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AbstractThe thesis consists of four main chapters.The �rst chapter includes an introduction to inhomogeneous self-similar sets and measures. Inparticular, we show that these sets and measures are natural generalizations of the well knownself-similar sets and measures. We then investigate the structure of these sets and measures.In the second chapter we study various fractal dimensions (Hausdor�, packing and box dimen-sions) of inhomogeneous self-similar sets and compare our results with the well-known resultsfor (ordinary) self-similar sets.In the third chapter we investigate the Lq spectra and the Renyi dimensions of inhomogeneousself-similar measures and prove that new multifractal phenomena, not exhibited by (ordinary)self-similar measures, appear in the inhomogeneous case. Namely, we show that inhomogeneousself-similar measures may have phase transitions which is in sharp contrast to the behaviourof the Lq spectra of (ordinary) self-similar measures satisfying the Open Set Condition. Thenwe study the signi�cantly more diÆcult problem of computing the multifractal spectra of in-homogeneous self-similar measures. We show that the multifractal spectra of inhomogeneousself-similar measures may be non-concave which is again in sharp contrast to the behaviourof the multifractal spectra of (ordinary) self-similar measures satisfying the Open Set Condi-tion. Then we present a number of applications of our results. Many of them are related tothe notoriously diÆcult problem of computing (or simply obtaining non-trivial bounds) for themultifractal spectra of self-similar measures not satisfying the Open Set Condition. More pre-cisely, we will show that our results provide a systematic approach to obtain non-trivial bounds(and in some cases even exact values) for the multifractal spectra of several large and interestingclasses of self-similar measures not satisfying the Open Set Condition.In the fourth chapter we investigate the asymptotic behaviour of the Fourier transforms ofinhomogeneous self-similar measures and again we present a number of applications of ourresults, in particular to non-linear self-similar measures.
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1 Introduction 71 IntroductionFractal geometry was developed to understand the geometry of irregular sets which cannot be doneusing methods from classical Euclidean geometry. One of the most famous examples of such irregularsets is the well known Cantor set. The geometry of the Cantor set cannot be easily described usingapproaches from classical geometry. More precisely, even though the Cantor set is an uncountableset it has Lebesgue measure zero and therefore its size cannot be described by classical measures.However, fractal geometry provides answers to such questions by introducing the notion of fractalmeasures and dimensions. Namely, fractal measures and dimensions extend the classical conceptsof measures and dimensions to non-integer values. Hence, for example, in the case of the Cantor setwe can estimate its size by computing its fractal dimension, which will have the value strictly biggerthan zero and strictly less than one, indicating that the structure of the Cantor set is more complexthan that of a regular geometric set. Irregular sets have been known from the time of Cantor, vonKoch, Sierpinski, but only in the 1970s when the term "fractal" was introduced by Mandelbrot in hisseminal work [Man77] the study of such irregular sets attracted considerable interest and becamewidespread. It became apparent that not only such sets provide a better description of naturalphenomena but that also the mathematics of such sets is very rich and therefore worth studying.The concept of self-similarity is one of the central concepts in fractal geometry. Often fractals havesome degree of self-similarity. For example, the fore mentioned Cantor set is self-similar, namelyit is made of scaled down copies which are geometrically similar to the whole set. It is fairly easyto construct the Cantor set. However, we will now brie
y describe the construction of anotherwell know self-similar set, the Sierpinski triangle. The reason for choosing the Sierpinski triangleinstead of the Cantor set to illustrate how the concept of self-similarity arises in its constructionwill become clear later. Namely, we believe that the example of the Sierpinski triangle demonstratesbetter how the concept of self-similar sets extends to the concept of inhomogeneous self-similarsets. The Sierpinski triangle is constructed from any triangle in a plane by a sequence of deletionoperations. For example, take (for simplicity) an equilateral triangle and connect the midpoints ofeach side to form four separate triangles, and delete the triangle in the center. For each of the threeremaining triangles, perform the same procedure and iterate. For a graphical illustration of thisconstruction see Figure 1.0.1. In this work we will consider natural extensions of such self-similarconstructions by adding an inhomogeneous set at each stage of the construction. More precisely,take as before an equilateral triangle and connect the midpoints of each side to form four separatetriangles, and delete the triangle in the centre but now add an inhomogeneous set in the place ofthe deleted triangle. Then for each of the three remaining triangles, perform the same procedureby adding the scaled down inhomogeneous sets in the places of deleted triangles and iterate. For agraphical illustration of this inhomogeneous self-similar construction see Figure 1.0.2. The conceptof self-similar sets extends readily to self-similar measures. For example, in the case of the Sierpinskitriangle we can allocate a mass or a probability to each of the remaining triangles at each stage ofthe construction. For instance, in the construction we have just described we have chosen each ofthe remaining three triangles with the same probability, namely a third, in the �rst stage of theconstruction, but we can assign di�erent probabilities with the main requirement that the totalsum of them is equal to one. This gives rise to self-similar measures. Similarly, we can assign aninhomogeneous self-similar measure to the inhomogeneous self-similar set.In the early 1980s Hutchinson introduced a general framework for studying self-similar sets and mea-sures [Hut81] and since that time self-similar sets and measures have been studied intensively. inho-mogeneous self-similar sets and measures were �rst considered by Barnsley et al. [BD85, Bar89, Bar]in the late 1980s as a tool for image compression and have subsequently been mentioned in varioustexts [Bar93, Bar06, BH93, Per94]. However, unlike self-similar sets and measures, inhomogeneousself-similar sets and measures were not that widely studied. One of the main tools to understand thegeometry of self-similar sets is to compute its fractal dimensions and there are two main approaches



1 Introduction 8to study self-similar measures: multifractal analysis and Fourier analysis. Multifractal analysis de-scribes global and local behaviour of a measure of a ball centred at a point x with arbitrary smallradius. These global and local behaviours for many \good" measures are related to each other byMultifractal Formalism. This is, for example, the case for self-similar measures satisfying an appro-priate separation condition, known as the Open Set Condition. In fact, many results for self-similarmeasures are obtained under the assumption of the Open Set Condition. Fourier analysis providesthe description of the asymptotic behaviour of the Fourier transforms of measures. In this thesis wewill continue these lines of investigation for inhomogeneous self-similar sets and measures. To thebest of our knowledge very little or nothing has been said about various fractal dimensions of inho-mogeneous self-similar sets as well as multifractal analysis and Fourier analysis of inhomogeneousself-similar measures. Moreover, we will also show that our results for multifractal spectra of inho-mogeneous self-similar measures provide a systematic approach to study the mutifractal spectra ofseveral large and interesting classes of self-similar measures not satisfying the Open Set Condition.We will now turn towards the brief description of the main work of this thesis. The work inthis thesis is based on the following three research papers joint with L. Olsen: "Lq spectraand R�enyi dimensions of in-homogeneous self-similar measures" [OS07], "Multifractal spectra ofin-homogenous self-similar measures" [OS08b] and "Inhomogenous self-similar measures and theirFourier transforms"[OS08a].In the �rst chapter of the thesis we will discuss in more details inhomogeneous self-similar setsand measures and give precise de�nitions of these sets and measures. Moreover, we will showthat inhomogeneous self-similar sets and measures are natural generalizations of the well knownand widely studied self-similar sets and measures. One could have already suspected this fromour examples above of the Sierpinski triangle and of the Sierpinski triangle with inhomogeneousset added at each stage of the construction. We will also give a detailed account of the structureof inhomogeneous self-similar sets and measures and draw parallels with the homogeneous andinhomogeneous linear equations.In the second chapter of the thesis we will study various fractal dimensions of inhomogeneous self-similar sets. Namely, we will give the precise formulae for the Hausdor� and the packing dimensionsof inhomogeneous self-similar sets. We will also compute the upper box-counting dimension of thesesets under appropriate inhomogeneous separation condition. We also like to stress out that, unlikethe upper box-counting dimensions, the Hausdor� and the packing dimensions of inhomogeneousself-similar sets are obtained without assuming any separation conditions.In the third chapter of the thesis we will �rst study the Lq spectra and the R�enyi dimensions ofinhomogeneous self-similar measures. Lq spectra and the R�enyi dimensions give the descriptionof the global behavior of a measure of a ball centered at a point x with arbitrary small radius.We will prove that new multifractal phenomena, not exhibited by self-similar measures, appearin the inhomogeneous case. In particular, we show that inhomogeneous self-similar measures mayhave phase transitions, i.e. points at which the Lq spectra are non-di�erentiable. This is in sharpcontrast to the well known behaviour of the Lq spectra of self-similar measures satisfying the OpenSet Condition.We will then turn towards the study of the signi�cantly more diÆcult problem of computing themultifratal spectra of inhomogeneous self-similar measures satisfying the appropriate inhomogeneousseparation condition, which we will call the inhomogeneous Open Set Condition. Multifractal spectraprovide the description of a local behaviour of a measure. More precisely, multifractal spectra of ameasure provide the description of a set of points x for which the a measure of a ball centred ata point x with arbitrary small radius behaves like the radius of this ball to some given power. Wewill again prove that new multifractal phenomena, not exhibited by self-similar measures, appear inthe inhomogeneous case. In particular, we will show that the multifractal spectra of inhomogeneous



1 Introduction 9self-similar measures may be non-concave. This is in sharp contrast to the well known behaviourof the multifractal spectra of self-similar measures satisfying the Open Set Condition. We will thenpresent several applications of our results. We would like to emphasize once more that many ofour applications are related to the notoriously diÆcult problem of computing (or simply obtainingnon-trivial bounds) for the multifractal spectra of self-similar measures not satisfying the Open SetCondition. We show that our main results can be applied to obtain non-trivial bounds (and insome cases even exact values) for the multifractal spectra of several large and interesting classes ofself-similar measures not satisfying the Open Set Condition.In the fourth chapter of the thesis we will study the asymptotic behaviour of the Fourier transformsof inhomogeneous self-similar measures. We will then again present a number of applications of ourresults. In particular, non-linear self-similar measures introduced and investigated by Glickenstein& Strichartz are special cases of inhomogeneous self-similar measures, and as an application of ourmain results we will obtain simple proofs of generalizations of Glickenstein & Strichartz's results onthe asymptotic behaviour of the Fourier transforms of non-linear self-similar measures.
Figure 1.0.1:First four levels in the construction of the Sierpinski triangle.
Figure 1.0.2:First four levels in the construction of the Sierpinski triangle with the inhomogeneous set.



2 Inhomogeneous self-similar sets and measures 102 Inhomogeneous self-similar sets and measures2.1 Preliminaries: self-similar sets and measuresThe investigation of self-similar sets originates from construction of self-similar sets such as themiddle third Cantor set or the Sierpinski triangle. Namely, the sets which are made of scaled downcopies that are geometrically similar to the entire set. The �rst contributions to the theory ofself-similarity were made in 1946 by Moran [Mor46]. Moran fractals are constructed in a similarway to the middle third Cantor set with the main di�erences being that contraction ratios are notrequired to be constant and the starting set can be of a more general form than the unit interval.In the 1970s the theory of self-similarity became popular due to Mandelbrot who used self-similarsets to analyse various physical phenomena [Man77, Man82]. For example, Cantor sets were used tomodel noise. For more applications of fractal sets for describing physical phenomena we refer to thebooks [Man77, Man82, Fal90, Fed88]. In the 1980s Hutchinson introduced the general frameworkfor studying self-similar sets in [Hut81]. We now state the formal de�nition of self-similar sets. Wewill denote a self-similar set by K? . The choice for this notation will be explained in the nextsection where we will introduce inhomogeneous self-similar sets.De�nition 2.1. (Self-similar sets [Hut81]). Let Si : Rd ! Rd for i = 1; : : : ; N be contractingsimilarities. A compact subset K? of Rd satisfyingK? = N[i=1Si(K?) (2.1)is called a self-similar set associated with the list (S1; : : : ; SN) .In the same paper Hutchinson proved that such a set exists and that it is unique. This is the contentof the next proposition. The proof of this proposition is based on Banch's �xed point theorem. Sincein the next section we will give the proof for existence and uniqueness of inhomogeneous self-similarsets which use similar ideas, we will not state the proof of Proposition 2.2 here.Proposition 2.2. (Existence and uniqueness of self-similar sets [Hut81]). Let Si : Rd ! Rdfor i = 1; : : : ; N be contracting similarities. Then there exists a unique non-empty compact subsetK? of Rd satisfying (2.1).The concept of self-similar sets extends readily to self-similar measures. Namely, introducing self-similar measures supported on self-similar sets provides a better understanding of these sets. Thiswas one of the main motivations in [Hut81] for introducing the general framework for studyingself-similar measures. We will now state the formal de�nition of self-similar measures. Again, thechoice for denoting a self-similar measure by �0 will become clear in the next section where we willintroduce inhomogeneous self-similar measures.De�nition 2.3. (Self-similar measures [Hut81]). Let Si : Rd ! Rd for i = 1; : : : ; N becontracting similarities and let (p1; : : : ; pN) be a probability vector. A probability measure �0 onRd such that �0 = NXi=1 pi�0 Æ S�1i (2.2)is called a self-similar measure associated with the list (S1; : : : ; SN ; p1; : : : ; pN ) .Proposition 2.4. (Existence and uniqueness of self-similar measures [Hut81]). Let Si :Rd ! Rd for i = 1; : : : ; N be contracting similarities and let (p1; : : : ; pN) be a probability vector.Then there exists a unique probability measure �0 on Rd satisfying (2.2).



2.2 Inhomogeneous self-similar sets and measures 11As we mentioned earlier it is well-known that supp�0 = K? :Self-similar sets and measures have been studied intensively for the past 20 years and there existsa huge body of literature investigating many di�erent aspects of self-similar sets and measures, cf.the textbook [Fal97] and the references therein. In this thesis we investigate various aspects ofinhomogeneous self-similar sets and measures.2.2 Inhomogeneous self-similar sets and measuresWe �rst introduce inhomogeneous self-similar sets and measures and show that these sets andmeasures are natural generalizations of (ordinary) self-similar sets and measures.It is natural to view the self-similar equations (2.1) and (2.2) satis�ed by K? and �0 as a homoge-nous equations. This viewpoint suggests that it would be of interest to investigate the correspondinginhomogeneous equations. This leads to the following de�nitions.De�nition 2.5. (Inhomogeneous self-similar sets). Let Si : Rd ! Rd for i = 1; : : : ; N becontracting similarities. Also, let C be a compact subset of Rd . A non-empty compact set KCsuch that KC = N[i=1Si(KC) [ C : (2.3)is called an inhomogeneous self-similar set associated with the list (S1; : : : ; SN ; C) .De�nition 2.6. (Inhomogeneous self-similar measures). Let Si : Rd ! Rd for j = 1; : : : ; Nbe contracting similarities. Also, let (p1; : : : ; pN ; p) be a probability vector and let � be a probabilitymeasure on Rd with compact support. A probability measure � such that� = NXi=1 pi� Æ S�1i + p� : (2.4)is called an inhomogeneous self-similar measure associated with the list (S1; : : : ; SN ; p1; : : : ; pN ; p; �) .Observe that an inhomogeneous self-similar set KC can be viewed as a solution to the inhomoge-neous version of equation (2.1) with inhomogeneous term equal to C . Also observe that if C = ? ,then KC = K? ; this explains why the self-similar set satisfying (2.1) is denoted by K? . Similary,an inhomogeneous self-similar measure � can be viewed as a solution to the inhomogeneous versionof equation (2.2) with inhomogeneous term equal to p� . As it was mentioned in the Introductioninhomogeneous self-similar sets and measures were introduced by Barnsley et al. [BD85, Bar89, Bar]in the 1980s as a tool for image compression and have subsequently been mentioned in various texts[Bar93, Bar06, BH93, Per94]. Barnsley et al. [BD85] also consider a few concrete examples of inho-mogeneous self-similar measures. However, their further investigations are restricted to (ordinary)self-similar measures without inhomogeneous terms. In [Bar89, Bar, Bar06] measures � satisfying(2.4) are called orbital measures and in [BD85, Bar89, Bar93] the inhomogeneous term C in (2.3)and the inhomogeneous term � in (2.4) are called the condensation set and the condensation mea-sure, respectively. We also note that inhomogeneous equations have been introduced and studiedby Ja�ard [Jaf97a, Jaf97b] in the context of fractal functions. inhomogeneous self-similar measuresmay also be viewed as stationary measures of the Markov operator M introduced in the proof ofProposition 2.8 below. This viewpoint has recently been investigated by Lasota and Myjak andcollaborators in a more general setting in a series of papers, cf. for example, [HMS05] and thereferences therein. Namely, Lasota and Myjak et al assume that the probabilities p1; : : : ; pN andp depend on x 2 Rd , and, in this more general setting, they study conditions guaranteeing theexistence of a stationary measure of the corresponding Markov operator M .



2.2 Inhomogeneous self-similar sets and measures 122.2.1 Existence and uniqueness of inhomogeneous self-similar sets and measuresUsing ideas from [Hut81] it is easily seen that for a given list (S1; : : : ; SN ; p1; : : : ; pN ; p; �) thereexist a unique inhomogeneous self-similar set satisfying (2.3) and measure satisfying (2.4). Indeed,this observation and argument also goes back to Barnsley et al. [BD85, Bar, Bar06]; however, forsake of completeness we will sketch the simple proofs here. We also note that the existence of aunique inhomogeneous self-similar set satisfying (2.3) was proved independently from Barnsley etal. by Hata in 1986 [Hat86].Proposition 2.7. (Existence and uniqueness of inhomogeneous self-similar sets. [Bar93,BD85, Hat86], see also [Per94]). Let Si : Rd ! Rd for i = 1; : : : ; N be contracting similaritieswith contractivity factors ri . Also, let C be a compact subset of Rd . Then there exists a uniquenon-empty compact subset KC of Rd such thatKC = N[i=1Si(KC) [ C :Proof. Let K(Rd ) denote the space of all compact non-empty subsets of Rd and let rmax = maxi ri .De�ne the map T : K(Rd )! K(Rd ) , byT (A) = N[i=1Si(A) [ C ;for all A in K(Rd ) . We will show that T is a contraction with respect to the Hausdor� metric,dh . It is well known that (K(Rd ); dh) is a complete metric space (for the proof see, for example,[Bar93] or classical text books [Eng89, Kec95]). Suppose A , B are in K(Rd ) , thendh(T (A); T (B)) = dh N[i=1Si(A) [ C; N[i=1Si(B) [ C!� max dh N[i=1Si(A); N[i=1Si(B)! ; dh(C;C)!= dh N[i=1Si(A); N[i=1Si(B)! ; (2.5)using dh(A [ B;C [D) � max(dh(A;C); dh(B;D)) (2.6)for all A , B , C , D in K(Rd ) (see, for example, [Bar93]). Hence, applying (2.6) to (2.5) repeatedly,we obtaindh(T (A); T (B)) � maxi (dh(Si(A); Si(B))) � [maxi (ri)]dh(A;B) = rmaxdh(A;B) :Therefore T is a contraction map on the complete metric space (K(Rd); dh) . Hence, it followsfrom Banach's �xed-point theorem that T has a unique �xed point. Namely, there exists a uniquecompact non-empty set KC such that T (KC) = KC .Remark. We also note that from Banach's �xed point theoremKC = limn!1 T n(E) (2.7)for any E in K(Rd ) , where T n is the nth iterate of T . We will use equation (2.7) in the latersections of the thesis.



2.2 Inhomogeneous self-similar sets and measures 13Proposition 2.8. (Existence and uniqueness of inhomogeneous self-similar measures[BD85, Bar, Bar06]) Let Si : Rd ! Rd for i = 1; : : : ; N be contracting similarities with conrac-tivity factors ri . Also, let (p1; : : : ; pN ; p) be a probability vector and let � be a probability measureon Rd with compact support. Then there exists a unique probability measure � such that� =Xi pi� Æ S�1i + p� :Proof. Let P(Rd ) be the family of all probability Borel measures on Rd . De�ne the map M :P(Rd )! P(Rd ) by M(�) =Xi pi� Æ S�1i + p� :We will now show that M is a contraction with respect to the metric,L(�1; �2) = supf:Rd!R;Lip(f)�1 ����� Z f d�1 � Z f d�2����� ;where Lip(f) is the Lipschitz constant of f . Recall that rmax = maxi ri . We have,L(M(�1);M(�2)) (2.8)= supf:Rd!R;Lip(f)�1 ����� Z f dM(�1)� Z f dM(�2)�����= supf:Rd!R;Lip(f)�1 ����� Xi pi Z (f Æ Si) d�1 + p Z f d�!� Xi pi Z (f Æ Si) d�2 + p Z f d�!�����= supf:Rd!R;Lip(f)�1 �����Xi pi�Z (f Æ Si) d�1 � Z (f Æ Si) d�2� ������ Xi pi supf:Rd!R;Lip(f)�1 ����� Z (f Æ Si) d�1 � Z (f Æ Si) d�2�����= Xi pi supf:Rd!R;Lip(f)�1 ri����� Z r�1i (f Æ Si) d�1 � Z r�1i (f Æ Si) d�2������ Xi piri L(�1; �2)� Xi pirmax L(�1; �2)� rmax L(�1; �2) ;since Lip �r�1i (f Æ Si)� � 1 for all i and Pi pi � 1 .It is well known that (P(Rd ); L) is a complete metric space (for a proof see [Hut81]), and it thereforefollows immediately from Banach's �xed-point theorem that M has a unique �xed point, i.e. thereexists a unique measure � such that M(�) = � . �2.2.2 Support of inhomogeneous self-similar measuresThe support of the inhomogeneous measure � satis�es the following equation. Namely, if C denotesthe support of � , then the support of � is equal to the unique non-empty compact set KC satisfying(2.3). This is the content of the next proposition.



2.3 The structure of inhomogeneous self-similar sets and measures. 14Proposition 2.9. Let � be an inhomogeneous self-similar measure satisfying (2.4) and let C be thesupport of � . Then the support of � is equal to the unique non-empty compact set KC satisfying(2.3) .Proof. First we prove that supp� � [iSi(supp�) [ C . Indeed, applying equation (2.4) to[iSi(supp�) [ C , we obtain� [i Si(supp�) [ C! = Xk pk� S�1k  [i Si(supp �) [ C!!+ p� [i Si(supp�) [ C!= Xk pk� S�1k  [i Si(supp �) [ C!!+ p� Xk pk��S�1k Sk(supp�) [ S�1k C�+ p= Xk pk + p= 1 :Thus, since � is a probability measure we conclude that ��[iSi(supp�)[C� = 1 . Hence supp� �[iSi(supp�) [ C .Next, we prove that [iSi(supp �) [ C � supp� . Noting that C � supp� and applying equation(2.4) to supp� , we obtain 1 = �(supp�)= Xi pi��S�1i (supp�)�+ p�(supp �)= Xi pi��S�1i (supp�)�+ p� Xi pi + p= 1 ;whence Pi pi��S�1i (supp�)� + p = 1 . Since also Pi pi + p = 1 , we conclude from this that�(S�1i (supp �)) = 1 for all i . Hence supp� � S�1i (supp�) , implying that Si(supp �) � supp�for all i . Thus [iSi(supp �) � supp� and therefore [iSi(supp�) [ C � supp� . Hence supp� =[iSi(supp�) [ C . Therefore supp� is the unique non-empty compact set satisfying (2.3).2.3 The structure of inhomogeneous self-similar sets and measures.In this section we investigate the structure of inhomogeneous self-similar sets and measures. Webegin by introducing some notation. For a non-negative integer n , let�n = f1; : : : ; Ngn ;�� = [n �n ;i.e. �n is the family of all �nite strings i = i1 : : : in of length n with entries ij 2 f1; : : : ; Ng ,and �� denotes the family of all �nite strings i = i1 : : : in with entries ij 2 f1; : : : ; Ng . Fori = i1 : : : in 2 �n , we will write jij = n for the length of i , and if m is an integer with m � n , wewill write ijm = i1 : : : im for the truncation of i to the m 'th place. Finally, for i = i1 : : : in 2 �n ,



2.3 The structure of inhomogeneous self-similar sets and measures. 15we write Si = Si1 Æ � � � Æ Sin and pi = pi1 � � � pin and ri = ri1 � � � rin .Next, let B(Rd ) = nB � Rd ���B is boundedo ;and de�ne S : B(Rd )! B(Rd ) by S(B) =[i Si(B) :Using this de�nition of S , it follows that K? is the unique non-empty compact set such thatK? = S(K?) . Similarly, it follows that KC is the unique non-empty compact set such thatKC = S(K) [ C . The next theorem provides detailed information about the structure of thesolutions X 2 B(Rd ) to the homogenous equation X = S(X) and to the inhomogeneous equationX = S(X)[C . The theorem also shows that there is a close connection between the sets KC andK? .Theorem 2.10. Let O = [i2�� Si(C) : (2.9)1. (i) The set K? 2 B(Rd ) satis�es the homogenous equation K? = S(K?) .(ii) If a set X 2 B(Rd ) satis�es the homogenous equation X = S(X) , then X � X = K? .In particular, this shows that K? is the biggest set X in B(Rd ) satisfying the homogenousequation X = S(X) .2. (i) The set O 2 B(Rd ) satis�es the inhomogeneous equation O = S(O) [ C .(ii) The set KC 2 B(Rd ) satis�es the inhomogeneous equation KC = S(KC) [ C .(iii) If a set X 2 B(Rd ) satis�es the inhomogeneous equation X = S(X) [ C , thenO � X � X = KC .In particular, this shows that O is the smallest set X in B(Rd ) satisfying the inhomoge-neous equation X = S(X) [ C , and that KC is the biggest set X in B(Rd) satisfying theinhomogeneous equation X = S(X) [ C .3. If a set X 2 B(Rd ) satis�es the inhomogeneous equation X = S(X) [ C , thenKC = K? [ X :The proof of Theorem 2.10 is given in Section 2.3.1.Remark. In [Bar06] the set O is called the orbital set (we will provide an explanation of thisterminology in the remark following Theorem 2.11). We also note that Part 2.(i) of Theorem 2.10(saying that O = S(O) [ C ) is proved in [Bar06].Remark. We see from Theorem 2.10 that K? is the biggest set X in B(Rd ) satisfying thehomogenous equation X = S(X) , and that KC is the biggest set X in B(Rd) satisfying theinhomogeneous equation X = S(X) [ C . We also see that if X 2 B(Rd ) is an arbitrary solutionto the inhomogeneous equation X = S(X) [ C , thenKC = K? [ X ;



2.3 The structure of inhomogeneous self-similar sets and measures. 16i.e. " the biggest solution X to the inhomogeneous equation X = S(X) [ C"= " the biggest solution X to the homogenous equation X = S(X)" (2.10)[ " an arbitrary solution X to the inhomogeneous equation X = S(X) [ C" :This result is clearly reminiscent of the structure of the set of solutions to inhomogeneous linearequations. We will now explain this in more detail. Fix a vector space V . Let A : V ! V belinear and let c 2 V . Write �0 for the complete solution to the homogenous equation x = Ax ,i.e. �0 = nx 2 V ���x = Axo ;and write �c for the complete solution to the inhomogeneous equation x = Ax+ c , i.e.�c = nx 2 V ���x = Ax+ co :It is clear that if x 2 V satis�es the inhomogeneous equation x = Ax + c , then�c = �0 + x ;i.e. " the complete solution to the inhomogeneous equation x = Ax+ c"= " the complete solution to the homogenous equation x = Ax" (2.11)+ " an arbitrary solution x to the inhomogeneous equation x = Ax+ c" :The reader will notice the similarity between the statements in 2.10 and 2.11We now consider some further consequences of Theorem 2.10 .The �rst result shows that inhomogeneous self-similar sets and measures can be represented aslimits involving only the inhomogeneous terms C and � . This follows easily from Theorem 2.10and is the content of Theorem 2.11. Before we state Theorem 2.11 we recall the following notation.Namely, we denote the family of non-empty compact subsets of Rd by K(Rd) , and we equip K(Rd)with the Hausdor� metric dh . Also, we denote the family of Borel probability measures on Rd byP(Rd ) , and we equip P(Rd ) with the weak topology w .Theorem 2.11.1. We have KC = limn!1 [i2��;jij�nSi(C) where the convergence is in �K(Rd ); dh� .2. We have � = limn!1 Xi2��;jij�n piPj2�� ; jjj�n pj � Æ S�1i where the convergence is in �P(Rd ); w� .Proof. 1. Write Cn = Si2�� ; jij�n SiC . Then C1 � C2 � C3 � : : : and Sn Cn = O (where Odenotes the orbital set in (2.9)). We conclude from this that (Cn)n is convergent in �K(Rd); dh�with limn Cn = Sn Cn = O . However, Theorem 2.10 shows that O = KC , whence limn Cn = O =KC .2. De�ne probability measures �n and �n by



2.3 The structure of inhomogeneous self-similar sets and measures. 17�n = Xi2��;jij<n piPj2�� ; jjj<n pj � Æ S�1i = p1�(1�p)n Xi2��;jij<n pi � Æ S�1i ; (2.12)�n = Xi2��;jij=n piPj2�� ; jjj=n pj � Æ S�1i = 1(1�p)n Xi2��;jij=n pi � Æ S�1i :Iterating (2.4) shows that� = Xi2��;jij=n pi� Æ S�1i + p Xi2��;jij<n pi� Æ S�1i = (1� p)n�n + (1� (1� p)n)�nfor all positive integers n . It follows immediately from this that �n ! � in �P(Rd ); w� .Remark. The reader will notice the similarity between the expressions for KC and � in theprevious theorem.Remark. The non-trivial Part 2 of Theorem 2.11 not relying on Theorem 2.10 also appears in[Bar06]. However, we have decided to included both the statement of Part 2 and the simple prooffor completeness.Remark. We can now provide an explanation of why the set O and the measure � are called theorbital set and the orbital measure in [Bar, Bar06]. Let ~s = fSi j i 2 ��g denote the semigroup ofmappings from Rd ! Rd generated by the Si 's and the identity map, and write O(C) = fSiC j i 2��g for the ~s -orbit of C and write O(�) = f� Æ S�1i j i 2 ��g for the ~s -orbit of � . Using thisnotation the set O = [i2��SiC is simply the union of the sets in the ~s -orbit of C , and it followsfrom Theorem 2.11 (by letting n tend to 1 in (2.12)) that the measure � = pPi2�� pi � Æ S�1iis simply a suitably weighted sum of the measures in the ~s -orbit of � . This explains why KC iscalled the orbital set and why � is called the orbital measure.In Theorem 2.12 below we present a further surprising consequence of Theorem 2.10 . Namely, itmay happen that the set K? has zero � measure. This is in sharp contrast to the behaviour of(ordinary) self-similar sets and measures. Indeed, if �0 denotes the self-similar measure satisfying(2.2), then K? has full �0 measure, i.e. �0(K?) = 1 . However, at this stage we would likeemphasize that even though K? can have zero � measure, the multifractal structure of � whichwe will discuss in Section 4.3 of the thesis is non-trivial and, in general, signi�cantly di�erent fromthe multifractal spectra of � .Theorem 2.12.1. Assume that the sets (SiC)i2�� are pairwise disjoint and that p 6= 0 . Then the orbital set O(see (2.9)) has full � measure, i.e. �(O) = 1 .2. Assume that the sets (SiC)i2�� are pairwise disjoint and disjoint from K? and that p 6= 0 .Then the orbital set O (2.9) has full � measure and K? has zero � measure, i.e. �(O) = 1and �(K?) = 0 .Proof. 1. It follows from the de�nition of � that �(C) =Pi pi�(S�1i C)+p�(C) � p�(C) = p , anditerating (2.4) therefore shows that �(SiC) =Pj2�� ; jjj=n pj�(S�1j SiC)+ pPj2�� ; jjj<n pj�(S�1j SiC)� pi�(S�1i SiC) = pi�(C) � pip , for all i 2 �� . We conclude from this and the fact that the sets(SiC)i2�� are pairwise disjoint that 1 � �(O) =Pi2�� �(SiC) �Pi2�� pip = pPn�0Pi2��;jij=n pi= pPn�0(1� p)n = 1 .2. Since the sets (SiC)i2�� are pairwise disjoint and disjoint from K? , we deduce that O andK? are disjoint. However, as �(O) = 1 (by Part 1) and KC = O [K? (by Theorem 2.12), thisimplies that 1 = �(KC) = �(O) + �(K?) = 1 + �(K?) , whence �(K?) = 0 .



2.3 The structure of inhomogeneous self-similar sets and measures. 18The reader is referred to Example 4.40 in Section 4.3.2 for an example of a construction for whichthe sets (SiC)i2�� are pairwise disjoint and disjoint from K? .2.3.1 Proof of Theorem 2.10The purpose of this section is to prove Theorem 2.10. To prove this theorem we would need to useLemma 3.9.Proof of Theorem 2.101. It follows from the de�nition of K? that K? = S(K?) . Next, if X 2 B(Rd ) satis�es X =S(X) , then it is easily seen that X = S(X) = S(X) . However, since K? is the unique non-emptycompact set with K? = S(K?) , we now conclude that X = K? .2. It follows from the de�nition of KC that KC = S(KC) [ C . It also follows easily from thede�nition of O that O = S(O) [C . Next, if X 2 B(Rd) satis�es X = S(X)[C , then it is easilyseen that X = S(X) [ C = S(X) [ C . However, since KC is the unique non-empty compact setwith KC = S(KC)[C , we now conclude that X = KC . Finally, we prove that O � X . To provethis note that it follows easily by iterating the equation X = S(X) [ C thatX = [i2��;jij=nSi(X) [ [i2��;jij<nSi(C) � [i2��;jij<nSi(C)for all positive integers n . Taking union over all positive integers now gives X � [n [jij<n Si(C) =O .3. We will show that KC = K? [X . Indeed, using Lemma 3.9 and Part 2 we conclude thatKC = K? [ O [by Lemma 3.9]� K? [X [since O � X by Part 2]� K? [KC [since X � KC by Part 2]= KC : [by Lemma 3.9]This completes the proof.



3 Dimensions of inhomogeneous self-similar sets 193 Dimensions of inhomogeneous self-similar sets3.1 Preliminaries: fractal measures and dimensionsIn this section we will give an overview of the most commonly used fractal measures and dimensions.Such measures and dimensions are important for understanding the geometry of fractal sets, inparticular the geomery of self-similar sets and their natural generalizations inhomogeneous self-similar sets discussed in the previous section. The idea behind most de�nitions of dimension is tomeasure a set at a particular scale in such a way that irregularities that occur at the scale less thanthe one we are measuring at are ignored and see how these measurements behave as we decrease thesize of the scale, cf. the textbook [Fal90]. We will �rst introduce the box-counting dimension sincethe de�nition of box-counting dimension is conceptually the easiest. Namely, unlike Hausdor� andpacking dimensions box-counting dimension is not de�ned in terms of measures.3.1.1 Box dimensionsBox dimension was �rst de�ned in the late 1920s. It became one of the most widely used fractaldimensions. Firstly, it is relatively easy to calculate the box dimension for concrete cases. Forexample, it is easy to compute that the box dimension of the middle third Cantor set equals tolog 2log 3 . Secondly, the box dimension is often used for numerical and experimental purposes in sciences.There are many equivalent ways to de�ne the box dimension. For instance, let E be a non-emptybounded subset of Rd and let NÆ(E) denote the smallest number of sets of diameter at most Æ(for Æ > 0 ) that cover E . Then it is natural to expect that NÆ(E) might be proportional to somepower of 1Æ , namely we may expect that we can �nd some positive number s such thatNÆ(E) � Æ�s for Æ close to 0.This leads to the following formal de�nition of the box dimension.De�nition 3.1. Box dimension. The lower and upper box dimensions of a subset E of Rd arede�ned by dimB(E) = liminfÆ&0 logNÆ(E)� log Æand dimB(E) = limsupÆ&0 logNÆ(E)� log Æwhere NÆ(E) is the smallest number of sets of diameter at most Æ that cover E . Alternatively,NÆ(E) can denote either the smallest number of closed balls of radius Æ that cover E or the largestnumber of disjoint balls of radius Æ with centres in E .If dimB(E) and dimB(E) coincide then the common value is called the box dimension of E andis denoted by dimB(E) .Remark. On the one hand the concept that dimB(E) can be de�ned using economical coveringsby small balls of equal radius relates to the concept of the Hausdor� dimension. On the other handthe concept that dimB(E) can be de�ned using eÆcient packings by disjoint balls of equal radiusthat are as dense as possible will form the basis for the de�nition of the packing dimension in thelater section. See [Fal90] for more details. This shows that the de�nitions of the Hausdor� and thepacking dimensions are dual to each other.In the later section we will need the following equivalent de�nition of the box dimension.



3.1 Preliminaries: fractal measures and dimensions 20De�nition 3.2. The lower and upper box dimensions of a subset E of Rd are de�ned bydimB(E) = d� limsupÆ&0 logLd(B(E; Æ))log Æand dimB(E) = d� liminfÆ&0 logLd(B(E; Æ))log Æ ;where B(E; Æ) = �x 2 Rd �� dist(x;E) � Æ	 and Ld denotes the d -dimensional Lebesgue measure.Box-counting dimension satis�es certain basic properties which we will list at the end of the sectionsince we want to compare and contrast these properties with the properties of the Hausdor� andpacking dimensions. However, we want to mention one major disadvantage of the box dimension,namely dimB(E) = dimB(E) and dimB(E) = dimB(E) ; (3.1)where E denotes the closure of E . In particular, it follows from (3.1) that the countable set ofrational numbers in the interval [0,1] has box dimension equal to 1. This implies that (\small")countable sets can have non-zero box dimension, reducing the usefulness of box dimension. We alsonote that due to this property box dimension is not used in computing multifractal spectra discussedin Section 4.1 As we will see in the next sections, this disadvantages are not manifested in Hausdor�and packing dimensions whose de�nitions are based on measures.3.1.2 Hausdor� measure and dimensionHausdor� measure is the generalisation of the Carath�eodory measure introduced by ConstantinCarath�eodory in 1914 as a tool for measuring the s -dimensional volume of a set, where s is anon-negative integer. In 1919 Felix Hausdor� extended Carath�eodory's notion of s -dimensionalvolume of a set to non-integer values of s . Namely, Hausdor� introduced the following measure.De�nition 3.3. Hausdor� measure. For a positive real number s � 0 , the s -dimensionalHausdor� measure Hs(E) of a set E is de�ned byHs(E) = supÆ>0HsÆ(E) ;where HsÆ(E) is the Æ approximative s -dimensional Hausdor� measure of a set E de�ned byHsÆ(E) = inf ( 1Xi=1 diam(Ei)s ���E � 1[i=1Ei; diam(Ei) < Æ) :From the de�nition of the s -dimensional Hausdor� measure it is easily seen that there exists aunique number dimH(E) such thatHs(E) = (0 if dimH(E) < s;1 if dimH(E) > s:This leads to the following formal de�nition of the Hausdor� dimension.De�nition 3.4. Hausdor� dimension. The Hausdor� dimension dimH(E) of a set E is de�nedby dimH(E) = inf fs j Hs(E) = 0g = sup fs j Hs(E) =1g



3.1 Preliminaries: fractal measures and dimensions 21We now state and compare the main properties of the Hausdor� and box dimensions. We note thatwe will state only those main properties which we will use in the later sections of the thesis. Firstwe will list the properties which hold for both box (upper and lower) and Hausdor� dimensions,namely:� If A1 � A2 then dimA1 � dimA2 .� If A is a �nite set then dimA = 0 .� If S is a similarity transformation then dimS(A) = dimA .Hausdor� and upper box dimensions are �nitely stable, namely dim[ni=1Ai = max1�i�n dimAi .Hausdor� dimension is countably stable, namely dim[1i=1Ai = sup1�i<1 dimAi .3.1.3 Packing measure and dimensionAs it was noted earlier (see the remark following De�nition 3.1) the packing measure is dual to theHausdor� measure, namely the packing measure is de�ned using eÆcient packings which is dual tothe de�nition of the Hausdor� measure by considering economical coverings. The packing measurelike the Hausdor� measure gives rise to a dimension. The packing measure and the packing dimensionwere introduced by Tricot [Tri82] in 1982. Even though the de�nition of the packing measure ismuch more recent, nowadays the packing measure is considered as important as Hausdor� measure.Indeed, many Hausdor� measure properties have dual packing measure properties, and it is widelybelieved that an understanding of both the Hausdor� dimension and the packing dimension of afractal set provides the basis for a substantially better understanding of the underlying geometry ofthe set. We will now de�ne the packing measure and dimension. Let E � Rd and Æ > 0 . First,recall that a countable family (B (xi; ri))i of closed balls in Rd is called a centred Æ -packing of Eif xi 2 E , 0 < ri < Æ and B (xi; ri) \ B (xj ; rj) = ? for all i 6= j .De�nition 3.5. Packing pre-measure. For a positive real number s � 0 , the s -dimensionalpacking pre-measure Ps(E) of a set E is de�ned byPs(E) = infÆ>0PsÆ(E) ;where PsÆ(E) is de�ned byPsÆ(E) = sup( 1Xi=1(2ri)s ��� (B (xi; ri))i is a centered Æ -packing of E ) :Unfortunately, Ps is not necessarily countably subadditive and therefore not necessarily a measure.However, we can modify the de�nition of Ps to obtain the s -dimensional packing measure Ps(E)of E as follows.De�nition 3.6. Packing measure. For a positive real number s � 0 , the s -dimensional packingmeasure Ps(E) of a set E is de�ned byPs(E) = infE�[1i=1EiXi Ps (Ei) :We now can de�ne the packing dimension analogously to the Hausdor� dimension.De�nition 3.7. Packing dimension. The packing dimension dimP(E) of a set E is de�ned bydimP(E) = inf fs j Ps(E) = 0g = sup fs j Ps(E) =1gThe packing dimension satis�es the same properties as the Hausdor� dimension (see above).



3.2 Dimensions of inhomogeneous self-similar sets 223.1.4 Hausdor�, Packing and Box dimensions of self-similar sets.The fractal dimensions of (ordinary) self-similar sets satisfying (2.1) have been studied by Moranin [Mor46] and later by Hutchinson in [Hut81]. Nowadays it is well known what Hausdor�, packingand box dimensions of (ordinary) self-similar sets satisfying the Open Set Condition (OSC) are.Recall that the OSC says that there exists an open, non-empty and bounded subset U of Rd with[iSi(U) � U and Si(U) \ Sj(U) = ? for all i 6= j . We will now state these well known resultssaying that Hausdor�, packing and box dimensions of (ordinary) self-similar sets satisfying the OSCcoincide. For the proof of these results see, for example, [Hut81, Fal90].Theorem 3.8. (See [Mor46, Hut81]). Let Si : Rd ! Rd for i = 1; : : : ; N be contractingsimilarities and let ri denote the contracting ratio of Si . Also, let K? be the (homogeneous)self-similar set satisfying (2.1). Finally, let s be the unique non-negative solution ofXi rsi = 1 :If the Open Set Condition is satis�ed, thendimHK? = dimPK? = dimBK? = s : (3.2)3.2 Dimensions of inhomogeneous self-similar setsIt was outlined in the section 3.1 that the study of dimensions of fractal sets is important forunderstanding the geometry of these sets. The main purpose of this section is to investigate variousfractal dimensions of inhomogeneous self-similar sets and compare our results with the result for(ordinary) self-similar sets. Before we state our main results we will need the following importantproperty of the inhomogeneous self-similar set KC satisfying (2.3). Namely, we want to relate theset KC to the (ordinary) self-similar set K? satisfying (2.1). This leads to the following lemma.Lemma 3.9. We have KC = K? [ O : (3.3)Proof.We will prove this lemma in two ways.1. Geometric approach.Observe that O � KC and K? � KC . Hence O [K? � KC .Next, we prove that KC � O [K? .It suÆces to show that (O nO) � K? , since KC = O = (O nO) [ O .Assume that x 2 (O nO) and recall that O = C [Si Si(O) .Hence, we have x 2 O = C [[i Si(O)= C [[i Si(O) :Thus, x 2 Si Si(O) since x is not in O and in particular x is not in C .Therefore, x 2[i Si(O) = [i Si0@C [[j Sj(O)1A



3.2 Dimensions of inhomogeneous self-similar sets 23= [i;j Si;j(O) [ [i Si(C)! :Thus, x 2 Si;j Si;j(O) since x is not in O and in particular x is not in Si Si(C) .Repeating this process, we obtain thatx 2 [jij=nSi(O) for all n .Let X be a compact subset of Rd such that O � X and K? � X . Recall that Si : Rd ! Rdfor i = 1; : : : ; N were de�ned to be contracting similarities. Thus (S1; : : : ; SN ) are contactingsimilarities on X � Rd . Hence, we have[jij=nSi(O) � [jij=nSi(X) for all n .Therefore, [jij=nSi(O) � [jij=nSi(X) for all n . (3.4)Thus (3.4) shows that x 2 [jij=nSi(X) for all n .Hence x 2\n [jij=nSi(X) = K? ;where the equality TnSjij=n Si(X) = K? is well-known (see, e.g. [Fal90, Fal97]). This completesthe proof.2. Analytic approachPart 1. We �rst prove that the set K? [ [i2�� Si(C)is compact.For brevity write L = K? [ Si2�� Si(C) . Since L is clearly bounded, it suÆces to show that Lis closed. Therefore, let x 2 Rd and let (xn)n be a sequence of points in L such that xn ! x .We must now prove that x 2 L . We divide the proof of this into two cases.Case 1: xn 2 K? for in�nitely many n . In this case there is a subsequence (xnk )k with xnk 2 K?for all k . Since K? is closed, we now conclude that x = limn xn = limk xnk 2 K? � L .Case 2: xn 2 K? for �nitely many n . Since xn 2 L = K? [Si2�� Si(C) , we conclude that thereexists a positive integer n0 such that xn 2 [i2�� Si(C)for all n � n0 . Hence, for n � n0 we can choose in 2 �� withxn 2 Sin(C) :We now divide Case 2 into two subcases.



3.2 Dimensions of inhomogeneous self-similar sets 24Subcase 2.1: liminfn jinj < 1 . Let m = liminfn jinj 2 N . Since jinj 2 N for all n , it followsfrom the de�nition of m that there is a subsequence (ink)k such that fink j k 2 Ng � �m . Inparticular, this shows that the set fink j k 2 Ng is �nite. This implies that there is a stringj 2 fink j k 2 Ng and a further subsequence (inkl )l such that inkl = j for all l . We deduce fromthis that xnkl 2 Sinkl (C) = Sj(C) for all l , and since Sj(C) is closed we therefore conclude thatx = lim xn = liml xnkl 2 Sj(C) � L .Subcase 2.2: liminfn jinj =1 . In this case we conclude that jinj ! 1 as n!1 , whencediam �Sin(C) [ Sin(K?) � = rin diam �C [K? �� rjinjmax diam �C [K? �! 0 : (3.5)Next, for each n 2 N choose a point yn 2 Sin(K?) :We will now prove that (yn)n is Cauchy. Indeed, for positive integers n and m we havejyn � ymj � jyn � xnj+ jxn � xmj+ jxm � ymj� diam �Sin(C) [ Sin(K?) �+ jxn � xmj+ diam �Sim(C) [ Sim(K?) � :This inequality combined with (3.5) and the fact that (xn)n is convergent shows that (yn)n isCauchy.Since (yn)n is Cauchy, we conclude that there is y 2 Rd such that yn ! y . We now observe thatx = y :Indeed, it follows from (3.5) thatjx� yj � jx� xnj+ jxn � ynj+ jyn � yj� jx� xnj+ diam �Sin(C) [ Sin(K?) �+ jyn � yj! 0 :We conclude from this that x = y .Finally, since yn 2 Sin(K?) � K? and K? is closed, we see that x = y = limn yn 2 K? � L .Part 2. Next we show that KC = K? [ [i2�� Si(C) :For brevity write L = K? [Si Si(C) . Since KC is the only non-empty and compact set satisfyingKC = Si Si(KC) [ C , it suÆces to show that L is non-empty and compact and satis�es L =Si Si(L) [ C . To prove this �rst observe that it follows from Part 1 that L is non-empty andcompact. Next, we prove that L satis�es L = Si Si(L) [ C . Indeed, we have[i Si(L) [ C = [i Si K? [ [i2�� Si(C)! [ C= [i Si(K?) [ [i [i2�� Sii(C) [ C= [i Si(K?) [ [j2�� Sj(C) : (3.6)



3.2 Dimensions of inhomogeneous self-similar sets 25Finally, since [iSi(K?) = K? , we conclude from (3.6) that[i Si(L) [ C = K? [ [j Sj(C)= L :This completes the proof.Theorem 3.10.1. We have the following formula for any countably stable dimension of the set KC satisfying (2.3).dimKC = max(dimK?; dimC) : (3.7)In particular, we have the following formulae for the Hausdor� and packing dimensions of the setKC satisfying (2.3). dimHKC = max(dimHK?; dimH C) ; (3.8)dimPKC = max(dimPK?; dimPC) ; (3.9)where dimH denotes the Hausdor� dimension and dimP denotes the packing dimension.2. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. We have the following formulafor the upper box dimension of the set KC satisfying (2.3).dimB(KC) = max(dimB(K?); dimB(C)) ; (3.10)where dimB denotes the upper box dimension.Proof. 1. It follows from Lemma 3.9 thatKC = K? [ [i2�� Si(C) :Thus, using that the Hausdor� and the packing dimensions are countably stable, we obtain (3.8)and (3.9) respectively. More precisely, we havedimHKC = max� dimHK? ; supi2�� dimH SiC �= max� dimHK? ; supi2�� dimH C �= max� dimHK? ; dimH C � :Similarly, we have dimPKC = max� dimPK? ; supi2�� dimP SiC �= max� dimPK? ; supi2�� dimPC �= max� dimPK? ; dimPC � :2. The formula for the upper box-dimension is obtained using results on Lq spectra of inhomoge-neous self-similar measures. Therefore for the proof of (3.10), see Section 4.2.1, where we study Lqspectra of inhomogeneous self-similar measures.



3.3 Open problems for dimensions of inhomogeneous self-similar sets 26Comparison with (homogeneous) self-similar sets.Comparing Theorem 3.10 with dimHK? = dimPK? = dimBK? = s and Theorem 3.8 we seethat Theorem 3.10 provides a natural inhomogeneous extension of the classical homogeneous resultin Theorem 3.8. Namely, dimension of the inhomogeneous set equals the maximum of a naturaldimension index associated with the homogeneous set and the dimension of the inhomogeneousterm.3.3 Open problems for dimensions of inhomogeneous self-similar setsUnfortunately, we do not know if a similar result holds for the lower box dimension of KC . It isnatural to ask the following question.Question 3.11. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. Is it true thatdimB(KC) = max(dimB(K?); dimB(C)) ; (3.11)where dimB denotes the lower box-dimension.It is also quite unsatisfactory that our result for the upper box-dimension is obtained under theassumption that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. It is natural to ask if theresults are true assuming only the appropriate version of the standard Open Set Condition. Namely,assuming Inhomogeneous Open Set Condition (IOSC) which we will state in Section 4.3.1.Question 3.12. Are the results in Section 3.2 true if the IOSC is satis�ed?



4 Multifractal analysis of inhomogeneous self-similar measures 274 Multifractal analysis of inhomogeneous self-similar mea-sures4.1 Preliminaries: multifractal analysisIn this section we give a brief introduction to the multifractal analysis. In particular, we will empha-sise the importance of multifractal analysis of self-similar measures and their natural generalisationsinhomogeneous self-similar measures.4.1.1 Lq spectra and R�enyi dimensionsIn section 3.1 we showed how to describe the size of a set by computing its dimension. However,this does not describe the way the measure is allocated within this supporting set. This is done byintroducing fractal dimensions of a probability measure. Roughly speaking, there are two types offractal dimensions of a probability measure. Namely, there are local and global dimensions. Forvarious classes of measures these dimensions are related to each other by multifractal formalism. Theglobal dimensions were essentially introduced by R�enyi [R�en60, R�en61] in 1960 as a tool for analyzingvarious problems in information theory. Indeed, for a probability vector p = (p1; : : : ; pn) andq 2 R , R�enyi de�ned the q -entropy Hp(q) of p by Hp(q) = 11�q logPi pqi for q 6= 1 and Hp(1) =�Pi pi log pi . Observe that l'Hospital's rule shows that Hp(q) ! Hp(1) as q ! 1 , and the q -entropies Hp(q) can therefore be regarded as natural generalizations of the usual entropy Hp(1) =�Pi pi log pi of p . The entropies Hp(q) are discussed in detail by R�enyi in ([R�en70], Chapter9). In the 1980s Hentshel and Procaccia reintroduced these dimensions to characterize fractals andstrange attractors [HP83]. We will now give formal de�nitions of these global dimensions, namely,we will now formally de�ne closely related Lq spectra and R�enyi dimensions.For a Borel probability measure m on Rd and q 2 R , the lower Lq spectrum �m(q) and theupper Lq spectrum �m(q) of m are de�ned as follows. For q 2 R we put�m(q) = liminfr&0 log Rsuppm m(B(x; r))q�1 dm(x)� log r ;�m(q) = limsupr&0 log Rsuppmm(B(x; r))q�1 dm(x)� log r ;where suppm denotes the support of m .As it was mentioned above, R�enyi dimensions and Lq spectra are closely related. For a Borelprobability measure m on Rd and q 2 [�1;1] , the lower and upper q -R�enyi dimensions of mare de�ned byDm(q) = liminfr&0 1q � 1 log Rsuppm m(B(x; r))q�1 dm(x)log r for q 2 R n f1g ;Dm(q) = limsupr&0 1q � 1 log Rsuppm m(B(x; r))q�1 dm(x)log r for q 2 R n f1g ;Dm(1) = liminfr&0 Rsuppm logm(B(x; r)) dm(x)log r ;Dm(1) = limsupr&0 Rsuppm logm(B(x; r)) dm(x)log r ;



4.1 Preliminaries: multifractal analysis 28and Dm(�1) = liminfr&0 log infx2suppmm(B(x; r))log r ;Dm(�1) = limsupr&0 log infx2suppmm(B(x; r))log r ;Dm(1) = liminfr&0 log supx2suppmm(B(x; r))log r ;Dm(1) = limsupr&0 log supx2suppmm(B(x; r))log r :4.1.2 Multifractal spectraWe now turn towards the de�nition of local dimensions of a probability measure mentioned in theprevious section. For a probability measure m on Rd (or on a general metric space), the lower andupper local dimensions of m at the point x are de�ned bydimloc(x;m) = liminfr&0 logm(B(x; r))log r ;dimloc(x;m) = limsupr&0 logm(B(x; r))log r :If dimloc(x;m) and dimloc(x;m) are equal then the common value is called the local dimension ofm at the point x and is denoted by dimloc(x;m) . We de�ne the Hausdor� multifractal spectrumfunction, fH;m , as the Hausdor� dimension of the level sets of the local dimension of m , and wede�ne the packing multifractal spectrum function, fP;m as the packing dimension of the level setsof the local dimension of m , i.e we putfH;m(�) = dimH�x 2 Rd ���� limr&0 logm(B(x; r))log r = �� ;fP;m(�) = dimP�x 2 Rd ���� limr&0 logm(B(x; r))log r = �� ;for � � 0 , where dimH denotes the Hausdor� dimension and dimP denotes the packing dimension.4.1.3 Multifractal formalismOne of the main signi�cances of the Lq spectra of a measure m , is their relationship with themultifractal spectrum of m , known as multifractal formalism. More precisely, multifractal for-malism relates global (Lq spectra) and local (multifractal spectra) behaviours using Legendretransform. Next, recall that the Legendre transform '� of a function ' : R ! R is de�ned by'�(x) = infy(xy+'(y)) . In the 1980s it was conjectured in the physics literature [HJK + 86, HP83]that for \good" measures the following result, relating the multifractal spectra functions to theLegendre transform of the Lq spectra, holds: namely (1) that the lower and upper Lq spectracoincide, and (2) that the multifractal spectra functions coincide with the Legendre transform ofthe Lq spectra. This leads to the following de�nition.De�nition 4.1. [The Multifractal Formalism] A probability measure m on Rd is said tosatisfy the Multifractal Formalism if �m(q) = �m(q) ;and fH;m(�) = fP;m(�) = ��m(�) = ��m(�) ;for all q 2 R and all � � 0 .



4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar measures 29Nowadays it is well-know that (ordinary) self-similar measures satisfying OSC verify MultifractalFormalism. However, it is easy to �nd measures that do not satisfy the Multifractal Formalism, andduring the 1990s there has therefore been an enormous interest in verifying the Multifractal Formal-ism and computing the multifractal spectra of measures for various classes of measures exhibitingsome degree of self-similarity, cf. [Fal97] and the references therein.4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar mea-suresLq spectra and R�enyi dimensions of (ordinary) self-similar measures satisfying (2.2) have beenstudied intensively for the past 15 years and there is a huge body of literature discussing thisproblem, see, for example, [Fal97] and the references therein. Continuing this line of investigation,in this section we will study the Lq spectra and R�enyi dimensions of inhomogeneous self-similarmeasures. To the best of our knowledge the only results on Lq spectra of inhomogeneous self-similarmeasures has been obtained by Strichartz in [Str93b] under a number of simpli�ed assumptions.More precisely, Strichartz assumes that the Lq spectra of the condensation measures exist andtherefore the renewal type arguments used in [Str93b] to obtain the Lq spectra of the inhomogeneousself-similar measures are fairly straightforward . On the contrary we do not assume that Lq spectraof the condensation measure exists and we develop a general renewal type argument to obtain aformula for the Lq spectra and Renyi dimensions of the inhomogeneous measures. In addition, wegive a more comprehensive discussion of the Lq spectra and Renyi dimensions of inhomogeneousmeasure self-similar measures which includes the study of phase transitions of these measures andapplications to the study of the box dimensions of inhomogeneous self-similar sets discussed inSection 3.2 .4.2.1 Lq spectra: main results and examplesFirst, recall that ri denotes the contraction ratio of Si , and de�ne � : R ! R , byXi pqi r�(q)i = 1 :Observe that the function � is well-de�ned; indeed, if we let 'q : R ! R denote the function'q(t) = Pi pqi rti , then 'q is clearly continuous and strictly decreasing with limt!�1 'q(t) = 1and limt!1 'q(t) = 0 , and we can therefore �nd a unique �(q) 2 R such that Pi pqi r�(q)i ='q(�(q)) = 1 .We will now state the �rst of our main results providing lower and upper bounds for Lq spectra ofan inhomogeneous self-similar measure.Theorem 4.2. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint.1. For all q 2 R we have ��(q) � max��(q) ; � �(q)� :2. For all q 2 R we have min��(q) ; ��(q)� � ��(q) :3. For all q � 1 we have max��(q) ; � �(q)� � ��(q) ;max��(q) ; � �(q)� � ��(q) :



4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar measures 30The proof of Theorem 4.2 is given in Section 4.2.4. The following exact value for upper Lq spectrumof an inhomogeneous self-similar measure for q � 1 follows immediately from Theorem 4.2.Corollary 4.3. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. For all q � 1we have ��(q) = max��(q) ; � �(q)� :Corollary 4.3 gives a formula for the Lq spectra of an inhomogeneous self-similar measure. We nowmake the following three additional comments related to the result in Corollary 4.3.(1) Comparison with (homogeneous) self-similar measures.The Lq spectra, ��0(q) and ��0(q) , of a (homogeneous) self-similar measure �0 satisfying (2.2)have been studied intensively during the past 15 years, cf., for example, the surveys [[Lau95], [Heu07]]or the textbook [Fal97] and the references therein, and it is instructive to compare the results inTheorem 4.2 and Corollary 4.3 with the corresponding results in [Lau95]. We will now state theresult in [Lau95].Theorem 4.4. [See, for example, [Lau95]] Let Si : Rd ! Rd for i = 1; : : : ; N be contractingsimilarities and and write ri for the contracting ratio of Si . Let (p1; : : : ; pN ) be a probabilityvector and let �0 be the (homogeneous) self-similar measure satisfying (2.2). Finally, for q 2 R ,let �0(q) be de�ned by Xi pqi r�0(q)i = 1 :If the Open Set Condition is satis�ed, then��0(q) = ��0(q) = �0(q) (4.1)for all q .Comparing Corollary 4.3 and Theorem 4.4, we see that Corollary 4.3 provides a natural inhomoge-neous extension of the classical homogeneous result in Theorem 4.4 . Indeed, this extension is similarto the formulas for the Hausdor� dimension (3.8) and the packing dimension (3.9) of an inhomo-geneous self-similar set discussed earlier: namely, the dimension of the inhomogeneous set/measureequals the maximum of a natural dimension index associated with the homogeneous set/measureand the dimension of the inhomogeneous term.(2) Collapsing of the Lq spectrum of � . The following rather surprising result follows fromCorollary 4.3. Namely, regardless of how the maps (S1; : : : ; SN ) are chosen and regardless of howthe measure � is chosen, then the Lq spectrum of the inhomogeneous measure � always collapsesand becomes identical to that of � for all q suÆciently close to 1 .Corollary 4.5. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. Then thereexists q0 > 1 such that ��(q) = � �(q)for all q 2 [1; q0] .Proof. Firstly, note that it is well-known (and easily seen) that � � is convex, and therefore, inparticular, continuous. Also observe that � �(1) = 0 . Secondly, note that � is continuouswith �(1) < 0 . Since the functions � � and � are continuous with �(1) < � �(1) , there ex-ists q0 > 1 such that �(q) < ��(q) for all q 2 [1; q0] . Corollary 4.3 therefore implies that��(q) = max(�(q); � �(q)) = � �(q) for all q 2 [1; q0] .(3) Phase transitions. Another interesting result following from Corollary 4.3 is that an inhomo-geneous self-similar measure often has phase transitions. This is in sharp contrast to the behaviour of



4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar measures 31(homogeneous) self-similar measures satisfying the Open Set Condition. We will now explain what aphase transition is and prove that inhomogeneous self-similar measures often have phase transitions.Let m be a probability measure on Rd . Due to a formal analogy between the Lq spectra of mand the partition function in statistical mechanics, the Lq spectra �m(q) and �m(q) are often inthe physics literature interpreted as the free energy of \the physical system described by m " as afunction of the inverse temperature q . The reader is referred to [[BP97], pp. 128{132;[BS93], pp.114{126;[Ott93], pp. 309{910] for a discussion of these and other analogies between multifractalanalysis and statistical mechanics. In statistical mechanics, phase transitions are manifested aspoints of non-di�erentiability of the free energy. The study of the di�erentiability properties of theLq spectra �m(q) and �m(q) can therefore be interpreted as the study of \phase transitions" ofthe measure m , and following this analogy points q at which one or both of the Lq spectra �m(q)and �m(q) are non-di�erentiable are called phase transitions.It is well known that a (homogeneous) self-similar measure �0 satisfying the Open Set Conditiondoes not have any phase transitions. In fact, it follows from Theorem 4.4 that ��0(q) = ��0(q) =�0(q) is a real analytic function of q . This is in sharp contrast to the following surprising behaviourof inhomogeneous self-similar measures. Namely, inhomogeneous self-similar measures often havephase transitions. Indeed, the proposition below provides a general condition guaranteeing theexistence of phase transitions.Proposition 4.6. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint.1. If there exists q0 2 (1;1) such that �(q0) = ��(q0)and �� is di�erentiable at q0 with �0(q0) 6= � 0�(q0) ;then �� has a phase transition at q0 .2. In particular, if t > 0 is a positive real number such that � �(q) = t(1� q) for all q (this is,for example, the case if C is a t -set and � equals the normalized t -dimensional Hausdor�measure restricted to C ) and �t < �0(1) (this is easily seen to be the case if, for example,the ri 's are suÆciently small), then �� has a phase transition.Proof. 1. It follows immediately from the assumptions in Proposition 4.6 and the fact that ��(q) =max(�(q); � �(q)) for all q > 1 , that �� is non-di�erentiable at q0 .2. To prove this note that the convexity of � and the fact that �t < �0(1) , guarantee the existenceof a number q0 2 (1;1) such that �(q0) = t(1 � q0) and � 0�(q0) = �t < �0(1) � �0(q0) , i.e.�(q0) = � �(q0) and � 0�(q0) 6= �0(q0) . Now Part 1 shows that �� has a phase transition at q0 .Note that the following surprising result follows from Proposition 4.6.(2), namely, even if the in-homogeneous term � is very well-behaved and the function � � is real analytic (for example, if� equals the normalized t -dimensional Hausdor� measure restricted to a t -set C ), the resultinginhomogeneous self-similar measure � can have phase transitions. Below we present examples withseveral phase transitions.



4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar measures 32Example 4.7.We now present our �rst concrete example with 2 phase transitions. In this example we take d = 4and N = 2 , and we de�ne the maps (S1; S2) and the probability vector (p1; p2; p) as follows. LetS1; S2 : [0; 5]4 ! [0; 5]4 be de�ned byS1(x) = 15x+ a1 ; S2(x) = 16x+ a2 ;where ai = (2i; 2i; 2i; 2i) for i = 1; 2 , and let (p1; p2; p) = ( 25 ; 27 ; 1135 ) . In this case the function� : R ! R is given by �25�q �15��(q) +�27�q �16��(q) = 1 : (4.2)We now de�ne the measure � as follows. First, let � denote the family of all strings i = i1i2i3i4consisting of 4 symbols ij with ij 2 f0; 1g for all j . Next, let the maps Ti : [0; 1]4 ! [0; 1]4for i = i1i2i3i4 2 � be de�ned by Ti(x) = 12x + ai where ai = ( i12 ; i22 ; i32 ; i42 ) , and de�ne theprobability vector (pi)i2� by p0000 = 71100 and pi = 291500 for i 2 � n f0000g . We now let � denotethe self-similar measure associated with the list (Ti; pi)i2� , i.e. � is the unique probability measureon [0; 1]4 such that � =Pi pi� Æ T�1i . It is well-known (cf. Theorem 4.4 or [Lau95]) that� �(q) = � �(q) = �(q)for all q where �(q) is given by Pi pqi ( 12 )�(q) = 1 , i.e.�(q) = log(( 71100 )q + 15( 291500 )q)log 2 : (4.3)The graphs of the functions � and � � = � � = � are sketched in Figure 4.2.1. A standard calculusargument shows that there exist two numbers q0 � 1:2256 and q1 � 3:1339 with 1 < q0 < q1such that �(q) < �(q) for q 62 (q0; q1) and �(q) < �(q) for q 2 (q0; q1) . It therefore follows fromCorollary 4.3 that ��(q) = 8><>:�(q) for q 2 [1; q0);�(q) for q 2 [q0; q1];�(q) for q 2 (q1;1).Observe that in this example �� has phase transitions at q0 and q1 . This completes the example.Example 4.8.We now present our next concrete example with three phase transitions. In this example we againtake d = 4 and we consider the following inhomogeneous self-similar measure. Let P1; P2 : [0; 5]4 ![0; 5]4 be contracting similarities de�ned byP1(x) = 13x+ b1 ; P2(x) = 14x+ b2 ;where b1 = (3; 0; 0; 0) and b2 = (0; 3; 0; 0) . Also, let (�1; �2; �) be a probability vector given by(�1; �2; �) = ( 1840 ; 1540 ; 740 ) . Now, let � be the inhomogeneous self-similar measure de�ned by� = 2Xi=1 �i� Æ P�1i + �� ; (4.4)where � is the inhomogeneous self-similar measure consinered in Example 4.7. In this case it followsfrom Corollary 4.3 that for q � 1 ��(q) = max���(q) ; ��(q)� ;
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Figure 4.2.1:This �gure shows the graphs of the functions � and �� = �� = � de�ned in (4.2) and (4.3), respectively.The graph of � is drawn as a blue line and the graph of �� = �� = � is drawn as a red line. Observe that�� = max(�; ��) has phase transitions at q0 � 1:2256 and q1 � 3:1339 .with the function �� : R ! R given by�1840�q �13���(q) +�1540�q �14���(q) = 1 : (4.5)From Example 4.7 we have that ��(q) = max��(q) ; �(q)� ; for q � 1 . Therefore,��(q) = max���(q) ; �(q) ; �(q)� :The graphs of the functions �� , �(q) and �(q) are sketched in Figure 4.2.2. As before a standardcalculus argument shows that there exist tree numbers q0 � 1:1545 , q1 � 1:7401 and q2 � 3:1339with 1 < q0 < q1 < q2 such that �(q); �� < �(q) for q 2 [1; q0) , �(q); �(q) < �� for q 2[q0; q1) , �(q); ��(q) < � for q 2 [q1; q2) and �(q); �� < �(q) for q 2 [q2;1) . Thus, we have,��(q) =8>>><>>>:�(q) for q 2 [1; q0);��(q) for q 2 [q0; q1);�(q) for q 2 [q1; q2);�(q) for q 2 [q2;1).Observe that in this example �� has phase transitions at q0 , q1 , q2 and therefore we haveconstructed the inhomogeneous self-similar measure with three phase transitions. This completesthe example.Note that in Example 4.8 we have de�ned the condensation measure to be itself the inhomogeneousself-similar measure (considered in Example 4.7) with two phase transitions . This way the resultinginhomogeneous self-similar measure had three phase transitions. Obviously, now we can de�nethe condensation measure to be itself the inhomogeneous self-similar measure with three phasetransitions (take, for instance, the inhomogeneous self-similar measure in Example 4.8) and obtainthe resulting inhomogeneous self-similar measure with four phase transitions. By iterating thisprocess we can therefore construct the inhomogeneous self-similar measure with an arbitrary numberof phase transitions.
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Figure 4.2.2:This �gure shows the graphs of the functions �� , � and � de�ned in (4.5), (4.2) and (4.3), respectively.The graph of �� is drawn as a green line, the graph of � is drawn as a blue line and the graph of � isdrawn as a red line. Observe that �� = max(��; �; � ) has phase transitions at q0 � 1:1545 , q1 � 1:7401and q2 � 3:1339 .For a Borel probability measure m on Rd and q 2 R , we can also de�ne the following variationsof the lower and upper Lq spectra of m . Namely, for q 2 R we putTm(q) = liminfr&0 log 1rd R m(B(x; r))q dLd(x)� log r ; (4.6)Tm(q) = limsupr&0 log 1rd R m(B(x; r))q dLd(x)� log r ; (4.7)where Ld denotes the d -dimensional Lebesgue measure. It is not diÆcult to see that �m(q) =Tm(q) and �m(q) = Tm(q) for q � 1 ; however the values may di�er for q < 1 . The dimensionsT�(q) and T�(q) satisfy a relation similar to Corollary 4.3 for q � 0 .Theorem 4.9. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. For all 0 � qwe have T�(q) = max��(q) ; T �(q)� :The proof of Theorem4.9 is given in Section 4.2.5As an application of Theorem 4.9 we will obtain a formula for the upper box-dimension of aninhomogeneous self-similar set KC stated in Theorem 3.10(2).Proof of Theorem 3.10(2). Momentarily, writing E = suppm for the support of a probabilitymeasure m on Rd and B(E; r) = �x 2 Rd �� dist(x;E) � r	 , we see that (cf. [Fal97], p. 20, (2.5) )Tm(0) = limsupr&0 log 1rd R m(B(x; r))0 dLd(x)� log r = limsupr&0 log 1rd Ld(B(E; r))� log r = dimB(E) ;where dimB(E) denotes the upper box-dimension of E . By putting q = 0 in Theorem 4.9 , wetherefore obtain the result in Theorem 3.10 (2). Namely, we havedimB(KC) = max��(0) ; dimB(C)� :



4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar measures 35Since dimB(K?) = �(0) (cf. [Fal90] or [Hut81]), this can be written asdimB(KC) = max� dimB(K?) ; dimB(C)� ;recall that K? is the self-similar set satisfying K? = Si Si(K?) , cf. (2.1).4.2.2 R�enyi dimensions: main resultsObviously, we immediately obtain the following results for R�enyi dimensions from Theorem 4.2 andCorollary 4.3 .Theorem 4.10. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint.1. For all q 2 R n f1g we have D�(q) � max� �(q)1� q ; D�(q)� :2. For all q 2 R n f1g we have min� �(q)1� q ; D�(q)� � D�(q) :3. For all 1 < q we have D�(q) � min� �(q)1�q ; D�(q)� ;D�(q) � min� �(q)1�q ; D�(q)� :Corollary 4.11. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. For all 1 < qwe have D�(q) = min� �(q)1� q ; D�(q)� :We now show that the result from Corollary 4.11 also holds in the two limiting cases for q = 1 andq =1 , and that the result from Theorem 4.10.(1) also holds in the limiting case q = �1 .Theorem 4.12. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. We haveD�(1) � D�(1) � D�(1) � D�(1) :In particular, if D�(1) = D�(1) , then D�(1) = D�(1) :Since clearly limq!1+ �(q)1�q =1 , this may be written asD�(1) = min� limq!1+ �(q)1� q ; D�(1)� :Theorem 4.13. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. We haveD�(1) = min� mini log pilog ri ; D�(1)� :Since clearly limq!1 �(q)1�q = mini log pilog ri , this may be written asD�(1) = min� limq!1 �(q)1� q ; D�(1)� :



4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar measures 36Theorem 4.14. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. We haveD�(�1) � max� maxi log pilog ri ; D�(�1)� :Since clearly limq!�1 �(q)1�q = maxi log pilog ri , this may be written asD�(�1) � max� limq!�1 �(q)1� q ; D�(�1)� :Theorem 4.12 is proved in Section 4.2.7, and Theorem 4.13 and Theorem 4.14 are proved in Section4.2.6.4.2.3 Proofs of the results for Lq spectra and the R�enyi dimensions: a simple generallemmaWe now turn towards the proofs of the results in Section 4.2.1 and Section 4.2.2 .Note that throughout this Section, we will use the notation introduced earlier. Also, writermin = mini ri ; rmax = maxi ri :In this section we will prove a simple and very general lemma. This lemma will be useful forobtaining bounds for the Lq spectrum and the R�enyi dimensions in subsequent sections. We �rststate and prove the lemma. After the statement and the proof of the lemma, we will attempt toprovide an explanation of how the lemma is used in the subsequent sections of this part of the thesis.Lemma 4.15. Let � : (0;1)� (0;1)! (0;1) be a commutative and associative binary operation,and assume that if x; y; z 2 (0;1) with x � y , thenx � z � y � z : (4.8)Let ? : (0;1) � (0;1) ! (0;1) be a binary operation, and assume that if a; x; y 2 (0;1) withx � y , then a ? x � a ? y : (4.9)Fix a1; : : : ; aN > 0 and a function u : (0;1)! (0;1) . Let r0 > 0 and let F;G : (0;1)! R betwo real valued functions. Assume thatF (r) � ��i � ai ? F � rri��� � u(r) ;G(r) � ��i � ai ? G� rri��� � u(r) ; (4.10)for all 0 < r < r0 . If F (r) � G(r) for all r 2 [rminr0; r0] , then F (r) � G(r) for all r 2 (0; r0] .Proof. Assume that F (r) � G(r) for all r 2 [rminr0; r0] . We now prove by induction after n 2 N[f0g , that F (r) � G(r) for all r 2 [rnmaxrminr0; r0] . The start of the induction follows from the factthat we are assuming that F (r) � G(r) for all r 2 [rminr0; r0] . Next, assume that n 2 f0; 1; 2; : : :gand that F (r) � G(r) for all r 2 [rnmaxrminr0; r0] . We must now show that F (r) � G(r) for all r 2[rn+1maxrmaxr0; r0] . Therefore, let r 2 [rn+1maxrminr0; r0] . If r 2 [rnmaxrminr0; r0] , then it follows from theinductive hypothesis that F (r) � G(r) . We may thus assume that r 2 [rn+1maxrminr0; rnmaxrminr0] .This implies that rri � rnmaxrminr0ri � rnmaxr0 � r0 and rri � rn+1maxrminr0ri � rnmaxrminr0 for all i ,whence rri 2 [rnmaxrminr0; r0] for all i . The inductive hypothesis therefore implies thatF � rri� � G� rri� ;



4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar measures 37for all i , and so ai ? F � rri� � ai ? G� rri� ;for all i . Hence F (r) � ��i � ai ? F � rri��� � u(r);� ��i � ai ? G� rri��� � u(r);� G(r) :This completes the proof.We are interested in the following four special cases of Lemma 4.15 .Case 1: Obtaining bounds for the R�enyi dimensions for q 6= 1;�1 . In order to obtainbounds for the R�enyi dimensions for q 6= 1;�1 , we �x q 2 [�1;1] with q 6= 1;�1 and applyLemma 4.15 to the following setting. Namely, the operations � and ? are de�ned by x � y = x+yand a ?x = ax , and the numbers ai and the function u are de�ned by ai = pqi and u(r) = pqr�t(for an appropriate choice of t ). In this case the inequalities in (4.10) becomeF (r) � Xi pqiF � rri�+ pqr�t ;G(r) � Xi pqiG� rri�+ pqr�t : (4.11)Hence, if F;G : (0;1)! (0;1) are functions such that (4.11) is satis�ed and F (r) � G(r) for allr 2 [rminr0; r0] , then F (r) � G(r) for all r 2 (0; r0] . In Section 4.2.4 we show that the functionsF (r) = Z �(B(x; r))q�1 d�(x)and G(r) = c0r�t(for appropriate choices of t and c0 ) satisfy (4.11) and F (r) � G(r) for all r 2 [rminr0; r0] , andLemma 4.15 can be applied to give bounds for the R�enyi dimensions (and the Lq spectrum) of �for q 6= 1;�1 .Case 2: Obtaining bounds for the R�enyi dimensions for q =1 . In order to obtain boundsfor the R�enyi dimensions for q = 1 we apply Lemma 4.15 to the following setting. Namely, theoperations � and ? are de�ned by x � y = max(x; y) and a ? x = ax , and the numbers ai andthe function u are de�ned by ai = pi and u(r) = prt (for an appropriate choice of t ). In thiscase the inequalities in (4.10) becomeF (r) � max�maxi piF � rri� ; prt � ;G(r) � max�maxi piG� rri� ; prt� : (4.12)Hence , if F;G : (0;1)! (0;1) are functions such that (4.12) is satis�ed and F (r) � G(r) for allr 2 [rminr0; r0] , then F (r) � G(r) for all r 2 (0; r0] . In Section 4.2.6 we show that the functionsF (r) = supx2supp��(B(x; r))



4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar measures 38and G(r) = c0rt(for appropriate choices of t and c0 ) satisfy (4.12) and F (r) � G(r) for all r 2 [rminr0; r0] , andLemma 4.15 can be applied to give bounds for the R�enyi dimensions of � for q =1 .Case 3: Obtaining bounds for the R�enyi dimensions for q = �1 . In order to obtain boundsfor the R�enyi dimensions for q = �1 we apply Lemma 4.15 to the following setting. Namely, theoperations � and ? are de�ned by x � y = min(x; y) and a ? x = ax , and the numbers ai andthe function u are de�ned by ai = pi and u(r) = prt (for an appropriate choice of t ). In thiscase the inequalities in (4.10) becomeF (r) � min�mini piF � rri� ; prt � ;G(r) � min�mini piG� rri� ; prt � : (4.13)Hence , if F;G : (0;1)! (0;1) are functions such that (4.13) is satis�ed and F (r) � G(r) for allr 2 [rminr0; r0] , then F (r) � G(r) for all r 2 (0; r0] . In Section 4.2.6 we show that the functionsF (r) = infx2supp��(B(x; r))and G(r) = c0rt(for appropriate choices of t and c0 ) satisfy (4.13) and F (r) � G(r) for all r 2 [rminr0; r0] , andLemma 4.15 can be applied to give bounds for the R�enyi dimensions of � for q = �1 .Case 4: Obtaining bounds for the R�enyi dimensions for q = 1 . In order to obtain boundsfor the R�enyi dimensions for q = 1 we apply Lemma 4.15 to the following setting. Namely, theoperations � and ? are given by x � y = xy and a?x = xa , and the numbers ai and the functionu are given by ai = pi and u(r) = esrpt where s =Pi pi log pi+p log p (for an appropriate choiceof t ). In this case the inequalities in (4.10) becomeF (r) � es  Yi F � rri�pi! rtp ;G(r) � es  Yi G� rri�pi! rtp : (4.14)Hence , if F;G : (0;1) ! (0;1) are functions such that (4.14) are satis�ed and F (r) � G(r)for all r 2 [rminr0; r0] , then F (r) � G(r) for all r 2 (0; r0] . In Section 4.2.7 we show that thefunctions F (r) = exp Z log�(B(x; r)) d�(x)and G(r) = c0rt(for appropriate choices of t and c0 ) satisfy (4.14) and F (r) � G(r) for all r 2 [rminr0; r0] , andLemma 4.15 can be applied to give bounds for the R�enyi dimensions of � for q = 1 .



4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar measures 394.2.4 Proofs. The case: q 6= 1;�1 .In this section we prove Theorem 4.2. The proof is divided into two parts. Namely, we �rst applyLemma 4.15 to prove Theorem 4.2(1) and Theorem 4.2(2). Next, we prove Theorem 4.2(3). For aBorel probability measure m on Rd and q 2 R , writeIm(q; r) = Zsuppm m(B(x; r))q�1 dm(x) :We now present the proof of Theorem 4.2(1) and Theorem 4.2(2). We �rst derive a functionalequation for Im(q; r) ; this in done in Proposition 4.16. Next, we use this functional equation andLemma 4.15 to prove Theorem 4.2.(1) and Theorem 4.2.(2); this is done in Proposition 4.17 andProposition 4.18.Proposition 4.16. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. Let q 2 R .Then there exists a positive number r0 > 0 such thatI�(q; r) =Xi pqi I� �q; rri�+ pqI�(q; r) (4.15)for all 0 < r < r0 .Proof. Let r0 = min(mini 6=j dist(SiKC ; SjKC) ; mini dist(SiKC ; C) ) . Obviously r0 > 0 , since thesets (S1KC ; : : : ; SNKC ; C) are assumed to be pairwise disjoint and it is a �nite collection of sets.It follows from (2.4) that if 0 < r < r0 , thenI�(q; r) = Xi pi ZKC �(B(x; r))q�1 d(� Æ S�1i )(x) + p ZKC �(B(x; r))q�1 d�(x)= Xi pi ZSiKC �(B(x; r))q�1 d(� Æ S�1i )(x) + p ZC �(B(x; r))q�1 d�(x) : (4.16)However, by using (2.4) once more, we also have for 0 < r < r0 ,�(B(x; r))q�1 =  Xi pi�(S�1i B(x; r)) + p�(B(x; r))!q�1= (� pi�(S�1i B(x; r)) �q�1 for x 2 SiKC ;( p�(B(x; r)) )q�1 for x 2 C,= (pq�1i �(B(S�1i x; rri ))q�1 for x 2 SiKC ;pq�1�(B(x; r))q�1 for x 2 C. (4.17)Combining (4.16) and (4.17) givesI�(q; r) = Xi pqi ZSiKC ��B�S�1i x; rri��q�1 d(� Æ S�1i )(x) + pq ZC �(B(x; r))q�1 d�(x)= Xi pqi ZKC ��B�x; rri��q�1 d�(x) + pq ZC �(B(x; r))q�1 d�(x)= Xi pqi I��q; rri�+ pqI�(q; r) :This completes the proof of Proposition 4.16.



4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar measures 40Proposition 4.17. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. Let q 2 Rand let max(�(q) ; � �(q) ) < t .1. There exists a positive number r0 > 0 such thatI�(q; r) �Xi pqi I� �q; rri�+ pqr�tfor all 0 < r < r0 .2. There exist constants r0; c0 > 0 such that the function J : (0;1) ! R de�ned by J(r) =c0r�t satis�es J(r) �Xi pqiJ � rri�+ pqr�tfor all 0 < r < r0 , and I�(q; r) � J(r) for all r 2 [rminr0; r0] .3. We have ��(q) � max(�(q) ; � �(q) ) .Proof. 1. Since limsupr&0 log I�(q;r)� log r = ��(q) � max(�(q) ; � �(q) ) < t , we can �nd r0 2 (0; 1) suchthat log I� (q;r)� log r < t for all 0 < r < r0 , whence I�(q; r) � r�t for all 0 < r < r0 . The result followsfrom this and Proposition 4.16.2. Let r0 > 0 be as in Part 1. Since �(q) � max(�(q) ; � �(q) ) < t , we conclude that Pi pqi rti < 1 .We can thus choose a constant c0 > 0 such thatc0 � pq1�Pi pqi rti ; (4.18)and c0 � max( I�(q; r0rmin) ; I�(q; r0) )min( r�t0 ; (r0rmin)�t ) (4.19)It follows immediately from (4.18) that c0 �Pi pqi c0rti + pq . This clearly implies that the functionJ : (0;1) ! R de�ned by J(r) = c0r�t satis�es J(r) �Pi pqi J( rri ) + pqr�t for all 0 < r . Also,it follows from (4.19) thatI�(q; r) � max( I�(q; r0rmin) ; I�(q; r0) )� max( I�(q; r0rmin) ; I�(q; r0) )min( r�t0 ; (r0rmin)�t ) r�t� c0r�t = J(r) ;for all r 2 [rminr0; r0] .3. It follows from Lemma 4.15 (cf., in particular, the discussion in Case 1 following the proof ofLemma 4.15) and Part 2 that I�(q; r) � J(r) = c0r�t for all 0 < r < r0 . This clearly implies that��(q) � t . Since max(�(q) ; � �(q) ) < t was arbitrary, we conclude immediately from this that��(q) � max(�(q) ; � �(q) ) .Remark. The proof of the next Proposition is very similar to the proof of Proposition 4.17 above.However, to clarify this point we will present the proof, but for the rest of this section we will omitpresenting such very similar proofs again. We believe that this will ease the exposition of the mainideas of the proofs.



4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar measures 41Proposition 4.18. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. Let q 2 Rand let t < min(�(q) ; � �(q) ) .1. There exists a positive number r0 > 0 such thatI�(q; r) �Xi pqi I� �q; rri�+ pqr�tfor all 0 < r < r0 .2. There exists constants r0; c0 > 0 such that the function J : (0;1) ! R de�ned by J(r) =c0r�t satis�es J(r) �Xi pqiJ � rri�+ pqr�tfor all 0 < r < r0 , and J(r) � I�(q; r) for all r 2 [rminr0; r0] .3. We have ��(q) � min(�(q) ; ��(q) ) .Proof. 1. Since liminfr&0 log I�(q;r)� log r = � �(q) � min(�(q) ; � �(q) ) > t , we can �nd r0 2 (0; 1) suchthat log I� (q;r)� log r > t for all 0 < r < r0 , whence I�(q; r) � r�t for all 0 < r < r0 . The result followsfrom this and Proposition 4.16.2. Let r0 > 0 be as in Part 1. Since �(q) � min(�(q) ; � �(q) ) > t , we conclude that Pi pqi rti > 1 .We can thus choose a constant c0 > 0 such thatc0 > 0 � pq1�Pi pqi rti ; (4.20)and c0 � min( I�(q; r0rmin) ; I�(q; r0) )max( r�t0 ; (r0rmin)�t ) (4.21)It follows immediately from (4.20) that c0 �Pi pqi c0rti + pq . This clearly implies that the functionJ : (0;1) ! R de�ned by J(r) = c0r�t satis�es J(r) �Pi pqi J( rri ) + pqr�t for all 0 < r < r0 .Also, it follows from (4.21) thatI�(q; r) � min( I�(q; r0rmin) ; I�(q; r0) )� min( I�(q; r0rmin) ; I�(q; r0) )max( r�t0 ; (r0rmin)�t ) r�t� c0r�t = J(r) ;for all r 2 [rminr0; r0] .3. It follows from Lemma 4.15 (cf., in particular, the discussion in Case 1 following the proof ofLemma 4.15) and Part 2 that I�(q; r) � J(r) = c0r�t for all 0 < r < r0 . This clearly implies that��(q) � t . Since min(�(q) ; ��(q) ) > t was arbitrary, we conclude immediately from this that��(q) � min(�(q) ; ��(q) ) .The proofs of Proposition 4.17 and Proposition 4.18 complete the proofs of Theorem 4.2(1) andTheorem 4.2(2).We will now prove Theorem 4.2(3).Lemma 4.19. For all i 2 �� , we have �(SiKC) � pi .



4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar measures 42Proof. Iterating (2.4) we see that� = Xjjj=n pj� Æ S�1j + n�1Xk=0 Xjjj=k pj� Æ S�1jfor all n , whence � � pi� Æ S�1i .This implies that �(SiKC) � pi�(S�1i SiKC) � pi�(KC) = pi .For r > 0 , write �(r) = ni 2 �� ��� ri � r < rijjij�1 o : (4.22)Lemma 4.20. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. Let q � 1 . Thenwe have ZKC �(B(x; r))q�1 d�(x) � Xi2�(r)�(SiKC)q ;for all r > 0 .Proof. Let r > 0 . It is clear that KC � Si2�(r) Si(KC) and since the sets (Si(KC))i2�(r) arepairwise disjoint (because the sets (S1KC ; : : : ; SNKC ; C) are assumed to be pairwise disjoint), weconclude that ZKC �(B(x; r))q�1 d�(x) � Xi2�(r) ZSiKC �(B(x; r))q�1 d�(x) : (4.23)Now choose n such that rnmax diam(KC) � r (recall, that rmax = maxi ri ). We see from this thatdiam(Si(KC)) � rnmax diam(KC) � r for all i with jij = n . Hence, if jij = n and x 2 SiKC , thenSi(KC) � B(x; r) , whenceZSiKC �(B(x; r))q�1 d�(x) � ZSiKC �(SiKC)q�1 d�(x) = �(SiKC)q : (4.24)Combining (4.23) and (4.24) leads to the desired result.Proof of Theorem 4.2(3). We must prove that� �(q) � ��(q) ; � �(q) � ��(q) ; (4.25)and �(q) � ��(q) : (4.26)We �rst prove (4.25). Indeed, it follows from (2.3) and (2.4) that � =Pi pi� Æ S�1i + p� � p� andthat KC = [iSi(KC) [ C � C . Since q � 1 , we therefore conclude thatI�(q; r) = ZKC �(B(x; r))q�1 d�(x) � ZC (p�(B(x; r)))q�1 d(p�)(x) = pqI�(q; r) :The inequalities in (4.25) follow immediately from this.Next, we prove (4.26). Observe that it follows from Lemma 4.19 and Lemma 4.20 thatI�(q; r) � Xi2�(r)�(SiKC)q� Xi2�(r) pqi : (4.27)



4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar measures 43Let K? be the self-similar set associated with the iterated function system (S1; : : : ; SN ) , i.e. K?is the unique non-empty and compact set such that K? = Si Si(K?) . Also, let ui = pqi r�(q)i .Then u = (ui)i is a probability vector. Let �u be the self-similar measure associated with theiterated function system (S1; : : : ; SN ;u) , i.e. �u is the unique probability measure such that�u =Xi ui�u Æ S�1i :It is well-known that �u(SiK?) = ui for all i 2 �� , cf. [Fal97]. Also, for i = i1 : : : in 2 �� , writeui = ui1 � � �uin . It now follows from (4.27) thatI�(q; r) � Xi2�(r) pqi= Xi2�(r) pqi r�(q)i r��(q)i= Xi2�(r)uir��(q)i= Xi2�(r)�u(SiK?)r��(q)i : (4.28)Since clearly r��(q)i � cr��(q) where c = r��(q)min for all i 2 �(r) , we deduce from (4.28) thatI�(q; r) � Xi2�(r)�u(SiK?)r��(q)i� c r��(q) Xi2�(r)�u(SiK?)� c r��(q)�u [i2�(r)SiK?! (4.29)Finally, it is easily seen that K? � [i2�(r)SiK? . This and (4.29) imply thatI�(q; r) � c r��(q)�u [i2�(r)SiK?! � c r��(q)�u(K?) = c r��(q) :The desired result follows immediately from this by taking logarithms and dividing by � log r . Thiscompletes the proof of (4.26).4.2.5 Proof of Theorem 4.9In this section we will prove Theorem 4.9. The proof of Theorem 4.9 is very similar to the proofof Theorem 4.2 and will only be sketched, see the remark following Proposition 4.17. For a Borelprobability measure m on Rd and q 2 R , writeJm(q; r) = 1rd Z m(B(x; r))q dLd(x) :Similarly to the proof of Proposition 4.16 we see that there exists a positive real number r0 > 0such that J�(q; r) =Xi pqiJ� �q; rri�+ pqJ�(q; r) (4.30)for all 0 < r < r0 . The proof now proceeds very similarly to the proof of Theorem 4.2 using (4.30)in stead of (4.15).



4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar measures 444.2.6 Proofs. The case: q = �1 .In this section we prove Theorem 4.13 and Theorem 4.14. The proof is divided into two parts.Namely, we �rst apply Lemma 4.15 to prove thatmin� mini log pilog ri ; D�(1)� � D�(1) ; (4.31)D�(�1) � max� maxi log pilog ri ; D�(�1)� : (4.32)Next, we prove that D�(1) � min� mini log pilog ri ; D�(1)� : (4.33)For a Borel probability measure m on Rd writeIm(1; r) = supx2suppmm(B(x; r)) ;Im(�1; r) = infx2suppmm(B(x; r)) :We now present the proof of (4.31) and (4.32). We �rst derive a functional equation for Im(�1; r) ;this in done in Proposition 4.21. Next, we use this functional equation and Lemma 4.15 to prove(4.31),(4.32); this is done in Proposition 4.22 and Proposition 4.23 .Proposition 4.21. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. Then thereexists a positive number r0 > 0 such thatI�(1; r) = max�maxi piI� �1; rri� ; pI�(1; r) � ; (4.34)I�(�1; r) = min �mini piI���1; rri� ; pI�(�1; r)� : (4.35)for all 0 < r < r0 .Proof. Let r0 = min(mini 6=j dist(SiKC ; SjKC) ; mini dist(SiKC ; C) ) . It follows by an argumentsimilar to the proof of (4.17) that if 0 < r < r0 , then�(B(x; r)) = (pi�(B(S�1i x; rri ) for x 2 SiKC ;p�(B(x; r) for x 2 C.Hence I�(1; r) = max�maxi supx2SiKC �(B(x; r)) ; supx2C �(B(x; r))�= max�maxi supx2SiKC pi��B�S�1i x; rri�� ; p supx2C �(B(x; r))�= max�maxi supx2KC pi��B�x; rri�� ; p supx2C �(B(x; r))�= max�maxi piI� �1; rri� ; pI�(1; r)� :This proves (4.34). Equality (4.35) is proved very similarly (see the remark following Proposition4.17). This completes the proof of Proposition 4.21 .



4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar measures 45Proposition 4.22. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint.Let t < min(mini log pilog ri ; D�(1) ) .1. There exists a positive number r0 > 0 such thatI�(1; r) � max�maxi piI� �1; rri� ; prt �for all 0 < r < r0 .2. There exists constants r0; c0 > 0 such that the function J : (0;1)! R de�ned by J(r) = c0rtsatis�es J(r) � max�maxi piJ � rri� ; prt �for all 0 < r < r0 , and I�(1; r) � J(r) for all r 2 [rminr0; r0] .3. We have min(mini log pilog ri ; D�(1) ) � D�(1) .Proof. 1. Since liminfr&0 log I�(1;r)log r = D�(1) � min(mini log pilog ri ; D�(1) ) > t , we can �nd r0 2(0; 1) such that log I�(1;r)log r > t for all 0 < r < r0 , whence I�(1; r) � rt for all 0 < r < r0 . Theresult follows from this and Proposition 4.21 .2. Let r0 > 0 be as in Part 1. Choose any c0 > 0 such that c0 � p and c0 � I�(1;r0)(rminr0)t , and de�neJ : (0;1) ! R by J(r) = c0rt . Since t < min(mini log pilog ri ; D�(1) ) � mini log pilog ri , we concludethat maxi pirti < 1 . This and the fact that c0 � p , imply that 1 � max(maxi pirti ; pc0 ) . It followsimmediately from this inequality that J(r) � max(maxi piJ( rri ) ; prt ) for all r > 0 . Also, sincec0 � I�(1;r0)(rminr0)t , it follows thatI�(1; r) � I�(1; r0) � I�(1; r0)(rminr0)t rt � c0rt = J(r) ;for all r 2 [rminr0; r0] .3. It follows from Lemma 4.15 (cf_, in particular, the discussions in Case 2 and Case 3 following theproof of Lemma 4.15 ) and Part 2 that I�(1; r) � J(r) = c0rt for all 0 < r < r0 . This clearlyimplies that t � D�(1) . Since t < min(mini log pilog ri ; D�(1) ) was arbitrary, we conclude from thisthat min(mini log pilog ri ; D�(1) ) � D�(1) .Proposition 4.23. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint.Let max(maxi log pilog ri ; D�(�1) ) < t .1. There exists a positive number r0 > 0 such thatI�(�1; r) � min�mini piI���1; rri� ; prt�for all 0 < r < r0 .2. There exists constants r0; c0 > 0 such that the function J : (0;1)! R de�ned by J(r) = c0rtsatis�es J(r) � min�mini piJ � rri� ; prt �for all 0 < r < r0 , and I�(�1; r) � J(r) for all r 2 [rminr0; r0] .



4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar measures 463. We have D�(�1) � max(maxi log pilog ri ; D�(�1) ) .Proof. The proof is very similar to the proof of Proposition 4.22 and is therefore omitted (see theremark following Proposition 4.17).We now turn towards the proof of (4.33).Proposition 4.24. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. ThenD�(1) � min� mini log pilog ri ; D�(1)� :Proof. We must prove that D�(1) � D�(1) and that D�(1) � mini log pilog ri .We �rst prove that D�(1) � D�(1) .Indeed, since �(B(x; r)) = Pi pi�(S�1i (B(x; r))) + p�(B(x; r)) � p�(B(x; r)) for all x and allr > 0 we see that I�(1; r) � pI�(1; r) for all r > 0 . This clearly implies that D�(1) � D�(1) .Next, we prove that D�(1) � mini log pilog ri . Fix r > 0 and write D = diam(KC) . We claim thatsupi2�(r) pi � I�(1; rD) (4.36)(recall that �(r) is de�ned in (4.22)). To prove (4.36), let i 2 �(r) . Now choose x 2 SiKC .Since i 2 �(r) , we have ri � r , and so diam(SiKC) = ri diam(KC) = riD � rD . We thereforewe conclude that SiKC � B(x; rD) . We conclude from this that �(SiKC) � �(B(x; rD)) �I�(1; rD) . Taking supremum over all i 2 �(r) givessupi2�(r)�(SiKC) � I�(1; rD) : (4.37)Finally, using the fact that pi � �(SiKC) (by Lemma 4.19), it follows from (4.37) that supi2�(r) pi �supi2�(r) �(SiKC) � I�(1; rD) . This proves (4.36).Using (4.36), we see that log I�(1; rD)log r � log supi2�(r) pilog r � infi2�(r) log pilog r (4.38)for all 0 < r < 1 . However, if i 2 �(r) , then r < rij(jij�1) � rirmin , and so log pilog r � log pilog rirmin for alli 2 �(r) . This and (4.38) imply thatlog I�(1; rD)log r � infi2�(r) log pilog rirmin = infi2�(r) 11� log rminlog ri log pilog ri (4.39)for all 0 < r < 1 . Also, if i 2 �(r) , then ri � r , and so 11� log rminlog ri � 11� log rminlog r . Using this and(4.39), we see that log I�(1; rD)log r � 11� log rminlog r infi2�(r) log pilog ri (4.40)for all 0 < r < 1 .Next, �x r 2 (0; 1) . Choose i0 2 f1; : : : ; Ng such that log pi0log ri0 = mini log pilog ri , and choose nr 2 Nsuch that rnri0 � r < rnr�1i0 . Then clearly ir = i0 : : : i0| {z }nr times 2 �(r) . We therefore conclude from (4.40)that log I�(1; rD)log r � 11� log rminlog r infi2�(r) log pilog ri � 11� log rminlog r log pirlog rir



4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar measures 47= 11� log rminlog r log pnri0log rnri0 = 11� log rminlog r log pi0log ri0= 11� log rminlog r mini log pilog rifor all 0 < r < 1 . It follows immediately from this inequality that D�(1) = liminfr&0 log I�(1;r)log r �mini log pilog ri .4.2.7 Proofs. The case: q = 1 .In this section we prove Theorem 4.12. For a Borel probability measure m on Rd , writeIm(1; r) = exp Zsuppm logm(B(x; r)) dm(x)We �rst derive a functional equation for Im(1; r) ; this in done in Proposition 4.25 . Next, we usethis functional equation and Lemma 4.15 to Theorem 4.12; this is done in Proposition 4.26 andProposition 4.27. Throughout this section we write s =Pi pi log pi + p log p .Proposition 4.25. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. Then thereexists a positive number r0 > 0 such thatI�(1; r) = es Yi I� �1; rri�pi! I�(1; r)pfor all 0 < r < r0 .Proof. Let r0 = min(mini 6=j dist(SiKC ; SjKC) ; mini dist(SiKC ; C) ) . It follows from (2.4) that if0 < r < r0 , thenlog I�(1; r) = Xi pi ZKC log�(B(x; r)) d(� Æ S�1i )(x) + p ZKC log�(B(x; r)) d�(x)= Xi pi ZSiKC log�(B(x; r)) d(� Æ S�1i )(x) + p ZC log�(B(x; r)) d�(x) : (4.41)It follows by an argument similar to the proof of (4.17) that if 0 < r < r0 , thenlog�(B(x; r)) = (log �pi�(B(S�1i x; rri ))� for x 2 SiKC ;log �p�(B(x; r))� for x 2 C. (4.42)Combining (4.41) and (4.42) giveslog I�(1; r) = Xi pi ZSiKC log�pi��B�S�1i x; rri��� d(� Æ S�1i )(x) + p ZC log �p�(B(x; r))� d�(x)= Xi pi ZKC log�pi��B�x; rri��� d�(x) + p ZC log �p�(B(x; r))� d�(x)= Xi pi log pi + p log p+Xi pi log I��1; rri�+ p log I�(1; r) :This completes the proof of Proposition 4.25 .



4.2 Lq spectra and R�enyi dimensions of inhomogeneous self-similar measures 48Proposition 4.26. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. Lett < D�(1) .1. There exists a positive number r0 > 0 such thatI�(1; r) � es Yi I� �1; rri�pi! rptfor all 0 < r < r0 .2. There exists constants r0; c0 > 0 such that the function J : (0;1)! R de�ned by J(r) = c0rtsatis�es J(r) � es Yi J � rri�pi! rptfor all 0 < r < r0 , and I�(1; r) � J(r) for all r 2 [rminr0; r0] .3. We have D�(1) � D�(1) .Proof. 1. Since liminfr&0 log I�(1;r)log r = D�(1) > t , we can �nd r0 2 (0; 1) such that log I�(1;r)log r > tfor all 0 < r < r0 , whence I�(1; r) � rt for all 0 < r < r0 . The result follows from this andProposition 4.25.2. Let r0 > 0 be as in Part 1. We can clearly choose a constant c0 > 0 such thatcp0 � esQi rpiti ; (4.43)and c0 � I�(1; r0)min(rt0 ; (r0rmin)t) (4.44)It follows easily from (4.43) that the function J : (0;1) ! R de�ned by J(r) = c0rt sat-is�es J(r) = c0rt = cPi pi+p0 rt = (Qi cpi0 ) cp0rt � (Qi cpi0 )� esQi rpiti � rt = es �Qi cpi0 rpitrpiti � rpt =es(Qi J( rri )pi)rpt for all 0 < r < r0 . Also, it follows from (4.44) thatI�(1; r) � I�(1; r0) � I�(1; r0)min(rt0 ; (r0rmin)t)rt � c0rt = J(r) ;for all r 2 [rminr0; r0] .3. It follows from Lemma 4.15 (cf_, in particular, the discussion in Case 4 following the proof ofLemma 4.15) and Part 2 that I�(1; r) � J(r) = c0rt for all 0 < r < r0 . This clearly implies thatt � D�(1) . Since t < D�(1) was arbitrary, we conclude from this that D�(1) � D�(1) .Proposition 4.27. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. LetD�(1) < t .1. There exists a positive number r0 > 0 such thatI�(1; r) � es Yi I� �1; rri�pi! rptfor all 0 < r < r0 .



4.3 Multifractal spectra of inhomogeneous self-similar measures 492. There exists constants r0; c0 > 0 such that the function J : (0;1)! R de�ned by J(r) = c0rtsatis�es J(r) � es Yi J � rri�pi! rptfor all 0 < r < r0 , and I�(1; r) � J(r) for all r 2 [rminr0; r0] .3. We have D�(1) � D�(1) .Proof. The proof is very similar to the proof of Proposition 4.26 and is therefore omitted (see theremark following Proposition 4.17).4.3 Multifractal spectra of inhomogeneous self-similar measures4.3.1 Main resultsIn this section we compute the multifractal spectra of inhomogeneous self-similar measures. Themultifractal spectra are in most cases very diÆcult to compute, and during the 1990s there hasbeen an enormous interest in computing the multifractal spectra of measures for various classesof measures exhibiting some degree of self-similarity, cf. [Fal97] and the references therein. Inparticular, the multifractal spectra of self-similar measures satisfying the Open Set Condition hasbeen computed. Recall that the Open Set Condition is de�ned as follows.The open set condition (OSC). The list (S1; : : : ; SN ) is said to satisfy the Open Set Condition,if there is a non-empty, bounded and open set U satisfying1. For all i = 1; : : : ; N , we have SiU � U ;2. For all i; j = 1; : : : ; N with i 6= j , we have SiU \ SjU = ? ;The purpose of this section is to compute the multifractal spectra of � assuming the appropriateinhomogeneous version of the OSC. This version is de�ned as follows.The inhomogeneous open set condition (IOSC). The list (S1; : : : ; SN ; C) is said to satisfythe Inhomogeneous Open Set Condition, if there is a non-empty, bounded and open set U satisfying1. For all i = 1; : : : ; N , we have SiU � U ;2. For all i; j = 1; : : : ; N with i 6= j , we have SiU \ SjU = ? ;3. U \K? 6= ? ;4. C � U ;5. For all i = 1; : : : ; N , we have dimH(SiU \ C) = dimP(SiU \ C) = 0 and �(SiU \ C) = 0 ;6. We have dimH(@U \ C) = dimP(@U \ C) = 0 and �(@U \ C) = 0 .Conditions 1 and 2 are simply the usual Open Set Condition (OSC) for (ordinary) self-similar setsguaranteeing that the overlaps SiU \ SjU originating from the non-inhomogeneous part of theconstruction are small for all i 6= j . Similarly, Conditions 5 and 6 guarantee that the overlapsSiU \C and @U \C originating from the inhomogeneous part of the construction are small for alli .We can now state the main result in this section, namely, Theorem 4.28 providing a formula forthe multifractal spectra of the inhomogeneous measure � assuming the IOSC. As in the previous



4.3 Multifractal spectra of inhomogeneous self-similar measures 50Section we de�ne � : R ! R by Pi pqi r�(q)i = 1 and recall that �� denotes the Legendre transformof � .Theorem 4.28. Assume that the IOSC is satis�ed. ThenfH;�(�) = max���(�) ; fH;�(�)� ;fP;�(�) = max���(�) ; fP;�(�)� ;for all � � 0 .The proof of Theorem 4.28 is given in Section 4.3.3, Section 4.3.4, Section 4.3.5 and Section 4.3.6.For the bene�t of the reader, we will now give a brief overview of the proof of Theorem 4.28. Afterthe overview we make several remarks related to Theorem 4.28.Brief overview of the proof of Theorem 4.28. The proof of Theorem 4.28 is divided into 4parts as follows:Part 1: Section 4.3.3. In Section 4.3.3 we prove (see Proposition 4.44) a useful auxiliary result,namely, if U is the open set in the IOSC, then�(SiKC) = �(SiU) = pifor all i 2 �� (recall that Si = Si1 Æ � � � Æ Sin and pi = pi1 � � � pin for i = i1 : : : in 2 �� ). Thisresult plays an important role through out the remaining parts of the proof.Part 2: Section 4.3.4. In Section 4.3.4 we relate the multifractal spectra of � to the multifractalspectra of � . More precisely, we �rst prove Lemma 4.46 which states that if U is the open set inthe IOSC, thennx 2 KC ��� dimloc(x;�) = �o = nx 2 K? ��� dimloc(x;�) = �o[ [i2�� Si(x 2 C n [i SiU [ @U! ����� dimloc(x; �) = �)[ [i2�� Si(x 2 C \ [i SiU [ @U!����� dimloc(Six;�) = �) :The following relationship between the multifractal spectra of � and the multifractal spectra of �follows easily from this (see Proposition 4.47), namely,fH;�(�) = max dimH nx 2 K? ��� dimloc(x;�) = �o ; fH;�(�)! ;fP;�(�) = max dimP nx 2 K? ��� dimloc(x;�) = �o ; fP;�(�)! : (4.45)Hence, in order to prove Theorem 4.28 it suÆces to compute the Hausdor� and packing dimensionsof the set fx 2 K? j dimloc(x;�) = �g . This is done in Part 3 and Part 4 of the proof, respectively.



4.3 Multifractal spectra of inhomogeneous self-similar measures 51Part 3: Section 4.3.5. In Section 4.3.5 we obtain a lower bound for the Hausdor� dimension of theset fx 2 K? j dimloc(x;�) = �g . Namely, we prove (see Proposition 4.51) that��(�) � dimH nx 2 K? ��� dimloc(x;�) = �o : (4.46)Part 4: Section 4.3.6. In Section 4.3.6 we obtain an upper bound for the packing dimension of theset fx 2 K? j dimloc(x;�) = �g . Namely, we prove (see Proposition 4.53) thatdimP nx 2 K? ��� dimloc(x;�) = �o � ��(�) : (4.47)Finally, combining (4.45), (4.46) and (4.47) gives the desired result This completes the brief overviewof the proof of Theorem 4.28.Remark. Collapse of the multifractal spectra of inhomogeneous self-similar measures.The following rather surprising result follows from Theorem 4.28. Namely, regardless of how themaps (S1; : : : ; SN ) are chosen and regardless of how the measure � is chosen, the multifractalspectra fH;� and fP;� of � always collapse and become identical to those of � for all suÆcientlysmall � and for all suÆciently large � . This is the contents of the next corollary.Corollary 4.29. Assume that the IOSC is satis�ed. If � 62 [mini log pilog ri ;maxi log pilog ri ] , thenfH;� = fH;� ;fP;� = fP;� :Proof. This follows from Theorem 4.28, since ��(�) = �1 for all � 62 [mini log pilog ri ;maxi log pilog ri ] (seeLemma 4.50).Remark. Inhomogeneous self-similarmeasures may have non-concave multifractal spec-tra. If follows from Theorem 4.28 that the multifractal spectra of an inhomogeneous self-similarmeasure may be non-concave. This is in sharp contrast to the behaviour of the multifractal spectraof (ordinary) self-similar measures satisfying the Open Set Condition. The reader is referred toExample 4.30 in Section 4.3.2 for an example of an inhomogeneous self-similar measure with highlynon-concave multifractal spectra.Remark. Inhomogeneous self-similar measures may fail the Multifractal Formalism. Aswe have mentioned in Section 4.1.3 Multifractal Formalism states that (1) the Lq spectra coincide,and (2) that the multifractal spectra functions coincide with the Legendre transform of the Lqspectra. Since any Legendre transform is concave, it follows that the multifractal spectra of measuressatisfying the Multifractal Formalism must be concave. It therefore follows that in-homogenouesself-similar measures may fail the Multifractal Formalism. As in the previous remark, this is in sharpcontrast to the behaviour of the multifractal spectra of (ordinary) self-similar measures satisfyingthe Open Set Condition.4.3.2 Examples and applicationsIn this section we consider various applications of our main results. Many of our applications arerelated to the notoriously diÆcult problem of computing for the multifractal spectra of of self-similarmeasures not satisfying the OSC. We show that our results provide a systematic approach to obtainnon-trivial bounds (and in some cases even exact values) for the multifractal spectra of several largeand interesting classes of self-similar measures not satisfying the Open Set Condition. We will now



4.3 Multifractal spectra of inhomogeneous self-similar measures 52describe the key idea in our approach. Namely, let S1; : : : ; SN : Rd ! Rd be contracting similarities(not necessarily satisfying the OSC) and let (p1; : : : ; pN) be a probability vector. Also, let � be theself-similar measure associated with the list (S1; : : : ; SN ; p1; : : : ; pN ) , i.e. � is the unique measuresuch that � =Xi pi� Æ S�1i :Iterating this identity shows that � =Pi2f1;:::Ngn pi� Æ S�1i for all positive integers n . Hence, ifwe �x I � f1; : : :Ngn , and let p = 1�Xi2I pi ;� = 1p Xi2f1;:::NgnnI pi� Æ S�1i ;then clearly � =Xi2I pi� Æ S�1i + p� ;i.e. � is the inhomogeneous self-similar measure associated with the list � (Si)i2I ; (pi)i2I ; p; �� .Therefore, if it is possible to choose I such that the list � (Si)i2I ; (pi)i2I ; p; �� satis�es the IOSCand the spectra of � can be computed (or bounds for the spectra of � can be obtained), thenthe spectra of � can be found (or bounds for the spectra of � can be obtained) using Theorem4.28. Below we give several examples using this technique for �nding the spectra of self-similarmeasures not satisfying the OSC, including, for example, self-similar measures supported on the so-called (0; 1; 3) -set of 
 -expansions with deleted digits (see Example 4.37) and non-linear self-similarmeasures introduced by Glickenstein & Strichartz [GS96] (see Example 4.38).Example 4.30. Testud measures: a class of self-similar measures not satisfying the OpenSet Condition.In this section we study the connection between inhomogeneous self-similar measures satisfying theIOSC and a class of self-similar measures introduced and inverstigated by Testud in [Tes05, Tes06].The measures in [Tes05, Tes06] do not satisfy the OSC and the usual techniques for computing themultifractal spectra developed in [AP96, CM92] can therefore not by applied. However, despite thisTestud [Tes05, Tes06] found formulas for the multifractal spectra of these measures, see Theorem4.31 below. As an application of our results we will now obtain a simple proof of Testud's result.We begin by describing the measures considered by Testud. For a positive integer l � 2 de�nefunctions Si : [0; 1] ! [0; 1] for i = 0; : : : ; 2l � 1 by Si(x) = 1l x + il and Si+l(x) = � 1l x + i+1lfor i = 0; : : : ; l � 1 . For a probability vector (p0; : : : ; p2l�1) with pi 6= 0 for all i = 0; : : : ; l � 1 ,Testud considered the self-similar measure � associated with the list (S0; : : : ; S2l�1; p0; : : : p2l�1) ,i.e. � is the unique measure such that � =Xi pi� Æ S�1i : (4.48)It is clear that the list (S0; : : : ; S2l�1) does not satisfy the OSC. Infact, many of the overlapsSi([0; 1])\Sj([0; 1]) are \very big". For example, if i = 0; : : : ; l� 1 and pi+l 6= 0 , then Si([0; 1])\Si+l([0; 1]) = Si([0; 1]) . In [Tes05, Tes06] Testud obtained the following formulas for the multifractalspectra of � .



4.3 Multifractal spectra of inhomogeneous self-similar measures 53Theorem 4.31. Let � be the self-similar measure satisfying (4.48). De�ne the function T : [0; 1]![0; 1] and the probability measure � by T (x) = 1� x ;� = �+�ÆT2 :Also, let B = f0 � i � l � 1 j pi+l = 0g and de�ne the function � : R ! R by �(q) = logPi2B pqilog l .Then fH;�(�) = max� ��(�) ; fH;�(�)� ;fP;�(�) = max� ��(�) ; fP;�(�)� ;for � � 0 .Remark. In fact, Testud proved Theorem 4.31 under the additional assumption that B \ (l� 1�B) = ? . However, our proof shows that this assumption is not needed.Remark. Theorem 4.31 provides a formula for the multifractal spectra of � in terms of themultifractal spectra of � = �+�ÆT2 (and the function � ). The usefulness of this formula is due tothe fact that frequently � is a self-similar measure satisfying the OSC, and the multifractal spectraof � can therefore be computed explicitely. We will elaborate on this after having proved Theorem4.31.We now show that � may be viewed as an inhomogeneous self-similar measure and using this fact(together with Theorem 4.28) we give a simple proof of Theorem 4.31. We �rst show that � maybe viewed as an inhomogeneous self-similar measure as follows. Namely, de�ne p 2 (0; 1) and theprobability measure � byp = 1�Xi2B pi ;� = 1p Xi2f0;:::;l�1gnB � pi�+ pi+l� Æ T � Æ S�1i :Then clearly � =Xi2B pi� Æ S�1i + p� ;i.e. � is the inhomogeneous self-similar measure associated with the list � (Si)i2B ; (pi)i2B ; p; �� .Using the fact that � is an inhomogeneous self-similar measure we will now give a simple proof ofTheorem 4.31. We start by proving four small auxiliary lemmas.Lemma 4.32. Let U = (0; 1) . Then �(@U) = 0 .Proof. Since @U = f0; 1g , it suÆces to show that �(f0g) = 0 and that �(f1g) = 0 . We�rst show that �(f0g) = 0 . Fix a positive integer n and note that �(f0g) � �([0; 1n )) =Pi2f0;:::;2l�1gn pi�(S�1i [0; 1n )) =Pi2f0;lgn pi�(S�1i [0; 1n )) �Pi2f0;lgn pi = (p0 + pl)n . We concludefrom this that �(f0g) � limn(p0 + pl)n = 0 . Similarly we can prove that �(f1g) = 0 .



4.3 Multifractal spectra of inhomogeneous self-similar measures 54Lemma 4.33. The list � (Si)i2B ; (pi)i2B ; p; �� satis�es the IOSC with U = (0; 1) .Proof. It is clear that Conditions 1{3 are satis�ed. Next, we show that Conditions 4 and 5 aresatis�ed. Observe that C = supp � = [i2f0;:::;l�1gnBSiU .We �rst prove that if i 2 B , thendimH(SiU \ C) = dimP(SiU \ C) = 0 ; dimH(@U \ C) = dimP(@U \ C) = 0 : (4.49)Indeed, note that if i 2 B , thenSiU \ C � @SiU ; @U \ C � @U : (4.50)Since @SiU and @U are �nite sets (in fact, each set consists of two elements), the equalities in(4.49) follow immediately from (4.50). This proves (4.49).Next we prove if i 2 B , then �(SiU \ C) = 0 ; �(@U \ C) = 0 : (4.51)It follows from (4.50) that if j 2 f0; : : : ; 2l � 1g , thenS�1j (SiU \ C) � S�1j (@SiU) � @U ; S�1j (@U \ C) � S�1j (@U) � @U : (4.52)Finally, since T@U = @U , we now conclude from (4.52) and Lemma 4.32 that if E = SiU \ C orif E = @U \ C , then�(E) = 1p Xj2f0;:::;l�1gnB � pj�(S�1j E) + pj+l�(T (S�1j E))�� 1p Xj2f0;:::;l�1gnB � pj�(@U) + pj+l�(T@U)�= 1p Xj2f0;:::;l�1gnB � pj�(@U) + pj+l�(@U)�= 0 :This proves (4.51) and completes the proof of Lemma 4.33.Lemma 4.34. We have fH;�(�) = fH;�i2f0;:::;l�1gnB�ÆS�1i (�) ;fP;�(�) = fP;�i2f0;:::;l�1gnB�ÆS�1i (�) ;for all � � 0 .Proof. It is easily seen that,2pminp Xi2f0;:::;l�1gnB � Æ S�1i � � � 2pmaxp Xi2f0;:::;l�1gnB � Æ S�1i ;where pmin = min �mini2f0;:::;l�1gnB pi ; mini2f0;:::;l�1gnB pi+l� andpmax = max �maxi2f0;:::;l�1gnB pi ; maxi2f0;:::;l�1gnB pi+l� . Namely, there are constants cmin =2pminp ; cmax = 2pmaxp > 0 such that cminPi2f0;:::;l�1gnB � Æ S�1i � � � cmaxPi2f0;:::;l�1gnB � Æ S�1i .The desired result follows immediately from this inequality.



4.3 Multifractal spectra of inhomogeneous self-similar measures 55Lemma 4.35. We have fH;�i2f0;:::;l�1gnB�ÆS�1i (�) = fH;�(�) ;fP;�i2f0;:::;l�1gnB�ÆS�1i (�) = fP;�(�) ;for all � � 0 .Proof. We clearly havefH;�i2f0;:::;l�1gnB�ÆS�1i (�)= dimH(x 2 supp Xi2f0;:::;l�1gnB � Æ S�1i !����� dimloc x; Xj2f0;:::;l�1gnB � Æ S�1j ! = �)= dimH(x 2 [i2f0;:::;l�1gnB supp �� Æ S�1i � ����� dimloc x; Xj2f0;:::;l�1gnB � Æ S�1j ! = �)= dimH [i2f0;:::;l�1gnB(x 2 supp �� Æ S�1i � ����� dimloc x; Xj2f0;:::;l�1gnB � Æ S�1j ! = �)= maxi2f0;:::;l�1gnB dimH(x 2 supp �� Æ S�1i � ����� dimloc x; Xj2f0;:::;l�1gnB � Æ S�1j ! = �) :(4.53)However, since the set F = [i;j2f0;:::;l�1gnB ; i 6=j� supp �� Æ S�1i � \ supp �� Æ S�1j � � is �nite, itfollows that if i 2 f0; : : : ; l � 1g nB , thendimH(x 2 supp �� Æ S�1i � ����� dimloc x; Xj2f0;:::;l�1gnB � Æ S�1j ! = �)= dimH(x 2 supp �� Æ S�1i � n F ����� dimloc x; Xj2f0;:::;l�1gnB � Æ S�1j ! = �)= dimH nx 2 supp �� Æ S�1i � n F ��� dimloc �x;� Æ S�1i � = �o= dimH nx 2 supp �� Æ S�1i � ��� dimloc �x;� Æ S�1i � = �o= fH;�ÆS�1i (�) : (4.54)Combining (4.53) and (4.54) we now conclude thatfH;�i2f0;:::;l�1gnB�ÆS�1i (�) = maxi2f0;:::;l�1gnB fH;�ÆS�1i (�) : (4.55)Next, since Si is a similarity it is easily seen that fH;�ÆS�1i (�) = fH;�(�) for all i (see, for example,[[Fal97], Exercise 11.9]), whence maxi2f0;:::;l�1gnB fH;�ÆS�1i (�) = fH;�(�) : (4.56)Finally, combining (4.55) and (4.56) gives the desired result. The proof of the formula for thepacking spectrum is very similar. This completes the proof.



4.3 Multifractal spectra of inhomogeneous self-similar measures 56We can now prove Theorem 4.31.Proof of Theorem 4.31It follows from Lemma 4.33 that the list � (Si)i2B ; (pi)i2B ; p; �� satis�es the IOSC, and we thereforededuce from Theorem 4.28 that fH;�(�) = max� ��(�) ; fH;�(�)� ; (4.57)for � � 0 , where � : R ! R is de�ned by Pi2B pqi ( 1l )�(q) = 1 , i.e. �(q) = logPi2B pqilog l . Also,Lemma 4.34 and Lemma 4.35 imply thatfH;�(�) = fH;�i2f0;:::;l�1gnB�ÆS�1i (�) = fH;�(�) (4.58)for � � 0 . The desired result follows from (4.57) and (4.58). The formula for fP;�(�) is provedsimilarly.We now consider a concrete example of Theorem 4.31. Let l = 3 . Fix two positive real numbers sand t with 3s+ 2t � 1 � 3s+ 3t (for example, we may take s = 112 and t = 13 ), and de�ne theprobability vector (pi)i=0;:::;5 byp0 = s+ t ; p1 = 1� 2(s+ t) ; p2 = s ; p3 = t ; p4 = p5 = 0 :In this case B = f1; 2g and �(q) = log(pq1+pq2)log 3 . It follows from Theorem 4.31 thatfH;�(�) = max� ��(�) ; fH;�(�)� ; (4.59)fP;�(�) = max� ��(�) ; fP;�(�)� ; (4.60)for � � 0 .We will now prove that � = �+�ÆT2 is, in fact, a self-similar measure. More precisely we will nowprove the following claim. We note similar calculations also appear in [Tes05, Tes06]. However, wehave decided to include the simple and very brief calculation in Claim 4.36 for completeness.Claim 4.36. We have � = p0� Æ S�10 + p1� Æ S�11 + (p2 + p3)� Æ S�12 ;i.e. � is the self-similar measure associated with the list (S0; S1; S2; p0; p1; p2 + p3) . In particular,since the list (S0; S1; S2) clearly satis�es the OSC, we conclude (see [Fal97]) that if b : R ! R isde�ned by b(q) = log(pq0+pq1+(p2+p3)q)log 3 , then fH;�(�) = fP;�(�) = b�(�) for � � 0 .Proof. First observe thatS�13 = T Æ S�10 ; S�10 Æ T = T Æ S�12 ; S�11 Æ T = T Æ S�11 ; S�12 Æ T = T Æ S�10 ; S�13 Æ T = S�12 :It follows from this and the de�nition of � that� = p0� Æ S�10 + p1� Æ S�11 + p2� Æ S�12 + p3� Æ S�13= p0� Æ S�10 + p1� Æ S�11 + p2� Æ S�12 + p3� Æ T Æ S�10 ; (4.61)� Æ T = � p0� Æ S�10 + p1� Æ S�11 + p2� Æ S�12 + p3� Æ S�13 � Æ T



4.3 Multifractal spectra of inhomogeneous self-similar measures 57= p0� Æ S�10 Æ T + p1� Æ S�11 Æ T + p2� Æ S�12 Æ T + p3� Æ S�13 Æ T= p0� Æ T Æ S�12 + p1� Æ T Æ S�11 + p2� Æ T Æ S�10 + p3� Æ S�12 : (4.62)Adding (4.61) and (4.62) and using the fact that p0 = p2 + p3 gives�+�ÆT2 = p0�+(p2+p3)�ÆT2 Æ S�10 + p1 �+�ÆT2 Æ S�11 + (p2+p3)�+p0�ÆT2 Æ S�12= p0 �+�ÆT2 Æ S�10 + p1 �+�ÆT2 Æ S�11 + (p2 + p3)�+�ÆT2 Æ S�12 :This completes the proof of Claim 4.36.Finally, combining (4.59) and Claim 4.36, we conclude that if we de�ne �; b : R ! R by�(q) = log(pq1+pq2)log 3 = log((1�2(s+t))q+sq)log 3 ;b(q) = log(pq0+pq1+(p2+p3)q)log 3 = log(2(s+t)q+(1�2(s+t))q)log 3 ;then fH;�(�) = fP;�(�) = max� ��(�) ; b�(�)� ;for � � 0 . It follows from standard properties of the Legendre transform that��(�) � 0 for � 2 h logmax(p1;p2)� log 3 ; logmin(p1;p2)� log 3 i = h log(1�2(s+t))� log 3 ; log s� log 3i ;��(�) = �1 for � 62 h logmax(p1;p2)� log 3 ; logmin(p1;p2)� log 3 i = h log(1�2(s+t))� log 3 ; log s� log 3i ;andb�(�) � 0 for � 2 h logmax(p0;p1;p2+p3)� log 3 ; logmin(p0;p1;p2+p3)� log 3 i = h log(s+t)� log 3 ; log(1�2(s+t))� log 3 i ;b�(�) = �1 for � 62 h logmax(p0;p1;p2+p3)� log 3 ; logmin(p0;p1;p2+p3)� log 3 i = h log(s+t)� log 3 ; log(1�2(s+t))� log 3 i :We observe that the multifractal spectra fH;�(�) and fP;�(�) are highly non-concave. In fact, ifwe write �(�) = nx 2 R ��� dimloc(x;�) = �o ;then the set n� 2 R ��� dimH�(�) > 0oconsists of two disjoint intervals I and J , namely I = � log(s+t)� log 3 ; log(1�2(s+t))� log 3 � andJ = � log(1�2(s+t))� log 3 ; log s� log 3� , such that fH;� is strictly concave on both I and J . In Figure 4.3.1 wesketch the graphs of �� and b� for s = 112 and t = 13 .
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Figure 4.3.1:The graph of the multifractal spectrafH;�(�) = fP;�(�) = max( ��(�) ; b�(�) )of the self-similar measure � in Example 4.30 for s = 112 and t = 13 . The dashed line represents the graphof the function �� and the solid line represents the graph of the function b� .Example 4.37. Self-similar measures supported by the (0; 1; 3) -set of 
 -expansions withdeleted digits.We now present another example of our main results. Fix 
 2 ( 14 ; 13 ) . De�ne S0; S1; S3 : R ! Rby S0(x) = 
x , S1(x) = 
x+ 
 and S3(x) = 
x+3
 , and let (p0; p1; p3) be a probability vector.Let �
 denote the self-similar measure associated with the list (S0; S1; S3; p0; p1; p3) , i.e. �
 isthe unique measure such that �
 =Xi pi�
 Æ S�1i : (4.63)The main diÆculty in analyzing the multifractal spectrum of �
 for 
 2 ( 14 ; 13 ) is due to the factthat the OSC is not satis�ed and the standard results developed in [AP96, CM92] can thereforenot be applied. We will now show the results and techniques developed in this paper provides anon-trivial lower bound for the multifractal spectra of �
 .The iterated function system (S0; S1; S3) has recently attracted considerable interest due to itsrelationship with the so-called (0; 1; 3) -set of 
 -expansions with deleted digits. Motivated byproblems of Palis & Takens [PT93] on arithmetic sums of Cantor sets, Keane (see [KSS95]) askedthe following question. Namely, for 
 2 (0; 1) he considered the set �
 of numbers whose 
 -expansion only contains the digits 0 , 1 and 3 , i.e.�
 = ( 1Xn=1 an
n ����� an 2 f0; 1; 3g for n 2 N ) ;and asked whether the Hausdor� dimension, dimH �
 , of �
 is a continuous function of 
 for
 2 ( 14 ; 13 ) . Since clearly �
 = [iSi(�
) , we conclude that �
 is the self-similar set associatedwith the list (S0; S1; S3) . However, the main diÆculty in analyzing the Hausdor� dimension of �
for 
 2 ( 14 ; 13 ) is due to the fact that �
 is a self-similar set which does not satisfy the OSC and the



4.3 Multifractal spectra of inhomogeneous self-similar measures 59standard results developed by Hutchinson [Hut81] can therefore not be applied. Pollicott & Simongave the negative answer to Keane's question in [PS95] (see also [KSS95]). Finally, since �
 is theself-similar set associated with the list (S0; S1; S3) it follows thatsupp�
 = �
 ;i.e. �
 is supported on the (0; 1; 3) -set of 
 -expansions with deleted digits.Iterating (4.63) we see that �
 =Pi2f0;1;3g3 pi�
 Æ S�1i . In particular, if we writeI = � 013 ; 113 ; 133 ; 313 ; 333	 � f0; 1; 3g3 ;and let p = 1�Xi2I pi ; (4.64)� = 1p Xi2f0;1;3g3nI pi�
 Æ S�1i ; (4.65)then clearly �
 =Xi2I pi�
 Æ S�1i + p� ;i.e. �
 is the inhomogeneous self-similar measure associated with the list � (Si)i2I ; (pi)i2I ; p; �� .Using the fact that �
 is an inhomogeneous self-similar measure we will now obtain lower bounds forthe multifractal spectra of �
 . Let U = (0; 3
1�
 ) . We �rst show that the list � (Si)i2I ; (pi)i2I ; p; ��satis�es the IOSC with open set equal to U . Indeed, it is not diÆcult to see that the list (Si)i2Isatis�es the OSC with open set U . It is also clear that supp�
 � U , whence C = supp � �[i2f0;1;3g3nISi(U) , and it is not diÆcult to see (since S03(U) \ S13(U) = ? ) that this implies thatSiU\C � SiU\([j2f0;1;3g3nISj(U)) = ? for all i 2 I and that @U\C � @U\([j2f0;1;3g3nISj(U)) =f0g . However, one can show using techniques described in Lemma 4.32 that � (f0g) = 0 . It followsimmediately from this that the list � (Si)i2I ; (pi)i2I ; p; �� satis�es the IOSC with open set equalto U .Since the IOSC is satis�ed we now conclude from Theorem 4.28 that if we de�ne � : R ! R by�(q) = log(Pi2I pqi )� log 
3 = log((p0p1p3)q+(p21p3)q+2(p1p23)q+(p33)q)�3 log 
 ;then fH;�
 (�) = max���(�) ; fH;�(�)� � ��(�) ;fP;�
 (�) = max���(�) ; fP;�(�)� � ��(�) ;for � � 0 . This provides non-trivial lower bounds for the multifractal spectra of � .Example 4.38. Non-linear self-similar measures.We consider probability measures � on Rd satisfying the following non-linear self-similar identity� = NXi=1 pi� Æ S�1i + MXj=1 qj(� � �) Æ T�1j ; (4.66)



4.3 Multifractal spectra of inhomogeneous self-similar measures 60where (p1; : : : ; pN ; q1; : : : ; qM ) is a probability vector and Si; Tj : Rd ! Rd are contracting sim-ilarities and the contracting ratios of the Tj 's are less than 12 ; the existence and uniqueness ofmeasures � satisfying (4.66) is proved in [GS96] who also analyzed the asymptotic behaviour of theFourier transform of � (for more details on the asymptotic behaviour of the Fourier transform of �see Section 5.2.3). We note that measures � satisfying the non-linear self-similar identity in (4.66)can be viewed as inhomogeneous self-similar measure as follows. Namely, de�ne p 2 (0; 1) and theprobability measure � by p = 1�Xi pi ;� = 1pXj qj(� � �) Æ T�1j :Then clearly � =Xi pi� Æ S�1i + p� ;i.e. � is the inhomogeneous self-similar measure associated with the list (S1; : : : ; SN ; p1; : : : ; pN ; p; �) .Using the fact that � is an inhomogeneous self-similar measure we will now give non-trivial lowerbounds for the multifractal spectra of � . Indeed, the following result follows from Theorem 4.28.Theorem 4.39. Let � be a non-linear self-similar measure satisfying (4.66). Assume that there isa non-empty, bounded and open set U satisfying(a) For all i = 1; : : : ; N , we have SiU � U ;(b) For all i; j = 1; : : : ; N with i 6= j , we have SiU \ SjU = ? ;(c) U \K? 6= ? where K? is the non-empty compact set such that K? = [iSiK? ;(d) For all j = 1; : : : ;M , we have Tj(U + U) � U ;(e) For all i = 1; : : : ; N , we have SiU \ ([jTj(U + U)) = ? .(Conditions (a){(e) ensure that the IOSC is satis�ed. Indeed, Conditions 1{3 of the IOSC willfollow from (a){(c); Conditions 4 and 6 of the IOSC will follow from (d); and Condition 5 of theIOSC will follow from (e).) Let ri denote the similarity ratio of Si and de�ne � : R ! R byXi pqi r�(q)i = 1 :Then fP;�(�) � fH;�(�) � ��(�) ;for � � 0 .Proof. The conclusion clearly follows from Theorem 4.28 provided the list (S1; : : : ; SN ; p1; : : : ; pN ; p; �)satis�es the IOSC. Below we prove that the list (S1; : : : ; SN ; p1; : : : ; pN ; p; �) satis�es the IOSC.Conditions 1{3 of the IOSC follow immidiately from (a){(c). We will now prove that Conditions(4){(6) of the IOSC are satis�ed. As usual, we write KC for the support of � and we write C forthe support of � . Note thatC = supp � =[j Tj(supp(� � �)) =[j Tj(supp�+ supp�) =[j Tj(KC +KC) : (4.67)Next, observe that in order to prove Conditions (4){(6) of the IOSC it suÆces to show that C � Uand SiU \ C = ? for all i .We �rst prove that KC � U : (4.68)
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Figure 4.3.2:The measure � satisfying the non-linear self-similar identity� = 2Xi=1 pi� Æ S�1i + q1(� � �) Æ T�11 ;where the maps S1; S2; T1 : R ! R are de�ned by S1(x) = 14x , S2(x) = 14x+ 34 and T1(x) = 15x+ 310 ,and (p1; p2; q1) = (0:1; 0:26; 0:64) .In order to prove (4.68), let K(Rd ) denote the family of non-empty and compact subsets of Rdand equip K(Rd) with the Hausdor� metric. De�ne T : K(Rd ) ! K(Rd ) by T (A) = [iSi(A) [[jTj(A + A) . Using this notation, KC = supp� is the unique element KC 2 K(Rd) such thatKC = T (K) , and it therefore follows from Banach's �xed point theorem that Tn(U) ! KC withrespect to the Hausdor� metric. However, Conditions (a) and (d) imply that T (U) � U , whenceU � T (U) � T 2(U) � : : : , and so KC = limn T n(U) = \nT n(U) � U . This proves (4.68).We can now prove that C � U and that SiU \ C = ? for all i . Indeed, using (4.67) and (4.68)we conclude that C =[j Tj(KC +KC) �[j Tj(U + U) � U ;and that SiU \ C = SiU \ [j Tj(KC +KC)! � SiU \ [j Tj(U + U)! = ? :This completes the proof.We now consider a concrete example of Theorem 4.39 with N = 2 and M = 1 . De�ne S1; S2; T1 :R ! R by S1(x) = 14x , S2(x) = 14x + 34 and T1(x) = 15x + 310 . For a �xed probability vector(p1; p2; q1) , let � be the non-linear self-similar measure satisfying (4.66). We note that Conditions(a){(e) in Theorem 4.39 are satis�ed with U = (0; 1) . Hence, if we de�ne � : R ! R by �(q) =log(pq1+pq2)log 4 , then fP;�(�) � fH;�(�) � ��(�) for � � 0 . In Figure 4.3.2 we sketch the measure �for (p1; p2; q1) = (0:1; 0:26; 0:64) .



4.3 Multifractal spectra of inhomogeneous self-similar measures 62Example 4.40. Discrete measures with non-trivial multifractal spectra.Using our results in this section we will construct a large class of discrete measures with non-trivial multifractal spectra. Namely, let � be the inhomogeneous self-similar measure satisfying theidentity � = NXi=1 pi� Æ S�1i + p� ; (4.69)where S1; : : : ; SN : Rd ! Rd are contracting similarities, (p1; : : : ; pN ; p) is a probability vectorand and � is a probability measure with compact support. We now show that if the support of� is �nite and the sets S1(KC); : : : ; SN (KC); C (where, as usual, we write KC for the support of� and we write C for the support of � ) are pairwise disjoint, then � is a discrete measure withnon-trivial multifractal spectra. We note that other discrete measures with non-trivial multifractalspectra have been constructed by Aversa & Bandt [AB90].Theorem 4.41. Let � be non-linear self-similar measure satisfying (4.69) and assume that p 6= 0 .As usual, write KC = supp� and C = supp � . Assume that the sets (S1(KC); : : : ; SN(KC); C)are pairwise disjoint and that C is a �nite set. Let O denote the orbital set, i.e. O = [i2��SiC ,cf. (2.9). Then the following holds.1. The orbital set O is countable and has full measure, i.e. �(O) = 1 . In particular, the measure� is discrete.2. Let ri denote the contracting ratio of Si and, as usual, de�ne � : R ! R by Pi pqi r�(q)i = 1 .Then fP;�(�) = fH;�(�) = ��(�) for � � 0 . In particular, the multifractal spectra of � arenon-trivial.Proof. 1. This follows from Theorem 2.12.2. First observe that if we write Ur = fx 2 Rd j dist(x;KC) < rg for r > 0 , then it fol-lows easily from the fact that the sets S1(KC); : : : ; SN (KC); C are pairwise disjoint that the list(S1; :; ::; SN ; p1; : : : ; pN ; p; �) satis�es the IOSC with open set Ur for all suÆciently small r > 0 .Next, since supp � = C is �nite, we conclude that fH;�(�) = 0 for all � , and it therefore followsfrom Theorem 4.28 and the fact that the IOSC is satis�ed that fH;�(�) = max(��(�) ; fH;�(�) ) =��(�) for all � . The formula for fP;�(�) is proved very similarly.We now consider a concrete example of Theorem 4.41. De�ne S1; S2 : R ! R by S1(x) = 13xand S2(x) = 13x + 23 , and let � = Æ 12 . For a �xed probability vector (p1; p2; p) , let � be theinhomogeneous self-similar measure satisfying (4.69). We note that if we write KC = supp� andC = supp � = f 12g , then the sets S1(KC); S2(KC); C are pairwise disjoint. Theorem 2.8 thereforeshows that � is a discrete measure supported on the countable set fSi( 12 ) j i 2 f1; 2gNg and that ifwe de�ne � : R ! R by �(q) = log(pq1+pq2)log 3 , then fP;�(�) = fH;�(�) = ��(�) for � � 0 .4.3.3 Proof of Theorem 4.28: Preliminary results-part 1The purpose of this section is to prove Proposition 4.44 saying that if U is the open set in the IOSCthen �(SiKC) = �(SiU) = pi for i 2 �� . However, we �rst observe that iterating (2.4) shows that� = Xi2��jij=n pi� Æ S�1i + p Xi2��jij<n pi� Æ S�1i



4.3 Multifractal spectra of inhomogeneous self-similar measures 63for all positive integers n . This result will be used frequently below without further mentioning.We now state and prove Lemma 4.42 and Lemma 4.43. Finally, after having proved Lemma 4.42and Lemma 4.43 we state and prove Proposition 4.44.Lemma 4.42. Assume that the IOSC is satis�ed and let U be the open set in the IOSC. We haveKC � U :Proof. Let K(Rd ) denote the family of non-empty and compact subsets of Rd and equip K(Rd)with the Hausdor� metric dh . Next, de�ne T : K(Rd) ! K(Rd) by T (A) = [iSi(A) [ C .Since (K(Rd ); dh) is complete and T is a contraction (see the proof of Proposition 2.7), it followsfrom Banach's �xed point theorem that if A is compact, then T n(A) ! KC with respect to theHausdor� metric. In particular, we see that T n(U) ! KC . However, since SiU � U and C � Uwe deduce that U � T (U) � T 2(U) � : : : , whence KC = limn T n(U) � U .Lemma 4.43. Assume that the IOSC is satis�ed and let U be the open set in the IOSC.1. For all i; j 2 �� with jij = jjj and i 6= j , we haveS�1j SiU \ U = ? :2. For all i; j 2 �� with jjj < jij , we have�(S�1j SiU \ C) = 0 :Proof. 1. This follows from Condition 2 of the IOSC.2. Since jjj < jij , there are j0; i0 = i01 : : : i0n 2 �� with n > 0 and jj0j = jjj such that i = j0i0 .We now divide the proof into two cases.Case 1: j = j0 . If j = j0 , then S�1j SiU = S�1j Sj0Si0U = S�1j SjSi0U = Si0U � Si01U , and wetherefore conclude from Condition 5 of the IOSC that �(S�1j SiU \ C) � �(Si01U \ C) = 0 .Case 2: j 6= j0 . If j 6= j0 , then Condition 1 and Condition 4 of the IOSC and Part 1 of the lemmaimply that S�1j SiU \C = S�1j Sj0Si0U \C � S�1j Sj0U \U = �S�1j Sj0U \ U�[�S�1j Sj0U \ @U� =S�1j Sj0U\@U . Therefore we conclude from this and Condition 6 of the IOSC that �(S�1j SiU\C) ��(S�1j Sj0U \ @U) = �(S�1j Sj0U \ @U \ C) � �(@U \ C) = 0 .We are now ready to prove the main result in this section.Proposition 4.44. Assume that the IOSC is satis�ed and let U be the open set in the IOSC.1. For all Borel sets B � Rd , we have �(B) = �(B \ U) .2. For all i 2 �� , we have �(SiU) = pi .3. For all i 2 �� , we have �(SiKC) = pi .



4.3 Multifractal spectra of inhomogeneous self-similar measures 64Proof. 1. We �rst show that �(U n U) = 0 : (4.70)We will now prove (4.70). First we note that if p = 0 , i.e. if we have (ordinary) self-similar measure,then it is well known that (4.70) holds, c.f. [Gra95]. Thus we now prove (4.70) for p 6= 0 . For eachpositive integer n we have�(U n U) = Xi2��jij=n pi�(S�1i (U n U)) + p Xi2��jij<n pi�(S�1i (U n U))� Xi2��jij=n pi + p Xi2��jij<n pi�(S�1i (U n U))=  Xi pi!n + p Xi2��jij<n pi�(S�1i (U n U))= (1� p)n + p Xi2��jij<n pi�(S�1i (U n U) \ C) : (4.71)Next, note that for all i 2 �� we haveS�1i (U n U) \ (C \ U) = ? : (4.72)We will now prove (4.72). Assume in order to reach a contradiction that (4.72) is not satis�ed, i.e.there are i 2 �� and x 2 S�1i (U nU)\(C\U) . This clearly implies that Six 2 (U nU)\Si(C\U) �(U nU)\SiU � (U nU)\U , yielding the desired contradiction, and completing the proof of (4.72).It follows from (4.72) and Condition 6 of the IOSC that�(S�1i (U n U) \ C) = �(S�1i (U n U) \ (C \ U)) + �(S�1i (U n U) \ (C \ @U))� �(?) + �(C \ @U)= 0 ; (4.73)for all i 2 �� .Combining (4.71) and (4.73) gives �(U n U) � (1� p)nfor all n . Now letting n!1 shows that �(U n U) = 0 . This completes the proof of (4.70).Finally, since supp� = KC � U and �(U n U) = 0 , we deduce that if B is any Borel set, then�(B) = �(B \ U) = �(B \ U) . This completes the proof of Part 1.2. We have�(SiU) = Xj2��jjj=jij pj�(S�1j SiU) + p Xj2��jjj<jij pi�(S�1j SiU)= pi�(S�1i SiU) + Xj2��jjj=jijj6=i pj�(S�1j SiU) + p Xj2��jjj<jij pi�(S�1j SiU \ C) :We conclude from Part 1 that �(S�1j SiU) = �(S�1j SiU \ U) for all j 2 �� , and so�(SiU) = pi�(S�1i SiU) + Xj2��jjj=jijj6=i pj�(S�1j SiU \ U) + p Xj2��jjj<jij pi�(S�1j SiU \ C) : (4.74)



4.3 Multifractal spectra of inhomogeneous self-similar measures 65Next, it follows from Lemma 4.43 (Part 1) that S�1j SiU\U = ? , and so �(S�1j SiU\U) = 0 , for allj 2 �� with jjj = jij and j 6= i . It also follows from Lemma 4.43 (Part 2) that �(S�1j SiU \C) = 0 ,for all j 2 �� with jjj < jij . We therefore conclude from (4.74) that�(SiU) = pi�(S�1i SiU)= pi�(U) : (4.75)Finally, since supp� = KC � U (by Lemma 4.42) we deduce that �(U) = 1 , and (4.75) thereforeimplies that �(SiU) = pi :This completes the proof of Part 2.3. We have pi = �(SiU) [by Part 2]� �(SiKC) [by Lemma 4.42]= Xj2��jjj=jij pj�(S�1j SiKC) + p Xj2��jjj<jij pj�(S�1j SiKC)� pi�(S�1i SiKC)= pi�(KC)= pi ;whence �(SiKC) = pi . This completes the proof of Part 3.4.3.4 Proof of Theorem 4.28: Preliminary results-part 2The purpose of this section is to apply the IOSC to prove Proposition 4.47 relating the multifractalspectra of � to the multifractal spectra of � . However, we �rst prove a few auxiliary results.Lemma 4.45. Assume that the IOSC satis�ed and let U be the open set in the IOSC. For alli 2 �� and for all x 2 C n ([iSiU [ @U) we havedimloc(Six; �) = dimloc(x; �) ;dimloc(Six; �) = dimloc(x; �) :Proof. Fix x 2 C n([iSiU[@U) and i 2 �� . Since x 2 C n@U and C � U[@U , we conclude thatx 2 U . As U is open this implies that there is a positive number ti such that for all 0 < r < ti ,we have B(x; r�1i r) � U . It follows from this thatB(Six; r) = SiB(x; r�1i r) � SiUfor all 0 < r < ti .Hence, if j 2 �� with jjj = jij and j 6= i and 0 < r < ti we conclude by Lemma 4.43 (Part 1) thatS�1j B(Six; r) \ U � S�1j SiU \ U = ? , whence�(S�1j B(Six; r) \ U) = 0 : (4.76)



4.3 Multifractal spectra of inhomogeneous self-similar measures 66Also, if j 2 �� with jjj < jij , then S�1j B(Six; r) \ C � S�1j SiU \ C , whence using Lemma 4.43(Part 2), �(S�1j B(Six; r) \ C) � �(S�1j SiU \ C) = 0 : (4.77)For 0 < r < ti we now deduce from Proposition 4.44, (4.76) and (4.77) that�(B(Six; r)) = Xjjj=jij pj�(S�1j B(Six; r)) + p Xjjj<jij pj�(S�1j B(Six; r))= pi�(S�1i B(Six; r))+ Xj2��jjj=jijj6=i pj�(S�1j B(Six; r) \ U) + p Xj2��jjj<jij pj�(S�1j B(Six; r) \ C)[by Proposition 4.44]= pi�(S�1i B(Six; r))= pi�(S�1i SiB(x; r�1i r))= pi�(B(x; r�1i r))= pi�(B(x; r�1i r) \KC) : (4.78)Next, we observe that since x 2 C n [iSiU and [iSiU is closed, there is a positive number t0such that B(x; r�1i r) � Rd n[i SiU (4.79)for all 0 < r < t0 .In particular, we deduce from (4.79) and the fact that KC � U , thatB(x; r�1i r) \KC = B(x; r�1i r) \ [i SiKC [ C!� B(x; r�1i r) \ [i SiU [ C!= B(x; r�1i r) \ C� B(x; r�1i r) \KCfor all 0 < r < t0 , and so B(x; r�1i r) \KC = B(x; r�1i r) \ C (4.80)for all 0 < r < t0 . Combining (4.78) and (4.80) now gives�(B(Six; r)) = pi�(B(x; r�1i r) \ C) (4.81)for all 0 < r < min(ti; t0) .Finally, we observe that if A � C n [iSiU , then�(A) = p�(A) : (4.82)We will now prove (4.82). We �rst show that if A � C n [iSiU , then S�1i A \KC = ? for all i .Indeed, otherwise there is an index j and a point y 2 S�1j A\KC , whence Sjy 2 A\ SjKC . Butthis contradicts the fact that A \ SjKC � A \ SjU � A \ ([iSiU) � (C n [iSiU) \ ([iSiU) = ? .The above contradiction shows that S�1i A \KC = ? for all i . It therefore follows that �(A) =Pi pi�(S�1i A) + p�(A) =Pi pi�(S�1i A \KC) + p�(A) = p�(A) . This proves (4.82).



4.3 Multifractal spectra of inhomogeneous self-similar measures 67It follows from (4.79) that B(x; r�1i r)\C � C n[iSiU , and by applying (4.82) to A = B(x; r�1i r)\C , we now conclude that �(B(x; r�1i r) \ C) = p�(B(x; r�1i r) \ C) (4.83)for all 0 < r < t0 . Finally, combining (4.81) and (4.83) we conclude that�(B(Six; r)) = ppi�(B(x; r�1i r) \ C) = ppi�(B(x; r�1i r))0 < r < min(t0; ti) . The desired result follows immediately from this.Lemma 4.46. Assume that the IOSC is satis�ed and let U be the open set in the IOSC. For all� � 0 we havenx 2 KC ��� dimloc(x;�) = �o = nx 2 K? ��� dimloc(x;�) = �o[ [i2�� Si(x 2 C n [i SiU [ @U! ����� dimloc(x; �) = �)[ [i2�� Si(x 2 C \ [i SiU [ @U!����� dimloc(Six;�) = �) :Proof. It follows immediately from Lemma 3.9 thatnx 2 KC ��� dimloc(x;�) = �o = nx 2 K? ��� dimloc(x;�) = �o[ [i2�� nx 2 SiC ��� dimloc(x;�) = �o : (4.84)Also, it is clear thatny 2 SiC ��� dimloc(y;�) = �o = Sinx 2 C ��� dimloc(Six;�) = �o (4.85)for all i 2 �� . Furthermore, it follows from Lemma 4.45 thatSinx 2 C ��� dimloc(Six;�) = �o= Si(x 2 C n [i SiU [ @U!����� dimloc(Six;�) = �)[ Si(x 2 C \ [i SiU [ @U!����� dimloc(Six;�) = �)= Si(x 2 C n [i SiU [ @U!����� dimloc(x; �) = �)[ Si(x 2 C \ [i SiU [ @U!����� dimloc(Six;�) = �) (4.86)for all i 2 �� .The desired result follows by combining (4.84), (4.85) and (4.86).



4.3 Multifractal spectra of inhomogeneous self-similar measures 68We can now state and prove the main result in this section relating the multifractal spectra of �to the multifractal spectra of � .Proposition 4.47. Assume that the IOSC is satis�ed. For all � � 0 we havefH;�(�) = max dimH nx 2 K? ��� dimloc(x;�) = �o ; fH;�(�)! ;fP;�(�) = max dimP nx 2 K? ��� dimloc(x;�) = �o ; fP;�(�)! :Proof. Let U be the open set in the IOSC. It follows immediately from Conditions 5 and 6 of theIOSC that dimH C \ [i SiU [ @U!! = 0 :This and Lemma 4.46 now imply thatfH;�(�) = dimH nx 2 KC ��� dimloc(x;�) = �o= max dimH nx 2 K? ��� dimloc(x;�) = �o ;supi2�� dimH Si(x 2 C n [i SiU [ @U! ����� dimloc(x; �) = �) ;supi2�� dimH Si(x 2 C \ [i SiU [ @U!����� dimloc(Six;�) = �) != max dimH nx 2 K? ��� dimloc(x;�) = �o ;supi2�� dimH(x 2 C n [i SiU [ @U! ����� dimloc(x; �) = �) ;supi2�� dimH(x 2 C \ [i SiU [ @U!����� dimloc(Six;�) = �) != max dimH nx 2 K? ��� dimloc(x;�) = �o ;dimH(x 2 C n [i SiU [ @U!����� dimloc(x; �) = �) != max dimH nx 2 K? ��� dimloc(x;�) = �o ;dimH nx 2 C ��� dimloc(x; �) = �o != max dimH nx 2 K? ��� dimloc(x;�) = �o ; fH;�(�) ! :



4.3 Multifractal spectra of inhomogeneous self-similar measures 69This completes the proof. The proof of the formula for fP;�(�) is similar.Since dimHE � dimPE for any set E � Rd , Proposition 4.47 shows that in order to proveTheorem 4.28 it suÆces to prove the following two inequalities, namely,��(�) � dimH nx 2 K? ��� dimloc(x;�) = �o ; (4.87)and dimP nx 2 K? ��� dimloc(x;�) = �o � ��(�) : (4.88)The proof of inequality (4.87) will be given in Section 4.3.5 and the proof of inequality (4.88) willbe given in Section 4.3.6.4.3.5 Proof of Theorem 4.28: part 1The purpose of this setion is to prove the inequality (4.87), i.e.dimH nx 2 K? ��� dimloc(x;�) = �o � ��(�) :The proof of this inequality will be given in Proposition 4.51. We now introduce some notation.Let �N = f1; : : : ; NgN , i.e. �N denotes the family of all in�nite lists i = i1i2 : : : with entries ijfrom f1; : : : ; Ng . For i = i1i2 : : : 2 �N and a positive integer n , let ijn = i1 : : : in . Next, fori = i1 : : : in 2 �� , let [i] denote the cylindre generated by i , i.e. [i] = �j 2 �N �� jjn = i	 . Also,for a real number q de�ne the probability vector (Qi(q))i byQi(q) = pqi r�(q)i ;and for i = i1 : : : in 2 �� write Qi(q) = Qi1(q) : : : Qin(q) and let ~�q denote the unique probabilitymeasure on �N such that ~�q([i]) = Qi(q)for all i 2 �� . Finally, de�ne � : �N ! Rd by� �(i)	 =\n SijnK?for i ; it is well-known that �(�N) = K? .Proposition 4.48. Assume that the IOSC is satis�ed. For ~�q -a.a. i 2 �N we haveliminfn log pijnlog rijn � dimloc(�(i);�) � dimloc(�(i);�) � limsupn log pijnlog rijn : (4.89)Proof. The second inequality in (4.89) holds trivially. We will now prove the �rst and the thirdinequality in (4.89).Proof of liminfn log pijnlog rijn � dimloc(�(i);�) for ~�q -a.a. i 2 �N . Let U be the open set in the IOSC.We �rst note that since the open set U has the additional property that U \ K? 6= ? , then itfollows from [Gra95] that Z j log dist(�(i); @U)j d~�q(i) <1 : (4.90)



4.3 Multifractal spectra of inhomogeneous self-similar measures 70For n 2 N [ f0g de�ne dn : �N ! R bydn(i) = dist ��(i) ; @SijnU � :Let S : �N ! �N denote the shift map, i.e. S (i1i2 : : :) = (i2i3 : : :) . Note also that for n 2 N wehave Sijn�(Sni) = �(i) . Thusdn(i) = dist ��(i) ; @SijnU � = dist �Sijn�(Sni) ; Sijn@U �= rijn dist ��(Sni) ; @U � = rijnd0(Sni) : (4.91)Since d0(i) = dist(�(i); @U) , (4.90) shows that log d0 is ~�q -integrable, and we therefore concludethat j log d0(i)j <1 for ~�q -a.a. i 2 �N , whence d0(i) > 0 for ~�q -a.a. i 2 �N . This observationand (4.91) show that dn(i) > 0 for all n 2 N [ f0g (4.92)for ~�q -a.a. i 2 �N .Also, since log d0 is ~�q -integrable, we infer from the ergodic theorem (for the statement and proofof the ergodic theorem see, for example, [Wal82] or any text book on ergodic theory) that1n log d0(Sni) = 1n nXk=1 log d0(Ski)� 1n n�1Xk=1 log d0(Ski)n!1! Z log d0 d~�q � Z log d0 d~�q = 0 (4.93)for ~�q -a.a. i 2 �N .Finally, it also follows from the ergodic theorem that1n log rijn n!1! a (4.94)for ~�q -a.a. i 2 �N where a =PiQi(q) log ri . Namely, we have1n log rijn = 1n nXk=1 log rik : (4.95)De�ne f :PN ! R by f(i) = log ri1 :Then (4.95) becomes 1n log rijn = 1n n�1Xk=0 f �Ski� : (4.96)Letting n!1 in (4.96), we obtain1n log rijn ! Z fd~�q= Xi (log ri)Qi(q) :



4.3 Multifractal spectra of inhomogeneous self-similar measures 71Now, �x i 2 �N satisfying (4.92), (4.93) and (4.94), and let r > 0 be suÆciently small. SinceU � Sij1U � Sij2U � : : : and �(i) 2 \nSijnU , we conclude that d1(i) � dn(i) � : : : , andwe can thus choose a (unique) positive integer n(i; r) such that dn(i;r)(i) � r � dn(i;r)�1(i) . Itfollows from the de�nition of dn(i;r)�1(i) that B(�(i); r) � Sijn(i;r)�1U . This and the fact that�(Sijn(i;r)�1U) = pijn(i;r)�1 (by Proposition 4.44) imply that�(B(�(i); r)) � �(Sijn(i;r)�1U) = pijn(i;r)�1 : (4.97)Also, observe that it follows from the de�nition of dn(i;r)(i) and (4.91) thatr � dn(i;r)(i) = rijn(i;r)d0(Sn(i;r)i) : (4.98)Finally, combining (4.97) and (4.98) givesliminfr&0 log�(B(�(i); r))log r � liminfr&0 log pijn(i;r)�1log rijn(i;r)d0(Sn(i;r)i)� liminfr&0 log rijn(i;r)�1log rijn(i;r) + log d0(Sn(i;r)i) log pijn(i;r)�1log rijn(i;r)�1= liminfr&0 1n(i;r) log rijn(i;r)�11n(i;r) log rijn(i;r) + 1n(i;r) log d0(Sn(i;r)i) log pijn(i;r)�1log rijn(i;r)�1 :(4.99)(4.100)However, since i satis�es (4.92), (4.93) and (4.94), we conclude thatlimr&0 1n(i;r) log rijn(i;r)�11n(i;r) log rijn(i;r) + 1n(i;r) log d0(Sn(i;r)i) = aa+ 0 = 1 :This and (4.100) show thatliminfr&0 log�(B(�(i); r))log r � liminfr&0 log pijn(i;r)�1log rijn(i;r)�1 � liminfn log pijnlog rijnfor all i 2 �N satisfying (4.92), (4.93) and (4.94). The desired result now follows since the set ofi 2 �N satisfying (4.92), (4.93) and (4.94) has full measure.Proof of dimloc(�(i);�) � limsupn log pijnlog rijn for all i 2 �N . We may clearly assume that diamKC =1 . For i 2 �N and r > 0 we may choose a (unique) positive integer m(i; r) such that rijm(i;r) �r � rijm(i;r)�1 . It follows from the de�nition of m(i; r) that Sijm(i;r)KC � B(�(i); r) . This andthe fact that �(Sijm(i;r)KC) = pijm(i;r) (by Proposition 4.44) imply thatpijm(i;r) = �(Sijm(i;r)KC) � �(B(�(i); r)) : (4.101)Also, observe that it follows from the de�nition of m(i; r)� 1 thatr � rijm(i;r)�1 � 1rmin rijm(i;r) : (4.102)Combining (4.101) and (4.102) giveslimsupr&0 log�(B(�(i); r))log r � limsupr&0 log pijm(i;r)log 1rmin rijm(i;r) = limsupr&0 log pijm(i;r)log rijm(i;r) � limsupm log pijmlog rijm :This completes the proof.



4.3 Multifractal spectra of inhomogeneous self-similar measures 72De�ne the probability vector p0 = (p0;i)i byp0;i = piPj pj :For i = i1 : : : in 2 �� write p0;i = p0;i1 : : : p0;in .Lemma 4.49. For all i 2 �N and all n we have log p0;ijnlog rijn = � logPi pilog rijnn + log pijnlog rijn .Proof. First note that p0;ijn = pijn�Pj pj�n :Using this, we have log p0;ijnlog rijn = log pijn � n logPj pjlog rijn= log pijnlog rijn � logPj pjlog rijnn :
Lemma 4.50. We have,1. If � 2 (mini log pilog ri ;maxi log pilog ri ) , then ��(�) > 0 .2. If � 62 [mini log pilog ri ;maxi log pilog ri ] , then ��(�) = �1 .Proof. First recall that 1 =Xi pqi r�(q)i : (4.103)From this we immediately have that limq!1 �(q) = �1limq!�1 �(q) = 1 :Let �i = log pilog ri ; �min = mini log pilog ri and �max = maxi log pilog ri (4.104)Also, let f(�) = ��(�) = inf�1<q<1f�(q) + �qg (4.105)Since � is strictly convex (provided that �i are not the same for all i ), for a given � the in�niumin (4.105) is attained at a unique q = q(�) . This occurs when � = �(q) = ��0(q) . Thusf(�) : (�(1); �(�1)) ! R+ :We will now show that �(1) = �min and �(�1) = �max :



4.3 Multifractal spectra of inhomogeneous self-similar measures 73We have, 1 = X�i=�min pqi r�(q)i + X�i>�min pqi r�(q)i= X�i=�min �pir��mini �q r�(q)+�minqi + X�i>�min �pir��mini �q r�(q)+�minqi= X�i=�min r�(q)+�minqi + X�i>�min �pir��mini �q r�(q)+�minqi : (4.106)Observe that �(q) + �minq is nonincreasing, since�0(q) + �min = �Pi pqi r�(q)i log piPi pqi r�(q)i log ri + �min= �Pi �ipqi r�(q)i log ri + �minPi pqi r�(q)i log riPi pqi r�(q)i log ri= Pi (�min � �i) pqi r�(q)i log riPi pqi r�(q)i log ri � 0Thus, we have limq!1 (�(q) + �minq) = �1 (4.107)or, we have limq!1 (�(q) + �minq) = e for some e 2 R (4.108)If (4.107) holds, then taking limit in (4.106) as q !1 , we obtain 1 =1 .Therefore (4.108) must hold. Then taking the limit in (4.106) as q !1 , we obtain1 = X�i=�min rei : (4.109)To �nd the asymptotic behavior of � , we �rst observe that.�(q) = Pi pqi r�(q)i log piPi pqi r�(q)i log ri= P�i=�min r�(q)+�minqi log pi +P�i>�min r�(q)+�iqi log piP�i=�min r�(q)+�minqi log ri +P�i>�min r�(q)+�iqi log ri= P�i=�min r�(q)+�minqi log pi +P�i=�min+�i�i>0 r�(q)+�minqi r�iqi log piP�i=�min r�(q)+�minqi log ri +P�i=�min+�i�i>0 r�(q)+�minqi r�iqi log ri : (4.110)Using (4.109) and letting q !1 in (4.110), we obtain�(1) = �min :Similarly, one can show that �(�1) = �max :



4.3 Multifractal spectra of inhomogeneous self-similar measures 74We can now state and prove the main result in this section.Proposition 4.51. Assume that the IOSC is satis�ed. For all � 2 (mini log pilog ri ;maxi log pilog ri ) we havedimH nx 2 K? ��� dimloc(x;�) = �o � ��(�) :Proof. As in the proof of Lemma 4.50, let � = ��0 . An argument from the proof of Lemma4.50 shows that f�(q) j q 2 Rg = (mini log pilog ri ;maxi log pilog ri ) , and we therefore �nd q 2 R such that� = �(q) . It follows easily by implicit di�erentiation that�(q) = ��0(q) = PiQi(q) log piPiQi(q) log ri :Write� = (i 2 �N ����� liminfn log pijnlog rijn � dimloc(�(i);�) � dimloc(�(i);�) � limsupn log pijnlog rijn) ;� = (i 2 �N ����� limn log rijnn =Xi Qi(q) log ri) ;� = (i 2 �N ����� limn log p0;ijnlog rijn = PiQi(q) log p0;iPiQi(q) log ri ) :Lemma 4.49 implies thatnx 2 K? ��� dimloc(x;�) = �o = nx 2 K? ��� dimloc(x;�) = �(q)o� (x 2 K? ����� dimloc(x;�) = �(q)) \ �(�) \ �(�)� �(i 2 �N ����� limn log pijnlog rijn = �(q)) \ �(�) \ �(�)= �(i 2 �N ����� limn log p0;ijnlog rijn = � logPi piPiQi(q) log ri + �(q))\�(�) \ �(�)= �(i 2 �N ����� limn log p0;ijnlog rijn = � logPi piPiQi(q) log ri + PiQi(q) log piPiQi(q) log ri)\�(�) \ �(�)= �(i 2 �N ����� limn log p0;ijnlog rijn = PiQi(q) log p0;iPiQi(q) log ri )\�(�) \ �(�)= �(�) \ �(�) \ �(�) : (4.111)Let �q = ~�q Æ ��1 . It follows immediately from the ergodic theorem that�q(�(�)) � ~�q(�) = ~�q(i 2 �N ����� limn log rijnn =Xi Qi(q) log ri) = 1 ;



4.3 Multifractal spectra of inhomogeneous self-similar measures 75�q(�(�)) � ~�q(�) = ~�q(i 2 �N ����� limn log p0;ijnlog rijn = PiQi(q) log p0;iPiQi(q) log ri ) = 1 ; (4.112)and it follows from Proposition 4.48 that�q(�(�)) = ~�q(��1�(�))� ~�q(i 2 �N ����� liminfn log pijnlog rijn � dimloc(�(i);�) � dimloc(�(i);�) � limsupn log pijnlog rijn) = 1 :(4.113)Combining (4.111), (4.112) and (4.113) shows that�qnx 2 K? ��� dimloc(x;�) = �o = 1 :We conclude from this thatdimH nx 2 K? ��� dimloc(x;�) = �o � inf�q(E)=1 dimHE : (4.114)Finally, it is well-known that inf�q(E)=1 dimHE = PiQi(q) logQi(q)PiQi(q) log ri ; (4.115)see, for example, [AP96] or [Fal97]. Combining (4.114) and (4.115) shows thatdimH nx 2 K? ��� dimloc(x;�) = �o � PiQi(q) logQi(q)PiQi(q) log ri= qPiQi(q) log piPiQi(q) log ri + �(q)= q�(q) + �(q)= q�+ �(q)� ��(�) :This completes the proof.4.3.6 Proof of Theorem 4.28: part 2The purpose of this section is to prove the inequality (4.88), i.e.dimP nx 2 K? ��� dimloc(x;�) = �o � ��(�) :The proof of this inequality will be given in Proposition 4.53. The next lemma is a slight modi�cationof a result due to Hutchinson [Hut81] (cf. also [Fal90]) and the proof is therefore omitted.



4.3 Multifractal spectra of inhomogeneous self-similar measures 76Lemma 4.52. Let r; c1; c2 > 0 , and let (Vi)i be a family of open disjoint subsets of Rd such thatVi contains a ball of radius c1r and is contained in a ball of radius c2r . Then��� fi j B(x; r) \ Vi 6= ?g ��� � �1 + 2c2c1 �dfor all x 2 Rd .Here by ��� fi j B(x; r) \ Vi 6= ?g ��� we mean the cardinality of the set fi j B(x; r) \ Vi 6= ?g . Weuse this notation for the rest of this section.We can now state and prove the main result in this section.Proposition 4.53. Assume that the IOSC is satis�ed. Fix � � 0 .1. Let (rn)n be a sequence in (0; 1) for which there exists a constant c 2 (0; 1) such thatrn & 0 ;crn < rn+1 < rn for all n,Pn r"n <1 for all " > 0.(For example, me may take rn = an for a 2 (0; 1) .) Let q 2 R , n 2 N and " > 0 . Write�n;" = \k�n (x 2 K? ������� " � log�(B(x; rk))log rk � �+ ") ;�qn;" = infrn>0 (Xi (2Æi)q�+�(q)+(1+jqj)" ������B(xi; Æi) �i is a centered rn-packing of �n;" ) :Then �qn;" <1 :2. If � 2 (mini log pilog ri ;maxi log pilog ri ) , thendimP nx 2 K? ��� dimloc(x;�) = �o � ��(�) :3. If � 62 [mini log pilog ri ;maxi log pilog ri ] , thennx 2 K? ��� dimloc(x;�) = �o = ? :Proof. 1. We may clearly assume that diamKC = 1 . Let (B(xi; Æi))i be a centered rn -packingof �n;" . For each i let ni denote the unique positive integer such thatrni � Æi < rni�1 :



4.3 Multifractal spectra of inhomogeneous self-similar measures 77Observe that rni � Æi � rn , whence ni � n : (4.116)Next we prove the following �ve claims.Claim 1. There is a constant c1 > 0 such that (2Æi)q�+�(q)+(1+jqj)" � c1rq�+�(q)+(1+jqj)"ni for alli .Proof of Claim 1. This follows immediately from the de�nitions. This completes the proof of Claim1.Claim 2. We have rq�+jqj"ni � �(B(xi; rni))q for all i .Proof of Claim 2. Since (B(xi; Æi))i is a centered rn -packing of �n;" , we deduce that xi 2 �n;" .This implies that � � " � log�(B(xi;rk))log rk � � + " for all k � n . In particular, we conclude thatr�+"k � �(B(xi; rk)) � r��"k for all k � n . However, since ni � n (by (4.116)), the desiredconclusion follows from this inequality. This completes the proof Claim 2.In order to state Claim 3 and Claim 4 we make the following de�nitions. For i 2 �� and positiveintegers i and m write�i = ni 2 �� ��� ri � rni < rij jij�1 ; SiKC \ B(xi; rni) 6= ?o ;Ii;m = ni 2 N ���ni = m ; SiKC \B(xi; rm) 6= ?o : (4.117)Claim 3. There is a constant c2 > 0 such that j�ij � c2 for all i .Proof of Claim 3. Let U be the open set in the IOSC. Now put�i = ni 2 �� ��� ri � rni < rij jij�1 ; SiU \ B(xi; rni) 6= ?ofor i 2 N . It follows from Lemma 4.42 that SiKC � SiU for all i 2 �� , whence�i � �i :Since U is non-empty, bounded and open, there are two numbers s1; s2 > 0 such that U containsa ball of radius s1 and is contained in a ball of radius s2 . Hence, if i 2 �i , then SiU containsa ball of radius ris1 , and since ris1 � rij jij�1rmins1 � (rmins1)rni , we deduce that SiU containsa ball of radius (rmins1)rni . Similarly, if i 2 �i , then SiU is contained in a ball of radius ris2 ,and since ris2 � s2rni , we deduce that SiU is contained in a ball of radius s2rni . Since also thesets (SiU)i2�i are pairwise disjoint (because SiU \ SjU = ? for i 6= j ), it therefore follows fromLemma 4.52 that j�ij � j�ij �  1 + 2s2rmins1 !d :This completes the proof of Claim 3.Claim 4. There is a constant c3 > 0 such that jIi;mj � c3 for all i 2 �� and all m 2 N withri � rm < rij jij�1 .Proof of Claim 4. Choose any positive real number s > 0 such that KC � B(0; s) . Now putJi;m = ni 2 N ��� ni = m ; B(Si0; rms) \B(xi; rm) 6= ?o



4.3 Multifractal spectra of inhomogeneous self-similar measures 78for i 2 �� and m 2 N . Next, �x i 2 �� and m 2 N with ri � rm < rij jij�1 . Since KC � B(0; s) ,it follows that SiKC � B(Si0; ris) , whenceIi;m � ni 2 N ��� ni = m ; B(Si0; ris) \ B(xi; rm) 6= ?o� ni 2 N ��� ni = m ; B(Si0; rms) \ B(xi; rm) 6= ?o= Ji;m :It is also clear that B(xi; rm) contains a ball of radius rm = 1ssrm , and that B(xi; rm) is containedin a ball of radius rm = 1ssrm . Since also the sets (B(xi; rm))i2Ji;m are pairwise disjoint (because(B(xi; Æi) )i is a packing and B(xi; rm) = B(xi; rni) � B(xi; Æi) for i 2 Ji;m since rni � Æi ), ittherefore follows from Lemma 4.52 thatjIi;mj � jJi;mj �  1 + 2 1s1s !d = (2 + s)d :This completes the proof of Claim 4.Claim 5. There is a constant c4 > 0 such that r�(q)m � c4r�(q)i for all i 2 �� and all m 2 N withri � rm < rij jij�1 .Proof of Claim 5. This follows immediately from the de�nitions. This completes the proof of Claim5.We conclude from Claim 1 and Claim 2 thatXi (2Æi)q�+�(q)+(1+jqj)" � c1Xi rq�+�(q)+(1+jqj)"ni� c1Xi r�(q)+"ni �(B(xi; rni))q : (4.118)Next, since xi 2 �n;" � K? we can choose ii 2 �N such that xi = �(ii) . Let mi denotethe unique positive integer such that riijmi � rni < riijmi�1 . Observe that since xi = �(ii) 2SiijmiK? � SiijmiKC and diamSiijmiKC = riijmi diamKC = riijmi � rni (recall that we areassuming diamKC = 1 ), we deduce that SiijmiKC � B(xi; rni) . In particular, it follows from thisthat if q < 0 , then �(B(xi; rni))q � �(SiijmiKC)q : (4.119)Also note that iijmi 2 �i : (4.120)We will now prove (4.120). Indeed, it is clear that riijmi � rni < riijmi�1 , and since xi = �(ii) 2SiijmiK? � SiijmiKC and xi 2 B(xi; rni) , we conclude that SiijmiKC \ B(xi; rni) 6= ? . Thisproves (4.120).Finally, note that B(xi; rni) � [i2�i SiKC . In particular, it follows from this that if 0 � q , then�(B(xi; rni))q � � [i2�i SiKC!q : (4.121)Combining (4.119), (4.120) and (4.121) and using the fact that �(SiKC) = pi for all i 2 �� (byProposition 4.44) we now deduce from (4.118) that



4.3 Multifractal spectra of inhomogeneous self-similar measures 79Xi (2Æi)q�+�(q)+(1+jqj)" � 8><>:c1Pir�(q)+"ni �(SiijmiKC)q for q < 0;c1Pir�(q)+"ni � Si2�i SiKC!q for 0 � q;� 8><>:c1Pir�(q)+"ni �(SiijmiKC)q for q < 0;c1Pir�(q)+"ni  Pi2�i�(SiKC)!q for 0 � q;= 8><>:c1Pir�(q)+"ni pqiijmi for q < 0;c1Pir�(q)+"ni  Pi2�ipi!q for 0 � q;� (c1Pir�(q)+"ni supi2�ipqi for q < 0;c1Pir�(q)+"ni j�ijq supi2�ipqi for 0 � q;� c1Xi r�(q)+"ni j�ijjqj supi2�i pqi : (4.122)Next using Claim 3 and the fact that ni � n (by (4.116)) we dedue from (4.122) thatXi (2Æi)q�+�(q)+(1+jqj)" � c1 cjqj2 Xi r�(q)+"ni supi2�i pqi= c1 cjqj2 Xm�n Xini=m r�(q)+"ni supi2�i pqi� c1 cjqj2 Xm�n Xini=m r�(q)+"m Xi2�i pqi= c1 cjqj2 Xm�n r�(q)+"m Xini=m Xi2��ri�rm<rij jij�1SiKC\B(xi;rm)6=? pqi= c1 cjqj2 Xm�n r�(q)+"m Xi2��ri�rm<rij jij�1 Xini=mSiKC\B(xi;rm)6=? pqi= c1 cjqj2 Xm�n r�(q)+"m Xi2��ri�rm<rij jij�1 pqi jIi;mj : (4.123)Using Claim 4 and Claim 5 we conclude from (4.123) thatXi (2Æi)q�+�(q)+(1+jqj)" � c1 cjqj2 c3 Xm�n r�(q)+"m Xi2��ri�rm<rij jij�1 pqi� c1 cjqj2 c3 c4 Xm�n r"m Xi2��ri�rm<rij jij�1 r�(q)i pqi= c1 cjqj2 c3 c4 Xm�n r"m Xi2��ri�rm<rij jij�1 ~�q([i]) ; (4.124)recall that the measure ~�q is de�ned at the beginning of Section 4.3.5.



4.3 Multifractal spectra of inhomogeneous self-similar measures 80Finally, using the fact that the sets � [i] �i2�� ; ri�rm<rij jij�1 are pairwise disjoint, we conclude from(4.124) that Xi (2Æi)q�+�(q)+(1+jqj)" � c1 cjqj2 c3 c4 Xm�n r"m ~�q0BB@ [i2��ri�rm<rij jij�1 [i]1CCA� c1 cjqj2 c3 c4 Xm�n r"m� c1 cjqj2 c3 c4Xm r"m= c0 ;where c0 = c1cjqj2 c3c4Pm r"m . This completes the proof of Part 1 of Proposition 4.53.We now turn towards the proof of Part 2 and Part 3 of Proposition 4.53. However, we �rst introducesome notation. For brevity write� = nx 2 K? ��� dimloc(x;�) = �o :Next, let (rn)n be a sequence in (0; 1) and let c 2 (0; 1) be a real number satisfying the conditionsin Part 1 of Proposition 4.53. For a positive integer n and " > 0 , let �n;" be de�ned as in Part1 of Proposition 4.53, i.e.�n;" = \k�n (x 2 K? ������� " � log�(B(x; rk))log rk � �+ ") :Next observe that since crn < rn+1 < rn for all n , we conclude that� = (x 2 K? ����� limr&0 log�(B(x; r))log r = �)= (x 2 K? ����� limn!1 log�(B(x; rn))log rn = �)� [n \k�n (x 2 K? ������� " � log�(B(x; rk))log rk � �+ ")= [n �n;" ; (4.125)for all " > 0 .Proof of Part 2 of Proposition 4.53. Let q 2 R . We must now prove thatdimP� � q�+ �(q) : (4.126)In order to prove (4.126), inclusion (4.125) shows that it suÆces to prove thatdimP�n;" � q�+ �(q) + (1 + jqj)" (4.127)



4.4 Open problems for multifractal analysis of inhomogeneous measures 81for all positive integers n and all " > 0 . Therefore, �x a positive integer n and " > 0 . Wewill now prove (4.127). Let �qn;" be de�ned as in Part 1. Also, recall that for t; r > 0 , we letPt denote the t -dimensional packing pre-measure and we let Ptr denote the r -approximativet -dimensional packing pre-measure. Since � 2 (mini log pilog ri ;maxi log pilog ri ) , we conclude from Lemma4.50 that q� + �(q) + (1 + jqj)" � ��(�) + (1 + jqj)" > 0 , and so Pq�+�(q)+(1+jqj)"rn (�n;") = �qn;" .It now follows from Part 1 thatPq�+�(q)+(1+jqj)"(�n;") � Pq�+�(q)+(1+jqj)"(�n;")� Pq�+�(q)+(1+jqj)"rn (�n;")= �qn;"< 1 ;whence dimP�n;" � q�+ �(q) + (1 + jqj)" .Proof of Part 3 of Proposition 4.53. Since � 62 [mini log pilog ri ;maxi log pilog ri ] , we conclude from Lemma4.50 that ��(�) < 0 and we can thus �nd q 2 R such that q� + �(q) < 0 . It follows from thisthat we can choose " > 0 such that q�+ �(q) + (1 + jqj)" < 0 .We will now prove that � = ? . Assume in order to reach a contradiction that � 6= ? . We cantherefore �nd x 2 � . In particular, it follows from (4.125) that there is a positive integer n suchthat x 2 �n;" . Hence, for each Æ > 0 with Æ � rn , the ball B(x; Æ) is a centred rn -packing of�n;" , and we therefore conclude from Part 1 that(2Æ)q�+�(q)+(1+jqj)" � �qn;" :Since q�+ �(q) + (1 + jqj)" < 0 and 0 < Æ � rn was arbitrary, this implies that1 = sup0<Æ�rn(2Æ)q�+�(q)+(1+jqj)" � �qn;" <1 : (4.128)The desired contradiction follows immediately from (4.128). This completes the proof of Proposition4.53.4.4 Open problems for multifractal analysis of inhomogeneous self-similarmeasures4.4.1 Open problems for Lq spectra and R�enyi dimensions of inhomogeneous self-similar measuresIt is quite unsatisfactory that our results for Lq spectra and R�enyi dimensions are obtained underthe assumption that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint. It is natural to ask if theresults are true assuming only the appropriate version of the standard Open Set Condition. Namely,assuming Inhomogeneous Open Set Condition (IOSC) stated in Section 4.3.1.Question 4.54. Are the results in Section 4.2.1 true if the IOSC is satis�ed?Question 4.55. Assume that the sets (S1KC ; : : : ; SNKC ; C) are pairwise disjoint (or simply as-sume that the IOSC is satis�ed).� Is it true that ��(q) = max��(q) ; � �(q)� ;for all q 2 R ?



4.4 Open problems for multifractal analysis of inhomogeneous measures 82� Can we �nd an upper bound for ��(q) for all q 2 R ?Question 4.56. Are the results in Section 4.2.2 true if the IOSC is satis�ed?



5 Fourier transforms of inhomogeneous self-similar measures 835 Fourier transforms of inhomogeneous self-similar measures5.1 Preliminaries: Fourier transforms of measuresOne of the reasons to study Fourier transforms of a measure is that the behaviour of Fouriertransform of a measure gives the information about the continuity of a measure. Namely, the fasterthe Fourier transform of a measure tends to zero the more regular the measure is. Thus, for example,since the Fourier transforms of discrete measures do not tend to zero (see Theorem 5.1 below), thesemeasures are not regular. In analysing the Fourier transform of a measure we are interested ininvestigating not only the asymptotic behaviour of the Fourier transform itself but its asymptoticbehaviour in an average sense, i.e. we want to analyse the following integral RB(0;R) jb�(x)j2 dx , ormore generally RB(0;R) jb�(x)jq dx , for q 2 (0;1) . This leads to the following general de�nitions ofFourier dimensions. Let � be a Borel probability measure on Rd and let b� denote the Fouriertransform of � . Recall that b� (x) = R eihyjxid� (y) for x 2 Rd . Then for q 2 (0;1] , we de�nethe q 'th upper Fourier dimension �q(�) and we de�ne the q 'th lower Fourier dimension �q(�)of � as follows. For q <1 , we put�q(�) = limsupR!1 log 1Ld(B(0;R)) RB(0;R) jb�(x)jq dx! 1q� logR ; (5.1)�q(�) = liminfR!1 log 1Ld(B(0;R)) RB(0;R) jb�(x)jq dx! 1q� logR ; (5.2)where Ld denotes d -dimensional Lebesgue measure, and for q =1 , we put�1(�) = limsupR!1 log supjxj�R jb�(x)j� logR ; (5.3)�1(�) = liminfR!1 log supjxj�R jb�(x)j� logR : (5.4)We now state a well known Wiener's Theorem [Wie33] describing the asymptotic behaviour of1Ld(B(0;R)) RB(0;R) jb�(x)j2 dx and therefore providing the information about �2(�) and �2(�) .Theorem 5.1. [[Wie33], see also [Str94]]. Let Æx denote the Dirac measure supported at apoint x . Suppose � = �1 + �2 where �1 =Pj cjÆaj is discrete and �2 is continuous. Then wehave limR!1 1Ld(B(0; R)) ZB(0;R) jb�(x)j2 dx =Xj jcj j2 :Hence, it is clear that if � is a probability measure and has a discrete part then �2(�) = �2(�) = 0 .Remark. We note further that if a probability measure � has a discrete part then for q � 1 wehave �q(�) = �q(�) = �1(�) = �1(�) = 0 :



5.2 Fourier transforms of inhomogeneous self-similar measures 84Thus, we are interested in computing Fourier dimensions (for q � 1 ) of probabilty measures whichare continuous.5.2 Fourier transforms of inhomogeneous self-similar measuresDuring the past 10 years there has been an enormous interest in investigating Fourier dimensions of(ordinary) self-similar measures satisfying (2.2) and there is a huge body of literature discussing thisproblem, see, for example, Bluhm [Blu99], Hu [Hu01], Hu & Lau [HL02], Lau [Lau92, Lau95], Lau& Wang [LW93], Strichartz [Str90a, Str90b, Str93a, Str93b]. Almost all of these papers concentratetheir study on the 2 'nd Fourier dimension of self-similar measures [Lau92, Lau95, LW93, Str90a,Str90b, Str93a, Str93b] or on the in�nity Fourier dimension of self-similar measures [Blu99, Hut81,HL02]. Continuing this line of investigation, in this section we will study the 2 'nd Fourier dimensionand the in�nity Fourier dimension of inhomogeneous self-similar measures. In Theorem 5.2 we obtainbounds for the in�nity Fourier dimension of an inhomogeneous self-similar measure and in Theorem5.4 we obtain bounds for the 2 'nd Fourier dimension of an inhomogeneous self-similar measure.Finally, in Section 5.2.3 we present a number of applications of our results. In particular, non-linearself-similar measures introduced and investigated by Glickenstein & Strichartz [GS96] are specialcases of inhomogeneous self-similar measures, and as an application of our main results we obtainsimple proofs of generalizations of Glickenstein & Strichartz's results on the asymptotic behaviourof the Fourier transforms of non-linear self-similar measures.5.2.1 Main resultsFrom now we �x an inhomogeneous self-similar measure � satisfying� =Xj pj� Æ S�1j + p� ; (5.5)where (p1; : : : ; pN ; p) is a probability vector and Sjx = rjRjx + aj for 0 < rj < 1 , Rj is anorthogonal matrix and aj 2 Rd . Before stating our main results it is useful to introduce thefollowing terminology.De�nition. Equicontractive. We will say that the equicontractive condition is satis�ed if all thecontraction ratios r1; : : : ; rN coincide, i.e. if r1 = : : : = rN .We will now state the �rst of our main results providing a lower bound for the in�nity Fourierdimension of an inhomogeneous self-similar measure.Theorem 5.2. [The �1(�) dimension of an inhomogeneous self-similar measure � ].De�ne s and t by Xj pjr�smin = 1 i.e. s = log(1� p)log rmin ;Xj pjr�tj = 1 ;where rmin = minj rj . Then 0 � s � t , and�1(�) � 8><>:�1(�) if 0 � �1(�) < s;s�1(�)s+�1(�) if s � �1(�) � t;t if t < �1(�). (5.6)
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        ∆∞(µ)
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              s

              0

                   0                            s                                t                                                ∆∞(ν)Figure 5.2.1:The bold lines separating the shaded and the unshaded regions represents the graph of the function f :[0;1)! [0;1) de�ned by f(x) = x for 0 � x < s , f(x) = sxs+x for s � x � t , and f(x) = t for t < x .For each value of �1(�) , the number f(�1(�)) is a lower bound for �1(�) , i.e. �1(�) lies in theunshaded region above f(�1(�)) .Theorem 5.2 is proved in Section 5.2.4 The reader is referred to Figure 5.2.1 for a graphical illustra-tion of the inequalities in (5.6). In the equicontractive case the lower bound for �1(�) simpli�esconsiderably. This is the content of the next corollary.Corollary 5.3. Assume that r1 = : : : = rN . Then s = t , and�1(�) � min(t;�1(�)) : (5.7)In order to obtain a lower bound for the 2 'nd Fourier dimension we must assume that the OpenSet Condition (OSC) is satis�ed. Recall that the OSC says that there exists an open, non-emptyand bounded subset U of Rd with [jSj(U) � U and Sj(U) \ Sk(U) = ? for all k 6= j .Theorem 5.4. [The �2(�) dimension of an inhomogeneous self-similar measure � ].Assume that the OSC is satis�ed. Assume further that r1 = : : : = rN and R1 = : : : = RN . Notethat if the equicontractive condition is satis�ed then s = t andXj pjr�t =Xj pjr�s = 1 i.e. s = t = log(1� p)log r :Then �2(�) � min ( t ; �2(�) ) :Theorem 5.4 is proved in Section 5.2.5



5.2 Fourier transforms of inhomogeneous self-similar measures 865.2.2 Open problems and conjectures for Fourier dimensions of inhomogeneous self-similar measuresWe have decided to put open problems and conjectures after stating our main results for the followingreasons. Namely, below (see Section 5.2.3) we will present a number of examples which will supportour conjectures and will give aÆrmative answers to some of our open questions.Corollary 5.3 leads us to believe that the same result might be true in the nonequicontractive case.This suggests the following conjecture.Conjecture 5.5. For all choices of r1; : : : ; rN we have,�1(�) � min( t ; �1(�) ) : (5.8)The 2 'nd Fourier dimension �2(�0) of a self-similar measure �0 satisfying (2.2) has been studiedin [Str90b] and investigated further in [Lau95, LW93, Str93a, Str93b]. In particular, the followingresults are proved in [Str90b]. Let Sj : Rd ! Rd for j = 1; : : : ; N be contracting similarities andwrite rj for the contracting ratio of Sj . Let (p1; : : : ; pN ) be a probability vector and let �0 bethe self-similar measure satisfying (2.2). Finally, let t0 and u0 be de�ned byXj pjr�t0j = 1 ; Xj p2jr�u0j = 1 ; ;and note that u02 � t0 . In view of Theorem 5.4 one would expect the following lower bound for�2(�0) to hold, namely, �2(�0) � t0 . In fact, in [Str90b] it is proved that that if the OSC issatis�ed, then the following better lower bound for �2(�0) holds, namely,�2(�0) � u02 :It is also proved in [Str90b] that if the equicontracting condition and some further conditions aresatis�ed, then �2(�0) = u02 : (5.9)In view of the above remarks, it is natural to conjecture that the result in Theorem 5.4 can beimproved as follows.Conjecture 5.6. Assume that the OSC is satis�ed. Assume further that r1 = : : : = rN = r andR1 = : : : = RN . Recall that if the equicontractive condition is satis�ed, then s = t andXj pjr�t =Xj pjr�s = 1 i.e. s = t = log(1� p)log r :De�ne u by Xj p2jr�u = 1 :It is easily seen that u2 � t , and we now conjecture that Theorem 5.4 can be improved as follows,�2(�) � min� u2 ; �2(�)� : (5.10)



5.2 Fourier transforms of inhomogeneous self-similar measures 87It is also natural to ask for lower bounds of �2(�) in the nonequicontractive case. Indeed, it is notdiÆcult to see what Conjecture 5.6 looks like in the nonequicontractive case.Conjecture 5.7. Assume that the OSC is satis�ed. For all choices of r1; : : : ; rN we de�ne u byXj p2jr�uj = 1 :We conjecture that �2(�) � min� u2 ; �2(�)� :It follows from Corollary 5.3 and Theorem 5.4 that in the equicontractive case the lower bounds forthe in�nity Fourier dimension �1(�) and the 2 'nd Fourier dimension �2(�) satisfy analogousequations. It is natural to ask if the same result may hold for an arbitrary q 'th Fourier dimensionof � .Question 5.8. Assume that the OSC is satis�ed. Assume further that r1 = : : : = rN and R1 =: : : = RN . Is it true that �q(�) � min � t ; �q(�) � (5.11)for all q > 0 ? Is (5.11) true even if the equicontractive condition is not satis�ed?If q is an even integer, an extension of the arguments given below in the proof of Theorem 5.4may lead to this result. However, it appears to us that new ideas are needed if q is not aninteger. One of the possibilities to obtain lower bounds for �2(�) in the nonequicontractive caseis to use techniques from Renewal Theory. Indeed, methods from Renewal Theory were introducedinto the study of fractal measures by Lalley [Lal88, Lal91] and have subsequently been used in[Lau95, LW93, Str93a] to investigate the 2 'nd Fourier dimension �2(�0) for (ordinary) self-similarmeasures �0 satisfying (2.2) in the nonequicontractive case. In fact, [Lau95, LW93, Str93a] alsoobtain very precise information about the rate of convergence of log( 1Ld(B(0;R)) RB(0;R)(jb�0(x)j2 dx) 12� logR to�2(�0) as R ! 1 . This suggests that Renewal Theory can also be used in analyzing Fourierdimensions of inhomogeneous self-similar measures.All results mentioned so far have provided lower bounds for the Fourier dimensions �q(�) forq = 2;1 . It is clearly of interest to obtain upper bounds, or even exact values, for those dimensions.We also wonder if the lower bounds in Theorem 5.2 and Conjecture 5.6 are, in fact, exact values.This and (5.9) suggest the following problem and question.Problem 5.9. Assume that the OSC is satis�ed. Find an upper bound for �q(�) for q = 2;1(or for all q ).Question 5.10. Assume that the OSC is satis�ed. Assume further that r1 = : : : = rN andR1 = : : : = RN . Is it true that �1(�) = min ( t ; �1(�) )and �2(�) = min� u2 ; �2(�)� ?



5.2 Fourier transforms of inhomogeneous self-similar measures 885.2.3 ExamplesNext we consider some examples of inhomogeneous self-similar measures and their lower Fourierdimensions, including examples which show that a number of the conjectures in Section 5.2.2 aresatis�ed in various speci�c cases.Example 5.11. [Non-linear self-similar measures. Part 1.]We consider probability measures � satisfying the following nonlinear self-similar identity� = NXj=1 pj� Æ S�1j + MXj=1 qj(� � �) Æ T�1j ; (5.12)where (p1; : : : ; pN ; q1; : : : ; qM ) is a probability vector, Sjx = rjRjx + aj for 0 < rj < 1 , Rj isan orthogonal matrix and ai 2 Rd , and Tjx = �jPjx + bj for 0 < �j < 12 , Pj is an orthogonalmatrix and bj 2 Rd ; the existence and uniqueness of measures � satisfying (5.12) is proved in[GS96]. Without loss of generality we may clearly assume that � is not supported on any (d� 1) -dimensional aÆne subspace of Rd . Indeed, if this is not the case, then the construction of � takesplace on a (d� 1) -dimensional aÆne subspace � , say, of Rd and the extra dimension (orthogonalto � ) is super
uous. Hence, by successively removing dimensions, we may assume that d is chosensuch that � is not supported on any (d� 1) -dimensional aÆne subspace of Rd .Glickenstein & Strichartz [GS96] also analyzed the asymptotic behaviour of the Fourier transformof � . We note that measures � satisfying the nonlinear self-similar identity in (5.12) can be viewedas inhomogeneous self-similar measure associated with the list (S1; : : : ; SN ; p1; : : : ; pN ; p; �) wherep = 1� NXj=1 pj and � = MXj=1 qj1�PNk=1 pk (� � �) Æ T�1j :We will now apply Theorem 5.2 and Theorem 5.4 to obtain simple proofs of generalizations of theresults from [GS96] giving lower bounds for the in�nity Fourier dimension and the 2 'nd Fourierdimension of � .A. The in�nity Fourier dimension of � . We �rst discuss the in�nity Fourier dimension of � .Before analyzing this example further it is useful to make the following two observations.Observation 5.12. We have �1(�) � 2�1(�) : (5.13)Proof. First we note that for x 2 Rdb� (x) =  MXj=1 qjp (� � �) Æ T�1j !b(x)= MXj=1 qjp ((� � �) Æ T�1j )b(x)= MXj=1 qjp eihbj jxi(� � �)b�T �j x�= MXj=1 qjp eihbj jxib� �T �j x�2 ; (5.14)



5.2 Fourier transforms of inhomogeneous self-similar measures 89where T �j = �jP �j and P �j is the conjugate transpose of Pj . It follows from (5.14) that�1(�) = liminfR!1 log supjxj�R�����PMj=1 qjp eihbj jxib�(T �j x)2�����!� logR� liminfR!1 log PMj=1 qjp supjxj�R jb�(T �j x)j2!� logR : (5.15)Fix " > 0 . It now follows from the de�nition of �1(�) that there exists a constant c > 0 such thatsupjxj�R jb�(x)j � cjRj�(�1(�)�") for all R > 0 , whence supjxj�R jb�(T �j x)j2 � c2(�jR)�2(�1(�)�")for all j . Combining this and (5.15), we conclude that�1(�) � liminfR!1 log PMj=1 qjp c2(�jR)�2(�1(�)�")!� logR= liminfR!1 log�CR�2(�1(�)�")�� logR= 2(�1(�)� ") ;where C =PMj=1 qjp c2(�j)�2(�1(�)�") . Letting "! 0 we obtain (5.13).Observation 5.13. We have �1(�) > 0 :Proof. This is simply a restatement of [[GS96], Lemma 3.1] and the proof is therefore omitted.Since d is chosen such that � is not supported on any (d� 1) -dimensional aÆne subspace of Rdit follows from [GS96] that �1(�) � t : (5.16)We will now show that Glickenstein & Strichartz's result (5.16) implies that Conjecture 5.5 is true.Indeed, it follows from (5.13) and (5.16) that �1(�) � 2�1(�) � 2t , whence min(t;�1(�)) = t .Using (5.16) once more, we conclude from this that�1(�) � t = min(t;�1(�)) :This shows that (5.16) implies that Conjecture 5.5 is true in this case.Next, we show that in the equicontractive case, Corollary 5.3 implies Glickenstein & Strichartz'sresult (5.16). In the equicontractive case we can use Corollary 5.3 and inequality (5.13) to obtain�1(�) � min(t;�1(�)) � min(t; 2�1(�)) . Since also �1(�) > 0 (by Observation 5.13), we seefrom this inequality that min(t; 2�1(�)) = t , whence�1(�) � min(t; 2�1(�)) = t :Thus Corollary 5.3 implies Glickenstein & Strichartz's result (5.16) in the equicontractive case.



5.2 Fourier transforms of inhomogeneous self-similar measures 90We now consider the general nonequicontractive case. Since �1(�) � 2�1(�) (by (5.13)), Theo-rem 5.2 implies that in the nonequicontractive case we have�1(�) � 8><>:2�1(�) if 0 � �1(�) < s;2s�1(�)s+2�1(�) if s � �1(�) � t;t if t < �1(�),which simpli�es to �1(�) = 0 if 0 � �1(�) < s; (5.17)�1(�) � ( s2 if s � �1(�) � t;t if t < �1(�). (5.18)However, since �1(�) > 0 (by Observation 5.13), we deduce from (5.17) that s � �1(�) . Also,if s � �1(�) � t , then it follows from (5.13) that 2�1(�) � �1(�) � t , whence �1(�) � t2 .In view of those remarks, (5.17) and (5.18) simplify to: we have s � �1(�) andt2 � �1(�) � s2 if s � �1(�) � t,�1(�) � t if t < �1(�).Of course, it follows from Glickenstein & Strichartz's result (5.16) that �1(�) � t , and it thereforefollows from the above that we must have t < �1(�) ; however, we cannot deduce this fromTheorem 5.2. This again suggests that Theorem 5.2 can be improved for s � �1(�) � t asoutlined in Conjecture 5.5.B. The 2 'nd Fourier dimension of � . Next we analyze the 2 'nd Fourier dimension of � . Inorder to apply Theorem 5.4 to analyze �2(�) , we will make two further assumptions, namely thatr1 = : : : = rN and that R1 = : : : = RN . However, before analyzing the 2 'nd Fourier dimension itis useful to make the following observation.Observation 5.14. For all q > 1 , we have�q(�) � 2�2q(�) ; (5.19)2�2q(�) > �q(�) : (5.20)Proof. We �rst prove (5.19). It follows from (5.14) and Minkowski's inequality that
�q(�) = liminfR!1 log 1Ld(B(0;R)) RB(0;R) ���PMj=1 qjp eihbj jxib�(T �j x)2���q dx! 1q� logR� liminfR!1 logPMj=1 qjp  1Ld(B(0;R)) RB(0;R) ��b�(T �j x)��2q dx! 1q� logR : (5.21)



5.2 Fourier transforms of inhomogeneous self-similar measures 91Fix " > 0 . Then there exists a constant c > 0 such that ( 1Ld(B(0;R)) RB(0;R) jb�(x)j2q dx) 12q �cR�(�2q(�)�") for all R > 0 , whence0B@ 1Ld(B(0; R)) ZB(0;R) ��b�(T �j x)��2q dx1CA 1q � c2(�jR)�2(�2q(�)�")Combining this and (5.21), we conclude that�q(�) � liminfR!1 logPMj=1 qjp c2(�jR)�2(�2q(�)�")� logR= liminfR!1 logCR�2(�2q(�)�")� logR= 2(�2q(�)� ") ;where C =PMj=1 qjp c2��2(�2q(�)�")j . Letting "! 0 we obtain (5.19).Next we prove (5.20). In [[GS96], Lemma 3.1] it was shown that jb�(x)j < 1 for all x 6= 0 . Thisand the continuity of b� implies that
2�2q(�) = 2 liminfR!1 log 1Ld(B(0;R)) RB(0;R) jb�(x)j2q dx! 12q� logR> 2 liminfR!1 log 1Ld(B(0;R)) RB(0;R) jb�(x)jq dx! 12q� logR= �q(�) :This completes the proof of (5.20).We can now use the above Observation 5.14 and Theorem 5.4 to obtain�2(�) � min ( t ; �2(�) ) � min ( t ; 2�4(�) ) > min ( t ; �2(�) ) :Thus �2(�) � t :This completes Example 5.11.Example 5.15. [Non-linear self-similar measures. Part 2.]Now we consider measures satisfying a more general nonlinear self-similar identity. Namely, weconsider probability measures � satisfying the following nonlinear self-similar identity� = NXj=1 pj� Æ S�1j + MXj=1 qj(� � � � � � �| {z }kj times ) Æ T�1j ; (5.22)



5.2 Fourier transforms of inhomogeneous self-similar measures 92where k1; : : : ; kM are positive integers with k1; : : : ; kM � 2 , and (p1; : : : ; pN ; q1; : : : ; qM ) is aprobability vector, Sjx = rjRjx + aj for 0 < rj < 1 , Rj is an orthogonal matrix and aj 2 Rd ,and Tjx = �jPjx+bj for 0 < �j < 1maxl kl , Pj is an orthogonal matrix and bj 2 Rd ; the existenceand uniqueness of measures � satisfying (5.22) follow easily using an argument similar to the onein [GS96] or by an argument similar to the one in Proposition 2.8. As in Example 5.11 we mayclearly assume that � is not supported on any (d� 1) -dimensional aÆne subspace of Rd .Again, we note that measures � satisfying the nonlinear self-similar identity in (5.22) can be viewedas inhomogeneous self-similar measures associated with the list (S1; : : : ; SN ; p1; : : : ; pN ; p; �) , wherep = 1� NXj=1 pj and � = MXj=1 qj1�PNk=1 pk (� � � � � � �| {z }kj times ) Æ T�1j :As in Example 5.11 we will apply Theorem 5.2 and Theorem 5.4 to obtain lower bounds for thein�nity Fourier dimension and the 2 'nd Fourier dimension of � .C. The in�nity Fourier dimension of � . As before we �rst discuss the in�nity Fourier di-mension of � . Again, before analyzing this example further it is useful to make the following twoobservations.Observation 5.16. We have �1(�) � minj kj�1(�) : (5.23)Proof. First we note that for x 2 Rdb� (x) =  MXj=1 qjp (� � � � � � �| {z }kj times ) Æ T�1j !b(x)= MXj=1 qjp eihbj jxib� �T �j x�kj ; (5.24)where T �j = �jP �j : It follows from (5.24) that�1(�) = liminfR!1 log supjxj�R�����PMj=1 qjp eihbj jxib�(T �j x)kj �����!� logR� liminfR!1 log PMj=1 qjp supjxj�R jb�(T �j x)jkj!� logR : (5.25)Fix " > 0 . It now follows from the de�nition of �1(�) that there exists a constant c >0 such that supjxj�R jb�(x)j � cjRj�(�1(�)�") for all R > 0 , whence supjxj�R jb�(T �j x)jkj �ckj (�jR)�kj(�1(�)�") for all j . Combining this and (5.25), we conclude that�1(�) � liminfR!1 log PMj=1 qjp ckj (�jR)�kj(�1(�)�")!� logR



5.2 Fourier transforms of inhomogeneous self-similar measures 93� liminfR!1 log�CR�(minj kj)(�1(�)�")�� logR= (minj kj)(�1(�)� ") ;where C =PMj=1 qjp ckj (�j)�kj (�1(�)�") . Letting "! 0 we obtain (5.23).Remark. One can clearly see that the proofs of Observation 5.16 and Observation 5.12 are verysimilar and therefore for the rest of this section we will omit presenting such similar proofs twice.The next observation is due to Glickenstein and Strichartz [GS96].Observation 5.17. We have �1(�) > 0 :In the equicontractive case, we can use (5.23) and Corollary 5.3 to obtain �1(�) � min(t;�1(�)) �min(t;minj kj�1(�)) . Since also �1(�) > 0 (by Observation 5.17), we see from this inequalitythat min(t;minj kj�1(�)) = t , whence�1(�) � min(t;minj kj�1(�)) = t :We now consider the general nonequicontractive case. In this case, if we proceed as in Example5.11, we obtain the following lower bound for �1(�) ,�1(�) = 0 if 0 � �1(�) < s; (5.26)�1(�) � (�1� 1minj kj �s if s � �1(�) � t;t if t < �1(�). (5.27)As in Example 5.11, using the fact that �1(�) > 0 (by Observation 5.17), we conclude that (5.26)and (5.27) simplify to: we have s � �1(�) and1minj kj t � �1(�) � �1� 1minj kj �s if s � �1(�) � t,�1(�) � t if t < �1(�).Of course, if 1 + ts < minj kj , then 1minj kj t � �1(�) � (1� 1minj kj )s cannot hold, and we musttherefore have that t < �1(�) . On the other hand, if minj kj � 1 + ts , then the above resultshows that �1(�) � t for t < �1(�) , and that �1(�) � 1minj kj t � 12 t < t for s � �1(�) � t .However, in analogy with Glickenstein & Strichartz's result in (5.16) for k1 = : : : = kM = 2 , weexpect that �1(�) � t , and it therefore follows from the above that we must have t < �1(�) ;unfortunately, we cannot deduce this from Theorem 5.2, suggesting, once more that Theorem 5.2can be improved.D. The 2 'nd Fourier dimension of � . Next we analyze the 2 'nd Fourier dimension of � .Again, in order to apply Theorem 5.4 to analyze �2(�) , we will make two further assumptions,namely that r1 = : : : = rN and that R1 = : : : = RN . However, before analyzing the 2 'nd Fourierdimension it is useful to make the following observation. The proof of this observation is similar tothe proof of Observation 5.14 in Example 5.11 and is therefore omitted, see the remark followingObservation 5.16.



5.2 Fourier transforms of inhomogeneous self-similar measures 94Observation 5.18. For all q > 1 , we have�q(�) � minj kj�kjq(�) ;minj kj�kjq(�) > �q(�) :We can now use the above Observation 5.18 and Theorem 5.4 to obtain�2(�) � min ( t ; �2(�) ) � min� t ; minj kj�kj2(�)� > min ( t ; �2(�) ) :Thus �2(�) � t :This completes Example 5.15.Example 5.19.Finally, we consider a more concrete and rather trivial example, involving discrete measures, tosupport our conjectures. However, we believe that the explicit calculations for this example can bemodi�ed to consider a more interesting example involving continuous measures and therefore wehave decided to include them.For simplicity we restrict ourselves to R . Let � be the inhomogeneous measure satisfying thefollowing inhomogeneous self-similar equation� = 14� Æ S�11 + 14� Æ S�12 + 12Æ0 ; (5.28)where S1(x) = 14 (x� 1) , S2(x) = 14 (x+1) and Æ0 is the Dirac measure supported at 0 . It is notdiÆcult to see that � satisfying (5.28) is a discrete measure since in this case the measure � = Æ0is a discrete measure. Thus by the remark following Theorem 5.1, we have�1(�) = �q(�) = 0 : (5.29)We now turn towards explicit calculations and give another direct proof of (5.29). The Fouriertransform b�(x) of � can easily be found. Indeed, since bÆ0(x) = 1 for all x , (5.28) implies thatthe Fourier transform of � satis�es the following equalityb�(x) = 12 cos�14x�b��14x�+ 12 : (5.30)By iterating (5.30), we obtain b�(x) = 12k Qkl=1 cos( 14lx)b�( 14k x) +Pkn=1 12n Qn�1m=1 cos( 14mx) for allpositive integers k . Letting k !1 , we obtainb�(x) = 1Xn=1 12n n�1Ym=1 cos� 14mx� : (5.31)Figure 5.2.2 shows the graph of the Fourier transform b�(x) in (5.31).Note that in this case s = t = 12 . Thus applying Corollary 5.3 gives�1(�) � 0 :
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5.2 Fourier transforms of inhomogeneous self-similar measures 96+ 124 cos�14x� cos� 142x� cos� 143x�+ � � �� 12 + 0� 123 � 124 � 125 � � � � = 12 � 14 = 14for all x 2 In and all n . Writing Rn = 8n� + 2� , it follows from this and the fact that theintervals In are pairwise disjoint thatZB(0;Rn) jb�(x)jq dx � nXk=�n ZIk jb�(x)jq dx � nXk=�n ZIk 14q dx = (2n+ 1)4� 14q � Rn 14q :It follows from this that �q(�) � liminfn log( 12Rn RB(0;Rn) jb�(x)jq dx) 1q� logRn � liminfn log(4�12�1=q)� logRn = 0 .Since, clearly also 0 � �q(�) , we therefore conclude that �q(�) = 0 . This proves (5.33).From (5.33) we see that �q(�) = 0 = min( 12 ; 0 ) = min( s ; �q(Æ0) ) . Thus in this case the answerto Question 5.8 is aÆrmative. This completes Example 5.19.5.2.4 Proof of Theorem 5.2In this section we prove Theorem 5.2. Therefore, let the notation be as in Theorem 5.2.Observe that it follows from (5.5) thatb�(x) =Xj pjeihaj jxib�(rjR�jx) + pb�(x) ; (5.34)for x 2 Rd .Next we introduce some notation. For j = 1; : : : ; N de�ne Pj : Rd ! C and Lj : Rd ! Rd byPj(x) = pjeihaj jxi ;Lj(x) = rjR�j (x) : (5.35)Using this notation, (5.34) simpli�es tob�(x) =Xj Pj(x)b�(Ljx) + pb�(x) (5.36)for x 2 Rd . By iterating (5.36), we see thatb�(x) = Xj1;:::;jn=1;:::;N Pj1(x)Pj2 (Lj1x) � � �Pjn(Ljn�1 : : : Lj1x) b�(Ljn : : : Lj1x)+p n�1Xk=0 Xj1;:::;jk=1;:::;N�Pj1 (x)Pj2 (Lj1x) � � �� � �Pjk (Ljk�1 : : : Lj1x) b�(Ljk : : : Lj1x)� (5.37)for all positive integers n and all x 2 Rd .Before proving Theorem 5.2 we prove auxiliary inequality (5.38) below. For a positive integer n � 1we put



5.2 Fourier transforms of inhomogeneous self-similar measures 97An = (x 2 Rd ����� jxj � 1rnmin) ;Mn = supx2An jb�(x)j ;recall that rmin = minj rj .Lemma 5.20. For any n � 1 , we havejb�(x)j � (1� p)n + n�1Xk=0(1� p)kpMn�k (5.38)for all x 2 AnProof. By taking absolute value in (5.37), we see thatjb�(x)j � Xj1;:::;jn=1;:::;N jPj1(x)j jPj2 (Lj1x)j � � � jPjn(Ljn�1 : : : Lj1x)j jb�(Ljn : : : Lj1x)j+p n�1Xk=0 Xj1;:::;jk=1;:::;N(jPj1 (x)jjPj2 (Lj1x)j � � �� � � jPjk (Ljk�1 : : : Lj1x)j jb�(Ljk : : : Lj1x)j)= Xj1;:::;jn=1;:::;N pj1pj2 � � � pjn jb�(Ljn : : : Lj1x)j+p n�1Xk=0 Xj1;:::;jk=1;:::;N pj1pj2 � � � pjk jb�(Ljk : : : Lj1x)j (5.39)for x 2 Rd . Noting that jb�(x)j � 1 for all x , we deduce from (5.39) thatjb�(x)j � �Xj pj�n + p n�1Xk=0�Xj pj�k supy2An jb�(Ljk : : : Lj1y)j= (1� p)n + p n�1Xk=0(1� p)k supy2An jb�(Ljk : : : Lj1y)j (5.40)for all x 2 An . Finally, it is clear that if y 2 An and if j1; : : : ; jk = 1; : : : ; N with k � n , thenLjk : : : Lj1y 2 An�k , implying that jb�(Ljk : : : Lj1y)j �Mn�k . It therefore follows from (5.40) thatjb�(x)j � (1� p)n + n�1Xk=0(1� p)kpMn�kfor x 2 An . This completes the proof of Lemma 5.20.We now turn towards the proof of Theorem 5.2.Proof of Theorem 5.2



5.2 Fourier transforms of inhomogeneous self-similar measures 98We �rst show that there exists a unique number t such thatXj pjr�tj = 1 ; (5.41)and that s = log(1�p)log rmin � t . Indeed, de�ne ' : [0;1) ! [0;1) by '(x) = Pj pjr�xj . SincePj pj < 1 and ' is a strictly increasing continuous function with limx!1 '(x) =1 there existsa unique t such that (5.41) holds. Also it can be shown by routine calculations that s satis�esPj pjr�sj < 1 . Thus 0 � s � t .For brevity we write Rn = 1rnminthroughout the remaining parts of the proof of Theorem 5.2.Part 1: First we prove that �1(�) � �1(�) for 0 � �1(�) < s . Let " > 0 . Next, note thatin this case 1�pr�1(�)�"min < 1 . Also, observe that it follows from the de�nition of �1(�) that thereexists a constant c > 0 such that supjxj�R jb�(x)j � cR�(�1(�)�")for all R > 0 . We therefore conclude from Lemma 5.20 that for all positive integers n � 1 and forall x 2 An , we have jb�(x)j � (1� p)n + n�1Xk=0(1� p)kpMn�k� (1� p)n + n�1Xk=0(1� p)kpcr(n�k)(�1(�)�")min= rnsmin + pcrn(�1(�)�")min n�1Xk=0� 1� pr�1(�)�"min �k� rnsmin + pcrn(�1(�)�")min 1Xk=0� 1� pr�1(�)�"min �k� R�sn + CR�(�1(�)�")n= (1 + C)R�min(s;�1(�)�")n= (1 + C)R�(�1(�)�")nwhere C = cp=(1� 1�pr�1(�)�"min ) . Thussupjxj�Rn jb�(x)j � (1 + C)R�(�1(�)�")nfor all positive integers n . Hence, if R > 0 , we can choose a (unique) positive integer withRn < R � Rn+1 , whencesupjxj�R jb�(x)j � supjxj�Rn jb�(x)j � (1 + C)R�(�1(�)�")n � 1 + Cr�1(�)�"min R�(�1(�)�")It follows immediately from this that �1(�) � �1(�) � " . We now obtain the desired result byletting "! 0 . This completes the proof of Part 1.



5.2 Fourier transforms of inhomogeneous self-similar measures 99Part 2: Next we prove that �1(�) � s�1(�)s+�1(�) for s � �1(�) � t . For positive integers n andm with 1 � n � m and for all x 2 Am , it follows from Lemma 5.20 thatjb�(x)j � (1� p)m + nXk=0(1� p)kpMm�k + mXk=n+1(1� p)kpMm�k� (1� p)m + p�1p maxm�n�l�mMl + (1� p)np supl Ml�= (1� p)m + supjyj�r�(m�n)min jb�(y)j+ (1� p)n ;where we have used the fact that Ml � 1 for all l . Thus for any a � 1 and any x 2 A[an] (herewe write [x] for the largest integer less than x 2 R ), we havejb�(x)j � (1� p)[an] + (1� p)n + supjyj�r�([na]�n)min jb�(y)j� (1� p)[an] + (1� p)n + supjyj�r�(na�n�1)min jb�(y)j� 2(1� p)n + supjyj�r�(na�n�1)min jb�(y)j= 2rnsmin + supjyj�r�n(a�1)min rmin jb�(y)j� 2R�sn + supjyj�R(a�1)n rmin jb�(y)j :It follows from this thatsupjxj�r�anmin jb�(x)j � supjxj�r�[an]min jb�(x)j � 2R�sn + supjyj�R(a�1)n rmin jb�(y)j : (5.42)Fix " > 0 . It follows from the de�nition of �1(�) that there exists a constant c such thatsupjyj�R jb�(y)j � cR�(�1(�)�")for all R > 0 . Using this and (5.42), we obtainsupjxj�Ran jb�(x)j � 2R�sn + cr�(�1(�)�")min R�(a�1)(�1(�)�")n� �2 + cr�(�1(�)�")min �R�min�s;(a�1)(�1(�)�")�n= C(Ran)�min� sa ;(1� 1a )(�1(�)�")�where C = 2 + cr�(�1(�)�")min . Hence, if R > 0 , we can choose a (unique) positive integer withRan < R � Ran+1 , whencesupjxj�R jb�(x)j � supjxj�Ran jb�(x)j � C (Ran)�min� sa ;(1� 1a )(�1(�)�")�� Cramin� sa ;(1� 1a )(�1(�)�")�min R�min� sa ;(1� 1a )(�1(�)�")� :



5.2 Fourier transforms of inhomogeneous self-similar measures 100This clearly implies that �1(�) � min� sa ;�1� 1a� (�1(�)� ")� ;for all " > 0 and all a � 1 . Letting "& 0 and taking supremum over all a � 1 , we obtain�1(�) � supa�1 min� sa ;�1� 1a��1(�)� :However, it is easily seen that supa�1 min( sa ; (1 � 1a )�1(�)) equals s�1(�)s+�1(�) . Hence it followsthat �1(�) � s�1(�)s+�1(�) . This completes the proof of Part 2.Part 3: Finally we prove that �1(�) � t for t < �1(�) . Fix " > 0 . It follows from thede�nition of t that Pj pjr�(t�")j < 1 . Thus, we can choose Æ > 0 such thatXj pjr�(t�")j + pÆ < 1 : (5.43)Next, it follows from the de�nition of �1(�) that there exists a constant c > 0 such thatjb�(x)j � cjxj�(�1(�)�") (5.44)for all x .Also, since �1(�) > t , we can clearly �nd R0 > 0 such thatcjxj�(�1(�)�") � Æjxj�(t�") (5.45)for all jxj � R0 .Finally, since b� is continuous, and therefore bounded on compact sets, we can �nd M � 1 suchthat jxjt�"jb�(x)j �M for all jxj � R0 , whencejb�(x)j �M jxj�(t�") (5.46)for all jxj � R0 .Using an inductive argument we will now prove that for all integers k � 0 we havejb�(x)j �M jxj�(t�") for all jxj � r�kmaxR0 . (5.47)We �rst establish the start of the induction, namely, that (5.47) is true for k = 0 , i.e. we provethat jb�(x)j �M jxj�(t�") for all jxj � R0 . (5.48)However, for all jxj � R0 , it follows immediately from (5.46) that jb�(x)j � M jxj�(t�") . Thisproves the start of the induction.We now turn towards the proof of the inductive step. We therefore assume thatjb�(x)j �M jxj�(t�") for all jxj � r�kmaxR0 , (5.49)for some �xed integer k � 0 , and we must now prove thatjb�(x)j �M jxj�(t�") for all jxj � r�(k+1)max R0 . (5.50)We therefore let jxj � r�(k+1)max R0 be given. It follows from the start of the induction, i.e. (5.48),that jb�(x)j � M jxj�(t�") for all jxj � R0 . Hence we must prove that jb�(x)j � M jxj�(t�") for



5.2 Fourier transforms of inhomogeneous self-similar measures 101all R0 � jxj � r�(k+1)max R0 . Thus suppose that R0 � jxj � r�(k+1)max R0 . Since jxj � r�(k+1)max R0 , weconclude that jLjxj = rj jxj � rjr�(k+1)max R0 � r�kmaxR0 for all j = 1; : : : ; N , and it therefore followsfrom the inductive hypotheses (5.49) thatjb�(Ljx)j �M jLjxj�(t�") =Mr�(t�")j jxj�(t�") : (5.51)Furthermore, since R0 � jxj , it follows from (5.44) and (5.45) thatjb�(x)j � cjxj�(�1(�)�") � Æjxj�(t�") : (5.52)Combining (5.51) and (5.52), we now see thatjb�(x)j � NXj=1 pj jb�(Ljx)j+ pjb�(x)j� NXj=1 pjMr�(t�")j jxj�(t�") + pÆjxj�(t�")� NXj=1 pjMr�(t�")j jxj�(t�") + pMÆjxj�(t�")=  NXj=1 pjr�(t�")j + pÆ!M jxj�(t�")� M jxj�(t�")as required. This proves the inductive step.Finally, (5.47) clearly implies that �1(�) � t� " , and letting "& 0 gives the desired result.5.2.5 Proof of Theorem 5.4In this section we prove Theorem 5.4. Therefore, let the notation be as in Theorem 5.4. Namely,again we �x a list of the form (S1; : : : ; SN ; p1; : : : ; pN ; p; �) where (p1; : : : ; pN ; p) is a probabilityvector and S1; : : : ; SN : Rd ! Rd are similarities of the form Sj(x) = rjRjx+aj where 0 < rj < 1 ,aj 2 Rd and Rj is an orthogonal matrix. We also assume that the list (S1; : : : ; SN ) satis�es theopen set condition, i.e. there exists a non-empty, open and bounded set U such that Sj(U) � Ufor all j and Sj(U)\Sk(U) = ? for all j 6= k . In this section will make two further assumptions,namely, we will assume that all the contracting ratios r1; : : : ; rN are equal, and that all orthogonalmatrices R1; : : : ; RN are equal, i.e. we are assuming thatr1 = : : : = rN = r ;R1 = : : : = RN = R :We now turn towards the proof of Theorem 5.4. First we introduce some notation. Recall that sis de�ned by s = log(1� p)log r ; (5.53)and de�ne u by Xj p2jr�u = 1 : (5.54)



5.2 Fourier transforms of inhomogeneous self-similar measures 102The proof of Theorem 5.4 will be divided into two parts. Firstly we prove that�2(�) � 12 min0B@ u ; supq1;q2>11q1 + 1q2 =1 � min ��q1(�) ; s � + min ��q2(�) ; s � � 1CA : (5.55)The proof of (5.55) is given in Proposition 5.22. Secondly we prove that12 min0B@ u ; supq1;q2>11q1 + 1q2 =1 � min ��q1(�) ; s � + min ��q2(�) ; s � � 1CA = min( s ; �2(�) ) : (5.56)The proof of (5.56) is given in Proposition 5.24. Theorem 5.4 now follows immediately by combining(5.55) and (5.56).Below we prove (5.55). However, we begin by introducing and recalling the following notation.We let �� denote the family of all �nite strings j = j1 : : : jn with entries jk 2 f1; : : : ; Ng ,i.e. �� = �j = j1 : : : jn ��n 2 N ; jk = 1; : : : ; N	 . For a �nite string j = j1 : : : jn with entriesjk 2 f1; : : : ; Ng , we will write jjj for the length of j , i.e. jjj = n and we will write pj = pj1 � � � pjnand Sj = Sj1 � � �Sjn . Let Pj : Rd ! C and Lj : Rd ! Rd be de�ned as in (5.35), i.e.Pj(x) = pjeihaj jxi ;Lj(x) = rjR�j (x) = rR�(x) : (5.57)Finally, for j = j1 : : : jn 2 �� , we writeaj = aj1 + L�j1aj2 + L�j1L�j2aj3 + � � �+ L�j1 : : : L�jn�1ajn : (5.58)Lemma 5.21. Assume that the OSC is satis�ed with open set equal to U . Assume further that0 2 U . Then there exists a constant � > 0 such thatjaj1 � aj2 j � �rn ;for all j1; j2 2 �� with jj2j = jj1j = n and j2 6= j1 .Proof. Let �2 = dist(0; @U) and observe that � > 0 since U is open. Since clearly aj = Sj(0)for all j 2 �� , we see that dist(aj; @SjU) = dist(Sj(0); @SjU) = rjjj dist(0; @U) = rjjj �2 . Asj1; j2 2 �� with jj2j = jj1j = n and j2 6= j1 , we conclude that Sj1U and Sj2U are disjoint. Thusjaj1 � aj2 j � dist(aj1 ; @Sj1U) + dist(aj2 ; @Sj2U) = �2 rn + �2 rn = �rn . This completes the proof.Proposition 5.22. Assume that the OSC is satis�ed. Assume that r1 = : : : = rN = r and thatR1 = : : : = RN = R . Recall that s and u are de�ned in (5.53) and (5.54), respectively. Then�2(�) � 12 min0B@ u ; supq1;q2>11q1 + 1q2 =1 � min ��q1(�) ; s � + min ��q2(�) ; s � � 1CA :



5.2 Fourier transforms of inhomogeneous self-similar measures 103Proof. Recall that for j = j1 : : : jn , we write aj = aj1 +L�j1aj2 +L�j1L�j2aj3 + � � �+L�j1 : : : L�jn�1ajn ,and note that Pj1 (x)Pj2 (Lj1x) � � �Pjn(Ljn�1 : : : Lj1x) = pjeihajjxi :It therefore follows from (5.37) and the fact that r1 = : : : = rN = r and R1 = : : : = RN = R , thatb�(x) = Xj1;:::;jn=1;:::;N Pj1(x)Pj2 (Lj1x) � � �Pjn(Ljn�1 : : : Lj1x)b�(Ljn : : : Lj1x)+p n�1Xk=0 Xj1;:::;jk=1;:::;N�Pj1(x)Pj2 (Lj1x) � � �� � �Pjk (Ljk�1 : : : Lj1x)b�(Ljk : : : Lj1x)�= Xjjj=n pjeihajjxib�(rn(Rn)�x) + p n�1Xk=0 Xjjj=k pjeihajjxib�(rk(Rk)�x)for all positive integers n and all x . Next, taking taking absolute value and recalling that jb�(x)j � 1for all x , givesjb�(x)j � jb�(rn(Rn)�x)j�����Xjjj=n pjeihajjxi�����+ p�����n�1Xk=0 Xjjj=k pjeihajjxib�(rk(Rk)�x)������ �����Xjjj=n pjeihajjxi�����+ p�����n�1Xk=0 Xjjj=k pjeihajjxib�(rk(Rk)�x)����� (5.59)for all positive integers n and all x . Let � denote the constant in Lemma 5.21. It is well-known (see, e.g. [Str90b]) that we can choose two constants c1; c2 > 0 and an auxiliary functionh : Rd ! R with the following properties:1. h � 0 ,2. h(x) � c1 for jxj � c2 ,3. bh(0) = 14. bh(x) = 0 for jxj � � .Fix q1; q2 > 1 with 1q1 + 1q2 = 1 . We now have1Ld(B(0; c2 1rn )) ZB(0;c2 1rn ) jb�(x)j2 dx� 1Ld(B(0; c2 1rn )) ZB(0;c2 1rn ) �����Xjjj=n pjeihajjxi�����+p�����n�1Xk=0 Xjjj=k pjeihajjxib�(rk(R�)kx)�����!2 dx� 2 1Ld(B(0; c2 1rn )) ZB(0;c2 1rn ) �����Xjjj=n pjeihajjxi�����2 dx



5.2 Fourier transforms of inhomogeneous self-similar measures 104+2p2 1Ld(B(0; c2 1rn )) ZB(0;c2 1rn ) �����n�1Xk=0 Xjjj=k pjeihajjxib�(rk(R�)kx)�����2 dx� 2 1Ld(B(0; c2 1rn )) ZB(0;c2 1rn ) c�11 h(rnx)�����Xjjj=n pjeihajjxi�����2 dx+2p2 1Ld(B(0; c2 1rn )) ZB(0;c2 1rn ) �����n�1Xk=0 Xjjj=k pjeihajjxib�(rk(R�)kx)�����2 dx� 2 1Ld(B(0; c2 1rn )) Z c�11 h(rnx)�����Xjjj=n pjeihajjxi�����2 dx+2p2 1Ld(B(0; c2 1rn )) ZB(0;c2 1rn ) �����n�1Xk=0 Xjjj=k pjeihajjxib�(rk(R�)kx)�����2 dx= 2c�11 1Ld(B(0; c2 1rn )) Xjj1j=jj2j=n pj1pj2 Z eihaj1�aj2 jxih(rnx) dx+2p2 1Ld(B(0; c2 1rn )) n�1Xk1;k2=0 Xjj1j=k1;jj2j=k2 pj1pj2� ZB(0;c2 1rn ) eihaj1�aj2 jxib�(rk1(R�)k1x)b�(rk2 (R�)k2x) dx� c0 Xjj1j=jj2j=n pj1pj2bh(r�n(aj1 � aj2))+2p2 n�1Xk1;k2=0 Xjj1j=k1;jj2j=k2 pj1pj2�0B@ 1Ld(B(0; c2 1rn )) ZB(0;c2 1rn ) jb�(rk1 (R�)k1x)jq1 dx1CA 1q1
�0B@ 1Ld(B(0; c2 1rn )) ZB(0;c2 1rn ) jb�(rk2 (R�)k2x)jq2 dx1CA 1q2 ; (5.60)where c0 = 2c�11 1Ld(B(0;c2)) and where the last inequality is due to H�older's inequality. Next, recallthat we are assuming that the OSC is satis�ed with open set equal to U , say. We may clearlyassume that 0 2 U , and it therefore follows from Lemma 5.21, that if jj1j = jj2j = n with j1 6= j2 ,then jr�n(aj1 � aj2)j � r�n�rn = � . This and property (4) of bh therefore implies thatbh(r�n(aj1 � aj2)) = 0for all j1 and j2 with jj1j = jj2j = n and j1 6= j2 . Using the fact that ru =PNj=1 p2j , we thereforeconclude that



5.2 Fourier transforms of inhomogeneous self-similar measures 105Xjj1j=jj2j=n pj1pj2bh(r�n(aj1 � aj2)) = Xjjj=n p2j= 0@Xj p2j1An= rnu :Combining this and (5.60) we now deduce that1Ld(B(0; c2 1rn )) ZB(0;c2 1rn ) jb�(x)j2 dx� c0rnu + 2p2 n�1Xk1;k2=0 Xjj1j=k1;jj2j=k2 pj1pj2�0B@ 1Ld(B(0; c2 1rn )) ZB(0;c2 1rn ) jb�(rk1 (R�)k1x)jq1 dx1CA 1q1
�0B@ 1Ld(B(0; c2 1rn )) ZB(0;c2 1rn ) jb�(rk2 (R�)k2x)jq2 dx1CA 1q2 :Fix " > 0 . It follows from the de�nition of �q(�) that there exists a constant ~c > 0 such that 1Ld(B(0; �)) ZB(0;�) jb�(x)jqj dx! 1qj � ~c��qj (�)�"for all � > 0 and j = 1; 2 . Thus we obtain1Ld(B(0; c2 1rn )) ZB(0;c2 1rn ) jb�(x)j2 dx� c0rnu + 2p2 n�1Xk1;k2=0 Xjj1j=k1;jj2j=k2 pj1pj2 ~c(c2r�n+k1 )�q1 (�)�" ~c(c2r�n+k2 )�q2 (�)�"= c0rnu + 2p2c2 n�1Xk1;k2=0 Xjj1j=k1;jj2j=k2 pj1rk1(�q1 (�)�") pj2rk2(�q2 (�)�")� 1rn!��q1 (�)��q2 (�)+2" ; (5.61)where c2 = ~c2c�q1 (�)+�q2 (�)�2"2 . Momentarily writing xj = pjr�q1 (�)�" and yj = pjr�q2 (�)�" , and xj =xj1 � � �xjn and yj = yj1 � � � yjn for j = j1 : : : jn 2 �� , (5.61) can be written as1Ld(B(0; c2 1rn )) ZB(0;c2 1rn ) jb�(x)j2 dx



5.2 Fourier transforms of inhomogeneous self-similar measures 106� c0rnu + 2p2c2 1rn!��q1 (�)��q2 (�)+2" n�1Xk1;k2=0 Xjj1j=k1;jj2j=k2 xj1yj2= c0rnu + 2p2c2 1rn!��q1 (�)��q2 (�)+2"0@n�1Xk=0 Xjjj=k xj1A 0@n�1Xk=0 Xjjj=k yj1A= c0rnu + 2p2c2 1rn!��q1 (�)��q2 (�)+2"0B@n�1Xk=00@Xj xj1Ak1CA 0B@n�1Xk=00@Xj yj1Ak1CA= c0rnu+ 2p2c2 1rn!��q1 (�)��q2 (�)+2" n�1Xk=0� 1� pr�q1 (�)�"�k!  n�1Xk=0� 1� pr�q2 (�)�"�k! :(5.62)It is easily seen that if �qj (�)� " � s , then there exists an N" such that if n � N" , thenn�1Xk=0� 1� pr�qj (�)�"�k =8>>>><>>>>: 1�� 1�pr�qj (�)�"�n1� 1�pr�qj (�)�" � 11� 1�pr�qj (�)�" � 1rn" for �qj (�) � " < s;n � 1rn" for �qj (�)� " = s, (5.63)for j = 1; 2 . Also, if s < �qj (�) � " , thenn�1Xk=0� 1� pr�qj (�)�"�k = 1� � 1�pr�qj (�)�"�n1� 1�pr�qj (�)�" � � 1�pr�qj (�)�"�n1�pr�qj (�)�" � 1 � Cj 1r(�qj (�)�"�s)n (5.64)where Cj = 11�pr�qj (�)�"�1 . Combining (5.62), (5.63) and (5.64) and puttingC = c0 + 2p2c2max(1; C1; C2; C1C2) give the following:If �q1(�)� " � s and �q2(�)� " � s , then1Ld(B(0; c2 1rn )) ZB(0;c2 1rn ) jb�(x)j2 dx � c0rnu + 2p2c2� 1rn���q1 (�)��q2 (�)+2" 1r2n"� C � 1rn��min(u ;�q1 (�)+�q2 (�)�4") (5.65)for all n � N" ;If s < �q1(�)� " and s < �q2(�)� " , then1Ld(B(0; c2 1rn )) ZB(0;c2 1rn ) jb�(x)j2 dx� c0rnu + 2p2c2� 1rn���q1 (�)��q2 (�)+2" C1C2 1r(�q1 (�)�"�s)n 1r(�q2 (�)�"�s)n



5.2 Fourier transforms of inhomogeneous self-similar measures 107� C � 1rn��min(u ; 2s) ; (5.66)If �q2(�)� " � s < �q1(�)� " , then1Ld(B(0; c2 1rn )) ZB(0;c2 1rn ) jb�(x)j2 dx� c0rnu + 2p2c2� 1rn���q1 (�)��q2 (�)+2" C1 1r(�q1 (�)�"�s)n 1rn"� C � 1rn��min(u ;�q2 (�)+s�2") (5.67)for all n � N" ;If �q1(�)� " � s < �q2(�)� " , then1Ld(B(0; c2 1rn )) ZB(0;c2 1rn ) jb�(x)j2 dx� c0rnu + 2p2c2� 1rn���q1 (�)��q2 (�)+2" C2 1r(�q2 (�)�"�s)n 1rn"� C � 1rn��min(u ;�q1 (�)+s�2") (5.68)for all n � N" .The desired result follows easily from (5.65){(5.68).Lemma 5.23. Let � be a Borel probability measure on Rd . Let q1; q2 > 1 with 1q1 + 1q2 = 1 .Then �q1(�) + �q2(�) � 2�2(�) :Proof. For real numbers q and � with q; � > 1 , and a bounded measurable function f : Rd ! C ,let kfkq;� = ( 1Ld(B(0;�)) RB(0;�) jf(x)jq dx) 1q denote the q 'th norm of f with respect to normalizedLebesgue measure restricted to the ball B(0; �) ; recall, that Ld denotes Lebesgue measure in Rd .With this notation we see that �q(�) = liminf�!1 log kb�kq;�� log � for all q � 1 . It now follows fromH�older's inequality that kb�2k1;� � kb�kq1;�kb�kq2;� , whence�q1(�) + �q2(�) = liminf�!1 log kb�kq1;�� log � + liminf�!1 log kb�kq2;�� log �� liminf�!1  log kb�kq1;�� log � + log kb�kq2;�� log � != liminf�!1 log � kb�kq1;� kb�kq2;� �� log �� liminf�!1 log kb�2k1;�� log � = liminf�!1 log kb�k22;�� log � = 2�2(�) :This proves Lemma 5.23.



5.2 Fourier transforms of inhomogeneous self-similar measures 108Proposition 5.24. Let � be a probability measure on Rd . Recall that s and u are de�ned in(5.53) and (5.54), respectively. Then12 min0B@ u ; supq1;q2>11q1 + 1q2 =1 � min ��q1(�) ; s � + min ��q2(�) ; s � � 1CA = min ( s ; �2(�) ) :Proof. For brevity write� = 12 min0B@ u ; supq1;q2>11q1 + 1q2 =1 � min ��q1(�) ; s � + min ��q2(�) ; s � � 1CA :Next observe that ru =Pj p2j � (Pj pj)2 = (1� p)2 , whence u � 2 log(1�p)log r = 2s .Part 1: We prove that � � min(s;�2(�)) . Putting q1 = q2 = 2 in the supremum in � and usingthe fact that u > 2s gives� � 12 min ( u ; min (�2(�) ; s ) + min (�2(�) ; s ) )= 12 min ( u ; 2min (�2(�) ; s ) )= min ( s ; �2(�) ) :Part 2: We prove that � � min(s;�2(�)) . Using Lemma 5.23 and the fact that u > 2s gives� � 12 min0B@ u ; supq1;q2>11q1 + 1q2 =1 � min ��q1(�) + �q2(�) ; 2s � �1CA� 12 min0B@ u ; supq1;q2>11q1 + 1q2 =1 � min ( 2�2(�) ; 2s ) �1CA= min ( s ; �2(�) ) :This completes the proof of Proposition 5.24.Proof of Theorem 5.4The proof of Theorem 5.4 follows immediately from Proposition 5.22 and Proposition 5.24.
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