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Abstract

The thesis consists of four main chapters.

The first chapter includes an introduction to inhomogeneous self-similar sets and measures. In
particular, we show that these sets and measures are natural generalizations of the well known
self-similar sets and measures. We then investigate the structure of these sets and measures.
In the second chapter we study various fractal dimensions (Hausdorff, packing and box dimen-
sions) of inhomogeneous self-similar sets and compare our results with the well-known results
for (ordinary) self-similar sets.

In the third chapter we investigate the L? spectra and the Renyi dimensions of inhomogeneous
self-similar measures and prove that new multifractal phenomena, not exhibited by (ordinary)
self-similar measures, appear in the inhomogeneous case. Namely, we show that inhomogeneous
self-similar measures may have phase transitions which is in sharp contrast to the behaviour
of the L? spectra of (ordinary) self-similar measures satisfying the Open Set Condition. Then
we study the significantly more difficult problem of computing the multifractal spectra of in-
homogeneous self-similar measures. We show that the multifractal spectra of inhomogeneous
self-similar measures may be non-concave which is again in sharp contrast to the behaviour
of the multifractal spectra of (ordinary) self-similar measures satisfying the Open Set Condi-
tion. Then we present a number of applications of our results. Many of them are related to
the notoriously difficult problem of computing (or simply obtaining non-trivial bounds) for the
multifractal spectra of self-similar measures not satisfying the Open Set Condition. More pre-
cisely, we will show that our results provide a systematic approach to obtain non-trivial bounds
(and in some cases even exact values) for the multifractal spectra of several large and interesting
classes of self-similar measures not satisfying the Open Set Condition.

In the fourth chapter we investigate the asymptotic behaviour of the Fourier transforms of
inhomogeneous self-similar measures and again we present a number of applications of our
results, in particular to non-linear self-similar measures.
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1 Introduction

Fractal geometry was developed to understand the geometry of irregular sets which cannot be done
using methods from classical Euclidean geometry. One of the most famous examples of such irregular
sets is the well known Cantor set. The geometry of the Cantor set cannot be easily described using
approaches from classical geometry. More precisely, even though the Cantor set is an uncountable
set it has Lebesgue measure zero and therefore its size cannot be described by classical measures.
However, fractal geometry provides answers to such questions by introducing the notion of fractal
measures and dimensions. Namely, fractal measures and dimensions extend the classical concepts
of measures and dimensions to non-integer values. Hence, for example, in the case of the Cantor set
we can estimate its size by computing its fractal dimension, which will have the value strictly bigger
than zero and strictly less than one, indicating that the structure of the Cantor set is more complex
than that of a regular geometric set. Irregular sets have been known from the time of Cantor, von
Koch, Sierpinski, but only in the 1970s when the term ”fractal” was introduced by Mandelbrot in his
seminal work [Man77] the study of such irregular sets attracted considerable interest and became
widespread. It became apparent that not only such sets provide a better description of natural
phenomena but that also the mathematics of such sets is very rich and therefore worth studying.

The concept of self-similarity is one of the central concepts in fractal geometry. Often fractals have
some degree of self-similarity. For example, the fore mentioned Cantor set is self-similar, namely
it is made of scaled down copies which are geometrically similar to the whole set. It is fairly easy
to construct the Cantor set. However, we will now briefly describe the construction of another
well know self-similar set, the Sierpinski triangle. The reason for choosing the Sierpinski triangle
instead of the Cantor set to illustrate how the concept of self-similarity arises in its construction
will become clear later. Namely, we believe that the example of the Sierpinski triangle demonstrates
better how the concept of self-similar sets extends to the concept of inhomogeneous self-similar
sets. The Sierpinski triangle is constructed from any triangle in a plane by a sequence of deletion
operations. For example, take (for simplicity) an equilateral triangle and connect the midpoints of
each side to form four separate triangles, and delete the triangle in the center. For each of the three
remaining triangles, perform the same procedure and iterate. For a graphical illustration of this
construction see Figure 1.0.1. In this work we will consider natural extensions of such self-similar
constructions by adding an inhomogeneous set at each stage of the construction. More precisely,
take as before an equilateral triangle and connect the midpoints of each side to form four separate
triangles, and delete the triangle in the centre but now add an inhomogeneous set in the place of
the deleted triangle. Then for each of the three remaining triangles, perform the same procedure
by adding the scaled down inhomogeneous sets in the places of deleted triangles and iterate. For a
graphical illustration of this inhomogeneous self-similar construction see Figure 1.0.2. The concept
of self-similar sets extends readily to self-similar measures. For example, in the case of the Sierpinski
triangle we can allocate a mass or a probability to each of the remaining triangles at each stage of
the construction. For instance, in the construction we have just described we have chosen each of
the remaining three triangles with the same probability, namely a third, in the first stage of the
construction, but we can assign different probabilities with the main requirement that the total
sum of them is equal to one. This gives rise to self-similar measures. Similarly, we can assign an
inhomogeneous self-similar measure to the inhomogeneous self-similar set.

In the early 1980s Hutchinson introduced a general framework for studying self-similar sets and mea-
sures [Hut81] and since that time self-similar sets and measures have been studied intensively. inho-
mogeneous self-similar sets and measures were first considered by Barnsley et al. [BD85, Bar89, Bar|
in the late 1980s as a tool for image compression and have subsequently been mentioned in various
texts [Bar93, Bar06, BH93, Per94]. However, unlike self-similar sets and measures, inhomogeneous
self-similar sets and measures were not that widely studied. One of the main tools to understand the
geometry of self-similar sets is to compute its fractal dimensions and there are two main approaches
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to study self-similar measures: multifractal analysis and Fourier analysis. Multifractal analysis de-
scribes global and local behaviour of a measure of a ball centred at a point x with arbitrary small
radius. These global and local behaviours for many “good” measures are related to each other by
Multifractal Formalism. This is, for example, the case for self-similar measures satisfying an appro-
priate separation condition, known as the Open Set Condition. In fact, many results for self-similar
measures are obtained under the assumption of the Open Set Condition. Fourier analysis provides
the description of the asymptotic behaviour of the Fourier transforms of measures. In this thesis we
will continue these lines of investigation for inhomogeneous self-similar sets and measures. To the
best of our knowledge very little or nothing has been said about various fractal dimensions of inho-
mogeneous self-similar sets as well as multifractal analysis and Fourier analysis of inhomogeneous
self-similar measures. Moreover, we will also show that our results for multifractal spectra of inho-
mogeneous self-similar measures provide a systematic approach to study the mutifractal spectra of
several large and interesting classes of self-similar measures not satisfying the Open Set Condition.

We will now turn towards the brief description of the main work of this thesis. The work in
this thesis is based on the following three research papers joint with L. Olsen: ” L? spectra
and Rényi dimensions of in-homogeneous self-similar measures” [0S07], ”Multifractal spectra of
in-homogenous self-similar measures” [0S08b] and ”Inhomogenous self-similar measures and their
Fourier transforms”[OS08a].

In the first chapter of the thesis we will discuss in more details inhomogeneous self-similar sets
and measures and give precise definitions of these sets and measures. Moreover, we will show
that inhomogeneous self-similar sets and measures are natural generalizations of the well known
and widely studied self-similar sets and measures. One could have already suspected this from
our examples above of the Sierpinski triangle and of the Sierpinski triangle with inhomogeneous
set added at each stage of the construction. We will also give a detailed account of the structure
of inhomogeneous self-similar sets and measures and draw parallels with the homogeneous and
inhomogeneous linear equations.

In the second chapter of the thesis we will study various fractal dimensions of inhomogeneous self-
similar sets. Namely, we will give the precise formulae for the Hausdorff and the packing dimensions
of inhomogeneous self-similar sets. We will also compute the upper box-counting dimension of these
sets under appropriate inhomogeneous separation condition. We also like to stress out that, unlike
the upper box-counting dimensions, the Hausdorff and the packing dimensions of inhomogeneous
self-similar sets are obtained without assuming any separation conditions.

In the third chapter of the thesis we will first study the L7 spectra and the Rényi dimensions of
inhomogeneous self-similar measures. L? spectra and the Rényi dimensions give the description
of the global behavior of a measure of a ball centered at a point « with arbitrary small radius.
We will prove that new multifractal phenomena, not exhibited by self-similar measures, appear
in the inhomogeneous case. In particular, we show that inhomogeneous self-similar measures may
have phase transitions, i.e. points at which the L? spectra are non-differentiable. This is in sharp
contrast to the well known behaviour of the L? spectra of self-similar measures satisfying the Open
Set Condition.

We will then turn towards the study of the significantly more difficult problem of computing the
multifratal spectra of inhomogeneous self-similar measures satisfying the appropriate inhomogeneous
separation condition, which we will call the inhomogeneous Open Set Condition. Multifractal spectra
provide the description of a local behaviour of a measure. More precisely, multifractal spectra of a
measure provide the description of a set of points = for which the a measure of a ball centred at
a point z with arbitrary small radius behaves like the radius of this ball to some given power. We
will again prove that new multifractal phenomena, not exhibited by self-similar measures, appear in
the inhomogeneous case. In particular, we will show that the multifractal spectra of inhomogeneous



1 Introduction 9

self-similar measures may be non-concave. This is in sharp contrast to the well known behaviour
of the multifractal spectra of self-similar measures satisfying the Open Set Condition. We will then
present several applications of our results. We would like to emphasize once more that many of
our applications are related to the notoriously difficult problem of computing (or simply obtaining
non-trivial bounds) for the multifractal spectra of self-similar measures not satisfying the Open Set
Condition. We show that our main results can be applied to obtain non-trivial bounds (and in
some cases even exact values) for the multifractal spectra of several large and interesting classes of
self-similar measures not satisfying the Open Set Condition.

In the fourth chapter of the thesis we will study the asymptotic behaviour of the Fourier transforms
of inhomogeneous self-similar measures. We will then again present a number of applications of our
results. In particular, non-linear self-similar measures introduced and investigated by Glickenstein
& Strichartz are special cases of inhomogeneous self-similar measures, and as an application of our
main results we will obtain simple proofs of generalizations of Glickenstein & Strichartz’s results on
the asymptotic behaviour of the Fourier transforms of non-linear self-similar measures.

A LS8

Figure 1.0.1:
First four levels in the construction of the Sierpinski triangle.

A L &

Figure 1.0.2:

First four levels in the construction of the Sierpinski triangle with the inhomogeneous set.
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2 Inhomogeneous self-similar sets and measures

2.1 Preliminaries: self-similar sets and measures

The investigation of self-similar sets originates from construction of self-similar sets such as the
middle third Cantor set or the Sierpinski triangle. Namely, the sets which are made of scaled down
copies that are geometrically similar to the entire set. The first contributions to the theory of
self-similarity were made in 1946 by Moran [Mor46]. Moran fractals are constructed in a similar
way to the middle third Cantor set with the main differences being that contraction ratios are not
required to be constant and the starting set can be of a more general form than the unit interval.
In the 1970s the theory of self-similarity became popular due to Mandelbrot who used self-similar
sets to analyse various physical phenomena [Man77, Man82]. For example, Cantor sets were used to
model noise. For more applications of fractal sets for describing physical phenomena we refer to the
books [Man77, Man82, Fal90, Fed88]. In the 1980s Hutchinson introduced the general framework
for studying self-similar sets in [Hut81]. We now state the formal definition of self-similar sets. We
will denote a self-similar set by K. The choice for this notation will be explained in the next
section where we will introduce inhomogeneous self-similar sets.

Definition 2.1. (Self-similar sets [Hut81]). Let S; : R? - R? for i =1,...,N be contracting
similarities. A compact subset Ko of RY satisfying

N
Kz =] Si(Ko) (2.1)
i=1
is called a self-similar set associated with the list (Si,...,SN) .

In the same paper Hutchinson proved that such a set exists and that it is unique. This is the content
of the next proposition. The proof of this proposition is based on Banch’s fixed point theorem. Since
in the next section we will give the proof for existence and uniqueness of inhomogeneous self-similar
sets which use similar ideas, we will not state the proof of Proposition 2.2 here.

Proposition 2.2. (Existence and uniqueness of self-similar sets [Hut81]). Let S; : RY — R¢
for i =1,...,N be contracting similarities. Then there exists a unique non-empty compact subset
Ko of RY satisfying (2.1).

The concept of self-similar sets extends readily to self-similar measures. Namely, introducing self-
similar measures supported on self-similar sets provides a better understanding of these sets. This
was one of the main motivations in [Hut81] for introducing the general framework for studying
self-similar measures. We will now state the formal definition of self-similar measures. Again, the
choice for denoting a self-similar measure by uo will become clear in the next section where we will
introduce inhomogeneous self-similar measures.

Definition 2.3. (Self-similar measures [Hut81]). Let S; : R? — R? for i = 1,...,N be
contracting similarities and let (p1,...,pn) be a probability vector. A probability measure po on
R? such that

N
po =Y pitooS;" (2.2)
i=1
is called a self-similar measure associated with the list (Si,...,SN,p1,.-.,DN) -

Proposition 2.4. (Existence and uniqueness of self-similar measures [Hut81]). Let S; :
R? = R for i =1,...,N be contracting similarities and let (pi,...,pn) be a probability vector.
Then there exists a unique probability measure o on R satisfying (2.2).



2.2 Inhomogeneous self-similar sets and measures 11

As we mentioned earlier it is well-known that supp po = Ky .

Self-similar sets and measures have been studied intensively for the past 20 years and there exists
a huge body of literature investigating many different aspects of self-similar sets and measures, cf.
the textbook [Fal97] and the references therein. In this thesis we investigate various aspects of
inhomogeneous self-similar sets and measures.

2.2 Inhomogeneous self-similar sets and measures

We first introduce inhomogeneous self-similar sets and measures and show that these sets and
measures are natural generalizations of (ordinary) self-similar sets and measures.

It is natural to view the self-similar equations (2.1) and (2.2) satisfied by Kz and pp as a homoge-
nous equations. This viewpoint suggests that it would be of interest to investigate the corresponding
inhomogeneous equations. This leads to the following definitions.

Definition 2.5. (Inhomogeneous self-similar sets). Let S; : R? — R? for i = 1,...,N be
contracting similarities. Also, let C be a compact subset of R? . A non-empty compact set Ko
such that

N
Ko = U S;(Ko)uC. (2.3)
i=1
is called an inhomogeneous self-similar set associated with the list (Si,...,Sn,C) .
Definition 2.6. (Inhomogeneous self-similar measures). Let S; : RY - R? for j=1,...,N
be contracting similarities. Also, let (p1,...,pNn,p) be a probability vector and let v be a probability

measure on R with compact support. A probability measure pu such that

N
p=> pipo St + pv. (2.4)
i=1
is called an inhomogeneous self-similar measure associated with the list (S1,...,SN,D1,---,DN,D, V) .

Observe that an inhomogeneous self-similar set K¢ can be viewed as a solution to the inhomoge-
neous version of equation (2.1) with inhomogeneous term equal to C'. Also observe that if C = &,
then Ko = Ky ; this explains why the self-similar set satisfying (2.1) is denoted by Kg . Similary,
an inhomogeneous self-similar measure p can be viewed as a solution to the inhomogeneous version
of equation (2.2) with inhomogeneous term equal to pr. As it was mentioned in the Introduction
inhomogeneous self-similar sets and measures were introduced by Barnsley et al. [BD85, Bar89, Bar|
in the 1980s as a tool for image compression and have subsequently been mentioned in various texts
[Bar93, Bar06, BH93, Per94]. Barnsley et al. [BD85] also consider a few concrete examples of inho-
mogeneous self-similar measures. However, their further investigations are restricted to (ordinary)
self-similar measures without inhomogeneous terms. In [Bar89, Bar, Bar06] measures p satisfying
(2.4) are called orbital measures and in [BD85, Bar89, Bar93] the inhomogeneous term C' in (2.3)
and the inhomogeneous term v in (2.4) are called the condensation set and the condensation mea-
sure, respectively. We also note that inhomogeneous equations have been introduced and studied
by Jaffard [Jaf97a, Jaf97b] in the context of fractal functions. inhomogeneous self-similar measures
may also be viewed as stationary measures of the Markov operator M introduced in the proof of
Proposition 2.8 below. This viewpoint has recently been investigated by Lasota and Myjak and
collaborators in a more general setting in a series of papers, cf. for example, [HMS05] and the
references therein. Namely, Lasota and Myjak et al assume that the probabilities p1,...,py and
p depend on x € R?, and, in this more general setting, they study conditions guaranteeing the
existence of a stationary measure of the corresponding Markov operator M .
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2.2.1 Existence and uniqueness of inhomogeneous self-similar sets and measures

Using ideas from [Hut81] it is easily seen that for a given list (Si,...,Sn,p1,...,DN,D,V) there
exist a unique inhomogeneous self-similar set satisfying (2.3) and measure satisfying (2.4). Indeed,
this observation and argument also goes back to Barnsley et al. [BD85, Bar, Bar06]; however, for
sake of completeness we will sketch the simple proofs here. We also note that the existence of a
unique inhomogeneous self-similar set satisfying (2.3) was proved independently from Barnsley et
al. by Hata in 1986 [Hat86].

Proposition 2.7. (Existence and uniqueness of inhomogeneous self-similar sets. [Bar93,
BD85, Hat86], see also [Per94]). Let S; : R — R? for i =1,...,N be contracting similarities
with contractivity factors r; . Also, let C' be a compact subset of R? . Then there exists a unique
non-empty compact subset Ko of R¢ such that

N
Ko =|JSi(Ec)ucC.
i=1
Proof. Let K(R?) denote the space of all compact non-empty subsets of R¢ and let rya, = max;r; .
Define the map 7 : K(R?) — K(R?) , by

for all A in K(R?). We will show that 7 is a contraction with respect to the Hausdorff metric,
dp . It is well known that (K(R%),dy) is a complete metric space (for the proof see, for example,
[Bar93] or classical text books [Eng89, Kec95]). Suppose A, B are in K(R?), then

N N
dy(T(A),T(B)) = dy (U Si(Ayuc,|Jsi(B)u c>

N N
< max (dh (U Si(4), | Si(B)> ,dy(C, 0)>
N =1 N =1
e dn(AU B,C U D) < max(d,(A,C),d,(B, D)) (2.6)

forall A, B, C', D in K(R?) (see, for example, [Bar93]). Hence, applying (2.6) to (2.5) repeatedly,
we obtain

dp (T (A), T(B)) < max (dn(Si(A), Si(B))) < [max(ri)ldn(A, B) = rmaxdn(4, B) .

Therefore 7 is a contraction map on the complete metric space (K(R?),ds). Hence, it follows
from Banach’s fixed-point theorem that 7 has a unique fixed point. Namely, there exists a unique
compact non-empty set K¢ such that 7 (K¢) = K¢ - O

Remark. We also note that from Banach’s fixed point theorem
K¢ = lim T™(E) (2.7)
n—ro0

for any E in K(R?), where 7™ is the n'" iterate of 7. We will use equation (2.7) in the later
sections of the thesis.
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Proposition 2.8. (Existence and uniqueness of inhomogeneous self-similar measures
[BD85, Bar, Bar06]) Let S;: R - R? for i =1,...,N be contracting similarities with conrac-
tiwity factors r; . Also, let (p1,...,pn,p) be a probability vector and let v be a probability measure
on R with compact support. Then there exists a unique probability measure p such that

p=> pipoS; "+ pv.
i
Proof. Let P(R%) be the family of all probability Borel measures on R?. Define the map M :
P(R?) — P(RY) by
M(p) = pipo Sit + pr.
i

We will now show that M is a contraction with respect to the metric,

[ = [ £

where Lip(f) is the Lipschitz constant of f. Recall that ry,ax = max;r; . We have,

L(py, pa2) sup

L-p(f)<1

)

L(M(p1), M(p2)) (2.8)
= dM — dM
Lf;;si'{l‘}péi / fdM(p) / fdM(p2)
= i ) d, dv i ) d dv
E.SEITL (Zp/ fi1 +p/f > (Zp/ u2+p/f >‘
= swp Zm(/ S;) dyn — /(foSi)d/m)‘
Lip(H)<1
< o sw [ o5y dm = [ (£o50) du
pr(f)<1
= sz sup rif [ 17 (Fo8) i — [ 17 (f 0 81 dp
pr(f)<1 / /
<

> piri L(pa, o)
i

< Zpirmax L(llla /112)
i

< Tmax L(/}q,,u,g) ,

since Lip (7“;1 (fo Si)) <1 forall i and > ,p; <1.

It is well known that (P(R?), L) is a complete metric space (for a proof see [Hut81]), and it therefore
follows immediately from Banach’s fixed-point theorem that M has a unique fixed point, i.e. there
exists a unique measure g such that M(u) = p. O

2.2.2 Support of inhomogeneous self-similar measures

The support of the inhomogeneous measure o satisfies the following equation. Namely, if C' denotes
the support of v, then the support of u is equal to the unique non-empty compact set Ko satisfying
(2.3). This is the content of the next proposition.
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Proposition 2.9. Let p be an inhomogeneous self-similar measure satisfying (2.4) and let C' be the
support of v. Then the support of p is equal to the unique non-empty compact set Ko satisfying

(2.3) .

Proof. First we prove that supp u C U;S;(supp p) U C . Indeed, applying equation (2.4) to
U;Si(supp ) U C', we obtain

u(USi(SUPpu)UC> = pr( (US suppu)UC>>+pV<USi(Suppu)UC>
Zmu( (US Supp,u)UC>>

> pen (S Sk(supp ) U S C) +p

k

> pi+p
k

= 1.

Y%

Thus, since p is a probability measure we conclude that ,u(UiSi(supp ,u)UC’) = 1. Hence supppu C

UiSi(supp pu) U C .
Next, we prove that U;S;(supp p) U C C supp p. Noting that C' C supp p and applying equation
(2.4) to supp p, we obtain

._.
Il

p(supp u)
Z pinn(S; " (supp ) + pr(supp p)

= szu !(supp p)) +
< Zpi +p
7

= 1,

whence ). pz,u( ! (supp ,u)) +p = 1. Since also ) ,p; + p = 1, we conclude from this that
u(S; " (supp p)) = 1 for all 7. Hence suppu C S; ' (suppp), implying that S;(supp u) C supp u
for all 7. Thus U;S;(supp p) C supp u and therefore U;S;(supp p) U C C supp p. Hence supp pu =
U;Si(supp 1) U C'. Therefore supp p is the unique non-empty compact set satisfying (2.3). O

2.3 The structure of inhomogeneous self-similar sets and measures.

In this section we investigate the structure of inhomogeneous self-similar sets and measures. We
begin by introducing some notation. For a non-negative integer n , let

S o= {1,...,N}",

¥ U=,
n

i.e. X" is the family of all finite strings i = 4;...4, of length n with entries i; € {1,...,N},
and X* denotes the family of all finite strings i = ¢;...i, with entries i; € {1,...,N}. For
i=iy...1, € X", we will write |ij =n for the length of i, and if m is an integer with m <n, we
will write ilm =iy ...4,, for the truncation of i to the m ’th place. Finally, for i=14; ..., € ",
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we write S; =S5;, 0---095; and p; =p;, - pi
Next, let

Loand ry =1y ey,

B(R?) = {B C R ‘ B is bounded} ,

and define S : B(RY) — B(R?) by
S(B) = USi(B).

Using this definition of &, it follows that Ky is the unique non-empty compact set such that
Ky = S(Kg). Similarly, it follows that K¢ is the unique non-empty compact set such that
Ko = S(K)UC. The next theorem provides detailed information about the structure of the
solutions X € B(R?) to the homogenous equation X = S(X) and to the inhomogeneous equation
X =8(X)UC. The theorem also shows that there is a close connection between the sets K¢ and
Kg .

Theorem 2.10. Let
0= si(0). (2.9)

iexr
1. (i) The set Ky € B(R?) satisfies the homogenous equation Ky = S(Kg) .
(ii) If a set X € B(R?) satisfies the homogenous equation X = S(X), then X C X = K .

In particular, this shows that Ky is the biggest set X in B(R?) satisfying the homogenous
equation X =S(X).

2. (i) The set O € B(R?) satisfies the inhomogeneous equation O = S(O)UC' .
(ii) The set Ko € B(R?) satisfies the inhomogeneous equation Ko = S(Kc)UC .
(iii) If a set X € B(R?) satisfies the inhomogeneous equation X = S(X)UC', then
OCXCX=Kc.

In particular, this shows that O is the smallest set X in B(R?) satisfying the inhomoge-
neous equation X = S(X)UC , and that K¢ is the biggest set X in B(R?) satisfying the
inhomogeneous equation X = S(X)UC' .

3. If a set X € B(R?) satisfies the inhomogeneous equation X = S(X)UC , then

Kc=KgzUX.

The proof of Theorem 2.10 is given in Section 2.3.1.

Remark. In [Bar06] the set O is called the orbital set (we will provide an explanation of this
terminology in the remark following Theorem 2.11). We also note that Part 2.(i) of Theorem 2.10
(saying that O = S(0) U (') is proved in [Bar06].

Remark. We see from Theorem 2.10 that Ky is the biggest set X in B(R?) satisfying the
homogenous equation X = S(X), and that Ko is the biggest set X in B(R?) satisfying the
inhomogeneous equation X = S(X)U C. We also see that if X € B(R?) is an arbitrary solution
to the inhomogeneous equation X = S(X)UC, then

Ke=Ks UX,
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i.e.

” the biggest solution X to the inhomogeneous equation X = S(X) U C”
= 7 the biggest solution X to the homogenous equation X = S(X)” (2.10)
U” an arbitrary solution X to the inhomogeneous equation X = S(X)UC” .

This result is clearly reminiscent of the structure of the set of solutions to inhomogeneous linear
equations. We will now explain this in more detail. Fix a vector space V. Let A :V — V be
linear and let ¢ € V. Write Ay for the complete solution to the homogenous equation = = Az,
i.e.

Ag:{xEV‘m:Am},
and write A, for the complete solution to the inhomogeneous equation z = Az + ¢, i.e.
Ac:{mEV‘m:Am—l—c}.
It is clear that if € V' satisfies the inhomogeneous equation x = Az + ¢, then
Ac=Ao+x,

i.e.

” the complete solution to the inhomogeneous equation x = Ax + ¢”
= 7 the complete solution to the homogenous equation z = Az” (2.11)

+ 7 an arbitrary solution z to the inhomogeneous equation x = Ax + ¢’ .

The reader will notice the similarity between the statements in 2.10 and 2.11

We now consider some further consequences of Theorem 2.10 .

The first result shows that inhomogeneous self-similar sets and measures can be represented as
limits involving only the inhomogeneous terms C' and v . This follows easily from Theorem 2.10
and is the content of Theorem 2.11. Before we state Theorem 2.11 we recall the following notation.
Namely, we denote the family of non-empty compact subsets of R? by K(R?), and we equip K(R?)
with the Hausdorff metric dj, . Also, we denote the family of Borel probability measures on R? by
P(R?), and we equip P(R?) with the weak topology w .

Theorem 2.11.

1. We have K¢ = 1i_>m U Si(C) where the convergence is in (K(R?),dy) .
n—oo
iex= lij<n

— 1i pi —1 e 7 d
2. We have p = ,}5‘;0 22|:< Sieor men?i U ° Syt where the convergence is in (P(R%),w) .
iex* |il<n

denotes the orbital set in (2.9)). We conclude from this that (Cy), is convergent in (K(R?

), dp,
with lim, C, = J,, Cn, = O . However, Theorem 2.10 shows that O = K¢, whence lim,, C,, = 5
Ke .
2. Define probability measures v, and pu, by

Proof. 1. Write C = Uscy- < SiC- Then €y € G2 C G5 C ... and |J, Cp = O (Where o)
)
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— E pi -1 _ p § : -1
V. = = VO S. = — sV O S- 2.12
n Yien*, ljl<n Pi i 1—(1-p) Di i ( )
iex= lil<n iex lil<n
— Dpi -1 _ 1 —1
= =8 —— oS = —= E ;Lo S: .
Hn Z 2jes*, ljl=n Pi poS; (1-p)» pipoS;
iex=,lil=n iex* |il=n

Iterating (2.4) shows that

p= Y, ppeST +p Y pwoeST =(1-p) "+ (1—-(1=p)")va

iex=,lil=n e lil<n

for all positive integers n . It follows immediately from this that v,, — p in (P(]Rd), w) . O

Remark. The reader will notice the similarity between the expressions for Ko and p in the
previous theorem.

Remark. The non-trivial Part 2 of Theorem 2.11 not relying on Theorem 2.10 also appears in
[Bar06]. However, we have decided to included both the statement of Part 2 and the simple proof
for completeness.

Remark. We can now provide an explanation of why the set O and the measure p are called the
orbital set and the orbital measure in [Bar, Bar06]. Let § = {S;|i € £*} denote the semigroup of
mappings from R? — R? generated by the S;’s and the identity map, and write O(C) = {S;C|i €
¥*} for the §-orbit of C' and write O(v) = {v o S{'|i € £*} for the §-orbit of v. Using this
notation the set O = Ujex+S;C is simply the union of the sets in the §-orbit of C', and it follows
from Theorem 2.11 (by letting n tend to oo in (2.12)) that the measure p=p) ;i x. pivo St
is simply a suitably weighted sum of the measures in the §-orbit of v . This explains why K¢ is
called the orbital set and why g is called the orbital measure.

In Theorem 2.12 below we present a further surprising consequence of Theorem 2.10 . Namely, it
may happen that the set Ky has zero p measure. This is in sharp contrast to the behaviour of
(ordinary) self-similar sets and measures. Indeed, if po denotes the self-similar measure satisfying
(2.2), then Ky has full po measure, i.e. puo(Ky) = 1. However, at this stage we would like
emphasize that even though Ky can have zero pu measure, the multifractal structure of g which
we will discuss in Section 4.3 of the thesis is non-trivial and, in general, significantly different from
the multifractal spectra of v.

Theorem 2.12.

1. Assume that the sets (S;iC)iex+ are pairwise disjoint and that p # 0. Then the orbital set O
(see (2.9)) has full p measure, i.e. p(O)=1.

2. Assume that the sets (S;iC)iex+ are pairwise disjoint and disjoint from Kz and that p #0.
Then the orbital set O (2.9) has full p measure and Kg has zero p measure, i.e. u(0O) =1
and u(Kg)=0.

Proof. 1. It follows from the definition of p that u(C) =3, pin(S; *C)+pv(C) > pr(C) = p, and
iterating (2.4) therefore shows that u(SiC) = Y jen- |ji=n pju(Sj_lSiC') +PD ex- |j‘<npj1/(5j_15i0)
> pip(S; 1SiC) = pip(C) > pip, for all i € ©* . We conclude from this and the fact that the sets
(SiC)iex+ are pairwise disjoint that 1> u(0) = 3 e w(SiC) 2 Y iene PP =P Y050 Dies |ij=n Pi
= pZnZO(l _p)n =1.

2. Since the sets (S;C)icx+ are pairwise disjoint and disjoint from Kz, we deduce that O and
K4 are disjoint. However, as p(O) =1 (by Part 1) and Ko = OU Ky (by Theorem 2.12), this
implies that 1 = p(K¢) = u(0) + u(Ks) =1+ u(Kg), whence pu(Kg) =0. O
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The reader is referred to Example 4.40 in Section 4.3.2 for an example of a construction for which
the sets (S;C)iexn- are pairwise disjoint and disjoint from Ky .

2.3.1 Proof of Theorem 2.10

The purpose of this section is to prove Theorem 2.10. To prove this theorem we would need to use
Lemma 3.9.

Proof of Theorem 2.10

1. It follows from the definition of Ky that Ky = S(Kgy). Next, if X € B(R?) satisfies X =
S(X), then it is easily seen that X = S(X) = S(X) . However, since K is the unique non-empty
compact set with Ky = S(Kg), we now conclude that X =K.

2. Tt follows from the definition of Ko that Ko = S(K¢) U C. It also follows easily from the
definition of O that O = S(O)UC . Next, if X € B(R?) satisfies X = S(X)UC , then it is easily
seen that X = S(X)UC = S(X)UC. However, since K¢ is the unique non-empty compact set
with K¢ = S(K¢)UC , we now conclude that X = K . Finally, we prove that O C X . To prove
this note that it follows easily by iterating the equation X = S(X)UC that

x= U sxmu (U s©2 U s(©

iex* |il=n e lil<n e lil<n

for all positive integers n . Taking union over all positive integers now gives X 2 U, Ujjj<, Si(C) =
0.
3. We will show that Ko = Kz U X . Indeed, using Lemma 3.9 and Part 2 we conclude that

K¢

KsUO [by Lemma 3.9]

KyUX [since O C X by Part 2]
KyUKc [since X C K¢ by Part 2]
K¢ [by Lemma 3.9]

N 1N

This completes the proof.
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3 Dimensions of inhomogeneous self-similar sets

3.1 Preliminaries: fractal measures and dimensions

In this section we will give an overview of the most commonly used fractal measures and dimensions.
Such measures and dimensions are important for understanding the geometry of fractal sets, in
particular the geomery of self-similar sets and their natural generalizations inhomogeneous self-
similar sets discussed in the previous section. The idea behind most definitions of dimension is to
measure a set at a particular scale in such a way that irregularities that occur at the scale less than
the one we are measuring at are ignored and see how these measurements behave as we decrease the
size of the scale, cf. the textbook [Fal90]. We will first introduce the box-counting dimension since
the definition of box-counting dimension is conceptually the easiest. Namely, unlike Hausdorff and
packing dimensions box-counting dimension is not defined in terms of measures.

3.1.1 Box dimensions

Box dimension was first defined in the late 1920s. It became one of the most widely used fractal
dimensions. Firstly, it is relatively easy to calculate the box dimension for concrete cases. For
example, it is easy to compute that the box dimension of the middle third Cantor set equals to
izgg . Secondly, the box dimension is often used for numerical and experimental purposes in sciences.
Tlgiere are many equivalent ways to define the box dimension. For instance, let E be a non-empty
bounded subset of R? and let N3(E) denote the smallest number of sets of diameter at most §
(for 6 > 0) that cover E. Then it is natural to expect that Ns(E) might be proportional to some
power of % , namely we may expect that we can find some positive number s such that

Ns(E) ~ 06 ° for ¢ close to 0.

This leads to the following formal definition of the box dimension.

Definition 3.1. Box dimension. The lower and upper box dimensions of a subset E of R? are
defined by

. . . .logNs(E)
dimg (E) = hggonng&

and log N+ (B
dimg (F) = limsup log Ns(E)
SN0 —logd
where Ns(E) is the smallest number of sets of diameter at most § that cover E . Alternatively,
Ns(E) can denote either the smallest number of closed balls of radius 6 that cover E or the largest
number of disjoint balls of radius & with centres in E .

If dimg(E) and dimg(E) coincide then the common value is called the box dimension of E and
is denoted by dimg(E) .

Remark. On the one hand the concept that dimy(FE) can be defined using economical coverings
by small balls of equal radius relates to the concept of the Hausdorff dimension. On the other hand
the concept that dimg(F) can be defined using efficient packings by disjoint balls of equal radius
that are as dense as possible will form the basis for the definition of the packing dimension in the
later section. See [Fal90] for more details. This shows that the definitions of the Hausdorff and the
packing dimensions are dual to each other.

In the later section we will need the following equivalent definition of the box dimension.
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Definition 3.2. The lower and upper box dimensions of a subset E of R are defined by

d
dimg (E) = d — limsup log L%(B(E, %))
3N\0 log o

" LYB(E,9))
N _ .. .log B(E,
dimg(E) =d hgr{{(r)lf Tog 0

)

where B(E,$) = {z € R? | dist(z, E) < 8} and L denotes the d -dimensional Lebesgue measure.

Box-counting dimension satisfies certain basic properties which we will list at the end of the section
since we want to compare and contrast these properties with the properties of the Hausdorff and
packing dimensions. However, we want to mention one major disadvantage of the box dimension,
namely

dimp, (1) = dimp,(E) and dimg(E) = dimg(E) (3.1)

where E denotes the closure of E. In particular, it follows from (3.1) that the countable set of
rational numbers in the interval [0,1] has box dimension equal to 1. This implies that (“small”)
countable sets can have non-zero box dimension, reducing the usefulness of box dimension. We also
note that due to this property box dimension is not used in computing multifractal spectra discussed
in Section 4.1 As we will see in the next sections, this disadvantages are not manifested in Hausdorff
and packing dimensions whose definitions are based on measures.

3.1.2 Hausdorff measure and dimension

Hausdorff measure is the generalisation of the Carathéodory measure introduced by Constantin
Carathéodory in 1914 as a tool for measuring the s-dimensional volume of a set, where s is a
non-negative integer. In 1919 Felix Hausdorff extended Carathéodory’s notion of s-dimensional
volume of a set to non-integer values of s. Namely, Hausdorff introduced the following measure.

Definition 3.3. Hausdorff measure. For a positive real number s > 0, the s-dimensional
Hausdorff measure H*(E) of a set E is defined by

H*(E) = sup H3(E),

6>0

where H3(E) is the § approzimative s -dimensional Hausdorff measure of a set E defined by

HE(E) = inf {Zdiam(Ei)s E C U E;, diam(Ei) < (5} .
i=1

i=1

From the definition of the s-dimensional Hausdorff measure it is easily seen that there exists a
unique number dimy(E) such that

0 if dimg(E) <s,
oo if dimg(E) > s.

H(E) = {

This leads to the following formal definition of the Hausdorff dimension.

Definition 3.4. Hausdorff dimension. The Hausdorff dimension dimyg(E) of a set E is defined
by
dimyz (E) =inf {s|H*(E) =0} =sup {s| H*(E) = oo}
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We now state and compare the main properties of the Hausdorff and box dimensions. We note that
we will state only those main properties which we will use in the later sections of the thesis. First
we will list the properties which hold for both box (upper and lower) and Hausdorff dimensions,
namely:

o If Al g A2 then dim Al S dim A2 .
e If A is a finite set then dimA =0.
e If S is a similarity transformation then dim S(A) = dim A.

Hausdorff and upper box dimensions are finitely stable, namely dim Uj"; A; = max;<;<, dim A; .
Hausdorff dimension is countably stable, namely dim U2, A; = sup;<; ., dim 4; .

3.1.3 Packing measure and dimension

As it was noted earlier (see the remark following Definition 3.1) the packing measure is dual to the
Hausdorff measure, namely the packing measure is defined using efficient packings which is dual to
the definition of the Hausdorff measure by considering economical coverings. The packing measure
like the Hausdorff measure gives rise to a dimension. The packing measure and the packing dimension
were introduced by Tricot [Tri82] in 1982. Even though the definition of the packing measure is
much more recent, nowadays the packing measure is considered as important as Hausdorff measure.
Indeed, many Hausdorff measure properties have dual packing measure properties, and it is widely
believed that an understanding of both the Hausdorff dimension and the packing dimension of a
fractal set provides the basis for a substantially better understanding of the underlying geometry of
the set. We will now define the packing measure and dimension. Let £ C R? and 6 > 0. First,
recall that a countable family (B (z;,7;)); of closed balls in R? is called a centred ¢ -packing of E
it ;€ E,0<r; <0 and B(x;,r;) NB(xj,r;) =2 foral i#j.

Definition 3.5. Packing pre-measure. For a positive real number s > 0, the s -dimensional
packing pre-measure PS(E) of a set E is defined by

P(B) = inf P;(E),

where Py(E) is defined by

o0

P3(E) = sup {Z(Qri)s

i=1

(B (xi,13)); is a centered § -packing of E } .

Unfortunately, P’ is not necessarily countably subadditive and therefore not necessarily a measure.
However, we can modify the definition of P~ to obtain the s-dimensional packing measure P*(E)
of E as follows.

Definition 3.6. Packing measure. For a positive real number s > 0, the s -dimensional packing
measure P*(E) of a set E is defined by

P(E) = 1nf ZP

ECu

We now can define the packing dimension analogously to the Hausdorff dimension.
Definition 3.7. Packing dimension. The packing dimension dimp(E) of a set E is defined by
dimp (E) =inf {s|P*(E) = 0} =sup {s|P*(E) = oo}

The packing dimension satisfies the same properties as the Hausdorff dimension (see above).
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3.1.4 Hausdorff, Packing and Box dimensions of self-similar sets.

The fractal dimensions of (ordinary) self-similar sets satisfying (2.1) have been studied by Moran
in [Mor46] and later by Hutchinson in [Hut81]. Nowadays it is well known what Hausdorff, packing
and box dimensions of (ordinary) self-similar sets satisfying the Open Set Condition (OSC) are.
Recall that the OSC says that there exists an open, non-empty and bounded subset U of R? with
U;S;(U) C U and S;(U)NS;(U) =@ for all i # j. We will now state these well known results
saying that Hausdorff, packing and box dimensions of (ordinary) self-similar sets satisfying the OSC
coincide. For the proof of these results see, for example, [Hut81, Fal90].

Theorem 3.8. (See [Mor46, Hut81]). Let S; : RY — R? for i = 1,...,N be contracting
similarities and let r; denote the contracting ratio of S;. Also, let Kg be the (homogeneous)
self-similar set satisfying (2.1). Finally, let s be the unique non-negative solution of

er:l.

If the Open Set Condition is satisfied, then

dimy Ky = dimp Kg = dimg Kg = s. (3.2)

3.2 Dimensions of inhomogeneous self-similar sets

It was outlined in the section 3.1 that the study of dimensions of fractal sets is important for
understanding the geometry of these sets. The main purpose of this section is to investigate various
fractal dimensions of inhomogeneous self-similar sets and compare our results with the result for
(ordinary) self-similar sets. Before we state our main results we will need the following important
property of the inhomogeneous self-similar set K¢ satisfying (2.3). Namely, we want to relate the
set K¢ to the (ordinary) self-similar set Ky satisfying (2.1). This leads to the following lemma.

Lemma 3.9. We have
Koc=KyzUQO. (3.3)

Proof.

We will prove this lemma in two ways.

1. Geometric approach.

Observe that O C K¢ and Kg C K¢ . Hence OU Kg C K¢ .
Next, we prove that Ko COU Ky .

It suffices to show that (O \ O) C K4, since Kc =0 =(0\0)UO.
Assume that z € (O \ O) and recall that O = C U, S;(0) .

Hence, we have

z €0

culJsi0)

= CulJsi0).

Thus, = € |J; Si(O) since z is not in O and in particular z is not in C'.
Therefore,

zrelJsi0) = [Jsi[culJsi0)
i i J
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= Usi,j(O)u (Usi(0)> )

Thus, = € |J; ;5:,;(0) since z is not in O and in particular z is not in J; Si(C) .
Repeating this process, we obtain that

x € U S;(0)  for all n.

li|=n

Let X be a compact subset of R? such that O C X and Kz C X . Recall that S; : R? — R?
for i = 1,...,N were defined to be contracting similarities. Thus (Si,...,Sn) are contacting
similarities on X C R? . Hence, we have

U si0) ¢ | Si(x) forall n.

lil=n lil=n
Therefore,
U si0) ¢ | Si(x) forall n. (3.4)
lil= lil=n

Thus (3.4) shows that
ze |J Si(x) forall n.
lil=

Hence

xeﬂ U Si(X) =Ky,

where the equality (1, Uj;—, Si(X) = K is well-known (see, e.g. [Fal90, Fal97]). This completes
the proof.

2. Analytic approach

Part 1. We first prove that the set

Kz U [ Si(0)
iex~
is compact.
For brevity write L = Kg U [Jjcx. Si(C) . Since L is clearly bounded, it suffices to show that L

is closed. Therefore, let € R? and let (z,), be a sequence of points in L such that z, — z.
We must now prove that = € L. We divide the proof of this into two cases.

Case 1: x, € Kg for infinitely many n . In this case there is a subsequence (xy, ) with z,, € Kg
for all k. Since Ky is closed, we now conclude that = = lim, x,, =limy z,, € Kg C L.

Case 2: x, € Kg for finitely many n . Since x, € L = KgUJ;jcx- Si(C) , we conclude that there
exists a positive integer ng such that

e | J Si(0)

iex*
for all n > ng. Hence, for n > ng we can choose i, € ¥* with
zy € S, (C).

We now divide Case 2 into two subcases.
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Subcase 2.1: liminf, |i,| < oco. Let m = liminf, |i,| € N. Since [i,] € N for all n, it follows
from the definition of m that there is a subsequence (in,)r such that {i, |k € N} C ¥™. In
particular, this shows that the set {i,, |k € N} is finite. This implies that there is a string
j € {in, |k € N} and a further subsequence (i, ); such that i,, =]j for all /. We deduce from
this that z,,, € Si"kl (C) = S;(C) for all 1, and since Sj(C) is closed we therefore conclude that
z =limz, = lim; z,,, € S;(C) CL.

Subcase 2.2: liminf, |i,| = co. In this case we conclude that |i,| — 0o as n — oo, whence

diam ( S;, (C)U S;, (Kg)) = 1y, diam (CUKg )
rlin| diam (CUKy)

0. (3.5)

1 IA

Next, for each n € N choose a point
Yn S Sin (K@) .

We will now prove that (y,), is Cauchy. Indeed, for positive integers n and m we have

< diam (Sin(C) USin(Kg)) + |z — @y | + diam (Sim(C) USim(Kg)) .

This inequality combined with (3.5) and the fact that (z,), is convergent shows that (y,), is
Cauchy.
Since (y,)n is Cauchy, we conclude that there is y € R? such that y, — y. We now observe that

T=y.
Indeed, it follows from (3.5) that

lz -yl < |z —au]+ |20 —yul + |yn — vl
< |z —a,| + diam (S;, (C)U S;, (Ko) ) + |yn — ¥
— 0.

We conclude from this that =z =y .
Finally, since y, € S;, (Kz) C Kg and Ky is closed, we see that © =y =lim,y, € Kz C L.

Part 2. Next we show that
Koe=Ky U |J Si(0).
iex=
For brevity write L = Kz U(J; Si(C) . Since K¢ is the only non-empty and compact set satisfying
Ke = |U; Si(Ke) U C, it suffices to show that L is non-empty and compact and satisfies L =
U; Si(L) U C. To prove this first observe that it follows from Part 1 that L is non-empty and
compact. Next, we prove that L satisfies L = |J, S;(L)U C . Indeed, we have

Usimue = USZ»(KgU U si(0)>uc

iex

UsiEz)u | | ss€) ue

i iexs

USi(Kg) u | si©). (3.6)

jex=



3.2 Dimensions of inhomogeneous self-similar sets 25

Finally, since U;S;(Kg) = Ko, we conclude from (3.6) that

Usimyuve = Ko u ] Si0)
= L.

This completes the proof.

Theorem 3.10.
1. We have the following formula for any countably stable dimension of the set Ko satisfying (2.3).

dim K¢ = max(dim Kg,dim C). (3.7

In particular, we have the following formulae for the Hausdorff and packing dimensions of the set
K¢ satisfying (2.3).
dimy K¢ = max(dimy Kg, dimg C)

dimp K¢ = max(dimp Kg,dimp C), (3.9)
where dimyg denotes the Hausdorff dimension and dimp denotes the packing dimension.

2. Assume that the sets (S1Kc,...,SnKc,C) are pairwise disjoint. We have the following formula
for the upper box dimension of the set Ko satisfying (2.3).

dimp (K¢) = max(dimg (K ), dimg (C)), (3.10)
where dimpg denotes the upper box dimension.

Proof. 1. It follows from Lemma 3.9 that
Ko=KgoU ] Si(0).
iex~

Thus, using that the Hausdorff and the packing dimensions are countably stable, we obtain (3.8)
and (3.9) respectively. More precisely, we have

dimy Ko = max( dimy Kz , sup dimy S;C )
iex*

= max( dimyg Kg , sup dimg C )
iex=

= max( dimyg Ky , dimyg C )
Similarly, we have
dimp Ko = max( dimp Kg , sup dimp S;C )
iex*

= max( dimp Kg , sup dimp C' )
iex=

= max( dimp Ky , dimpC).

2. The formula for the upper box-dimension is obtained using results on L? spectra of inhomoge-
neous self-similar measures. Therefore for the proof of (3.10), see Section 4.2.1, where we study L?

spectra of inhomogeneous self-similar measures.
O
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Comparison with (homogeneous) self-similar sets.

Comparing Theorem 3.10 with dimy Ky = dimp Ky = dimg Ky = s and Theorem 3.8 we see
that Theorem 3.10 provides a natural inhomogeneous extension of the classical homogeneous result
in Theorem 3.8. Namely, dimension of the inhomogeneous set equals the maximum of a natural
dimension index associated with the homogeneous set and the dimension of the inhomogeneous
term.

3.3 Open problems for dimensions of inhomogeneous self-similar sets

Unfortunately, we do not know if a similar result holds for the lower box dimension of K¢ . It is
natural to ask the following question.

Question 3.11. Assume that the sets (S1Kc,...,SNKc,C) are pairwise disjoint. Is it true that
dimy, (Kc) = max(dimy (Ko), dimg (C)) (3.11)

where dimy denotes the lower box-dimension.

It is also quite unsatisfactory that our result for the upper box-dimension is obtained under the
assumption that the sets (S1K¢,...,SnvKc,C) are pairwise disjoint. It is natural to ask if the
results are true assuming only the appropriate version of the standard Open Set Condition. Namely,
assuming Inhomogeneous Open Set Condition (IOSC) which we will state in Section 4.3.1.

Question 3.12. Are the results in Section 3.2 true if the IOSC is satisfied?
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4 Multifractal analysis of inhomogeneous self-similar mea-
sures

4.1 Preliminaries: multifractal analysis

In this section we give a brief introduction to the multifractal analysis. In particular, we will empha-
sise the importance of multifractal analysis of self-similar measures and their natural generalisations
inhomogeneous self-similar measures.

4.1.1 L7 spectra and Rényi dimensions

In section 3.1 we showed how to describe the size of a set by computing its dimension. However,
this does not describe the way the measure is allocated within this supporting set. This is done by
introducing fractal dimensions of a probability measure. Roughly speaking, there are two types of
fractal dimensions of a probability measure. Namely, there are local and global dimensions. For
various classes of measures these dimensions are related to each other by multifractal formalism. The
global dimensions were essentially introduced by Rényi [Rén60, Rén61] in 1960 as a tool for analyzing
various problems in information theory. Indeed, for a probability vector p = (pi1,...,pn) and
¢ € R, Rényi defined the ¢-entropy Hp(g) of p by Hp(q) = l—iq log>", p! for ¢ #1 and Hp(1) =
— Y . pilogp; . Observe that ’'Hospital’s rule shows that Hp(q) = Hp(l) as ¢ — 1, and the ¢-
entropies Hp(g) can therefore be regarded as natural generalizations of the usual entropy Hp(1) =
— Y ;pilogp; of p. The entropies Hp(q) are discussed in detail by Rényi in ([Rén70], Chapter
9). In the 1980s Hentshel and Procaccia reintroduced these dimensions to characterize fractals and
strange attractors [HP83]. We will now give formal definitions of these global dimensions, namely,
we will now formally define closely related L? spectra and Rényi dimensions.

For a Borel probability measure m on R? and ¢ € R, the lower LY spectrum 7, (¢) and the
upper LY spectrum T,,(q) of m are defined as follows. For ¢ € R we put

log [ m(B(z,r))" ! dm(z)

— l. . f supp m
T (4) imin “logr ’
log [ m(B(z,r)?" ! dn(z)
— . supp m
Tm(g) = limsup )
N0 —logr

where suppm denotes the support of m .

As it was mentioned above, Rényi dimensions and L? spectra are closely related. For a Borel
probability measure m on R and ¢ € [—oo,00], the lower and upper ¢-Rényi dimensions of m
are defined by

log [ m(B(z,r)?" dm(z)

o .. supp m
Dn(g) = limiof 1 o for g € R\ {1},
log [ m(B(z,r)"*dm(z)

- o . supp m

Dn(q) = llrgl\s‘gp 1 T for g e R\ {1},
[ logm(B(z,r))dm(z)

D (1 —  liminf supp m

D, (1) imin Togr :
| logm(B(z,r))dm(z)

D, (1) = limsup —22™ ,

0 lOg r
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and
_m(_OO) = hmlnf log ian;ESuppm m(B(.'If,’I“)) ’
™0 log r
_ lowint .
Dm(_OO) = limsup og i xesuripmm( (JT,T')) ,
N0 Og r
Qm(oo) = liminf log Suszsuppm m(B(.Z',T’)) ’
0 log r
— log su m(B 7
Dm(OO) = limsup & SUP, csupp m ( ( )) .
™0 log r

4.1.2 Multifractal spectra

We now turn towards the definition of local dimensions of a probability measure mentioned in the
previous section. For a probability measure m on R? (or on a general metric space), the lower and
upper local dimensions of m at the point = are defined by

logm(B(z,r))

di_mloc (1’; m) = h}j{{glf log r

_ 1 B

dimjoe(z;m) = limsup —ogm( (z,7)) )
N logr

If dim,,.(z;m) and dimjo.(z;m) are equal then the common value is called the local dimension of
m at the point x and is denoted by dimye.(x;m). We define the Hausdorff multifractal spectrum
function, fy, ., as the Hausdorff dimension of the level sets of the local dimension of m , and we
define the packing multifractal spectrum function, fp , as the packing dimension of the level sets
of the local dimension of m , i.e we put

. . logm(B(z,r))
— d > —
fam(a) = dimg {m €R }1{‘% ogr =a,,
. logm/(B(x,r))
_ d ’ _
fem(a) = dimp {m e R }1\1‘% og =y,

for @ > 0, where dimy denotes the Hausdorff dimension and dimp denotes the packing dimension.

4.1.3 Multifractal formalism

One of the main significances of the L? spectra of a measure m , is their relationship with the
multifractal spectrum of m , known as multifractal formalism. More precisely, multifractal for-
malism relates global (L? spectra) and local (multifractal spectra) behaviours using Legendre
transform. Next, recall that the Legendre transform ¢* of a function ¢ : R — R is defined by
©*(z) = infy(zy + ¢(y)) . In the 1980s it was conjectured in the physics literature [HJK * 86, HP83]
that for “good” measures the following result, relating the multifractal spectra functions to the
Legendre transform of the L? spectra, holds: namely (1) that the lower and upper L? spectra
coincide, and (2) that the multifractal spectra functions coincide with the Legendre transform of
the L? spectra. This leads to the following definition.

Definition 4.1. [The Multifractal Formalism] A probability measure m on R? is said to
satisfy the Multifractal Formalism if

and
fam(@) = fom(a) =1;,(a) =7,,(a),
forall g e R and all > 0.



4.2 L7 spectra and Rényi dimensions of inhomogeneous self-similar measures 29

Nowadays it is well-know that (ordinary) self-similar measures satisfying OSC verify Multifractal
Formalism. However, it is easy to find measures that do not satisfy the Multifractal Formalism, and
during the 1990s there has therefore been an enormous interest in verifying the Multifractal Formal-
ism and computing the multifractal spectra of measures for various classes of measures exhibiting
some degree of self-similarity, cf. [Fal97] and the references therein.

4.2 L7 spectra and Rényi dimensions of inhomogeneous self-similar mea-
sures

L? spectra and Rényi dimensions of (ordinary) self-similar measures satisfying (2.2) have been
studied intensively for the past 15 years and there is a huge body of literature discussing this
problem, see, for example, [Fal97] and the references therein. Continuing this line of investigation,
in this section we will study the L? spectra and Rényi dimensions of inhomogeneous self-similar
measures. To the best of our knowledge the only results on L? spectra of inhomogeneous self-similar
measures has been obtained by Strichartz in [Str93b] under a number of simplified assumptions.
More precisely, Strichartz assumes that the L7 spectra of the condensation measures exist and
therefore the renewal type arguments used in [Str93b] to obtain the LY spectra of the inhomogeneous
self-similar measures are fairly straightforward . On the contrary we do not assume that L7 spectra
of the condensation measure exists and we develop a general renewal type argument to obtain a
formula for the L? spectra and Renyi dimensions of the inhomogeneous measures. In addition, we
give a more comprehensive discussion of the L? spectra and Renyi dimensions of inhomogeneous
measure self-similar measures which includes the study of phase transitions of these measures and
applications to the study of the box dimensions of inhomogeneous self-similar sets discussed in
Section 3.2 .

4.2.1 L7 spectra: main results and examples

First, recall that r; denotes the contraction ratio of S;, and define f: R — R, by
Z pgr? @ =7,
i

Observe that the function [ is well-defined; indeed, if we let ¢, : R = R denote the function
@q(t) = >, pirt, then ¢, is clearly continuous and strictly decreasing with lim; o ¢, (t) = 00

and lim; o pq(t) = 0, and we can therefore find a unique B(g) € R such that Zipgrf(q) =
pq(B(q)) = 1.

We will now state the first of our main results providing lower and upper bounds for L? spectra of
an inhomogeneous self-similar measure.

Theorem 4.2. Assume that the sets (S1K¢,...,SnKe,C) are pairwise disjoint.

1. For all g € R we have
7u(a) < max (Bla), (@) )

2. For all ¢ € R we have

3. For all ¢ > 1 we have

g B
& I
" "
N TN
= @
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= =
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The proof of Theorem 4.2 is given in Section 4.2.4. The following exact value for upper L7 spectrum
of an inhomogeneous self-similar measure for ¢ > 1 follows immediately from Theorem 4.2.

Corollary 4.3. Assume that the sets (S1Kc,...,SnKc,C) are pairwise disjoint. For all ¢ > 1
we have

7ula) = max (Ba), 70(a) )

Corollary 4.3 gives a formula for the LY spectra of an inhomogeneous self-similar measure. We now
make the following three additional comments related to the result in Corollary 4.3.

(1) Comparison with (homogeneous) self-similar measures.

The L? spectra, 7, (q) and T,,(g), of a (homogeneous) self-similar measure po satisfying (2.2)
have been studied intensively during the past 15 years, cf., for example, the surveys [[Lau95], [Heu07]]
or the textbook [Fal97] and the references therein, and it is instructive to compare the results in
Theorem 4.2 and Corollary 4.3 with the corresponding results in [Lau95]. We will now state the
result in [Lau95].

Theorem 4.4. [See, for example, [Lau95]] Let S; : R? — R for i =1,...,N be contracting
similarities and and write r; for the contracting ratio of S;. Let (pi,...,pn) be a probability
vector and let po be the (homogeneous) self-similar measure satisfying (2.2). Finally, for ¢ € R,

let Bo(q) be defined by
prrf‘)(q) -1,
i

If the Open Set Condition is satisfied, then

Ty (@) = Tuo (@) = Bo(q) (4.1)

for all q.

Comparing Corollary 4.3 and Theorem 4.4, we see that Corollary 4.3 provides a natural inhomoge-
neous extension of the classical homogeneous result in Theorem 4.4 . Indeed, this extension is similar
to the formulas for the Hausdorff dimension (3.8) and the packing dimension (3.9) of an inhomo-
geneous self-similar set discussed earlier: namely, the dimension of the inhomogeneous set/measure
equals the maximum of a natural dimension index associated with the homogeneous set/measure
and the dimension of the inhomogeneous term.

(2) Collapsing of the L? spectrum of p. The following rather surprising result follows from
Corollary 4.3. Namely, regardless of how the maps (Si,...,Sn) are chosen and regardless of how
the measure v is chosen, then the L7 spectrum of the inhomogeneous measure p always collapses
and becomes identical to that of v for all ¢ sufficiently close to 1.

Corollary 4.5. Assume that the sets (S1Kc,...,SnKc,C) are pairwise disjoint. Then there
exists qo > 1 such that

for all q €[1,q0].

Proof. Firstly, note that it is well-known (and easily seen) that 7, is convex, and therefore, in

particular, continuous. Also observe that 7,(1) = 0. Secondly, note that 3 is continuous

with (1) < 0. Since the functions 7, and § are continuous with S(1) < 7,(1), there ex-

ists go > 1 such that S(q) < T,(g) for all ¢ € [1,q0]. Corollary 4.3 therefore implies that
Ty

Tu(q) = max(B(q),7v(q)) = Tv(q) forall g € [1,qo].

(3) Phase transitions. Another interesting result following from Corollary 4.3 is that an inhomo-
geneous self-similar measure often has phase transitions. This is in sharp contrast to the behaviour of
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(homogeneous) self-similar measures satisfying the Open Set Condition. We will now explain what a
phase transition is and prove that inhomogeneous self-similar measures often have phase transitions.
Let m be a probability measure on R? . Due to a formal analogy between the LY spectra of m
and the partition function in statistical mechanics, the L? spectra 7,,(¢q) and T,,(¢q) are often in
the physics literature interpreted as the free energy of “the physical system described by m” as a
function of the inverse temperature ¢. The reader is referred to [[BP97], pp. 128-132;[BS93], pp.
114-126;[0tt93], pp. 309-910] for a discussion of these and other analogies between multifractal
analysis and statistical mechanics. In statistical mechanics, phase transitions are manifested as
points of non-differentiability of the free energy. The study of the differentiability properties of the
L? spectra 7,,(q) and T,,(q) can therefore be interpreted as the study of “phase transitions” of
the measure m , and following this analogy points ¢ at which one or both of the L? spectra 7,,(q)
and T,,(q) are non-differentiable are called phase transitions.

It is well known that a (homogeneous) self-similar measure g satisfying the Open Set Condition
does not have any phase transitions. In fact, it follows from Theorem 4.4 that 1, (q) = Ty, (q) =
Bo(q) is areal analytic function of ¢ . This is in sharp contrast to the following surprising behaviour
of inhomogeneous self-similar measures. Namely, inhomogeneous self-similar measures often have
phase transitions. Indeed, the proposition below provides a general condition guaranteeing the
existence of phase transitions.

Proposition 4.6. Assume that the sets (S1K¢,...,SnKc,C) are pairwise disjoint.

1. If there exists qo € (1,00) such that

B(q0) = Tv(q0)

and T, is differentiable at qo with

B'(¢0) # 7., (20) »

then T, has a phase transition at qo .

2. In particular, if t > 0 is a positive real number such that 7,(q) = t(1 —q) for all q (this is,
for example, the case if C is a t-set and v equals the normalized t -dimensional Hausdorff
measure restricted to C ) and —t < ['(1) (this is easily seen to be the case if, for example,
the r; ’s are sufficiently small), then T, has a phase transition.

Proof. 1. It follows immediately from the assumptions in Proposition 4.6 and the fact that 7,(q) =
max(6(q),Tv(q)) for all ¢ > 1, that 7, is non-differentiable at g .

2. To prove this note that the convexity of § and the fact that —t < (1) , guarantee the existence
of a number ¢y € (1,00) such that £(q) = t(1 — qo) and 7, (q) = —t < B'(1) < B'(q), i.e.
B(g0) =Tv(q0) and 7,(qo) # B'(qo) - Now Part 1 shows that 7, has a phase transition at ¢o. O

Note that the following surprising result follows from Proposition 4.6.(2), namely, even if the in-
homogeneous term v is very well-behaved and the function 7, is real analytic (for example, if
v equals the normalized t-dimensional Hausdorfl measure restricted to a t-set C'), the resulting
inhomogeneous self-similar measure p can have phase transitions. Below we present examples with
several phase transitions.
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Example 4.7.

We now present our first concrete example with 2 phase transitions. In this example we take d = 4
and N =2, and we define the maps (S1,S5>) and the probability vector (pi,p2,p) as follows. Let
S1,S5 :[0,5]* = [0,5]* be defined by

1 1
Sl(x) = gﬂ? +ap, 52(27) = 637 + as,
where a; = (2,2i,2i,2i) for i = 1,2, and let (p1,po2,p) = (%, %, %) In this case the function
B :R — R is given by

SOGIONS

We now define the measure v as follows. First, let ¥ denote the family of all strings i = i1i203i4
consisting of 4 symbols i; with i; € {0,1} for all j. Next, let the maps Tj : [0,1]* — [0,1]*
for i = dyigigiy € ¥ be defined by Ti(z) = %a} + a; where a; = (%,%, %,%‘), and define the
probability vector (pi)ics by Poooo = % and p; = % for i€ ¥\ {0000} . We now let v denote
the self-similar measure associated with the list (73, pi)ies , i-.e. v is the unique probability measure

on [0,1]* such that v =Y, pivo Ty ' . Tt is well-known (cf. Theorem 4.4 or [Lau95]) that

7,(q) =Tv(q) = 7(q)

for all ¢ where 7(q) is given by ) ip?(%)T(Q) =1,ie.
10g((17010)q + 15(1§go)q)
= . 4.
(1) = (1.9

The graphs of the functions f and 7, =7, = 7 are sketched in Figure 4.2.1. A standard calculus
argument shows that there exist two numbers ¢y =~ 1.2256 and ¢ =~ 3.1339 with 1 < ¢ < @1
such that 8(¢) < 7(q) for q & (go,q1) and 7(¢) < B(q) for q € (go,q1) - It therefore follows from
Corollary 4.3 that

7(q) for g € [1,qo);
Tu(e) = ¢ B(q) for q € [go, m];
7(q) for g € (q1,0).
Observe that in this example 7, has phase transitions at go and ¢; . This completes the example.

Example 4.8.

We now present our next concrete example with three phase transitions. In this example we again
take d = 4 and we consider the following inhomogeneous self-similar measure. Let Py, P : [0, 5]4 —
[0,5]* be contracting similarities defined by

1 1
Pi(x) = ga:-i—bl, Py(z) = Zm+b2,

where by = (3,0,0,0) and b2 = (0,3,0,0). Also, let (p1,p2,p) be a probability vector given by
(p1,p2,p) = (411—, —(5), 16) - Now, let A be the inhomogeneous self-similar measure defined by

2
A= pido Pt + pp, (4.4)

i=1
where p is the inhomogeneous self-similar measure consinered in Example 4.7. In this case it follows
from Corollary 4.3 that for ¢ > 1

7a(g) = max (Ba(0), 7u(@) )
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Figure 4.2.1:
This figure shows the graphs of the functions 8 and 7, =7, = 7 defined in (4.2) and (4.3), respectively.
The graph of (3 is drawn as a blue line and the graph of 7, =7, = 7 is drawn as a red line. Observe that

3.1339 .

7, = max(f3,7,) has phase transitions at go ~ 1.2256 and q:

with the function 8y : R — R given by

1 q 1 Bx(a) 1 q 1 Ba(a)
BYS)H(2)(5) =1 (4.5)
40 3 40 4

From Example 4.7 we have that 7,(¢) = max (ﬂ(q) , T(q)) , for ¢ > 1. Therefore,

7a(q) = max (Br(a), B(a), 7(q) ) -

The graphs of the functions Sy ,3(¢) and 7(g) are sketched in Figure 4.2.2. As before a standard
calculus argument shows that there exist tree numbers gg ~ 1.1545, ¢; ~ 1.7401 and ¢» ~ 3.1339
with 1 < g0 < @1 < @2 such that S(q),8, < 7(q) for ¢ € [1,q0), 7(q),B(q) < Br for q €
[90,01) ,7(q), Br(q) < B for q € [q1,q2) and B(q),Bx < 7(q) for ¢ € [g2,00) . Thus, we have,

T(q) for g €[1,qp);
() = Bxr(q) for q € [q0,q1)
Blg)  for q € [q1,q2);
7(q) for q € [ga,0).

’

Observe that in this example 7, has phase transitions at qo, ¢1, ¢2 and therefore we have
constructed the inhomogeneous self-similar measure with three phase transitions. This completes
the example.

Note that in Example 4.8 we have defined the condensation measure to be itself the inhomogeneous
self-similar measure (considered in Example 4.7) with two phase transitions . This way the resulting
inhomogeneous self-similar measure had three phase transitions. Obviously, now we can define
the condensation measure to be itself the inhomogeneous self-similar measure with three phase
transitions (take, for instance, the inhomogeneous self-similar measure in Example 4.8) and obtain
the resulting inhomogeneous self-similar measure with four phase transitions. By iterating this
process we can therefore construct the inhomogeneous self-similar measure with an arbitrary number
of phase transitions.
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Figure 4.2.2:
This figure shows the graphs of the functions 3y, and 7 defined in (4.5), (4.2) and (4.3), respectively.
The graph of () is drawn as a green line, the graph of [ is drawn as a blue line and the graph of 7 is
drawn as a red line. Observe that 7, = max(fx,3,7) has phase transitions at go ~ 1.1545, ¢1 =~ 1.7401
and ¢» ~ 3.1339 .

For a Borel probability measure m on R¢ and ¢ € R, we can also define the following variations
of the lower and upper L? spectra of m . Namely, for ¢ € R we put

log & [m(B(z,r))?dL%(z)

— T 4.

T, (q) liminf “Togr : (4.6)

_ log &4 B(z,r))? dL?

Tolg) = limsup 28 J m(B(,r)) (z) , (47)
N0 —logr

where £¢ denotes the d-dimensional Lebesgue measure. It is not difficult to see that z,,(q) =
T,,(q) and Tm(q) = T'm(q) for ¢ > 1; however the values may differ for ¢ < 1. The dimensions
T,(q) and T,(q) satisfy a relation similar to Corollary 4.3 for ¢ > 0.

Theorem 4.9. Assume that the sets (S1K¢,...,SnKc,C) are pairwise disjoint. For all 0 < ¢
we have

T(a) = max (B(0), Tu(a) )
The proof of Theorem4.9 is given in Section 4.2.5
As an application of Theorem 4.9 we will obtain a formula for the upper box-dimension of an
inhomogeneous self-similar set K¢ stated in Theorem 3.10(2).
Proof of Theorem 3.10(2). Momentarily, writing E = suppm for the support of a probability
measure m on R? and B(E,r) = {x € R? | dist(z, E) < r} , we sce that (cf. [Fal97], p. 20, (2.5) )
_ log L B(xz,r))°dcd log L £L4B(E,
T (0)  timsuy P LB L) o s £ )

=di E
N0 - IOg r 7\0 - IOg r lmB( ) ’

where dimg(E) denotes the upper box-dimension of E. By putting ¢ = 0 in Theorem 4.9 , we
therefore obtain the result in Theorem 3.10 (2). Namely, we have

dimg (o) = max ( B(0), dimp(C) ) -
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Since dimg(Kg) = £(0) (cf. [Fal90] or [Hut81]), this can be written as
dimg (K¢) = max (dimB(Kg) : dimB(C)) ;
recall that Ky is the self-similar set satisfying Kg = |J, Si(Kg), cf. (2.1).

4.2.2 Rényi dimensions: main results

Obviously, we immediately obtain the following results for Rényi dimensions from Theorem 4.2 and
Corollary 4.3 .

Theorem 4.10. Assume that the sets (S1Kc,...,SnKe,C) are pairwise disjoint.
1. For all g € R\ {1} we have

—
I
<

2. For all ¢ € R\ {1} we have

3. For all 1 < q we have

!
—
(]
N
A
g
=
/N
=
A‘e
IS
<
—
(]
N
N——

Dyu(q) < min (‘f%‘g : E(Q)) -

Corollary 4.11. Assume that the sets (S1K¢,...,SnKe,C) are pairwise disjoint. For all 1 < q
we have
Bla)

D,(q) = min(— Qu(q))-

1—q’
We now show that the result from Corollary 4.11 also holds in the two limiting cases for ¢ =1 and
g = oo, and that the result from Theorem 4.10.(1) also holds in the limiting case ¢ = —o0 .

Theorem 4.12. Assume that the sets (S1K¢,...,SNKec,C) are pairwise disjoint. We have
D,(1) < D,(1) < D(1) < D, (1).
In particular, if D,(1) = D, (1), then
B(a)

Since clearly lim,_,,+ T—y =, this may be written as

Theorem 4.13. Assume that the sets (S1K¢,...,SNKec,C) are pairwise disjoint. We have

log ps
D, (c0) = min ( miin lZif% , Q,,(oo)) .
(3

this may be written as

D, (o0) = min( lim Bla)

g0 1l—gq’

Since clearly limg_, o ?(Tq = min;

D,(x)).
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Theorem 4.14. Assume that the sets (S1Kc,...,SNKe,C) are pairwise disjoint. We have

D, (—0) < max ( max log pi , E,,(—oo)) .

logr;
Since clearly limg,_, @ = max; }%gﬂ this may be written as
= Bla)

D,(—o0) < max ( qgmoo ¢’ ,,(—oo)) .

Theorem 4.12 is proved in Section 4.2.7, and Theorem 4.13 and Theorem 4.14 are proved in Section

4.2.6.

4.2.3 Proofs of the results for LY spectra and the Rényi dimensions: a simple general
lemma

We now turn towards the proofs of the results in Section 4.2.1 and Section 4.2.2 .
Note that throughout this Section, we will use the notation introduced earlier. Also, write

Tmin = MINT;, Tpax = Maxr; .
1 1

In this section we will prove a simple and very general lemma. This lemma will be useful for
obtaining bounds for the L? spectrum and the Rényi dimensions in subsequent sections. We first
state and prove the lemma. After the statement and the proof of the lemma, we will attempt to
provide an explanation of how the lemma is used in the subsequent sections of this part of the thesis.

Lemma 4.15. Let ¢ :(0,00) % (0,00) = (0,00) be a commutative and associative binary operation,
and assume that if x,y,z € (0,00) with z <y, then

roz<yoz. (4.8)

Let x : (0,00) x (0,00) = (0,00) be a binary operation, and assume that if a,z,y € (0,00) with
z <y, then
axr<axy. (4.9)

Fiz ay,...,an >0 and a function u : (0,00) — (0,00) . Let 7o >0 and let F,G : (0,00) = R be
two real valued functions. Assume that
r
<<>l- <ai*F<—> )) o u(r),
r;

<<>i <a*G<;>>> o ulr), (4.10)

forall 0 <r <ro. If F(r) <G(r) for all v € [rminTo,70], then F(r) < G(r) for all r € (0,70] .

'11
=
IA

Q
=
v

Proof. Assume that F(r) < G(r) for all r € [rminro,70] . We now prove by induction after n € NU
{0}, that F(r) < G(r) for all r € [}, rminT0,70] - The start of the induction follows from the fact
that we are assuming that F(r) < G(r) for all r € [rminTo,70] . Next, assume that n € {0,1,2,...}
and that F(r) < G(r) forall r € [r, "minT0,70] - We must now show that F(r) < G(r) forall r €
[rm'fa‘irmaxro,ro] Therefore, let 7 € [r%tlrminro,70] - If 7 € [r, "minT0, o] , then it follows from the
inductive hypothesis that F( ) < G(r). We may thus assume that r € [rFlrpinro, 72, TminTo] -

n41
This 1mphes that = < M < Thaxto < 1o and & > M > rl o TminTo for all i,
whence 7 €lr mamemTo,To] for all 4. The inductive hypothesis therefore implies that
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for all i, and so

for all 7. Hence

IN
QA
o
: 7N
&

*

Q

3
N——

IN

This completes the proof. O

We are interested in the following four special cases of Lemma 4.15 .

Case 1: Obtaining bounds for the Rényi dimensions for ¢ # 1,+c0. In order to obtain
bounds for the Rényi dimensions for ¢ # 1,+00, we fix ¢ € [—00,00] with ¢ # 1,+00 and apply
Lemma 4.15 to the following setting. Namely, the operations ¢ and * are defined by z oy =z +y
and a*z = az , and the numbers a; and the function w are defined by a; = p! and u(r) = p?r—*
(for an appropriate choice of ¢). In this case the inequalities in (4.10) become

> pIF <L> +pirTt,
i Ti
q r q,.—t
E p;G <r_> +pir . (4.11)
- (3
(2

'11
=
A

Q
=
v

Hence, if F,G : (0,00) — (0,00) are functions such that (4.11) is satisfied and F(r) < G(r) for all
7 € [FminTo, 0], then F(r) < G(r) for all r € (0,7¢]. In Section 4.2.4 we show that the functions

F() = [ uBlan) " dutz)

and
G(r) = cor™t

(for appropriate choices of ¢t and ¢ ) satisfy (4.11) and F(r) < G(r) for all r € [FminT0,r0], and
Lemma 4.15 can be applied to give bounds for the Rényi dimensions (and the L? spectrum) of u
for ¢ #1,+00.

Case 2: Obtaining bounds for the Rényi dimensions for ¢ = co. In order to obtain bounds
for the Rényi dimensions for ¢ = co we apply Lemma 4.15 to the following setting. Namely, the
operations ¢ and * are defined by x ¢ y = max(z,y) and a*x = ax, and the numbers a; and
the function u are defined by a; = p; and wu(r) = prt (for an appropriate choice of ¢). In this

case the inequalities in (4.10) become
(mpeaie (7))
max | maxp; F' | — ) ,pr® |,
i r;

max <maxpiG <L> ,prt> . (4.12)
2 Ti

Hence , if F,G : (0,00) — (0,00) are functions such that (4.12) is satisfied and F(r) < G(r) for all
7 € [FminT0, 0], then F(r) < G(r) for all r € (0,70]. In Section 4.2.6 we show that the functions

F(r)= sup u(Bz,r)

TESUpp p

T
=
A

Q
=
v
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and
G(r) = cort

(for appropriate choices of ¢t and ¢ ) satisfy (4.12) and F(r) < G(r) for all r € [FminT0,r0], and
Lemma 4.15 can be applied to give bounds for the Rényi dimensions of u for ¢ = oco.

Case 3: Obtaining bounds for the Rényi dimensions for ¢ = —oo . In order to obtain bounds
for the Rényi dimensions for ¢ = —oo we apply Lemma 4.15 to the following setting. Namely, the
operations ¢ and x are defined by z ¢ y = min(z,y) and axx = ax, and the numbers a; and
the function u are defined by a; = p; and u(r) = prt (for an appropriate choice of ¢). In this

case the inequalities in (4.10) become
o (mpnr () )
min ( minp; F' | — | , pr’ |,
2 ri

min <minpiG <£> ,prt> . (4.13)
[ ri

Hence , if F,G : (0,00) = (0,00) are functions such that (4.13) is satisfied and F(r) < G(r) for all
7 € [FminT0, 0], then F(r) < G(r) for all r € (0,70]. In Section 4.2.6 we show that the functions

T
=
A

Q
=
v

F(r)= inf u(Bz,r)

TESUpp p

and

G(r) = cor'

(for appropriate choices of ¢t and ¢ ) satisfy (4.13) and F(r) < G(r) for all r € [FminT0, 0], and
Lemma 4.15 can be applied to give bounds for the Rényi dimensions of p for ¢ = —oc.

Case 4: Obtaining bounds for the Rényi dimensions for ¢ = 1. In order to obtain bounds
for the Rényi dimensions for ¢ = 1 we apply Lemma 4.15 to the following setting. Namely, the
operations ¢ and % are given by x oy = zy and a*z = %, and the numbers a; and the function
u are given by a; = p; and u(r) = e*rP* where s =, p;logp; +plogp (for an appropriate choice
of ¢). In this case the inequalities in (4.10) become

(meG))

(3

e (HG (7%),,) rtv . (4.14)

(3

'11
=
A

Q
=
WV

Hence , if F,G : (0,00) = (0,00) are functions such that (4.14) are satisfied and F(r) < G(r)
for all r € [rminro,70], then F(r) < G(r) for all r € (0,r0]. In Section 4.2.7 we show that the
functions

F(r) = exp / log j(B(z, ) dp(z)

and
G(r) = cor'

(for appropriate choices of ¢ and ¢ ) satisfy (4.14) and F(r) < G(r) for all r € [ryinro,r0], and
Lemma 4.15 can be applied to give bounds for the Rényi dimensions of u for ¢ =1.
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4.2.4 Proofs. The case: ¢# 1,+00.

In this section we prove Theorem 4.2. The proof is divided into two parts. Namely, we first apply
Lemma 4.15 to prove Theorem 4.2(1) and Theorem 4.2(2). Next, we prove Theorem 4.2(3). For a
Borel probability measure m on R? and ¢ € R, write

Ln(gsr) = / m(B(z, )1~ dm(z)

We now present the proof of Theorem 4.2(1) and Theorem 4.2(2). We first derive a functional
equation for I,,(g;r); this in done in Proposition 4.16. Next, we use this functional equation and
Lemma 4.15 to prove Theorem 4.2.(1) and Theorem 4.2.(2); this is done in Proposition 4.17 and
Proposition 4.18.

Proposition 4.16. Assume that the sets (S1K¢,...,SnKc,C) are pairwise disjoint. Let q € R.
Then there exists a positive number ro > 0 such that

T
L(q;r) = Zp% <q; r_i> +pUL,(g;r) (4.15)

forall 0<r<ry.

Proof. Let ro = min(min;x; dist(S; K¢, S;Kc¢), min; dist(S; K¢, C)) . Obviously ro > 0, since the
sets (S1Kc,...,SnvKe,C) are assumed to be pairwise disjoint and it is a finite collection of sets.
It follows from (2.4) that if 0 <7 < rg, then

L@ = Yon / w(B(e, 1)1 d(p o SV () + p / u(B(z, 1)1 du(z)

K¢ K¢
= Yo [ B e STY@ +p [ a(BE)T dve). (@10)
tosKe c

However, by using (2.4) once more, we also have for 0 < r <rg,

(B, )"

(Zpiu(silB(w, r)) +pv(B(z, 7“)))

B (pip(S; ' B(w,7)) )q_l for z € S; K¢

(pv(B(z,r)))"" forz € C,
P uB(S e, £)) 1 for @ € SiKe; (4.17)
| pr (B, )t forz € C. ’

Combining (4.16) and (4.17) gives

nan = St [ u(p(s70 L)) duwos e+ C/ VB, )" dulz)

i
¢ SiKc

;pg/;»(B( ;)) du(m)—{—pqc/u(B(m,r))q_l dv ()

K¢
,
= > plI, (q; ;) +p'1(g;7) -
. (2
K3

This completes the proof of Proposition 4.16. (|
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Proposition 4.17. Assume that the sets (S1Kc,...,SnKc,C) are pairwise disjoint. Let q € R
and let max(3(q), Tn(q)) <t.

1. There exists a positive number ro > 0 such that
r _
L(gr) <Y pilL (q; ;) +pirt
. (2
(2

forall 0<r<rg.

2. There exist constants ro,co > 0 such that the function J : (0,00) = R defined by J(r) =

cor~t satisfies
I > S pld (D) 4 port
020t (1) 0
forall 0 <r <ry, and I,(g;r) < J(r) for all r € [rminro,T0] .
3. We have 7,(q) < max(f(q), Tv(q)) .

Proof. 1. Since limsup, o % =T,(q) <max(B(q), Tv(g)) < t, we can find ro € (0,1) such

that % <t forall 0<r <ry,whence I,(q;r) <rt forall 0 <r <ry. The result follows
from this and Proposition 4.16.
2. Let rg > 0 be as in Part 1. Since ((q) < max(fS(q), T»(g)) < t, we conclude that Y, pirf < 1.

We can thus choose a constant ¢y > 0 such that

q
co > piqt; (4.18)
1= piri

and I I
o> max(.u(q,_rto?“min) ) u(ﬂa ro)) (4.19)
min(ry", (rormin) %)

It follows immediately from (4.18) that ¢y > . pleort + p?. This clearly implies that the function
J :(0,00) = R defined by J(r) = cor—t satisfies J(r) > >oipid (%) +pir—t for all 0 <r. Also,
it follows from (4.19) that

Li(g;r) < max(Iu(g;rormin) » 1u(g;70))
< max( Iu(q;rormin) ) IN(QQTO))r,t
- min(ro_t , (ToTmin)™t)
< eprTt= J(r),

for all r € [rminTo, 0] -

3. It follows from Lemma 4.15 (cf., in particular, the discussion in Case 1 following the proof of
Lemma 4.15) and Part 2 that I,(q;r) < J(r) = cor—" for all 0 <r < rq. This clearly implies that
7T,(g) < t. Since max(/(q),T,(¢)) < t was arbitrary, we conclude immediately from this that

Tu(q) <max(B(q), Tu(a)) - O

Remark. The proof of the next Proposition is very similar to the proof of Proposition 4.17 above.
However, to clarify this point we will present the proof, but for the rest of this section we will omit
presenting such very similar proofs again. We believe that this will ease the exposition of the main
ideas of the proofs.
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Proposition 4.18. Assume that the sets (S1Kc,...,SnKc,C) are pairwise disjoint. Let q € R
and let t <min(S(q), 7,(q)) -

1. There exists a positive number ro > 0 such that
r _
L(gr) > pil, (q; ;) +pirt
. (2
(2

forall 0<r<rg.

2. There exists constants ro,co > 0 such that the function J : (0,00) = R defined by J(r) =

cor~t satisfies
I < S pla (L) 4+ port
=30t (1) 0
forall 0 <r <ry, and J(r) <I,(q;r) for all r € [rminro,T0].
3. We have 1,(q) > min(j(q), ,(q)) -

Proof. 1. Since liminf,\ o % =1,(¢) > min(B(q), 7,(g)) > t, we can find ry € (0,1) such

q),
that % >t forall 0 <r <rg,whence I,(g;r) >r~t for all 0 <r <rg. The result follows
from this and Proposition 4.16.

2. Let ro > 0 be as in Part 1. Since 8(g) > min(3(q), 7,(¢q)) > t, we conclude that Y, pirt > 1.

We can thus choose a constant ¢y > 0 such that

pq
0>0>—" (4.20)
1=32pir}

and .
min( 1, (q; 7oTmin) » 1.(¢;70))

max ro_t , (ToTmin)~t)

co < (4.21)

It follows immediately from (4.20) that co < Y, pfcort +p?. This clearly implies that the function
J :(0,00) = R defined by J(r) = cor™" satisfies J(r) <3, p{J(;=) +pir~" forall 0 <r <rp.
Also, it follows from (4.21) that

I(q;r) > min(1,(g; 70 min) , 1u(g;70))

mln( Iu(qa rormin) ) Iu(qa 7'0) )Tit
max( ro_t , (ToTmin)™t)

cor b =J(r),

Y%

Y%

for all r € [Fminro,70] -

3. It follows from Lemma 4.15 (cf., in particular, the discussion in Case 1 following the proof of
Lemma 4.15) and Part 2 that I,(q;r) > J(r) = cor—* for all 0 <r <rq. This clearly implies that
7,(¢) > t. Since min(S3(q), 7,(q)) > t was arbitrary, we conclude immediately from this that

7,(¢) > min(B(q), 7,(9)) -
O

The proofs of Proposition 4.17 and Proposition 4.18 complete the proofs of Theorem 4.2(1) and
Theorem 4.2(2).
We will now prove Theorem 4.2(3).

Lemma 4.19. For all i € ¥*, we have u(SiKc) > p; .
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Proof. Iterating (2.4) we see that

n—1
p= Yo+ Y Y o

lil=n k=0 |j|=k
for all n, whence p > pjuo S;l .
This implies that u(S;iK¢) > piu(S;lsiKc) > pin(Ke) =pi - O
For r > 0, write

L(r) = {1 eXirn<r< Ti|li|—1 } . (4.22)

Lemma 4.20. Assume that the sets (S1Kc,...,SNKc,C) are pairwise disjoint. Let ¢ > 1. Then
we have

[ B due) > 3 Sk,

Ko iel(r)

forall »>0.
Proof. Let r > 0. It is clear that K¢ 2 Usep(, Si(Kc) and since the sets (Si(Kc))ier(r) are
pairwise disjoint (because the sets (S1Kc¢,...,SnvKec,C) are assumed to be pairwise disjoint), we
conclude that

/u(B(a: ) dp(x) Z / B(z, )™  du(z) . (4.23)

Ko iel(r) S; Ko
Now choose n such that 7. diam(K¢) <7 (recall, that ryax = max;r; ). We see from this that
diam(S;(K¢)) < . diam(K¢o) <7 for all i with |i| =n. Hence, if |i| =n and z € S;K¢ , then
Si(K¢) C B(z,r) , whence

| n Byt du@) > [ pside) ! duto) = p(SiKe). (4.24)
SiKc SiKC

Combining (4.23) and (4.24) leads to the desired result. O

Proof of Theorem 4.2(3). We must prove that

1,(q) <1,(0), Tulg) <Tula), (4.25)

and
Bla) <1,(q)- (4.26)

We first prove (4.25). Indeed, it follows from (2.3) and (2.4) that =3, piuo Sy +pv > pv and
that K¢ = U;S;(Ko)UC D C. Since g > 1, we therefore conclude that

Lu(g;r) = /M(B(ﬂfﬂ“))q_1 dp(z) > /(p'/(B(fvﬂ“)))q_1 d(pv)(z) = p'L,(g;7) .-

K¢ (&)

The inequalities in (4.25) follow immediately from this.
Next, we prove (4.26). Observe that it follows from Lemma 4.19 and Lemma 4.20 that

L(gr) > > p(SiKc)!
i€l (r)

> Y o (4.27)

i€l (r)
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Let Kz be the self-similar set associated with the iterated function system (Si,...,Sn), le. Ky

is the unique non-empty and compact set such that Ko = J, Si(Kg). Also, let u; = p?rf(q) .

Then u = (u;); is a probability vector. Let pu, be the self-similar measure associated with the
iterated function system (Si,...,Sn,u), i.e. p, is the unique probability measure such that

/‘uzzuiﬂuosfl-
i

It is well-known that p,.(SiKg) = u; for all i € ¥* | cf. [Fal97]. Also, for i =iy ...i, € ¥*, write
uj = U4, -+ - U, . It now follows from (4.27) that

L(gr) > Y pf

iel(r)

— Z p;IT;B(Q)T.i—/B(Q)
iel(r)

_ Z uiri—ﬁ(Q)
iel(r)
= Y malSiKo)r M. (4.28)

iel(r)

Since clearly T;B(Q) > er=8@ where c=r 27 forall ie I(r), we deduce from (4.28) that

Ligr) > Y pu(Sike)ry "
i€l (r)

> C’I“iﬂ(q) Z qu(SiKg)
iel(r)

> CTB(q)Hu< U SiKg> (4.29)

i€l (r)

Finally, it is easily seen that Kg C Ujer(,)Sig . This and (4.29) imply that

L(gr) > ch(Q),uu< U SiKg) > cr PO (Ky) = er 8@
iel(r)

The desired result follows immediately from this by taking logarithms and dividing by —logr . This
completes the proof of (4.26).

4.2.5 Proof of Theorem 4.9

In this section we will prove Theorem 4.9. The proof of Theorem 4.9 is very similar to the proof
of Theorem 4.2 and will only be sketched, see the remark following Proposition 4.17. For a Borel
probability measure m on R? and g € R, write
1
In(gr) = [ mBlen) ).
r

Similarly to the proof of Proposition 4.16 we see that there exists a positive real number o > 0
such that

T
Julgsr) = Zp?Ju (q; T—i> +p?J,(g;r) (4.30)

for all 0 <r <. The proof now proceeds very similarly to the proof of Theorem 4.2 using (4.30)
in stead of (4.15).



4.2 L7 spectra and Rényi dimensions of inhomogeneous self-similar measures 44

4.2.6 Proofs. The case: ¢ =*+0.

In this section we prove Theorem 4.13 and Theorem 4.14. The proof is divided into two parts.
Namely, we first apply Lemma 4.15 to prove that

. . logp;

< .

min ( min logr;’ Q,,(oo)) <D,(0), (4.31)
- logp; —
D, (- < D,(— . 4.32
ul oo)_max(m?,xlogri, ( oo)) (4.32)
Next, we prove that
. . logp;

< . .

D, (o) < min ((min {2, D, (o)) (4.33)

For a Borel probability measure m on R? write

n(ooir) = sup m(B(x,7),
zESupp m

In(—o0;r) = inf  m(B(z,r)).
reEsupp m

We now present the proof of (4.31) and (4.32). We first derive a functional equation for I,,,(&o0;7) ;
this in done in Proposition 4.21. Next, we use this functional equation and Lemma 4.15 to prove
(4.31),(4.32); this is done in Proposition 4.22 and Proposition 4.23 .

Proposition 4.21. Assume that the sets (S1Kc,...,SNKc,C) are pairwise disjoint. Then there
exrists a positive number ro > 0 such that

I,(o0;r) = max(maxpilu <oo;£> , pI,(o0;7) > , (4.34)
2 Ti

I,(—o0;r) = min <mjnpilu (—oo;i> , pI,,(—oo;r)) . (4.35)
I3 Ti
forall 0<r<ry.

Proof. Let ry = min(min;; dist(S; K¢, S;K¢) , min; dist(S; K¢, C) ). It follows by an argument
similar to the proof of (4.17) that if 0 < r < rg, then

pin(B(S; 'z, ) for z € S; K¢

wBe,r) = {pl/(B(m,r) forz € C.

Hence

Biosir) = max (max sup u(B(er)., sup p(B(a,r) )
vt zeS;Kc zeC
= max <max sup  pijt <B <Si_1x, L)) , psup V(B(m,r)))
v zeS;Kc Ti zeC
= max <max sup pip (B (a:, L)) , psup V(B(m,r)))
v zeKce i zeC

= max(maxpilu <oo;£> ,pI,,(oo;r)) .
i ri

(3

This proves (4.34). Equality (4.35) is proved very similarly (see the remark following Proposition
4.17). This completes the proof of Proposition 4.21 . O
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Proposition 4.22. Assume that the sets (S1Kc¢,...,SnKc,C) are pairwise disjoint.
Let t < min(min; %g% , D, (00)).

1. There exists a positive number ro > 0 such that
I,(00;r) < max <maxpilu <oo; —> , prt>
i .

forall 0<r<rg.

2. There exists constants ro,co > 0 such that the function J : (0,00) — R defined by J(r) = cort

satisfies
J(r) > max <maxpiJ (_r > , prt>
2 T

forall 0 <r <ry, and I,(co;r) < J(r) for all r € [FminTo,T0] -

3. We have min(min; }zif’ , D, (00)) <D, (0) -

log I, (oc051)
log r - QV

Proof. 1. Since liminf,\ o
(0,1) such that w >t forall 0 <r <rg, whence I,(co;r) <7t forall 0 <r <ry. The

I

result follows from tﬁis and Proposition 4.21 .

2. Let 79 > 0 be as in Part 1. Choose any ¢y > 0 such that ¢y > p and ¢y > (Ir u(00; ”;2 , and define
J : (0,00) = R by J(r) = cort. Since t < min(mlnl}—ggﬂ, D, (0)) < minzﬂgﬂ, we conclude

Vv

that max; & < 1. This and the fact that ¢y > p, imply that 1 > max(max; rt 2 2 ). Tt follows

(00) > min(min; %g% , D, (c0)) >t, we can find ryg €

Vv

immediately from this inequality that J(r) > max(max;p;J(;>), pr t) for all r > 0. Also, since

co > gr (°°T”;2 , it follows that

Iu(OOQT’O)Tt t_

I (00;7) < I (00;m0) < (Pminto)*

for all r € [rminro,70] -
3. It follows from Lemma 4.15 (cf; in particular, the discussions in Case 2 and Case 3 following the
proof of Lemma 4.15 ) and Part 2 that I,,(co;r) < J(r) = cor® for all 0 < r < ry. This clearly

implies that ¢+ < D (oc0). Since ¢ < min(min; %g% , D, (00)) was arbitrary, we conclude from this
that min(min; igg% , D, (00)) <D, (00). O

Proposition 4.23. Assume that the sets (S1Kc,...,SnKc,C) are pairwise disjoint.
Let max(max; %g% , Dy(—00)) <t.

1. There exists a positive number ro > 0 such that
I,(—o0;r) > min <mjnpilu (—oo; —> , prt>
(2

forall 0<r<rg.

2. There exists constants ro,co > 0 such that the function J : (0,00) — R defined by J(r) = cort

satisfies
J(r) < min <mjnpiJ <_r> , prt>
2 T

forall 0 <r <1y, and I,(—oo;r) > J(r) for all v € [rminTo,70] -
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3. We have D, (—00) < max(max; 282 D, (—00)) .

logr; ?

Proof. The proof is very similar to the proof of Proposition 4.22 and is therefore omitted (see the
remark following Proposition 4.17). O

We now turn towards the proof of (4.33).
Proposition 4.24. Assume that the sets (S1K¢,...,SnKg,C) are pairwise disjoint. Then

. . logp;
QH(OO) S min ( miln log i ) QV(OO)) :

Proof. We must prove that D, (c0) <D, (o0) and that D, (co0) < min; }ggfz .

We first prove that D, (c0) < D, (c0) .

Indeed, since p(B(z,r)) = 3, pip(S; " (B(z,7))) + pv(B(z,r)) > pr(B(z,r)) for all z and all
r >0 we see that [,(co;r) > pl,(o0;r) for all 7> 0. This clearly implies that D, (co0) < D, (c0) .
Next, we prove that D, (c0) < min; %g% . Fix r > 0 and write D = diam(K¢). We claim that

sup pi < I,(oc0;7rD) (4.36)
iel(r)

(recall that T'(r) is defined in (4.22)). To prove (4.36), let i € I'(r). Now choose = € S;iK¢ .
Since i € I'(r), we have r; < r, and so diam(S;K¢) = rjdiam(K¢) = riiD < rD. We therefore
we conclude that S;Kc C B(z,rD). We conclude from this that u(SiKc) < p(B(z,rD)) <
I,,(co;rD) . Taking supremum over all i€ I'(r) gives

sup u(SiK¢) < I,(oc0;rD). (4.37)
iel(r)

Finally, using the fact that p; < pu(SiKc¢) (by Lemma 4.19), it follows from (4.37) that sup;cp(,) pi <
sup;ep(ry) M(SiKc) < I, (co;rD) . This proves (4.36).
Using (4.36), we see that

log I, (00;rD) _ logsupier(nPi _ . . logpi (4.38)
log = log ~ier(r) logr '

for all 0 <r < 1. However, if i € I'(r), then r < rj3-1) < 2=, and so logpi  _logpi  for all

— Tmin ’ logr — log
i € (r). This and (4.38) imply that

Tmin

log I, srD 1 i . 1 1 i
loglu(00irD) e logp _ e 1 logp (430)
log r icT'(r) log = jer(n) 1-— % log 13
forall 0 < r < 1. Also, if i € I'(r), then r; < r, and so - e < - --—— . Using this and
T TTogr; T T logr
(4.39), we see that
log I, ;rD 1 1 i
Og M(OO,T' ) S - : lnf ng (440)
logr 1 — 28Tmin jer(r) logr;

logr
forall 0 <r<1.
Next, fix r € (0,1). Choose ig € {1,...,N} such that 18P0 — mip; V8P and choose n, € N

log ri, logr; ?

such that 7" <r < 7™~ Then clearly i, = ip...79 € '(r). We therefore conclude from (4.40
0 20
————

n, times
that

log I, (o057 D) 1 inf log pi < 1 log pi,.
logr - 1- _g_lologn:n iel(r) logry = 1 — _g_lolog":n logry,
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1 logp; 1 log pi,
10g T'min [ log rmin .
1— _g—log - logr; 1— i—log - log 4,

1 . logp;
n

1— log rmin mil IOgT"
log r v

forall 0 < r < 1. It follows immediately from this inequality that Qu(oo) = liminf,~ o %

<
min; }3& . O
ogr;

4.2.7 Proofs. The case: ¢=1.
In this section we prove Theorem 4.12. For a Borel probability measure m on R? , write

I, (L;r) =exp / logm(B(z,r)) dm(z)

supp m

We first derive a functional equation for I,,,(1;7) ; this in done in Proposition 4.25 . Next, we use
this functional equation and Lemma 4.15 to Theorem 4.12; this is done in Proposition 4.26 and
Proposition 4.27. Throughout this section we write s =3, p;logp; + plogp.

Proposition 4.25. Assume that the sets (S1Kc,...,SNKc,C) are pairwise disjoint. Then there
exists a positive number ro > 0 such that

L) = (H I, (1; —)) L(1; )

forall 0 <r<rg.

Proof. Let 19 = min(min;,; dist(S; K¢, S;K¢), min; dist(S; K¢, C) ) . It follows from (2.4) that if
0<r<rg, then

log I,(1;r) = Zpi/logu(B(W’))d(uOs{l)(w)+p/logu(B(W’))dV(w)

¢ Ko Kc
= Yo [ togu(Ble.)dluo ST @) +p [logu(Ble,n)dvla). (141)
b s'Ke C

It follows by an argument similar to the proof of (4.17) that if 0 < r < ro, then

log (pip(B(S; 'z, L)) for x € S;K¢;

log (pv(B(z,r))) for z € C. (4.42)

log u(B(z,r)) = {

Combining (4.41) and (4.42) gives

ost(1ir) = Yo [ tog (i (B (570, 5) ) ) dluwo ST 4 ! log (pv(B(z, ) dv(z)

i
itc

= S / log <pi,u <B <:z: ;))) dp() +pc/log (pv(B(z,1))) dv(z)

- (3
(3
C

,
= E p;logp; + plogp + E pilog I, (h;) +plogl,(1;r).
. . 1
1 (3

This completes the proof of Proposition 4.25 . (|
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Proposition 4.26. Assume that the sets (S1Kc,...,SnKc,C) are pairwise disjoint. Let
t<D,(1).

1. There exists a positive number ro > 0 such that
r pi ;
I,(1;r) <ef I, {1;— P
e (ITn (7)) -

2. There exists constants ro,co > 0 such that the function J : (0,00) — R defined by J(r) = cort

satisfies
r pi
J(r) >¢e° (HJ (r_> > rPt

(3

forall 0 <r <mrg.

forall 0 <r <rg, and I,(1;r) < J(r) for all v € [rminTo,70] .

8. We have D, (1) <D, (1) .

Proof. 1. Since liminf,~o % =D, (1) > t, we can find ro € (0,1) such that 71%1{)’;;1}”’) >t
for all 0 < r < ry, whence I,(1;7) < rf for all 0 < r < ro. The result follows from this and
Proposition 4.25.

2. Let 7o > 0 be as in Part 1. We can clearly choose a constant cy > 0 such that

(4.43)

and
Iu(hro)

=~ min(rf, (roTmin)?)
It follows easily from (4.43) that the function J : (0,00) — R defined by J(r) = cort sat-
3 ; Pit i ; s cPippit

isfies J(r) = cor' = "t = ([Leh)rt 2 (L) (o) = e (I S ) 7t =
e*([1, J(T%)pi)rpt for all 0 <r <rg. Also, it follows from (4.44) that

Co

(4.44)

I (].'7“0)
L(1;7) <I,(1;m) < paD
H( ,T‘) = H( aTO) min(r(t), (T'OTmin)t)

rt <cort = J(r),

for all r € [Fminro,70] -

3. It follows from Lemma 4.15 (cf; in particular, the discussion in Case 4 following the proof of
Lemma 4.15) and Part 2 that I,,(1;r) < J(r) = ¢ort for all 0 < r < r. This clearly implies that
t<D,(1). Since t <D, (1) was arbitrary, we conclude from this that D,(1) <D ,(1). O

Proposition 4.27. Assume that the sets (S1Kc,...,SnKc,C) are pairwise disjoint. Let
D,(1)<t.

1. There exists a positive number ro > 0 such that

pi
I,(L;r) > e’ (HIH <1; ;) ) Pt

forall 0 <r <mrg.
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2. There exists constants ro,co > 0 such that the function J : (0,00) — R defined by J(r) = cort

satisfies
r pi
J(r) <e’ (HJ (r_> > rPt

(3

forall 0 <r <ry, and I,(1;r) > J(r) for all r € [FminTo,T0] -
3. We have D, (1) < D,(1).

Proof. The proof is very similar to the proof of Proposition 4.26 and is therefore omitted (see the
remark following Proposition 4.17). g

4.3 Multifractal spectra of inhomogeneous self-similar measures
4.3.1 Main results

In this section we compute the multifractal spectra of inhomogeneous self-similar measures. The
multifractal spectra are in most cases very difficult to compute, and during the 1990s there has
been an enormous interest in computing the multifractal spectra of measures for various classes
of measures exhibiting some degree of self-similarity, cf. [Fal97] and the references therein. In
particular, the multifractal spectra of self-similar measures satisfying the Open Set Condition has
been computed. Recall that the Open Set Condition is defined as follows.

The open set condition (OSC). The list (S1,...,Sn) is said to satisfy the Open Set Condition,
if there is a non-empty, bounded and open set U satisfying

1. Forall i=1,...,N, we have S;U C U ;
2. Forall i,j=1,...,N with i # j, we have S;UNS;U =@ ;

The purpose of this section is to compute the multifractal spectra of p assuming the appropriate
inhomogeneous version of the OSC. This version is defined as follows.

The inhomogeneous open set condition (IOSC). The list (Si,...,Sn,C) is said to satisfy
the Inhomogeneous Open Set Condition, if there is a non-empty, bounded and open set U satisfying

1. Forall i=1,...,N, we have S;U C U ;

Forall i,j=1,...,N with i # j, we have S;UNS;U =@ ;
UﬂKQ#@,’
CCU;

For all i =1,...,N, we have dimy(S;UNC) = dimp(S;UNC) =0 and v(S;UNC)=0;

S A

We have dimg(0U NC) = dimp(OU NC) =0 and v(OUNC) =0.

Conditions 1 and 2 are simply the usual Open Set Condition (OSC) for (ordinary) self-similar sets
guaranteeing that the overlaps S;U N SJ—U originating from the non-inhomogeneous part of the
construction are small for all ¢ # j. Similarly, Conditions 5 and 6 guarantee that the overlaps
S;UNC and OUNC originating from the inhomogeneous part of the construction are small for all
i.

We can now state the main result in this section, namely, Theorem 4.28 providing a formula for
the multifractal spectra of the inhomogeneous measure p assuming the IOSC. As in the previous
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Section we define f: R = R by >, pgrf (9 = 1 and recall that B* denotes the Legendre transform
of 3.

Theorem 4.28. Assume that the I0SC is satisfied. Then

fuu@) = max(8(), fun(@)),
foul@) = max (@), fou(a)),

for all a>0.

The proof of Theorem 4.28 is given in Section 4.3.3, Section 4.3.4, Section 4.3.5 and Section 4.3.6.
For the benefit of the reader, we will now give a brief overview of the proof of Theorem 4.28. After
the overview we make several remarks related to Theorem 4.28.

Brief overview of the proof of Theorem 4.28. The proof of Theorem 4.28 is divided into 4
parts as follows:

Part 1: Section 4.8.3. In Section 4.3.3 we prove (see Proposition 4.44) a useful auxiliary result,
namely, if U is the open set in the IOSC, then

n(SiKe) = u(SiU) = p;

for all i € £* (recall that S; = S;; 0---0S5;, and p; = p;, -+ -p;, for i =14;...0, € ¥*). This
result plays an important role through out the remaining parts of the proof.

Part 2: Section 4.3.4. In Section 4.3.4 we relate the multifractal spectra of p to the multifractal
spectra of v . More precisely, we first prove Lemma 4.46 which states that if U is the open set in
the IOSC, then

{a: € K¢ ‘ dimyee (25 p) = a} = {a: € Ky ‘ dimyoe(z; p) = a}
u Si{:r eC\ (USiU U 8U> dimyoe (z; ) = a}
iex~ i
U U Si{xe(}m (USiU U 8U> dimloc(Sia:;,u):a}.
iex* i

The following relationship between the multifractal spectra of p and the multifractal spectra of v
follows easily from this (see Proposition 4.47), namely,

fapla) = max ( dimg; {:L’ € Ky ‘ dimyec(z; ) = a} , fH,,,(a)> ,

fepu(a) = max ( dimp {:L’ € Ky ‘ dimjee(z; p) = a} , fp7,,(o¢)> . (4.45)

Hence, in order to prove Theorem 4.28 it suffices to compute the Hausdorff and packing dimensions
of the set {x € Ky | dimyoc(z; ) = a} . This is done in Part 3 and Part 4 of the proof, respectively.
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Part 3: Section 4.3.5. In Section 4.3.5 we obtain a lower bound for the Hausdorff dimension of the
set {z € Kg| dimyoc(x; 1) = @} . Namely, we prove (see Proposition 4.51) that

B (a) < dimy {:L’ € Ky ‘ dimjee(z; p) = a} . (4.46)

Part 4: Section 4.3.6. In Section 4.3.6 we obtain an upper bound for the packing dimension of the
set {z € Kg| dimyec(z; ) = a} . Namely, we prove (see Proposition 4.53) that

dimp {9: € Ky ‘ dimyee(z; p) = a} < B (a). (4.47)

Finally, combining (4.45), (4.46) and (4.47) gives the desired result This completes the brief overview
of the proof of Theorem 4.28.

Remark. Collapse of the multifractal spectra of inhomogeneous self-similar measures.
The following rather surprising result follows from Theorem 4.28. Namely, regardless of how the
maps (S1,...,Sn) are chosen and regardless of how the measure v is chosen, the multifractal
spectra fy,, and fp, of p always collapse and become identical to those of v for all sufficiently
small « and for all sufficiently large « . This is the contents of the next corollary.

Corollary 4.29. Assume that the IOSC is satisfied. If o ¢ [min; }—gg%,maxi }—gg%] , then

fup = fav,

few = fpw-
Proof. This follows from Theorem 4.28, since *(a) = —oo for all « ¢ [min; }‘;ifi , Max; }ggfz] (see
Lemma 4.50). O

Remark. Inhomogeneous self-similar measures may have non-concave multifractal spec-
tra. If follows from Theorem 4.28 that the multifractal spectra of an inhomogeneous self-similar
measure may be non-concave. This is in sharp contrast to the behaviour of the multifractal spectra
of (ordinary) self-similar measures satisfying the Open Set Condition. The reader is referred to
Example 4.30 in Section 4.3.2 for an example of an inhomogeneous self-similar measure with highly
non-concave multifractal spectra.

Remark. Inhomogeneous self-similar measures may fail the Multifractal Formalism. As
we have mentioned in Section 4.1.3 Multifractal Formalism states that (1) the L? spectra coincide,
and (2) that the multifractal spectra functions coincide with the Legendre transform of the L¢
spectra. Since any Legendre transform is concave, it follows that the multifractal spectra of measures
satisfying the Multifractal Formalism must be concave. It therefore follows that in-homogenoues
self-similar measures may fail the Multifractal Formalism. As in the previous remark, this is in sharp
contrast to the behaviour of the multifractal spectra of (ordinary) self-similar measures satisfying
the Open Set Condition.

4.3.2 Examples and applications

In this section we consider various applications of our main results. Many of our applications are
related to the notoriously difficult problem of computing for the multifractal spectra of of self-similar
measures not satisfying the OSC. We show that our results provide a systematic approach to obtain
non-trivial bounds (and in some cases even exact values) for the multifractal spectra of several large
and interesting classes of self-similar measures not satisfying the Open Set Condition. We will now
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describe the key idea in our approach. Namely, let S;,...,Sy : R? — R? be contracting similarities
(not necessarily satisfying the OSC) and let (p1,...,pn) be a probability vector. Also, let u be the
self-similar measure associated with the list (Si,...,Sn,p1,...,PN), 1.6. p is the unique measure
such that

p=Y pipoSt.
i

Iterating this identity shows that u = Eie{l ..N}» Pift© Si_l for all positive integers n . Hence, if
we fix I C{1,...N}", and let

p:]-_zpi)
iel
vo= o Y mpoSt,

Pica Ny

then clearly
p=> ppo S +pv,
iel

i.e. p is the inhomogeneous self-similar measure associated with the list ((Si)ier, (pi)icr,p,v) -
Therefore, if it is possible to choose I such that the list ( (Si)ier , (pi)ier , P, l/) satisfies the IOSC
and the spectra of v can be computed (or bounds for the spectra of v can be obtained), then
the spectra of p can be found (or bounds for the spectra of u can be obtained) using Theorem
4.28. Below we give several examples using this technique for finding the spectra of self-similar
measures not satisfying the OSC, including, for example, self-similar measures supported on the so-
called (0,1,3) -set of v-expansions with deleted digits (see Example 4.37) and non-linear self-similar
measures introduced by Glickenstein & Strichartz [GS96] (see Example 4.38).

Example 4.30. Testud measures: a class of self-similar measures not satisfying the Open
Set Condition.

In this section we study the connection between inhomogeneous self-similar measures satisfying the
IOSC and a class of self-similar measures introduced and inverstigated by Testud in [Tes05, Tes06].
The measures in [Tes05, Tes06] do not satisfy the OSC and the usual techniques for computing the
multifractal spectra developed in [AP96, CM92] can therefore not by applied. However, despite this
Testud [Tes05, Tes06] found formulas for the multifractal spectra of these measures, see Theorem
4.31 below. As an application of our results we will now obtain a simple proof of Testud’s result.
We begin by describing the measures considered by Testud. For a positive integer [ > 2 define
functions S; : [0,1] = [0,1] for i =0,...,20 =1 by Sij(z) =z + ! and Siy(z) = —}z + 2L
for ¢ =0,...,l —1. For a probability vector (po,...,p2—1) with p; #0 forall i =0,...,1 -1,
Testud considered the self-similar measure p associated with the list (So,...,S2—1,p0,---P2i-1),
i.e. p is the unique measure such that

M:Zpi,uosi_l. (4.48)

It is clear that the list (So,...,S2—1) does not satisfy the OSC. Infact, many of the overlaps
S;i([0,1]) N S;([0,1]) are “very big”. For example, if i =0,...,l—1 and p;3; # 0, then S;([0,1])N
Si+1([0,1]) = S;([0,1]) . In [Tes05, Tes06] Testud obtained the following formulas for the multifractal
spectra of g .
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Theorem 4.31. Let u be the self-similar measure satisfying (4.48). Define the function T : [0,1] —
[0,1] and the probability measure \ by

T(z) = 1—=z,
N\ = dpel

b} -

Also, let B={0<1i<l—1|piwi =0} and define the function 7 : R = R by 7(q) = % .
Then

fru(@) = max(77(@), fua(@)),
feal@) = max(r(a), foa(@)),

for a>0.

Remark. In fact, Testud proved Theorem 4.31 under the additional assumption that BN (Il —1 —
B) = @ . However, our proof shows that this assumption is not needed.

Remark. Theorem 4.31 provides a formula for the multifractal spectra of p in terms of the
multifractal spectra of \ = % (and the function 7). The usefulness of this formula is due to
the fact that frequently A is a self-similar measure satisfying the OSC, and the multifractal spectra
of A can therefore be computed explicitely. We will elaborate on this after having proved Theorem
4.31.

We now show that g may be viewed as an inhomogeneous self-similar measure and using this fact
(together with Theorem 4.28) we give a simple proof of Theorem 4.31. We first show that p may
be viewed as an inhomogeneous self-similar measure as follows. Namely, define p € (0,1) and the
probability measure v by

p = I—Zpi,

i€EB

1 _
v.o= - 2 (pin+pivipoT) oSt
p i€{0,...,l-1}\B

Then clearly
p=> pipo S +pv,
ieB
i.e. p is the inhomogeneous self-similar measure associated with the list ( (S)ien, (Pi)icB , P, 1/) )
Using the fact that p is an inhomogeneous self-similar measure we will now give a simple proof of
Theorem 4.31. We start by proving four small auxiliary lemmas.

Lemma 4.32. Let U = (0,1). Then p(0U) =0.

Proof. Since OU = {0,1}, it suffices to show that w({0}) = 0 and that p({1}) = 0. We
first show that w({0}) = 0. Fix a positive integer n and note that n({0}) < p([0,1)) =
Zie{o,...ﬂlfl}" piu(5;1[07 %)) = Eie{ml}n piu(5;1[07 %)) S Zie{ml}n pi = (pO +pl)n - We conclude
from this that p({0}) < lim,(po + p)" = 0. Similarly we can prove that p({1}) =0. O
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Lemma 4.33. The list ((Si)ieg, (pi)ien , P, 1/) satisfies the IOSC with U = (0,1) .

Proof. 1t is clear that Conditions 1-3 are satisfied. Next, we show that Conditions 4 and 5 are
satisfied. Observe that C' = suppv = Ujeqo,...1—13\BSiU .
We first prove that if ¢ € B, then

dimy (S;U N C) = dimp(S;UNC) =0, dimyg(0U N C) = dimp(OUNC) = 0. (4.49)
Indeed, note that if ¢ € B, then
S;UNC Cas;U, daUNC CaU . (4.50)

Since 9S;U and OU are finite sets (in fact, each set consists of two elements), the equalities in
(4.49) follow immediately from (4.50). This proves (4.49).
Next we prove if 7 € B, then

v(S;UNC)=0, v(UNC)=0. (4.51)
It follows from (4.50) that if j € {0,...,2l — 1}, then
SHSUNC) CS7HasU) coUu, S;HOUNC) C S;H(aU) CaU. (4.52)

Finally, since TOU = OU , we now conclude from (4.52) and Lemma 4.32 that if £ = S;UNC or
if E=0UNC, then

1 _ -
vB) = — Y (pnlS; E) + pian(T(S]E)))
P jeto, e
1
< -y (pju(aU ) +pj+w(T3U))
p j€{0,....I—-1}\B
1
=~ > (pml0U) +pap(ev) )
P jew. o
= 0.
This proves (4.51) and completes the proof of Lemma 4.33. O
Lemma 4.34. We have
fH,u(Oé) = fH7Ei€{0 ..... 171}\3}\05;1(a)3
fewla) = fP,Zie{o ..... z-l}\BAOSi_l(a)’

for all a>0.

Proof. 1t is easily seen that,

2Pmi 2Pmax

Pmin Z )\OS;ISVS Pma, Z )\05;1,
Picio,ainB Picro, e
where puin = min (min;eqo,.. 1—1}\B Pi, Miljefo,..1—1}\B Piti) and
Pmax = Max (MaxX;e(o, .. i—1}\B Pi , MaX;e{o,...i~1}\B Pi+1) - Namely, there are constants cpin =
2p;1m  Cmax = 22m2x > () such that cmin Eie{07___71_1}\3 Ao Si—l < v < Cmax Zie{O,...,l—l}\B Ao Si_l .
The desired result follows immediately from this inequality. [l
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Lemma 4.35. We have

nyZiG{O _____ l—l}\B)\OSi_l(a) = fH7)\(a) )
fp72i€{0 ..... 171}\B>\05;1(a) = fP,A(O‘) >
for all a>0.
Proof. We clearly have
fH,Eie{o ..... l—l}\BAOS;I(a)

= dimy {x € supp ( Z o Si_1>

i€{0,....1—1}\B

dimyge (a:; Z Ao Sj_1> = a}

FE{0,....I—11\B
a}
a}
a}

= dimy {x € U supp ()\ o Si_l) dimjg, (m; Z Ao Sj_1>
(4.53)

i€{0,....1—1}\B FE{0,....I—1}\B

= dimy U {:z: € supp ()\ o S;l) dimjg. (m; Z Ao Sj1>
i€{0,...1-1}\B j€{0,...1-1}\B

= max dimy {9: € supp ()\ o S;l) dimy, (9:; Z Ao Sj1>

1€{0, I-IN\B j€{0,...,I—-1}\B

However, since the set F = Ui7je{07___7l_1}\37i¢j( supp ()\ o 5;1) N supp (/\ o S;l)) is finite, it
follows that if 7 € {0,...,l —1}\ B, then

dimjge (a:; Z Ao Sj1> = a}
F€{0,....1-1}\B

dimjee (9:; Z Ao Sj1> = a}
j€{0,...,.1-1}\B

= dimy {:r € supp (/\oSi_l) \ F ‘ dimjec (9:;)\ o Si_l) = a}

dimg {x € supp ()\ o S{l)

= dimy {9: € supp ()\oS;l) \ F

= dimp {xEsupp ()\OSi_l) ‘ dimje (x;)\OSi_l) :a}
= fa st (@) (4.54)
Combining (4.53) and (4.54) we now conclude that

m

""" " iefo, Frtros (@) (4.55)

ax
I-1}1\B

Next, since S; is a similarity it is easily seen that fi, \ s-1(a) = fua(@) forall i (see, for example,
[[Fal97], Exercise 11.9]), whence

ie{OT,?ﬁ}\B fH,AOSZI(a) = fux(a) . (4.56)

Finally, combining (4.55) and (4.56) gives the desired result. The proof of the formula for the
packing spectrum is very similar. This completes the proof. [l
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We can now prove Theorem 4.31.

Proof of Theorem 4.31
It follows from Lemma 4.33 that the list ( (Si)ien, (Pi)ien , D, 1/) satisfies the IOSC, and we therefore
deduce from Theorem 4.28 that

fieule) = max (7 (a), fuw(@)), (4.57)
for a > 0, where 7 : R — R is defined by } , p p?(%)T(Q) =1,ie 7(q) = %_ Also,
Lemma 4.34 and Lemma 4.35 imply that

frw(a) = fH7zie{0 _____ 113\ BAOS]! (@) = fua(a) (4.58)

for @ > 0. The desired result follows from (4.57) and (4.58). The formula for fp ,(a) is proved
similarly.

We now consider a concrete example of Theorem 4.31. Let [ = 3. Fix two positive real numbers s
and t with 3s+2¢t <1 < 3s+ 3t (for example, we may take s = {5 and ¢ = £ ), and define the
probability vector (p;)i=o,...5 by

po=s+t, p=1=2(+1t), pp=s, pg=1t, p1=ps=
In this case B = {1,2} and 7(q) = % . It follows from Theorem 4.31 that
fiul@) = max(7"(a), fua(@)), (4.59)
foula) = max(7*(@), foa(@)), (4.60)

for > 0.

We will now prove that A = % is, in fact, a self-similar measure. More precisely we will now
prove the following claim. We note similar calculations also appear in [Tes05, Tes06]. However, we
have decided to include the simple and very brief calculation in Claim 4.36 for completeness.

Claim 4.36. We have
A=poro Sy +piAe S+ (p2+ps)ro Syt
i.e. A is the self-similar measure associated with the list (So,S1,S2,po,p1,P2 + p3) . In particular,

since the list (So,S1,52) clearly satisfies the OSC, we conclude (see [Fal97]) that if b: R — R s

defined by b(q) = BEHRIEPAR)) yen £ (a) = fpa(a) = b*(a) for a>0.

Proof. First observe that

Syt =ToSy', Sy'eoT=ToSy', S;'oT=ToS;", Sy'oT=ToS;', S;'oT=25;".

It follows from this and the definition of u that

o= popoSyt +pipoS;t+papoS,t +pspoSyt
= popo Syt +pipoSt +papoSyt +pspoT oSy, (4.61)
poT = (popoSy' +pipoSr +papoSy' +pspoSy')oT
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popo Sy o T +pipo St oT + oSyt oT + pspo Syt oT
= popoT oSy +pipoT oSt +pypoT oSyt +pguoSy™. (4.62)

Adding (4.61) and (4.62) and using the fact that pyp = p2 + ps gives

ptpoT  _ popt(patps)poT -1 ptpoT -1, (p2+p3)putpopoT -1
> = > °Sy TPty oS+ 05,

= polthol o St 4 py 4oL o ST (py + ps) AL 0 ST

This completes the proof of Claim 4.36. (|

Finally, combining (4.59) and Claim 4.36, we conclude that if we define 7,b: R — R by

1 {+pd 1 1-2 74 59
rla) = R = ST,
blg) = log(pd+pi+(p2+p3)?) _ log(2(s+1)?4+(1—2(s+1))9)
q - log 3 - log 3 ’

then
fitn(@) = fou(a) = max (7(a), b*(@) ),

for a > 0. It follows from standard properties of the Legendre transform that

* log max(pi,p2) logmin(pi,p2) | _ [log(1=2(s+¢t)) logs

T (a) 20 for o € |: —log3 ’ —log 3 - —log 3 ’ —log3 |
* _ log max(p1,p2) logmin(pi,p2) | __ |[log(1—2(s+¢)) logs

T (Oé) == for a g [ —log3 ) —log3 - —log3 ’ —log3 |’

and

* log max(po,p1,p2+ps) logmin(po,p1,patps) | _ [log(s+t) log(1—2(s+t))

b (a) Z 0 for a € [ —log3 ) —log3 - —log3 —log3 ’
* — _ log max(po,p1,p2+ps) logmin(po,p1,p2+ps) | _ |[log(s+t) log(1—2(s+t))

b (a) = for a ¢ |: —log3 ’ —log3 | —log3 —log3 .

We observe that the multifractal spectra fy,, (o) and fp () are highly non-concave. In fact, if
we write

Ala) = {:1: € R‘ dimyoe(z; p) = a} ,

then the set
{a € ]R‘ dimyg A(a) > 0}

consists of two disjoint intervals I and J, namely I = (10g(s+t) 10g(172(s+t))) and

—log3 ? —log3
J= (10g(172(s+t)) log s
- —log3 ’ —log 3

sketch the graphs of 7% and b* for s = & and ¢t =% .

) , such that fy , is strictly concave on both I and J. In Figure 4.3.1 we
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Figure 4.3.1:

The graph of the multifractal spectra
fruu(a) = fp.u(a) = max(7"(a), b"(a) )

of the self-similar measure g in Example 4.30 for s = % and t = % . The dashed line represents the graph

of the function 7° and the solid line represents the graph of the function b .

Example 4.37. Self-similar measures supported by the (0, 1,3) -set of v -expansions with
deleted digits.

We now present another example of our main results. Fix v € (i, %) . Define Sp,51,55 : R — R
by So(x) =~yz, Si(z) =yx++v and S3(z) =y + 37, and let (po,p1,ps) be a probability vector.
Let p, denote the self-similar measure associated with the list (Sp,S1,Ss,po, p1,ps), i.e. py is

the unique measure such that
[y =Y Pty 0 St (4.63)
i

The main difficulty in analyzing the multifractal spectrum of p, for v € (3, %) is due to the fact
that the OSC is not satisfied and the standard results developed in [AP96, CM92] can therefore
not be applied. We will now show the results and techniques developed in this paper provides a
non-trivial lower bound for the multifractal spectra of p., .

The iterated function system (Sp,Si,S3) has recently attracted considerable interest due to its
relationship with the so-called (0,1,3)-set of v -expansions with deleted digits. Motivated by
problems of Palis & Takens [PT93] on arithmetic sums of Cantor sets, Keane (see [KSS95]) asked
the following question. Namely, for v € (0,1) he considered the set I', of numbers whose -

expansion only contains the digits 0,1 and 3, i.e.

00
F’y = { Z any"
n=1

and asked whether the Hausdorff dimension, dimyI',, of I', is a continuous function of ~ for
v € (,%). Since clearly T, = U;Si(T',), we conclude that T, is the self-similar set associated
with the list (Sp, S1,S3) . However, the main difficulty in analyzing the Hausdorff dimension of T,

for v € (§,%) is due to the fact that ' is a self-similar set which does not satisfy the OSC and the

an € {0,1,3} for n € N },
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standard results developed by Hutchinson [Hut81] can therefore not be applied. Pollicott & Simon
gave the negative answer to Keane’s question in [PS95] (see also [KSS95]). Finally, since I'y is the
self-similar set associated with the list (Sp, S1,S3) it follows that

supp py = I'y,

i.e. p, is supported on the (0,1,3)-set of -expansions with deleted digits.
Iterating (4.63) we see that iy =} ic001 333 Pilty © S7'. In particular, if we write

1={013,113, 133, 313, 333 } C {0,1,3}?,

and let
iel
1 —1
v = - Dy ©S; T, 4.65
» > y (4.65)

i€{0,1,3}3\1

then clearly

My = Zpi,uv 05;1 +pv,

iel

i.e. p, is the inhomogeneous self-similar measure associated with the list ( (Si)ier , (pi)ier ,p, u) .
Using the fact that p. is an inhomogeneous self-similar measure we will now obtain lower bounds for
the multifractal spectra of u~ . Let U = (0, 1:”_—77) . We first show that the list ( (Si)ier , (pi)ier , P, 1/)
satisfies the IOSC with open set equal to U . Indeed, it is not difficult to see that the list (Si)ier
satisfies the OSC with open set U. It is also clear that suppu, C U, whence C' = suppv C
Uie{o,1,333\75i(U) , and it is not difficult to see (since So3(U) N S13(U) = @) that this implies that
S;iUNC C SiUﬁ(Uje{gJygp\ISj(U)) = @ forall i € [ andthat OUNC C aUr\I(Uje{071’3}3\[Sj(U)) =
{0} . However, one can show using techniques described in Lemma 4.32 that v ({0}) = 0. It follows
immediately from this that the list ((Si)ie[, (pi)ier , D, 1/) satisfies the IOSC with open set equal
to U.
Since the I0OSC is satisfied we now conclude from Theorem 4.28 that if we define f§: R — R by

B(q) = log(3ie, Pf) _ log((popips)?+(pips) ?+2(p1p3) +(p3)7)
q) = —log 73 - —3log v )

then

fr (@) = max (°(a), fun(@)) > 5(a),
fou (@) = max (@), fru(@)) > B(a),

for a > 0. This provides non-trivial lower bounds for the multifractal spectra of .

Example 4.38. Non-linear self-similar measures.

We consider probability measures p on R? satisfying the following non-linear self-similar identity

N M
p=> pipoS; +> giprmoT;", (4.66)

i=1 j=1
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where (p1,...,PN,q1,...,qu) is a probability vector and S;,Tj : R? — R? are contracting sim-
ilarities and the contracting ratios of the T;’s are less than % ; the existence and uniqueness of
measures 4 satisfying (4.66) is proved in [GS96] who also analyzed the asymptotic behaviour of the
Fourier transform of p (for more details on the asymptotic behaviour of the Fourier transform of u
see Section 5.2.3). We note that measures p satisfying the non-linear self-similar identity in (4.66)
can be viewed as inhomogeneous self-similar measure as follows. Namely, define p € (0,1) and the
probability measure v by

p o= 1= pi,
i

1 .
vo= 2 ailurmoTyt.
J

Then clearly
p=Y pipo St +pv,
i

i.e. p is the inhomogeneous self-similar measure associated with the list (S1,...,S~n,p1,---,PN, D, V) -
Using the fact that p is an inhomogeneous self-similar measure we will now give non-trivial lower
bounds for the multifractal spectra of p. Indeed, the following result follows from Theorem 4.28.

Theorem 4.39. Let p be a non-linear self-similar measure satisfying (4.66). Assume that there is
a non-empty, bounded and open set U satisfying

(a) For all i =1,...,N, we have S;U CU ;

(b) For all i,j=1,...,N with i # j, we have S;UNS;U =@ ;

(c) UNKg # @ where Ky is the non-empty compact set such that Koy = U;S; Ky ;

(d) For all j=1,...,M , we have T;(U +U) CU;

(e) For all i =1,...,N, we have S;UN(U;T;(U+U)) =2 .

(Conditions (a)—(e) ensure that the IOSC is satisfied. Indeed, Conditions 1-3 of the I0SC will
follow from (a)-(c); Conditions 4 and 6 of the IOSC will follow from (d); and Condition 5 of the
I0SC will follow from (e).) Let r; denote the similarity ratio of S; and define f:R — R by

Zp?rf@ =1.
i

Then
fP,u(a) > fH,u(a) > (),
for a>0.

Proof. The conclusion clearly follows from Theorem 4.28 provided the list (S1,...,SN,p1,---,PN, P, V)
satisfies the IOSC. Below we prove that the list (Si,...,Sn,p1,...,PN,D, V) satisfies the IOSC.
Conditions 1-3 of the IOSC follow immidiately from (a)—(c). We will now prove that Conditions
(4)—(6) of the IOSC are satisfied. As usual, we write K¢ for the support of p and we write C for
the support of v . Note that

C = suppv = | JTj(supp(p + ) = | J T (supp po + supp p) = | J T (Ke + Ke). (4.67)
i i i

Next, observe that in order to prove Conditions (4)—(6) of the IOSC it suffices to show that C C U
and S;UNC =@ forall i.
We first prove that

Ko CU. (4.68)
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Figure 4.3.2:

The measure p satisfying the non-linear self-similar identity

2
p=Y pnoS +a(urpoTi?,
im1
where the maps 51,52, 71 : R = R are defined by Si(z) = iz: Sy(x) = %z + % and Ti(z) = %x—f—
and (p1,p2,q1) = (0.1,0.26,0.64) .

In order to prove (4.68), let K(R?) denote the family of non-empty and compact subsets of R¢
and equip K(R?) with the Hausdorff metric. Define 7 : K(R?) — K(R?) by T(A4) = U;S;(4) U
U;T;(A + A). Using this notation, K¢ = supp p is the unique element Ko € K(R?) such that
Ko = T(K), and it therefore follows from Banach’s fixed point theorem that T"(U) — Ko with
respect to the Hausdorff metric. However, Conditions (a) and (d) imply that 7(U) C U, whence
UDTWU)DT*U)D...,and so K¢ =lim, T"(U) =N,T*(U) C U . This proves (4.68).
We can now prove that € C U and that S;UNC = @ for all i. Indeed, using (4.67) and (4.68)
we conclude that

C=TKe+Ee) | YT;T+T) CU,

J J

and that

S;UNC=S8UnN (UTj(KC +Kc)> CSUN (UTj(U+U)> =0.
J J
This completes the proof. [l

We now consider a concrete example of Theorem 4.39 with N =2 and M =1. Define S;,S55,7T :
R — R by Si(z) = o, S2(z) = Jz+ 2 and Ti(z) = tz + . For a fixed probability vector
(p1,p2,q1) , let p be the non-linear self-similar measure satisfying (4.66). We note that Conditions

(a)—(e) in Theorem 4.39 are satisfied with U = (0,1) . Hence, if we define §: R — R by 8(q) =

% , then fp (@) > fuu(a) > f*(a) for a > 0. In Figure 4.3.2 we sketch the measure p

for (p1,p2,q1) = (0.1,0.26,0.64) .
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Example 4.40. Discrete measures with non-trivial multifractal spectra.

Using our results in this section we will construct a large class of discrete measures with non-
trivial multifractal spectra. Namely, let u be the inhomogeneous self-similar measure satisfying the
identity

N
p="> pipo S +pv, (4.69)

i=1
where Si,...,Sny : RY — R? are contracting similarities, (pi,...,pn,p) is a probability vector

and and v is a probability measure with compact support. We now show that if the support of
v is finite and the sets Si(K¢),...,Sn(K¢c),C (where, as usual, we write K¢ for the support of
o and we write C for the support of v ) are pairwise disjoint, then p is a discrete measure with
non-trivial multifractal spectra. We note that other discrete measures with non-trivial multifractal
spectra have been constructed by Aversa & Bandt [AB90].

Theorem 4.41. Let p be non-linear self-similar measure satisfying (4.69) and assume that p #0 .
As usual, write Ko = supppu and C = suppv . Assume that the sets (S1(K¢),...,Sn(Kc),C)
are pairwise disjoint and that C is a finite set. Let O denote the orbital set, i.e. O = Ujex-SiC,
cf- (2.9). Then the following holds.

1. The orbital set O is countable and has full measure, i.e. p(O) = 1. In particular, the measure
wis discrete.

2. Let r; denote the contracting ratio of S; and, as usual, define 5 : R — R by Zip?rf(q) =1.
Then fpu() = fua,u(e) = f*(a) for a> 0. In particular, the multifractal spectra of p are
non-trivial.

Proof. 1. This follows from Theorem 2.12.

2. First observe that if we write U, = {z € R?|dist(z,Kc) < r} for r > 0, then it fol-
lows easily from the fact that the sets Si(K¢),...,Sn(K¢),C are pairwise disjoint that the list
(S1,.,-,SN,D1,---,PN,p,v) satisfies the IOSC with open set U, for all sufficiently small r > 0.
Next, since suppr = C is finite, we conclude that fy,,(a) =0 for all a, and it therefore follows
from Theorem 4.28 and the fact that the IOSC is satisfied that fy, () = max(8*(a), fu(a)) =
B* () for all a. The formula for fp ,(a) is proved very similarly. O

We now consider a concrete example of Theorem 4.41. Define S;,S5, : R = R by Si(z) = %x
and Sy(z) = iz + 2, and let v = dy . For a fixed probability vector (pi,ps,p), let p be the
inhomogeneous self-similar measure satisfying (4.69). We note that if we write Ko = supp p and
C =suppv = {%} , then the sets S;(K¢),S2(K¢),C are pairwise disjoint. Theorem 2.8 therefore

shows that 4 is a discrete measure supported on the countable set {Sj(3)]i € {1,2}"} and that if

we define f: R — R by f(¢q) = % , then fp ,(a) = fyu(a) = B*(a) for « >0.

4.3.3 Proof of Theorem 4.28: Preliminary results-part 1

The purpose of this section is to prove Proposition 4.44 saying that if U is the open set in the IOSC
then p(SiKc) = u(SiU) =p; for i € £*. However, we first observe that iterating (2.4) shows that

p= ZpiuoSfl +p2inOSfl

iex* iex*
li|=n lil<n
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for all positive integers n . This result will be used frequently below without further mentioning.
We now state and prove Lemma 4.42 and Lemma 4.43. Finally, after having proved Lemma 4.42
and Lemma 4.43 we state and prove Proposition 4.44.

Lemma 4.42. Assume that the IOSC is satisfied and let U be the open set in the IOSC. We have
Ko CU.

Proof. Let K(R?) denote the family of non-empty and compact subsets of R? and equip K(R?)
with the Hausdorff metric dj, . Next, define 7 : K(R?) — K(R?) by T(A) = U;S;(4) U C.
Since (K(R?),d;) is complete and 7 is a contraction (see the proof of Proposition 2.7), it follows
from Banach’s fixed point theorem that if A is compact, then 7"(A) — K< with respect to the
Hausdorff metric. In particular, we see that 7"(U) — K¢ . However, since S;U CU and C CU
we deduce that U D 7(U) D T2(U) D ..., whence K¢ = lim, T*(U) C U . O

Lemma 4.43. Assume that the IOSC is satisfied and let U be the open set in the IOSC.
1. For all 1,j € ¥* with |i| = |j| and i#]j, we have

ijlsi—UﬂUzz.

2. For all i,j € ¥* with |j| < |i|, we have

V(SJTlSi—U NnC)=0.

Proof. 1. This follows from Condition 2 of the IOSC.

2. Since |j| < |i|, there are jo,ip = i1 ...%0n € ¥* with n > 0 and |jo| = |j| such that i= joio .
We now divide the proof into two cases.

Case 1: j =jo. If j=jo,then S;'5U = S;7'S;,5,U = S;'5:5,U = 5i,U C S, U, and we
therefore conclude from Condition 5 of the IOSC that v(S;"SiU N C) < v(S;,,UNC) =0.

Case 2: j#jo. If j#jo, then Condition 1 and Condition 4 of the IOSC and Part 1 of the lemma
imply that S;'S;TUNC = S;7'8;,5,UNC C S;7'85;,TNT = (sj—lstU N U) U (sj—lstU N 8U) =
S_i*lSjOUﬂ@U . Therefore we conclude from this and Condition 6 of the IOSC that I/(SJTlSi—UﬂC’) <
v(S;1S5,UNAU) = v(S; 'S5, UNaUuNC) <v(@UNC) =0.

O

We are now ready to prove the main result in this section.

Proposition 4.44. Assume that the IOSC is satisfied and let U be the open set in the I0SC.
1. For all Borel sets B CR? , we have pu(B) = u(BNU).
2. For all i € &%, we have p(SiU) = p; .
3. For all i€ ¥*, we have pu(SiK¢c) = p; .
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Proof. 1. We first show that o
w(U\U)=0. (4.70)

We will now prove (4.70). First we note that if p =0, i.e. if we have (ordinary) self-similar measure,
then it is well known that (4.70) holds, c.f. [Gra95]. Thus we now prove (4.70) for p # 0. For each
positive integer n we have

pO\U) = > pp(STTON\U) +p Y pv(STHT\U))

iex* iex*

lij=n lij<n
< D opitp Y, p(STHT\U))

on fon
= (Zm) +p Y pw(STNT\U))

‘ \'EEZ
= "+p Y pv(S;HT\U)NC). (4.71)
ieExn*

lil<n
Next, note that for all i € ¥* we have
U\U)N(CNU)=2. (4.72)

We will now prove (4.72). Assume in order to reach a contradiction that (4.72) is not satisfied, i.e.
there are i € ¥* and z € S (U\U)N(CNU) . This clearly implies that S;z € (U\U)NS;(CNU) C
(U\U)NS;U C (U\U)NU , yielding the desired contradiction, and completing the proof of (4.72).
It follows from (4.72) and Condition 6 of the IOSC that

v(STHT\U)NC) STHT\U)N(CNU)) + (S, T\ U) N (C NaU))

(S;
(@) + v(C N AU
: (4.73)

14

IN

v

I
o

forall i e ¥*.
Combining (4.71) and (4.73) gives
pU\U) < (1-p)"
for all n. Now letting n — oo shows that u(U \ U) = 0. This completes the proof of (4.70).

Finally, since suppu = K¢ C U and p(U \U) = 0, we deduce that if B is any Borel set, then
w(B) =pw(BNU) =pu(BNU). This completes the proof of Part 1.

2. We have

p(SiU)

> pu(SyS0) +p Y piv(Sy ' Si0)

jeExD* jex*
h\ 1i| h\<\|

p(STISO) + D piu(SyIS0) +p Y pv(SyISUNC).

jex* jex*
h\¢\l 13l <lil

We conclude from Part 1 that 1(S; 1S0) = n(S; 1'S{UNU) forall j€ X*, and so

w(SiU) = pip(S; 1 SiU) + § pin(S; 'SUNU) +p§ piv(S;1SUNC). (4.74)
JeET* jexz*
lil=lil \n<|n

i
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Next, it follows from Lemma 4.43 (Part 1) that S; 'S;UNU = @, and so u(S; 'S;UNU) = 0, for all

je X with |j| =i] and j#1i. It also follows from Lemma 4.43 (Part 2) that I/(ijlsi—Uﬂ C)=0,
for all j € £* with |j| < |i|]. We therefore conclude from (4.74) that

w(Si0) = pip(S;tS0)

= pinU). (4.75)

Finally, since supppu = Ko C U (by Lemma 4.42) we deduce that p(U) =1, and (4.75) therefore
implies that

n(SiU) = pi.
This completes the proof of Part 2.
3. We have
p = wSi0) [by Part 2]
> u(SiKe) [by Lemma 4.42]
= > Sy SiKe) +p Y p(S; ! SiKe)
JED* jex*
iil=lil l<lil
> pin(Sy ! Sikc)
= pip(Kc)
= Di,
whence p(SiK¢) = p;. This completes the proof of Part 3. O

4.3.4 Proof of Theorem 4.28: Preliminary results-part 2

The purpose of this section is to apply the IOSC to prove Proposition 4.47 relating the multifractal
spectra of p to the multifractal spectra of v . However, we first prove a few auxiliary results.

Lemma 4.45. Assume that the IOSC satisfied and let U be the open set in the IOSC. For all
i€ X and for oll x € C\ (U;S;UUIU) we have

dim,, (Si:L‘, :u) = dimy,, (l’, V) )
dimjee(Siz, p) = dimyec(z,v).
Proof. Fix x € C'\ (U;S;UUAU) and i€ ¥*. Since x € C\OU and C C UUAU , we conclude that

x € U. As U is open this implies that there is a positive number ¢; such that for all 0 < r < #;,
we have B(z,r; 'r) CU. It follows from this that

B(Siz,r) = SiB(z,r; 'r) C SiU

forall 0<r <t.
Hence, if j € ¥* with [j| = Ji| and j#1i and 0 < r < ¢; we conclude by Lemma 4.43 (Part 1) that
Sj_lB(Sim,r) NnU C Sj_ISiU NU = &, whence

w(S; ' B(Siz,r)NU) =0. (4.76)
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Also, if j € ¥* with |j| < |i|, then ijlB(Sim,r) NnC C ijlsiU N C, whence using Lemma 4.43
(Part 2),

v(S; ' B(Siz,r) N C) <w(S;7'SUNC) =0, (4.77)
For 0 < r <t; we now deduce from Proposition 4.44, (4.76) and (4.77) that
w(B(Siz,r)) = Y Sy B(Siz,r) +p Y piv(S; B(Siz,r))
lil=lil lil<lil

= pip(S; ' B(Siz, 7))
+ > piu(S; B(Si,r)nU) +p Y pv(S; ' B(Siz,r) N C)

jem jem*
=l <
[by Proposition 4.44]
S71B(Siz, 7))

1

S7TUSiB(z, vy r))

B(z,r'r))
B(z,r;'r) N Kc). (4.78)

= Dip
pip
pip
= Dip

—~ I~~~

Next, we observe that since z € C'\ U;S;U and U;S;U is closed, there is a positive number tg
such that
B(z,r{'r) CRY\ | JSU (4.79)
i

forall 0 <r <ty. o
In particular, we deduce from (4.79) and the fact that Ko C U, that

B(z,r{'ryNKe = B(z,r{'r)n (USiKC’ U C’)

C B(z,r{'r)n (USTU U C>

= B(z,r;'r)nC
C B(z,r'r)NnKc
forall 0 <r < tgp, and so
B(z,ri'r)N K¢ = B(z,r; 'r)nC (4.80)
for all 0 <r < tp. Combining (4.78) and (4.80) now gives

w(B(Siz,r)) = pi,u(B(a:,ri_lr) ne) (4.81)

for all 0 <r < min(t,t) . L
Finally, we observe that if A C C'\ U;S;U , then

H(A) = pu(A). (4.82)

We will now prove (4.82). We first show that if A C C'\ U;S;U, then S;'ANKc =@ for all i.
Indeed, otherwise there is an index j and a point y € Sj_lA N K¢, whence Sjy € ANS; K¢ . But
this contradicts the fact that AN S;Kc CANS;U CAN(US;U) C(C\U;S;U)N (U SU) =2
The above contradiction shows that S;'AN Ko = @ for all i. It therefore follows that u(A) =
S ipi(STTA) + pr(A) = 3, pipn(S;T AN Ke) + pr(A) = pr(A) . This proves (4.82).
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It follows from (4.79) that B(z,r; 'r)NC C C\U;S;U , and by applying (4.82) to A = B(z,r; 'r)N
C', we now conclude that

w(B(z,ri'r) N C) = pv(B(z,r'r) N C) (4.83)
for all 0 <r <ty . Finally, combining (4.81) and (4.83) we conclude that
w(B(Siz,r)) = ppiv(B(z,r{'r) N C) = ppiv(B(z,r{ 1))

0 < r < min(to, t;) . The desired result follows immediately from this. O

Lemma 4.46. Assume that the I0SC is satisfied and let U be the open set in the I0SC. For all
a >0 we have

{:r € KC‘ dimyee(z; @) :a} = {:L’ € Kg‘ dimyee(z; p) = }

u Y S{m(}\(

icX* >
u Y S{mGCﬁ( )
iex* i

Proof. 1t follows immediately from Lemma 3.9 that

dimee(z;v) = @ }

dimjee (Siz; 1) = a} .

{9: e Ko ‘ dimyee(z; p) = a} = {:L’ € Ky ‘ dimjee(z; p) = a}
U U {x € SiC" dimyee (z; p) = a} . (4.84)
iexs

Also, it is clear that
{y € SiC ‘ dimioc (y; 1) = a} - Si{m e, ‘ dimioc (Siz; 1) = a} (4.85)

for all i € ¥*. Furthermore, it follows from Lemma 4.45 that
Si{z € C | dimioe(Sias ) = o}

= Si{:r €eC\ (UW U 8U>

u Si{x ecn (USTU U 6U>

= Si{x €C\ (UW U 8U>

u Si{a:e cn (U&—U u 6U>

i

dimyee(Siz; p) = a}

dimyoe (Siz; p) = a}

dimyec(z;v) = a }

dimyee(Siz; p) = a} (4.86)

for all i € X*.
The desired result follows by combining (4.84), (4.85) and (4.86). O
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We can now state and prove the main result in this section relating the multifractal spectra of
to the multifractal spectra of v .

Proposition 4.47. Assume that the IOSC is satisfied. For all o > 0 we have

fapla) = max ( dimp {a: € Ky ‘ dimyoe(z; p) = a} , fH,,,(a)> ,

fpula) = max ( dimp {a: € Ky ‘ dimjoe(z; p) = a} , fpﬂ,(a)) )

Proof. Let U be the open set in the IOSC. It follows immediately from Conditions 5 and 6 of the

10SC that
dimy (Cﬂ <UW U 6U>> =0.

This and Lemma 4.46 now imply that

fapule) = dimg {:L’ € K¢ ‘ dimyec(z; ) = a}

= max ( dimy {:v € Ky ‘ dimyoc (75 1) = a} )

sup dimHSi{:z: €C\ (USiU U 8U>

iexs
sup dimp Si{m eldn (USiU U 6U>
iex* i

= max ( dimp {:z: € Ky ‘ dimyee (z; p) = a}
sup dimg {:z: €C\ (U U U 8U>
iens ;
sup dimp {9: eCn (USiU U 6U>
iex= i

= max ( dimpy {9: € Ky ‘ dimyee(z; p) = a} ,

dimy {xe C\ (USTU U 6U>

= max ( dimy {:v € Ky ‘ dimyoc (75 ) = a} )

dimyoe(z;v) = a} ,

dimyee (Siz; 1) = a} )

dimyoe(z;v) = a} ,

dimyee (Siz; 1) = a} )
dimyee(z;v) = a} >

S,

dimyg {:L’ € C‘ dimjee(z;v) = a} )

= max ( dimpy {9: € Ky ‘ dimyec (25 p) = a} s fuw(a) ) :
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This completes the proof. The proof of the formula for fp ,(a) is similar. O

Since dimy E < dimp E for any set E C R?, Proposition 4.47 shows that in order to prove
Theorem 4.28 it suffices to prove the following two inequalities, namely,

8% (o) < dimy {9: € Ky ‘ dimyee(z; p) = a} , (4.87)

and
dimp {:z: € Ky ‘ dimyee(z; p) = a} < B*(a). (4.88)

The proof of inequality (4.87) will be given in Section 4.3.5 and the proof of inequality (4.88) will
be given in Section 4.3.6.

4.3.5 Proof of Theorem 4.28: part 1

The purpose of this setion is to prove the inequality (4.87), i.e.
dimg {a: € Ky ‘ dimyoe(z; p) = a} > B%(a).

The proof of this inequality will be given in Proposition 4.51. We now introduce some notation.
Let ¥ = {1,...,N}" ie. IV denotes the family of all infinite lists i = i1i2... with entries i;
from {1,...,N}. For i = iyip... € ¥V and a positive integer n, let ijn = iy ...i,. Next, for
i=i...i, € X%, let [i] denote the cylindre generated by i, ie. [i] = {j € EV|jn =1i}. Also,
for a real number ¢ define the probability vector (Q;(q)); by

Qi(q) = pir??

and for i=1iy...i, € ¥* write Qi(¢) = @i, (q) -.-Qi,(q) andlet fi, denote the unique probability
measure on L' such that

fiq ([i]) = Qi(q)
for all i € ¥*. Finally, define 7: XY — R? by

{ﬂ-(i) } = ﬂ Si\nKZ
n
for i; it is well-known that 7(XV) = Ky .

Proposition 4.48. Assume that the I0SC is satisfied. For [i, -a.a. i€ N we have

lo i —_— lo i
DBP < iy, (r(3); ) < Ao (r(0); 1) < limsup o

. 4.89
n  log Tiln n Og T'i|n ( )

Proof. The second inequality in (4.89) holds trivially. We will now prove the first and the third
inequality in (4.89).
Proof of liminf, izif:: < dim,, (7(i); u) for fig-a.a. i€ XN . Let U be the open set in the IOSC.
We first note that since the open set U has the additional property that U N Kg # &, then it
follows from [Gra95] that

/ | og dist(r (i), 9T7)| djiy (i) < 00 (4.90)
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For n € NU{0} define d,, : % - R by
dp (i) = dist (7 (i), 0S;nU ) -

Let S: XN — 3N denote the shift map, i.e. S (iyiz...) = (i2iz...). Note also that for n € N we
have Sj,m(S™i) = 7(i) . Thus

dn(i) = dist (7(i), 8S;,U ) = dist ( Sj,m(S"i), S;,0U )
= rypdist (7(S™), OU ) = rijudo(S™) . (4.91)

Since dy(i) = dist(n(i),0U) , (4.90) shows that logdy is fi, -integrable, and we therefore conclude
that |logdy(i)| < 0o for ji,-a.a. i€ ¥V, whence dy(i) > 0 for fi;-a.a. i € ¥V . This observation
and (4.91) show that

dn(i) > 0 for all n € NU{0} (4.92)

for fi,-a.a. i€ XN,
Also, since logdy is fi, -integrable, we infer from the ergodic theorem (for the statement and proof
of the ergodic theorem see, for example, [Wal82] or any text book on ergodic theory) that

n n—1
1 . 1 - 1 -
- logdy(S"1) = - Zlogdg(S’H) - Zlogdg(Skl)
k=1 k=1
nIpe / log do dji, — / log do dji; =0 (4.93)

for fi;-a.a. i€ XV,
Finally, it also follows from the ergodic theorem that

1
—log i, "2 a (4.94)
n
for jig-a.a. i€ IV where a =Y, Q;(g)logr;. Namely, we have
1 1 <
- logry, = - 2:10g7°i,c . (4.95)
k=1
Define f: EN — R by

f@) =logr, .
Then (4.95) becomes

1 1 n—1 .
~logrij, = — > f(sk) . (4.96)
k=0

Letting n — oo in (4.96), we obtain

1 -
Elogri‘n — /fd,uq
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Now, fix i € XV satisfying (4.92), (4.93) and (4.94), and let r > 0 be sufficiently small. Since
U D S5jU D SjpU 2 ... and «(i) € N,S;,U, we conclude that dy(i) > dn(i) > ..., and
we can thus choose a (unique) positive integer n(i,r) such that dy;,)(i) < r < dyy—1(i) . It
follows from the definition of d,)-1(i) that B(m(i),r) C Sijn@,rn)-1U . This and the fact that
(Sijn(i,r)-1U) = Pijn(i,ry—1 (by Proposition 4.44) imply that

U(B(W(i)v 7“)) < H(Si|n(i,r)—1U) = Pijn(i,r)—1 -+ (497)
Also, observe that it follows from the definition of d,; (i) and (4.91) that

r> dn(i,r) (i) = ri\n(i,r)dﬂ (Sn(i7r)i) . (4.98)
Finally, combining (4.97) and (4.98) gives

lOg ,U'(B(ﬂ-(i)ar)) 10gp1|n(1 r)—1

liminf > liminf
1?{1})1 log r - 11{1{1‘51 10g 74 n(i,r) do (S™1)1)
.. log Ti|n(i,r)—1 log Pijn(i,r)—1
> 1 f ) _ )
= R0 log Tiln(i,r) + log do(S™ME1) 1o 7jn(im 1
1
—  liminf n(i,r) IOg Ti\n(i r)— 10gpi|n (i,r)— ](4 99)
MO i 108 TinG) + iy 108 do(S”" 1) 10gTijnir) -

(4.100)
However, since i satisfies (4.92), (4.93) and (4.94), we conclude that

i log Ti\n(i - a

lim _ _
™0 n(ilﬂ') log Ti\n(i,r) n(l ) lOg do(sn(l )3 ) a+0

This and (4.100) show that

1 B(xn(i 1og pijn(i,r) - log p;
1iminfw > liming —&Piln(r) -1 > liminf 08 Pijn
N0 logr ™0 108 Tin(,r -1 n logryp,

for all i € N satisfying (4.92), (4.93) and (4.94). The desired result now follows since the set of
i€ XV satisfying (4.92), (4.93) and (4.94) has full measure.

log pijn
log 7y

Proof of dimjoc(m(i); 1) < limsup,, for all i € Y. We may clearly assume that diam K¢ =

1. For ie ¥V and r > 0 we may choose a (unique) positive integer m(i,r) such that rjj,y <
7 < Tijm(i,r)—1 - 1t follows from the definition of m(i,r) that Sjnu,rKc C B(n(i),r). This and
the fact that u(Sijma,r)Kc) = Pijm@,r) (by Proposition 4.44) imply that

Pijm(iyr) = M(Sijm (i Ko) < u(B(r(i),r)). (4.101)
Also, observe that it follows from the definition of m(i,r) — 1 that
1
T < Tijm(i,r)—1 < —Tilm(ir) - (4.102)

Combining (4.101) and (4.102) gives

1 B(r(i
fmsup OB A(B(().7)
N0 logr ™o log —

1 i|m(i,r lo i|m(i,r 1 i|m
< limsup M—limsup O8 Pijm( )<1 msup 28 Pijm

a L Tilm(i,r) N0 IOg Tilm(i,r) m IOg Ti|m '

Tmin

This completes the proof. [l
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Define the probability vector po = (po,i)i by

Do bi
" Ej bj
For i=14,...i, € X* write Po,i = Po,iy - - - PO,in -
Lemma 4.49. For all i€ 2N and all n we have ltl)fgpﬁi’“'n" = —lofgzr:ifnpi izif:: )
Proof. First note that
Pi|n
Poin=—7_ ~n-
(Zim)
Using this, we have
logpoin  logpin —nlog)_; p;
log 735, o log 74},
logpijn  log 22, p;
= log Ti‘n log Ti|n
O
Lemma 4.50. We have,
1. If a € (min; }ggfi , Max; }ggfz) , then 5*(a) > 0.
2. If a ¢ [min; }ﬁgf:,maxi }‘;ifz] , then *(a) = —o0.
Proof. First recall that
1= pirf. (4.103)
i
From this we immediately have that
lim f(g) = -—oo
q—00
lim f(g) = oo
gq——00
ket 1 1 1
08 Di ,  Qunip = min 08 Di and  @pax = max 08 Pi (4.104)
log r; i logr; i logr;
Also, let
fle)=p%(a) = inf {B(q)+aq} (4.105)

Since [ is strictly convex (provided that «; are not the same for all i), for a given « the infinium
in (4.105) is attained at a unique ¢ = ¢(«). This occurs when a = a(q) = —f'(¢q) . Thus

fla): (a(o0), a(—0)) — R .

We will now show that
C!(OO) = Qmin and a(_OO) = Omax -
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We have,
1 = Z pir q) + Z pirt B(a)
Qi =CQmin Qi >Qmin
= Z (pi’r';amin)qrf(Q)-‘raminq + Z (pir;amin)qr?(q)+aminq
Qi =CQmin Qi >Qmin
_ q)+ammq amm q B(q)+ozmmq
= > + > (4.106)
O =Cmin Q> Omin
Observe that £(q) + aming is nonincreasing, since
q B(q 1o
Bl(q) + Qmin = E BT ) L + Qmin
>0l logr;
_ E lpz i Ala) IOg ri + Qmin E pq B(q) lOg T
E pq /8(‘1 IOgTi
_ > (amin — o) pir zB(q) logr;
Z pq /8(‘1 IOg r; -
Thus, we have
lim (8(g) + aming) = —00 (4.107)
q—00
or, we have
lim (8(q) + aming) =€ for some e € R (4.108)
q—00
If (4.107) holds, then taking limit in (4.106) as ¢ — oo, we obtain 1 = oo
Therefore (4.108) must hold. Then taking the limit in (4.106) as ¢ — oo, we obtain
g q )
1= > 5. (4.109)
To find the asymptotic behavior of «a , we first observe that.
Q) 1
alg) = > piT : g pi
> plr 59 1og 1y
_ Ealfamm f(q)+0‘minq Ingl + Ea >Qmin T;B(Q)+aiq Ing
Eaz_amm Tz (Q)Jrammq lOg T + Ea1>amm Tz (q)JFazq lOgT’
i T f(q)+ozmmq logp; + 3 imomyste v’ (Q)-i-amanqr?q log pi
_ (4.110)

B(9)+aming B(¢) T Omind, €4 :
EOéz—Dtmm Tl IOg ri + E ”‘z*"mm‘*’éz 7'1' T'i IOg T

Using (4.109) and letting ¢ — oo in (4.110), we obtain

Similarly, one can show that

a(00) = amin -
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We can now state and prove the main result in this section.

Proposition 4.51. Assume that the IOSC is satisfied. For all « € (min; }zif’ , Max; }ggfl) we have

dimg {a: € Ky ‘ dimyoe(z; p) = a} > B%(a).

Proof. As in the proof of Lemma 4.50, let o« = —f3’. An argument from the proof of Lemma
4.50 shows that {a(q)|¢ € R} = (min; }ﬁgfl , Max; }gg”’) , and we therefore find ¢ € R such that
a = a(q) . It follows easily by implicit dlfferentlatlon that

; Qi(q) log p;
a(q) _gf(q)zm,
> Qi(q)logr;
Write
1 i . 1 5
m = {ieEN h@nf%gdimm(w(n;um fimioe(7(); ) < limsup —ﬁii'z},
log
r = {iEEN Ogr|n ZQ logrz},

—
—

1 . .
ie N[ {im ngoylm E Q; (q) Ingo,z '
n logryp, > Qi(q) logr;

Lemma 4.49 implies that

{mEKQ‘dimloc(m;,u):a} = {Z’EKz‘dlmlocl' ) = alq }
D {xEKQ dimyee(z; 1) = alq }ﬁﬂ' (D)
l 1n
> ﬁ{ieEN lim —2 Pl _ }mr (D)
n logri,
log po,ijn log>". pi
= m™ieXN|lim = — L + «
{ n logryp, > Qi(g)logr; (9)
N (I) N «(I)
1 i 1 i i 1 7
— adie SV lim 08PodIn _ __logdiipi 3. Qilg)logp
log 7ijn >iQi(g)logri 3, Qi(g)logr;
N () N (L)

_ . on| o 108posn Y2 Qilg) logpo,i
W{IEE lim 10g7'i|n = EiQi(q)logri }
Nx(Il) N =(T)
= 7@ N () N (D). (@111)

Let p, = figom *. It follows immediately from the ergodic theorem that

o (r(D) > fig(T) = M{IGEN

log
Ogr\n ZQ logrl}zl,
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1 iln i i 1 ]
li 08 POl _ 2 Qi@ logpoi | _ 4 (4112)
n logri\n Zi i(q)logr;

po(r(M)) = fig(r~" 7 (ID))

n 08 Tin n 08 Tin

\%
=
_
——
.
m
I\
2

Combining (4.111), (4.112) and (4.113) shows that
,uq{:r € Ky ‘ dimjee(z; p) = a} =1.
We conclude from this that

dimyy {:1: € Ky ‘ dimyge (3 1) = a} > inf dimy (4.114)

Finally, it is well-known that

inf dimy £ = 20 @i(0)108Qi(g) (4.115)

he(E)=1 > Qi(q)logr;

see, for example, [AP96] or [Fal97]. Combining (4.114) and (4.115) shows that

dimpy {:L’ € Ky ‘ dimjee(z; p) = a} >

\ANI

S%

s+
=
=

This completes the proof. O

4.3.6 Proof of Theorem 4.28: part 2
The purpose of this section is to prove the inequality (4.88), i.e.
dimp {:L’ € Ky ‘ dimyec(z; ) = a} < B (a).

The proof of this inequality will be given in Proposition 4.53. The next lemma is a slight modification
of a result due to Hutchinson [Hut81] (cf. also [Fal90]) and the proof is therefore omitted.
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Lemma 4.52. Let r,c1,¢o > 0, and let (V;); be a family of open disjoint subsets of R? such that
Vi contains a ball of radius cyr and is contained in a ball of radius cor . Then

142\
C1

MuBmmmW¢@Ms(

for all z € R .

Here by ‘ {i | B(z,r)NV; # @} ‘ we mean the cardinality of the set {i | B(z,r) N V; # @}. We
use this notation for the rest of this section.

We can now state and prove the main result in this section.

Proposition 4.53. Assume that the IOSC is satisfied. Fiz o> 0.

1. Let (ry)n be a sequence in (0,1) for which there exists a constant ¢ € (0,1) such that

T N\ 0,
crp < rpp1 < vy foralln,
Yo < oo foralle>0.

(For example, me may take r, =a" for a € (0,1).) Let g e R, n €N and € > 0. Write

Ap e ﬂ {xEKQ

k>n

inf {Z(ggi)thB(qH(Hq)s

a_ggk%MB@ww)§a+E}
log ry,

114

n,e

7 >0

(3

(B(a:i, 0;) )z is a centered ry-packing of A, . } )

Then
I} . <oo.

;. logpi log ps
2. If a € (min; —g—log £, max; —g—log n-) , then

dimp {a: € Ky ‘ dimyoe(z; p) = a} < B8 (a).

3. If a ¢ [min; }ggfj,maxi }zif’] , then

{x € Ky ‘ dimyee(z; ) = a} =0.

Proof. 1. We may clearly assume that diam Ko = 1. Let (B(x;,0;)); be a centered r,, -packing
of A, .. For each i let n; denote the unique positive integer such that

Tre <03 < Tpy—i-
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Observe that r,, <d; <r,, whence
n;g>n. (4.116)

Next we prove the following five claims.

Claim 1. There is a constant c¢1 > 0 such that (26;)70F8@+1+ld)s < ¢ pgatB@+OFlads ¢ o
i.
Proof of Claim 1. This follows immediately from the definitions. This completes the proof of Claim
1.

Claim 2. We have r%‘fﬂq‘s < w(B(xi,n,))? for all i.

Proof of Claim 2. Since (B(z;,0;)); is a centered r, -packing of A,, ., we deduce that z; € A, . .
This implies that a —e < W < a+e¢ for all k> n. In particular, we conclude that
rote < w(B(wi,mi)) < rp~° for all k > n. However, since n; > n (by (4.116)), the desired
conclusion follows from this inequality. This completes the proof Claim 2.

In order to state Claim 3 and Claim 4 we make the following definitions. For i € ¥* and positive
integers ¢ and m write

r, = {ieE*

ri <rpg <y fij—1 5 Sille N B(zi, ;) # Q},

Iim

)

{iEN ‘ni:m, SiKCﬂB(mi,rm)#Q}. (4.117)

Claim 3. There is a constant c2 > 0 such that |T';| < co for all i.
Proof of Claim 3. Let U be the open set in the IOSC. Now put

Hi:{ieE*

ri < Ty < Tijlij—1 > SiUﬂB(l'i,T‘ni) # Q}

for i € N. It follows from Lemma 4.42 that S;K¢ C S;U for all i € £* , whence
r; CII;.

Since U is non-empty, bounded and open, there are two numbers si,ss > 0 such that U contains
a ball of radius s; and is contained in a ball of radius s, . Hence, if i € II; , then S;U contains
a ball of radius ris; , and since risy > 7y jjj—17minS1 > ("min51)7n; , We deduce that S;U contains
a ball of radius (rmins1)rn, - Similarly, if i € II; , then S;U is contained in a ball of radius ;s ,
and since ris2 < Sa7,, , we deduce that S;U is contained in a ball of radius s,r,, . Since also the
sets (SiU)icn; are pairwise disjoint (because S;U NS;U = @ for i # j ), it therefore follows from

Lemma 4.52 that J
14 2s
ITi| < 1| < ( 2> :

TminS1
This completes the proof of Claim 3.
Claim 4. There is a constant cs > 0 such that |Lim| < ¢z for all i € £* and all m € N with

Ty < < Ty i|-1 -
Proof of Claim 4. Choose any positive real number s > 0 such that Ko C B(0,s). Now put

Jim = {z € N‘ ni =m , B(Si0,rns) N B(x;,ry) # @}
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for i € ¥* and m € N. Next, fix i € ¥* and m € N with r; <7, <7y -1 . Since K¢ C B(0,s),
it follows that S;K< C B(S;0,7;s) , whence

Iim

)

N

{i EN‘ni =m, B(SiO,ris)ﬂm#Q}

- {z € N‘ ni =m , B(Si0,rms) N B(x;,ry) # @}
J;

im -

It is also clear that B(x;,r,,) contains a ball of radius 7, = %srm , and that B(x;,r,,) is contained
in a ball of radius 7, = %srm . Since also the sets (B(zi,rm))ics;,, are pairwise disjoint (because
(B(zi,0;) )i is a packing and B(z;,rm) = B(xi,Tn;) C B(x;,0;) for i@ € Ji,, since ry, < 6;), it
therefore follows from Lemma 4.52 that

d
1424
|[i,m|§|<]i,m|§< 1 s> :(2+3)d-

S

This completes the proof of Claim 4.

Claim 5. There is a constant ¢4 > 0 such that r?n(q) < 047"?@) for all 1 € ¥* and all m € N with
i < T < T Jij—1 -

Proof of Claim 5. This follows immediately from the definitions. This completes the proof of Claim
5.

We conclude from Claim 1 and Claim 2 that

Z(zé‘i)anrﬁ(lI)Jr(lJFWDE < clzr%?Jrﬁ(Q)Jr(lJFMDE

(3

< ¢ Z rﬁqu‘E w(B(xi,70,;))? . (4.118)

Next, since z; € A,. C Ky we can choose i; € ¥V such that z; = 7(i;). Let m; denote
the unique positive integer such that 7y, < rn; < 1y m;—1 - Observe that since z; = m(i;) €
Siimi Ko C Sijjm; Ko and diam Sy, |y, Ko = 7y, diam Ko = 7y, < 7y, (recall that we are
assuming diam K¢ = 1), we deduce that Sj |, Ko C B(zi,7,,;) . In particular, it follows from this
that if ¢ < 0, then

pw(B(zi, ;) < N(SiilmiKC)q : (4.119)

Also note that

We will now prove (4.120). Indeed, it is clear that 7y, < 70, < Ty, m,—1, and since x; = 7(i;) €
Siiimi Ko C Sy jm; Ko and z; € B(xi,ry,), we conclude that Sy, Ko N B(xi,rn,) # @ . This
proves (4.120).

Finally, note that B(z;,7,;) C Uier; SiKc . In particular, it follows from this that if 0 < ¢, then

w(B(zi,r,))? < u( U SiKo> : (4.121)

iel;

Combining (4.119), (4.120) and (4.121) and using the fact that p(S;Kc) = p; for all i € £* (by
Proposition 4.44) we now deduce from (4.118) that
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Ly, rﬁ(q 1(Si, jm; K o)1 for ¢ < 0;
96;)00HB@+01+a)s < !
XZ:( ) T la)y, ro+e p| User, SiKc for 0 < ¢;
c1y; T'B(q 1(Si;jm: Ko)? for ¢ < 0;
< q
= JaZm Ot Eieriﬂ(SiKC)> for 0 < ¢;
e T'B(q e plql|ml for g < 0;
q
e Eien—pi> for 0 < g¢;
iy, rnqu SupPjer, pf for ¢ < 0;
iy, rnquE IT3|? supser, pf for 0 < g;
< clzr (@+e |, |ldl sup p{ (4.122)
iel;
Next using Claim 3 and the fact that n; > n (by (4.116)) we dedue from (4.122) that
Z(25i)qa+ﬂ(q)+(1+\tﬂ)5 < e Zr O+ sup p!
i B iel’;
= ‘q‘ Z Z B(q +e Supp?
m>n i i€l
<SS A S
m>n n_;m iel;
ST Dok LED SRR VR
m>n i iem*
ni=m  ri<rm<ry|[i-1
S$iKGNB(2;,rm)#0
ST ol UL VR DR
m>n ies* n_im
Tigrm<7’i\\i|—1 SiKcﬂBl(;i,v‘m)¢12’
= ol Y Bt S pl Ll (4.123)
m>n ies*
TiSrm <ry| i -1
Using Claim 4 and Claim 5 we conclude from (4.123) that
2(25 yrotB@++a)e < c|2q| ¢3 Z B+ Z P
i m>n iexs*
n TiSTm <ry| i1
< @ C|2<1| €3 ¢4 Z e Z (Q)p;I
m>n iex*
B riSrm <7y i -1
= adlead m Y mi; (4.124)
m>n iexs*
n riSTm <y i -1

recall that the measure fi, is defined at the beginning of Section 4.3.5.
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Finally, using the fact that the sets ([i])
(4.124) that

. are pairwise disjoint, we conclude from
1€X", ri<rm <rj |ij-1 P J ’

§ :(25i)qa+ﬂ(q)+(1+\tﬂ)5 < o c‘;‘ c3Cq E T'm fq U ]
i m>n iex*
miSrm <y fi|—1
< ¢ c‘zq‘ c3Cy E T,
m>n
< e e N
> 1Cy €C3C4 T'm
m
= Co,

where ¢y = clc|2q|(:304 Y T - This completes the proof of Part 1 of Proposition 4.53.

We now turn towards the proof of Part 2 and Part 3 of Proposition 4.53. However, we first introduce
some notation. For brevity write

A= {a: € Ky ‘ dimyoe (z; ) = a} .
Next, let (r,), be asequence in (0,1) and let ¢ € (0,1) be a real number satisfying the conditions

in Part 1 of Proposition 4.53. For a positive integer n and ¢ > 0, let A, . be defined as in Part
1 of Proposition 4.53, i.e.

Ape = ﬂ {xEKQ

k>n

a— &

_ logu(Bl,n)) _ a+5}_
log rg,

Next observe that since cry, < rp41 <1y for all n, we conclude that

A = {JTEKQ

= {JTEKQ

U N {mEK@

n k>n

U An-, (4.125)

i J0B (B, 1)) _ a}
N0 logr

- M:}

n—0o0 log ry,

N

a—ce<

log (Bl ) _
log rg, -

forall € >0.
Proof of Part 2 of Proposition 4.53. Let ¢ € R. We must now prove that

dimp A < ga + S(q) . (4.126)
In order to prove (4.126), inclusion (4.125) shows that it suffices to prove that

dimp A, - < ga+ B(g) + (1 + |q|)e (4.127)
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for all positive integers n and all € > 0. Therefore, fix a positive integer n and ¢ > 0. We
will now prove (4.127). Let II¢ _ be defined as in Part 1. Also, recall that for ¢, > 0, we let

n,e

=t . . . =t ..
P denote the t-dimensional packing pre-measure and we let P, denote the r-approximative
t -dimensional packing pre-measure. Since « € (min; 282 ;08Pi) we conclude from Lemma

logr;? max; log r;
(Ane) =1I7 .

4.50 that qo + B(Q) + (]_ + |(I|)6 > B*(a) + (1 + |Q|)€ > 0’ and so —zj+/3(‘1)+(1+‘4‘)5
It now follows from Part 1 that

,an+,8(q)+(1+\q\)s(An E) < ﬁqa+B(Q)+(1+‘Q‘)E(AnE)
< fzf+6(g)+(1+‘q‘)E(An,5)
= I,
< 00,

whence dimp A, . < ga + B(q) + (1 + |g|)e .

Proof of Part 3 of Proposition 4.53. Since a ¢ [min; }—gg%,maxi %g%] , we conclude from Lemma
4.50 that *(a) < 0 and we can thus find ¢ € R such that ga + 8(¢) < 0. It follows from this
that we can choose € > 0 such that qo + 8(q) + (1 +]¢|)e <O0.

We will now prove that A = @ . Assume in order to reach a contradiction that A # @ . We can
therefore find = € A. In particular, it follows from (4.125) that there is a positive integer n such
that ¢ € A, .. Hence, for each 6 > 0 with 6 < ry, the ball B(xz,d) is a centred r, -packing of
A, and we therefore conclude from Part 1 that

(25)qa+5(Q)+(1+|q|)8 < ng,s )

Since qa+ 8(q) + (1 + |g))e < 0 and 0 < 0 <1, was arbitrary, this implies that

0o = sup (20)7+F@+0+a)s < 7 . <oo. (4.128)
0<6<r,

The desired contradiction follows immediately from (4.128). This completes the proof of Proposition
4.53. O

4.4 Open problems for multifractal analysis of inhomogeneous self-similar
measures

4.4.1 Open problems for L? spectra and Rényi dimensions of inhomogeneous self-
similar measures

It is quite unsatisfactory that our results for L? spectra and Rényi dimensions are obtained under
the assumption that the sets (S1K¢,...,SnvKe,C) are pairwise disjoint. It is natural to ask if the
results are true assuming only the appropriate version of the standard Open Set Condition. Namely,
assuming Inhomogeneous Open Set Condition (IOSC) stated in Section 4.3.1.

Question 4.54. Are the results in Section 4.2.1 true if the IOSC is satisfied?

Question 4.55. Assume that the sets (S1Kc,...,SnKc,C) are pairwise disjoint (or simply as-
sume that the I0SC is satisfied).

o [s it true that
7u(a) = max (Bla), 70(a) )

forall ge R?
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o Can we find an upper bound for z,(q) for all g€ R ?
Question 4.56. Are the results in Section 4.2.2 true if the IOSC is satisfied?
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5 Fourier transforms of inhomogeneous self-similar measures

5.1 Preliminaries: Fourier transforms of measures

One of the reasons to study Fourier transforms of a measure is that the behaviour of Fourier
transform of a measure gives the information about the continuity of a measure. Namely, the faster
the Fourier transform of a measure tends to zero the more regular the measure is. Thus, for example,
since the Fourier transforms of discrete measures do not tend to zero (see Theorem 5.1 below), these
measures are not regular. In analysing the Fourier transform of a measure we are interested in
investigating not only the asymptotic behaviour of the Fourier transform itself but its asymptotic
behaviour in an average sense, i.e. we want to analyse the following integral [ |a(z)|* dz, or
B(0,R)
more generally [ |f(x)|?dx, for ¢ € (0,00). This leads to the following general definitions of
B(0,R)

Fourier dimensions. Let g be a Borel probability measure on R? and let fi denote the Fourier
transform of p. Recall that fi(z) = [e!¥|®)du(y) for x € RY. Then for g € (0,00], we define
the ¢’th upper Fourier dimension A,(u) and we define the ¢’th lower Fourier dimension A, (1)
of p as follows. For ¢ < oo, we put

Q=

log (Ld(B%O,R)) J |ﬂ(m)|‘1dm>

— . B(0,R)
A =1 1
o(12) imsup e R ) (5.1)
log (Ld(Bl(O,R)) B(OfR) li(z)|® dﬂ?)
A,(w) = liminf “logR : (5.2)
where £? denotes d-dimensional Lebesgue measure, and for ¢ = oo, we put

log sup ()|
(1) mswp —— R (5.3)

log sup ()]

.. x|z

Ay(p) = liminf T gk (5.4)

We now state a well known Wiener’s Theorem [Wie33] describing the asymptotic behaviour of
mm Of o |7i(z)|? dz and therefore providing the information about As(x) and A, ().

)

Theorem 5.1. [[Wie33], see also [Str94|]. Let 0, denote the Dirac measure supported at a
point x . Suppose p = py + po where py = Zj cjlq; is discrete and po is continuous. Then we
have

1
lim i(2)? do = 2.
B(0,R) J
Hence, it is clear that if p is a probability measure and has a discrete part then As(u) = A, (1) = 0.

Remark. We note further that if a probability measure p has a discrete part then for ¢ > 1 we
have
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Thus, we are interested in computing Fourier dimensions (for ¢ > 1) of probabilty measures which
are continuous.

5.2  Fourier transforms of inhomogeneous self-similar measures

During the past 10 years there has been an enormous interest in investigating Fourier dimensions of
(ordinary) self-similar measures satisfying (2.2) and there is a huge body of literature discussing this
problem, see, for example, Bluhm [Blu99], Hu [Hu01], Hu & Lau [HL02], Lau [Lau92, Lau95], Lau
& Wang [LW93], Strichartz [Str90a, Str90b, Str93a, Str93b]. Almost all of these papers concentrate
their study on the 2’nd Fourier dimension of self-similar measures [Lau92, Lau95, LW93, Str90a,
Str90b, Str93a, Str93b] or on the infinity Fourier dimension of self-similar measures [Blu99, Hut81,
HLO02]. Continuing this line of investigation, in this section we will study the 2 ’nd Fourier dimension
and the infinity Fourier dimension of inhomogeneous self-similar measures. In Theorem 5.2 we obtain
bounds for the infinity Fourier dimension of an inhomogeneous self-similar measure and in Theorem
5.4 we obtain bounds for the 2’nd Fourier dimension of an inhomogeneous self-similar measure.
Finally, in Section 5.2.3 we present a number of applications of our results. In particular, non-linear
self-similar measures introduced and investigated by Glickenstein & Strichartz [GS96] are special
cases of inhomogeneous self-similar measures, and as an application of our main results we obtain
simple proofs of generalizations of Glickenstein & Strichartz’s results on the asymptotic behaviour
of the Fourier transforms of non-linear self-similar measures.

5.2.1 Main results
From now we fix an inhomogeneous self-similar measure p satisfying
p=" pjpoS; +pv, (5.5)
J

where (pi1,...,pn,p) is a probability vector and Sjz = rjR;x +a; for 0 < r; <1, R; is an
orthogonal matrix and a; € R?. Before stating our main results it is useful to introduce the
following terminology.

Definition. Equicontractive. We will say that the equicontractive condition is satisfied if all the
contraction ratios ry,...,rn coincide, i.e. if ry = ... =rn.

We will now state the first of our main results providing a lower bound for the infinity Fourier
dimension of an inhomogeneous self-similar measure.

Theorem 5.2. [The A_ (¢) dimension of an inhomogeneous self-similar measure y].
Define s and t by

log(1 —
ijrr;isn = 1 ie s= M,
, log rmin
J
ijr;t = 1 )
J
where rmin =min;r; . Then 0 <s<t, and
AL)  FOSALW) <5
sA (v .
A > 2520 ifs<A <t (5.6)

t ift <A (v).
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A
Dos(K)

o
o
J
>
v

(V)

Figure 5.2.1:
The bold lines separating the shaded and the unshaded regions represents the graph of the function f :
[0,00) = [0,00) defined by f(z) =z for 0 <z <s, f(z)= 35 for s<z<t,and f(z)=t for t<z.
For each value of A__(v), the number f(A_ (v)) is a lower bound for A_ (p), i.e. A_(p) lies in the

unshaded region above f(A_ (v)).

Theorem 5.2 is proved in Section 5.2.4 The reader is referred to Figure 5.2.1 for a graphical illustra-
tion of the inequalities in (5.6). In the equicontractive case the lower bound for A_ (p) simplifies
considerably. This is the content of the next corollary.

Corollary 5.3. Assume that 1 =...=ry . Then s =1, and
A () > min(t, Ay (v)) (5.7)
In order to obtain a lower bound for the 2’nd Fourier dimension we must assume that the Open

Set Condition (OSC) is satisfied. Recall that the OSC says that there exists an open, non-empty
and bounded subset U of R? with U;S;(U) CU and S;(U)NS,(U) =@ forall k#j.

Theorem 5.4. [The A,(x) dimension of an inhomogeneous self-similar measure g ].
Assume that the OSC is satisfied. Assume further that 1 = ... =ry and Ry =...= Ry . Note
that if the equicontractive condition is satisfied then s =t and

- i, : log(1 — p)
Xj:pjrt:;pjr =1 i.e. s:t:w.

Then
Ay(pu) > min (¢, Ay(v)) .

Theorem 5.4 is proved in Section 5.2.5
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5.2.2 Open problems and conjectures for Fourier dimensions of inhomogeneous self-
similar measures

We have decided to put open problems and conjectures after stating our main results for the following
reasons. Namely, below (see Section 5.2.3) we will present a number of examples which will support
our conjectures and will give affirmative answers to some of our open questions.

Corollary 5.3 leads us to believe that the same result might be true in the nonequicontractive case.
This suggests the following conjecture.

Conjecture 5.5. For all choices of r1,...,rn we have,

A (p) > min(t, A (v)). (5.8)

The 2’nd Fourier dimension A, (uo) of a self-similar measure po satisfying (2.2) has been studied
in [Str90b] and investigated further in [Lau95, LW93, Str93a, Str93b]. In particular, the following
results are proved in [Str90b]. Let S;: R? — R? for j =1,..., N be contracting similarities and
write r; for the contracting ratio of S;. Let (p1,...,pn) be a probability vector and let po be
the self-similar measure satisfying (2.2). Finally, let ¢, and wg be defined by

Sprrt =1, Yo =1,
J J

and note that < > ty. In view of Theorem 5.4 one would expect the following lower bound for
A, (uo) to hold, namely, A,(uo) > to. In fact, in [Str90b] it is proved that that if the OSC is
satisfied, then the following better lower bound for A,(up) holds, namely,

u
Ay (o) > ?0

It is also proved in [Str90b] that if the equicontracting condition and some further conditions are

satisfied, then
U
Ay (po) = 9

In view of the above remarks, it is natural to conjecture that the result in Theorem 5.4 can be
improved as follows.

(5.9)

Conjecture 5.6. Assume that the OSC is satisfied. Assume further that 1 = ... =ry =1 and
Ry = ... = RN . Recall that if the equicontractive condition is satisfied, then s =t and

B s : log(1 — p)
zj:pjrt:zj:pjr =1 te. s=t= logr

Define u by

Zp?T'*” =1.
J

It is easily seen that 3 >t, and we now conjecture that Theorem 5.4 can be improved as follows,

() > min (5, 8,(1) ) - (5.10)
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It is also natural to ask for lower bounds of A,(u) in the nonequicontractive case. Indeed, it is not
difficult to see what Conjecture 5.6 looks like in the nonequicontractive case.

Conjecture 5.7. Assume that the OSC is satisfied. For all choices of r1,...,rn we define u by
2Pt =1
J

We conjecture that

B5() > min (5, 8,(0) ) -

It follows from Corollary 5.3 and Theorem 5.4 that in the equicontractive case the lower bounds for
the infinity Fourier dimension A_ (x) and the 2’nd Fourier dimension A,(p) satisfy analogous
equations. It is natural to ask if the same result may hold for an arbitrary ¢ ’th Fourier dimension
of p.

Question 5.8. Assume that the OSC' is satisfied. Assume further that vy = ... =ry and Ry =
...= RN . Is it true that

forall q> 072 Is (5.11) true even if the equicontractive condition is not satisfied?

If ¢ is an even integer, an extension of the arguments given below in the proof of Theorem 5.4
may lead to this result. However, it appears to us that new ideas are needed if ¢ is not an
integer. One of the possibilities to obtain lower bounds for A,(x) in the nonequicontractive case
is to use techniques from Renewal Theory. Indeed, methods from Renewal Theory were introduced
into the study of fractal measures by Lalley [Lal88, Lal91] and have subsequently been used in
[Lau95, LW93, Str93a] to investigate the 2 ’nd Fourier dimension A, (uo) for (ordinary) self-similar
measures o satisfying (2.2) in the nonequicontractive case. In fact, [Lau95, LW93, Str93a] also

1
. . . . 108(% fB 0,R (|ﬁ0($)|2 dx)?2
obtain very precise information about the rate of convergence of £UBOR) © 1f)g’ 2 to

A, (o) as R — oo. This suggests that Renewal Theory can also be used in analyzing Fourier
dimensions of inhomogeneous self-similar measures.

All results mentioned so far have provided lower bounds for the Fourier dimensions A, (u) for
q = 2,00 . It is clearly of interest to obtain upper bounds, or even exact values, for those dimensions.
We also wonder if the lower bounds in Theorem 5.2 and Conjecture 5.6 are, in fact, exact values.
This and (5.9) suggest the following problem and question.

Problem 5.9. Assume that the OSC is satisfied. Find an upper bound for A, (u) for q¢ = 2,00
(or for all q ).

Question 5.10. Assume that the OSC is satisfied. Assume further that r1 = ... = ry and
Ry =...= Ry . Is it true that
Ao(p) =min (¢, A (v))

=00

and u
Ay () = min (5, A,(0) ) ?
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5.2.3 Examples

Next we consider some examples of inhomogeneous self-similar measures and their lower Fourier
dimensions, including examples which show that a number of the conjectures in Section 5.2.2 are
satisfied in various specific cases.

Example 5.11. [Non-linear self-similar measures. Part 1.]

We consider probability measures p satisfying the following nonlinear self-similar identity

N M
p=> pinoS;t+> qi(uxp) o T, (5.12)
=1 j=1

where (p1,...,PN,q1,...,qu) is a probability vector, Sjz = r;jRjz +a; for 0 <r; <1, R; is
an orthogonal matrix and a; € R? , and Tjz = p;Pjz +b; for 0 < p; < 3, P; is an orthogonal
matrix and b; € R? ; the existence and uniqueness of measures p satisfying (5.12) is proved in
[GS96]. Without loss of generality we may clearly assume that p is not supported on any (d—1)-
dimensional affine subspace of R? . Indeed, if this is not the case, then the construction of p takes
place on a (d — 1) -dimensional affine subspace I', say, of R? and the extra dimension (orthogonal
to I') is superfluous. Hence, by successively removing dimensions, we may assume that d is chosen
such that g is not supported on any (d — 1) -dimensional affine subspace of R? .

Glickenstein & Strichartz [GS96] also analyzed the asymptotic behaviour of the Fourier transform
of 1. We note that measures u satisfying the nonlinear self-similar identity in (5.12) can be viewed
as inhomogeneous self-similar measure associated with the list (Si,...,Sn,p1,.-.,PN,p,v) where

M

N
p:l—ij and I/:Z
j=1

4q;
N
j=1 1- Ekzl Pk

We will now apply Theorem 5.2 and Theorem 5.4 to obtain simple proofs of generalizations of the
results from [GS96] giving lower bounds for the infinity Fourier dimension and the 2’nd Fourier
dimension of .

(n*p)oT;t.

A. The infinity Fourier dimension of p. We first discuss the infinity Fourier dimension of .
Before analyzing this example further it is useful to make the following two observations.

Observation 5.12. We have
AL(v) > 20, (). (5.13)

Proof. First we note that for « € R?

M . -~
p) = <Zq—3<u*u>oTj—1> (2)
=

= > Tl (o x p) (T 2)
=1 P

S

_ Zﬁexbmﬁ(gp;m)‘z , (5.14)
=1 P
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where T} = p;P; and P} is the conjugate transpose of P;. It follows from (5.14) that

)

EM 4 ez(b |z)u(T* )

log (Sup|x|>R

A (v) = liminf

R—c0 —logR
108(2; 1 Sup|z|>R|:u(T z)| )
> limi . .
> ! “10gF >19)

Fix ¢ > 0. It now follows from the definition of A__(u) that there exists a constant ¢ > 0 such that
SUp|,(> g [1(2)] < ¢|R|=(B==2) for all R >0, whence sup,sp [i(T]z)|* < ?(p;R) 2B =2)
for all j. Combining this and (5.15), we conclude that

10%(21 . 'IIZC (pjR)~ 2(A . (m)— E))

A (v) > liminf

R—00 —logR
log(C’R 2(Ag (1) — E))
= liminf
R—00 —logR
where C = EJ | P *(p;) 2B (W=2) | Letting ¢ — 0 we obtain (5.13). O

Observation 5.13. We have
A (p) >0.

Proof. This is simply a restatement of [[GS96], Lemma 3.1] and the proof is therefore omitted. O

Since d is chosen such that g is not supported on any (d — 1) -dimensional affine subspace of R?
it follows from [GS96] that
A(w)>t. (5.16)

We will now show that Glickenstein & Strichartz’s result (5.16) implies that Conjecture 5.5 is true.
Indeed, it follows from (5.13) and (5.16) that A_(v) > 2A (1) > 2t, whence min(t,A (v)) =t.
Using (5.16) once more, we conclude from this that

A (1) > t = min(t, A (v)).

This shows that (5.16) implies that Conjecture 5.5 is true in this case.

Next, we show that in the equicontractive case, Corollary 5.3 implies Glickenstein & Strichartz’s
result (5.16). In the equicontractive case we can use Corollary 5.3 and inequality (5.13) to obtain
A () > min(t, A (v)) > min(t,2A (u)) . Since also A (p) > 0 (by Observation 5.13), we see
from this inequality that min(t,2A . (u)) =t, whence

A (1) > min(t, 22 (n) = ¢

Thus Corollary 5.3 implies Glickenstein & Strichartz’s result (5.16) in the equicontractive case.
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We now consider the general nonequicontractive case. Since A (v) > 2A.(x) (by (5.13)), Theo-
rem 5.2 implies that in the nonequicontractive case we have

QA1) HO<A (W) <s;
sA .
A (u) 2 ot s <A () <t
¢ it <A (v),

which simplifies to

A (p) = 0 if0 <AL (v) <s; (5.17)
{g if s <A (V) <8

t ift <A (v). (5.18)

[
3

S
%

However, since A () > 0 (by Observation 5.13), we deduce from (5.17) that s < A (v). Also,
if s <A, (v)<t, then it follows from (5.13) that 2A_(n) < A (v) <t, whence A (u) < L.
In view of those remarks, (5.17) and (5.18) simplify to: we have s < A_ (v) and

Of course, it follows from Glickenstein & Strichartz’s result (5.16) that A__(u) > t, and it therefore
follows from the above that we must have ¢ < A__(v); however, we cannot deduce this from
Theorem 5.2. This again suggests that Theorem 5.2 can be improved for s < A_(v) < t as
outlined in Conjecture 5.5.

B. The 2’nd Fourier dimension of p. Next we analyze the 2’nd Fourier dimension of p. In
order to apply Theorem 5.4 to analyze A, (u), we will make two further assumptions, namely that
ry =...=ry and that Ry = ... = Ry . However, before analyzing the 2’nd Fourier dimension it
is useful to make the following observation.

Observation 5.14. For all ¢ > 1, we have

éq(’/) Z 2A2q(:u) ) (519)
28,,(0) > Ay p)- (5.20)

=q

Proof. We first prove (5.19). It follows from (5.14) and Minkowski’s inequality that

1
i ,i(bjlx) 75 (T * e ’
IOg (m f ‘E]Ail %el<b]| )u(T] 1’)2‘ dl’)

B(0,R

A,(v) = liminf (0.5)

R—00 —logR

M j ~ * 2q !
10%211%(% [ AT dl‘)

liminf BO.R)
R—00 —log R

Y%

(5.21)
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Fix € > 0. Then there exists a constant ¢ > 0 such that
cR~ (B2 =2) for all R > 0, whence

~ < 1
(Ld(B%O,R))_ fB(O,R) () [* dx)2e <

Q=

1 PNt 2 —2(A,, (k)—¢
el N ORI BT ety
B(0,R)

Combining this and (5.21), we conclude that

log S, (o, T 0ar) =0

A,(v) > liminf

R—00 —log R
log C R~ (A2, (1)=2)
= liminf
R—00 —log R

= 2(Qy (k) —¢),
where C = E . j 282 (1) =9) . Letting & — 0 we obtain (5.19).
Next we prove (5.20). In [[GS96], Lemma 3.1] it was shown that |fi(x)| < 1 for all « # 0. This
and the continuity of i implies that

1
24
log (nd(Bl(o,R)) B(OfR) ()] dﬂ?)
2R = 2lmint “log R
2q
log (nd(Bl(o,R)) B(OfR) ()| dﬂ?)
> 2liminf :
R—00 —logR
= A,n).
This completes the proof of (5.20). O

We can now use the above Observation 5.14 and Theorem 5.4 to obtain
Ay(p) > min (¢, Ay(v)) > min (¢, 2A,(p)) > min (¢, Ay(p)) -

Thus
Ay(p) > t.

This completes Example 5.11.

Example 5.15. [Non-linear self-similar measures. Part 2.]

Now we consider measures satisfying a more general nonlinear self-similar identity. Namely, we
consider probability measures g satisfying the following nonlinear self-similar identity

= ijuos +qu OT1 (5.22)

k times
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where ki,...,ky are positive integers with ky,...,ky > 2, and (p1,...,PN,Q1,---,qM) 1S &
probability vector, Sjz =r;jR;x 4+ a; for 0 <r; <1, R; is an orthogonal matrix and a; € R? ,
and Tjz = p;jPjz+b; for 0 < pj < ———, P; is an orthogonal matrix and b; € R’ ; the existence
and uniqueness of measures p satisfying (5.22) follow easily using an argument similar to the one
in [GS96] or by an argument similar to the one in Proposition 2.8. As in Example 5.11 we may
clearly assume that g is not supported on any (d — 1)-dimensional affine subspace of R? .

Again, we note that measures p satisfying the nonlinear self-similar identity in (5.22) can be viewed

as inhomogeneous self-similar measures associated with the list (Si,...,Sn,p1,...,PN,DP, V), where
N M ”
p:l—ij and szijN(p*---*p)oijl.
i=t =1 1= Ek:l Pk k; times
)

As in Example 5.11 we will apply Theorem 5.2 and Theorem 5.4 to obtain lower bounds for the
infinity Fourier dimension and the 2’nd Fourier dimension of p .

C. The infinity Fourier dimension of . As before we first discuss the infinity Fourier di-

mension of g . Again, before analyzing this example further it is useful to make the following two
observations.

Observation 5.16. We have

A (v) > min kA (). (5.23)
j
Proof. First we note that for € R?
M ” R
v(z) = Dpps--xpu)oT ! x
(z) (; ) (p woli | (x)
k; times
Mo .
= Y Beitilop (Tra)" (5.24)
=P

where T} = p; P;. It follows from (5.24) that

M i (b |x) * :
Ej:l %e“bjl >N(Tj )"

)

log (supzZR

Be(v) = lli%rgiélof —log R
M g PN T
log <Zj1 % SUp|z|>Rr |U(Tj Z')|k]>
> limi .
> i “10gF :29)

Fix € > 0. It now follows from the definition of A_ (x) that there exists a constant ¢ >
0 such that supj, >glp(z)| < c|R|"(A~(W=2) for all R > 0, whence SUP\I\ZRW(Tfmﬂkj <
c*i(pjR)~Fi(Ax()=2) for all j. Combining this and (5.25), we conclude that

A (v) > liminf

R—0o0 —logR
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log (CR—(minj ki) (Ao (u)—s))
> liminf

R—o0 —log R
= (Injln k.])(éoo (:u) - 5) )

where C = Ej\il L cki(ps)=hi (A (W=2) | Letting ¢ — 0 we obtain (5.23). O

Remark. One can clearly see that the proofs of Observation 5.16 and Observation 5.12 are very
similar and therefore for the rest of this section we will omit presenting such similar proofs twice.
The next observation is due to Glickenstein and Strichartz [GS96].

Observation 5.17. We have
A (p) >0.

In the equicontractive case, we can use (5.23) and Corollary 5.3 to obtain A__(x) > min(t, A (v)) >
min(¢, min; k; A (1)) . Since also A (1) > 0 (by Observation 5.17), we see from this inequality
that min(¢, min; k;A_ (1)) = t, whence

A () > min(t, min kA (1) = ¢
J

We now consider the general nonequicontractive case. In this case, if we proceed as in Example
5.11, we obtain the following lower bound for A (),

A(p) = 0 if0<ALW) <s; (5.26)
1— —L if s <A <t
A(p) > (1-mmim)s He<Aw<n (5.27)
t if t <A (v).

As in Example 5.11, using the fact that A__(u) > 0 (by Observation 5.17), we conclude that (5.26)
and (5.27) simplify to: we have s < A_(v) and

etz AW 2 (1-mbg)s is<AL W<t
Al > ¢ if £ < A (0).
Of course, if 1+ £ < minjk;, then ——t > A_ (1) > (1 — —1)s cannot hold, and we must

therefore have that ¢ < A_(v). On the other hand, if min; k; < 1+ % , then the above result
shows that A () >t for t <A (v), and that A () < gt < gt <t for s <A (v) <t.
However, in analogy with Glickenstein & Strichartz’s result in (5.16) for k1 = ... = ky = 2, we
expect that A_(u) > t, and it therefore follows from the above that we must have ¢ < A_ (v);
unfortunately, we cannot deduce this from Theorem 5.2, suggesting, once more that Theorem 5.2

can be improved.

D. The 2’nd Fourier dimension of p. Next we analyze the 2’nd Fourier dimension of g .
Again, in order to apply Theorem 5.4 to analyze A,(u), we will make two further assumptions,
namely that r1 = ... =ry and that R; = ... = Ry . However, before analyzing the 2’nd Fourier
dimension it is useful to make the following observation. The proof of this observation is similar to
the proof of Observation 5.14 in Example 5.11 and is therefore omitted, see the remark following
Observation 5.16.
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Observation 5.18. For all ¢ > 1, we have

A,) = minkjAy,(m),
mink; Ay (1) > A,(0)-

We can now use the above Observation 5.18 and Theorem 5.4 to obtain
80 min (¢, 8,(0)) > min (¢, i k5 8,500) ) > min (¢, 8()
J
Thus

Ay(p) > t.
This completes Example 5.15.

Example 5.19.

Finally, we consider a more concrete and rather trivial example, involving discrete measures, to
support our conjectures. However, we believe that the explicit calculations for this example can be
modified to consider a more interesting example involving continuous measures and therefore we
have decided to include them.

For simplicity we restrict ourselves to R. Let p be the inhomogeneous measure satisfying the
following inhomogeneous self-similar equation

1 _ 1 _ 1
u21u0511+1u0521+§50, (5.28)

where Si(z) = 1(z—1), S»(z) = 2(z+1) and dy is the Dirac measure supported at 0. It is not

difficult to see that p satisfying (5.28) is a discrete measure since in this case the measure v = dg
is a discrete measure. Thus by the remark following Theorem 5.1, we have

A (p) =4,(p) =0. (5.29)

We now turn towards explicit calculations and give another direct proof of (5.29). The Fourier

transform fi(x) of p can easily be found. Indeed, since 3\0(1’) =1 for all =, (5.28) implies that
the Fourier transform of pu satisfies the following equality

ii(z) = %cos (ix)ﬁ(ix) + % . (5.30)
)

By iterating (5.30), we obtain fi(z) = & [I1, cos(Zr@)i(gz) + SF_, o [T} cos(4a) for all
positive integers k. Letting k — oo, we obtain

w(x) = i 2% nl—[llcos(élimm) . (5.31)

Figure 5.2.2 shows the graph of the Fourier transform z(z) in (5.31).
Note that in this case s =t = % . Thus applying Corollary 5.3 gives

A (p) >0.
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1.2+

08 L W (r\

\ 0 / I
OZW\J [\ ] / )\ i J\ JK V\ /\

0.4
| i
0 200 400 600 800 1000
X

1.2+

f

0.8

y:ju\

Il

\”%/ \
V/ il Il o ;\ |

03000 3200 3400 3600 3800 4000
X

U

Figure 5.2.2:
This figure shows the graph of the Fourier transform 7i(z) = > 0% o [~ . cos(s=z) of the measure p
in (5.31). The top figure shows the graph of fi(z) for z € [0,1000] and the bottom figure shows the graph
of pi(z) for x € [3000,4000] .

We will now prove that the lower bound given by Corollary 5.3 is, in fact, the correct value of

A (), i.e. we will prove that
A(w) =0. (5.32)

For an integer n, write z, = 8nm + 27 . Since cos(3z,) = 0 for all n, we see that fi(z,) =

++ 35 cos(iz,) + 35 cos(32y,) cos(F5an) + o5 cos(2a,,) cos(5an) cos(Zayn) +--- = 3 for all integers

n. Tt follows from this that 0 < A, (k) = liminfp_q 22 MOD < pipingy, | JEG) — o,
whence A_ (p) = 0. This proves (5.32).

In fact, we will now prove that

A, (u)=0 (5.33)

for all ¢ > 1. Indeed, to prove (5.33) write I,, = [8nm — 2m,8n7 + 27] for an integer n . Since
cos(fz) >0 for all = € I, and all n, we see that

A()—1+lcosl +lcos1 cos1
M= g T \g") T 1 2"
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for all x € I, and all n. Writing R, = 8nw + 27, it follows from this and the fact that the
intervals I,, are pairwise disjoint that

N - N - 1 1 1
/ @i > Y /|,u(a:)|qda;2 3 /Edm:(2n+l)47rEZRnE.
k:_nlk

B(0,R,,) k=—np,

1
q

. R O e R L o leg(atam e
It follows from this that A (p) < liminf, —*=-FE0ey < liminf, Og(—TRn) =0.

Since, clearly also 0 < A, (u), we therefore conclude that néq(u) = 0. This proves (5.33).
From (5.33) we see that A (1) =0 =min(%,0) =min(s, A, (6)). Thus in this case the answer
to Question 5.8 is affirmative. This completes Example 5.19.

5.2.4 Proof of Theorem 5.2
In this section we prove Theorem 5.2. Therefore, let the notation be as in Theorem 5.2.
Observe that it follows from (5.5) that

i(z) =Y pie" 1 (r; Riz) + po(z) (5.34)
i

for z € R%.
Next we introduce some notation. For j =1,...,N define P; : R - C and L;:R¢ — R? by

Pi(x) = pei@lo),

Lj(z) = rjRj(z). (5.35)

fiz) = 3 Py(2)(Ly2) + pi(a) (5.36)

p(z) = > Py Pu(Ljw)--- P (L, .. Ljyx) ji(L, ... Lj @)

Y Y (P Pl

k=0 j1,....jk=1,....N
ij (ij71 lea:) I//\(Lj,c lea:)) (537)
for all positive integers n and all = € R? .

Before proving Theorem 5.2 we prove auxiliary inequality (5.38) below. For a positive integer n > 1
we put
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1
A, = {mE]R{d > — },
"min
M, = sup |[V(z)l;
TEA,

recall that ryi, = minjr;.

Lemma 5.20. For any n > 1, we have

() < (1-p +Z 1—p)fpM,_ (5.38)

for all x € A,

Proof. By taking absolute value in (5.37), we see that

z)] < S 1P @) Py (L) Py (L - Ljy@) | (L, - Ly, o)
J1yeesgn=1,...,N

2 Y (P @IP (L)

E=0 j1,eeesju=1sers N
o |ij (ijq .- 'le'r)| |/’/\(ij s Lj1$)|)
= > pipi P AL, . Ly )]

Jiy--oin=1,....,N

n—1
+p Z Z PjiPjs = P, |’//\(ij s lem)| (539)

k=0 ji oot =1,.., N

for x € R?. Noting that |fi(z)| <1 for all z, we deduce from (5.39) that

@l < (Tw) +pz(zpj) sup (L, - Lj,y)|
= (l—p)”+pZ(1—p)’c sup [P(Lj, .- Lj,y)| (5.40)

for all x € A,,. Finally, it is clear that if y € A,, and if j;,...,jr = 1,...,N with £ < n, then
Lj, ...Ljy € A,_y, implying that |(Lj, ...Lj,y)| < Mp_y . It therefore follows from (5.40) that

[u(z)] < (1-p +E (1—p)f oMy
for = € A,, . This completes the proof of Lemma 5.20. (|

We now turn towards the proof of Theorem 5.2.

Proof of Theorem 5.2
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We first show that there exists a unique number ¢ such that

d opirit=1, (5.41)
J

and that s = lli)gg(% < t. Indeed, define ¢ : [0,00) = [0,00) by @(z) = > ;pjr;*. Since
>_;pj <1 and ¢ is a strictly increasing continuous function with lim; . ¢(z) = oo there exists
a unique t such that (5.41) holds. Also it can be shown by routine calculations that s satisfies
>ipjr;°<1.Thus 0<s<t.
For brevity we write
R —_—
" TITIlliII

throughout the remaining parts of the proof of Theorem 5.2.

Part 1: First we prove that A (n) > A (v) for 0 <A (v) <s. Let € >0. Next, note that
in this case ﬁ < 1. Also, observe that it follows from the definition of A (v) that there

min

exists a constant ¢ > 0 such that

sup [7(z)] < cR~ (2w ()-2)
|z|>R

for all R > 0. We therefore conclude from Lemma 5.20 that for all positive integers n > 1 and for
all z € A, , we have

n—1
@] < (1-p)"+ 3 (1 - p)pMo
k=0
< 1-p)"+ Z(l —p)kpcrr(:i;k)(éw(")_s)
k=0
n(A s 1 — k
= mln + pcrl'ﬂlll (V) E Z ( )
o0
n(A (v)—e) 1—p \*
< Tain + PTmin (m)
k=0 Tmin
(A, (v)—e)

< R,°+CR,

— (l_i_C)R;min(&éoo(V)*E)

— (l_i_C)RT:(éOO(V)*E)
where C' = ¢p/(1 rlip) . Thus

Ao (¥)—¢
min

sup [i(x)| < (1+ O)R,, 8=
|z|> Ry

for all positive integers n. Hence, if R > 0, we can choose a (unique) positive integer with
R, < R< Rpy1, whence

“@nw)e) A1+()C R (Bl)-2)

sup |f(z)| < sup |u(z)] < (1+C)R
|z|>R |z|>Rn

It follows immediately from this that A (1) > A (v) —e. We now obtain the desired result by
letting £ — 0. This completes the proof of Part 1.
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Part 2: Next we prove that A__(u) > 8., (V) for s <A_(v) <t. For positive integers n and

s+A (V)

m with 1 <n <m and for all z € A4,,, it follows from Lemma 5.20 that

~

()]

IN

IN

1
(l—p)m+p<— max M +

Q=P+ > (L=p)'pMp s+ > (1—p)pMp_4
k=0

k=n+1

M sup M,
P m—n<I<m 1 !

= (I-p™+ sup [p(y)|+0-p)",

ly|>r )

min

where we have used the fact that AM; <1 for all [. Thus for any a > 1 and any 2 € A,y (here
we write [z] for the largest integer less than = € R), we have

iz) < 1-p+@-p"+ sup  |P(y)
ly|>r (el
< (Q-pl+@-pn+ sup [7(y)
ly|>r(remn b
< 2(1-p)"+ sup [7(y)
ly|>r(renh
= 2rpin t+ sup [7(y)]
yIZr T P
< 2R+ sup [v(y)] -
ly|>R% ™ rinin
It follows from this that
sup |p(z)| < sup  |i(x)| < 2R+ sup [v(y)] - (5.42)

le|>r i

min

\z\>r7[a"] |y|ZR£La71)Tmin

—"min

Fix € > 0. It follows from the definition of A (v) that there exists a constant ¢ such that

sup [v(y)| < cR (A (¥)—¢)
ly|>R

for all R > 0. Using this and (5.42), we obtain

sup |p(z)|
jo|>Rg

where C' = 2 4 ¢ (&)%)

R <R < Rp,,, whence

IN

sup [(z)]
|z|>R

IN

< 2R 4 o B9 pr(e-D(BL ()-2)

min

IN

min

(2+ernin= ) Ry (s e-1) (8o )=))

= (rey~min (£0-D@L0)-9)

. Hence, if R > 0, we can choose a (unique) positive integer with

up.|aa)| < € (y) (807 D@~0-2)
jo|> Ry
¢ pomin (£,0-HAaLw)-9)
amin (5,18 (1))

min

r
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This clearly implies that

B 2 min (2, (1-2) (40 -2))

a a

forall € >0 and all @ > 1. Letting ¢ \, 0 and taking supremum over all a > 1, we obtain

B 2 s min (£, (1- D a )

a>1 a a

However, it is easily seen that sup,>; min(Z,(1 - L)AL (v)) equals Sé‘x’((yg) . Hence it follows

s A
£ A s+A
A v

that A (n) > si_éww( (3)

Part 3: Finally we prove that A (u) >t for t < A (v). Fix € > 0. It follows from the

definition of ¢ that Zj pir; '=%) < 1. Thus, we can choose § > 0 such that

. This completes the proof of Part 2.

ijrj_(t_s) +pi<1. (5.43)
J

Next, it follows from the definition of A_ (v) that there exists a constant ¢ > 0 such that
[9(2)] < claf~(@=)=2) (5.44)

for all «.
Also, since A_(v) > t, we can clearly find Ry > 0 such that

clz| "B < §lg| =2 (5.45)

for all |z| > Ry .
Finally, since p is continuous, and therefore bounded on compact sets, we can find M > 1 such
that |z|'~¢|i(z)] < M for all |z| < Ry, whence

A(z)] < M|z|~¢=) (5.46)

for all |z| <Ry .
Using an inductive argument we will now prove that for all integers k£ > 0 we have

[fi(x)| < Mlz|~=%)  for all |z| <r7k Ro. (5.47)

max

We first establish the start of the induction, namely, that (5.47) is true for k¥ = 0, i.e. we prove
that
[fi(x)| < Mlz|~*=) for all |z| < Ro . (5.48)

However, for all |z| < Ry, it follows immediately from (5.46) that |fi(z)] < M|z|~(t=%) . This
proves the start of the induction.

We now turn towards the proof of the inductive step. We therefore assume that

[fi(x)| < Mz|~*9)  for all |z| <r % Ro, (5.49)

max
for some fixed integer k£ > 0, and we must now prove that
fi(x)| < Mz|~¢ 2 for all |z| < r(F*VR, . (5.50)
(k+1)

We therefore let |z| < rmax ' Ro be given. It follows from the start of the induction, i.e. (5.48),
that |fi(z)| < M|z|~#=%) for all |z| < Ry. Hence we must prove that |fi(z)] < M|z|~*~2) for
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all Ry < |z| < r;§i+1)R0. Thus suppose that Ry < |z] < r;g]f(Jrl)Ro. Since |z| < r;g]f(Jrl)Ro , we
conclude that |Ljz| = rjlz| < rjr;g],c{’_l)Ro <r.k Ry forall j=1,...,N, and it therefore follows
from the inductive hypotheses (5.49) that

(Lz)| < M|Ljz| ") = Mry ¢ 709 (5.51)

Furthermore, since Ry < |z, it follows from (5.44) and (5.45) that
[9(2)] < cla]~@=®)=2) < glz|==2). (5.52)

Combining (5.51) and (5.52), we now see that

N
i(z)] < Y pili(L;z)| + plo(e)]
j=1
N
< N M | 9 o pa] (0
j=1
N
< S oMy a7 4 M| )
j=1
N
— (Z pjr;(tfs) + p(5> M|x|_(t_5)
j=1
S M|Z’|7(t75)

as required. This proves the inductive step.

Finally, (5.47) clearly implies that A, (1) >t —¢e, and letting € N\, 0 gives the desired result.

5.2.5 Proof of Theorem 5.4

In this section we prove Theorem 5.4. Therefore, let the notation be as in Theorem 5.4. Namely,
again we fix a list of the form (Si,...,SN,p1,...,pN,p,v) where (pi,...,pn,p) is a probability
vector and S1,...,Sy : RY = R? are similarities of the form S;(z) = rjR;z+a; where 0 <r; <1,
aj € R? and R; is an orthogonal matrix. We also assume that the list (Si,...,Sy) satisfies the
open set condition, i.e. there exists a non-empty, open and bounded set U such that S;(U) C U
for all j and S;(U)NSk(U) =@ for all j # k. In this section will make two further assumptions,

namely, we will assume that all the contracting ratios rq,...,rny are equal, and that all orthogonal
matrices Ry,..., Ry are equal, i.e. we are assuming that

rn = ...=TrN=T,

R, = ...=Ry=R.

We now turn towards the proof of Theorem 5.4. First we introduce some notation. Recall that s
is defined by
log(1 —
= loel=p) (5.53)
log r

and define u by
> opirt=1. (5.54)
J
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The proof of Theorem 5.4 will be divided into two parts. Firstly we prove that

E min | w, sup ( min (A, (v), s) + min (A, (), s) ) . (5.55)
2 anaz>1
ar T =t

The proof of (5.55) is given in Proposition 5.22. Secondly we prove that

—min | w, sup (min(A (v),s) + min (A (1/),5)) =min(s, A,(v)). (5.56)

=q2

The proof of (5.56) is given in Proposition 5.24. Theorem 5.4 now follows immediately by combining
(5.55) and (5.56).

Below we prove (5.55). However, we begin by introducing and recalling the following notation.
We let ¥* denote the family of all finite strings j = ji...j, with entries j, € {1,...,N},
ie. X* = {j = jl...jn|n e N, i = 1,...,N}. For a finite string j = 71 ...J, with entries
Jr €{1,...,N}, we will write |j| for the length of j,i.e. |j| =n and we will write p; = p;, - pj..
and Sj=S;,---Sj,. Let Pj:R? - C and L; : R?” - R? be defined as in (5.35), i.e.

Pie) = pe,
Li(x) = rjRj(z) =rR"(z). (5.57)

Finally, for j =ji...j, € ¥, we write

= a; * s *L* a. * * )
aj = aj, + leah + leLanj3 + + le ...L]n_la]

(5.58)

n "

Lemma 5.21. Assume that the OSC is satisfied with open set equal to U . Assume further that
0 € U. Then there exists a constant k > 0 such that

|aj1 _a'j2| > k',
for all ji,jo € £ with |j2| = |j1| =n and j2 #j1 -

Proof. Let % = dist(0,0U) and observe that x > 0 since U is open. Since clearly a; = S;(0)
for all j € T*, we see that dist(aj,dS;U) = dist(S;(0),08;U) = rlildist(0,0U) = rll&. As
Ji,J2 € % with |j2| = |j1] =n and j2 # j1, we conclude that S;;U and S;,U are disjoint. Thus
laj, — aj,| > dist(aj,,0S;,U) + dist(a;,,0S;,U) = 5r™ + §r™ = kr™ . This completes the proof. [

Proposition 5.22. Assume that the OSC is satisfied. Assume that ry = ... = rny =1 and that
Ry =...=Rnx =R. Recall that s and u are defined in (5.53) and (5.54), respectively. Then
1 . . .
Ay(p) > = min | w, sup (mm(é (v),s) + min (A, (v),s) )
2 a1.a5>1 q1 q2
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Proof. Recall that for j=7j; ...

and note that

Jn, we write aj = aj, + L} aj, + L} L} aj, +---+Lj ...Lj |

J17J2 aj,, ,

Pj, (x) Py, (Ljyx) - Py, (L, _, ... Lj,x) = pye'al®).
It therefore follows from (5.37) and the fact that ry =... =ry =r and R; =...= Ry = R, that
() > Py@Pu(Ljyx)-- Py (L, , ... Lye)i(Ly, ... Lj,x)

J1, ..,jnil,.. 71\[

n—1

Y. Y (Pu@PL L)
k=0 j1,...je=1,...,N
Py (Lju_y - Ly @) (L, . Ljy) )

> piet e +p2 > pie Dk (RY) )
lil=n k=0 |j|=k

for all positive integers n and all = . Next, taking taking absolute value and recalling that |z(z)| <1

for all x, gives

()]

for all positive integers n and all z.

n—1
< )| Y piet s +p> N pietalp(rk (RF) )
lil=n k=0 |j|=Fk
< D0 peital) +p2 > piesln ot (RY) ) (5.59)
lil=n k=0 [j|=k
Let xk denote the constant in Lemma 5.21. It is well-

known (see, e.g. [Str90b]) that we can choose two constants ¢j,cs > 0 and an auxiliary function
h:RY - R with the following properties:

1. h>0,

2. h(z) > e for |z| < e,

4. E(w) =0 for |z| > k.

Fix ¢1,q2 > 1 with qil—f—q% = 1. We now have

L4YB(0, c2 7

1
Sﬁd(B(O,c%%)) / (

L4B(0, e277))

3 | i@pds

B(0,c273)

3 preitasle)

B(chz,«%) ‘J|:n
n—1 2
+p Z Z piel G D (rk (R*)F ) ) dx
k=0 |j|=k

2
3 preitasle)

lil=n

s
B(0,c274)
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n—1 2
1 ilas )~ x
2 ey / > D pel ot (R )| de
LYB(0,c277)) i=0 [j =k
B(O,CZT‘%) J
. 2
<2 / e h(rm pietal®) | dg
LA(B(0, 1)) e )|.Zn ’
B(0,c2 ) J
2
1
s | Py (R )| de
(B0, 2 1) ,ZOlzk
B(0,c2 %) J
<2 L / h(r"z) z:pe’<a“”> dz
= TLYB(0,c ) et
2
1 — a2y
+2p°— 3 YD pe et (R )| de
LYB(0,c257)) i=0 [j—k
B(O,CZT‘%) J
1 .
_1 aj, —ajy | n
=2 G EOaT) . 2 p"lp"z/a( b ") de
T i =iz =0
+2p2£(T Z Z Pj, Pj2
2 k1,k2=0 [j1|=k1,|jz|=k2
x / ei(ajl —Qjy ‘Z)I’/\(rkl (R*)kl .17)/1/\(7’]92 (R*)k2x) dx
B(O,CZT‘%)
< ¢ Z pj1pj2h(rin(aj1 - a’j2))
li1|=liz|=n
n—1
+2p° Y Y PP
k1,k2=0 |j1|=k1,|jz|=k2
m
1 ~/ & k
X - 1 R* 1 q1 d
FED D) | ety i
B(O,CZT‘%)
7}
1 / ~ & k
X | —-— v(r*(R*)"x)|? dx ,(5.60
CHB0,0L)) [p(r® (R")"2)] (5.60)
B(O,CZT‘%)

where ¢o = 2¢; lm and where the last inequality is due to Holder’s inequality. Next, recall
that we are assuming that the OSC is satisfied with open set equal to U, say. We may clearly
assume that 0 € U, and it therefore follows from Lemma 5.21, that if [ji| = |j2| =n with ji1 # j2,

then |r~"(aj, —a;,)| > r~"kr™ = k. This and property (4) of h therefore implies that
h(rin(ajl - ajz)) =0

for all j; and j» with |ji| =|j2| =n and j; # j» . Using the fact that r* = Ejvzl p? , we therefore
conclude that
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Z pjlpj2/h\’(r_n(a’jl - a’j2)) = Z p.?

lir[=liz|=n lil=n

- [z
J

= ",

Combining this and (5.60) we now deduce that

1 N2
- d
Ed(B(O,cern)) / |U(x)| €T
B(07C27‘L")

n—1
nu 2
<cr™™ + 2p E E Pj1 Pj
k1,k2=0 |j1|=k1,|j2|=kz2

1

L4B(0, 2 77))
B(07C27‘L")

X [D(r* (R*)Fra)| 1 da

1 0.k k
2(R*)k2 42 q
X Ed(B(O,CQTLn)) / |V(T ( ) :L’)| T
B(Ovc27‘%)

Fix & > 0. It follows from the definition of A () that there exists a constant ¢ >0 such that

1

1 / e Y ¢
e se—— vix)|™ dﬂf < —
(cd<B<0,p>> e > SF-SOE

for all p >0 and j=1,2. Thus we obtain

1 -~ 2
— 1 T dx
B(0702r%)
nu 2 = ¢ ¢
<cor™ 4+ 27 Y > pipi —

TRV N 7 RPN g =
Ky k2=0 [j1|=k1, jz|=ko (Czr n+ 1) a1 (CQT n+ 2) a2

n—1

B e 9 9 DPj1 Pj,
=cor'"" + 2pc Z Z ph(Ag, (V)=e) k2 (A, (v)—e)
k1,k2=0 |j1|=k1,|j2|=k>

1 =4, (1) =4,, (v)+2e
— .61
X (r”) , (5.61)

_ pj —
and yj—m,and Ty =

2 &2

where ¢* = OO e Momentarily ertlng Ir; =
c

pj
B (0-:
2
xj, ---xj, and yj =y, -y, for j=ji...jn € X", (5.61) can be written as

1 "N 5
- d
Ed(B(07cern)) / |/‘(x)| €z
B(07C27‘L")
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Z Z Lj1 Y52

k1,k2=0 |j1|=k1,|j2|=k2

) -4, (-4, W)+2e [

-A, W)-A L (v)+2e g
< cor™ + 2p3c?

Sy a) (S

= cor"™ + 2p2c2<
k=0 |j|=k k=0 [j|=k

= cor™ + 2p3¢?

2 |\ 2o Z 2.

> A, ) -A, )2 (g -

= cor"™"

-A, (v)-A  (v)+2e n
> fql() —qz() ( 1( ]_—1) >k> ( 1< ]_—p >k>
Z v)—¢ A (v)—e )
k=0 rfa )= k=0 rfa )

(5.62)
It is easily seen that if A, (v) —e < s, then there exists an N. such that if n > N., then
n-1 k i — < —— < == for A (v) —e<s;
Y (mke) =4 TROT T TmET T v 5.63
éq-(")*f - " " ( : )
k=0 o
n< - for A, (v)—e=s,

for j =1,2. Also, if s <A, (v) —¢, then

where C; = %_1 . Combining (5.62), (5.63) and (5.64) and putting

_q()s

C = co + 2p*c? max(1,Cy, Cy,C1Cs) give the following:
If A, (v)—e<sand A (v) —e<s, then

; / |A(m)|2 Qe < @ rnu N ) 202 i *éql (l/)*éqz(l/)+25 1
L(B(0,cs L)) a = @ P rons

B(O,Cz 7‘%)

IN

1 7min(u7éq1 (1/)Jréq2 (V)746)
C ( > (5.65)

rn
forall n > N.;
If s<A,(v)—¢c and s <A (v)—¢, then

1 ~ N2
ﬁd(B(O,CZTLn)) / |U(x)| dx

B(0762 an)

o[ 1 —A,, ()—-A,, (v)+2¢ 1 1
<cor™ + 2pc (T'_”> C1Cy PBg ()—e=s)n (A, (v)—c=s)n




5.2 Fourier transforms of inhomogeneous self-similar measures 107

1 —min(u, 2s)
<C (-) ; (5.66)

1 -4, @) By, (v)+2¢ c 1 1
n 1T(Aq1(v)7878)n rne

1 7min(u,éq2 (1/)+5725)
<c () (5.67)

Cy r(ém (v)—e—s)n pne

1 7min(u,éq1 (1/)+5725)
<C <—> (5.68)

1 -4, Oj)iétxz (v)+2¢ 1 1
n

forall n > N, .

The desired result follows easily from (5.65)—(5.68). O

Lemma 5.23. Let A be a Borel probability measure on R . Let qi,q2 > 1 with = + q% =1.

Then "
AN +ALA) <24,(0).

Proof. For real numbers ¢ and p with ¢,p > 1, and a bounded measurable function f:R?¢ — C,
1 , : ;

let || fllq,, = (m fB((),p) |f(x)]|9dx)e denote the ¢’th norm of f with respect to normalized

Lebesgue measure restricted to the ball B(0, p) ; recall, that £? denotes Lebesgue measure in R? .

With this notation we see that A_(\) = liminf, o % for all ¢ > 1. It now follows from

Holder’s inequality that [|[A2[l1., < [[AllgolIAlgs.p » Whence

log ||A log ||A
é (A)+A (A) —  liminf Og” ||‘117P —l—hmlnf Og” ||q2n0
q1 q2 p—00 — log P p—+00 — logp
< limint <1og||A||M . log||A||q2,p>
p—00 —logp —logp
liminfbg(||>\||41,p||>\||qz,p)
p—r00 —logp
log [|A2 log || \I2
< liminfw = minf% =2A,(N).
p—oo  —logp p—oo  —logp

This proves Lemma 5.23. (|
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Proposition 5.24. Let A be a probability measure on R® . Recall that s and u are defined in
(5.53) and (5.54), respectively. Then

%min w, sup (min(éql()\),s) + min (A, (A), s) ) = min(s, A,(\)) .
91,92>1

Proof. For brevity write

A=—min| u, sup (min(éql()\),s) + min (A, (), s) )
q1,92>1

Next observe that 7 =7, p? < (32;p;)* = (1 —p)?, whence u > 2_10%(();17) — 9.
Part 1: We prove that A > min(s, A,(\)) . Putting ¢1 = g2 = 2 in the supremum in A and using

the fact that u > 2s gives

A

Y%

S min (u, min(A,(0), 5) + min(35(1), 5))

= %mm(u,2m1n(éz()\);3))
= min(s, A,(N)) .

Part 2: We prove that A < min(s, A,(A\)) . Using Lemma 5.23 and the fact that u > 2s gives

1
A < —min| u, sup (min(é N+ A (/\),28))

2 a1.a5>1 q1 q2
1 . .

< —min| uw, sup ( min (2A,(\), 2s) )
2 q1,92>1

= min(s, A(N) -

This completes the proof of Proposition 5.24. O

Proof of Theorem 5.4
The proof of Theorem 5.4 follows immediately from Proposition 5.22 and Proposition 5.24.
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