphism theorem for

semigroups helps comparing quotients of a given semigroup.

Theorem ..

Let S φ−−−−→T be a surjective semigroup morphism and S ψ−−−−→T ′ be a semigroup

morphism. If ker φ ⊂ ker ψ then there exists a uniquely defined morphism T θ−−−−→T ′

such that ψ = φθ, or equivalently the following diagram commutes.

..

..S ..T

. ..T ′

.

φ

.
ψ

. θ

Proof. If we define T θ−−−−→T ′ by (tφ)θ = tψ then θ is well-defined and ψ =

φθ.

We briefly touch on the notion of congruence generation, the definition of

which is straightforward and standard throughout mathematics.

Definition ..

Let S be a semigroup. Given a set R ⊂ S × S of pairs the congruence ρ(R) on S

generated by R is the smallest congruence on S that contains R, or more formally

ρ(R) =
∩

σ∈C(R)
R⊂σ

σ,

where C(R) is the family of all congruences on S.

We call a congruence ρ finitely generated if there is a finite set R with ρ =

ρ(R).
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. Free Semigroups and Presentations

In this section we introduce the notions of a free semigroup on a set and a semi-

group presentation. Free semigroups are in a sense the semigroups with the

least structure one can construct from any given set. Semigroup presenta-

tions are, next to transformation representations as shown in Theorem ..,

a universal type of specification for semigroups.

While the transformation representations semigroup puts an emphasis on

transformations of a set and therefore completely describing the behaviour

of an element, semigroup presentations put the emphasis on generators and

relations between elements.

We define the notion of a free semigroup on a set using the following uni-

versal property.

Definition ..

Let X be a set. A semigroup F is free on X if there is a map X iX−−−−→F such that

for any map X f−−−−→S there exists a unique semigroup morphism F
φ−−−−→S with

iXφ = f, or equivalently the following diagram commutes.

..

..X ..F

. ..S

.

iX

.
f

. ∃!φ

We make sure that for any given set X there exists at least one semigroup FX
which is free on X. This semigroup has already been introduced in Section

.; it is the set of all strings over the set X together with the concatenation

operation.

Lemma ..

Let X be a set. The set X+ of all nonempty strings over X together with concatenation

is a free semigroup on X.
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Proof. It is clear that concatenation of strings is associative, therefore the set

X+ together with concatenation is a semigroup. Take X iX−−−−→X+ to be the

map that takes any element x ∈ X to the string [x] of length one. For any

X
f−−−−→S define X+ φ−−−−→S by

[x . . . xn]φ = (x1f)(x2f) · · · (xnf).

It follows that iXφ = f for all x ∈ X, and for any other morphism F
ψ−−−−→S

with this property the equation φ = ψ holds.

Applying the universal property used in Definition .., we show that for

any cardinal there is only one free semigroup on sets of that cardinality.

Theorem ..

Let X and Y be sets and let FX and FY be free semigroups on X and Y respectively.

Then FX ∼= FY if, and only if, there is a bijective map X h−−−−→Y.

Proof. If FX
φ−−−−→FY is an isomorphism then X

φ|X−−−−→Y is a bijection.

Conversely, let X h−−−−→Y be bijective. Then by Definition .. there are

maps X iX−−−−→FX and Y iY−−−−→FY such that for X hiY−−−−→FY there is a unique

semigroup morphism FX
φ−−−−→FY with iXφ = hiY and such that forY h−1iX−−−−→FX

there is a unique semigroup morphism FY
ψ−−−−→FX with iYψ = h−1iX.

Since h is bijective iXφ = hiY ⇔ h−1iXφ = iY , therefore h−1iXφψ = h−1iX

and thus iXφψ = iX, thus FX
φψ−−−−→FX is a morphism with the property that

iXφψ = iX. Since iXιFX = iX and by uniqueness from Definition .., the

equality φψ = ιFX holds. Similar reasoning gives ψφ = ιFY . We conclude

that φ and ψ are mutually inverse semigroup morphisms.

We denote the free semigroup on a set X by X+.

A generating set for a semigroup S is usually defined to be a subset X of S

such that all elements of S can be written as a product of elements in X. We

choose a slightly different definition.
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Definition ..

A semigroupS is generated by a setX if there is a mapX p−−−−→S such thatX+ πX−−−−→S

is surjective.

Note that generating sets are separate from the semigroup S, in particular not

a subset of S. This is important when we encode elements of semigroups by

strings over a set and we have to make a clear distinction between strings over

a generating set and elements of the semigroup.

Given a semigroup S, a generating set X and X p−−−−→S we encode ele-

ments of S as strings over X, and any string v ∈ X+ encodes an element of

S. Applying πX to any string v in X+ gives us the element of S encoded by v.

Sometimes we denote the element of S encoded by a string v ∈ X+ by v if the

set X and the map p is understood. If there is more than one generating set

considered we make this explicit if necessary by writing vπX.

We call cross-sections of kerπ sets of normal forms or sets of unique repre-

sentatives. Given a semigroup S and a generating set X, elements of S can have

infinitely many representatives. In general there does not exist an algorithmic

method to tell whether two elements of X+ represent the same element of S.

In the theory of computation we say that this problem is undecidable.

For any semigroup S, the set S itself is a generating set, but generally a

much smaller generating set is sufficient. If there is a finite set of generators

for a semigroup S, we call S finitely generated. If there is a generating set for S

that only contains one element we call S monogenic.

We now have the necessary tools to define semigroup presentations.

Definition ..

Let X be a set and let R ⊂ X+×X+ be a set of pairs of strings over X. The semigroup

generated by Xwith relations R is the semigroup X+
/ρ(R) denoted by sg⟨X | R⟩.

Here ρ(R) is the congruence on X+ generated by the images of the elements of

R under the morphism πX extended to pairs, that is the smallest congruence
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ρ on X+ such that for (v,w) ∈ R it holds that vπX ∈ wπXρ. We usually use

v = w to denote pairs (v,w) ∈ R

Semigroup presentations allow us to specify a semigroup by choosing a

generating set and relations between elements of the semigroup. Conversely,

any given semigroup S has a presentation consisting of the set S as generat-

ing set and the multiplication table of S as set of relations. In other words,

specification by presentations is universal.

Presentations make it algorithmically trivial to multiply two elements:

Given two strings v and w over a generating set X for S, a representative for

(vπXwπX) is vw. It was already mentioned earlier that presentations make it

algorithmically very hard in general to tell whether two strings v and w over

X represent the same element of S.

We say that S is finitely presented if there exists a presentation ⟨X, R⟩ with X

and R finite such that S ∼= ⟨X, R⟩.

We will give examples of finitely generated and finitely presented semi-

groups in Chapter .

Analogously to the above we can define monoid presentations.

Definition ..

Let X be a set and let R ⊂ X∗ × X∗ be a set of pairs of strings over X. The monoid

generated by Xwith relations R is the monoid X∗
/ρ(R) denoted by mon⟨X | R⟩.

Here ρ(R) is the congruence on X∗ generated by the images of the elements of

R under the morphism πX extended to pairs, that is the smallest congruence

ρ on X∗ such that for (v,w) ∈ R it holds that vπX ∈ wπXρ.

Every monoid now has a semigroup presentation and a semigroup pre-

sentation. Monoid presentations make the identity element implicit by as-

serting that the empty string is the canonical representative for the identity.

Given a monoid presentation mon⟨X | R⟩ for a monoidM, we can give a

semigroup presentation for M by adding a generator e for the identity to X

and relations ([ee] , [e]) and ([ex] , [x]) and ([xe] , [x]) for every x ∈ X. Given a
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semigroup presentation sg⟨X | R⟩ for a monoid M we find a representative

v ∈ X+ for the identity element of M and add the relation (v, ε) to R and this

yields a monoid presentation. Note however that it might not be constructive

finding a representative for the identity element ofM.

. Transformation Representations

With transformation representations we introduce a second universal means

of specifying semigroups. Cayley’s theorem from group theory demonstrates

how every group can be represented as a group of permutations of a set, and

hence is isomorphic to a subgroup of a symmetric group. There is an equiv-

alent theorem to Cayley’s theorem in semigroup theory.

Theorem ..

Let S be a semigroup. Then S is isomorphic to a subsemigroup of TSe .

Proof. The map

ρx : S
e −−−−→ Se, s 7→ sx

is an element of TSe for all x ∈ S and the map

φ : S −−−−→ TSe , x 7→ ρx

is a semigroup morphism. It is injective, since

xφ = yφ⇒ ρx = ρy ⇒ sρx = sρy for all s ∈ Se (.)

⇒ e x = ey⇒ x = y (.)

Note that it is essential in the above proof to use TSe and not TS to ensure injec-

tivity ofφ if S is not a monoid. Subsemigroups of TX are called transformation

semigroups and for a given semigroup S a morphism S
φ−−−−→TX for some set

X is called a transformation representation of S. A transformation representa-

tion is called faithful if it is injective. Specifying semigroups as transformation

semigroups is often useful in computer algebra.
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Any given semigroup S can have many different transformation represen-

tations. As a means of comparing transformation semigroups we introduce

equivalence of transformation semigroups.

Definition ..

Let X and Y be sets, and let S ≤ TX and T ≤ TY be two transformation semigroups.

Then S and T are called equivalent if there is an isomorphism S
φ−−−−→T and a bi-

jection X f−−−−→Y such that

(∀s ∈ S) ∀x ∈ X (xf) (sφ) = (xs) f

. Green’s Relations

Green’s relations are a very pervasive notion in the theory of semigroups and

were introduced by Green in [Gre]. Green’s relations relate elements of

semigroups by comparing the principal ideals they generate. Since we also

want to define the Green index, which was introduced by Gray and Ruskuc

in [GR], we start with a slightly more general definition, Green’s relations

relative to a subsemigroup. The notion of relative Green’s relations was intro-

duced by A.D. Wallace in [Wal]. In later sections we will almost exclusively

be considering the classical Green’s relations.

Definition ..

Let S be a semigroup and let T be a subsemigroup of S. Green’s relations relative

to T on S are equivalence relations on S defined as follows

• RT : S −−−−→ S, a 7→ aT e

• LT : S −−−−→ S, a 7→ T ea

• J T : S −−−−→ S, a 7→ T eaT e

• HT : S −−−−→ S, a 7→ aRT ∩ aLT

• DT : S −−−−→ S, a 7→ aRTLT
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For S = T these are known as Green’s relations. If we are talking about

Green’s relations we will leave out the superscript.

The Green index of a subsemigroup T in S was introduced by Gray and

Ruskuc in [GR]. It is defined as the number of HT -classes in S\T , or

[S : T ]G =
∣∣∣(S\T)/HT

∣∣∣+ 1.
If a subsemigroup T of a semigroup S has finite Rees index, then T also has

finite Green index. The converse is not true: If T has finite Green index it

need not have finite Rees index in general, as the example in . shows. If T

has finite Green index in S and all HT -classes in S\T are finite, then T also has

finite Rees index.

We will need the following properties of the H relation: If an H−class H

of a semigroup S contains an idempotent, then H is a subgroup of S. Even if

an H-classH is not a group, there exists a permutation group that acts on the

set H in a very natural way. This was discovered by Schützenberger. We give

the necessary definitions and a theorem first discovered by Schützenberger

and published in [Sch].

We first introduce a notion which is familiar from group theory.

Definition ..

Let S be a semigroup and let X be a subset of S. The right stabiliser RStabSe(X) of

X is defined to be the submonoid

RStabSe(X) = {s ∈ Se | Xs ⊂ X}

of Se.

For a semigroup S and a H-classH consider the right stabiliser RStabS(H).

We define a congruence on RStabS(H) by

x ∼ y if and only if hx = hy for some h ∈ H,

and call the quotient RStabS(H)/∼ the transition monoid or Schützenberger monoid

of RStabS(H), denoted by TS(H).
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The following theorems summarise the properties of the Schützenberger

monoid of an H−class H that we are interested in. Relevant proofs can be

found in [Sch] and [Lal, Ch. ].
Theorem ..

Let S be a semigroup and let H be a H−class. Then the following statements hold.

• The transition monoid TS(H) of the right stabiliser RStabS(H) is a group of

permutations of H and for h ∈ H the stabiliser RStabTS(H)(h) is trivial.

• If H and H ′ are two H-classes contained in the same D-class, then TS(H) and

TS(H ′) are equivalent permutation groups.

• If H is a maximal subgroup of S, then H and TS(H) are isomorphic.

A corollary of the above theorem is that for any H-class H it holds that

|TS(H)| = |H|.

A finiteness condition for semigroups is if J = D, that is the relations J

and D coincide.

Stability was introduced and studied by Koch and Wallace in [KW] for

topological semigroups, and in the same paper Koch and Wallace also show

that in stable semigroups J = D. See also [CP, §.] for a further reference

on stability.
Definition ..

Let S be a semigroup. Then S is called left stable if for a and b in S the inclusion

Sa ⊂ Sab implies Sa = Sab. The semigroup S is called right stable if for all a and

b in S the inclusion aS ⊂ baS implies aS = baS. The semigroup S is called stable

if S is right stable and left stable. S is called weakly stable if Se is stable.

We note that if S is stable, then so is Se, and therefore every stable semigroup

is also weakly stable. The converse does not hold in general and a few coun-

terexamples can be found in [OCa].

Koch and Wallace also show in [KW] that in a weakly stable semigroup

it holds that J = D. We first start by proving a technical lemma.
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Lemma ..

Let S be a weakly stable semigroup. For all a and b from S with aJ = bJ it holds

that Sea ⊂ Seb implies Sea = Seb, and aSe ⊂ bSe implies aSe = bSe.

Proof. Let S be a weakly stable semigroup and let a and b be elements of S

with aJ = bJ . There exist x and z in Se with b = xaz. If additionally

Sea ⊂ Seb, then

Sea ⊂ Seb = Sexaz ⊂ Seaz.

It follows by left stability of S that Sea = Seaz, and therefore Sea = Seb. An

analogous proof holds for aSe ⊂ bSe.

Using the above lemma we can prove the desired theorem.

Theorem ..

Let S be a weakly stable semigroup. It holds that J = D.

Proof. We note that in any semigroup D ⊂ J holds. Let S be a weakly stable

semigroup and let a and b be in S with aJ = bJ . The goal is to show that

aD = bD, which by definition of D is to prove the existence of an element c

in Se such that aR = cR and cL = bL.

Since aJ = bJ , there are elements x and z in Se such that a = xbz. We

note that xbJ = bJ . It holds that Sexb ⊂ Seb and therefore Sexb = Seb,

hence xbL = bL. It also holds that

aSe = xbzSe ⊂ xbSe

and therefore aSe = xbSe, by application of Lemma ... Hence aR =

xbR.

. Product Constructions

We define the notions of direct product, free product, and zero union of semi-

groups. For the direct product and the free product we use the universal
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properties from category theory. We skip proofs of existence and uniqueness

as they can be found in standard literature about semigroups.

Definition ..

Let S1 and S2 be semigroups. A semigroup S is a direct product of S1 and S2,

usually denoted by S1 × S2, if there are morphisms S πi−−−−→Si for i ∈ {1, 2} such

that for any pair T φi−−−−→Si of morphisms there exists a unique morphism T φ−−−−→S

with φπi = φi.

The following theorem will help us classify semigroups with polyrational

word problem in Chapter . This is known in the more general context of

algebraic structures. We state it for semigroups.

Theorem ..

Let S be a semigroup and let S ρ1−−−−→ S and S ρ2−−−−→ S be congruences on S such

that ρ1 ∩ ρ2 = ιS and such that the smallest congruence that contains ρ1 and ρ2 is

the universal congruence S µS−−−−→ S. Then

S ∼=
(
S/ρ1

)
×
(
S/ρ2

)
.

Proof. We use Definition ... We note that S ∼= S/(ρ1 ∩ ρ2) by the assump-

tion that ρ1 ∩ ρ2 = ιS. Since ρ1 ⊂ (ρ1 ∩ ρ2) and ρ2 ⊂ (ρ1 ∩ ρ2) the second

isomorphism theorem ensures the existence of unique surjective morphisms

S
π1−−−−→ S/ρ1 and S π2−−−−→ S/ρ2 .

Let T φ1−−−−→ S/ρ1 and T φ2−−−−→ S/ρ2 be morphisms. We define the mor-

phism T
φ−−−−→S by tφ = s such that sπ1 = tφ1 and sπ2 = tφ2.

We first show thatφ is a uniquely defined morphism of semigroups. From

the definition of φ it follows that s ∈ tφ1π
−1
1 and that s ∈ tφ2π

−1
2 . This

means that sρ1 = sρ2. By the assumption that ρ1 ∩ ρ2 = ιS, it follows that if

φ is defined, then it is uniquely defined. By the assumption that the smallest

congruence that contains ρ1 and ρ2 is the universal congruence, it follows that
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there is at least one s in the intersection of congruence classes of ρ1 and ρ2. It

follows that φ is a uniquely defined morphism, since π1 and π2 are uniquely

defined morphisms. To conclude the proof, by the definition ofφ it holds that

φπ1 = φ1 and φπ2 = φ2. By the definition of direct products it follows that

S is isomorphic to the direct product of S/ρ1 and S/ρ2 .

The above theorem can be generalised in the following way, which will be

useful in the context of polyrational word problems in Chapter . The proof

follows by applying the isomorphism theorems.

Theorem ..

Let S be a semigroup and let ρ1 and ρ2 be congruences such that the smallest con-

gruence on S/(ρ1 ∩ ρ2) that contains the congruences ρ1 and ρ2 is the universal

congruence. Then

S/(ρ1 ∩ ρ2)
∼= S/ρ1 × S/ρ2

The free product in the category of semigroups is defined as follows. Again,

it exists and it is unique. We can in the same way define the free product in

the category of monoids, and note that the free product of two monoids in the

category of semigroups is not isomorphic to the free product of two monoids

in the category of monoids.

Definition ..

Let S1 and S2 be semigroups. A semigroup S is the semigroup free product of

S1 and S2 if there are morphisms Si
ιi−−−−→S for i ∈ {1, 2} such that for any pair

Si
φi−−−−→T there exists a uniquely defined morphism S

φ−−−−→T such that ιiφ = φi

for i ∈ {1, 2}.

The last product construction we introduce is a bit more semigroup specific,

it is the zero union.
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Definition ..

Let U be a semigroup with zero. If there exist subsemigroups S and T such that

S ∩ T = ∅ and st = z = ts for all s ∈ S and for all t ∈ T then U is a zero union of

S and T , denoted by S ∪z T .




◦ ◦· •

Subsets of Semigroups

For any semigroup S we introduce the families of recognisable, rational and

extended rational subsets of S and establish a hierarchy for finitely generated

semigroups.

The family of recognisable subsets of a semigroup S is introduced in Section

. and are specified by finite quotients of S. The families of rational subsets

and extended rational subsets are introduced in Section . and Section . re-

spectively and rely on a specification by formulas. All the named families are

of interest in the theory of computation. It is Kleene’s Theorem which identi-

fies the families of recognisable, rational and extended rational subsets of free

semigroups.

We then define relations on semigroups that are recognisable, rational or

polyrational, these will become the point of focus in Chapter  and 


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. The Syntactic Congruence

We associate with every subset X of a semigroup S a congruence, the syntactic

congruence of X in S. This congruence is particularly important for recognis-

able subsets introduced in Section ..

Definition ..

Let S be a semigroup and let X ⊂ S be a subset of S. Then the syntactic congruence

of X on S is defined by

s ≈S,X t if and only if ∀x, z ∈ S1 xsz ∈ X⇔ xtz ∈ X.

The syntactic congruence is the largest congruence on S such that the quotient

semigroup can still separate X from its complement.

Theorem ..

Let S be a semigroup and let X be a subset of S. If S φ−−−−→T is a surjective semi-

group morphism with X = Fφ−1 for some F ⊂ T then there exists a morphism

T
ψ−−−−→ S/≈S,X with φψ = π≈S,X

, or equivalently the following diagram com-

mutes.

..

..S ..T

. ..S/≈S,X

.

φ

.
π

. ψ

Proof. To show the existence of ψ and that the diagram commutes, we have

to check the hypothesis of Theorem .., that is we show that kerφ ⊂ kerπ.

t ∈ s kerφ⇒ sφ = tφ (.)

⇒ ∀x, z ∈ S1xszφ ∈ F⇔ xtzφ ∈ F (.)

⇒ ∀x, z ∈ S1xsz ∈ X⇔ xtz ∈ X (.)

⇒ t ∈ skerπ (.)
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. Recognisable Subsets

The notion of recognisable subset can be seen as a generalisation of residual

finiteness to subsets, and therefore recognisability is a finiteness condition for

subsets of a semigroup.

In Section . we will show that the recognisable subsets of a free semi-

group are exactly the regular languages. These are precisely the sets of strings

that are the behaviour of a finite A-automaton. Therefore one can think of

recognisability as an algebraic characterisation of regular languages.

We define the family Rec S of recognisable subsets of a semigroup S by the

following definition of a recognisable subset of S.

Definition ..

Let S be a semigroup. A subset X ⊆ S is recognisable if there is a semigroup mor-

phism S
φ−−−−→T where T is a finite semigroup and such that X = Fφ−1 for some

subset F ⊂ T .

Note that without loss of generality we can assume φ in the above definition

to be surjective. It also follows directly from the above definition that the

empty subset ∅ and the subset S of S are recognisable.

We will discuss a few important properties of recognisable subsets of a

given semigroup S, first of all their behaviour under morphisms. Recognis-

ability is preserved under preimages of morphisms, but not necessarily pre-

served under morphisms.

Lemma ..

Let S φ−−−−→S ′ be a semigroup morphism. If Y is a recognisable subset of S ′ then

Yφ−1 is a recognisable subset of S.

Proof. Let S φ−−−−→S ′ be a semigroup morphism and let Y be in RecS ′. Then

there is a semigroup morphism S ′
ψ−−−−→T , where T is finite, such that Y =

Fψ−1. It follows that Yφ−1 = Fψ−1φ−1 so φψ recognises Yφ−1.
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We show that the family of recognisable subsets of a semigroup forms a Boolean

algebra.

Lemma ..

Let S be a semigroup.

• If X ∈ RecS then S\X ∈ RecS.

• If X1, X2 ∈ RecS then X1 ∪ X2 ∈ RecS.

• If X1, X2 ∈ RecS then X1 ∩ X2 ∈ RecS.

It follows that RecS is a Boolean algebra.

Proof. LetX ∈ RecS, which by definition means that there is a surjective semi-

group morphism S
φ−−−−→T with T finite and F ⊂ T such that X = Fφ−1. Then

(T\F)φ−1 = S\X and therefore S\X ∈ Rec S.

LetX1, X2 ∈ RecS. There are surjective morphismsS φ1−−−−→T1 andS φ2−−−−→T2

with T1 and T2 finite and sets F1 ⊂ T1 and F2 ⊂ T2 such that X1 = F1φ
−1
1 and

X2 = F2φ
−1
2 . Define

φ : S −−−−→ T1 × T2, s 7→ (sφ1, sφ2),

and

F = {(t1, t2) ∈ T1 × T2 | t1 ∈ F1 or t2 ∈ F2} .

Consequently s ∈ Fφ−1 if and only if s ∈ F1φ−1 or s ∈ F2φ−1 so φ recognises

X1 ∪ X2.

The fact that X1 ∩ X2 ∈ RecS follows by applying DeMorgan’s laws.

The following lemma is known as Ogden’s iteration lemma. It was first

proven by William Ogden in [Ogd] for context-free languages. The fol-

lowing theorem is an adaption of Ogden’s ideas to regular languages, with

additional help from the version and proof given in [Ber]. This lemma is

a strengthening of the well-known pumping lemma, or iteration lemma, in
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automata theory. We prove it in the context of recognisable subsets of the

free semigroup on a finite set. Ogden’s iteration lemma is one of the most

important tools in our work in later chapters.

Theorem ..

Let A be a finite alphabet and let X be a recognisable subset of A+. Then there exists

a natural number n0 such that for any element s ∈ A+ and any choice M ⊂ |s| of

marked positions with |M| ≥ n0 the element s admits a factorisation s = xuy with

x, u and y ∈ A∗ such that the following holds.

• There is at least one and at most n0 marked positions in u.

• xuiy ∈ X for all i ∈ N if and only if xuy ∈ X.

Proof. Let X be a recognisable subset of A+. This means that there is a mor-

phism A+ φ−−−−→T with T finite, and F ⊂ T such that X = Fφ−1. Let n0 = |T |

and

w = a1a2 . . . ak

be an element of A+ and let M = {i1, i2, . . . , in} ⊂ k be a set of at least n0
marked positions. Define a factorisation

w = w0w1 . . . wn0+1

of w by

w0 = a1 . . . ai1−1

w1 = ai1

wj = aij−1+1 . . . aijfor 2 ≤ j ≤ n0

wn0+1 = ain0
+1 . . . an

and elements sj ∈ T by s0 = w0φ and sj+1 = sj (wj+1)φ for 1 ≤ j ≤ n0. Since

|T | = n0 there exist two indices j1 and j2 such that sj1 = sj2 , and therefore for

x = w0w1 . . . wj1 , u = wj1+1 . . . wj2 , and y = wj2+1 . . . wn0+1 (.)
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it holds that (xy)φ =
(
xuiy

)
φ for all i ∈ N>0 and therefore xy ∈ X if and

only if xuiy ∈ X.

For any X ∈ Rec S the canonical morphism S
π−−−−→ S/≈S,X recognises

X and S/≈S,X is minimal in the sense that it is a quotient of any T where

S
φ−−−−→T recognises X. This also shows that a subset of S is recognisable if

and only if its syntactic quotient is finite.
Theorem ..

Let S be a semigroup and let X ∈ Rec S. Then S π−−−−→ S/≈S,X recognises X and for

any morphism S φ−−−−→T that recognises X there exists a morphism T θ−−−−→ S/≈S,X
such that π = φψ, or equivalently the following diagram commutes.

..

..S ..T

. ..S/≈S,X

.

φ

.
π

. θ

Proof. We first show that S π−−−−→ S/≈S,X recognises X. For this let F be the

image of X under the relation ≈S,X. We show that X = Fπ−1. If x ∈ X then

xπ ∈ F and therefore x ∈ Fπ−1. Conversely, let s ∈ F then there is t ∈ s with

t ∈ X, and by the definition of ≈S,X this implies that sπ−1 ⊂ X.

The rest of the proof follows from Theorem ...

. Rational Subsets

Rationality also is a finiteness condition on subsets of a semigroup in the sense

that there is an inductive specification for each set of this class. Inductive

definitions are used in formal logic and recursion theory. More specifically,

we will define by induction the syntax and the semantics of expressions. The

syntax is the definition of rational expressions and extended rational expressions,

and the semantics assign to every rational expression a subset of a semigroup.

We call the family of subsets thus defined the family of rational subsets of S.
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In the previous section, we stated that that recognisability is an algebraic

way to specify regular languages. Rational expressions are the formal logic

approach to specify regular languages.

Definition ..

Let X be a set. The set RatExpX of rational expressions over X is inductively

defined as follows.

• The expression λ is an element of RatExpX,

• any element x ∈ X is an element of RatExpX,

• if α is in RatExpX, then the expression α+ is in RatExpX,

• if α and β are elements of RatExpX, then the expression (αβ) is an element of

RatExpX,

• if α and β are elements of RatExpX, then the expression (α ∪ β) is an element

of RatExpX.

Given a semigroup S and a map X f−−−−→S, we assign to each rational expres-

sion a subset of S by inductively defining the map [[]]f. Usually we will choose

X = S and f to be the identity map ιS. If S is finitely generated, we can do

with X being a generating set for S.

Definition ..

Let X be a set, S be a semigroup and X f−−−−→S be a map. The map [[]]f is inductively

defined as follows.

• [[λ]]f = ∅,

• [[x]]f = {xf},

• [[α+]]f = [[α]]+f ,

• [[α ∪ β]]f = [[α]]f ∪ [[β]]f,

• [[αβ]]f = [[α]]f [[β]]f.
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We denote the family of all rational subsets of S with respect to X and f by

RatSf. Note that f implicitly defines the set X. If S is generated by X f−−−−→S

and Y g−−−−→S is another generating set for S, then Rat Sf = RatSg. This can

easily be seen in Definition ...

Rational subsets behave dually to recognisable subsets under morphisms:

they are preserved under morphism, but not under taking preimages.

Lemma ..

Let S φ−−−−→S ′ be a semigroup morphism. If X is a rational subset of S then Xφ is a

rational subset of T .

Proof. This follows by induction over the definition of rational expressions,

the map [[]] and from the fact that φ is a map and a morphism.

Given a surjective semigroup morphism S
φ−−−−→T and a rational subset Y of

T we can prove the existence of a rational subset of X of S such that Y = Xφ.

Lemma ..

Let S φ−−−−→T be a surjective semigroup morphism. If Y ∈ Rat T then there exists

X ∈ RatS with Y = Xφ.

Proof. Consider the family R ⊂ T̂ with Y ∈ R if and only if there is X ∈ RatS

with Y = Xφ. We show by induction that R ⊃ Rat T .

• ∅ ∈ R, because ∅φ = ∅.

• Since φ is surjective, for all t ∈ T there is s ∈ S with t = sφ, therefore

{t} ∈ R.

• If Y is an element ofR, then there isX ∈ RatSwith Y = Xφ, and therefore

Y+ = X+φ is an element of R.

• If Y and Y ′ are elements of R, then there are X and X ′ in RatS with Y =

Xφ and Y ′ = X ′φ, therefore Y ∪ Y ′ = (X ∪ X ′)φ is an element of R.
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• If Y and Y ′ are elements of R, then there are X and X ′ in Rat S with Y =

Xφ and Y ′ = X ′φ, therefore YY ′ = (XX ′)φ is an element of R.

We also note that there is a natural definition of rational expressions for

monoids M that include a rational expression ϵ with [[ϵ]]f = ε and a rational

expression α∗ with [[α∗]]f = [[α]]∗f .

. Kleene’s Theorem

Kleene’s Theorem, named after its discoverer Stephen Kleene [Kle], identifies

rational and recognisable subsets of free semigroups. The technique used to

prove that RecA+ ⊂ RatA+ has been applied in more general settings and is

known today as the Kleene-Floyd-Warshall method.

Theorem ..

Let A be a finite alphabet. Then RecA+ = RatA+.

A semigroup in which Kleene’s theorem holds is called a Kleene semi-

group. A natural task is now to characterise the class of all Kleene semi-

groups, which is an open research problem.

Applying Kleene’s theorem and properties of rational and recognisable

subsets we can prove the following theorem for finitely generated semigroups,

which was proven by McKnight [McK].

Theorem ..

Let S be a finitely generated semigroup. Then Rec S ⊂ RatS.

Proof. LetA be a finite generating set for S. ThenA+ π−−−−→S is surjective and

for any recognisable subset X of S the preimage Xπ−1 is a recognisable subset

of A+. By Kleene’s theorem .. the set Xπ−1 is also a rational subset of A+

and therefore X = Xπ−1π is a rational subset of S.
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For semigroups that are not finitely generated, Theorem .. does not hold.

Furthermore, the inclusion RecS ⊃ RatS does not hold in general for finitely

generated semigroups. For example in CS(2), which is defined in Section .,

the set {ab}+ is rational but not recognisable which can be shown by apply-

ing an iteration lemma. The following result is known for finitely generated

semigroups.

Theorem ..

Let S be a semigroup and let X be in RatS. Then there exists a finitely generated

subsemigroup T of S such that X ⊂ T .

Proof. Let R be the class of all subsets of S that are contained in a finitely gen-

erated subsemigroup of S. We show by induction that RatS ⊂ R.

• The empty set ∅ is in R.

• For all s ∈ S, the singleton set {s} is in R.

• If X ∈ R and T ⊂ S a finite subset of S such that X ⊂ T+, then X+ ⊂ T+.

• If X ∈ R and Y ∈ R and T ⊂ S and U ⊂ S are finite subsets of S with

X ⊂ T+ and Y ⊂ U+ respectively, then X ∪ Y ⊂ (T ∪U)+

• If X ∈ R and Y ∈ R and T ⊂ S and U ⊂ S are finite subsets of S with

X ⊂ T+ and Y ⊂ U+ respectively, then XY ⊂ (T ∪U)+.

Another consequence of Theorem .. is that in a free semigroup the fam-

ily of rational subsets forms a Boolean algebra. This is not true for general

semigroups, for consider the monoidM = {a}∗ × {b, c}∗ and the rational sub-

sets X and Y defined as follows.

X =
[[
(a, b)+(ε, c)+

]]
=

{
(an, bnck) ∈M | n, k > 0

}
Y =

[[
(ε, b)+(a, c)+

]]
=

{
(an, bkcn) ∈M | n, k > 0

}
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Now

X ∩ Y = {(an, bncn) ∈M | n > 0} .

LetM π−−−−→ {b, c} be the projection onto the second factor of the direct prod-

uct. If X ∩ Y were rational, then (X ∩ Y)π = {bncn ∈ {b, c}∗ | n ∈ N} would be

rational, which it is not. This can be shown by applying Theorem ...

If we restrict one set to be recognisable, then we can prove a lemma about

intersections.
Lemma ..

Let S be a semigroup. If X ∈ Rec S and Y ∈ RatS then X ∩ Y ∈ RatS.

Proof. Since Y ∈ RatS by Theorem .. there exists a finitely generated sub-

semigroup S ′ of S such that Y ∈ RatS ′. This implies that there is a finite gen-

erating setA for S ′, that is a surjective morphismA+ π−−−−→S ′, and by Lemma

.. a rational subset Y ′ of A+ such that Y ′π = Y. Applying Theorem ..

yields that Y ′ is recognisable. Since by assumption X ∈ RecS, the preim-

age X ′ = Xπ−1 is a recognisable subset of A+. The intersection X ′ ∩ Y ′ is a

recognisable subset of A+, and again by Theorem .. rational and therefore

(X ′ ∩ Y ′)π is a rational subset of S. Now

(
X ′ ∩ Y ′)π =

(
X ′ ∩ Yπ−1

)
π = X ′π ∩ Y = X ∩ Y,

and therefore X ∩ Y ∈ RatS.

. Extended Rational Subsets

We take the above results as a motivation to define the family of extended ratio-

nal subsets of a semigroup S. Extended rational subsets are not well-studied

in the literature yet. Nothing prevents us from adding intersection and com-

plement operations to the basic operations allowed in Definition .. and

Definition ... By De Morgan’s laws it would technically suffice to add the
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complement operation to define the family of extended rational subsets of a

given semigroup. We opt to add intersections because we will be interested

in intersections in Chapter .

Definition ..

Let X be a set. The family ERatExpX of extended rational expressions over X is

inductively defined as follows.

• For α ∈ RatExpX the expression α ∈ ERatExpX,

• for α ∈ ERatExpX the expression α ∈ ERatExpX,

• for α,β ∈ ERatExpX the expression (α ∩ β) ∈ ERatExpX.

The definition of the map [[]]f for extended rational expressions is also

straightforward.

Definition ..

Let X be a set, S be a semigroup and X f−−−−→S be a map. We define the map [[]]f for

every α ∈ ERatExpX inductively as follows.

• [[α]]f for α ∈ RatExpX is the same as in Definition ..

• [[α]]f = S\ [[α]]f

• [[α ∩ β]]f = [[α]]f ∩ [[β]]f

We call the family of subsets of S defined by extended rational expressions

extended rational subsets of S and denote this family by ERat S.

For extended rational expressions αwe inductively define some measures

of complexity, the depth d(α),

• d(α) = 0 if α ∈ RatExpX

• d(α) = d(α) + 1

• d(α ∩ β) = max {d(α) ,d(β)}+ 1,
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the complement complexity cc(α)

• cc(α) = 0 if α ∈ RatExpX

• cc(α) = cc(α) + 1

• cc(α ∩ β) = cc(α) + cc(β),

and the intersection complexity ic(α) by

• ic(α) = 1 if α ∈ RatExpX

• ic(α) = ic(α)

• ic(α ∩ β) = ic(α) + ic(β).

For a set X ∈ ERatS, to get well-defined notions of depth, complement

complexity and intersection complexity we define the depth d(X), cc(X) and

ic(X) of X to be the minimal d(α), cc(α) and ic(α) among all extended rational

expressions αwith [[α]] = X.

We define a subfamily of extended rational subsets of S, the polyrational

subsets of S, which are intersections of rational subsets.

Given k ∈ N>0, we call a subset X of S a strictly k-rational subset of S for

some k ∈ N>0 if there exists an extended rational expression α with [[α]] =

X and cc(X) = 0 and ic(X) = k, in other words it is possible to write X as

an intersection of exactly k rational subsets of S and no less. We make it a

convention that a 1-rational subsets of S are just the rational subsets.

We denote the family of all subsets of S that are at most k-rational by k-RatS

and call the elements of k-RatS the k-rational subsets of S. With this we have

k-RatS ⊂ (k+ 1) -RatS.

A subset X of S is polyrational if and only if X ∈ k-RatS for some k ∈ N>0.

We denote the family of polyrational subsets by PRat S.

We get

Rec S ⊂ RatS = 1-RatS ⊂ 2-RatS ⊂ . . . ⊂ PRatS ⊂ ERatS.
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We note that it would also have been possible to define polyrational ex-

pressions by just admitting the intersection operation for expressions and

defining the semantics accordingly.

In light of Kleene’s theorem we have the following.

Theorem ..

Let A be a finite set. Then RecA+ = RatA+ = PRatA+ = ERatA+.

Proof. It suffices to show that RecA+ = ERatA+. LetX ∈ ERatA+. IfX ∈ RatA+

then X ∈ RecA+. If X = Y or X = Y ∩ Z then by induction Y and Z are in

RecA+ and therefore Y and Y ∩ Z are recognisable and again by Kleene’s the-

orem rational.

We will show in Chapter  that

k-Rat
(
A+ ×A+

)
⊂ (k+ 1) -Rat

(
A+ ×A+

)
holds for all k ∈ N>0.

As stated above, the theory of extended rational subsets of semigroups

and extended rational relations is, to the knowledge of the author, not well-

understood. In particular it should be examined which levels of complexity

can be achieved.

Extended rational relations are accepted by finite trees of finite state au-

tomata. We will not go further into this matter and leave this as a potentially

interesting area of research, in particular finding out which complexity levels

are realisable as word problems.

. Recognisable Relations

This section serves the purpose of characterising relations that are recognis-

able. This result was first proven by Mezei in [EM]. We first define what

we mean by a recognisable relation.
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Definition ..

Let S and T be semigroups. A relation S ρ−−−−→ T is recognisable if Gρ is a recog-

nisable subset of S× T .

The following theorem is due to Mezei and characterises recognisable rela-

tions between monoids. Note that we can turn any semigroup into a monoid

by adding an identity element.
Theorem ..

Let S1 and S2 be monoids and let S = S1 × S2. Then U ∈ RecS if and only if

U =
∪
i∈I
Xi × Yi,

where Xi ∈ Rec S1 and Yi ∈ RecS2 and I is a finite index set.

Proof. Let S1 and S2 be monoids and let S = S1 × S2.

Let S πi−−−−→Si be the projections on Si for i ∈ {1, 2}. If X ∈ RecS1 and

Y ∈ Rec S2 then

X× Y = (X× S2) ∩ (S1 × Y) = Xπ−11 ∩ Yπ−12 .

Hence, since Rec S is closed under finite union U ∈ RecS.

Conversely let U ∈ RecS, which by definition implies that there is a mor-

phism S
φ−−−−→T , with T finite, such that U = Fφ−1 for some F ⊂ T . Define

two morphisms Si
ψi−−−−→T for i ∈ {1, 2} by

s1ψ1 = (s1, e)φ s2ψ2 = (e, s2)φ, (.)

and define S θ−−−−→T × T by

(s1, s2)θ = (s1ψ1, s2ψ2) . (.)

Now U is the preimage of the subset

F ′ = {(t1, t2) ∈ T × T | t1t2 ∈ F}

of T × T under θ and therefore

U =
∪

(t1,t2)∈F ′

(
t1ψ

−1
1

)
×
(
t2ψ

−1
2

)
.
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. Rational Relations

We define the class of rational relations between semigroups. There are ra-

tional relations between free semigroups that are not recognisable. We know

from Theorem .. that for finitely generated S× T all recognisable relations

are also rational. This is in contrast with recognisable and rational subsets of

free semigroups, where these two classes of subsets are the same.

Definition ..

Let S and T be semigroups. A relation S ρ−−−−→ T is rational if Gρ is a rational subset

of S× T .

We call rational relations S ρ−−−−→ S which are equivalence relations or con-

gruence relations rational equivalences and rational congruences respectively.

We note that the kernel of a semigroup morphism is a congruence and there-

fore we can also speak of a rational morphism S
φ−−−−→T if the kernel of φ is

a rational congruence.

We prove a characterisation of rational relations due to Nivat [Niv]. It

relates rational relations to recognisable subsets of a free semigroup, and as

a consequence we can prove an iteration lemma for rational relations. We

again take the route that Eilenberg chose in his book “Automata, Languages,

Machines” [Eila]. Eilenberg himself attributes most of these results to Elgot,

Mezei and Nivat.

The following theorem is the first factorisation theorem in Eilenberg’s book.

It is Theorem 2.2 in Chapter IX of [Eila].

Theorem ..

Let S and T be finitely generated semigroups. A relation S ρ−−−−→ T is rational if and

only if it admits a factorisation

S
αr

−−−−→ C∗ ∩K−−−−→ C∗ ω−−−−→ T, (.)

where C∗ α−−−−→ S and C∗ ω−−−−→ T are morphisms and K is a rational subset of C∗.
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Proof. Assume that ρ is as in (.), then by Lemma .. it follows that Gρ = Kγ

where C∗ γ−−−−→ S× T and sγ = (sα, sβ). Now since K is a rational subset of

C∗ so is Kγ.

Conversely, let S ρ−−−−→ T be a rational relation. Let X and Y be finite gen-

erating sets for S1 and T 1 respectively. Then Z = X × Y is a generating set

for S1× T 1. There exists a finite alphabet C and a morphism C∗ γ−−−−→S1 × T 1

and rational K ⊂ C∗ such that Cγ ⊂ Z and Kγ = Gρ. Define C∗ α−−−−→S and

C∗ β−−−−→T such that sγ = (sα, sβ). Then Cα ⊂ eS ∪X and Cβ ⊂ eT ∪Y, and

by Lemma .. the relation ρ is equal to the composition (.).

One application of the factorisation theorem is to show that a rational relation

preserves rational subsets. This is Eilenberg’s evaluation theorem, Theorem 3.1

in Chapter IX of [Eila].

Theorem ..

Let A+ ρ−−−−→ S be a rational relation between the semigroups A+ and S. If X ∈

RatA+ then Xρ ∈ RatS.

Proof. Applying Theorem .. to A+ ρ−−−−→ S yields the factorisation

A+ αr

−−−−→ C∗ ∩K−−−−→ C∗ ω−−−−→ S,

whereC∗ α−−−−→ A+ andC∗ ω−−−−→ S are morphisms andK is a rational subset

of C∗.

Now Xα−1 is a rational subset of C∗ by Lemma .. and Theorem ...

Therefore K ∩
(
Xα−1

)
is a rational subset of C∗ and therefore(

K ∩
(
Xα−1

))
ω

is a rational subset of S.

Our second application of the first factorisation theorem is this composition

theorem which establishes when the composition of two rational relations is

rational. A proof of this theorem can be found in [Eila, Chapter IX] or in

[Ber, Chapter ].
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Theorem ..

Let S and T be semigroups and letA+ be a free semigroup on the finite setA. Let fur-

thermore S ρ−−−−→ A+ and A+ σ−−−−→ T be rational relations. Then the composition

S
ρ−−−−→ A+ σ−−−−→ T

is a rational relation.

The hypothesis of the middle semigroup being free is necessary.

The following theorem is Eilenberg’s second factorisation theorem, Theorem

5.1 in Chapter IX of [Eila].

Theorem ..

Let A and B be alphabets. A relation A∗ ρ−−−−→ B∗ with ερ ̸= ∅ is rational if and

only if it admits a factorisation

A∗ α−−−−→ C∗ ∩K−−−−→ C∗ ωr

−−−−→ B∗,

where A∗ α−−−−→ C∗ is a morphism with Aα ⊂ C and B∗ ω−−−−→ C∗ is a rational

substitution and K is a rational subset of C∗.

And finally we get an iteration lemma, for rational relations. A proof can be

found again in [Eila], Proposition 9.1 of Chapter IX.

Proposition ..

LetA+ ρ−−−−→ B+ be a rational relation. Then there exists n0 ∈ N such that v ∈ A+,

and w ∈ vρ with |v| + |w| ≥ n0 admits factorisations v = x1u1z1 and w = x2u2z2

with

• 0 < |u1|+ |u2| ≤ n0

• x2ui2z2 ∈ x1ui1z1r for all i ∈ N.

The following theorem was found by Johnson while doing research for his

PhD thesis [Joh; Joh]. One of Johnson’s goals was to show that rational

equivalence relations have recognisable cross section. He did not succeed and
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to this day it is an open question whether rational equivalence relations have

recognisable cross sections. The following proposition is proved in Johnson’s

PhD thesis.
Proposition ..

Let A∗ ρ−−−−→ A∗ be a rational equivalence relation. There exists a recognisable sub-

set D ⊆ A∗ such that

• the composition

D
ιD−−−−→ A∗ ρ−−−−→ A∗ ιr

D−−−−→ D

is an equivalence relation on D,

• for every v ∈ A∗ there exists a w ∈ D such that w ∈ vρ, and

• |vρ ∩D| is finite.

We explicitly ask the following two open questions.

Open Question ..

Given a rational equivalence relation A∗ ρ−−−−→ A∗, does there exist a recognisable

set D ⊂ A∗ such that |vρ ∩D| = 1 for all v ∈ A∗.

Obviously a positive answer to the above would imply a positive answer

to the following question, but not the converse, but failing to show the above

result it might be possible to show the following using the special properties

of a congruence.

Open Question ..

Given a rational congruence relation A∗ ρ−−−−→ A∗, does there exist a recognisable

set D ⊂ A∗ such that |vρ ∩D| = 1 for all v ∈ A∗.

. Polyrational Relations

This section is devoted to showing that the composition of a polyrational rela-

tion with a rational relation is a polyrational relation. We focus our attention



 Subsets of Semigroups

on polyrational relations since these are needed in Chapter . The notion of

extended rational relations is not well understood and a possible area for fu-

ture research.

We define the notion of a polyrational relation.

Definition ..

Let S and T be semigroups. A relation S ρ−−−−→ T is polyrational if Gρ is a polyra-

tional subset of S× T .

We show that composition of a rational relation and a polyrational relation is

a polyrational relation.

Theorem ..

LetA andB be alphabets, letA+ ρ−−−−→ A+ be a polyrational relation and letB+ τ−−−−→ A+

be a rational relation. Then the relation B+ τρ−−−−→ A+ is polyrational.

Proof. By Definition .. it holds that

ρ =
∩
i∈k
ρi

for some k ∈ N>0 and rational relations A+ ρi−−−−→ A+. Therefore by Lemma

.. the relations τρi are rational and it follows from the proof of Lemma

.. that the set

Ri = {(v, u,w) | u ∈ wτ and w ∈ uρi} ,

is a rational subset of B+ ×A+ ×A+.

Define the morphism π as

π : B+ ×A+ ×A+ −−−−→ B+ ×A+, (v, u,w) 7→ (v,w).

Since π is a morphism and Ri is a rational subset for i ∈ k, the image Riπ of

Ri under π is a rational subset of B+ ×A+.

We show that

(
∩
i∈k
Ri)π =

∩
i∈k

(Riπ) ,
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and hence that Gτρ is a polyrational subset of B+ ×A+ and therefore the rela-

tion B+ τρ−−−−→ A+ is a polyrational relation.

For the remainder of this proof let all intersections range over i ∈ k.

If (v,w) ∈ (
∩
Ri)π then there is u ∈ A+ such that for all i ∈ k it holds that

(v, u,w) ∈ Ri. This means that for all i ∈ k the pair (v,w) ∈ Riπ and therefore

(v,w) ∈
∩

(Riπ).

Conversely, if (v,w) /∈ (
∩
Ri)π, then for all u ∈ A+ there exists an i ∈ k

such that (v, u,w) /∈ Ri and therefore (v,w) /∈ Riπ, which implies that (v,w) /∈∩
(Riπ).

This concludes the proof of the claim that the composition of τ and ρ is a

polyrational relation.

The proof of the following theorem is just as above and we state the theo-

rem for completeness.

Theorem ..

LetA andB be alphabets, letA+ ρ−−−−→ A+ be a polyrational relation and letA+ σ−−−−→ B+

be a rational relation. Then the relation A+ ρσ−−−−→ B+ is polyrational.






◦ ◦· ◦

Computation

We introduce the necessary notions and theorems from the theory of au-

tomata and computation. A lot of the material in this chapter is inspired by

Chapter X of Eilenberg’s book Automata, Languages and Machines [Eila].

We start by defining finite state automata and show how finite state automata

relate to recognisable and rational subsets of semigroups and relations be-

tween semigroups. We then introduce the notion of a machine as defined

by Eilenberg, in terms of which we can define one-counter and pushdown

automata as well as Turing machines. We also give a short overview of the

notion of complexity.

. Automata

The most important ingredient for a theory of computation are, of course,

models of computation. Our model of computation is the automaton. An au-

tomaton consists of states and possible transitions. At any point in time an


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automaton is in exactly one state, and reading an input changes the state. Se-

quences of inputs form a free semigroup acting on the states. This already

hints at the close relationship between semigroups and computation.

Definition ..

Let A be an alphabet. An A-automaton A is a tuple

A =
⟨
Q,q0, F, (

a−−−−→)a∈A
⟩
,

whereQ is a finite set of states, q0 ∈ Q is the initial state, F ⊂ Q is the set of final

states and (
a−−−−→)a∈A is a family of relations on Q labelled by A.

Note that we do not require the alphabet in Definition .. to be finite.

We will say that an A-automaton is finite if A is finite.

We denote transitions ofA by q a−−−−→ q ′ and call a the label of q a−−−−→ q ′.

Two transitionsq a−−−−→ q ′ andq ′ a ′
−−−−→ q ′′ can be composed to form a partial

computation

q
a−−−−→ q ′ a ′

−−−−→ q ′′,

and therefore we can compose transitions qi
ai−−−−→ qi+i for 1 ≤ i ≤ n into

partial computations of A, which we denote by

γ : q1
s−−−−→ qn+1

where s = [a . . . an]. We call q1 the start state and qn+1 the end state of γ. The

string s is the label of γ denoted |γ|.

Given two partial computations γ : q1
s−−−−→ q2 and γ ′ : q2

t−−−−→ q3 the

composite computation γ · γ ′ is a computation from q1 to q3 labelled by s · t.

As a convention we can also always include the identity computationq ε−−−−→
q.

If defined, the concatenation of computations is associative, so the set Γ(A)

of all computations of an automaton is a semigroupoid. The labels of defined

computations of an automaton form a subset of the free monoid A∗.
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Computations that start in the state q0 are treated specially. A state q ∈

Q is accessible if there is a computation γ : q0
s−−−−→ q, it is coaccessible if

there is a computation γ : q
s−−−−→ q ′ with q ′ in F. An A-automaton A is

deterministic, if for all s ∈ A∗ there is at most one computation γ : q0
s−−−−→ q.

A computation γ : q0
s−−−−→ q is accepting or successful if q ∈ F.

We define the behaviour |A| of A by

|A| = {|γ| | γ successful } ,

and we say that the automaton A decides the set |A|.

We show that the behaviour of a finite automaton A is a recognisable sub-

set of A∗, and that any recognisable subset of A∗ is the behaviour of a finite

automaton.
Theorem ..

Let A be a finite alphabet. Then X ∈ RecA∗ if and only if there exists a finite A-

automaton with |A| = X.

Proof. If X is an element of RecA∗, then by definition there exists a monoid

morphism A∗ φ−−−−→T , where T is finite, and some F ⊂ T such that X = Fφ−1.

Define the automaton

A =
⟨
T, e, F, ( a−−−−→)a∈A

⟩
,

with transitions

t
a−−−−→ t(aφ) for all t ∈ T and a ∈ A.

Now, again by the definition of the recognisability of X, the string v is an ele-

ment of X if and only if vφ is an element of F, and by construction of A this is

the case if and only if there is a successful computation of A labelled by v.

Conversely let

A =
⟨
Q,q0, F, (

a−−−−→)a∈A
⟩

be an A-automaton with |A| = X.
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The free monoid A∗ acts on the powerset Q̂ of Q by

Pa =
{
q ∈ Q | p

a−−−−→ q, p ∈ P
}

for any set P ∈ Q̂. This defines a monoid morphism A∗ φ−−−−→T
Q̂

and since

the set Q of states is finite, the set Q̂ is finite too. Defining F̃ ⊂ T
Q̂

by

F̃ =
{
f ∈ T

Q̂
| q0f ∩ F ̸= ∅

}
,

the morphism φ recognises X.

Eilenberg argues that one can generalise the above definitions and results

and define automata that take inputs over an arbitrary monoid M, but that

making that exposition explicit would be “an exercise that is not very produc-

tive”. We take the same position but note that we already introduced notions

of rationality and recognisability in the more general setting of semigroups

and monoids, and will use this generalisation in the following section. Note

that it is convenient to allow for infinite M as long as we can find a finite set

M0 that generates the submonoid ofM that contains |A|.

We generalise the notion of an automaton in another direction, namely by

considering finite tuples of automata which we will call parallel automata.

Definition ..

Let A be an alphabet. A k-parallel A-automaton is a k-tuple A = (Ai)i∈k where

Ai is an A-automaton for i ∈ k.

A k-parallel automaton A = (Ai)i∈k accepts an input if an only if for

all i ∈ k the automaton Ai accepts it. The concept of a k-parallel automa-

ton is not more powerful with respect to specifying subsets of A∗: It follows

from Kleene’s theorem and the fact that the recognisable subsets of A∗ form

a Boolean algebra that for any behaviour of a k-parallel A-automaton there

exists an A-automaton with the same behaviour. If we consider subsets of

S × T the situation becomes very different. The following section will show

how this automaton model becomes useful for us.
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. Polyrational Relations

We consider relations S ρ−−−−→ T where S and T are monoids, and show that

S
ρ−−−−→ T is rational if and only if there is a finite automaton that decides the

graph Gρ of S ρ−−−−→ T .

Theorem ..

Let S and T be monoids. A relation S ρ−−−−→ T is rational if and only if there is a

finite alphabet A and an A-automaton A with |A| = Gρ.

Proof. Let S ρ−−−−→ T be a rational relation. Then its graph Gρ is by definition a

rational subset of S× T , and by Theorem .. and Lemma .. there exists a

finite alphabet A, a morphism A∗ φ−−−−→S× T and a set X ∈ RatA∗ such that

Gρ = Xφ. Now X is the behaviour of an A-automaton A.

Conversely letA be an S×T -automaton such that |A| = Gρ. AssumingA to

be the set of all labels in the automaton A, we can view A as an A-automaton

that decides the subset |A| ofA∗. This implies that |A| is rational. Using the in-

clusion mappingA i−−−−→S× T it follows that there exists a unique morphism

A∗ φ−−−−→S× T which extends i. Now Gρ = |A|φ and is therefore rational as

the image of a rational set under a morphism.

Extending this idea, k-parallel A-automata decide k-rational relations.

Theorem ..

Let S and T be monoids. A relation S ρ−−−−→ T is at most k-rational if and only if

there is a k-parallel S× T -automaton A with |A| = Gρ.

Proof. A relation S ρ−−−−→ T is k-rational if and only if there are rational re-

lations S ρi−−−−→ T for i ∈ k such that ρ is the intersection of ρi. Applying

Theorem .., this is the case if and only if there are S × T -automata Ai for

i ∈ k with |Ai| = Gρi . A pair (s, t) is contained in Gρ if and only if (s, t) is

contained in Gρi for all i ∈ k which is the case if and only if (s, t) is accepted

by the k-parallel automaton (Ai)i∈k.
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. Machines

We take the time to introduce Eilenberg’s concept of an X-machine. We will

only touch on this matter in the final chapters, but find it important to in-

troduce this concept here, since it will give the formal methods to generalise

some of the results presented.

Eilenberg’s machines are a very powerful generalisation of an automaton

as defined in Section ..

Definition ..

Let X, Y and Z be sets and letΦ be a family of relations X φ−−−−→ X. An X-machine

M of type Φ with inputs from Y and outputs in Z is a tuple

A =
⟨
Q,q0, F, (

φ−−−−→)φ∈Φ , α,ω
⟩
,

where
⟨
Q,q0, F, (

φ−−−−→)φ∈Φ
⟩

is aΦ-automaton, Y α−−−−→ X is the input encoding

relation and X ω−−−−→ Z is the output encoding relation.

The input encoding relationα converts an input into a representation suit-

able for the machine at hand, the output encoding relation ω converts back

from an internal representation to an output. Computations are labelled by

elements of Φ and via the embedding of Φ into RX we assign to every com-

putation an element of the monoid RX. The element of RX represented by the

label of a computation γ is called the behaviour of γ, denoted |γ|.

We define the behaviour |M| of M by

|M| = {|γ| | γ successful } ,

and we say that the machine M computes the relation ρM given by

ρM : Y
α−−−−→ X

|M|−−−−→ X
ω−−−−→ Z.

To make clear how powerful this definition is, we now define several well-

known models of computation in terms of the above definition, but leave out
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detailed proofs. Let

M =
⟨
Q,q0, F, (

φ−−−−→)φ∈Φ , α,ω
⟩
,

with inputs in A∗ and outputs in B∗, where

X = B∗ ×M×A∗

for a monoidM and

vα = (e, e, v)

(w,m, v)ω =


w ifm = 1, v = 1

∅ otherwise
.

Now the expressive power of the machine depends on the choices of M and

Φ. The machine M is equivalent to a

• finite automaton if M = {e}, A = Y and B = ∅ and the family Φ is the

family λra for a ∈ A;

• pushdown automaton ifM = C∗, whereC is a finite alphabet with |C| > 1,

the set B = ∅ and the familyΦ consists of relations

ι×λra for a ∈ A

ρc×ι for c ∈ C

ρrc×ι for c ∈ C

In the special case where |C| = 1, the automaton A is a one-counter au-

tomaton;

• Turing automaton or more commonly Turing machine if M = A∗, B = ∅

andΦ consists of the relations ρa× ι, ι× λa, ρra× ι and ι× λra for a ∈ A.
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. Decidability and Complexity

The two notions of a problem being decidable and, if so, what complexity it

has, have been considered since Hilbert asked for a solution to the Entschei-

dungsproblem.

The Entscheidungsproblem asks for an algorithm that takes as its input a

sentence in first order logic and a finite collection of axioms and outputs yes

or no depending on whether the sentence is valid within the theory given by

the axioms. Famously Kurt Gödel [Göd], and later, maybe more accessibly

in an algorithmic setting, Alan Turing [Tur], proved that such an algorithm

cannot exist. This gives the motivation for the following definition.

Definition ..

Let A be an alphabet. A subset X ⊂ A∗ is recursively decidable or simply de-

cidable if there exists a Turing machine M with inputs in A∗ such that the relation

computed by M is the characteristic function of X in A∗.

Since it is quite tedious to actually construct a Turing machine, one usu-

ally defines higher level constructs, for example programming languages, and

proves the equivalence of that language to Turing machines by expressing the

operations of the language in terms of operations of a Turing machine, and

making sure that these operations are composable. In this setting a subset X

of A∗ is decidable if and only if there exists a procedure in the higher level

language that computes the characteristic function of X.

For this thesis we note that the existence of an automaton that accepts X

proves that X is a decidable subset of A∗.

With the definition of a Turing machine, it becomes possible to formally

examine problems for their complexity. Complexity is a very general notion

and is understood to be the amount of resources one has to use to solve a

problem. In the context of theoretical computer science this has classically

been time complexity and space complexity.
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In the case of this thesis we might be more interested in how many states

we need in an automaton or how many independent automata are needed

to decide a polyrational relation. For practical purposes, for example imple-

menting decision procedures in a computer algebra system, we will also be

interested in space and time complexity.

Theorem ..

Let A and B be alphabets and let A be a finite A∗ × B∗-automaton. Given (v,w) ∈

A∗ × B∗, it can be decided in time O
(
(|v|+ |w|)2

)
and space O(|v|+ |w|) whether

A accepts (v,w).

Proof. Assume

A =
⟨
Q,q0, F, (

x−−−−→)x∈X
⟩

to be the given finite X-automaton. Without loss of generality we can assume

X to only consist of (a, ε) for a ∈ A and (ε, b) for b ∈ B and (ε, ε).

For (x, y) ∈ X define the (x, y)-follow operation of a set of states by

f(x,y) : Q̂ −−−−→ Q̂, P 7→ {
q ∈ Q | ∃p ∈ P, p (x,y)−−−−→ q

}
,

and denote by f+(ε,ε) the iteration of f(ε,ε). The operation f+(ε,ε) is sometimes

called the ϵ-closure operation. The iteration reaches a fixed point after finitely

many iterations since the set of states is finite. We denote by f⊕(x,y) the compo-

sition f(x,y)f+(ε,ε). For Y = A∗ × B∗ × Q̂, define the iteration In by

I0 = {(v,w, {q0} ϵ)}

In+1 = {(v,w,
∪
Pxv,ywf

⊕
(x,y)) ∈ Y | (xv, yw, Pxv,yw) ∈ In for (x, y) ∈ X}

An algorithm that decides whether a given input (v,w) is accepted by A now

proceeds by iteratively computing In for increasingn until there is an element

(ε, ε, P) in In. Note that since we apply the ϵ−closure in every step, |v| +

|w| is strictly decreasing for increasing n, and therefore this procedure will
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terminate. If P ∩ F ̸= ∅, then (v,w) is accepted, otherwise P ∩ F = ∅ and (v,w)

is not accepted.

A tuple (v ′, w ′, P) is in In if and only if there exists a computationq0
(s,t)−−−−→ p

of A with label (s, t) such that sv ′ = v and tw ′ = w and p ∈ P. This can be

shown by induction on the iteration rule.

To estimate the runtime of this algorithm, note that (ε, ε, P)will be reached

after exactly |v|+ |w| iterations. The size of In is bounded linearly in n, there-

fore in every iteration step we need n applications of the function f⊕(x,y), which

in this setting can be done in O(1). Since the size of In is bounded linearly in

|v|+ |w|, the space requirement for this algorithm is in O(|v|+ |w|).

Note also that if we consider the automaton as input, the sizes of the set Q

and the transition relation are significant for time and memory consumption.

The two more general questions whether a rational relation is non-empty

and whether a rational relation is finite are decidable.
Theorem ..

Let A be a A∗ × B∗-automaton. It is decidable whether |A| is empty and whether

|A| is finite. Given a rational relation A∗ ρ−−−−→ B∗ as a A∗ × B∗-automaton, it is

decidable whether ρ is the empty relation and whether ρ is a finite relation.

Proof. Let

A =
⟨
Q,q0, F, (

x−−−−→)x∈X
⟩

be an A∗ × B∗-automaton.

To decide whether |A| is empty, it is sufficient to apply a search algorithm

to the finite graph that is defined by the states and the transition relations. If

there is at least one path from q0 to a state in F, then |A| is not empty. To decide

whether |A| is finite, we consider all paths from q0 to states in F and check

whether there exists a path that has a loop that is not labelled by (ε, ε). To

decide whether a rational relationA∗ ρ−−−−→ B∗ given by aA∗×B∗-automaton

A is empty, finite, or infinite, we observe that A∗ ρ−−−−→ B∗ is empty, finite or

infinite if and only if |A| has the respective property.
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In contrast to the previous two theorems, somewhat surprisingly, many

non-trivial but straightforward problems for rational relations are undecid-

able in general: It is undecidable whether the intersection of two rational rela-

tions is empty, whether two rational relations are equal and whether a rational

relation is recognisable. It is also undecidable whether a rational relation is

universal, a property which becomes decidable for rational congruences as we

will show in Chapter . Proofs rely on the undecidable Post-Correspondence-

Problem and can for example be found in [Ber, Ch. ].

Theorem ..

Let A∗ ρ−−−−→ B∗ and A∗ σ−−−−→ B∗ be a rational relations. The following problems

are undecidable.

. ρ ∩ σ = ∅

. ρ ⊂ σ

. ρ = σ

. vρ = B∗ for all v ∈ A∗

. ρ is recognisable.






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Examples

This section introduces some of the semigroups that will be used in later

sections along with a few properties. We introduce free commutative semi-

groups and transformation semigroups and then give two infinite families

of infinite, finitely presented semigroups that have infinite R−classes and an

infinitely presented semigroup. These examples will serve as examples and

counterexamples in later chapters.

. Transformation Semigroups

For any set X the full transformation monoid TX has already been introduced

as the monoid of all maps X f−−−−→X in Section . and Section .. Here we

introduce a way to specify elements of a full transformation monoid on a finite

set and therefore generating sets of subsemigroups of the full transformation

monoid on a finite set. We can specify any element τ ∈ Tn by giving the image

kτ for all k ∈ n, and for small examples this can be done in the following


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tabular form.

τ =

 1 2 . . . n

1τ 2τ . . . nτ


The following two elements τ and σ of T4 shall serve as examples.

τ =

 1 2 3 4

1 1 2 2

 σ =

 1 2 3 4

1 1 3 3


The subsemigroup of T4 generated by τ and σ has eight elements.

Similarly it is possible to specify elements τ of TN by specifying nτ for

every n ∈ N.

. Free Commutative Semigroups

The free commutative semigroup of rank k for any k ∈ N>0 can be defined by

a similar universal property like the one used in the definition of a free semi-

group. We specify the free commutative semigroup of rank k by the following

finite presentation.

CS(k) = sg⟨a1, . . . , ak | aiaj = ajai for 1 ≤ i < j ≤ k⟩

We remind ourselves that |v|ai denotes the number of occurrences of ai in v.

Two strings v andw represent the same element of CS(k), if and only if |v|ai =

|w|ai for all ai. One choice for a set of unique representatives for elements of

CS(k) is therefore the set of strings aα1

1 a
α2

2 . . . a
αk

k for αi ∈ N and
∑
i∈k
αi > 0.

The free commutative monoid of rank k, denoted CM(k) is isomorphic to

CS(k)e.

The family of free commutative semigroups will become important in

Chapters  and .
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. The Bicyclic Monoid

The bicyclic monoid is a very special monoid in many ways. It has a very

simple presentation as a monoid.

B = mon⟨b, c | bc = ε⟩

We will mainly use the bicyclic monoid as a counterexample. Any element

of the bicyclic monoid has a representative of the form [c]γ [b]β for γ and β in

N. For two elements given by the normal forms [c]γ1 [b]β1 and [c]γ2 [b]β2 , the

normal form of their product can be determined as follows.

([c]γ1 [b]β1) ([c]γ2 [b]β2) has normal form


[c]γ1+γ2−β1 [b]β2 β1 ≤ γ2

[c]γ1 [b]β1+β2−γ2 β1 > γ2

Any finite quotient of the bicyclic monoid is a group. A proof for this can be

found in [CP]. Furthermore, the bicyclic monoid is not residually finite.

Lemma ..

The bicyclic monoid B is not residually finite.

Proof. Assume for a contradiction that B is residually finite. Consider the

elements [cb]πA and e in B and note that [cb]πA ̸= e. This implies that

there exists a monoid morphism B φ−−−−→N where N is finite and such that

[cb]πAφ ̸= eφ. Now [bc]πAφ = eφ. Since N is by assumption finite, it

follows that there are i and k in N such that (bφ)i = (bφ)i+k, and therefore

cφ = (bφ)k−1. This implies that [b]πAφ and [c]πAφ are in U(N), and mutual

inverses, hence commute and therefore

[cb]πAφ = [bc]πAφ = eN .

This is a contradiction.

Green’s R and L relations on B are as follows. Let s = ([c]γ1 [b]β1)πA and

t = ([c]γ2 [b]β2)πA be two elements of B then s and t are R-related if and only

if γ1 = γ2 and s and t are L-related if and only if β1 = β2.
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. The Integers

The following semigroup is isomorphic to the group of integers under addi-

tion:

sg⟨a, b | aab = a, abb = b, ab = ba⟩ .

We also show that there is a set of unique normal forms consisting of strings

[a]α, [b]β and [ab] for α and β in N>0.

Given a string v over the generating set, by applying the relation ab = ba

we get the string v ′ = [a]α [b]β where α = |v|a and β = |v|b and it holds that

vπA = v ′πA. By repeatedly applying the remaining relations we get either

[ab], or [a]α or [b]β for some α or β in N>0 after finitely many steps.

We can also give a monoid presentation for the integers which is some-

times more convenient to work with

mon⟨a, b | ab = ba = ε⟩ .

. The Semigroups E(i, k) and F(i, k)

The families E(i, k) and F(i, k) are two infinite families of semigroups that

will serve as examples in Chapter . In addition to giving specifications as

finite presentations we show how to determine whether two strings over the

generating set represent the same element of the semigroup.

For any choice of i and k from N>0 let the semigroup E(i, k) be specified

by the presentation

E(i, k) = sg
⟨
a, b | ai+k = ai, ba = a

⟩
.

We want to show that for E(i, k) we can find an easily described set of

strings that maps bijectively onto E(i, k), or in other words a set of normal

forms.
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Lemma ..

The set of strings of the form [a]α [b]β with α and β in N and 0 ≤ α < i+ k and

α+ β > 0 is a set of normal forms for E(i, k).

Proof. We show that we can obtain from any given string v ∈ {a, b}+ a unique

element of the set of representatives.

We proceed by induction to show that for any string v ∈ {a, b}+ we can

find a normal form of the desired shape. Assume we have already computed

the representative [a]α [b]β for a string v ∈ {a, b}+ of length n. Then

v [a] has representative [a]α
′

v [b] has representative [a]α [b]β+1 ,

where α ′ = α+ 1 if 0 ≤ α < i+ k− 1 and α ′ = i if α = i+ k− 1. This results

in a representative of the form [a]α [b]β with α,β ∈ N and 0 ≤ α < i + k and

α+ β > 0 for every element of E(i, k).

To show that this form is unique we show that two distinct strings

v = [a]α1 [b]β1 , w = [a]α2 [b]β2

represent distinct elements of the semigroup.

Assume for a contradiction that this is not the case and vπA = wπA but

α1 ̸= α2 or β1 ̸= β2. Since v and w cannot be shortened further by applying

relations, there has to be a string u such that u reduces to v and to w.

Now if 0 ≤ α1 < α2 < i+ k, and α1 < i, this would yield a contradiction,

since we cannot replace any [a]i by [a]i+k in v. If α1 ≥ i, but α1 ̸= α2 we get

a contradiction since i+ lk+ α1 ̸= i+ l ′k+ α2 for any choice of l and l ′ in

N. We deduce that α1 = α2. If 0 ≤ β1 < β2 we cannot apply any relation to

get u so we deduce β1 = β2. This contradicts the assumption that α1 ̸= α2 or

β1 ̸= β2.

It also follows that all semigroups E(i, k) are infinite, since [b]β is a normal

form for every β ∈ N>0.
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Computing a representative for the product of two elements with normal

forms [a]α [b]β and [a]α
′
[b]β

′
is done as follows: If α ′ = 0 then the repre-

sentative is [a]α [b]β+β
′
. If α ′ > 0 then the representative is [a]γ [b]β

′
, where, if

α+α ′ ≤ i, then γ is equal toα+α ′, otherwise γ is determined by the equation

α+ α ′ = γ+ qk for some q ∈ N such that γ ∈ i+ k− 1.

Any semigroup E(i, k) contains an infinite R-class that contains all ele-

ments with normal forms [a]α [b]β for α ≥ i and β arbitrary. To see this, let

[a]α [[]b]β and [a]α
′
[b]β

′
be two representatives with α = i+k1 and α ′ = i+k2

where 0 ≤ k1, k2 < k. Then

([a]α [b]β)πA ([a]γ [b]β
′
)πA = ([a]α

′
[b]β

′
)πA

for

γ =


k1 − k2 k1 > k2

k1 − k2 + k k1 ≤ k2
.

The result follows by symmetry.

We can also deduce that all other elements are not R-related and there-

fore E(i, k) contains exactly one R−class that is infinite. To see this consider

two elements [b]β1 and [b]β2 , where without loss of generality β1 < β2. Then

[b]β1 [b]β2−β1 has representative
[
bβ
]
, but there does not exist an element x

of E(i, k) such that [b]β2 x has representative [b]β1 since multiplying by b in-

creases β, and multiplying by a yields a normal form starting with a.

Turning to L-classes, we see that any two elements [a]α [b]β and [a]α
′
[b]β

where α = i + k1 and α ′ = i + k2 with 0 ≤ k1, k2 < k, are also L-related and

all other elements are not L-related.

If we consider the semigroups E(1, k), then it holds that E(1, k)2 = E(1, k)

which will be of use in Section . on direct products of semigroups.

The family F(i, k) of semigroups is specified by the presentation

F(i, k) = sg
⟨
a, b, x | ai+k = ai, xa = ax, ba = a, bx = x

⟩
.
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As above, we want to argue that every element of F(i, k) has a unique rep-

resentative of the form [a]α [x]ξ [b]β where 0 ≤ α < i + k and ξ and β are

elements of N as well as α+ ξ+ β > 0.

We do this by induction. Assume that for a string v ∈ {a, b, x}+ of length

nwe have computed a normal form [a]α [x]ξ [b]β. We multiply on the right by

the generators. This yields

v [a] has representative [a]α
′
[x]ξ

v [b] has representative [a]α [x]ξ [b]β+1

v [x] has representative [a]α [x]ξ+1

where in the first equation α ′ = α + 1 if 0 ≤ α < i + k − 1 and α ′ = i if

α = i+ k− 1.

Showing uniqueness of these representatives is similar to the case of E(i, k).

For assume that there are two distinct strings [a]α1 [x]ξ1 [b]β1 and [a]α2 [x]ξ2 [b]β2 ,

in other words α1 ̸= α2 or ξ1 ̸= ξ2 or β1 ̸= β2, such that

([a]α1 [x]ξ1 [b]β1)πA = ([a]α2 [x]ξ2 [b]β2)πA,

then it follows again that in fact α1 = α2, ξ1 = ξ2 and β1 = β2 and therefore

a contradiction.

For any given ξ ∈ N all elements with normal forms [a]α [x]ξ [b]β where

α = i + k1 with 0 ≤ k1 < k and β ∈ N are in the same R-class, since for

[a]α [x]ξ [b]β and [a]α
′
[x]ξ [b]β

′
, where α = i+ k1 and α ′ = i+ k2,(

[a]α [x]ξ [b]β [a]γ [b]β
′
)
πA =

(
[a]α

′
[x]ξ [b]β

′
)
πA

for

γ =


k1 − k2 k1 > k2

k1 − k2 + k k1 ≤ k2
.

The result again follows by symmetry.
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. Finitely Generated, Infinitely Presented Semi-

groups

In this section we introduce a very simple example of a semigroup that is

finitely generated but does not have a finite presentation. Consider the semi-

group P specified by

P = sg
⟨
a, b | (abna = aba)n≥2

⟩
.

This semigroup is infinite, finitely generated, cannot be finitely presented, as

we will show in the following.

First we establish when two strings v and w over the generating set {a, b}

represent the same element of P. Consider

v =
∏
i∈k

[a]αi [b]βi , w =
∏
i∈k ′

[a]α
′
i [b]β

′
i ,

where αi, α ′
i , β ′

i and β ′
i for i ∈ k are elements of N>0, with the exception of

α1, α ′
1, βk, and β ′

k ′ , which are elements of N. Note also that if k or k ′ is equal

to one, then α1 and β1 cannot both be zero, and the same holds for α ′
1 and β ′

1.

In this representation, the equality vπA = wπA holds if and only if

• k = k ′, and

• αi = α
′
i for all i ∈ k, and

• if α1 = α ′
1 = 0 then β1 = β ′

1, and

• βk = β
′
k.

Note that the remainingβi andβ ′
i are arbitrary inN>0 subject to the conditions

given above.

The central result required to prove Lemma .. is is the following.
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Proposition ..

Let S be a semigroup that admits a finite presentation. For any presentation

sg⟨A | R⟩

of S where A is finite, there exists a finite subset R ′ ⊂ R, such that

sg
⟨
A | R ′⟩

is a finite presentation of S.

This proposition is valid in general abstract algebra. For groups this is

attributed to B.H. Neumann by Baumslag in [Bau, Chapter III, Theorem

12]. The relevant result for semigroups can be found in [Rus, Proposition

..].

We show that P is infinite and does not admit a finite presentation.
Lemma ..

The semigroup P is infinite and there does not exist a finite presentation for P.

Proof. Firstly P is infinite, since by the results of the above paragraph the

subsemigroup generated by a is infinite. Secondly, P cannot be finitely pre-

sented. For this first note that if a semigroup is finitely presented with re-

spect to some generating set, then it is finitely presented with respect to all

generating sets. We can therefore consider the generating set {a, b}. We ap-

ply Proposition .. for a contradiction. Assume that there is a finite set

X ⊆ {abna = aba | n ≥ 2} such that P ∼= sg⟨a, b | X⟩.

This means that there is an n0 ∈ N such that for all k > n0 the equality

([a] [b]k [a])πA = [aba]πA

can be deduced in finitely many steps from relations in X. This is impossible

since we cannot apply any equality resulting from X, since each relation in X

has the form

([a] [b]n [a])πA = [aba]πA

for some n < k.



 Examples

. An Extension of Finite Green Index and In-

finite Rees Index

We give an example of a semigroup M that has a subsemigroup N of finite

Green index but infinite Rees index. Let

M = mon
⟨
a, b, c, d | ac = ca = c2, ad2 = d2a = d

bd = db = d2, bc2 = c2b = c

dc2 = c, cd2 = d, cd = dc
⟩

and let N be the submonoid of M generated by a and b. Observe that N

is isomorphic to the free monoid on {a, b}.

The complement Z =M\N is an infinite group. To see this note that the

subsemigroup generated by c and d has the presentation

Z = sg
⟨
c, d | dc2 = c, cd2 = d, cd = dc

⟩
,

and is therefore isomorphic to the group of integers.

It follows that all elements in Z can be represented by strings of the form

[c]i, [d]i and the string [cd].

We want to show that all elements in Z are HN-related and therefore the

Green index of N inM is 2.

For this we show that every x ∈ Z is RN-related to [cd]πA, that is there

exist v and w in N such that xv = [cd]πA and [cd]πAw = x. We can assume

x to be represented by a string in normal form, that is x = [cd]πA, x = [c]i πA
or x = [d]i πA. If x = [cd]πA then it is immediate that x and [cd]πA are RN-

related. If x = [c]i πA, then v = [b]i πA andw = [a]i πA have the desired prop-

erties, and if x = [d]i πA then v = [a]i πA and w = [b]i πA have the desired

properties. Symmetric arguments yield that every x in Z is LN-related to

[cd]πA. This shows that all elements in Z are HN-related, and therefore that

N has finite Green index inM.
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. A semigroup with undecidable word prob-

lem

For completeness we give a semigroup that has undecidable word problem.

We give an example constructed by Tzeitin [G S].

Let

T = mon
⟨
a, b, c, d, e | ac = ca, ad = da, bc = cb, bd = db

eca = ce, edb = de, cdca = cdcae

ca3 = a3, da3 = a3
⟩

This semigroup has undecidable word problem. Moreover, there is no

Turing machine that decides whether a given string v over the generating set

represents the same element as [aaa]. While the presentation of this semi-

group has a very small number of generators and relations there are semi-

groups with undecidable word problem that have finite presentations with as

little as two generators and three relations. The construction of such a semi-

group can be found in [Mat]. One of the relations in the two generator and

three relator semigroup has a total of 912 letters: 304 for the left hand side and

608 for the right hand side and arguably the example given above is smaller.






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Word Problems and Coword

Problems

We give a short historical motivation starting from group theory and a natural

way of defining the word problem and the coword problem for semigroups. Solv-

ing the word problem for a finitely generated semigroup is deciding whether

two strings over the generating set represent the same element of the semi-

group.

We further generalise the notion of word problem to arbitrary relations

over finitely generated semigroups and give a quick survey of possible en-

codings of semigroup word problems as strings.

. Dehn’s Identitätsproblem

The word problem of a finitely generated group has first been recognised as one

of the central problems in the theory of infinite finitely presented groups by


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Max Dehn in  in [Deh]. Dehn himself attributes the definition of groups

by generators and relations to Dyck. Quoting from [Deh]

Die allgemeine Theorie derartig definierter Gruppen, sofern

sie unendlich sind, scheint bisher sehr wenig entwickelt zu sein.

Hier sind es vor allem drei fundamentale Probleme, deren Lösung

sehr wichtig und wohl nicht ohne eindringliches Studium der Ma-

terie möglich ist.

The author’s translation of the preceding quote into English is as follows.

The general theory of groups defined in that way, as long as

they are infinite, seems to be not well understood yet. There are

three fundamental problems whose solution is very important and

probably not possible without close study of the topic.

Dehn then goes on to define the “Identitätsproblem” as the first of the

three fundamental problems in the theory of finitely presented, infinite groups.

We quote again:

Das Identitätsproblem: Irgend ein Element der Gruppe ist durch

seine Zusammensetzung aus den Erzeugenden gegeben. Man soll

eine Methode angeben, um mit einer endlichen Anzahl von Schrit-

ten zu entscheiden, ob dies Element der Identität gleich ist oder

nicht.

Which translates into English as follows.

The Identitätsproblem: Some element of the group is given by a

composition of the generating elements. Give a method that de-

cides, using only a finite amount of steps, whether this element is

equal to the identity or not.
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The Identitätsproblem is today commonly known in the English speak-

ing mathematics community as the word problem. The other two fundamental

problems are the conjugacy problem and the isomorphism problem. We note

that Max Dehn stated these problems before any rigorous theory of compu-

tation was developed. What he calls “a method” would today be translated

as an algorithm.

We translate Dehn’s definition into our formal language as follows. The

Identitätsproblem or word problem of a group Gwhich is finitely generated as a

monoid by a set A is the set

WG(A) = {v ∈ A∗ | vπA = eG} (.)

of all the representatives of the identity element.

Given WG(A) and two representatives v andw inA∗, one important ques-

tion we asked earlier is testing whether the equation vπA = wπA holds, or in

other words, whether they are identical. In the case of groups this can be done

by deciding whether vw ′ is an element of WG(A), where w ′ is a representa-

tive of (wπA)−1. In the theory of finitely presented groups we usually have

an effective way of determining w ′, because it is commonly assumed that for

every generator a ∈ A there is also a generator a ′ ∈ A such that [aa ′]πA = e.

Determining w ′ is then done by replacing every letter a in w by a ′ and then

reversing the resulting string.

The dual question to the word problem is stated in the coword problem.

CoWG(A) = {v ∈ A∗ | vπA ̸= eG} . (.)

The coword problem of groups has only recently attracted some attention. In

their paper “Groups with context-free coword problem” [Hol+], Holt, Rees,

Röver and Thomas examine properties of groups G such that CoWG(A) can

be decided by a pushdown automaton. They also show that polycyclic groups

and Baumslag solitar groups have context-free coword problem if and only

if they are virtually abelian. Lehnert and Schweitzer show in [LS] that the
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coword problem of the Higman-Thompson group is context-free. It is shown

in [MS; MS] that the word problem of a group is context free if and only

if the group is virtually free.

The word problem and the coword problem are decision problems: the prob-

lem is to decide whether a string over an alphabet is a member of a particular

subset of the set of all strings. The word problem and the coword problem of

a group are defined in terms of representatives of the identity element.

. The Identitätsproblem for Semigroups

We generalise the notion of the Identitätsproblem to semigroups in a way

that is consistent with the definition for groups. In the process we will have

to abandon the notion of finding representatives of the identity, because it is

a special property of groups that the set of representatives of the identity al-

ready contains all the information about equality. We will see that the notion

of identity still exists in the definition.

To find a natural definition for semigroups, we realise that we want to

decide for two strings v and w over the generating set whether the equality

vπA = wπA holds, in other words v is in the same equivalence class of the

kernel of πA as w.

We define the monoid word problem of a groupG generated as a monoid

by a set A to be the relation

ιG(A) : A
∗ −−−−→ A∗, v 7→ vπAπ

−1
A (.)

which can also be written as the following composition of relations

A∗ πA−−−−→ G
ιG−−−−→ G

πr
A−−−−→ A∗,

and has the graph

GιG(A) = {(v,w) ∈ A∗ ×A∗ | vπA = wπA} .
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The relation ιG(A) is an equivalence equation and a congruence, namely the

kernel of the monoid morphismA∗ πA−−−−→G. We can find WG(A) as the equiv-

alence class of the identity element of G. We also note that the equivalence

relation ιG(A) is the lift of the the equality relation of G to the set of all strings

over the generating set, and that the equality relation is itself the identity map

of the set G interpreted as a relation.

The definition given in . does not depend onG being a group anymore,

and therefore we can generalise to any semigroup S generated by a set A and

say that

ιS(A) : A
+ −−−−→ A+, v 7→ vπAπ

−1
A (.)

is the semigroup word problem of S with respect to the generating setA. Note again

the factorisation

A∗ πA−−−−→ S
ιS−−−−→ S

πr
A−−−−→ A∗

of ιS(A). We also note that we can define the word problem of S to be a relation

onA∗. If S is not a monoid then this relation is not total anymore and therefore

not an equivalence relation. Since we can always make a semigroup S into a

monoid by adding an identity and since the notions of interest for us will

be invariant under this operation, we will usually choose to view the word

problem as a relation over A∗.

The preceding definition also allows for a straightforward definition of the

semigroup coword problem of S with respect to the generating set A as

ῑS(A) : A
+ −−−−→ A+, v 7→ A+\vπAπ

−1
A .

The coword problem, as opposed to the word problem, is not an equivalence

relation or a congruence relation.
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. The Word Problem for Relations

We now extend the notion of the Identitätsproblem to relations over semi-

groups. In this general setting we will refer to the relation defined over strings

to the word problem of the relation over the generating set. We will still call the

word problem of the identity relation the word problem if no ambiguity arises.

We saw in Section . that the definition of the word problem involves the

equality relation on a finitely generated semigroup Swhich is lifted to strings

over the generating set. Our definition did not depend on any properties of

the equality relation and therefore we make the following definition. Let S

be a semigroup, finitely generated by A, and let S ρ−−−−→ S be a relation on S.

We define the word problem A+ ρ(A)−−−−→ A+ of ρ with respect to the generating

set A by the composition

A+ πA−−−−→ S
ρ−−−−→ S

πr
A−−−−→ A+.

Relations of particular interest will be Green’sR, L, H, D andJ relations with

respect to a generating set A.

Note that the above definition includes the choice of a generating set. One

might be tempted to choose two generating sets and have the equivalent of a

basis change in linear algebra. We choose to not pursue this path here, since

all properties of interest are invariant under the choice of generating set.

. Encodings

The generalised notion of word problem introduced in Sections . and .

has a natural encoding in terms of pairs of strings or as a relation, but not as a

single string as it is the case in .. Sometimes it is desirable to encode pairs as

single strings as inputs for some models of computation, therefore we define

the following two ways to do so.
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We define the one-tape encoded semigroup word problem 1ιS(A) to be the set

1ιS(A) =
{
v#wr ∈ A+#A+ | vπA = wπA

}
⊆ (A ∪ {#})∗ ,

where # is a new symbol that is not an element of A. It will become clear

in Chapter , where we discuss the relationships between one-tape encoded

and two-tape word problems, why we reverse the second string.

The two-tape padded semigroup word problem is defined as

ι□S (A) =
{
(v,w)□ ∈

(
A□ ×A□)+ | vπA = wπA

}
,

where for an alphabetA and a padding symbol □ not contained inAwe define

A□ = A ∪ {□} and (v,w) in A+ ×A+ with |v| = k and |w| = nwe define

(v,w)□ =



 v1
w1

 · · ·

 vk
wk


 □

wk+1

 · · ·

 □

wn

 k < n

 v1
w1

 · · ·

 vk
wk

 k = n

 v1
w1

 · · ·

 vn
wn


vn+1

□

 · · ·

vk
□

 k > n

.






◦ • •

Recognisable Word Problem

Following the structure of Chapter , we first analyse semigroups that have

recognisable word problem.

. Anisimov’s Theorem

One of the first results that links word problems to formal language theory

is Anisimov’s theorem in [Ani]. We restate Anisimov’s theorem in the lan-

guage introduced in Chapters  and .

Theorem ..

Let G be a group finitely generated as a monoid by A. Then WG(A) is a recognisable

subset of A∗ if and only if G is finite.

Proof. Let G be a group finitely generated as a monoid by A. The monoid

morphism A∗ πA−−−−→Gmaps strings over the generating set to elements of G.

IfG is finite, thenA∗ πA−−−−→G recognises WG(A) because WG(A) = eGφ−1.


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Conversely, assume that there exists a morphism A∗ φ−−−−→T where T is

finite and F ⊂ T such that WG(A) = Fφ−1. We want to show that there is a

surjective morphism T
ψ−−−−→G. Observe that by assumption vφ ∈ F if and

only if vπ = eG and that for any v ∈ A∗ there exists a v ′ ∈ A∗ such that

vv ′φ ∈ F. Assume now w ∈ vkerφ, so vφ = wφ. There exists v ′ ∈ A∗

such that vv ′φ ∈ F and hence wv ′φ ∈ F because vv ′φ = wv ′φ. It follows

that vv ′π = wv ′π from which we conclude vπ = wπ, which means that w ∈

v kerπ. It follows by the second isomorphism theorem for semigroups that

there is a surjective morphism T
ψ−−−−→G. This means that G is a quotient of

T and hence finite. such that A φ−−−−→T recognises WG(A).

The family RecA∗ of recognisable subsets of A∗ is a Boolean algebra and

therefore we get the following theorem.

Theorem ..

Let G be a group finitely generated as a monoid by A. Then the following statements

are equivalent.

. G is finite.

. WG(A) is a recognisable subset of A∗.

. CoWG(A) is a recognisable subset of A∗.

Proof. The equivalence of  and  is exactly the statement of Theorem ...

The equivalence of  and  follows from the fact that the family of recognisable

subsets of A∗ is a Boolean algebra.

. An Analogue of Anisimov’s Theorem for Semi-

groups

In Chapter  we defined word problems and coword problems for groups

and semigroups, and we have seen when the word problem of a group is a
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recognisable subset of the set of all strings over the generating set. We now

show that a similar result can be shown for the word problem of a semigroup

S. This characterises all semigroups with recognisable word problem.

Theorem ..

Let S be a semigroup generated by the finite set A. Then ιS(A) is recognisable if and

only if S is finite.

Proof. Let ιS(A) be recognisable. Note that without loss of generality we can

consider GιS(A) to be a subset ofA∗×A∗, asA+×A+ is a recognisable subset of

A∗ × A∗ and recognisable subsets of monoids are closed under intersection.

Proposition .. allows us to write

GιS(A) =
∪
i∈n
Xi × Yi,

where Xi and Yi are recognisable subsets of A∗ for all i ∈ n.

Now if w ∈ vιS(A), then by the above Yi ⊆ vιS(A). This implies that each

equivalence class is a union of sets Yi for i ∈ I ⊆ n. Therefore there are only

finitely many equivalence classes, hence S is finite.

Conversely let S be finite. Then Se × Se is finite and recognises GιS(A) via

φ : A∗ ×A∗ → Se × Se : (v,w) 7→ (vπA, wπA)

and F = {(s, s) ∈ Se × Se | s ∈ S}.

Therefore Theorem .. naturally generalises to semigroups.

Theorem ..

Let S be a semigroup finitely generated by a set A. Then the following statements are

equivalent.

. S is finite.

. ιS(A) is recognisable.

. ῑS(A) is recognisable.
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The above theorem also motivates the following question. As shown above,

the direct product of two copies of the semigroup in question recognises the

word problem, but in the case of a finite group, the group itself suffices.

Open Question ..

Let S be a finite semigroup and let A be a finite generating set for S. Applying The-

orem .. yields that ιS(A) is recognisable, that is there is a semigroup morphism

A∗ ×A∗ φ−−−−→T where T is finite and a subset F ⊂ T such that GιS(A) = Fφ
−1. De-

scribe the structure of the syntactic quotient of T that recognises ιS(A). Is there a

characterisation of minimal semigroups recognising word problems?

. Changing the Encoding

In Section . we we have characterised the class of semigroups with recog-

nisable word problem. Now we consider the free semigroup on a generating

set A and the padded representation of pairs. The padded semigroup word

problem ofA+ is a recognisable subset of (A×A)□. Changing the generating

set of A+ to anything containing an additional generator, the padded word

problem is not recognisable anymore. In general the following theorem holds.

Theorem ..

Let S be a finitely generated semigroup. Then ι□S (A) is recognisable for all possible

choices of finite generating sets A if and only if S is finite.

Proof. Let S be a finite semigroup and let A be any generating set for S. Con-

sider the semigroup morphism

(
A□ ×A□)∗ φ−−−−→Se × Se,

defined by the map

f : A□ −−−−→ Se, x 7→

xπA x ∈ A

1 x = □
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extended to a morphism on pairs. With the choice

F = {(s, s) ∈ Se × Se | s ∈ S}

the morphismφ recognises strings over (A×A)□ that represent pairs of equal

elements of S. If we intersect Fφ−1 with the recognisable set

(A×A)+ (({□}×A)∗ ∪ (A× {□})∗) ,

then we get ι□S (A), which is recognisable as an intersection of recognisable

sets.

To prove the converse we apply Theorem .. which is proven in a later

chapter. Assume that S is infinite. If there does not exist a finite generating set

for which ι□S (A) is recognisable we are done. In the case that there exists some

generating setA such that ι□S (A) is recognisable, by Theorem .. there exists

s ∈ S such that the subsemigroup generated by s is infinite. We form a new

generating setB by adding two generatorsa andbwithaπB = s andbπB = s2.

Applying iteration lemma given in Theorem .. to the pair
(
a2n, bn

)
yields

that ι□S (B) is not recognisable.

We note that every semigroup S such that there exists a finite generating

set A for S such that the padded semigroup word problem of S is recognis-

able has rational word problem in the sense introduced in Chapter . The

following lemma shows that there does not exist a finite generating set for the

semigroup P, defined in Section . such that the padded two tape semigroup

word problem of P is a recognisable subset of (A×A)□.

Lemma ..

There does not exist a finite generating set A for P such that ι□P (A), as defined in .

is recognisable.

Proof. We first show that for the generating set A = {a, b} given in Section .

the word problem ι□P (A) is not recognisable. For a contradiction assume that
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there is a finite state automaton that recognises ι□P (A) with n0 states. Choose

n > n0 and consider the pair(
[ab]n [a] [b]2n [a] , [a] [b]2n [ab]n [a]

)
.

Since n > n0 there are natural numbers i and j with i < j such that af-

ter reading ([ab]i , [a] [b]2i−1) and after reading ([ab]j , [a] [b]2j−1) the automa-

ton is in the same state from which it can reach an accept state by reading

([a] [b]2i−3 [a] , [ab]i−1 [a]). This implies that the automaton also accepts(
[ab]j [a] [b]2i−3 [a] , [a] [b]2j−1 [ab]i−1 [a]

)
,

which would imply that [ab]j+1 [a]πA is equal to [ab]i+1 [a]πA which is a con-

tradiction to i < j.

Since every generating set for P has to contain representatives for aπA and

bπA, the same argument can be applied to any finite generating set P.

For the remainder of this work, we want to insist on notions to be invariant

under choice of finite generating sets and will therefore consider rational re-

lations in the following chapters. We close this section with the following

question.

Open Question ..

Characterise the class of semigroups S such that there exists a finite generating set A

for S such that the padded semigroup word problem of S is a recognisable subset of

(A×A)□.




◦ • ◦

Rational Word Problem

This chapter will treat semigroups with rational word problem. The goal is to

find a description of as many properties as possible of semigroups that have

rational word problem. One of the main goals of this theory is characteris-

ing all semigroups with rational word problem, which is unfortunately not

achieved.

In Section . we will show that if the word problem of any relation S ρ−−−−→ S

on a finitely generated semigroup S is rational for one finite generating set of

S, then the word problem of ρ is rational with respect to any choice of finite

generating set.

In Section . we will show that the family of semigroups with rational

word problem contains some of the semigroups introduced in Chapter  by

giving automata that decide the respective word problems. We will also show

that some of the examples introduced in Chapter  do not have rational word

problem.

In the following section we show that a semigroup S has rational word


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problem if and only if Se has rational word problem, and if and only if Sz has

rational word problem.

In a more general setting, in Section ., we show that rational word prob-

lem is closed under subsemigroups of finite Rees index and extensions of fi-

nite Rees index and under subsemigroups of finite Green index. We also give

an example of a semigroup that has a subsemigroup of finite Green index

with rational word problem, but does not have rational word problem itself.

In Section . we show that Kleene’s Theorem holds in semigroups with

rational word problem, and in particular that the preimage of a rational subset

of a semigroup with rational word problem is a rational subset of the set of

all strings over the generating set.

Following that we continue in Section . to examine under which of the

product constructions, namely direct product, semigroup free product and

monoid free product, rational word problem is preserved. A consequence of

this will also be that semigroups with rational word problem are residually

finite.

Green’s relations are then examined in Section .. We show properties

of the R, L and H relations on semigroups with rational word problem. An

infinite semigroup with rational word problem has infinitely manyR−classes

and infinitely manyL-classes, andH-classes are finite and therefore subgroups

of semigroups with rational word problem are finite. We also show that for

semigroups with rational word problem J = D holds.

Sections . then considers decidability of the property of a semigroup

having rational word problem, and the decidability of different questions for

semigroups with rational word problem. In Section . we give a bound for

the time and space complexity of the word problem of a semigroup with ra-

tional word problem. We also note that specifying a rational relation, either

in form of a rational expression or in the form of an automaton is an efficient

and effective way of specifying infinite semigroups, in particular some semi-
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groups which are not finitely presented.

Some of the results in this chapter have been submitted as a research paper

[NPR], which is awaiting referee’s feedback and is available on the arXiv.

. Rational Relations and Change of Genera-

tors

For a semigroupSfinitely generated byAwe now consider relations S ρ−−−−→ S

such that A+ ρ(A)−−−−→ A+ is a rational relation. We show that this property of

S
ρ−−−−→ S does not depend on the choice of the generating set, as long as it

is finite. We will, by slight abuse of nomenclature, call a relation ρ such that

ρ(A) is rational a rational relation.

We first remove generators from a generating set.

Lemma ..

Let S be a semigroup and let S ρ−−−−→ S be a relation on S. If for some generating set

A of S the relation ρ(A)

A+ πA−−−−→ S
ρ−−−−→ S

πrA−−−−→ A+ (.)

is rational, then for any subset B ⊂ A the restriction of ρ to the subsemigroup T of S

generated by B, in other words the relation ρ(B)

B+ πB−−−−→ T
ρ−−−−→ T

πr
B−−−−→ B+

is rational.

Proof. Let S ρ−−−−→ S be a relation on a semigroup Swhich is finitely generated

by A and let B ⊂ A. The embedding

ϵ : B+ −−−−→ A+, v 7→ v

is a rational relation and therefore the composition

B+ ϵ−−−−→ A+ πA−−−−→ S
ρ−−−−→ S

πr
A−−−−→ A+ ϵr−−−−→ B+ (.)
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is rational given the assumption in .. It remains to show that ρ(B) is equal to

the composition given in .. We note that πB = ϵπA and therefore conclude

for v andw from B+ thatw ∈ vρ(B) if and only ifwπB ∈ (vπB) ρ, which is the

case if and only if wϵπA ∈ (vϵπA) ρ. This concludes the proof.

Adding generators also does not change the property of a relation being ra-

tional.
Lemma ..

Let S be a semigroup and let S ρ−−−−→ S be a relation on S. If for some generating set

A of S the relation ρ(A)

A+ πA−−−−→ S
ρ−−−−→ S

πr
A−−−−→ A+ (.)

is rational, then for any finite generating set B ⊃ A the relation ρ(B)

B+ πB−−−−→ S
ρ−−−−→ S

πrB−−−−→ B+

is rational.

Proof. Since A is a generating set for S, we can choose vb ∈ bπBπ
−1
A for all

b ∈ B\A and define

f : B −−−−→ A+, x 7→

x x ∈ A

vx x ∈ B\A

which by Definition .. uniquely extends to a semigroup morphismB+ φ−−−−→A+.

The morphism φ can be regarded as a rational relation, because its graph is a

rational subset of B+ ×A+ defined by the rational expression(∪
b∈B

(b, bφ)

)+

.

The composition

B+ φ−−−−→ A+ πA−−−−→ S
ρ−−−−→ S

πr
A−−−−→ A+ φr

−−−−→ B+ (.)
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is rational since by assumption ρ(A) is rational. Denote . by γ. We show

that γ = ρ(B). For this we first observe that πB = φπA and we have

w ∈ vγ⇔ wφ ∈ vφρ(A)

⇔ wφπA ∈ vφπAρ

⇔ wπB ∈ vπBρ

⇔ w ∈ vρ(B) .

This concludes the proof.

Therefore, if ρ(A) is rational with respect to the generating set A of S then

ρ(B) is rational with respect to any finite generating set B of S.

Theorem ..

Let S be a semigroup and let S ρ−−−−→ S be a relation on S. If for some finite generating

set A of S the relation ρ(A)

A+ πA−−−−→ S
ρ−−−−→ S

πrA−−−−→ A+ (.)

is rational, then for all finite generating sets B of S the relation

B+ πB−−−−→ S
ρ−−−−→ S

πr
B−−−−→ B+

is rational.

Proof. We apply Lemmas .. and .. . Let S be a semigroup and S ρ−−−−→ S

be a relation on S such that ρ(A) is rational for some finite generating set A.

Let B be any finite generating set of S. The union A ∪ B is a finite generating

set of S with A ∪ B ⊃ A and therefore

(A ∪ B)+ πA∪B−−−−→ S
ρ−−−−→ S

πr
A∪B−−−−→ (A ∪ B)+

is rational by Lemma ... Now B ⊂ (A ∪ B) and by Lemma .. the claim

follows.
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As a consequence of the preceding theorems we will say that a semigroup S

has rational word problem if ιS(A) is rational for some finite generating set A of

S. We will say that a semigroup has rational R, L, H, D or J if the respective

relationR(A),L(A),H(A),D(A) orJ (A) is rational for some finite generating

set A of S.

. Examples

Every concept should come with a collection of examples and counterexam-

ples to place it firmly within a greater picture of the surrounding theory.

We go through some of the examples presented in Chapter  and show

whether they have rational word problem. For this we observe that we can

prove rationality of relations by giving a rational expression or by giving a

generalisedA+×A+−automaton. Also we can give rational relations as com-

positions of other rational relations or intersections of rational relations with

recognisable relations.

Firstly, by Theorem .. every finite semigroup has recognisable word

problem and therefore rational word problem.

Furthermore for a finite set A the free semigroup A+ is infinite and has

rational word problem.

Lemma ..

Let A be a finite set, then ιA+(A) is rational.

Proof. The relation

ιA+(A) : A+ −−−−→ A+, v 7→ v

is the identity relation and therefore rational. A rational expression for the

graph of ιA+(A) can be given as(∪
a∈A

(a, a)

)+

.
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To make sure the class of semigroups with rational word problem does

not consist of finite semigroups and free semigroups we show that for any

choice of i and k in N>0 the semigroup E(i, k) has rational word problem. We

note that this also holds for F(i, k) and the proof is very similar. This will also

illustrate that it can be convenient to use automata to specify subsets ofA+ or

relations A+ ρ−−−−→ A+.

To show how word problem automata work, we start with an automa-

ton that decides the word problem of the semigroup E(4, 5). The automa-

ton depicted in Figure . decides the word problem of the semigroup S =

sg
⟨
a | a4 = a9

⟩
, which is isomorphic to the subsemigroup of E(4, 5) gener-

ated by a. Note the similarity to the Cayley graph of S.

To decide the full word problem of E(4, 5), we add in states to deal with

reading b and the relation ba = a. The resulting automaton is shown in Fig-

ure .. To make this illustration complete for E(i, k) we give the specification

of a finite automaton A that decides ιE(i,k)({a, b}). For

X = {(a, ε) , (b, ε) , (ε, a) , (ε, b)}

we specify the X−automaton

A =
⟨
Q,q0, F, (

x−−−−→)x∈X
⟩

where Q = {q0} ∪ {a0, ..., ai+k−1} ∪ {al0, ..., a
l
i+k−1} ∪ {ar0, ..., a

r
i+k−1} ∪ {b0, b1}
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Figure .: Automaton for ιS(A) where S = sg
⟨
a | a4 = a9

⟩
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and F = {a0, b0} and transitions given by the following table

(a, ε) (ε, a) (b, ε) (ε, b)

q0 a1 al0, b1

b0 b1

b1 b0

a0 a1 al0, b1

aj aj+1 aj−1 alj arj for i < j < i+ k

ai ai+1 ai−1, ali ari

ai+k−1

alj aj+1 alj

arj aj−1 arj

ai+k−1 ai ai+k−2 ali+k−1 ari+k−1

To show that the automaton decides ιE(i,k)(A), we have to show that for any

computation q0
(v,w)−−−−→ a0 or q0

(v,w)−−−−→ b0 it holds that vπA = wπA and that if

given a pair (v,w) of strings with vπA = wπA then there exists an accepting

computation labelled by (v,w).

Firstly, the given automaton decides the word problem of the subsemi-

group

S = sg
⟨
a | ai = ai+k

⟩
of E(i, k). For all computations q0

(aα,aβ)−−−−→ am it holds that |α− β| = m+ lk for

m ∈ {0, . . . , i+ k− 1} and some l ∈ N. Conversely, it holds that for any pair

(aα, aβ) there is a computation q0
(aα,aβ)−−−−→ am if |α− β| = m+lk. Since aαπA =

aβπA if and only if |α− β| = 0+ lk for some l ∈ N>0 the claim follows.

Now, for any computation q0
(v,w)−−−−→ am it holds that ||v|a − |w|a| = m+ kl

for some l ∈ N, and if (va,wa) is a pair of strings over the generating set with

(va)πA = (wa)πA, then there is a computation q0
(va,wa)−−−−→ a0. It is immedi-

ate that there are computations q0
(bα,bβ)−−−−→ b0 and computations a0

(bα,bβ)−−−−→ b0
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Figure .: Automaton for ιE(4,5)({a, b})
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if and only if α = β. Therefore it holds that any accepting computation la-

belled by a pair (v,w) has vπA = wπA by results from Section . and if (v,w)

is a pair with vπA = wπA then there is an accepting computation.

Next we show that the automaton depicted in Figure . decides ιP({a, b}).

Recall that P was specified by the presentation

P = sg
⟨
a, b | (abna = aba)n≥2

⟩
.

It follows that semigroups with rational word problem are not finitely pre-

sented in general.

Again, we show that the automaton shown in Figure . accepts a pair

(v,w) if and only if vπA = wπA. For this we take the viewpoint introduced in

Section ., namely consider

v =
∏
i∈k

[a]αi [b]βi , w =
∏
i∈k ′

[a]α
′
i [b]β

′
i ,

for parameters as defined in Section ..

A pair of this form is accepted by the automaton. After reading the pair(
[a]α1 [b]β1 , [a]α

′
1 [b]β

′
1

)
the automaton reaches one of q4, q2, or q3. The next

factor is started by reading (a, a) and reaching q1. From there the automaton

can read each of the k− 1 factors and accepts by reaching q1 or q2.

Assume now that the pair (v,w) labels an accepting computation. We de-

fine factors of (v,w) based on when a transition of the formq
(a,a)−−−−→ q1 occurs.

It now follows that v and w are of the form above and therefore vπA = wπA.

For the semigroups CS(k) the relation ιCS(k)(A) are not rational if k > 1.

We will show this by applying the iteration lemma for rational relations. In

Chapter  we will consider CS(k) for k > 1 and show that ιCS(k)(A) is polyra-

tional.
Theorem ..

Let CS(k) be a free commutative semigroup of rankk > 1, generated byA = {a1, . . . , ak}.

Then ιCS(k)(A) is not rational.
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.
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(b, b)

. (a,a)

Figure .: Automaton that decides ιP({a, b})

Proof. We apply Proposition ... Let for some k > 1 the semigroup CS(k)

be generated by A = {a1, . . . , ak}.

The equation vπA = wπA holds if and only if |v|a = |w|a for all a ∈ A,

therefore w ∈ vιCS(k)(A) if and only if |v|a = |w|a for all a ∈ A.

Assume for a contradiction that ιCS(k)(A) is rational. The iteration lemma

.. implies the existence of n0 ∈ N such that for any pair (v,w) ∈ ιCS(k)(A)

with |v| + |w| ≥ n0 the strings v and w can be factorised into v = x1u1z1 and

w = x2u2z2 such that 0 < |u1|+ |u2| ≤ n0 and
(
x1u

i
1z1, x2u

i
2z2
)
∈ ιCS(k)(A) for

all i ∈ N.

Let n > n0 and consider the strings

v = [an
an

 ] , w = [an
an

 ] .

Thenw ∈ vιCS(k)(A) and by the iteration lemma, as stated above, there arem1

andm2 in N where 0 ≤ m1,m2 ≤ n andm1 +m2 > 0 such that

v =
[
an−m

 am
 an


]
, w =

[
an−m

 am
 an


]

and the pairs ([
an−m

 aim
 an


]
,
[
an−m

 aim
 an


])
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Figure .: Automaton Ai.

are elements of ιCS(k)(A) for all i ∈ N, which is a contradiction since for in-

stance [an−m
 an

 ]πA ̸= [an−m
 an

 ]πA, becausem1 +m2 > 0.

To not ignore the coword problem entirely we show the following result, which

will become particularly interesting in Chapter .

Theorem ..

Let k be in N>0 and let A = {a1, . . . , ak}. Then the coword problem ῑCS(k)(A) is

rational.

Proof. Let k be in N>0. We note that w ∈ v̄ιCS(k)(A) if and only if there exists

an ai ∈ A such that |v|ai ̸= |w|ai . The automaton Ai depicted in Figure .,

where all loops have additional labels (aj, ε) and (ε, aj) for i ̸= j, accepts a

pair (v,w) of strings if and only if |v|ai ̸= |w|ai for a fixed ai ∈ A. Denote the

rational relation computed by Ai by ρi, then

ῑCS(k)(A) =
∪
i∈k
ρi,

and is therefore rational as a finite union of rational relations.
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In a very similar fashion as in the proof of Theorem .. we can prove

that the bicyclic monoid does not have rational word problem. We will give

an alternative proof of this fact using Corollary .. in Corollary ...

Theorem ..

The word problem of the bicyclic monoid B is not rational.

Proof. We apply Proposition .. once more.

Assume for a contradiction that ιB({b, c}) is rational. Then there exists

n0 ∈ N such that for any pair (v,w) ∈ ιB({b, c}) with |v|+ |w| ≥ n0 the strings

v and w can be factorised into v = x1u1z1 and w = x2u2z2 such that

0 < |u1|+ |u2| ≤ n0,

and (
x1u

i
1z1, x2u

i
2z2

)
∈ ιB({b, c}) for all i ∈ N.

Let n > n0 and consider v = [bncn] and w = ε. Now by Proposition ..

as stated above there is m ∈ N with m > 0 such that
([

bn−mbmicn] , ε) is in

ιB({b, c}). This is a contradiction since for example

[
bn−mcn]πA = [cm]πA ̸= επA.

Therefore ιB({b, c}) is not rational.

. Elements

It is a straightforward corollary of Proposition .. that for a semigroup with

rational word problem finitely generated by a setAwe can find a recognisable

subset D of A+ such that D contains only finitely many representatives for

each element of S.
Theorem ..

Let S be a semigroup finitely generated by A. If ιS(A) is rational, then there exists a

recognisable subset D ⊂ A+ such that (vρ) ∩D is finite for any v ∈ A+.
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Proof. Since ιS(A) is a congruence onA+, it is in particular an equivalence re-

lation onA+, and therefore we can apply Proposition .. to get the result.

The above theorem only yields that D contains finitely many representatives

for each element of S. It does not put a global bound on how many repre-

sentatives there are in D for each element. In particular there are rational

equivalence relations A+ σ−−−−→ A+ and choices for D compatible with the

statement of Proposition .. such that there is no bound n ∈ N such that

for all v ∈ A+ it holds that |(vσ ∩D)| < n. As an example consider a finite

alphabet A with more than one element and the equivalence relation v ∼ w

if and only if |v| = |w|. A choice for D which is compatible with Proposition

.. is A+.

The above is related to the following open question and with Open Ques-

tion ...

Open Question ..

Given a semigroup S finitely generated by A such that ιS(A) is a rational relation.

Does there exist a recognisable subsetD ⊂ A+ such that for every v ∈ A+ it holds that

|(vιS(A)) ∩D| = 1, in other wordsD is a recognisable set of unique representatives.

Strictly speaking, the following theorem is a special case of Theorem ..,

but since adding a zero or an identity is a very common construction in semi-

groups, we show that for any semigroup S the semigroups Sz and Se have

rational word problem if and only if S has rational word problem.

Theorem ..

Let S be a finitely generated semigroup. Then the following statements are equivalent.

. S has rational word problem.

. Sz has rational word problem.

. Se has rational word problem.
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Proof. Let S be a semigroup finitely generated by A and such that ιS(A) is

rational.

The semigroup Sz is generated by B = A ∪ {z}. For two strings v and w in

B+ the equality vπB = wπB holds if and only if either v andw are elements of

A+ and vπA = wπA or both are elements of B∗zB∗ and hence vπB = wπB = z,

therefore

ιSz(B) = ιS(A) ∪ µB∗zB∗ ,

where µB∗zB∗ is the universal relation on B∗zB∗. The above relation is rational

as a union of a rational relation and a recognisable relation.

Conversely if Sz has rational word problem we just remove z from the

generating set and apply Lemma ...

The semigroup Se can be generated by B = A ∪ {e}. Let

ι : B −−−−→ A∗, x 7→

ε, x = e

x, x ∈ A

then B∗ ι−−−−→A∗ is a rational relation and so is ιr, and the composition

B∗ ι−−−−→ A∗ ιS(A)−−−−→ A∗ ιr−−−−→ B∗

is rational as well.

For two strings v and w in B+ the equality vπB = wπB holds if and only if

either v and w are both in {e}+ or w ∈ vρ, in other words vιπA = wιπA and

therefore

ιSe(B) = ρ ∪ µe+ ,

which is rational as a union of a rational relation and a recognisable relation.

Conversely if Se has rational word problem we remove e from the gener-

ating set and apply Lemma ...

The following theorems treat the subsemigroups of a semigroup that are gen-

erated by single elements. For any element s of a semigroup S the set s+ is

either finite, and there are i ∈ N>0 and k ∈ N>0 with si+k = si, or s+ is infinite.
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We conjecture that for a given semigroup S with rational word problem

there is a constant n0 ∈ N>0 such that for all s ∈ S it holds that if s+ is finite,

then |s+| < n0.

Open Question ..

Let S be a semigroup with rational word problem. Prove that there is a constant

n0 ∈ N>0 such that for any s ∈ S with s+ finite it follows that |s+| < n0.

We prove the partial result that there is n0 ∈ N>0 such that if si+k = si for i

and kminimal, then k ≤ n0.

Theorem ..

Let S be a semigroup with rational word problem. There exists n0 ∈ N>0 such that

for any s ∈ S with si+k = si, where i ∈ N and k ∈ N are minimal, the period k is

bounded above by n0.

Proof. Let S be a semigroup with rational word problem finitely generated by

A and let s ∈ S such that there are i ∈ N>0 and k ∈ N>0 with si+k = si. Assume

i and k to be minimal, and choose w ∈ A+ with wπA = s. An automaton

deciding ιS(A) accepts
(
wi, wm

)
if and only if m = i + kl with l ∈ N. Let n0

be the number of states of such an automaton. For a contradiction suppose

that k > n0. For some l0 ∈ N>0 we have i + kl0 > (i |w|+ 1) (n0 + 1). This

means while reading the input
(
wi, wi+kl0

)
, the automaton reads a substring

of wi+kl0 of length greater than |w| (n0 + 1) while not reading anything from

wi. This means that the automaton reads (ε,wp) for some 0 < p ≤ n0 <

k, because starting from some state q it reads some remainder w ′ of w and

reaches a state q ′. Reading w, it reaches states qi, and enters a computation

starting in qi and ending in qi labelled by (ε,wp), where 0 < p ≤ n0 < k.

Therefore it also accepts
(
wi, wi+kl0−p

)
. Since 0 < p ≤ n0 < k the automaton

accepts
(
wi, wm

)
with m = i + kl0 − p and p is not a multiple of k. This is a

contradiction.
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An infinite semigroup with rational word problem contains an element of

infinite order.

Theorem ..

Let S be a finitely generated infinite semigroup with rational word problem. Then

there exists s ∈ S such that the subsemigroup generated by s is infinite.

Proof. Proposition .. ensures existence of a recognisable set D ⊂ A+ such

that for all s ∈ S the intersection sπ−1 ∩ D is finite and non-empty. Since D

is recognisable there exists an n0 ∈ N such that we can factor any string of

length greater than n0 according to Theorem ... Since S is by assumption

infinite,Dmust be infinite, so there exists an element v ∈ D of length greater

than n0 with a factorisation v = xuy and xuiy ∈ D for all i ∈ N, therefore

uπA must have infinite order.

Applying Theorems .. and .. yields that if a semigroup contains a sub-

semigroup isomorphic to a free commutative semigroup of rank bigger than

one, then the semigroup does not have rational word problem. This also pro-

vides a tool to show that a semigroup does not have rational word problem.

Theorem ..

Let S be a finitely generated semigroup such that S has a subsemigroup T which is

isomorphic to a free commutative semigroup of rank k with k ≥ 2. Then S does not

have rational word problem.

Proof. Assume that S is generated byA and let T generated byB be a subsemi-

group of S isomorphic to CS(k) for some k ≥ 2. If ιS(A) was rational then by

Theorem .. the set ιT (B) would be rational in contradiction with Theorem

...
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. Rational Subsets and Kleene’s Theorem

We show that if a semigroup S has rational word problem, then the set of

all representatives for a rational subset of S is rational. We also show that

the preimage of a rational subset of a semigroup with rational word problem

is a rational subset of A+ where A is a finite generating set for S. It follows

that semigroups with rational word problem are residually finite and Kleene

semigroups.

We also note that the property that preimages of rational subsets are ratio-

nal is a finiteness condition. It is a stricter finiteness condition than residual

finiteness in that it demands rational subsets be separable from their comple-

ment by a finite semigroup quotient of S. Residual finiteness only demands

elements to be separable by a finite quotient of S.

We have the condition that for any subset X of Swhich is rational, a finite

quotient of S can distinguish between X and S\X.

Theorem ..

Let S be a finitely generated semigroup with rational word problem. Then for any

X ∈ RatS the set Xπ−1A is an element of RatA+.

Proof. Let S be finitely generated by A, the relation ιS(A) be rational, and let

A+ π−−−−→S be the canonical morphism. We proceed by induction.

• Let s ⊂ S. For any choice of v ∈ A+ with vπA = s

sπ−1A = vιS(A) .

and by Theorem .. this set is a rational subset of A+, because ιS(A)

is rational.

• Let X and Y be subsets of S such that Xπ−1A and Yπ−1A are rational subsets

ofA+. Then
(
Xπ−1A

)
∪
(
Yπ−1A

)
is a rational subset ofA+ and (X ∪ Y)π−1A =

Xπ−1A ∪ Yπ−1A , therefore (X ∪ Y)π−1A is rational.
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• Let X and Y be subsets of S such that Xπ−1A and Yπ−1A are rational subsets

of A+. Then
(
Xπ−1A

) (
Yπ−1A

)
is a rational subset of A+ and

z ∈ (XY)π−1A ⇔ zπA = xy for x ∈ X and y ∈ Y

⇔ zπA = (vπA) (wπA) for v ∈ Xπ−1A and w ∈ Yπ−1A⇔ vw ∈ zιS(A) for vw ∈
(
Xπ−1A

) (
Yπ−1A

)
Therefore (XY)π−1A is a rational subset of A+ by Theorem .., because

it is the image of a rational subset of A+ under a rational relation.

• Let X be a subset of S such that Xπ−1A is rational. Then
(
Xπ−1A

)+ is a

rational subset of A+ and

z ∈
(
X+
)
π−1A ⇔ zπA = x1x2 · · · xn for xi ∈ X

⇔ v ∈ zιS(A) for v ∈
(
Xπ−1A

)+
Therefore (X+)π−1A is a rational subset of A+, because it is the image of

a rational subset of A+ under a rational relation.

Therefore by induction on the structure of a rational subsetX of S, its preimage

Xπ−1A is rational.

The following lemma characterises the recognisable subsets of any finitely

generated semigroup by rational subsets of the free semigroup over the gen-

erating set. This is a finiteness condition in the sense that certain subsets can

be recognised by a finite quotient of S.

Lemma ..

Let S be a semigroup finitely generated by A. For X ⊂ S it holds that

Xπ−1A ∈ RatA+ if and only if X ∈ RecS.
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Proof. Let X ⊂ S such that Xπ−1A ∈ RatA+. Kleene’s Theorem states that

Xπ−1A ∈ RecA+ and therefore there exists a morphism A+ φX−−−−→TX, where TX
is the quotient of A+ by the syntactic congruence of Xπ−1A as defined in ..,

and a subset FX ⊂ TX such that Xπ−1A = FXφ
−1
X . We show that kerπA ⊂ kerφX.

w ∈ vkerπA ⇒ vπA = wπA

⇒ (∀x, y∈A∗) (xvy)πA = (xwy)πA

⇒ (∀x, y∈A∗) (xvy)πAπ
−1
A = (xwy)πAπ

−1
A⇒ (∀x, y∈A∗) xvy∈Xπ−1A ⇔ xwy∈Xπ−1A⇒ w∈vkerφX

As justification for the last step refer to the definition of the syntactic con-

gruence in ... Applying the second isomorphism theorem for semigroups,

there is now a morphism S
ψX−−−−→TX with the property that vπψX = vφX for

any v ∈ A+. The definition of φX ensures that for any v ∈ A+ the image vφX
is an element of FX if and only if vπA ∈ X. This shows that ψX recognises the

subset X of S.

Conversely let X ∈ RecS. Since recognisability is closed under preimages

by Theorem .., the set Xπ−1 is a recognisable subset ofA+, and by Kleene’s

Theorem a rational subset of A+.

It follows that if the preimage of any rational subset of a semigroup S is ratio-

nal, then Kleene’s theorem holds in S.

Corollary ..

Let S be a semigroup finitely generated byA such that for every X ∈ RatS the preim-

age Xπ−1 is in RatA+. Then RatS = Rec S.

Proof. This follows directly from Lemma ..

It follows from the preceding lemmas that Kleene’s Theorem holds in semi-

groups with rational word problem, in other words rational subsets of semi-
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groups with rational word problem are recognisable. This is not true any-

more for the class of semigroups with polyrational word problem introduced

in Chapter , in particular for CS(k).

Theorem ..

Let S be a semigroup with rational word problem. Then RatS = Rec S.

Proof. Let S be a semigroup finitely generated by Awith rational word prob-

lem. Applying Theorem .. yields that preimages under πA of rational sub-

sets of S are rational. Applying Corollary .. now yields the result.

It is still an open problem to characterise the class of semigroups in which

Kleene’s Theorem holds. We have shown that all semigroups with rational

word problem are Kleene semigroups, but we do not have a proof that the

converse holds. This question is also interconnected with an open question

which is asked in a later chapter, namely whether the class of semigroups with

rational word problem is the same class as the class of semigroups that are

rational in the sense of Sakarovitch: The authors of the paper [PS] construct

a semigroup that is not rational but in which Kleene’s theorem holds.

Open Question ..

Let S be a semigroup with RatS = RecS. Does this imply that S has rational word

problem?

A further application of the above results is the following, which is valid in

more general classes of semigroups than just semigroups with rational word

problem.

If a semigroup S is finitely generated by A, and for all elements s ∈ S

the set sπ−1A is a rational subset of A+, then S is residually finite. We will

extend this result in Chapter  to include semigroups with polyrational word

problem in Theorem ...
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Theorem ..

Let S be a semigroup finitely generated by A. If for all s ∈ S the preimage sπ−1 is a

rational subset of A+, then S is residually finite.

Proof. Let s and t be elements of Swith s ̸= t. Since s is a rational subset of S,

and by assumption sπ−1 is in RatA+, we conclude, using Corollary .. that

the set s is a recognisable subset of S. This means that there is a morphism

S
φs−−−−→T , where T is finite, and F ⊂ T such that s = Fφ−1

s . Since t ̸= s,

applyingφs to t yields that tφs ∈ T\F, and in particular sφs ̸= tφs. Therefore

S is residually finite.

We conclude that semigroups with rational word problem are residually fi-

nite.
Corollary ..

Let S be a semigroup with rational word problem. Then S is residually finite.

Proof. Let S be a semigroup finitely generated by Awith rational word prob-

lem. Then, by applying Theorem .., for any s ∈ S the preimage sπ−1A is a

recognisable language. Applying Theorem .. now proves the claim.

. Subsemigroups

It is a consequence of the theorems in Section . that finitely generated sub-

semigroups of a semigroup with rational word problem have rational word

problem.

Theorem ..

Let S be a semigroup with rational word problem. Then any finitely generated sub-

semigroup of S has rational word problem.

Proof. Let S be a semigroup with rational word problem and let A be a finite

generating set for S. Let T be a finitely generated subsemigroup of S and

let B be a generating set for T . Then A ∪ B is a generating set for S and by
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Theorem .. S has rational word problem with respect to this generating

set. Applying Lemma .. now proves our claim.

The notion of index of a subsemigroup T of a semigroup S is used to mea-

sure the relative size of T in S. If T has finite index in S, then the structural

differences between S and T should also be small. The most restrictive notion

of index is the Rees index: The Rees index of a subsemigroup T of a semigroup

S is defined to be |S\T |.

We want to show that if T is a subsemigroup of S of finite Rees index,

then T has rational word problem if and only if S has rational word problem.

Theorems .. and .. imply that subsemigroups of finite Rees index of

a semigroup with rational word problem have rational word problem them-

selves.

We will show that, if S is a semigroup, and T is a subsemigroup of S of

finite Rees index with rational word problem, then S has rational word prob-

lem.

Let in the following S be a semigroup and T ⊂ S a subsemigroup of S. Let

T have finite Rees index in S, and let T have rational word problem. Let B

be a generating set for T and let C = S\T . Note that C is finite and that that

A = B ∪ C therefore is a finite generating set for S.

The proof will proceed in three steps.

We first show that for v ∈ A+ with vπA ∈ S\T we can compute a c ∈ C

with cπA = vπA using a rational relation.

We then use a theorem from [Cam+] to get a finite generating set D for

T and a rational relation that rewrites any v ∈ A+ with vπA ∈ T to an element

w ∈ D+ with vπA = wπD.

In a final step we put together the first two steps in Theorem .. to show

that S has rational word problem.

We note that from an element t ∈ T the only way to get an element t ′ ∈ S\T

is by multiplying by an element of S\T , because T is a subsemigroup of S. In
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contrast, the product of two elements in S\T can be any element of S, and the

same holds for product of an element of T and an element of S\T .

Denote by U the set of strings u ∈ A+ with u = [ac] or u = [ca] for a ∈ A

and c ∈ C, and with uπA ∈ T . For u ∈ U we choose wu ∈ B+ with uπA =

wuπB. We denote the set of all such wu byW. Note thatW is a finite set.

We denote by PC the monoid of partial transformations on C, and we de-

note undefined values by ⊥. Let for all a in A

φa : C −−−−→ C, c 7→

c ′, if c ′πA = (ac)πA

⊥, otherwise
.

and define A∗ φ−−−−→PC by

aφ = φa.

The following lemma is the first step: There is a rational relation that for

v ∈ A+ with vπA ∈ S\T computes c ∈ Cwith cπA = vπA.

Lemma ..

There is a rational relation A+ σ−−−−→ A+ such that for any v ∈ A+, if vπA ∈ S\T ,

then c = vσ with vπA = cπA.

Proof. Define an automaton H = ⟨Q,A,A, q0, F, ∆⟩ such that the following

hold, if if v ∈ A+ with vπA ∈ S\T , then there is an accepting computation

labelled by (v, c) with c ∈ C such that vπA = cπA.

For this let Q = PC ∪ C ∪ {f} with q0 = ιC and F = {f} and the following

transitions

(α, a, ε, α ◦ (aφ)) for a ∈ A and α ∈ PC

(α, a, ε, aα) for a ∈ Awith aα ∈ C

(c, a, ε, c ′) for a ∈ A and c ′ ∈ Cwith c ′πA = (ca)πA

(c, a, ε,w[ca]φ) for a ∈ A and w[ca] ∈W

(c, ε, c, f) for c ∈ C
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We show that for any v ∈ A+ there is a computation γ : q0
(v,ε)−−−−→ c if and

only if vπA = cπA. For this we first note that any computation of the form

α
(w,ε)−−−−→ β

(x,ε)−−−−→ c

where all states up to β are elements of PC have the property that there is

u ∈ B∗ such that (uwx)πA = cπA. In particular if α = q0 then u = ε and

(vx)πA = cπA. Note that c(aφ) = wac implies wacπA = (c (aφ))πA and

therefore (c (aφ))πA = (ac)πA if vφ is defined then (vc)πA = (c(vφ))πA.

Conversely let vx ∈ B∗C with (vx)πA ∈ S\T . In this case vφ is defined,

because if v = v1 . . . vn ∈ B∗ and (v1 . . . vnx)πA ∈ S\T then (v1 . . . vi)πA ∈ T

and therefore (vi+1 . . . vnx)πA ∈ S\T for any 1 ≤ i < n. By the definition of H

there exists a computation

q0
(v,ε)−−−−→ vφ

(x,ε)−−−−→ x(vφ)

and (x(vφ))πA = (vx)πA.

Now let γ : q0
(v,ε)−−−−→ c with c ∈ C be a computation. We show that

vπA = cπA.

The computation γ can be factorised into partial computations of the form

αi
(vi,ε)−−−−→ βi

(xi,ε)−−−−→ ci
(wi,ε)−−−−→ di

(yi,ε)−−−−→ αi+1

for 1 ≤ i < k for some k ∈ N and

αk
(vk,ε)−−−−→ βk

(xk,ε)−−−−→ ck
(wk,ε)−−−−→ c

where for all 1 ≤ i ≤ k the states αi and βi and all states that are visited in

between are elements of PC, and ci and di and all states that are visited in

between are elements of C. Furthermore vi ∈ B+, wi ∈ A+ and xi and yi are

in C.

We observe that αi+1 = wdiyiφ and therefore by induction on k the equa-

tion vπA = cπA holds.
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We can factor a given string v ∈ A+ with vπA ∈ S\T into

v = u1 . . . uk

where ui = vixiwiyi for 1 ≤ i < k and uk = vkxkwk and vi ∈ B∗, wi ∈ A+

and xi, yi ∈ C such that there are computations

αi
(vi,ε)−−−−→ βi

(xi,ε)−−−−→ ci
(wi,ε)−−−−→ di

(yi,ε)−−−−→ αi+1

and

αk
(vk,ε)−−−−→ ck

(wk,ε)−−−−→ dk

by construction of H and by induction on k it follows that dkπA = vπA.

In conclusion, if vπA ∈ S\T , then there is an accepting computation of H

labelled by (v, c). This concludes the proof.

For the second step, we use a result from [Cam+]. Consider the set

D = {dx,a,z | x, z ∈ C ∪ {ε} , a ∈ A, and (xa)πA, (xaz)πA ∈ T }

Let w ∈ A+ with wπA ∈ T . The authors prove in [Cam+] that D is a finite

generating set for T , see also Theorem ... They also prove that the follow-

ing partial function rewrites any string w into w ′ ∈ D+ with wπA = w ′πD.

Let w = w ′aw ′′ such that w ′a is of minimal length with the property that

(w ′a) ∈ T . Let also x ∈ C with xπA = w ′πA, if w ′ ∈ A+ and x = ε if w ′ = ε,

and z ∈ C with zπA = w ′′πA.

wτ =


dx,a,z, if w ′′πA ∈ S\T

dx,a,ε (w
′′τ) , if w ′′πA ∈ T

We show that τ is a rational relation.

Lemma ..

The partial function A+ τ−−−−→D+ is a rational relation.
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Proof. Define a finite automaton T as follows. The state set of the automaton

is

Q = {q0, f} ∪ C ∪ (C×A× PC × (C ∪ {ε})) .

We define the following transitions for all a, a ′ ∈ A, b ∈ B, c, c ′, c ′′ ∈ C, and

α ∈ PC, subject to the additional conditions given in the second column.

(q0, b, dε,b,ε, q0)

(q0, c, ε, c)

(c, a, ε, c ′) (ca)πA = c ′πA

(c, a, dc,a,ε, q0) (ca)πA ∈ T

(c, a, ε, (c, a, ιC, ε)) (ca)πA ∈ T

((c, a, α, ε), a ′, ε, (c, a, α ◦ (a ′φ), ε))

((c, a, α, ε), a ′, ε, (c, a,⊥, a ′α)) a ′α ∈ C

((c, a,⊥, c ′), a ′, ε, (c, a,⊥, c ′′)) c ′′πA = (c ′a)πA

((c, a,⊥, c ′), a ′, ε, (c, a,
(
w[c ′a]

)
φ, ε)) if c ′aπA ∈ T

((c, a,⊥, c ′), ε, dc,a,c ′ , f)

The initial state is q0, accepting states are q0 and f.

We show by induction that the graph of τ is computed by T. For this we

first consider computations q0
(w,dx,a,z)−−−−→ q0. Let w ∈ A+. Starting from q0, the

automaton computes the shortest prefix w ′a of w such that (w ′a)πA ∈ T

and either outputs dx,a,ε, and continues on the remainder of the input, or

computes z ∈ C and outputs dx,a,z. This conforms exactly to the definition of

τ.

The previous two lemmas are now used to prove the following result

about subsemigroups of finite Rees index.

Theorem ..

Let S be a finitely generated semigroup and let T be a subsemigroup of S of finite Rees

index. Then S has rational word problem if and only if T has rational word problem.
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Proof. Let S be a finitely generated semigroup and let T be a subsemigroup of

S of finite Rees index.

If S has rational word problem, applying Theorem .. yields that T is

finitely generated and by Theorem .. the subsemigroup T has rational word

problem.

If T has rational word problem, then by Theorem .. it follows that ιT (D),

for D as defined above, is rational. Also, the relation A+ ρ−−−−→A+

A+ τ−−−−→ D+ ιT(D)−−−−→ D+ τr−−−−→ A+

is rational as a composition of rational relations.

From Lemma .. we get a rational relationA+ σ−−−−→ A+ with the prop-

erties described. The relation A+ ρ ′−−−−→A+ defined by the composition

A+ σ−−−−→ A+ ιC−−−−→ A+ σr−−−−→ A+

is also rational as a composition of rational relations. Now the relation (ρ ∪ ρ ′)

is rational as a union of rational relations, and it is the word problem of S.

The above theorem does by no means tell the whole story: If we let S =

{a, b}+ and the subsemigroup T = {a}+, then S as well as T have rational word

problem, and T has infinite Rees index in S. We conjecture that the above

methods can suitably be extended to extensions where the action of T on S\T

and of S\T on T are rational relations.

The following theorem shows how the situation is for some extensions of

infinite Rees index. Green index is a generalisation of the notion of index pro-

posed by Gray and Ruskuc in [GR]. It is aimed at generalising Rees index

and group index. If T ≤ S has finite Green index and rational word prob-

lem, then S does not necessarily have rational word problem. For consider
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the monoidM introduced in Example ..

M = mon
⟨
a, b, c, d | ac = ca = c2, ad2 = d2a = d

bd = db = d2, bc2 = c2b = c

dc2 = c, cd2 = d, cd = dc
⟩

The submonoid N generated by a and b has finite Green index in M and N

has rational word problem since it is the free monoid on {a, b}. The monoid

M itself does not have rational word problem, as can be shown by applying

Proposition .. to the pair ([b]n [c]n , [bc]) for a sufficiently large n.

Theorem ..

Let S be a finitely generated semigroup and let T be a subsemigroup of S of finite Green

index. Then the following statements are equivalent

. S has rational word problem,

. T has rational word problem, and all T -relative Schützenberger groups are fi-

nite,

. T has rational word problem, and T has finite Rees index in S.

Proof. We first show that  implies . Assume S has rational word problem.

Applying Theorem .. yields that all HS-classes are finite. Since every HS

class is a union of HT classes, it follows that all HT classes are finite and there-

fore all T -relative Schützenberger groups are finite. It also follows that T has

finite Rees index, since by assumption, if T has finite Green index, that means

that there are finitely manyHT -classes contained in S\T , all of which are finite.

Therefore T has rational word problem by Theorem ...

For  implies , assume that T has rational word problem, and all T -relative

Schützenberger groups are finite. By the assumption that T has finite Green

index in S it follows that T has finite Rees index in S and again by Theorem

.. it also follows that T has rational word problem.
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The final implication  implies  now follows by applying Theorem ..

S once more.

To conclude this section we show that ifM is a monoid with rational word

problem, thenM\U(M) is an ideal inM. We will show in Theorem .. and

Corollary .. that in fact the group of units has to be finite.

Theorem ..

LetM be a finitely generated monoid with rational word problem. ThenM\U(M) is

an ideal ofM.

Proof. Let M be finitely generated by A and assume that M\U(M) is not an

ideal of M. This means that there are v and w in A+ such that (vw)πA = e

and (wv)πA ̸= e. Applying Corollary . from [CP, Ch., p. ] now

yields that vπA and wπA generate a submonoid of M that is isomorphic to

the bicyclic monoid, which is a contradiction to the assumption that M has

rational word problem.

. Products

This section is dedicated to showing how semigroups with rational word

problem can arise as direct products, free products and zero unions.

First we will consider direct products and prove the following theorem.

Theorem ..

Let S and T be finitely generated semigroups such that S×T is finitely generated. Then

S × T has rational word problem if and only if S and T have rational word problem

and at least one of S or T is finite.

We establish when the direct product of two finitely generated semigroups is

finitely generated. Assume that S and T are finitely generated semigroups. If

S and T are monoids, then S × T is finitely generated. If for example S = a+



 Rational Word Problem

and T = b+, then S× T is not finitely generated. We state the following result

from [RRW].

Proposition ..

Let S and T be finitely generated semigroups. Then S× T is finitely generated if and

only if one of the following conditions holds.

. S and T are both finite.

. S is finite and S2 = S.

. T is finite and T 2 = T .

. S2 = S and T 2 = T .

The next step is to establish the properties of factors of direct products that

have rational word problem. We first prove that if a direct product S × T

is finitely generated and has rational word problem, then both factors have

rational word problem. It is well-known t hat S and T are finitely generated

if S× T is finitely generated.

Theorem ..

Let S and T be semigroups. If S×T is finitely generated and has rational word problem

then S and T are finitely generated and have rational word problem.

Proof. Let S× T πS−−−−→S be the projection onto S and let A be a finite generat-

ing set for S× T . The set A generates S via the map πAπS.

Denote by ρ the kernel of the map πAπS restricted to A. The equivalence

relationA ρ−−−−→ A extends to an equivalence relation onA+ ρ−−−−→ A+. Con-

sider the composition

A+ ρ−−−−→ A+ ιS×T(A)−−−−→ A+ ρ−−−−→ A+

which in the following we denote by τ. We claim that τ = ιS(A).

Let v and w be elements of A+. If w ∈ vτ then wπAπS = vπAπShence

w ∈ vιS(A).
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Conversely, if w ∈ vιS(A), then wπAπS = vπAπS which implies that there

exist strings w ′ and v ′ in A+ such that w ′ ∈ wρ and v ∈ v ′ρ and w ′ ∈

v ′ιS×T (A), hence w ∈ vσ. This concludes the proof.

For the “only if” direction of Theorem .., we consider the three cases: Ei-

ther S and T are finite, one of S or T is finite, or both S and T are infinite. In the

case that S and T are finite, their direct product S × T is finite and therefore

has recognisable word problem by Theorem ... For the case that S is finite

we prove the following lemma.

Lemma ..

Let S be a finite semigroup and let T be a semigroup with rational word problem. If

S× T is finitely generated then S× T has rational word problem.

Proof. LetA be a finite generating set for S×T . SinceA generates S and T , the

relationA+ ιS(A)−−−−→ A+ is recognisable. By assumption the relationA+ ιT(A)−−−−→ A+

is rational. Now

ιS×T (A) = ιS(A) ∩ ιT (A) ,

and therefore ιS×T (A) is rational by Lemma ...

In the case of a direct product of two infinite semigroups with rational word

problem, we get a subsemigroup which is isomorphic to the free commuta-

tive semigroup of rank two, and therefore the direct product of two infinite

semigroups with rational word problem does not have rational word prob-

lem.
Lemma ..

Let S and T be infinite semigroups with rational word problem. Then S× T contains

a free commutative semigroup of rank two.

Proof. Let S and T be infinite semigroups with rational word problem. By

Theorem .. there exist s ∈ S and t ∈ T such that the subsemigroups of S

and T generated by s and t respectively are infinite. The elements
(
s2, t

)
and
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(
s, t2

)
commute and generate a free commutative semigroup of rank two in

S× T .

We can now give the proof of Theorem ...

Theorem ..

Let S and T be semigroups such that S × T is finitely generated. Then S × T has

rational word problem if and only if S and T have rational word problem and at least

one of S or T is finite.

Proof. Let S and T be semigroups such that S× T is finitely generated.

If S× T has rational word problem, then both S and T have rational word

problem by Theorem ... Assume both S and T to be infinite. Then S × T

would not have rational word problem by Lemma ...

Conversely, if both S and T are finite then S × T is finite and has rational

word problem by Theorem ... If S is finite and T is infinite and has rational

word problem, or vice versa, then by Lemma .. the semigroup S × T has

rational word problem.

The situation in the case of the semigroup free product is easier to describe.

Note that we do not need the restriction on the groups of units of S and T in

the case of the semigroup free product. This is because the semigroup free

product of two groups is not a group.

Theorem ..

Let S and T be finitely generated semigroups. Then the semigroup free product S ∗ T

has rational word problem if and only if S and T have rational word problem.

Proof. Let S and T be finitely generated semigroups.

If S ∗ T has rational word problem, then S and T are finitely generated

subsemigroups of S ∗ T and therefore have rational word problem.

Conversely assume that S is finitely generated by A and T is finitely gen-

erated by B. Then C = A ∪ B is a generating set for S ∗ T . Assume that ιS(A)
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and ιT (B) are rational relations. Define the rational relation C+ ρ−−−−→ C+ by

ρ = (ιS(A) ∪ ιT (B))+

The relation C+ ρ−−−−→ C+ is rational and equal to ιS∗T (C).

If we consider monoid free products of monoids with rational word problem

we first observe that the monoid free product C2 ∗ C2 where C2 is a cyclic

group of order two is an infinite group and so does not have rational word

problem, as will be shown in Theorem .. and Corollary ... We get the

following theorem that characterises monoid free products that have rational

word problem.

Theorem ..

Let M and N be finitely generated monoids. Then the monoid free product M ∗ N

has rational word problem if and only if M and N have rational word problem and

the group of units ofM or N is trivial.

Proof. LetM be finitely generated as a monoid by A and N be generated as a

monoid by B. Then C = A ∪ B generatesM ∗N.

Assuming ιM∗N(C) is rational,M andN are finitely generated submonoids

ofM ∗N and therefore have rational word problem.

If the groups U(M) and U(N) were both not trivial, then U(M) ∗ U(N)

would be an infinite subgroup ofM∗N, in contradiction with the assumption

thatM ∗N has rational word problem.

Let now without loss of generality U(M) be non-trivial and U(N) be triv-

ial. Since U(M ∗N) is finite, the set L = eπ−1C is a recognisable subset of C∗.

The relation C∗ ρ−−−−→ C∗ which replaces any occurrence of an element of L

by ε is a rational relation, since the relations C∗ τ−−−−→ C∗ with Lτ = ε, and

C∗ σ−−−−→ C∗ with vσ = C∗\C∗LC∗ are recognisable and

ρ = (ιC∗ ∪ τ)∗ ∩ σ.
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Now, since

µ = (ιM(A) ∪ ιN(B))∗

is rational, we can write ιM∗N(C) as the composition

C∗ ρ−−−−→ C∗ µ−−−−→ C∗ ρr−−−−→ C∗.

This concludes the proof.

The last type of construction we consider in this section is the zero union of

two semigroups as defined in Definition ..

Theorem ..

Let U be a semigroup that is a zero union of two finitely generated subsemigroups S

and T . Then U has rational word problem if and only if S and T have rational word

problem.

Proof. Let U be a zero union of S and T and let C be a finite generating set for

U such that C contains generating sets A for S and B for T . If U has rational

word problem then S and T are finitely generated subsemigroups of U and

therefore have rational word problem by Theorem ...

Conversely, assume that ιS(A) and ιT (B) are rational. We observe that the

set

Z =
{
v ∈ C+ | vπC = z

}
,

the set of representatives over C of the zero element of U is a recognisable

subset of C+ by Theorem ... The equality

ιU(C) = ιS(A) ∪ ιT (B) ∪ (Z× Z)

now shows that ιU(C) is rational.

. Green’s Relations

Green’s relations were introduced as very important in the theory of semi-

groups in Chapter . For a finitely generated semigroup S we have defined
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the notion of rationality for relations R, L, H, D and J with respect to a given

generating set. This section will consider Green’s relations of semigroups

with rational word problem.

It does not seem to be of high value to consider semigroups with rational

R and rationalL alone, since any finitely generated group has rational Green’s

relations.

Lemma ..

Let G be a finitely generated group and A be a finite monoid generating set for G.

Then

LG(A) = RG(A) = HG(A) = JG(A) = DG(A) = µA∗

and therefore all the relations are rational.

Proof. For a group G Green’s relations are all equal to G × G and the claim

follows immediately since A is a generating set.

The bicyclic monoid B has neither rational word problem, as shown in

Section ., nor rational R nor rational L. To illustrate this, we remind our-

selves that the elements of the bicyclic monoid have representatives of the

form [c]γ [b]β. Two such elements [c]γ1 [b]β1 and [c]γ2 [b]β2 are R-related if

and only if γ1 = γ2. Assume R(A) is rational. The element [c]πB can be

represented by the strings [b]n [c]n c and [c] for any n ∈ N>0 and therefore

[b]n [c]n [c] ∈ [c]R(A). By applying Proposition .. we get n0 ∈ N such that

for n > n0 there are 0 ≤ k1 < n0 and 0 ≤ k2 ≤ 1 such that [b]n−k1 [b]ik1 [c]n [c]

and [c]1−k2 [c]ik2 are R(A)-related for all i ∈ N. This shows that R is not ratio-

nal for the bicyclic monoid.

We consider Green’s relations on semigroups with rational word problem,

and first get the following result. We remind ourselves that the definition of a

k-rational relation as an intersection of at most k rational relations in Section

..
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Lemma ..

Let S be a semigroup with rational word problem. Then the relations L, R and J are

2-rational. The relation H is 4-rational.

Proof. Let S be a semigroup with rational word problem and let A be a gen-

erating set for S. We observe that the relation

ρ : A+ −−−−→ A+, v 7→ vA∗,

the relation

λ : A+ −−−−→ A+, v 7→ A∗v,

and the relation

σ : A+ −−−−→ A+, v 7→ A∗vA∗

are rational and therefore the relations ριS(A), λιS(A) and σιS(A) are rational

by Theorem ... The following equivalences hold for R.

w ∈ vRS(A) ⇔ wπA ∈ vπAR

⇔ ∃x ∈ A∗ such that (vx)πA = wπA and

∃y ∈ A∗ such that (wy)πA = vπA

⇔ ∃x ∈ A∗ such that w ∈ (vx) ιS(A) and

∃y ∈ A∗ such that v ∈ (wy) ιS(A)

⇔ w ∈ vριS(A) and v ∈ wριS(A) .

This proves that R(A) is the intersection of the two rational relations ριS(A)

and ριS(A)r. The proofs for L(A) and J (A) are very similar and therefore

omitted. The claim about H(A) follows immediately from the results about

R and L and the definition of H.

We observe that, if a semigroup with rational word problem has only sin-

gleton R-classes, then R is rational and the same holds for L. This is in par-

ticular true for the free semigroups on a finite generating set. If either R or L

has only singleton classes then H classes are trivial and H is rational too.
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It follows from Theorem .. that D is 2-rational.

A slightly larger class we consider is the class of cancellative semigroups.

We get that R and L are rational. It is currently an open question to charac-

terise semigroups with rational word problem and rational R or L. We will

show in Theorem .. that H−classes have to be finite for semigroups with

rational word problem in general.

Theorem ..

Let S be a finitely generated, cancellative semigroup with rational word problem. Then

R and L are rational.

Proof. Let S be a cancellative semigroup finitely generated by A and assume

ιS(A) is rational. Without loss of generality we assume S to contain an identity

element. If S would not contain an identity element we consider Se. If w ∈

vRS(A), then there exist x and y inA∗ such that vx ∈ wιS(A) andwy ∈ vιS(S),

or equivalently, since S is cancellative, there are x and y inA∗ such that xπA ∈

U(S) and yπA ∈ U(S) and (xy)πA = eS and (vxy)πA = (wy)πA.

For any pair x ∈ A∗ and y ∈ A∗ the relations

ρxy : A
∗ −−−−→ A∗, v 7→ vxy

and

ρy : A
∗ −−−−→ A∗, w 7→ wy

are rational. Define the relation γx,y by the composition

A∗ ρxy−−−−→ A∗ ιS(A)−−−−→ A∗ ρry−−−−→ A∗.

Choosing a set R ⊂ A∗ ×A∗ such that for all pairs (g, h) ∈ U(S) with gh = es

there is at least one pair (v,w) ∈ R with vπA = g and wπA = h, we conclude

that

RS(A) =
∪

(x,y)∈R

γx,y.
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Since U(S) is finite, R can be chosen to be finite. All γx,y are rational, because

ιS(A) is assumed to be rational. We therefore conclude that RS(A) is ratio-

nal as a finite union of rational relations. The same result holds for L by an

analogous proof.

We record the following open questions for later reference.

Open Question ..

Give a characterisation of all semigroups with rational word problem.

Open Question ..

Give a characterisation of all semigroups with rational R or rational L, in particular

prove that any semigroup with rational word problem has rational R and rational L

or find an example of a semigroup with rational word problem where R or L is strictly

2-rational.

We now further examine R for semigroups with rational word problem.

All of the results hold for L, for example by transferring to the opposite semi-

group. The following result is mainly a technical helper. It describes the struc-

ture of infinite R-classes.
Lemma ..

Let S be a semigroup with rational word problem and let R be a R-class of S. Then

for all s ∈ R there exists a finite set Xs ⊂ Se such that for all y ∈ R there is t ∈ Xs

and x ∈ Se such that

s = yt = sxt.

Proof. Let S be a semigroup with rational word problem and let A be a finite

generating set for S.

If R is a finite R-class the claim follows immediately from the definition

of R.

Assume R is an infinite R-class and choose v ∈ A+ such that vπA ∈ R. By

the definition of R, for all w ∈ A+ such that wπA ∈ R, there exists x ∈ A∗
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such that vπA = (wx)πA. We show that there is a finite set Yv ⊂ A+ such that

for allw ∈ A+ withwπA ∈ R there is a u ∈ Yv such that vπA = (wu)πA. From

this the claim follows.

Assume that A is an automaton with n0 states that decides ιS(A). For v

and w as above, there exists x ∈ A∗ such that A accepts (v,wx). For any

computation of A that accepts (v,wx) we can find the following factorisation

q0
(v1,w)−−−−→ q

(v2,x)−−−−→ qf

where v1 and v2 are in A∗. Now the length of x in the computation from q to

qf is bounded from above by |v|n0 + n0, since we can assume that there is a

shortest computation from q to qf which is labelled by (v2, x). Therefore the

set Yv of all possible such computations has at most |A||v|n0+n0 elements.

Since Yv is finite, the set Xs = YvπA is finite, which proves the existence

and finiteness of Xs.

By assumption vπA = s andwπA = ywhere y ∈ R arbitrary. By the above

there is t ∈ Xs such that s = yt and by definition of R there is x ∈ Se with

y = sx and therefore the claim follows.

The previous lemma allows us to prove that in a semigroup with ratio-

nal word problem the intersection of a monogenic subsemigroup and any

R−class is finite.
Theorem ..

Let S be an infinite semigroup with rational word problem and let R be an infinite

R−class of S. For any s ∈ S such that the subsemigroup s+ is infinite the intersection

s+ ∩ R is finite.

Proof. Suppose S is an infinite semigroup with rational word problem which

has an infinite R-class R. Let s ∈ S such that s+ is infinite. Choose r ∈ R. By

Lemma .. there exists a finite set Xr such that for any x ∈ R there is t ∈ Xr
such that xt = r. Assume for a contradiction that for infinitely many k ∈ N

the power sk ∈ R. Then there exist i, j ∈ N with i < j and t ∈ Xr such that
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si ∈ R and sj ∈ R and r = sit = sjt. Since R is an R-class there is x ∈ S such

that rx = si. This yields sitx = rx = si, and by left multiplication by sj−i it

follows that sj−isi = sj−isitx. Therefore sj = sjtx and also sjtx = rx = si,

hence si = sj, which is a contradiction.

We can now conclude, employing Theorem .., that any infinite semigroup

with rational word problem has infinitely many R−classes.

Theorem ..

Let S be an infinite semigroup with rational word problem. Then S has infinitely

many R−classes.

Proof. By Theorem .. there exists s ∈ S such that s+ is infinite. Every ele-

ment of s+ lies in exactly one R-class of S, but only finitely many elements of

s+ lie in any given R-class. Therefore S has infinitely many R-classes.

Having covered some properties of R- and L- classes, we now move on to

H-classes. We first show that H-classes of a semigroup with rational word

problem have to be finite.

Theorem ..

Let S be a semigroup with rational word problem. Then all H-classes of S are finite.

Proof. Let S be a semigroup with rational word problem and let A be a finite

generating set for S. Let furthermore n0 ∈ N be the number of states in some

finite automaton that decides ιS(A).

Assume for a contradiction that S has an infinite H classH. Choose h ∈ H

and v ∈ A+ with vπA = h. Since we assumed H to be infinite, TS(H) is an

infinite group by Theorem ... Hence there exists g ∈ TS(H) represented

by w ∈ A+ as an element of S such that the shortest string w ′ ∈ A+ with

(vww ′)πA = h satisfies |w ′| > (|v|+ 1)n0 + |v|, or in other words ww ′ is a

representative of the identity element of the group TS(H).
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Since (vww ′)πA = vπA the finite automaton that decides ιS(A) will accept

the pair (vww ′, v), and by the choice of length ofw ′ there is a factorisation of

w ′ into strings x,u and y in A∗ with |u| > 0 such that the automaton also

accepts
(
vwxuiy, v

)
for all i ∈ N. In particular, (vwxy, v) is accepted and

(vwxy)πA = vπA contradicting the choice of w ′ to be of minimal length.

Therefore anyH classH has to be finite, since TS(H) has to be a finite group

and by Theorem .. |H| = |TS(H)|.

Since maximal subsemigroups of semigroups that are groups are exactly the

H-classes that contain an idempotent, we have the following corollary.

Corollary ..

Let S be a semigroup with rational word problem. Every subsemigroup G of S that is

a group is finite.

Proof. The maximal subgroups of S are exactly the H-classes of S that contain

an idempotent. For a proof of this we refer to [How, Theorem ..]. The

result follows from ...

For completeness we present the following theorem. In the case where S is a

group and has rational word problem, S has to be finite. The class of groups

with rational word problem is no greater than the class of groups with recog-

nisable word problem in the sense of Definition .. This is a direct conse-

quence of Corollary ...

Theorem ..

Let G be a finitely generated semigroup that is a group. Then G has rational word

problem if and only if G is finite.

Proof. Since if G is finite, G has recognisable word problem by Theorem ..

and therefore rational word problem.

Conversely, by Corollary .., all finitely generated subgroups of G have

to be finite. This includes G itself.
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We have shown in Theorem .. that H-classes of semigroups with rational

word problem are finite. We are conjecturing that there is a bound n0 ∈ N

such that for any H-class H the size |H| ≤ n0. We also conjecture that there is

a bound n0 ∈ N such that if a L, R, or J -class C is finite, then |C| < n0. Note

that such a bound for L and R implies the bound for H.

Open Question ..

Let S be a semigroup with rational word problem. Does there exist an n0 ∈ N such

that any R−class, L−class or H− which is finite contains at most n0 elements?

A further finiteness condition on semigroups isJ = D. Unsurprisingly, semi-

groups with rational word problem fulfil this property. We use weak stability

as introduced in Section .. This employs a similar idea to the proof of the

same theorem for rational semigroups as can be found in [Sak].

Theorem ..

Let S be a semigroup with rational word problem. Then S is weakly stable.

Proof. Let S be a semigroup with rational word problem, and let T = Se. Let

T be generated by A and let A be an automaton that decides ιT (A).

Let a and b be elements of T with aT ⊂ baT . It follows that

TaT ⊂ TbaT ⊂ TaT

and therefore aJ = baJ . The goal is to show that aT = baT , hence T is right

stable.

Choose representatives v andw fromA∗ with vπA = a andwπA = ba. By

assumption there exist strings x,y and z inA∗ with (wy)πA = a and (xvz)πA = ba.

We can replace v by wy and w by xvz and iterate that process,

ba = (xvz)πA = (xwyz)πA = (xxvzyz)πA = (xxwyzyz)πA = . . .

and it follows that (xnw (yz)n)πA = ba. The automaton A therefore accepts

the pair (w, xnw (yz)n) for every n ∈ N>0.
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Let n0 be the number of states of A. If n > |w| (2n0 + 1), the automaton

A must read (ε, u) where u is a substring of (yz)n of length at least 2n0 + 1.

Therefore for somem ∈ N it reads (ε, (yz)m) in a loop, and hence also accepts(
w, xnw (yz)n+m

)
. We get

ba = wπA = (xnw (yz)n+m)πA = (xnw (yz)nyz (yz)m−1)πA

= (xnw (yz)n y)πA (z (yz)m−1)πA = (wy)πA (z (yz)m−1)πA

= ap

for some p ∈ T . Therefore implies ba ∈ aT , hence aT = baT . We have shown

that T is right stable. An analogous argument shows that T is also left stable

and therefore stable.

It follows that if S is weakly stable.

The fact that for semigroups with rational word problem J = D is now a

corollary of Theorem ...

Theorem ..

Let S be a semigroup with rational word problem. Then J = D.

Proof. By Theorem .. a semigroup with rational word problem is weakly

stable. Applying Theorem .. now proves the claim.

We close this section with two open questions about D-classes. Note that

an infinite semigroup with rational word problem has infinitely many R-

classes and infinitely many L-classes.

Open Question ..

Does there exist a semigroup with rational word problem that has a D-class that con-

tains infinitely many R-classes and infinitely many L-classes?

The following question was suggested by Abdullahi Umar. It is known

[How, Proposition 2.1.5] that if a semigroup S satisfies minL and minR, then

J = D. The conditions minL and minR are conditions on the partial order on
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L-classes and R-classes. A semigroup satisfies minL if every non-empty set

of L classes has a minimal element.

Open Question ..

Let S be a semigroup with rational word problem. Does S have minL and minR?

. Decidability

We consider the notion of decidability of properties of semigroups with ra-

tional word problem. Note that we assume to have the semigroup specified

as a finite automaton that decides the word problem.

Firstly all the Green’s relations are decidable.

Theorem ..

Let S be a semigroup given by a finite automaton A that decides ιS(A) for some gener-

ating setA. Then the word problems ιS(A), RS(A), LS(A), HS(A), JS(A) and DS(A)

are decidable.

Proof. Let S be given as the automaton A that accepts a pair (v,w) ∈ A+×A+

if and only if (v,w) ∈ ιS(A). By the definition of decidability introduced in

. and the definition of the word problem this means that the word problem

of S is decidable.

By Lemma .. the Green relations R and L are at most 2-rational and H

is at most 4-rational. The construction of automata for R, L and H from A is

effective: Constructing an automaton for the rational relations

ρ : A+ −−−−→ A+, v 7→ vA∗,

and

λ : A+ −−−−→ A+, v 7→ A∗v

and

β : A+ −−−−→ A+, v 7→ A∗vA∗
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and the compositions of ριS(A), λιS(A) and βιS(A) is effective. Now deciding

whether (v,w) ∈ A+×A+ is in RS(A) is done by deciding whether (v,w) and

(w, v) are accepted by the automaton for ριS(A). Deciding whether (v,w) ∈

A+×A+ is inLS(A) is done by deciding whether (v,w) and (w, v) are accepted

by the automaton for λιS(A).

Since H is the intersection of R and L, deciding whether (v,w) ∈ HS(A) is

a matter of checking whether (v,w) and (w, v) are accepted by the automata

for ριS(A) and λιS(A).

The following theorem shows how strong the property of having rational

word problem is. It is undecidable in general whether a finitely presented

semigroup is trivial, finite or infinite. For semigroups with rational word

problem we get the following theorem.

Theorem ..

Let S be a semigroup with rational word problem. Then given a finite automaton that

decides ιS(A) for some generating set A of S, it is decidable whether

. S is trivial,

. S is finite, or

. S is infinite.

Proof. Assume S has rational word problem, is finitely generated by A and A

is an automaton that decides ιS(A).

The semigroup S is trivial if and only if

• for all a ∈ A it holds that [aa]π = [a]π, and

• for all a, b ∈ A it holds that [a]π = [b]π.

This is decidable using the finite automaton given as input.

Determining the recognisable language D ⊂ A+ in the proof of Proposi-

tion .. is constructive. SinceD only contains finitely many representatives
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for each element of S, it follows that S is finite if and only ifD is finite. There-

fore it is decidable whether S is finite or infinite.

It follows that we can also decide whether a semigroup with rational word

problem has recognisable word problem. Note here that it is in general un-

decidable whether a rational relation is recognisable.
Corollary ..

Let S be a semigroup with rational word problem. Then given a finite automaton that

decides ιS(A) for some finite generating set A of S it is decidable whether ιS(A) is

recognisable.

Proof. The word problem ιS(A) is recognisable if and only if S is finite, as

shown in Theorem ... This is decidable by Theorem ...

And from the preceding corollary we deduce that we can decide whether a

semigroup with rational word problem is a group.
Corollary ..

Let S be a semigroup with rational word problem. Then given a finite automaton that

decides ιS(A) for some generating set A of S it is decidable whether S is a group.

Proof. It follows from Theorem .. that it is decidable whether S is finite and

by Theorem .. any semigroup with rational word problem that is a group

has to be finite. A decision procedure first decides whether S is finite, if it is

not, it gives a negative answer, if S is finite the decision procedure determines

whether S is a group by checking whether there is an identity element and

whether every element has a uniquely determined inverse by brute force.

We show, by employing a well-known method, for which a proof can for ex-

ample be found in [BO], that it is undecidable whether a semigroup given

by a suitable finite specification has rational word problem.
Theorem ..

Let S = sg⟨A | R⟩ be a finitely presented semigroup. It is undecidable whether S has

rational word problem.
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Proof. Suppose for a contradiction that there exists a Turing machine M that

decides, given a finite monoid presentation forM = mon⟨A | R⟩ as its input,

whetherM has rational word problem.

Let S = mon⟨A1 | R1⟩ be a finitely presented monoid with rational word

problem and let T = mon⟨A2 | R2⟩ be finitely presented monoid with unde-

cidable word problem. Let A = A1 ∪ A2 and R = R1 ∪ R2. For any u and v

from A∗
2 define

Tu,v = mon⟨A, c, d | R, (cud, ε) , (acvd, cvd) for all a ∈ A ∪ {c, d}⟩ (.)

It holds that if uπA2
= vπA2

then Tu,v is trivial, otherwise Tu,v has undecid-

able word problem. Now the monoid free product S ∗ Tu,v has rational word

problem if and only if uπA2
= vπA2

.

The Turing machine M now decides given as input S ∗ Tu,v whether it has

rational word problem, or equivalently whetheruπA2
= vπA2

, hence the word

problem of T , which is undecidable by assumption. This is a contradiction.

From a list in [CM] we deduce a list of questions whose decidability should

be considered in the future. This list does not claim to be complete, or a list

of hard problems.

Open Question ..

Let S be a semigroup with rational word problem. Is it decidable, given a finite au-

tomaton A that decides ιS(A) for some generating set A of S, whether

. S is cancellative,

. S is left- or right-stable,

. S contains an idempotent,

. S is a one-relator semigroup,

. S has an identity,
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. S has a zero,

. S has a non-trivial subgroup,

. S is a direct product,

. S is a free product.

. given a semigroup T with rational word problem, S ∼= T .

Note that point  of Open Question .. is already answered for finite semi-

groups in Corollary .. because a finite semigroup is cancellative if and only

if it is a finite group. Also note that for automatic semigroups cancellativity

is undecidable, this was shown by Alan Cain in [Cai]. An answer to Open

Question .. would conceivably help answering this particular question.

Maybe more generally we want to ask the following question, to which

without a doubt there exists some answer.
Open Question ..

Let S be a semigroup with rational word problem. Find an undecidable problem.

Open Question ..

Let S and T be semigroups with rational word problem. Given automata that decide

ιS(A) and ιT (B), is there an algorithm that decides whether S and T are isomorphic?

In the book [Eps+a] the authors show that there exists an algorithm that,

given a finite group presentation as input, computes an automatic structure

for the group specified by the presentation if it exists. This algorithm heavily

relies on axiom checking on finite state automata. There are implementations

of the algorithm, but they are restricted to subclasses of the class of automatic

groups. Even if we give such an implementation a presentation of a group, it

might run out of memory or take far too long to be useful.

It might not be possible to find such an algorithm for rational word prob-

lem semigroups, since the problems involved are undecidable in general for

rational congruences.



.. Complexity 

Preliminary work by Mark Kambites in [Kama; Kamb] and indepen-

dently by the author hints at the possibility that an algorithm that given a

semigroup presentation as input computes a finite state automaton that de-

cides ιS(A) if it exists. We state the following open problem or project task.

It is a consequence of Theorem .. that we cannot hope for an algorithm

that terminates on all inputs and computes a correct automaton if and only

if the presentation given as input specifies a semigroup with rational word

problem.

Open Question ..

Does there exist an algorithm that, given a semigroup presentation S = sg⟨A | R⟩

as input, computes a finite automaton that decides ιS(A)?

. Complexity

We have shown that rational word problem semigroups have decidable word

problem given an effective specification of the rational relation. We have also

shown that finiteness and triviality are decidable in that case. This immedi-

ately yields that the decision problem whether a semigroup has rational word

problem must be undecidable. We will also briefly discuss the time and space

complexity of the word problem and related problems, in particular we will

show that the word problem is decidable in time quadratic in the sum of the

length of the input strings.

Theorem ..

Let S be a semigroup specified by a finite automaton deciding ιS(A) for some gener-

ating set A of S. Given (v,w) it can be decided in time O
(
(|v|+ |w|)2

)
and space

O((|v|+ |w|)) whether (v,w) ∈ ιS(A).

Proof. This follows directly from Theorem ...

The complexities of the Green relations all depend on the constructions of the

automaton for the word problem.
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. Further Questions

The following conjecture states that for semigroups that are cancellative we

can find a deterministic automaton that decides the word problem. For finite

semigroups this is true, since for finite semigroups we have recognisable word

problem.

Open Question ..

Is a semigroup with rational word problem is cancellative if and only if ιS(A) is a

deterministic rational relation?

Another relative of groups in semigroups are the inverse semigroups. The

following question was asked by Stuart Margolis.

Open Question ..

Does there exist an infinite inverse semigroup with rational word problem?




◦· • ◦

Polyrational Word Problem

In this chapter we generalise the notion of rational word problem to polyra-

tional word problem. We remind ourselves of the definition of polyrational

relations as given in Section .. Let S be a semigroup finitely generated by

A and let S ρ−−−−→ S be a relation. Then A+ ρ(A)−−−−→ A+ is k-rational if it is an

intersection of k rational relations, more formally

ρ(A) =
∩
i∈k
ρi(A) ,

and ρi(A) are rational relations for i ∈ k.

We call a relation that has k-rational word problem for some k ∈ N>0 a

k-rational relation, again by slight abuse of nomenclature. If we just want to

say that there exists some k ∈ N such that ρ(A) is k-rational we also say that

ρ(A) is polyrational.

A relation being polyrational is in line with the concept of an effectively

and easily soluble word problem: Deciding the word problem of an inter-

section involves deciding a finite number of rational relations which can be


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done effectively, because the word problem of a rational relation is effectively

decidable.

. Generators

We extend the results of Section . to polyrational relations.

Theorem ..

Let S be a semigroup and S ρ−−−−→ S be a relation on S such that

ρ =
∩
i∈k
ρi

for k relations S ρi−−−−→ S with ρi(A) rational for all i ∈ k for some finite generating

set A of S. Then

ρ(A) =
∩
i∈k
ρi(A)

and for any finite generating set B of S the relation ρ(B)

B+ πB−−−−→ S
ρ−−−−→ S

πrB−−−−→ B+

has the property that

ρ(B) =
∩
i∈k
ρi(B)

for the rational relations B+ ρi(B)−−−−→ B+.

Proof. Let v and w be in A+ then

w ∈ vρ(A) ⇔ wπA ∈ vπAρ

⇔ wπA ∈ vπAρi for all i ∈ k

⇔ w ∈ vρi(A) for all i ∈ k.

Let now B be another finite generating set for S. Then ρi(B) is rational by

Theorem .., and for v andw in B+ we havew ∈ vρ(B) if and only ifwπB ∈

vπBρ.
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For completeness we also give the following two lemmas. The proofs are the

same as the proofs of Lemma .. and .. and are therefore omitted. Note

that the proofs rely on Theorems .. and ...

Lemma ..

Let S be a semigroup finitely generated by A and let S ρ−−−−→ S be a k-rational rela-

tion. Then for any subset B ⊂ A the restriction T ρ−−−−→ T of ρ to the subsemigroup

generated by B is a k-rational relation.

Lemma ..

Let S be a semigroup finitely generated by A and let S ρ−−−−→ S be a k-rational rela-

tion. Then for any superset B ⊃ A the relation ρ(B) is k-rational.

We conclude from the preceding lemmas that finitely generated subsemi-

groups of semigroups with polyrational word problem have polyrational word

problem. Again the proof is identical to the proof of Theorem ...

Corollary ..

Let S be a semigroup finitely generated byA and let T be a finitely generated subsemi-

group of S. If S has k-rational word problem then T has k-rational word problem.

. The Polyrational Hierarchy

We prove a hierarchy theorem which establishes that for k ∈ N>0 the semi-

group CS(k) with respect to the generating set A = {a1, . . . , ak} has strictly

k-rational word problem.

This ensures the existence of an infinite hierarchy of semigroups with in-

creasing word problem complexity. The class of semigroups with rational

word problem is naturally contained in the class of semigroups with polyra-

tional word problem.

Theorem ..

Let k ∈ N. The semigroup CS(k) has k-rational word problem.
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Proof. Let A = {a1, . . . , ak} be a generating set for CS(k) and let Ai = A\ {ai}.

For 1 ≤ i ≤ k define the rational relation ρi(A) by the automaton Ai.

..q0..q3 . q1. q2.
(ε, ε)

.

(aj, ε) , aj ∈ Ai

.

(ε, aj) , aj ∈ Ai

.
(ai, ε)

.
(ε, ai)

.
(ai, ε)

.

(aj, ε) , aj ∈ Ai

.

(ε, aj) , aj ∈ Ai

.

(aj, ε) , aj ∈ Ai

.

(ε, aj) , aj ∈ Ai

.

(aj, ε) , aj ∈ Ai

.

(ε, aj) , aj ∈ Ai

A string w is in vρi if and only if |v|ai = |w|ai and therefore

ιCS(k)(A) =
∩
i∈k
ρi(A) ,

since v and w represent the same element of CS(k) if and only if |v|ai = |w|ai

for all i ∈ kwhich is the case if and only ifw ∈ vρi(A) for all i ∈ k. This shows

that CS(k) has k-rational word problem with respect to the generating set A

and therefore with respect to any finite generating set.

Note that all ρi(A) used in the proof of Theorem .. are rational congruences.

In fact A+
/ρi(A) and CS(k)/ρi are isomorphic to the free monogenic monoid,

and CS(k)e is isomorphic to the direct product of kmonogenic monoids.

In Theorem .. it is only shown that ιCS(k)(A) is at most k-rational, to

make the bound strict we prove the following theorem. The proof is another

application of the iteration lemma ... We have to take care that we can

pump all involved relations at the same time.

Theorem ..

The free commutative semigroup CS(k) for k > 1 does not have (k− 1)-rational word

problem.

Proof. Assume for a contradiction that ιCS(k)(A) is (k− 1)-rational and note

that we can without loss of generality assume k > 2 since the case k = 2 is

proven in Theorem ...
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By the definition of a k-rational relation it holds that

ιCS(k)(A) =
∩
i∈k−1

ρi,

where A+ ρi−−−−→ A+ are rational relations. The relation

τ : A+ −−−−→ A+, a+k a
+
k−1 · · ·a

+
1 7→ a+1 a

+
2 · · ·a+k

is recognisable by Theorem ... For any choice of j and j ′ from kwith j < j ′

the relation

σj,j ′ : A
+ −−−−→ A+, a+j a

+
j ′ 7→ a+j ′a

+
j

is recognisable, again by Theorem ...

Therefore, the relations τi = ρi ∩ τ and τi ∩ σj,j ′ are rational by Lemma

.., and the relation

θ = ιCS(k)(A) ∩ τ =
∩
l∈k−1

τi

is (k− 1)-rational.

There exists ann0 ∈ N such that for i,j and j ′ and allα,β, α ′ andβ ′ greater

than n0, if a pair (v,w) with

v = aα
′

j ′ a
α
j and

w = aβj a
β ′

j ′

is contained in the graph Gτi∩σj,j ′ , then the following cases can occur. Either

α = β and α ′ and β ′ are arbitrary elements of N greater than n0, or α ′ = β ′

and α and β are arbitrary elements of N greater than n0 or α,β, α ′ and β ′ are

arbitrary elements of N greater than n0.

It follows from the iteration lemma that α = β and α ′ = β ′ cannot occur.

Note that τi∩σj,j ′ has to contain all pairs with α = β and α ′ = β ′. If α = β

for all α > n0, it follows by applying the iteration lemma, that α ′ and β ′ can

be chosen arbitrarily, and the same holds for the case where α ′ = β ′ for all

α ′ > n0.
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If neither α = β nor α ′ = β ′ then α, β, α ′ and β ′ are arbitrary.

We can therefore find a letter aj and relation τi such that the graph of τi
consists of pairs (v ′, w ′) where

v ′ = aαk

k · · ·anj

j · · ·aα1

1 , w ′ = aβ1

1 · · ·anj

j · · ·aβk

k

and αl and βl arbitrary greater than n0.

We now proceed by induction. For assume that CS(k) had (k− 1)-rational

word problem. Then θ is (k− 1)-rational and we find τi and aj as above and

form the relation

θ ′ =
∩
l∈k−1
l̸=i

τi

which is (k− 2)-rational. Applying induction, it follows that there are j and

j ′ such that the graph of the rational relation ιCS(2)(A) ∩ σj,j ′ precisely consists

of pairs (v ′′, w ′′) where

v ′′ = aα
′

j ′ a
α
j ,

w ′′ = aβj a
β ′

j ′

such that α = β and α ′ = β ′ for α and α ′ arbitrary greater than n0. This con-

cludes the proof.

We have thus shown that there is at least one semigroup with strictly k-

rational word problem for every k ∈ N. We have established an infinite hi-

erarchy of semigroups with increasing complexity of the word problem. We

will detail this hierarchy in Chapter .

Furthermore, applying the above theorems gives the following.

Theorem ..

Let S be a semigroup and let ιS(A) be k-rational. Then the maximal rank of a free

commutative subsemigroup of S is k.
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Proof. Assume for a contradiction that S is a semigroup with k-rational word

problem and that T is a subsemigroup of Swhich is free commutative of rank

l with l > k. Applying Corollary .. yields that T has at most k-rational

word problem. This contradicts Theorem ...

. Counterexamples

We show that the class of semigroups with polyrational word problem does

not contain the bicyclic monoid or the integers.

Theorem ..

The bicyclic monoid B does not have polyrational word problem.

Proof. Assume for a contradiction that ιB(A) is k-rational for some k ∈ N>0

and the generating set A = {b, c} as given in Section ..

Let Ai for i ∈ k be automata with behaviour ρi(A) such that

ιB(A) =
∩
i∈k
ρi(A) .

Applying the iteration lemma .. to each Ai yields an n0 ∈ N>0 with the

property that each Ai accepts the pair (bn0cn0 , ε) and the pair
(
bn0+nilcn0 , ε

)
for ni ∈ N>0 and all l ∈ N. This implies that (bn0+ncn0 , ε) is accepted by Ai

for all i ∈ k, where

n = lcm {ni | i ∈ k} .

Hence ιB(A) is not k-rational. Since k was chosen arbitrarily this shows that

ιB(A) is not k-rational for any k ∈ N.

In very much the same way we show that the integers do not have polyrational

word problem.

Lemma ..

The integers do not have polyrational word problem.
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Proof. Assume for a contradiction that the monoid word problem ιZ(A) is k-

rational for some k ∈ N>0 and the monoid generating set A = {a, b} given in

Section ..

Let Ai for i ∈ k be automata with behaviour ρi(A) such that

ιZ(A) =
∩
i∈k
ρi(A) .

Applying the iteration lemma .. to each Ai yields some n0 ∈ N>0 with the

property that each Ai accepts the pair (an0bn0 , ε) and the pair
(
an0+nilbn0 , ε

)
for ni ∈ N>0 and all l ∈ N.

This implies that (an0+nbn0 , ε) is accepted by all Ai, where

n = lcm {ni | i ∈ k} .

Hence ιZ(A) is not k-rational. Since k was chosen arbitraily this shows that

ιZ(A) is not k-rational for any k ∈ N.

Answering the following question in the positive would also, just as in Chap-

ter , establish that the class of semigroups with polyrational word problem

does not contain any infinite group.

Open Question ..

Let S be a semigroup with polyrational word problem. If H is an H-class of S, is H

necessarily finite?

. Direct Products

In the proof of Theorem .. we defined congruences ρi such that A+
/ρi was

isomorphic to a monogenic monoid and such that

CS(k)e ∼= A+
/ρ1 × · · · × A+

/ρk .

We first extend our results about direct products by showing that the class of

semigroups with polyrational word problem is closed under taking finite di-

rect products. The class of semigroups with polyrational word problem thus
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contains the closure of the class of semigroups with rational word problem

under taking finite direct products.

We prove first that if a direct product of two semigroups has polyrational

word problem, then the factors have polyrational word problem. Also com-

pare the proof to that of Theorem ...

Theorem ..

Let S and T be semigroups. If S × T is finitely generated and has polyrational word

problem, then S and T have polyrational word problem.

Proof. Let S× T πS−−−−→S be the projection onto S and let A be a finite gen-

erating set for S × T . Denote by σ the kernel of the map πAπS restricted to

A. The equivalence relation A σ−−−−→ A extends to an equivalence relation

A+ σ−−−−→ A+. Consider the composition

A+ σ−−−−→ A+ ιS×T(A)−−−−→ A+ σr−−−−→ A+,

which we denote by τ. We claim that τ = ιS(A).

Let v and w be elements of A+. If w ∈ vτ then wπAπS = vπAπS, hence

w ∈ vιS(A).

Conversely, ifw ∈ vιS(A), thenwπAπS = vπAπS, which implies that there

exist strings w ′ and v ′ in A+ such that w ′ ∈ wσ and v ∈ v ′σ and w ′ ∈

v ′ιS×T (A) and hence w ∈ vτ. This concludes the proof.

We show that the class of semigroups with polyrational word problem is

closed under taking direct products. More precisely we show that if the di-

rect product of a semigroup with k-rational word problem and a semigroup

with l-rational word problem is finitely generated, then it has (k+ l)-rational

word problem.

Theorem ..

Let S and T be semigroups. If S has k-rational word problem, T has l-rational word

problem and S×T is finitely generated, then S×T has (k+ l)-rational word problem.
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Proof. Let S be a semigroup with k-rational word problem and T be a semi-

group with l-rational word problem and let S1 × S2 be finitely generated by

A.

Then A also generates S and T via πAπS and πAπT where S× T πS−−−−→S

and S× T πT−−−−→T are the projections onto the factors.

Since the relation ιS(A) is k-rational and the relation ιT (A) is l-rational by

assumption, the relation

ρ = ιS(A) ∩ ιT (A) ,

is (k+ l)-rational.

It holds thatw ∈ vρ if and only ifw ∈ vιS(A) andw ∈ vιT (A), which is the

case if and only if wπAπS = vπAπS and wπAπT = vπAπT , which is the case if

and only if w ∈ vιS×T (A).

It follows that ρ = ιS×T (A) and therefore ιS×T (A) is (k+ l)-rational and

the proof is complete.

The previous two theorems can also be stated as the following characterisa-

tion of direct products of semigroups with polyrational word problem.

Theorem ..

Let S and T be semigroups such that S × T is finitely generated. The direct product

S × T has polyrational word problem if and only if S and T have polyrational word

problem.

Proof. This follows by applying Theorem .. and ...

We give a partial converse to the above theorem. We cannot conclude that a k-

rational congruence decomposes into k rational congruences: If we consider

the congruence D, we have only shown that it is polyrational and from all we

know the relations making up the intersection are not congruences.
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Theorem ..

Let S be a semigroup finitely generated by A with polyrational word problem such

that

ιS(A) = ρ1(A) ∩ ρ2(A)

where ρ1(A) and ρ2(A) are polyrational congruences and such that the smallest con-

gruence on A+ that contains ρ1(A) and ρ2(A) is the universal congruence. Then

S ∼= A+
/ρ1(A) × A+

/ρ2(A) ,

and therefore S is isomorphic to a direct product of two semigroups with polyrational

word problem. Furthermore, if ιS(A) is k-rational, then ρ1 is k1-rational and ρ2 is

k2-rational, then k = k1 + k2.

Proof. This follows from Theorem ...

Note that the above theorem does not imply that every semigroup with k-rat-

ional word problem is a direct product of at most k semigroups with rational

word problem. It is not clear that that we can decompose any k-rational con-

gruence into rational congruences, much to the opposite we conjecture that

this is not possible in general.

Also, we have shown that CS(k) has k-rational word problem, but CS(k) is

only a subsemigroup of finite Rees index of a direct product of k monogenic

monoids and not itself a direct product.

However, we can conclude that if a semigroup with k-rational word prob-

lem is a direct product, there are at most k infinite factors involved.

Open Question ..

Does there exist a semigroup with polyrational word problem that is not a subsemi-

group of a direct product of semigroups with rational word problem?
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. Rational Subsets and Kleene’s Theorem

If a semigroup S has k-rational word problem for k > 1, then S is in general

not a Kleene semigroup. The free commutative monoid of rank 2 has 2-rat-

ional word problem and Kleene’s theorem does not hold, for if a1 and a2 are

two generators for the free commutative semigroup of rank two, then the set

(a1a2)
+ is rational but not recognisable.

Lemma ..

Let A = {a1, a2}, S = CS(A), and X be the rational subset of S given by the rational

expression (a1a2)
+. Then X is not in RecS.

Proof. Assume for a contradiction that X ∈ RecS. There is a semigroup mor-

phism CS(A) φ−−−−→T with T finite and a subset F ⊂ T such that X = Fφ−1.

Now consider the semigroup morphismA+ πA−−−−→CS(A) and the concate-

nation πAφ. This concatenation recognises the subset

F (πAφ)
−1 =

{
v ∈ A+ | |v|a1 = |v|a2

}
.

Now applying the iteration lemma .. yields that this is a contradiction.

For a semigroup S finitely generated by Awe proved that if S has rational

word problem, then the preimage of a rational subset X of S under πA is a ra-

tional subset of A+ in Section .. We have shown that the congruence ιS(A)

is compatible with the rational constructions from Definition ... By exten-

sion, if ιS(A) is polyrational, then the congruence classes are intersections of

congruence classes of the rational relations involved.

We show that semigroups with polyrational word problem are residually

finite. This follows from our results in Section ..

Theorem ..

Let S be a finitely generated semigroup with polyrational word problem. Then S is

residually finite.
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Proof. Let S be generated by a finite set A and let

ιS(A) =
∩
i∈k
ρi.

Then for v ∈ A∗ the set vρi is a recognisable subset of A∗ and vιS(A) is an in-

tersection of k recognisable subsets ofA∗, and therefore a recognisable subset

of A∗. Since vιS(A) = vπAπ
−1
A , by applying Theorem .. it follows that S is

residually finite.

We can now give an alternative proof for Lemma .., the bicyclic monoid

does not have polyrational word problem, because it is not residually finite.

Corollary ..

The bicyclic monoid B does not have polyrational word problem.

Proof. If for some generating setA for the bicyclic monoid B the word problem

ιB(A) was rational, then B would be residually finite by Theorem .., which

contradicts Lemma ...

. Green’s Relations

In this section we show that Lemma .. naturally extends to semigroups

with polyrational word problem. Compare the proof also with the proof of

Lemma ...

We also emphasise that the Green’s relations of a semigroup with polyra-

tional word problem are decidable.

Lemma ..

Let S be a semigroup with polyrational word problem. Then the relations L, R, D, J

and H are polyrational.

Proof. The relations A+ ρ−−−−→ A+, A+ λ−−−−→ A+ and A+ σ−−−−→ A+ as de-

fined in the proof of Lemma .. and rational.
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Applying Theorems .. and .. yields that the relations ριS(A), λιS(A)

and σιS(A) are polyrational and the result now follows by the same argument

as applied in the proof of Lemma ..

It should be established whether we can effectively bound the number of

rational relations required to express Green’s relations in a semigroup with

polyrational word problem.

Open Question ..

Let S be a semigroup such that for a finite generating setA the word problem ιS(A) is

k-rational. Give minimal nρ ∈ N for each Green relation ρ among R, L, H, J and

D such that ρ is nρ-rational.




◦· • ◦·

The (Co)Word Problem

Hierarchy

This chapter will give connections from the previous chapters to related re-

search in word problems and connections between semigroup theory and

computation. We give an infinite complexity hierarchy of semigroups based

on the computational complexity of their word and coword problem in the

natural representation as congruences on strings. We call the collections of

semigroups with a certain property classes of semigroups, since such collections

are not sets in the sense of ZFC.

This hierarchy is inspired by hierarchies in complexity theory, for exam-

ple the polynomial hierarchy. The polynomial hierarchy was introduced in

[MS], and has gained some attention in the analysis of the P vs. NP prob-

lem. Eilenberg in [Eila] envisioned a hierarchy of Rational phenomena and

announced in Volume A that these would be treated in Volume C of his four

volume monograph on automata and machines. Eilenberg never finished Vol-


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ume C. There are some notes available for download from Jean Berstel that

Eilenberg took in preparation for Volume C [Eil].

We will point out on which levels we already have information about the

hierarchy and on which levels future research is needed.

Figure . shows the relevant levels of the (Co)Word Problem Hierarchy.

We define the top level of the presented hierarchy here. We note that the hier-

archy can be extended further by using the idea of an oracle for example, but

our main interest here are semigroups with decidable word problem, more

specifically, semigroups with efficiently decidable word problem.

The class of semigroups with decidable word problem is defined as

Dec = [ S | S has decidable word problem ],

and the class of semigroups with decidable coword problem is defined as

CoDec = [ S | S has decidable coword problem ].

We note that the two classes coincide.

In the following sections we will show how some other classes of semi-

groups with naturally defined notions of word problem complexity fit into

the hierarchy. A major question is whether it is possible to meaningfully ex-

tend the proposed hierarchy, while preserving as many nice properties as

possible. A nice property is for example decidability of properties of a semi-

group in a given class.

A possible step is to give automata more expressivity, for example by

adding a single stack, yielding one stack pushdown automata. Note that

adding two stacks would result in the full power of a Turing Machine, ef-

fectively resulting in undecidable problems. It is also possible to give the au-

tomata algebraic memory, for example the group of integers instead of a stack.

A slightly different approach would be to employ Petri-net [Pet; Pet]

counting memories. A very powerful approach from the field of complex-

ity theory are oracles that answer well defined decision problems instantly.
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This would enable defining semigroups with word problems that are decid-

able relative to some, possibly undecidable, decision problem.

There seems to be an abundance of possibilities which is only waiting to

be explored.

. Recognisable (Co)Word Problem

In this section we begin with the class of semigroups with recognisable word prob-

lem,

Rec = [ S | S is finitely generated and has recognisable word problem ],

and the class of semigroups with recognisable coword problem,

CoRec = [ S | S is finitely generated and has recognisable coword problem ].

By Theorem .., the classes Rec and CoRec coincide, and characterise

the class of finite semigroups. This is particularly interesting, but not neces-

sarily surprising, since a class from group theory directly extends to semi-

group theory in this case.

It is also clear that the above classes are not empty since we gave at least

one example of a finite semigroup in Section ..

We have shown that word problems of semigroups in this class are ef-

ficiently decidable in time O(|v|+ |w|) by using deterministic finite state au-

tomata. We have also shown in Corollary .. that membership in this class

is decidable inside the class Rat of semigroups with rational word problem.

This means that given a semigroup S in Rat specified by a finite state automa-

ton, it is decidable whether S is in Rec.

Note that in contrast it is undecidable, as shown in [Ber], whether a

given rational relation is recognisable.

Open Question .. asks for a characterisation of semigroups recognising

word problems of semigroups.
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Figure .: The (Co)Word Problem Hierarchy
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There is a large body of research dealing with varieties of finite semi-

groups, described for example in [Eilb]. Varieties are a tool to describe

classes of finite semigroups and might give means to attack Open Question

.., and give finer subdivisions of the class Rec.

. Rational, Polyrational and Extended Ra-

tional (Co)Word Problem

Next, we define classes of semigroups with rational, polyrational and ex-

tended rational word problem and coword problem. We developed a few

results about semigroups in these classes in Chapters , , and .

First, we go ahead with the definitions; The class of semigroups with rational

word problem is defined as

Rat = [ S | S is finitely generated and has rational word problem ],

and the class of semigroups with rational coword problem is defined as

CoRat = [ S | S is finitely generated and has rational coword problem ].

For k ∈ N>0, the class of semigroups with k-rational word problem is defined as

Ratk = [ S | S is finitely generated and has k-rational word problem ],

and the class of semigroups with k-rational coword problem is defined as

CoRatk = [ S | S is finitely generated and has k-rational word problem ].

As an upper bound for the classes defined above, we define the class of semi-

groups with polyrational word problem,

PRat = [ S | there is k ∈ N with S in Ratk ],

and the class of semigroups with polyrational coword problem

CoPRat = [ S | there is k ∈ N with S in CoRatk ] .
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Finally, according to the definitions in Section ., we define the class of semi-

groups with extended rational word problem.

ERat = [ S | S is finitely generated and has extended rational word problem ].

We have thus defined infinitely many classes of semigroups. Just from the

definition, it is not clear whether these classes are empty, what the relation-

ships between these classes are, and whether any of them are distinct.

We deduce the following relationships and properties of the classes de-

fined above results in Chapters  and .

The classes Rat and CoRat are not empty, since they both contain the free

semigroup on one generator. This also implies that the class Rat ∩ CoRat

is not empty. We can also deduce that the inclusion Rec ⊂ Rat ∩ CoRat is

proper by using Theorem ...

A related question is whether there is a semigroup with rational word

problem that does not have rational coword problem. This is also related to

the question whether we can always find a deterministic automaton that de-

cides the word problem. Note that this is a question about the relationship of

Rat and CoRat: In Section . we will draw a connection between rational

word problem and a different way of defining the class of semigroups with

rational word problem, so called linear context-free grammars. It is known

for groups that if a group has context-free word problem, then it also has

context-free coword problem.

Open Question ..

Does there exist a semigroup S that has rational word problem but does not have

rational coword problem?

We have shown in Theorem .. that for k ∈ N>0 the class Ratk contains

the free commutative semigroup on k generators, and is therefore not empty.

We have also shown in Theorem .. that, for every k ∈ N>0, the inclusion
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Ratk ⊂ Ratk+1 is strict. This means that we have defined an infinite hierarchy

of classes of semigroups.

The situation for the class CoRatk is not understood yet. Theorem ..

implies that the intersections Ratk ∩ CoRat1 are not empty, but we do not have

an example of a semigroup S that has k-rational coword problem for some

k ∈ N>0, but does not have l-rational coword problem for l < k.

Open Question ..

For any given k ∈ N>0, is there a semigroup that has k-rational coword problem but

does not have l-rational coword problem for any l < k?

We have shown in Theorem .. that the class PRat contains the closure

of the class Rat under taking finite direct products. We have also shown in

Theorems .. and .. which semigroups with polyrational word problems

are isomorphic to direct products.

It will have to be established whether PRat contains semigroups that are

not direct products of semigroups with k-rational word problems themselves.

Open Question ..

Does there exist a semigroup with k-rational word problem that is not a direct product

of k semigroups with rational word problem?

Should the answer to Open Question .. be negative then semigroups

with rational word problem are the only building blocks of semigroups with

polyrational word problem. Should the answer be positive, semigroups with

rational word problem and their direct products are still an important mem-

ber of this class and therefore very interesting in this theory.

We know from Theorems .. and .. that PRat contains direct prod-

ucts of semigroups with rational word problem, and that finitely generated

subsemigroups of direct products of semigroups are contained in PRat. We

do not know whether these are all semigroups in PRat, and we know almost

nothing about CoPRat.
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Open Question ..

Is CoPRat closed under direct product, finitely generated subsemigroups, or free

product?

Open Question ..

Does CoPRat contain PRat?

Definition .. allows for a complement operator. This means that a semi-

group is in ERat if and only if it is in CoERat. This is the case with Rec too,

and hence the class ERat is a natural step up from the class Rec.

Furthermore, to address a full hierarchy of rational phenomena, the full

power of extended rational relations has to be considered and examined for

expressive power, in particular with respect to word problems and coword

problems of semigroups.

Open Question ..

What are the properties of the semigroups contained in ERat?

A very interesting question in this context could be the following.

Open Question ..

Is there a finitely generated group G that is a member of ERat.

For all of the classes introduced above, the word problem and the coword

problem are efficiently decidable, that is, it is decidable in time polynomial in

the sum of the lengths of the two input strings. We have also shown that some

interesting properties of semigroups in Rat are efficiently decidable.

. Rational Monoids

Sakarovitch introduced rational monoids as monoids where the normal forms

for elements can be computed by a finite state transducer in [Sak] and ex-

tended his theory together with Pelletier in [PS].
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An important open question is, whether the class of rational semigroups

coincides with the class of semigroups with rational word problem. This

problem is connected to the rational cross section problem, as stated in Open

Question ...

We define the notion of a rational semigroup as given by Sakarovitch.

Definition ..

A semigroup S is rational if there exists a finite generating set A for S and a rational

map A+ ρ−−−−→A+ with vρπA = vπA for all v ∈ A+.

We call ρ the normal form map, because it computes for any input string v ∈ A+

a unique normal form of the element vπA of S.

This enables us to define the class of rational semigroups as

RatSG = [ S | S is rational ].

We show that RatSG is contained in Rat.
Theorem ..

Let S be a finitely generated semigroup. If S is rational, then S has rational word

problem.

Proof. LetA be a finite generating set for S, and letA+ ρ−−−−→A+ be the normal

form map. The word problem ιS(A) of S with respect to the generating set A

is the composition

A+ ρ−−−−→ A+ ρr−−−−→ A+,

which is rational by Theorem ...

By their very definition, rational monoids have a rational set of unique nor-

mal forms. Open Question .. asks whether semigroups with rational word

problem have a rational set of unique representatives. All of the properties

shown to hold for semigroups with rational word problem in Section  also

hold for rational semigroups, therefore we have not answered the following

open question in previous chapters.
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Open Question ..

Let S be in Rat, is S in RatSG? In other words, is RatSG = Rat?

In Sakarovitch and Pelletier in [PS] construct a semigroup that fulfills

Kleene’s Theorem, but does not belong to RatSG. This semigroup is a poten-

tial example of a semigroup with rational word problem that is not rational.

They also show that being rational is closed under a slightly more general

notion of index than shown in Theorem .. which would be worthwhile to

examine in the case of rational word problem semigroups. There is not a lot

of further research on this topic to be found to the knowledge of the author.

. Linear Word Problem

The definition of linear word problem requires a different encoding of the word

problem, namely the one-tape encoding of the word problem as defined in

Section .. The encoding as a one-tape language is preferred by some re-

searchers, and was proposed by Duncan and Gilman in [DG], trying to

extend hyperbolicity from groups to semigroups. We argue that it is not rel-

evant for our purposes whether we take a one-tape or a two-tape encoding.

The definition of semigroups with linear word problem seems to be due to

Richard Thomas. The author is only aware of unpublished results exchanged

in private communication. In particular Thomas claims to have method to

prove the equality of RatSG and Rat via showing the equality of Lin and

RatSG. Note that proving that that semigroups with linear word problem

are rational is one way of answering Open Question ..

We show that the classes of semigroups with linear one-tape word prob-

lem and semigroups with rational word problem coincide.

The following definition serves the purpose of terseness in this section.

Linear languages are commonly defined as languages which are generated

by a linear grammar, a concept we have not defined. It can be shown that the
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definition given below is equivalent. A proof for this can be found in [Ber,

Chapter V].
Definition ..

Let S be a semigroup. Then S has linear word problem if there is a rational relation

A+ ρ−−−−→ A+ such that

1ιS(A) =
{
v#wr ∈ (A ∪ #)+ | w ∈ vρ

}
.

We define the class of semigroups with linear word problem by

Lin = [ S | S has linear word problem ].

We show that Lin = Rat.
Theorem ..

A semigroup S has rational word problem if and only if S has linear word problem.

Proof. This follows from the definition and [Ber, Theorem V..].

A different way of defining linear word problem is using linear context free

grammars. We refer the reader to [Ber] for a definition of context-free and

linear context-free grammars.

For groups it is known from results in [MS; MS] that, if the word

problem of a group is context-free, then it is deterministically context-free,

and therefore the coword problem is deterministically context-free. Further-

more, it is known that there exist groups with context-free coword problem,

but non context-free word problem. Among those groups are not only fairly

straightforward groups such as the free commutative groups of rank greater

than one, but also the Higman-Thompson group as was shown in [LS].

Note that linear grammars cannot define the word problem of a group by

Theorem .. and Corollary ... Restricting to linear grammars, does it

hold that if a semigroup has linear word problem, then it has deterministically

linear word problem and therefore it holds that if a semigroup has linear word

problem, it also has linear coword problem. This is again Open Question

...
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. One-Counter Semigroups

Continuing with the word problems of semigroups encoded as a one tape

language, we look at one-counter word problems.

Holt, Owens and Thomas consider semigroups with one-counter word

problem in [HOT]. The definition is as follows

Definition ..

Let S be a semigroup. Then S has one-counter word problem if there is a one-

counter machine that decides 1ιS(A).

We define the class of semigroups with one-counter word problem as

OneCounter = [ S | Shas one counter word problem].

In terms of context-free grammars mentioned in the previous section, a one-

counter language is generated by a context-free grammar that only has one

non-terminal symbol. We also remind ourselves that one-counter machines

were defined as a finite state device with a memory that is a counter. A

counter can store a natural number and the machine can only increment and

decrement the counter and test for it being zero. It is also clear from our def-

inition that one-counter word problems are efficiently decidable.

It is shown in [HOT] that semigroups with one-counter word problem

have at most a linear growth rate. The growth functionN g−−−−→N of a semigroup

S finitely generated by a set A is defined as

g : N −−−−→ N, n 7→
∣∣∣∣∣∣
∪
i∈n

(
Ai
)
πA

∣∣∣∣∣∣,
that is gmaps a natural number n to the number of elements of S represented

by strings of length up to n.

Having linear growth rate means that N g−−−−→N is in the same Landau

equivalence class as the linear function

l : N −−−−→ N, n 7→ n.
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The authors of [HOT] prove the following main theorems, which show that

semigroups with one-counter word problem have a very restricted structure.

First they show that semigroups with one-counter word problem have linear

growth.

Theorem ..

Let S be a semigroup with one-counter word problem. Then S has linear growth.

In a second theorem they show that elements in a semigroup with one-counter

word problem factor in a very special way.

Theorem ..

Let S be a semigroup with linear growth. Then there exists for some k ∈ N a collection

ai, bi, ci of elements from Se for i ∈ k such that every s ∈ S can be written as aibni ci
for some i ∈ k and n ∈ N.

To shed some light on the relationship between semigroups contained in

the class OneCounter and the previously defined classes, we give give an

example of a semigroup with one-counter word problem that does not have

rational word problem, or even polyrational word problem, and a family of

semigroups with rational word problem that does not contain any semigroup

with one-counter word problem.

It holds that Rec ⊂ OneCounter and Rec ⊂ Rat, therefore the intersection

between OneCounter and Rat is not empty. In addition, the free semigroup

on one generator has rational word problem and one-counter word problem,

so the intersection OneCounter ∩ Rat is nonempty and larger than Rec.

The group of integers has one-counter word problem by results from [HOT],

but by Corollary .. it does not have rational word problem. We even showed

in Lemma .. that the integers are not contained in PRat.

Any free semigroup with more than one generator has rational word prob-

lem as shown in Lemma .., but exponential growth rate, therefore does

have one-counter word problem by Theorem ... It follows that neither of
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the inclusions OneCounter ⊂ Rat, Rat ⊂ OneCounter or PRat ⊂ OneCounter

hold.

It is not clear what other interesting properties semigroups in the class

OneCounter have.

It is shown in [HOT] that groups with one-counter word problem are

virtually cyclic. The authors also consider intersections of one-counter lan-

guages, but only in connection with groups, and they show the following.

Let G be a group finitely generated by A, then the following are equivalent.

• The word problem WG(A) is an intersection of k one-counter languages.

• The word problem WG(A) is an intersection of kdeterministic one-counter

languages.

• G is virtually abelian of free abelian rank at most k.

It is worth noting that this is a consequence of results about groups with

context-free word problem.

. Small Overlap Monoids

In [Kama; Kamb], Mark Kambites shows that semigroups that have a

presentation that fulfills certain small overlap conditions introduced by Rem-

mers in [Rem] have deterministic rational word problem. Since the defi-

nition of the small overlap conditions is slightly involved and of no further

relevance to us, we will not go into detail here, and refer to Remmers’ Kam-

bites’ work for details. We will be concerned with small overlap conditions

C(k) for k ∈ {1, 2, 3, 4} and denote the classes of semigroups that have a pre-

sentation of this type by C(k).

The following theorem, which is Theorem 2 in [Kamb], shows that monoids

which have a finite presentation that fulfills the small overlap condition C(4)
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are rational in the sense of the definition in Section .. Deterministic au-

tomata that decide the word problem are explicitly constructed from the given

presentation. Therefore Open Question .. is answered in the positive for

monoids given by a presentation that fulfills C(4).

Theorem ..

Let M be a monoid specified by the finite presentation mon⟨A | R⟩, which satisfies

the small overlap condition C(4). Then M has rational word problem and there is a

deterministic automaton that decides ιM(A).

It is known that monoids specified by a presentation which satisfies the con-

dition C(3) have decidable word problem. We note that the small overlap

conditions are conditions placed on a specific presentation of a monoid, and

the results are proven for finite presentations.

Theorem .. shows that C(4) ⊂ Rat. The inclusion is proper since P, as

defined in Section . is a semigroup in Rat which is not in C(4) since it is not

finitely presentable.

Open Question ..

What are the relationships between C(k), Rat, CoRat, Ratk, CoRatk, PRat, CoPRat,

and ERat?

It should be noted that the work of Remmers is motivated in the combi-

natorial and geometric analysis of semigroups, in an attempt to carry the this

very fruitful approach from group theory to semigroup theory. Many results

in semigroup theory suggest that the geometric analysis of semigroups has

not come anywhere close to the results for groups yet.

. Word Hyperbolic Monoids

In group theory the notion of a hyperbolic group is well-established. The

notion of hyperbolicity of groups was introduced by Gromov [Gro], and
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has subsequently been studied intensively. The fact that there are many char-

acterisations of hyperbolic groups from different areas of group theory is a

strong indicator that being hyperbolic is a very robust property of groups. A

group is hyperbolic if its Cayley graph is a hyperbolic space.

Many have tried to extend the concept of hyperbolicity to semigroups and

monoids with varying degrees of success. Most importantly the notions of hy-

perbolicity which are equivalent for groups are in general not equivalent for

semigroups, and some of the nice properties of hyperbolicity are not closed

under even the most basic constructions of semigroup theory, such as adding

a zero element.

The following definition of hyperbolicity for semigroups and monoids

has been proposed by Duncan and Gilman in [DG], following a result by

Gilman showing that a group is word hyperbolic if and only if its multiplica-

tion table can be represented as a context-free one-tape language.

We say that a semigroup S, finitely generated by a setA, is word hyperbolic,

if the restriction of πA to A is injective and there is a rational subset L ⊆ A+

such that the set

M = {u#1v#2wr | (uv)πA = wπA} ∩ L#1L#2L,

where #1 and #2 are symbols not in A, is decided by a pushdown automaton.

We define the class of word hyperbolic semigroups as

WordHyp = [ S | S is word hyperbolic ] .

Note that the injectivity of the restriction of πA to A was not part of the

original definition by Duncan and Gilman, but omission of this condition

leads to non-isomorphic semigroups with the same set M. This result has

now also appeared as part of Alan Cain’s work on word hyperbolic semi-

groups [Cai]. Injectivity of the restriction can be achieved by removing su-

perflous generators from the generating set.
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It follows by an application of [Ber, Theorem V..] that any semigroup

with rational word problem is word hyperbolic, or, in the hierarchy Rat ⊂

WordHyp.

Theorem ..

Let S be a finitely generated semigroup in Rat. Then S is also in WordHyp.

Proof. Let S be a semigroup finitely generated by a set A with rational word

problem. We remove elementsa ∈ A such that there is b ∈ AwithaπA = bπA

to form a generating set B of S. Then the restriction of πA to B is injective,

ιS(B) is rational, and we choose L = A+. Applying [Ber, Theorem V..]

now yields that there is a linear context-free grammar that generates M as

defined above.

In [DG, Example 3.8] it is shown that the bicyclic monoid is word hy-

perbolic in the sense defined above. It follows from this and Theorem ..

that the class of word hyperbolic semigroups is bigger than the class of semi-

groups with rational word problem. The relationship between WordHyp and

the classes PRat and ERat needs further investigation. We note that crucially

context-free languages, and linear context-free languages, are not closed un-

der intersection.

We note that there is an efficient decision procedure for membership in

a context-free language which runs in O
(
|v|3
)

, the so called Cocke-Younger-

Kasami algorithm, and therefore the word problem of word hyperbolic semi-

groups is efficiently decidable. Note however that there exist word hyperbolic

semigroups that have undecidable Green’s R relation.

The notion of word hyperbolicity and hyperbolicity of semigroups has

enjoyed close attention, by many researchers. Just to name a few examples:

Duncan and Gilman [DG], Cain [Cai], Fountain and Kambites, [FK].

Despite this close attention, word hyperblicity does not seem to be a robust

notion for semigroups, since characterisations of hyperbolicity that hold in
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group theory do not extend to semigroup theory easily. To an extent this is

related to the fact that the geometric study of semigroups necessitates the de-

velopment of a theory of directed geometry. The theory of directed geometry

is by far not as developed as the theory of classical geometry.

. Asynchronously Automatic Semigroups

As the final family for this chapter, we want to mention asynchronously au-

tomatic semigroups. The motivation for defining automatic structures comes

from two sources: One source is the geometric study of groups by Epstein,

Paterson, Cannon, Holt, Levy, and Thurston in [Eps+a] who noticed that

certain groups allowed for defining group multiplication by means of finite

state automata. The second source comes from logic and computer science. In

their paper [KN] Khoussainov and Nerode instigate the study of automa-

ton presented structures. They cite earlier attempts to present structures by

recursive functions, and shift the focus towards the field of algebraic struc-

tures that can be presented by finite state automata. Their main reasons being

the success of autmatic groups, and the feasibility of decision procedures.

We follow the definition of asynchronously automatic groups pioneered

in [Eps+b], and subsequently generalised to semigroups by Campbell, Robert-

son, Ruskuc and Thomas [Cam+].

Definition ..

A semigroup S finitely generated by a set A is asynchronously automatic if

• there is a rational subset W of A+ such that the restriction of πA to W is sur-

jective onto S,

• the relations ιS(A)∩µW and ρaιS(A)∩µW for all a ∈ A are rational relations.

Remember that µX refers to the universal relation, and ρa refers to the right
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multiplication by a. Also note that ιS(A) is not implied or required to be ra-

tional.

We also define the class of semigroups asynchronously automatic semigroups

as

AsyncAut = [ S | S is asynchronously automatic ]

We show that semigroups with rational word problem are asynchronously

automatic.
Theorem ..

Let S be a semigroup finitely generated by A with rational word problem. Then S is

asynchronously automatic.

Proof. Let S be a semigroup with rational word problem with respect to the

generating setA. We chooseW = A+. Then ιS(A)∩µA+ is rational by Lemma

.., because µA+ is recognisable. the relation ρa is recognisable and there-

fore by Theorem .. rational. Again, because µA+ is recognisable, the rela-

tions ρaιS(A) ∩ µA+ are rational for all a ∈ A. Therefore S is asynchronously

automatic.

For the hierarchy this means that Rat ⊂ AsyncAut, and this inclusion is

proper as well since for example the group of integers is an asynchronously

automatic monoid, but does not have rational word problem.

The class of asynchronously automatic semigroups has been studied ex-

tensively as a promising class of semigroups with nice computational prop-

erties. Cain showed in [Cai] that even if one insists on the relations to be

recognisable, cancellativity is undecidable for automatic semigroups, there-

fore cancellativity is undecidable for asynchronously automatic semigroups.

There is a host of results on automatic semigroups starting from [Cam+].

As a final note we illustrate how to decide the word problem of asyn-

chronously automatic semigroups. Let S be an asynchronously automatic

semigroup finitely generated by A and let W be a rational subset of A+ such

thatWπA = S and such that ρaιS(A) ∩ µW for a ∈ A is rational.
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To decide the word problem of S, the following problem has to be solved

first: Given a string v in A+, determine a string v ′ ∈ W with vπA = v ′πA. To

achieve this, assume v = [aa . . . ak]. One now has to successively compute a

sequence v = v1, v2, …, v|v| = v ′ with vi+1 ∈ vi (ρaiιS(A)). While each of these

steps can be achieved by an algorithm similar to the one introduced in Lemma

.., the computed representatives can become very long which means that

potentially we get an exponential time complexity for this step, and also v ′

can be exponentially longer than v. This means that the complexity of the

word problem is exponential, although this is not a lower bound, in fact it is

unknown whether there is an efficient algorithm to solve the word problem

even for automatic groups.




◦· • •

Conclusions

We have seen how the notion of word problem as introduced by Dehn can

naturally be extended from a notion in the theory of groups to a notion in the

theory of semigroups. We further generalised the notion to arbitrary relations

on semigroups in Chapter .

The following discussion in Chapter  revealed that we can generalise a

theorem in group theory, Anisimov’s Theorem, to a semigroup equivalent.

More precisely we characterised the class of finite semigroups by the class

Rec of semigroups with recognisable word problem.

Results presented in Chapter  then extended the class Rec of semigroups

with recognisable word problem to the class Rat which contains infinite semi-

groups with efficiently decidable word problem. The class Rat does not con-

tain any infinite groups. We also presented algebraic properties of semigroups

in Rat.

The purpose of Chapter  was to present a natural extension of the class

Rat. This extension has, among others, the property that it is closed under

finite direct products, a property that the class Rat lacks.





 Conclusions

Chapter  then connected the results obtained in Chapters ,  and  with

each other and related research and resulted in the creation of a hierarchy of

semigroups, where the partial order is based on the complexity of the word

problem and the coword problem.

Many open questions have been brought up. A list of open questions can

be found in Appendix A. One of the most important question to answer Open

Question ... Finding a structural characterisation of semigroups with ra-

tional word problem seems imminent and we conjecture that it will rely on

choosing a finite combination of types of L-classes and R-classes and how

they interact, probably in a way similar to Rees-Matrix semigroups and Clif-

ford semigroups.

Once semigroups with rational word problem are characterised, it will

be possible to cover a class of semigroups with polyrational word problem,

namely the finitely generated subsemigroups of direct products of semigroups

with rational word problem. Here it is important to answer Open Question

...

Having covered semigroups with polyrational word problem, a character-

isation of semigroups with extended rational word problem has to be found.

It is conceivable that all semigroups in this class behave nicely with respect

to decidability and efficiency of a variety of properties, like the ones listed in

.. This is because for all semigroups in this class there is a finite state device

that efficiently decides the word problem.

Moving on from semigroups with extended rational word problem we

already suggested extensions of this class by giving the computing devices

involved more computing power by adding memories. In particular one ap-

pealing approach is defining a hierarchy of more and more sophisticated mem-

ories.



Conclusions 

“I may not have gone where I intended to go, but I think I

have ended up where I needed to be.”
Svlad Cjelli

“TTFN, ta ta for now!”

Tigger
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B
Automata

In this section we give pictures of automata from Chapter  in black and white.


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