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Abstract

We first review recent work on stable and multistable random processes and their
localisability. Then most of the thesis concerns a new approach to these topics
based on characteristic functions.

Our aim is to construct processes on R, which are α(x)-multistable, where the
stability index α(x) varies with x. To do this we first use characteristic functions
to define α(x)-multistable random integrals and measures and examine their prop-
erties. We show that an α(x)-multistable random measure may be obtained as the
limit of a sequence of measures made up of α-stable random measures restricted
to small intervals with α constant on each interval.

We then use the multistable random integrals to define multistable random
processes on R and study the localisability of these processes. Thus we find con-
ditions that ensure that a process locally ‘looks like’ a given stochastic process
under enlargement and appropriate scaling. We give many examples of multi-
stable random processes and examine their local forms.

Finally, we examine the dimensions of graphs of α-stable random functions
defined by series with α-stable random variables as coefficients.
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Preface
The main part of this thesis studies stable and multistable random measures and
integrals leading to the construction of multistable random processes. We then
consider the local form of these processes. We give many examples of stable
processes and end by examining the dimensions of graphs of α-stable random
functions.

In Chapter 1, we give some general background to aspects of probability the-
ory including notation and terminology that we will refer to throughout the thesis.
We discuss α-stable random variables and vectors, α-stable random integrals and
measures, α-stable random processes and their properties. We review character-
istic functions which characterise random variables and vectors and consider the
characteristic functions of α-stable random variables and vectors.

In Chapter 2, we review recent developments on stable and multistable random
processes and their localisability. We first recall notions of localisability and the
local forms of a process. If a process X(t) is enlarged about a point u by scaling
by some h and the enlarged process converges to a limiting process, we say X is
localisable at u. Thus if the limit (in an appropriate sense)

lim
r→0

X(u+ rt)−X(u)
rh = Y (t)

for some process Y , we say that X is h-localisable at u with local form Y . A
multistable process is a process such that the local form at x is an α(x)-stable
random process, so it is a process whose local stability index α(x) varies with
x. We review some existing constructions of multistable random processes and
conditions for their localisability.

By defining stochastic integrals in term of characteristic functions in Chapter
3, we give a new construction of an α(x)-multistable ‘random measure’ which
we denote by Mα(x). We examine the properties of this ‘random measure’. In
particular we show that a multistable random measure Mα(x) may be obtained as
the limit of a sequence of random measures Mn, each of which is an independent
sum of the restriction of α-stable random measures to a large number of small
intervals with α constant on each interval. The local forms of α(x)-multistable
random measures are considered at the end of this chapter.

Our construction of α(x)-multistable random measures leads to a new defini-
tion of α(x)-multistable random processes in term of characteristic functions and
stochastic integrals. In Chapter 4, we define and study the localisability of these
processes. The first half of this chapter considers conditions for localisability of
general processes. The second half contains many examples of α(x)-multistable
random processes defined by stochastic integrals. We apply our theorems to prove
the localisability of these examples under certain conditions.
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We look at α-stable processes from a different viewpoint in Chapter 5. We let

FA(t) =
∞

∑
k=1

Akλ
(D−2)k sin(λkt),

where A1,A2, . . . are a sequence of identically independently distributed α-stable
random variables, when 0 < h, D < 2 and λ > 1. Then {FA(t), t ∈R} is an α-stable
random function. The function FA has a ‘fractal’ graph and we consider the box-
counting dimension and Hausdoff dimension of this graph. We use a potential-
theoretic method to get an almost sure lower bound for the Hausdoff dimension
and obtain a Hölder inequality which leads to an almost sure upper bound for the
box-counting dimension. Under certain conditions, the Hausdoff dimension and
box-counting dimension of graph(FA) equal min{1,D} almost surely.
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Chapter 1

General background to probability

1.1 Introduction
In this chapter, we give some general background to aspects of probability the-
ory that we will refer to throughout the thesis. In particular, this will set up the
terminology and notation to be used later.

First we review basic properties of probability theory and random processes.
We then discuss α-stable random variables and vectors leading on to α-stable inte-
grals, measures and processes. This is in preparation for the multistable processes
discussed in the later chapters. The last part of this chapter gives some examples
of stable processes. We will develop these examples by introducing multistable
versions in Chapters 2 and 4.

1.2 Basic probability theory
We first discuss random variables, random vectors and their distribution and char-
acteristic functions. This leads to random processes which play a major part in
this thesis. The final subsection recalls some standard definitions and properties
of convergence. Much of this material may be found in [10].

1.2.1 Random variables and random vectors
Let Ω be a non-empty set called a sample space. Let F be a sigma-field of subsets
of Ω, that is F is closed under the operations of taking countable intersections,
countable unions and complementation. The sets of F are called events.

A probability measure P on (Ω,F) is a function P : F → [0,1], such that
1) P( /0) = 0, P(Ω) = 1;
2) If A1,A2, . . . is a collection of disjoint members of F , so that Ai∩A j = /0 for

all i 6= j, then
P(A1∪A2∪ . . .) = P(A1)+P(A2)+ . . . ,
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that is P is countably additive on the sets of F .

Definition 1.2.1. A triple (Ω,F,P), comprising a set Ω, a σ-field F of subsets of
Ω and a probability measure P on (Ω,F), is called a probability space.

We assume throughout this thesis that we are working on some appropriate
underlying probability space (Ω,F,P) that will not always be mentioned specifi-
cally.

Definition 1.2.2. A random variable is a function X : Ω→ R such that {ω ∈ Ω :
X(ω) ≤ x} ∈ F for each x ∈ R. Equivalently, {ω ∈ Ω : X(ω) ∈ B} ∈ F for every
Borel set B⊆ R.

The higher dimensional analogue of a random variable is a random vector.

Definition 1.2.3. An n-dimensional random vector is a n-dimensional vector of
random variables, that is a function X : Ω→Rn such that {ω∈Ω : X(ω)∈B} ∈F
for every Borel set B⊆ Rn.

From now on, we will use {X ≤ x} to denote the event {ω ∈ Ω : X(ω) ≤ x}
where X is a random variable, and {X ∈A} to denote the event {ω∈Ω : X(ω)∈A}
where X is a random variable or vector.

The distribution function of a random variable or random vector X describes
the probability distribution of the values taken by X .

Definition 1.2.4. The distribution function of a random variable X is the function
F ≡ FX : R→ [0,1] given by

F(x)≡ FX(x) = P(X ≤ x).

If we have two random variables, their joint distribution indicates the depen-
dence between them.

Definition 1.2.5. Let X and Y be random variables. The joint distribution function
of X and Y is the function F ≡ FX ,Y : R2→ [0,1] given by

F(x,y)≡ FX ,Y (x,y) = P(X ≤ x,Y ≤ y).

The distribution function of a random vector can be considered as the joint
distribution of its component random variables.

Definition 1.2.6. The distribution function of a n-dimensional random vector X =
(X1,X2, . . . ,Xn) is the function F ≡ FX1,...,Xn: Rn→ [0,1] defined by

F(x)≡ FX1,...,Xn(x1, . . . ,xn) = P{Xi ≤ xi, i = 1, . . . ,n},

where x = (x1, . . . ,xn) ∈ Rn. Thus F may be regarded as the joint distribution
function of X1,X2, . . . ,Xn.
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There are several different senses of equality of two random variables or ran-
dom vectors. The following definitions are given in increasing order of strength.

Definition 1.2.7. Two random variables (random vectors) X and Y , not necessar-
ily on the same probability space, are equal in distribution if they have the same
distribution functions. Equivalently, they are equal in distribution if

P(X ∈ A) = P(Y ∈ A)

for all Borel sets A⊆R (A⊆Rn). We write X d=Y to mean that X and Y are equal
in distribution.

Definition 1.2.8. Two random variables (random vectors) X and Y on the same
probability space are equal almost surely if and only if

P(X 6= Y ) = 0.

We write X a.s= Y to mean that X and Y are equal almost surely.

The distribution of a random variable can often be expressed in terms of a
density function.

Definition 1.2.9. If the distribution function of a random variable X may be ex-
pressed as

F(x) = P(X ≤ x) =
Z x

−∞

f (u)du

for some integrable f : R→ [0,∞), we call f the (probability) density function of
X.

We often want to consider the average or mean of a random variable.

Definition 1.2.10. The expectation or mean of a random variable X on a proba-
bility space (Ω,F,P) is

E(X) =
Z

ω∈Ω

X(ω)dP(ω)

provided this integral exists.

If X has a probability density function f , then

E(X) =
Z

∞

−∞

x f (x)dx,

provided the integral exists. If two random variables have the same probability
distribution they will have the same expectation if it is defined.

Let A be an event and let 1A : Ω→ R be the indicator function of A; that is

1A(x) = 1 if x ∈ A;
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1A(x) = 0 if x ∈ Ac.

Note that
E(1A) = P(A).

Note also that

E

(
m

∑
i=1

Xi

)
=

m

∑
i=1

E(Xi)

for random variables X1,X2, . . . ,Xm, provided these expectations exist.
Probably the most important distribution is the normal or Gaussian distribu-

tion.

Definition 1.2.11. The normal or Gaussian distribution with mean µ and standard
deviation σ > 0, denoted by N(µ,σ2), is defined by the density function

f (x) =
1√

2πσ2
exp
{
−(x−µ)2

2σ2

}
,

where −∞ < x < ∞. If µ = 0 and σ2 = 1 then

f (x) =
1√
2π

exp
(
−1

2
x2
)

is the density function of the standard normal distribution.

Intuitively, two events are independent if the occurrence of one event does not
affect the occurrence of the other.

Definition 1.2.12. Two events A and B are independent if and only if

P(A∩B) = P(A)P(B).

More generally, an arbitrary collection of events are independent if and only
if for any finite subcollection A1,A2, . . . ,An, we have

P

(
n\

i=1

Ai

)
=

n

∏
i=1

P(Ai).

This leads to the definition of independence of random variables.

Definition 1.2.13. Two random variables (random vectors) X and Y are called
independent if the events {X ∈ A} and {Y ∈ B} are independent events for all
Borel sets A,B⊆ R (A,B⊆ Rn).

More generally, an arbitrary collection of random variables (random vectors)
are independent if and only if for any finite subcollection X1,X2, . . . ,Xn, and any
Borel sets A1, . . . ,An we have that {X1 ∈ A1}, . . . ,{Xn ∈ An} are independent
events.
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Note that if X1, . . . ,Xn are independent and f1, . . . , fn are continuous, then
f1(X1), . . . , fn(Xn) are independent, since { fi(Xi) ∈ Ai} = {Xi ∈ f−1

i (Ai)} for all
i = 1, . . . ,n.

Lemma 1.2.14. If two random variables X and Y are independent, then

E(XY ) = E(X)E(Y )

provide these expectations exist.

Proof. See [10, Lemma 9, Section 3.3].

We now recall the definitions of the characteristic functions of random vari-
ables and random vectors, which play a central part in this thesis.

Definition 1.2.15. The characteristic function of a random variable X is the func-
tion φ : R→ C defined by

φX(θ)≡ φ(θ) = E(eiθX) = E(cosθX)+ iE(sinθX),

for all θ ∈ R, where i =
√
−1.

Characteristic functions are essentially Fourier transforms, since

φX(θ) =
Z

eiθX(ω)dP(ω) =
Z

eiθx f (x)dx,

if X has a density function f .
Characteristic functions have several very useful properties, including that

they factorise for independent random variables.

Theorem 1.2.16. Every characteristic function φ satisfies
1) φ(0) = 1, |φ(θ)| ≤ 1 for all θ;
2) φ is uniformly continuous on R.

Proof. See [10, Theorem 3, Section 5.7].

Theorem 1.2.17. X1,X2, . . . ,Xm are independent random variables if and only if

φX1+···+Xm(θ) = φX1(θ)φX2(θ) . . .φXm(θ),

for all θ ∈ R.

Proof. See [10, Theorem 5, Section 5.7].

Characteristic functions of random vectors may be defined similarly, using a
scalar product.
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Definition 1.2.18. The characteristic function of a random vector X =(X1,X2, . . . ,Xn)
is a function φ : Rn→ C defined by

φX(θ) ≡ φ(θ)
≡ φ(θ1, . . . ,θn)

= E

(
exp

{
i

n

∑
j=1

θ jX j

})

for all θ = (θ1,θ2, . . . ,θn) ∈ Rn.

Properties similar to those for random variables hold.

Theorem 1.2.19. Every characteristic function φ satisfies
1) φ(0, . . . ,0) = 1, |φ(θ)| ≤ 1 for all θ = (θ1,θ2, . . . ,θn);
2) φ is uniformly continuous on Rn.

Proof. See [10, Theorem 3, Section 5.7].

Theorem 1.2.20. X1,X2, . . . ,Xm are independent random vectors if and only if

φX1+···+Xm(θ) = φX1(θ)φX2(θ) . . .φXm(θ),

for all θ ∈ Rn.

Proof. See [10, Theorem 5, Section 5.7].

Corollary 1.2.21. If X1, . . . ,Xn are independent random variables, then the char-
acteristic function of the random vector X = (X1,X2, . . . ,Xn) can be written as

φX(θ) = φX1...Xn(θ1, . . . ,θn)

= E
(

ei∑
n
j=1 θ jX j

)
=

n

∏
j=1

E
(

eiθ jX j
)

,

for θ = (θ1, . . . ,θ j) ∈ Rn.

Proof. Since X1, . . . ,Xn are independent random variables, by Lemma 1.2.14 we
have

E
(

ei∑
n
j=1 θ jX j

)
= E

(
n

∏
j=1

eiθ jX j

)

=
n

∏
j=1

E
(

eiθ jX j
)

.
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An important property of characteristic functions is that they uniquely deter-
mine the distribution of a random variable or random vector.

Proposition 1.2.22. Let X ,Y be random variables (random vectors). Then

φX(θ) = φY (θ)

for all θ ∈ R (θ ∈ Rn) if and only if X d= Y .

Proof. See [10, Corollary 3, Section 5.9] for details.

1.2.2 Random processes
Most of this thesis is concerned with random processes or stochastic processes on
R. In this section we review some notions relating to general processes.

Definition 1.2.23. Let T be a set (usually T is R, R+,Rn or a set of functions).
A stochastic process or random process on T is a collection of random variables
indexed by T on some probability space, that is {X(t), t ∈ T}, where X(t) is a
random variable for each t.

When the meaning is clear, we may refer to a process X or X(t). Very often
we consider random processes {X(t), t ∈ R} on the reals and think of t as ‘time’.

There are many kinds of processes, we concentrate on specific types which are
relevant to later chapters of this thesis.

Definition 1.2.24. Let {X(t), t ∈T} be a stochastic process. The finite-dimensional
distributions of X are the family of joint distributions of the vectors (X(t1),X(t2), . . . ,X(tn)),
where t1, t2, . . . , tn ∈ T . Thus, the vector (X(t1),X(t2), . . . ,X(tn)) has distribution
function Ft : Rn→ [0,1] given by

Ft1,t2,...,tn(x) = P(X(t1)≤ x1,X(t2)≤ x2, . . . ,X(tn)≤ xn)

where x = (x1,x2, . . . ,xn) ∈ Rn.

Definition 1.2.25. We say that two stochastic processes {X(t), t ∈T} and {Y (t), t ∈
T}, which may be defined on different probability spaces, are equal in finite di-
mensional distributions if for all t1, t2, . . . , tn ∈ T ,

(X(t1),X(t2), . . . ,X(tn))
d= (Y (t1),Y (t2), . . . ,Y (tn)).

We denote this by {X(t), t ∈ T} f dd
= {Y (t), t ∈ T} or just X(t)

f dd
= Y (t).

It is useful to express this in terms of equality of characteristic functions.
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Corollary 1.2.26. Let {X(t), t ∈ T} and {Y (t), t ∈ T} be stochastic processes.
Then

X(t)
f dd
= Y (t)

if and only if

φX(t1),...,X(tn)(θ1, . . . ,θn) = φY (t1),...,Y (tn)(θ1, . . . ,θn),

for all θ1, . . . ,θn ∈ R and all t1, t2, . . . , tn ∈ T for all n ∈ N.

Proof. The result follows directly from Proposition 1.2.22.

Many interesting processes on R are stationary, that is their finite-dimensional
distributions are invariant under time shifts.

Definition 1.2.27. A process {X(t), t ∈ R} is called stationary if

X(t)
f dd
= X(t +h),

for all h ∈ R, that is the vectors

(X(t1),X(t2), . . . ,X(tn))
d= (X(t1 +h),X(t2 +h), . . . ,X(tn +h)),

for all n ∈ N, t1, t2, . . . , tn ∈ R and h ∈ R.

Another frequent property is that of the increments being invariant under time
shifts.

Definition 1.2.28. A process {X(t), t ∈ R} has stationary increments if for all
h,a ∈ R,

X(t +h)−X(t)
f dd
= X(t +a+h)−X(t +a),

that is the vectors

(X(t1 +h)−X(t1), . . . ,X(tn +h)−X(tn))
d= (X(t1 +a+h)−X(t1 +a), . . . ,X(tn +a+h)−X(tn +a)),

for all n ∈ N, t1, t2, . . . , tn ∈ R and a,h ∈ R.

Definition 1.2.29. A process {X(t), t ∈ R} on R is said to have independent in-
crements if for all n ∈ N and t1 < t2 ≤ t3 < t4 ≤ . . . ≤ t2n−1 < t2n the increments
X(t2)−X(t1),X(t4)−X(t3), . . . ,X(t2n)−X(t2n−1) are independent.

Note that a process with stationary independent increments that is continuous
on the right is called a Lévy process.

Self-similar processes will play an important role in our development.

13



Definition 1.2.30. A process {X(t), t ∈ R} on R is self-similar with index h > 0
if, for all r > 0,

X(rt)
f dd
= rhX(t),

that is for all n≥ 1, t1, t2, . . . , tn ∈ T and all r > 0,

(X(rt1),X(rt2), . . . ,X(rtn))
d= (rhX(t1),rhX(t2), . . . ,rhX(tn)). (1.1)

Note that there are obvious analogues to Definitions 1.2.27 to 1.2.30 for pro-
cesses {X(t), t ∈ R+} on the non-negative reals.

The best known example of a self-similar process with stationary independent
increments is Brownian motion, sometimes called the Wiener process.

Definition 1.2.31. Brownian motion or the Wiener process, B = {B(t), t ≥ 0} on
R+ is a stochastic process characterised by:

1) B(t) is continuous with B(0) = 0 almost surely;
2) B has independent increments;
3) B(t +h)−B(t) is N(0,h) for all t,h≥ 0.

Since the distribution B(t + h)− B(t) depends only on h, it may be shown

that B(t + h)−B(t)
f dd
= B(t + a + h)−B(t + a), for all t,h,a ≥ 0. Thus B has

stationary independent increments. It may also be shown using (1.1) that B is a
1/2-self-similar process.

An alternative approach will be considered in Section 1.4.3 where we consider
Brownian motion as a stochastic integral from which these properties may be
derived.

Finally in this section we state the Kolmogorov Existence Theorem or Kol-
mogorov Extension Theorem which will enable us to assert the existence of ran-
dom processes that have given families of finite-dimensional distributions. This
theorem may be expressed in a number of equivalent forms. Here we give a ver-
sion in terms of the distributions of random vectors.

Theorem 1.2.32. Let T be a set (usually R,R+,Rn or a set of functions). For
each k ∈N and t1, t2, . . . , tk ∈ T let Xt1,...,tk be a random vector in Rk. Suppose that
these random vectors satisfy the consistency conditions:

1) for any k ∈N and permutation π of {1,2, . . . ,k}, with Q be the k×k matrix
corresponding to the permutation π, that is [Q]i, j = 1 if j = π(i) and 0 otherwise,
we have

Xt1,...,tk
d= Q−1(Xtπ(1),...,tπ(k));

2) for all k,m ∈ N, writing P : Rk+m→ Rk for the projection
P(x1, . . . ,xk,xk+1, . . . ,xk+m) = (x1, . . . ,xk), we have

Xt1,...,tk
d= P(Xt1,...,tk,tk+1,...,tk+m).
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Then there exists a probability space (Ω,F,R) and a stochastic process X
defined on this probability space, such that for all k ∈ N and t1, . . . , tk ∈ T ,

(X(t1), . . . ,X(tk))
d= Xt1,...,tk .

Proof. See [2, Theorem 36.2] for the details of the proof.

Often the finite-dimensional distributions of a process are specified in terms
of characteristic functions, so it is useful to express Theorem 1.2.32 in terms of
characteristic functions.

Corollary 1.2.33. Let T be a set (usually R,R+,Rn or a set of functions). For
each k∈N and t1, t2, . . . , tk ∈ T let φt1,...,tk(θ1, . . . ,θk) be the characteristic function
of a k-dimensional random vector. Suppose that these characteristic functions
satisfy the consistency conditions:

1) for every permutation π of {1,2, . . . ,k},

φtπ(1),...,tπ(k)(θπ(1), . . . ,θπ(k)) = φt1,...,tk(θ1, . . . ,θk)

for all θ = (θ1, . . . ,θk) ∈ Rk;
2) for all k,m ∈ N and t1, t2, . . . , tk+m ∈ T ,

φt1,...,tk(θ1, . . . ,θk) = φt1,...,tk,tk+1,...,tk+m(θ1, . . . ,θk,0, . . . ,0)

(where ‘0’ is taken m times) for all (θ1,θ2, . . . ,θk) ∈ Rk.
Then there exists a probability space (Ω,F,P) and a stochastic process X de-

fined on this probability space, such that, for all k ∈ N and t1, . . . , tk ∈ T ,

φt1,...,tk(θ1, . . . ,θk) = φX(t1),...,X(tk)(θ1, . . . ,θk),

for all θ1, . . . ,θk ∈ R, where φX(t1),...,X(tk) is the characteristic function of the ran-
dom vector (X(t1), . . . ,X(tk)). In other words, there is a probability space on
which there is a stochastic process X such that the characteristic functions of the
finite-dimensional distributions of X are given by φt1,...,tk .

Proof. For each t1, . . . , tk let Xt1,...,tk be a random vector with characteristic func-
tion φt1,...,tk . Write · for the dot product and θ = (θ1, . . . ,θk). Then with Q the
matrix of the permutation π, from condition 1)

E(exp(iθ ·Xt1,...,tk)) = E(exp(iQ(θ) ·Xtπ(1),...,tπ(k)))

= E(exp(iθ ·Q−1(Xtπ(1),...,tπ(k)))).

By the uniqueness of characteristic functions, Xt1,...,tk
d= Q−1(Xtπ(1),...,tπ(k)).

Let P : Rk+m→Rk be the projection onto the first k coordinates, then condition
2) implies

E(exp(iθ ·Xt1,...,tk)) = E(exp(iθ ·P(Xt1,...,tk+m))),
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for θ = (θ1, . . . ,θk). By the uniqueness of characteristic functions, Xt1,...,tk
d=

P(Xt1,...,tk,tk+1,...,tk+m).
Thus the Kolmogorov Existence Theorem (Theorem 1.2.32) implies that there

is a probability space on which there is a stochastic process X such that φt1,...,tk is
the characteristic function of its finite-dimensional distributions.

1.2.3 Convergence properties
There are several senses in which a sequence of random variables or random vec-
tors may be convergent.

Definition 1.2.34. Let X ,X1,X2, . . . be random variables (random vectors) with
respective distribution functions F,F1,F2, . . . . We say that Xm converges to X in
distribution or in law, written Xm

d→ X, if Fm(x)→ F(x) at all x∈R (Rn) at which
F is continuous.

Equivalently, Xm
d→ X if

lim
m→∞

Z
x∈Rn

g(x)dFm(x) =
Z

x∈Rn
g(x)dF(x).

for all continuous bounded g : Rn→ R,
Equivalently, Xm

d→ X if

lim
m→∞

P(Xm ∈ A) = P(X ∈ A)

for all continuity sets A ⊆ Rn, that is Borel sets A such that the boundary of A is
an event of probability 0.

Definition 1.2.35. Let X ,X1,X2, . . . be random variables (random vectors) on
the same probability space. We say that Xm converges to X in probability or
stochastically, written Xm

p→ X, if

lim
m→∞

P(|X−Xm| ≥ ε) = 0,

for all ε > 0.

Definition 1.2.36. Let X ,X1,X2, . . . be be random variables (random vectors) on
the same probability space. We say that Xm converges to X almost surely, written
Xm

a.s→ X, if
P({ω ∈Ω : Xm(ω)→ X(ω)}) = 1.

There are a number of inter-relationships between these definitions of conver-
gence.
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Proposition 1.2.37. Let X ,X1,X2, . . . be random variables (random vectors) on
the same probability space.

1) If Xm
a.s→ X then Xm

p→ X;
2) If Xm

p→ X then Xm
d→ X;

3) If Xm
d→ 0 then Xm

p→ 0.

Proof. See [18, Theorem 5.16].

We will also need the following result of Kolmogorov.

Proposition 1.2.38. Let X ,X1,X2, . . . be a sequence of independent random vari-
ables on the same probability space. If ∑

∞
j=1 X j

p→ X then ∑
∞
j=1 X j

a.s→ X.

Proof. See [13, Theorem 6.1].

We have already noted that characteristic functions determine the distribution
of random variables or random vectors. The next theorem, Lévy’s Continuity
Theorem, says that pointwise convergence of characteristic functions essentially
determines convergence in distribution.

Theorem 1.2.39. Lévy’s Continuity Theorem
Suppose that X1,X2, . . . is a sequence of random variables (random vectors)

with corresponding characteristic functions φ1,φ2, . . . .
1) If Xn

d→ X for some random variable (random vector) X with characteristic
function φ, then φn(θ)→ φ(θ) for all θ;

2) Conversely, if φ(θ) = limn→∞ φn(θ) exists for all θ and is continuous at
θ = 0, then φ is the characteristic function of some random variable (random

vector) X and Xn
d→ X.

Proof. See [10, Theorem 5, Section 5.9].

1.3 Stable random variables and stable random vec-
tors

In this section, we introduce stable random variables and stable random vectors
which underlie stable and multistable integrals and processes.

Definition 1.3.1. A random variable X is said to have stable distribution if for
every pair of positive numbers A and B, there is a positive number C and a real
number D such that

AX1 +BX2
d= CX +D, (1.2)

where X1 and X2 are independent copies of X. We call X strictly stable if (1.2)
holds with D = 0. If X and −X have the same distribution, then X is symmetric.
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Theorem 1.3.2. For any stable random variable X, there is a number α, 0 < α≤ 2
such that the number C in (1.2) satisfies

Cα = Aα +Bα. (1.3)

Proof. See [8, Section VI.1].

The number α is called the index of stability and we say that X is α-stable.
A simple example to illustrate Theorem 1.3.2 is a Gaussian random variable.

Example 1.3.3. If X ∼ N(µ,ν), that is a normal random variable with mean µ
and variance ν2, then X has a stable distribution with α = 2.

Proof. Let X1 and X2 be independent copies of X , then

AX1 +BX2 ∼ N((A+B)µ,(A2 +B2)1/2
ν),

which implies (1.2) holds with C = (A2 +B2)1/2 and D = (A+B−C)µ. Thus the
normal distribution is a 2-stable distribution.

The next proposition is a useful consequence of Definition 1.3.1, and indeed
provides an equivalent definition.

Proposition 1.3.4. If a random variable X has an α-stable distribution then for
any n≥ 2, there is a real number Dn such that

X1 +X2 + ...+Xn
d= n1/αX +Dn, (1.4)

where X1, X2,...,Xn are independent copies of X.

Proof. This follows from Definition 1.3.1 by induction.

The following characterisation of stable random variables in terms of charac-
teristic functions is fundamental to the theory.

Recall that sign(x) = x/|x| (x 6= 0) and sign(0) = 0.

Proposition 1.3.5. A random variable X has stable distribution with index of sta-
bility 0 < α≤ 2 iff there are σ≥ 0, −1≤ β≤ 1, and µ ∈ R such that the charac-
teristic function of X has the following form:

E(exp iθX) = exp{−σ
α|θ|α(1− iβ(sign tan(πα/2))+ iµθ},α 6= 1,

E(exp iθX) = exp{−σ|θ|(1+ iβ(2/π)(signθ) ln |θ|)+ iµθ},α = 1. (1.5)

The parameters σ, β and µ are unique.

Proof. See [9, Section 34].
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Notice that (1.5) gives a characterisation of a stable random variable by four
parameters, the stability index 0 < α≤ 2, the scale σ≥ 0, the skewness−1≤ β≤ 1
and the shift µ ∈ R. We denote the corresponding stable distribution by

Sα(σ,β,µ).

Lemma 1.3.6. If X1, X2,...,Xn have independent identical distributions Sα(σ,0,0),
then

X1 +X2 + ...+Xn
d= n1/αX1, (1.6)

that is it has the distribution Sα(n1/ασ,0,0)

Proof. This follows immediately from (1.4).

We now recall some properties of the stable distributions.

Lemma 1.3.7. Let X be an α-stable random distribution with 0 < α < 2. For all
β > 1

P(X > β)≤ cαβ
−α,

where cα depends only on α.

Proof. See [17, Property 1.2.15].

Lemma 1.3.8. Let X ∼ Sα(σ,β,µ) with 0 < α < 2. Then

E|X |p < ∞,

for 0 < p < α, and
E|X |p = ∞,

for p≥ α.

Proof. See [17, Property 1.2.16].

From Lemma 1.3.8, we can see that if α ≤ 1, X does not have finite expecta-
tion.

Lemma 1.3.9. Let X ∼ Sα(σ,β,µ) with α 6= 1. Then X is strictly stable iff µ = 0.
Let X ∼ S1(σ,β,µ). Then X is strictly stable iff β = 0.

Proof. See [17, Property 1.2.6 and Property 1.2.8].

Lemma 1.3.10. A distribution X ∼ Sα(σ,β,µ) is symmetric iff β = 0 and µ = 0.

Proof. See [17, Property 1.2.5].
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Note that every symmetric stable random variable is strictly stable. In this
thesis, we will generally only require the case of symmetric, and thus strictly
stable distributions when µ = β = 0, so (1.5) becomes

E(exp iθX) = exp{−σ
α|θ|α}, (1.7)

and in particular that characteristic function is real.

Example 1.3.11. The characteristic function of a normal distribution X ∼N(0,1)∼
S2(2−1/2,0,0) is

E(exp iθX) = exp
{
−1

2
θ

2
}

. (1.8)

The next lemma shows the behaviour of the scale of the sum of two indepen-
dent stable random variables.

Lemma 1.3.12. Let X1 and X2 be independent random variables with Xi∼ Sα(σi,0,0),
i = 1,2. Then X1 +X2 ∼ Sα(σ,0,0), with σ = (σα

1 +σα
2 )1/α.

Proof. See [17, Property 1.2.1].

We now introduce stable random vectors, which extend stable random vari-
ables to Rd .

Definition 1.3.13. A random vector X = (X1,X2, ...,Xd) is said to be a stable ran-
dom vector in Rd if for any positive numbers A and B there is a positive number
C and a vector D ∈ Rd such that

AX (1) +BX (2) d= CX +D, (1.9)

where X (1) and X (2) are independent copies of X. If X = (X1,X2, ...,Xd) and
−X = (−X1,−X2, ...,−Xd) have the same distribution then X is symmetric. If
D = 0, then X is a strictly stable random vector.

We generally will work with symmetric, and thus strictly stable random vec-
tors throughout this thesis.

The following theorem is an analogue of Theorem 1.3.2.

Theorem 1.3.14. Let X = (X1,X2, ...,Xd) be a stable random vector in Rd . Then
there is a constant α ∈ (0,2] such that, in (1.9), C = (Aα + Bα)1/α. Moreover,
any linear combination of the components of X of the type Y = ∑

d
k=1 bkXk is an

α-stable random variable.

Proof. See [17, Theorem 2.1.2].

Definition 1.3.15. A random vector X in Rd is called α-stable if (1.9) holds with
C = (Aα +Bα)1/α.
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As with α-stable random variables, we can characterise α-stable random vec-
tors by their characteristic functions. As we mentioned before, we only consider
the symmetric strictly stable case.

There is a characterisation of characteristic functions of α-stable random vec-
tors with independent components.

Proposition 1.3.16. Let X = (X1,X2, ...,Xd) be a symmetric α-stable random vec-
tor in Rd with X j ∼ Sα(σ j,0,0) independently for j = 1, . . . ,d. Then the charac-
teristic function of X is

φ(θ)≡ φ(θ1,θ2, ...,θd) = exp

{
−

d

∑
j=1

σ
α
j |θ j|α

}
, (1.10)

for θ j ∈ R, j = 1,2, . . . ,d.

Proof. Since X1, . . . ,Xd are independent, we have

Eexp

{
i

d

∑
j=1

θ jX j

}
= E

d

∏
j=1

exp
{

iθ jX j
}

=
d

∏
j=1

Eexp
{

iθ jX j
}

=
d

∏
j=1

exp
{
−σ

α
j |θ j|α

}
= exp

{
−

d

∑
j=1

σ
α
j |θ j|α

}
.

A basic example of a symmetric α-stable random vector is a multivariate nor-
mal distribution.

Example 1.3.17. If X = (X1,X2, ...,Xd) with X j ∼ N(0,1) independently for j =
1, . . . ,d, then the characteristic function of X is:

Eexp

{
i

d

∑
j=1

θ jXk

}
= exp

{
−1

2

d

∑
j=1

θ
2
j

}
.

Proof. This follows directly from Proposition 1.3.16 and Example 1.3.11.
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1.4 Stable random processes
Let {X(t), t ∈ T} be a stochastic process, where T is a set. For our purposes, T
will be R, R+, Rn or a set of functions. Recall the finite-dimensional distributions
of {X(t), t ∈ T} are the joint distributions of the vector (X(t1), X(t2), . . . , X(tn)),
where t1, t2, . . . , tn ∈ T .

We now can introduce the definition of an α-stable stochastic process.

Definition 1.4.1. An α-stable stochastic process {X(t), t ∈ T} is a process such
that every vector (X(t1),X(t2), . . . ,X(td)) with d ≥ 1 and t1, t2, . . . , td ∈ R is α-
stable. X is strictly stable or symmetric if all these vectors are strictly stable or
symmetric respectively.

Example 1.4.2. Brownian motion is a 2-stable process.

Proof. This may be deduced from Definition 1.2.31 by considering the multivari-
ate Gaussian vector of increments.

Since we will mainly concentrate on symmetric stable processes in this thesis,
we will write “stable” to mean “symmetric stable”, unless otherwise stated.

1.4.1 Stable stochastic integrals
We will be particularly concerned with processes on R that are defined by stochas-
tic integrals. We first define families of functions that will be α-stable integrable.

Definition 1.4.3. For 0 < α≤ 2 let

Fα = { f : R→ R : f is Lebesgue measurable,
Z
| f (x)|αdx < ∞}. (1.11)

(Note that for the purpose of this thesis the control measure, that is the measure
of integration in (1.11), will always be Lebesgue measure, see [17, Chapter 3].)

For a,b ∈ R, and f1, f2 ∈ Fα we haveZ
|a f1(x)+b f2(x)|αdx ≤ c

Z
|a f1(x)|αdx+ c

Z
|b f2(x)|αdx

= c|a|α
Z
| f1(x)|αdx+ c|b|α

Z
| f2(x)|αdx

< ∞

where c = max
{

2α−1,1
}

(see Lemma 3.2.2 for a generalisation). Thus a f1 +
b f2 ∈ Fα, which implies Fα is a linear space.

We define a stable integral to be a stochastic process {I( f ), f ∈Fα} indexed by
Fα, by using characteristic functions to define the finite-dimensional distributions
and then applying the corollary of Kolmogorov’s Existence Theorem (Corollary
1.2.33) to show this defines a process on {I( f ), f ∈ Fα}.
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Definition 1.4.4. Given d ≥ 1 and f1, f2, ..., fd ∈ Fα, define a probability mea-
sure P f1,..., fd on the random vector (I( f1), I( f2), . . . , I( fd)) by the characteristic
function

φI( f1),...,I( fd)(θ1, ...,θd)≡ φ f1,..., fd(θ1, ...,θd) = exp

{
−

Z ∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
α

dx

}
,

(1.12)
for (θ1,θ2, . . . ,θd) ∈ Rd .

The next Proposition shows that (1.12) defines a stochastic process on Fα.

Proposition 1.4.5. There exists a stochastic process {I( f ), f ∈ Fα} whose finite-
dimensional distributions are given by (1.12).

Proof. First we note that for each f1, . . . , fd , (1.12) is indeed the characteristic
function of a random vector, see [17, Section 3.2]. We now apply Kolmogorov’s
Existence Theorem to the space of functions Fα to show the consistency of the
distribution given by these characteristic functions. Note that for any permutation
(π(1),π(2), ...,π(d)) of (1,2, ...,d), we have

φ fπ(1),...,π(d)(θπ(1), ...,θπ(d)) = exp

{
−

Z ∣∣∣∣∣ d

∑
j=1

θπ( j) fπ( j)(x)

∣∣∣∣∣
α

dx

}

= exp

{
−

Z ∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
α

dx

}
= φ f1,..., fd(θ1, ...,θd),

and for any n≤ d,

φ f1,..., fn(θ1, ...,θn) = exp

{
−

Z ∣∣∣∣∣ n

∑
j=1

θ j f j(x)

∣∣∣∣∣
α

dx

}

= exp

{
−

Z ∣∣∣∣∣ n

∑
j=1

θ j f j(x)+
d

∑
i=n+1

0 fi(x)

∣∣∣∣∣
α

dx

}
= φ f1,..., fn,..., fd(θ1, ...,θn,0, ...,0).

By the corollary to Kolmogorov’s Existence Theorem (Corollary 1.2.33), there
is a stochastic process defined on Fα which we denote by {I( f ), f ∈ Fα} with
finite-dimensional distributions given by (1.12).

Definition 1.4.4 also ensures that {I( f ), f ∈ Fα} is a linear functional.

Proposition 1.4.6. If f1, f2 ∈ Fα, then for all real numbers a1 and a2,

I(a1 f1 +a2 f2) = a1I( f1)+a2I( f2)

almost surely.
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Proof. See [17, Property 3.2.3]; this is shown in a more general setting in Propo-
sition 3.2.6 of Chapter 3.

Proposition 1.4.7. For f ∈ Fα, the random variable I( f ) has distribution I( f )∼
Sα

(
(
R
| f (x)|αdx)1/α ,0,0

)
and characteristic function

Eexp{iθI( f )}= exp
{
−

Z
|θ f (x)|αdx

}
. (1.13)

Proof. This follows from (1.12) taking d = 1 and f1 = f , and (1.7).

From (1.12), if f1, f2, . . . , fd ∈Fα, the characteristic function of random vector
(I( f1), I( f2), ..., I( fd)) is given by

Eexp{i
d

∑
j=1

θ jI( f j)}= exp

{
−

Z ∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
α

dx

}
. (1.14)

In particular, this implies that the random vector (I( f1), I( f2), ..., I( fd)) is sym-
metric α-stable, by Proposition 1.3.5.

1.4.2 α-stable random measure
Let (R,E ,L) be the Lebesgue measure space, where L is Lebesgue measure and
E is the σ-field of Lebesgue measurable sets. Let

E0 = {A ∈ E : L(A) < ∞}

be the measurable subsets of R of finite Lebesgue measure.
Let (Ω,F,P) be the probability space underlying the process {I( f ), f ∈ Fα}

and L0(Ω) be the set of all real random variables on (Ω,F,P).
We define α-stable random measure to be a family of random variables on the

sets of E0 that have measure-like properties.

Definition 1.4.8. The set function

Mα : E0→ L0(Ω)

such that for A ∈ E0
Mα(A) = I(1A),

where I(.) is the α-stable integral, is called α-stable random measure.

Given an α-stable random measure Mα, it is natural to writeZ
∞

−∞

f (x)dMα(x) =
Z

f (x)dMα(x) = I( f ), (1.15)

for f ∈ Fα.
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Proposition 1.4.9. If Mα is an α-stable random measure then

Mα(A)∼ Sα

(
(L(A))1/α,0,0

)
,

for A ∈ E0 with characteristic function

E(exp iθMα(A)) = exp
{
−

Z
A
|θ|αdx

}
. (1.16)

Proof. This follows from Proposition 1.4.7 and Definition 1.4.8.

In the notation of (1.15), the characteristic function (1.13) becomes

E
(

exp iθ
Z

f (x)dMα(x)
)

= exp
{
−

Z
|θ f (x)|αdx

}
, (1.17)

for f ∈ Fα.
Standard measures are countably additive on a σ-field. We give an analogous

definition for random measures.

Definition 1.4.10. We say that a set function M : E0→ L0 is σ-additive or count-
ably additive if whenever A1,A2,...,Ak ∈ E0 are disjoint and

S
∞
j=1 A j ∈ E0, then

M

(
∞[

j=1

A j

)
=

∞

∑
j=1

M(A j)

almost surely.

Independence on disjoint sets is also a useful property and we call this being
independent scattered.

Definition 1.4.11. We say that a set function M : E0→ L0 is independent scattered
if whenever A1,A2,...,Ak ∈E0 are disjoint, then the random variables M(A1),M(A2),...,M(Ak)
are independent.

It may be shown from Definitions 1.4.4 and 1.4.8 that the α-stable measure
Mα is a ‘random measure’ that is independent scattered and σ-additive.

Proposition 1.4.12. Mα is independent scattered.

Proposition 1.4.13. Mα is σ-additive.

The proof of these propositions can be found in [17, Section 3.3]. Proofs in a
more general setting are given in Chapter 3.

Note that a 2-stable measure is just a Wiener measure or Brownian noise.
The next lemma on translation and scaling of random measures will be used

in our discussion of various examples.
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Lemma 1.4.14. Let Mα be α-stable measure, τ∈R and c > 0. For f1, f2, . . . , fd ∈
Fα, we have(Z

∞

−∞

f1(x− τ)dMα(x),
Z

∞

−∞

f2(x− τ)dMα(x), . . . ,
Z

∞

−∞

fd(x− τ)dMα(x)
)

d=
(Z

∞

−∞

f1(x)dMα(x),
Z

∞

−∞

f2(x)dMα(x), . . . ,
Z

∞

−∞

fd(x)dMα(x)
)

, (1.18)

and (Z
∞

−∞

f1(cx)dMα(x), . . . ,
Z

∞

−∞

fd(cx)dMα(x)
)

d=
(
|c|−1/α

Z
∞

−∞

f1(x)dMα(x), . . . , |c|−1/α

Z
∞

−∞

fd(x)dMα(x)
)

. (1.19)

Proof. For f j ∈ Fα, θ j ∈ R and j = 1,2, . . . ,d, we consider the characteristic
function of the vector(Z

∞

−∞

f1(x− τ)dMα(x),
Z

∞

−∞

f2(x− τ)dMα(x), . . . ,
Z

∞

−∞

fd(x− τ)dMα(x)
)

.

We have

E

(
exp i

{
d

∑
j=1

θ j

Z
∞

−∞

f j(x− τ)dMα(x)

})
= exp

{
−

Z
∞

−∞

∣∣∣∣∣ d

∑
j=1

θ j f j(x− τ)

∣∣∣∣∣
α

dx

}

= exp

{
−

Z
∞

−∞

∣∣∣∣∣ d

∑
j=1

θ j f j(y)

∣∣∣∣∣
α

dy

}

= E

(
exp i

{
d

∑
j=1

θ j

Z
∞

−∞

f j(y)dMα(y)

})
,

after setting y = x− τ, which is the joint characteristic function of(Z
∞

−∞

f1(x)dMα(x),
Z

∞

−∞

f2(x)dMα(x), . . . ,
Z

∞

−∞

fd(x)dMα(x)
)

.

Thus (1.18) is true.
For (1.19), we consider the joint characteristic function of(Z

∞

−∞

f1(cx)dMα(x),
Z

∞

−∞

f2(cx)dMα(x), . . . ,
Z

∞

−∞

fd(cx)dMα(x)
)

.
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Then

E

(
exp i

{
d

∑
j=1

θ j

Z
∞

−∞

f j(cx)dMα(x)

})
= exp

{
−

Z
∞

−∞

∣∣∣∣∣ d

∑
j=1

θ j f j(cx)

∣∣∣∣∣
α

dx

}

= exp

{
−

Z
∞

−∞

∣∣∣∣∣ d

∑
j=1

θ j|c|−1/α f j(y)

∣∣∣∣∣
α

dy

}

= E

(
exp i

{
d

∑
j=1

θ j|c|−1/α

Z
∞

−∞

f j(y)dMα(y)

})
,

after setting y = cx, which is the joint characteristic function of(
|c|−1/α

Z
∞

−∞

f1(x)dMα(x), |c|−1/α

Z
∞

−∞

f2(x)dMα(x), . . . , |c|−1/α

Z
∞

−∞

fd(x)dMα(x)
)

.

1.4.3 Examples of α-stable processes
We now introduce some examples of α-stable processes which are discussed in
[17]. We will meet generalisations of many of these in Chapters 2 and 4.

Example 1.4.15. Symmetric α-stable Lévy motion.
Let

Lα(t) =
Z

1[0,t]dMα(x)

=
Z t

0
dMα(x)

= Mα[0, t] (1.20)

for t ≥ 0, where Mα is symmetric α-stable measure on [0,∞).

Then {Lα(t), t ≥ 0} is an α-stable process. Thus,

Lα(0) = 0 a.s.

Lα(t)−Lα(s) =
Z t

s
dMα(x) = Mα([s, t])∼ Sα(|t− s|1/α,0,0),

so if 0≤ t1 < t2 ≤ ·· · ≤ tn−1 < tn, then

(Lα(t2)−Lα(t1),Lα(t3)−Lα(t2), . . . ,Lα(tn)−Lα(tn−1))
d= (Mα[t1, t2],Mα[t2, t3], . . . ,Mα[tn−1, tn]) ,

is a vector with independent components since Mα is independent scattered. Thus
symmetric Lα has independent increments. It may be checked from Lemma
1.4.14 that it is 1/α-self-similar, which means the process, Lα(t), with a param-
eter 1/α has the identical probability distribution as a properly rescaled process,
|c|1/αLα(ct). The symmetric α-stable Lévy motion has stationary increments.
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Example 1.4.16. Moving average processes.
Let g ∈ Fα where 0 < α≤ 2, and define

X(t) =
Z

∞

−∞

g(t− x)dMα(x) (1.21)

for t ∈ R.

Then {X(t), t ∈ R} is an α-stable process that is stationary. To see this note
that, by Lemma 1.4.14, for τ≥ 0, we have the joint distribution

X(t + τ) =
Z

∞

−∞

g(t + τ− x)dMα(x)

f dd
=

Z
∞

−∞

g(t− x)dMα(x)

= X(t).

using (1.18).
A specific example of a moving average process is the Reverse Ornstein-

Uhlenbeck process.

Example 1.4.17. Reverse Ornstein-Uhlenbeck process.
Let λ > 0 and 0 < α≤ 2. The process

X(t) =
Z

∞

t
e−λ(x−t)dMα(x) (1.22)

for t ∈ R is well defined, since
R

∞

t e−λ(x−t)αdx = 1
αλ

< ∞.

For s > t,

X(t)− e−λ(s−t)X(s) =
Z s

t
e−λ(x−t)dMα(x), (1.23)

so
e−λtX(t)− e−λsX(s) =

Z s

t
e−λxdMα(x),

and the reverse Ornstein-Uhlenbeck process has independent increments. When
α = 2, the reverse Ornstein-Uhlenbeck process is the stationary independent in-
crements Gaussian process.

Example 1.4.18. Log-fractional stable motion.
Let 1 < α < 2. The process

Λα(t) =
Z

∞

−∞

(ln |t− x|− ln |x|)dMα(x), (1.24)

for t ∈ R is called log-fractional stable motion.

Log-fractional stable motion is 1/α-self-similar and has stationary increments.
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Example 1.4.19. Well-balanced linear fractional stable motion.
Let 0 < α≤ 2, 0 < h < 1 and h 6= 1/α. Then

Lα,h(t) =
Z

∞

−∞

((t− x)h−1/α

+ − (−x)h−1/α

+ )dMα(x), (1.25)

for t ∈ R is an α-stable process, that is h-self-similar with stationary increments.

We verify these properties, since they are relevant to our later work.
For well-balanced linear fractional stable motion to be well-defined, we must

have Z
∞

−∞

∣∣∣(t− x)h−1/α

+ − (−x)h−1/α

+

∣∣∣α dx < ∞.

We need to check the integral does not diverge at x = 0, x = t and x =−∞.
If h > 1/α, the integrand is bounded near 0 and t. If h < 1/α, as x↗ 0∣∣∣(t− x)h−1/α

+ − (−x)h−1/α

+

∣∣∣α ≈
∣∣∣(−x)h−1/α

+

∣∣∣α
= |(−x)+|hα−1,

which is integrable near 0 since hα > 0. Similarly the integral converges near
x = t. As x→−∞,∣∣∣(t− x)h−1/α

+ − (−x)h−1/α

+

∣∣∣α =

∣∣∣∣∣(−x)h−1/α

(
1+

t
−x

)h−1/α

− (−x)h−1/α

∣∣∣∣∣
α

≈
∣∣∣∣(−x)h−1/α

(
1+

(h−1/α)t
x

)
− (−x)h−1/α

∣∣∣∣α
≈ c

∣∣∣(−x)h−1/α−1
∣∣∣α

= c(−x)hα−1−α,

where c is independent of x, so as h < 1 the integral converges at −∞.
Thus Z

∞

−∞

∣∣∣(t− x)h−1/α

+ − (−x)h−1/α

+

∣∣∣α dx < ∞,

which implies well-balanced linear fractional stable motion is well-defined.
We can see the self-similarity by considering finite-dimensional distributions.

By Lemma 1.4.14, for t ∈ R and c > 0, we have the joint distribution

X(ct)
f dd
=

Z
∞

−∞

(
(ct− x)h−1/α

+ − (−x)h−1/α

+

)
dMα(x)

f dd
=

Z
∞

−∞

ch−1/α

(
(t− x/c)h−1/α

+ − (−x/c)h−1/α

+

)
dMα(x)

f dd
= ch−1/α(1/c)−1/α

Z
∞

−∞

(
(t− x)h−1/α

+ − (−x)h−1/α

+

)
dMα(x)

f dd
= ch

Z
∞

−∞

(
(t− x)h−1/α

+ − (−x)h−1/α

+

)
dMα(x)

f dd
= chX(t).
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To show that well-balanced linear fractional stable motion has stationary in-
crements, for τ ∈ R, we consider the distribution of (X(t)−X(0),−∞ < t < ∞)
and the distribution of (X(τ + t)−X(τ),−∞ < t < ∞). From (1.25) and using
Proposition 1.4.6 and Lemma 1.4.14, we have

X(τ+ t)−X(τ)
f dd
=

Z
∞

−∞

(
(τ+ t− x)h−1/α

+ − (−x)h−1/α

+

)
dMα(x)−

Z
∞

−∞

(
(τ− x)h−1/α

+ − (−x)h−1/α

+

)
dMα(x)

f dd
=

Z
∞

−∞

(
(τ+ t− x)h−1/α

+ − (τ− x)h−1/α

+

)
dMα(x)

f dd
=

Z
∞

−∞

(
(t− x)h−1/α

+ − (−x)h−1/α

+

)
dMα(x)

f dd
= X(t)−X(0),

taking f j(x) = (t j− x)h−1/α

+ − (−x)h−1/α

+ , for j = 1,2, . . . ,d in Lemma 1.4.14.

A particular instance of Example 1.4.19 is fractional Brownian motion.

Definition 1.4.20. Let 0 < h < 1 and h 6= 1/2. Standard fractional Brownian
motion {Bh(t), t ∈ R} can be defined by

Bh(t) = C
Z

∞

−∞

(
(t− x)h−1/2

+ − (−x)h−1/2
+

)
dM2(x), (1.26)

where C is a constant chosen so that the variance E
(
Bh(1)2)= 1.

It may be shown that Bh is a Gaussian process, such that for t1, t2 ∈ R

E(Bh(t1)−Bh(t2))2 = |t1− t2|2h. (1.27)

From Example 1.4.19, fractional Brownian motion exists when 0 < h < 1,
h 6= 1/2 and it is a 2-stable self-similar process with stationary increments. For
h = 1/2 we have the 2-stable Lévy motion

B1/2(t) =
Z t

0
dM2(x) = M2[0, t] (1.28)

for t ≥ 0 and

B1/2(t) =−
Z 0

t
dM2(x) = M2[t,0] (1.29)

for t < 0, which is standard Brownian motion or the Wiener process.
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Chapter 2

Review of localisable processes and
multistable processes

2.1 Introduction
In this chapter we recall the notion of localisability of a process, that is when a
process X(t) is enlarged by scaling about a point t = u and the enlarged process
approaches a limiting process called the local form of the process. We then review
recent work on the construction of processes with given local form, and we review
some possible constructions of multistable processes.

2.2 Localisable random processes
We first define convergence of a sequence of processes in finite-dimensional dis-
tributions and then define localisability.

Definition 2.2.1. Let Y , Y1, Y2, . . . be random processes on R. We say that Yn con-
verges to Y in finite-dimensional distributions, written Yn

fdd→Y , if for all t1, t2, . . . , tk ∈
R,

(Yn(t1),Yn(t2), . . . ,Yn(tk))
d→ (Y (t1),Y (t2), . . . ,Y (tk)),

where d→ denotes convergence in distribution of a sequence of k-dimensional vec-
tors.

Intuitively, a process Y (t) is h-localisable at u if scaling the process by a factor
rh whilst time is scaled by a factor r converges to a unique process as r↘ 0.

Definition 2.2.2. A process Y (t) defined on R is h-localisable at u for some h > 0
if

Y (u+ rt)−Y (u)
rh (2.1)
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converges in finite-dimensional distributions to a non-trivial process in t as r↘ 0.
We denote the limiting process by Y ′u = {Y ′u(t), t ∈R} called the local form of Y at
u. Thus

Y (u+ rt)−Y (u)
rh

fdd→ Y ′u(t), (2.2)

as r↘ 0, for t ∈ R.

There are many processes which are localisable, perhaps the most well-known
one is index-h fractional Brownian motion with local form itself.

Example 2.2.3. Fractional Brownian motion
Let Bh denote index-h fractional Brownian motion. For all u ∈ R, Bh is h-

localisable at u with

Bh(u+ rt)−Bh(u)
rh

fdd→ Bh(t) = (Bh)′u(t), (2.3)

for t ∈ R as r↘ 0.

Proof. As we have noticed in (1.26), fractional Brownian motion Bh is self-similar
and has stationary increments. Thus for r > 0, and u, t ∈ R,

Bh(u+ rt)−Bh(u)
f dd
= Bh(rt)−Bh(0)
f dd
= Bh(rt)
f dd
= rhBh(t).

Thus
Bh(u+ rt)−Bh(u)

rh
f dd
= Bh(t), (2.4)

so
Bh(u+ rt)−Bh(u)

rh
fdd→ Bh(t), (2.5)

as r↘ 0.

This example generalises to any self-similar stationary increment processes.

Proposition 2.2.4. An h-self-similar process {Y (t), t ∈ R} with stationary incre-
ments is h-localisable at all u ∈ R with Y ′u = Y .

Proof. Since Y is an h-self-similar process with stationary increments, for r > 0,
and u, t ∈ R, noting that Y (0) = 0 almost surely,

Y (u+ rt)−Y (u)
f dd
= Y (rt)−Y (0)
f dd
= Y (rt)
f dd
= rhY (t).
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Hence
Y (u+ rt)−Y (u)

rh
f dd
= Y (t), (2.6)

so
Y (u+ rt)−Y (u)

rh
fdd→ Y (t), (2.7)

as r↘ 0, so Y is localisable at u with local form Y ′u = Y .

A generalization of fractional Brownian motion is multifractional Brownian
motion, where the similarity index h of fractional Brownian motion is replaced by
h(t), so that h varies with time t.

Definition 2.2.5. A function f : R→ R is called a Hölder function of exponent
β > 0, if there exists c > 0, such that for each x,y ∈ R and |x− y| ≤ 1, we have

| f (x)− f (y)| ≤ c|x− y|β.

A definition of multfractional Brownian motion can be given as follows.

Definition 2.2.6. Multifractional Brownian motion.
Let h : R→ (0,1) be a Hölder function of exponent β > 0. For t ∈ R, the

following random process, denoted by Bh(t), is called multifractional Brownian
motion with functional parameter h(t),

Bh(t)(t) = C
Z

∞

−∞

(
(t− x)h(t)−1/2

+ − (−x)h(t)−1/2
+

)
dM2(x), (2.8)

where C is a constant and M2 is 2-stable measure or Wiener measure.

Note that in Definition 2.2.6, we make the convention that

(t− x)h(t)−1/2
+ − (−x)h(t)−1/2

+ = 1[0,t](x),

for h(t) = 1/2, t ≥ 0 and

(t− x)h(t)−1/2
+ − (−x)h(t)−1/2

+ =−1[t,0](x),

for h(t) = 1/2, t < 0, to allow Bh(t) to be defined when h(t) = 1/2.
The theorem below states that multifractional Brownian motion is localisable.

Theorem 2.2.7. Let h : R→ (0,1) be a Hölder function of exponent 0 < β ≤ 1
and suppose h(t) < β for all t ∈ R. Then Multifractional Brownian motion

Bh(t)(t) = C
Z

∞

−∞

(
(t− x)h(t)−1/2

+ − (−x)h(t)−1/2
+

)
dM2(x), (2.9)

is h(u)-localisable at all u ∈ R with the local form

(Bh(t))
′
u(t)

f dd
= Bh(u)(t),

where Bh(u) is index h(u) fractional Brownian motion.

Proof. Different approaches to this can be found in [15, Proposition 5], [1, Theo-
rem 1.7] or [7, Theorem 3.3], see also Proposition 4.3.7.
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2.3 Localisable stable processes
In 2008, Falconer, Le Guével and Lévy Véhel [6] studied moving average stable
processes which provide many examples of localisable processes.

Recall the space of functions

Fα = { f : f is measurable and
Z
| f (x)|αdx < ∞}. (2.10)

Moving average processes are stationary processes defined by moving average
stochastic integrals, see Example 1.4.16.

A sufficient condition for localisability of moving average processes is as fol-
lows.

Proposition 2.3.1. Let 0 < α≤ 2 and let Mα be a symmetric α-stable measure on
R. Let g ∈ Fα and let X be the moving average process

X(t) =
Z

g(t− x)dMα(x), (2.11)

t ∈ R. Suppose that there exists a jointly measurable function h(t,z), such that
h(t, .) ∈ Fα, and

lim
r→0

Z ∣∣∣∣g(r(t + z))−g(rz)
rγ

−h(t,z)
∣∣∣∣α dz = 0 (2.12)

for all t ∈ R, where γ+1/α > 0. Then X is (γ+1/α)-localisable with local form
X ′u = {

R
h(t,z)dMα(z) : t ∈ R} at all u ∈ R.

Proof. See [6, Proposition 2.1].

For convenience, we make the convention that

1[u,v] =−1[v,u]. (2.13)

A particular example of (2.11) is the reverse Ornstein-Uhlenbeck process.

Example 2.3.2. Reverse Ornstein-Uhlenbeck process
Let λ > 0 and 1 < α < 2 and let Mα be α-stable measure on R. The stationary

process

X(t) =
Z

∞

t
exp(−λ(x− t))dMα(x),

t ∈ R is 1/α-localisable with X ′u(t) =
R t

0 dMα(z) = Mα[0, t] at all u ∈ R.

To see this, it is easily checked that (2.12) holds with g(x) = exp(λx) and
h(t,z) = 1[0,t](z), when t > 0. With our convention (2.13), the case t < 0 is similar.
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We define asymmetric linear fractional α-stable motion for 0 < α≤ 2 by

Lα,h,b+,b−(t) =
Z

ρα,h(b+,b−, t,x)dMα(x)

where t ∈ R, b+,b− ∈ R, h 6= 1/α and

ρα,h(b+,b−, t,x) = b+
(
(t− x)h−1/α

+ − (−x)h−1/α

+

)
+b−

(
(t− x)h−1/α

− − (−x)h−1/α

−

)
, (2.14)

where Mα is symmetric α-stable measure see [6]. If b+ = 1 and b− = 0, this is
the well-balenced linear fractional stable motion of Example 1.4.19.

Proposition 2.3.1 may be used to show that, with appropriate conditions on
g(x) near x = 0, the process X has asymmetric linear fractional α-stable motion
as its local form.

Proposition 2.3.3. Let 0 < α≤ 2, g ∈ Fα and Mα be an α-stable symmetric ran-
dom measure on R. Let Y be the moving average process

Y (t) =
Z

g(t− x)dMα(x),

t ∈R. If there exist c+
0 ,c−0 ,γ,a,c,η∈R with c > 0, η > 0 and 0 < γ+1/α < a≤ 1

such that
g(r)
rγ
→ c+

0 (2.15)

and
g(−r)

rγ
→ c−0 (2.16)

as r↘ 0 and
|g(u+κ)−g(u)| ≤ c|κ|a|u|γ−a (2.17)

for all u ∈ R and |κ|< η, then Y is (γ+1/α)-localisable at all u ∈ R, with local
form

(a) Y ′u = L
α,γ+1/α,c+

0 ,c−0

if γ 6= 0, and
(b) Y ′u = (c+

0 − c−0 )Lα

if γ = 0, where Lα is the α-stable Lévy motion as defined in Example 1.4.15.

Proof. It may be shown that conditions (2.15) and (2.16) imply that (2.12) holds,
taking h(t,z) = ρα,γ+1/α(c+

0 ,c−0 , t,z) when h 6= 1/2, and when h = 1/2, we make
the same convention as Definition 2.2.6, so that conclusion follows from Proposi-
tion 2.3.1. See [6, Proposition 3.1] for details.
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2.4 Processes with prescribed local form and multi-
stable processes

Many phenomena from physics, medicine, geography and finance have a highly
irregular form. We seek stochastic processes which model such phenomena. The
local regularity (or ‘volatility’ in finance language) may vary with time, and this
can be allowed for by varying the local scaling factor, that is by using a process
with varying local form. The best known example is multifractional Brownian
motion where the scaling exponent varies, see Definition 2.2.6. Another possi-
bility is to vary the local stability index. Thus we get multistable processes, that
is localisable processes with α-stable local form, but where the index of stability
α(t) varies with time.

Falconer and Lévy-Véhel [7] presented a general method for constructing
stochastic processes with prescribed local form. In particular they not only con-
structed multistable processes where the local stability index α varies, but also
multifractional multistable processes, where both the local stability index α and
the local scaling factor h vary. We review some approaches to constructing multi-
stable processes, and we present a new approach in Chapters 3 and 4.

Let U be an interval with u an interior point. Let {X(t,u) : t ∈U} be localisable
with local form X ′u(.,u) over a range of u. It is useful to have conditions that ensure
that the diagonal process {X(t, t) : t ∈U} looks locally like {X(t,u) : t ∈U} when
t is close to u, in the sense of having the same local forms.

Let {X(t,v) : (t,v) ∈ U ×U} be a random field and let Y be the diagonal
process Y = {X(t, t) : t ∈U}. The following theorem gives a sufficient condition
for Y to be h-localisable at u with local form Y ′u(.) = X ′u(.,u) where X ′u(.,u) is the
local form of Xu(.,u) at u.

Theorem 2.4.1. Let U be an interval with u an interior point. Suppose that for
some 0 < h < η ≤ 1 the process {X(t,u) : t ∈U} is h-localisable at u ∈U with
local form X ′u(.,u) and that

P(|X(v,v)−X(v,u)| ≥ |v−u|η)→ 0 (2.18)

as v→ u. Then Y = {X(t, t) : t ∈U} is h-localisable at u with Y ′u(.) = X ′u(.,u).
In particular, this conclusion holds if for some p > 0 and η > h

E(|X(v,v)−X(v,u)|p) = O(|v−u|ηp) (2.19)

as v→ u.

Proof. See [7, Theorem 2.3] for the proof of localisability. If (2.19) holds, Markov’s
inequality implies (2.18).

This theorem can be used to prove the localisability of multifractional Brow-
nian motion (Theorem 2.2.7). With (2.19), this can be shown by checking that,
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there exist c > 0, p > 0, η≤ 1 such that h(.) < η and such that for u,v ∈ R,

E(|Bh(v)(v,v)−Bh(v)(v,u)|p)≤ c|v−u|ηp.

This diagonal approach allows the construction of “multistable processes”,
that is processes with each local form an α-stable process, but with the stability
index α dependent on t.

It is natural to call a stochastic process {X(t), t ∈ R} multistable if for almost
all u, X is localisable at u with X ′u an α-stable process for some α = α(u) where
0 < α(u)≤ 2 (see Chapter 4).

In the next two subsections, we review some existing constructions of multi-
stable processes, and in Chapters 3 and 4 we present an alternative approach to
constructing multistable processes.

2.4.1 Poisson representation of multistable processes
As indicated above, one way to set up a multistable process is to use a random
field X(t,v). Such a random field may be given by a sum over a suitable Poisson
point process, as was done in [7].

We use a Poisson point process on R2, denoted by Π. Thus Π is a random
countable subset of R2 such that, writing N(A) for the number of points in a mea-
surable A ⊂ R2, the random variable N(A) has a Poisson distribution with mean
L2(A), where L2 is plane Lebesgue measure on R2, and with N(A1),N(A2), . . . ,N(An)
independent for disjoint A1,A2, . . . ,An ⊂ R2.

Thus N is an independent scattered σ-additive random set function on R2 such
that, for each set A in R2, the random variable N(A) has a Poisson distribution
with mean L2(A), i.e.,

P(N(A) = k) = e−L2(A) (L2(A))k

k!
,

where k = 0,1,2, . . . . See [12] for details of Poisson point processes.
Define the space Fa,b of measurable functions on R, for 0 < a < b≤ 2 by

Fa,b = { f : f is measurable with
Z

∞

−∞

| f (x)|a,bdx < ∞}, (2.20)

where
| f (x)|a,b = max

(
| f (x)|a, | f (x)|b

)
. (2.21)

If 0 < α < 2 is fixed with Mα symmetric α-stable random measure on R,
it may be shown that the stochastic integral (1.15) can be written as a Poisson
process sum

I( f ) =
Z

f (x)dMα(x) = c(α) ∑
(X ,Y )∈Π

f (X)Y <−1/α> (2.22)

37



where Y <−1/α> = sign(Y )|Y |−1/α and

c(α) =
(

2α
−1

Γ(1−α)cos(
1
2

πα)
)−1/α

, (2.23)

for α 6= 1, and

c(1) =
1
π
, (2.24)

see [17, Section 3.12].
Crucially with this representation, the underlying Poisson process Π does not

depend on α, so by varying α in (2.22), we may vary the stability index α. Thus
for suitable f , we may define a random field

X(t,v) = ∑
(X ,Y )∈Π

f (t,v,X)Y <−1/α(v)>, (2.25)

with diagonal section

Y (t)≡ X(t, t) = ∑
(X ,Y )∈Π

f (t, t,X)Y <−1/α(t)>. (2.26)

Note that f must satisfy certain conditions to ensure almost everywhere conver-
gence of (2.25), see [7, Sections 8 and 9].

If we choose f so that X ′u(.,u) takes a given form at u ∈ R, then under certain
conditions results such as Theorem 2.4.1 will give that Y ′u(.) has the same local
form. We give some examples of this, starting with the following multistable
version of Proposition 2.3.1 given in [6].

Proposition 2.4.2. Let U be a closed interval with u an interior point. Let α :
U → (a,b)⊂ (0,2) satisfy

|α(v)−α(u)| ≤ k1|v−u|η,

where v ∈U and 0 < η≤ 1. Let g ∈ Fa,b and define

Y (t) = ∑
(X ,Y )∈Π

g(X− t)Y <−1/α(t)>, (2.27)

where t ∈ R. Assume that g satisfies

lim
r→0

Z ∣∣∣∣g(r(t + z))−g(rz)
rγ

−h(t,z)
∣∣∣∣α(u)

dz = 0 (2.28)

for jointly measurable functions with h(t, .)∈Fa,b for all t, where 0 < γ+1/α(u)<
η≤ 1. Then Y is (γ+1/α(u))-localisable at u with local form

Y ′u(t) =
Z

h(t,z)dMα(u)(z), (2.29)

where t ∈ R and Mα(u) is α(u)-stable measure.
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Proof. See [6, Theorem 4.1].

This proposition can be applied to give a multistable version of the reverse
Ornstein-Uhlenbeck process.

Example 2.4.3. Multistable reverse Ornstein-Uhlenbeck process.
Let λ > 0 and α : R→ (1,2) be continuously differentiable, Let

Y (t) = ∑
(X ,Y )∈Π,X≥t

exp(−λ(X− t))Y <−1/α(t)>, (2.30)

where t ∈ R. Then Y is 1/α(u)-localisable at all u ∈ R with

Y ′u(t) = c(α(u))−1
Z t

0
dMα(u)(z) = Mα(u)[0, t], (2.31)

where t ∈ R.

Proof. With our convention in (2.13), this follows by taking g(x) = exp(λx) and
h(t,z) = 1[0,t](z). See [6, Proposition 4.3] for details.

For more general (i.e. not moving average) processes, we quote the following
result that gives conditions for a diagonal process to be localisable using the Pois-
son process representation. This is typical of a number of results of this type, see
[7].

Theorem 2.4.4. Let U be a closed interval with u an interior point and let 0 <
a < b < 2. Let X be the random field

X(t,v) = ∑
(X ,Y )∈Π

f (t,v,X)Y <−1/α(v)> (2.32)

where t,v ∈U, f (t,v,x) is jointly measurable with f (t,v, .) ∈ Fa,b for all t,v ∈ R
and α : U → (a,b). Suppose X(.,u) is h-localisable at u for h > 0. Suppose that
supt∈U

R
| f (t,u,x)|a,bdx < ∞, and for some η > h

|α(v)−α(u)| ≤ k1|v−u|η (2.33)

for all v ∈U, and Z
| f (t,v,x)− f (t,u,x)|a,bdx≤ k2|v−u|η (2.34)

for all t,v ∈U. Then Y = {X(t, t) : t ∈U} is h-localisable at u with local form
Y ′u(.) = X ′u(.,u).

Proof. See [7, Theorem 5.2].

Theorem 2.4.4 may be used to construct some specific multistable processes.
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Example 2.4.5. Multistable Lévy motion
Let α : R→ (0,2), and define

Y (t) = ∑
(X ,Y )∈Π

1[0,t](X)Y <−1/α(t)>, (2.35)

for t ∈ R. Then Y is 1/α(u)-localisable at u with
Y ′u =

{R
1[0,t](z)dMα(u)(z), t ∈ R

}
= Lα(u), where Lα(u) is α(u)-stable Lévy mo-

tion.

Proof. With our convention in (2.13), take f (t,v,x) = 1[0,t](x) in Theorem 2.4.4,
see [7, Theorem 5.4] for details.

We now indicate multistable analogues of Example 1.4.19 and Example 1.4.18.

Example 2.4.6. Linear fractional multistable motion.
Let α : R→ (0,2). Define

Lα(t),h(t) = ∑
(X ,Y )∈Π

(|t−X |h−1/α(t)−|X |h−1/α(t))Y <−1/α(t)>, (2.36)

for t ∈ R. Then Lα(t),h is h-localisable at all u ∈ R, where h 6= 1/α(u), with
(Lα(t),h)′u = a(u)Lα(u),h, where Lα,h is linear α(u)-stable motion, see Example
1.4.19.

Proof. Take f (t,v,x) = |t−x|h−1/α(v)−|x|h−1/α(v) in Theorem 2.4.4, see [7, The-
orem 5.3] for details.

Example 2.4.7. Log-fractional multistable motion
Let α : R→ (1,2) and be continuously differentiable. Define

Λα(t)(t) = ∑
(X ,Y )∈Π

(ln |t−X |− ln |X |)Y <−1/α(t)>, (2.37)

t ∈R. Then Λα(t) is 1/α(u)-localisable at all u ∈R, with (Λα(t))′u = Λα(u), where
Λα(u) is log-fractional α(u)-stable motion, see Example 1.4.18.

Proof. Take f (t,v,x) = log |t−x|− log |x| in Theorem 2.4.4, see [7, Theorem 5.5]
for details.

2.4.2 Series representation of multistable processes
Recently Le Guével and Lévy Véhel [14] constructed multistable processes using
a series representation which generalises the construction of [17, Section 3.10] for
stable stochastic integrals, and we indicate this very briefly here.

40



Let α ∈ (0,2) and (E,E ,m) be a finite measure space. Let (Γi)i≥1 be a se-
quence of arrival times of a Poisson process, let (Vi)i≥1 be a sequence of identi-
cally independently distributed random variables distributed on E with distribu-
tion function m̂ = m/m(E), and let (γi)i≥1 be a sequence of identically indepen-
dently distributed random variables with distribution P(γi = 1) = P(γi = −1) =
1/2. Assume that the three sequences (Γi)i≥1, (Vi)i≥1 and (γi)i≥1 are independent.
Then for f ∈ Fα, Z

E
f (x)dMα(x) d= C

∞

∑
i=1

γiΓ
−1/α

i f (Vi), (2.38)

where C is a constant that is independent of f , where
R

f (x)dMα(x) is as defined
in (1.15). This leads to an alternative series definition of an α-stable process,

X(t) = C
∞

∑
i=1

γiΓ
−1/α

i f (Vi, t),

for all t ∈ R, where C is a constant, see [17, Section 3.10.1] for details.
In [14], this is extended by varying α to give multistable processes, as in (2.43)

below. The following theorem gives conditions for the diagonal section of a ran-
dom field expressed in this way to have a desired local form.

Theorem 2.4.8. Let α : R→ [a,b]⊂ (0,2) be C1. Let f (t,u, .)∈Fα for (t,u)∈R2.
Consider the random field

X(t,u) = C
∞

∑
i=1

γiΓ
−1/α(u)
i f (t,u,Vi), (2.39)

where C is a constant and Vi, γi and Γi are as above. Assume that X(t,u) as a
process in t is h-localisable at u with local form X ′u(.,u). Let U be an interval
with u an interior point. Assume that

1) The family of functions v→ f (t,v,x) is differentiable for all v, t ∈U and all
x in E,

2) and

sup
t∈U

Z
E

sup
w∈U

(
| f (t,w,x)|α(w)

)
dm̂(x) < ∞, (2.40)

3) and

sup
t∈U

Z
E

sup
w∈U

(
| f ′(t,w,x)|α(w)

)
dm̂(x) < ∞, (2.41)

where f ′(t,w,x) is the derivative of f with respect to w.
4) and

sup
t∈U

Z
E

sup
w∈U

[
| f (t,w,x) log | f (t,w,x)||α(w)

]
dm̂(x) < ∞. (2.42)

Then

Y (t)≡ X(t, t) = C
∞

∑
i=1

γiΓ
−1/α(t)
i f (t, t,Vi) (2.43)

is h-localisable at u with local form Y ′u(.) = X ′u(.,u).
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Proof. See [14, Theorem 3.3].

In the above, m needs to be a finite measure on E to specify the distribution
of the Vi, whereas we might wish to work, say, with Lebesgue measure on R.
However, if m is a σ-finite measure one can transform m to a finite measure and
multiplying the terms of (2.39) by a function of Vi and u, see [14].

2.4.3 General remarks
Poisson representation and series representation provide two different ways to
construct multistable processes.

Using the representation by sums over Poisson processes, the stochastic inte-
gral I( f ) with respect to Mα can be expressed conveniently as (2.22). Notice that
the stability index α occurs only as an exponent of Y , and the underlying Poisson
process does not depend on α, so varying the exponent gives a natural approach to
set up a multistable process. However, f must satisfy certain conditions to ensure
almost sure convergence of (2.25) and (2.26). Whilst for 0 < α(t) ≤ 1, we get
absolute convergence almost surely, for 1 < α(t)≤ 2, the proof of convergence is
more delicate.

Using the series representation, the stochastic integral I( f ) can be written as
(2.38). This representation is quite complicated to manipulate, and a disadvantage
is that results are obtained for finite measures m and then extended. Nevertheless,
series representation is convenient for computational purposes, see [14].

We will give another construction of multistable processes in Chapters 3 and
4 by defining the stochastic integrals in terms of characteristic functions. In some
ways this is more fundamental, in that it relates to the characteristic function def-
inition of stable random variables and vectors. Localisability of processes con-
structed in this way will be discussed in Chapter 4.

42



Chapter 3

Multistable random measures

3.1 Introduction
In this chapter we use Lévy’s Continuity Theorem and Kolmogorov’s Extension
Theorem to construct multistable integrals and measures. Thus, given 0 < α(x)≤
2, we show that there is a random measure Mα(x) that ‘looks like’ an α(x)-stable
measure near x. We investigate convergence properties and show that an α(x)-
multistable measure may be approximated by independent sums of α-stable mea-
sures (α constant) restricted to small intervals.

3.2 Definition of α(x)-multistable measure and inte-
gral

Recall that for 0 < a≤ b≤ 2 we write

| f (x)|a,b = max
{
| f (x)|a, | f (x)|b

}
,

and define the space of the functions

Fa,b = { f : f is measurable with
Z
| f (x)|a,bdx < ∞}. (3.1)

Lemma 3.2.1. For any constant cZ
|cg(x)|a,bdx≤max{|c|a, |c|b}

Z
|g(x)|a,bdx.

Proof. For any constant c,Z
|cg(x)|a,bdx =

Z
max{|cg(x)|a, |cg(x)|b}dx

≤ max{|c|a, |c|b}
Z

max{|g(x)|a, |g(x)|b}dx

= max{|c|a, |c|b}
Z
|g(x)|a,bdx,
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as required.

Lemma 3.2.2. There is a constant c1 depending only on a and b such that for all
g,h ∈ Fa,b Z

|g(z)+h(z)|a,bdz≤ c1

Z
|g(z)|a,bdz+ c1

Z
|h(z)|a,bdz. (3.2)

Proof. Let g,h ∈ Fa,b. For p≥ 1, by Minkowski’s inequality, we have

Z
|g(x)+h(x)|pdx ≤

[(Z
|g(x)|pdx

)1/p

+
(Z
|h(x)|pdx

)1/p
]p

≤ 2p−1
(Z
|g(x)|pdx+

Z
|h(x)|pdx

)
,

using that for a,b≥ 0 and p≥ 1, we have
(a+b

2

)p ≤ ap+bp

2 by Jensen’s inequality.
For 0 < p < 1,Z

|g(x)+h(x)|pdx≤
Z
|g(x)|pdx+

Z
|h(x)|pdx.

So, Z
|g(x)+h(x)|adx≤max{2a−1,1}

(Z
|g(x)|adx+

Z
|h(x)|adx

)
,

Z
|g(x)+h(x)|bdx≤max{2b−1,1}

(Z
|g(x)|bdx+

Z
|h(x)|bdx

)
,

soZ
|g(x)+h(x)|a,bdx ≤

Z
|g(x)+h(x)|adx+

Z
|g(x)+h(x)|bdx

≤ 1
2

c1

(Z
|g(x)|adx+

Z
|h(x)|adx

)
+

1
2

c1

(Z
|g(x)|bdx+

Z
|h(x)|bdx

)
≤ c1

(Z
|g(x)|a,bdx+

Z
|h(x)|a,bdx

)
where c1 = 2max{2a−1,2b−1,1}.

Lemma 3.2.3. Fa,b is a linear space.

Proof. If f ,g∈Fa,b and c∈R, then f +g, c f ∈Fa,b by Lemma 3.2.1 and Lemma
3.2.2.
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We define the multistable stochastic integral I( f ) of a function f ∈ Fa,b by
specifying the finite-dimensional distributions of I as a stochastic process on the
space of functions Fa,b and then using the Kolmogorov Extension Theorem to
show that the process is well-defined. Let α : R→ [a,b] be Lebesgue measurable,
and assume 0 < a≤ b≤ 2.

Given f1, f2, ..., fd ∈ Fa,b, the following proposition shows that we can define
a probability distribution on the vector (I( f1), I( f2), ..., I( fd)) ∈Rd by the charac-
teristic function φ f1,... fd defined by (3.3). The crucial point about this definition is
that α(x) varies with x, unlike in Proposition 1.4.5.

Proposition 3.2.4. Let d ∈ N and f1, f2, ..., fd ∈ Fa,b, then

φ f1,... fd(θ1, ...,θd) = E

(
exp

{
i

d

∑
j=1

θ jI( f j)

})

= exp

−
Z ∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
α(x)

dx

 (3.3)

for (θ1,θ2, . . . ,θd)∈Rd , is the characteristic function of a probability distribution
on the random vector (I( f1), I( f2), ..., I( fd)).

Proof. First, we consider α(x) given by the simple function

α(x) =
m

∑
k=1

αk1Ak(x), (3.4)

where a≤ αk ≤ b and Ak are disjoint Lebesgue measurable sets with ∪m
k=1Ak = R.

For θ1, . . . ,θd ∈ R

exp

−
Z ∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
α(x)

dx

 = exp

− m

∑
k=1

Z
Ak

∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
α(x)

dx


= exp

{
−

m

∑
k=1

Z
Ak

∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
αk

dx

}

=
m

∏
k=1

exp

{
−

Z
Ak

∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
αk

dx

}

=
m

∏
k=1

exp

{
−

Z ∣∣∣∣∣ d

∑
j=1

θ j f j(x)1Ak(x)

∣∣∣∣∣
αk

dx

}
.

(3.5)

Now, exp
{
−

R ∣∣∣∑d
j=1 θ j f j(x)1Ak(x)

∣∣∣αk
dx
}

is the characteristic function of the αk-
stable random vector (I( f11Ak), . . . , I( fd1Ak)) given by (1.12). Hence (3.5) is the
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product of the characteristic functions of m αk-stable random vectors. Thus it is
the characteristic function of a random vector given by the independent sum of αk-
stable random vectors, see Theorem 1.2.20. Hence (3.3) is a valid characteristic
function of a random vector (I( f1), . . . , I( fn)) in the case when α(x) is a simple
function (3.4).

Now let a≤ α(x)≤ b be measurable, and take a sequence of simple functions
αp(x) (p = 1,2, . . .) with a≤ αp(x)≤ b such that αp(x)→ α(x) pointwise almost
everywhere. Then ∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
αp(x)

→

∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
α(x)

pointwise almost everywhere, for all θ1, . . . ,θd ∈ R.
Since f1, . . . fd ∈ Fa,b, the linear combination ∑

d
j=1 θ j f j ∈ Fa,b, so∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
αp(x)

≤

∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
a,b

with
R ∣∣∣∑d

j=1 θ j f j(x)
∣∣∣a,b

dx < ∞, using Lemma 3.2.3. By the dominated conver-
gence theorem,

Z ∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
αp(x)

dx→
Z ∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
α(x)

dx, (3.6)

and so

exp


Z ∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
αp(x)

dx

→ exp


Z ∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
α(x)

dx

 , (3.7)

as p→ ∞, for all θ1, . . . ,θd ∈ R.
For f1, . . . , fd ∈ Fa,b, using that a≤ α(x)≤ b and Lemma 3.2.2,

Z ∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
α(x)

dx ≤
Z ∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
a,b

dx

≤ c1

d

∑
j=1

Z
|θ j|a,b| f j(x)|a,bdx

≤ c1

d

∑
j=1

max{|θ j|a, |θ j|b}
Z
| f j(x)|a,bdx

≤ c
d

∑
j=1

max{|θ j|a, |θ j|b}

→ 0
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as θ j → 0, where c2 and c are independent of θ j. Thus (3.3) is continuous at

0. From (3.5) exp
{
−

R ∣∣∣∑d
j=1 θ j f j(x)

∣∣∣αp(x)
dx
}

is a valid characteristic function

for all p. Applying Lévy’s continuity theorem (Theorem 1.2.39) to (3.7), there
is a probability distribution on the random vector (I( f1), I( f2), ..., I( fd)), whose
characteristic function is given by (3.3).

Theorem 3.2.5. There exists a stochastic process {I( f ), f ∈ Fa,b} whose finite-
dimensional distributions are given by (3.3), that is with φI( f1),...,I( fd) = φ f1,..., fd
for all f1, . . . , fd ∈ Fa,b.

Proof. We know that (3.3) is a valid characteristic function for all f1, . . . , fd ∈
Fa,b. We now apply Kolmogorov’s Extension Theorem and Corollary 1.2.33 to
the space of functions Fa,b to show (3.3) defines a stochastic process on Fa,b.
Note that for any permutation (π(1),π(2), ...,π(d)) of (1,2, ...,d), we have

φ fπ(1),...,π(d)(θπ(1), ...,θπ(d)) = exp

−
Z ∣∣∣∣∣ d

∑
j=1

θπ( j) fπ( j)(x)

∣∣∣∣∣
α(x)

dx


= exp

−
Z ∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
α(x)

dx


= φ f1,..., fd(θ1, ...,θd),

and for any n≤ d,

φ f1,..., fn(θ1, ...,θn) = exp

−
Z ∣∣∣∣∣ n

∑
j=1

θ j f j(x)

∣∣∣∣∣
α(x)

dx


= exp

−
Z ∣∣∣∣∣ n

∑
j=1

θ j f j(x)+
d

∑
i=n+1

0 fi(x)

∣∣∣∣∣
α(x)

dx


= φ f1,..., fn,..., fd(θ1, ...,θn,0, ...,0).

This shows the consistency of the probability distributions given by (3.3). By
the corollary of Kolmogorov’s Extension Theorem (Corollary 1.2.33), there is a
stochastic process on Fa,b which we denote by {I( f ), f ∈ Fa,b}, whose finite-
dimensional distributions are given by the characteristic function (3.3).

We call I( f ) the α(x)-multistable integral of f . We now check the linearity of
the integral.

Proposition 3.2.6. If f1, f2 ∈ Fa,b and a1,a2 ∈ R,

I(a1 f1 +a2 f2) = a1I( f1)+a2I( f2) a.s. (3.8)
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Proof. We show that

I(a1 f1 +a2 f2)−a1I( f1)+a2I( f2) = 0 a.s.

For all real θ we have

E(exp{iθ [I(a1 f1 +a2 f2)−a1I( f1)−a2I( f2)]})
= E(exp{i [θI(a1 f1 +a2 f2)− (a1θ)I( f1)− (a2θ)I( f2)]})

= exp
{
−

Z
|θ(a1 f1 +a2 f2)+(−a1θ) f1 +(−a2θ) f2|α(x)dx

}
= exp{0}
= 1,

where we have used (3.3) with functions (a1 f1 + a2 f2), f1, f2 and variables θ,
−a1θ, −a2θ, so I(a1 f1 + a2 f2)− (a1)I( f1)− (a2)I( f2) = 0 almost surely by the
uniqueness of characteristic functions.

Let α : R→ [a,b] be measurable where 0 < a ≤ b ≤ 2. Analogously to [17,
Section 3.3] for α-stable measures, we define the α(x)-multistable random mea-
sure M in terms of α(x)-multistable integrals of indicator functions. With(Ω,F,P)
the underlying probability space, we write L0(Ω) for the set of all real random
variables defined on Ω. Let L be Lebesgue measure on R and E the Lebesgue
measurable sets. Let

E0 = {A ∈ E : L(A) < ∞}
be the sets of finite Lebesgue measure. As usual, 1A is the indicator function of
the set A.

Definition 3.2.7. We define the α(x)-multistable random measure M : E0→L0(Ω)
by

M(A) = I(1A), (3.9)

where I is the process of Proposition 3.2.5, noting that
R
|1A|a,b < ∞, if A ∈E0, so

1A ∈ Fa,b.

It is natural to write Z
f (x)dM(x) = I( f ), f ∈ Fa,b, (3.10)

since there are many analogues to usual integration with respect to a measure.
Clearly Z

1A(x)dM(x) = M(A). (3.11)

From (3.8),
R

f (x)dM(x) is linear, i.e.Z
(a1 f1(x)+a2 f2(x))dM(x) = a1

Z
f1(x)dM(x)+a2

Z
f2(x)dM(x). (3.12)
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With this notation the characteristic function (3.3) may be written

E

(
exp i

(
d

∑
j=1

θ j

Z
f j(x)dM(x)

))
= E

(
exp i

(
d

∑
j=1

θ jI( f j)

))

= exp

−
Z ∣∣∣∣∣ d

∑
j=1

θ j f j(x)

∣∣∣∣∣
α(x)

dx

 (3.13)

for f j ∈ Fa,b. Taking f j = 1A j in (3.13) with A j ∈ E0,

E

(
exp

{
i

d

∑
j=1

θ jM(A j)

})
= exp

−
Z ∣∣∣∣∣ d

∑
j=1

θ j1A j(x)

∣∣∣∣∣
α(x)

dx

 . (3.14)

In particular, for A ∈ E0

E(exp iθM(A)) = exp
{
−

Z
A
|θ|α(x)dx

}
. (3.15)

We need to show that the multistable measure M is independent scattered and
σ-additive, recall Definitions 1.4.10 and 1.4.11. We modify the proofs in [17,
Section 3.3].

Theorem 3.2.8. M is independent scattered.

Proof. Let A1,A2,...,Ad ∈ E0 with Ai∩A j = /0 if i 6= j. Then

E

(
exp

{
i

d

∑
j=1

θ jM(A j)

})
= exp

−
Z ∣∣∣∣∣ d

∑
j=1

θ j1A j(x)

∣∣∣∣∣
α(x)

dx

 by (3.14)

= exp

{
−

d

∑
j=1

Z ∣∣θ j1A j(x)
∣∣α(x) dx

}
since A j are disjoint

=
d

∏
j=1

exp
{
−

Z ∣∣θ j1A j(x)
∣∣α(x) dx

}

=
d

∏
j=1

exp
{
−

Z
A j

∣∣θ j
∣∣α(x) dx

}

=
d

∏
j=1

E(exp{iθ jM(A j)}).

By Theorem 1.2.17 M(A1),M(A2), ...,M(Ad) are independent, so M is indepen-
dent scattered.
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Theorem 3.2.9. M is σ-additive, that is if A1,A2,...∈E0 are disjoint and
S

∞
j=1 A j ∈

E0 then

M(
∞[

j=1

A j) =
∞

∑
j=1

M(A j)

a.s.

Proof. Let A1,A2,...,Ak ∈ E0 be a finite collection of disjoint sets. Then

M(
k[

j=1

A j) = I(1∪k
j=1A j

) by (3.9)

= I(
k

∑
j=1

1A j)

=
k

∑
j=1

I(1A j) by (3.8)

=
k

∑
j=1

M(A j) by (3.9) .

Now let

B =
∞[

j=1

A j ∈ E0

where A1,A2,... ∈ E0 is a countable family of disjoint sets. Then

B =
k[

j=1

A j∪

(
∞[

j=k+1

A j

)
,

so since
Sk

j=1 A j and
S

∞
j=k+1 A j are disjoint and in E0, it follows from above that

M(B) = M

(
k[

j=1

A j

)
+M

(
∞[

j=k+1

A j

)

=
k

∑
j=1

M(A j)+M

(
∞[

j=k+1

A j

)
. (3.16)

Now we consider the characteristic function of M
(S

∞
j=k+1 A j

)
. As α(x) ∈ [a,b],

where 0 < a < b≤ 2, we get

0≤
Z
|θ1∪∞

j=k+1A j(x)|α(x)dx≤max{|θ|a, |θ|b}L(
∞[

j=k+1

A j).
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Since limk→∞ L(
S

∞
j=k+1 A j) = 0,

lim
k→∞

Z
|θ1∪∞

j=k+1A j(x)|α(x)dx = 0.

Thus

lim
k→∞

E

(
exp

{
iθM(

∞[
j=k+1

A j)

})
= lim

k→∞
exp
{
−

Z
|θ1∪∞

j=k+1A j |α(x)
}

by (3.15)

= exp
{
− lim

k→∞

Z
|θ1∪∞

j=k+1A j |α(x)
}

= exp(0)
= 1,

which is the characteristic function of the random variable 0, so M(
S

∞
j=k+1 A j)

d→
0 as k→ ∞ by Lévy’s continuity theorem (Theorem 1.2.39).

By (3.16) we get M(B)−∑
k
j=1 M(A j)

d→ 0 and so M(B)−∑
k
j=1 M(A j)

p→ 0

as k→ ∞ by Proposition 1.2.37. Thus limk→∞ ∑
k
j=1 M(A j)

p
= M(B), and since the

summands M(A j) are independent, this implies convergence a.s. See Proposition
1.2.38.

Thus M is σ-additive.

3.3 Convergence of sequences of multistable mea-
sures

In this section, we will obtain conditions for convergence of a sequence of multi-
stable measures with different multistable indexes.

Theorem 3.3.1. Let αn(x), α(x) be Lebesgue measurable with 0 < a≤αn(x),α(x)≤
b≤ 2 for all x ∈R. Let Mn,M be the associated αn-multistable and α-multistable
measures as in Definition 3.2.7. Suppose αn(x)→ α(x) for almost all x ∈R. Then

Mn
fdd→M as n→ ∞, that is for all m ∈ N and A1,A2, ...,Am ∈ E0,

(Mn(A1),Mn(A2), ...,Mn(Am)) d→ (M(A1),M(A2), ...,M(Am))

as n→ ∞.

Proof. Let A1, A2,...,Am ∈E0, θ1,θ2, ...,θm ∈R, and θ j 6= 0, and consider the joint
characteristic function of Mn,

E

(
exp i

{
m

∑
j=1

θ jMn(A j)

})
= exp

−Z ∣∣∣∣∣ m

∑
j=1

θ j1A j(x)

∣∣∣∣∣
αn(x)

dx

 by (3.14) .

(3.17)
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For the measure M,

E

(
exp i

{
m

∑
j=1

θ jM(A j)

})
= exp

−Z ∣∣∣∣∣ m

∑
j=1

θ j1A j(x)

∣∣∣∣∣
α(x)

dx

 by (3.14) .

(3.18)
Since αn(x)→ α(x) for almost all x, we have

lim
n→∞

∣∣∣∣∣ m

∑
j=1

θ j1A j(x)

∣∣∣∣∣
αn(x)

=

∣∣∣∣∣ m

∑
j=1

θ j1A j(x)

∣∣∣∣∣
α(x)

,

for almost all x ∈ R.
Write

C = max


(

m

∑
j=1
|θ j|

)a

,

(
m

∑
j=1
|θ j|

)b
 .

Then for all n and all x ∈ R∣∣∣∣∣ m

∑
j=1

θ j1A j(x)

∣∣∣∣∣
αn(x)

≤C1A(x)

where A =
Sm

j=1 A j ∈ E0. Then

Z ∣∣∣∣∣ m

∑
j=1

θ j1A j(x)

∣∣∣∣∣
αn(x)

dx ≤ C
Z

1A(x)dx

= CL(A)
< ∞.

Now we can apply the dominated convergence theorem to get

lim
n→∞

Z ∣∣∣∣∣ m

∑
j=1

θ j1A j(x)

∣∣∣∣∣
αn(x)

dx =
Z ∣∣∣∣∣ m

∑
j=1

θ j1A j(x)

∣∣∣∣∣
α(x)

dx.

This implies

lim
n→∞

exp

−Z ∣∣∣∣∣ m

∑
j=1

θ j1A j(x)

∣∣∣∣∣
αn(x)

dx

= exp

−Z ∣∣∣∣∣ m

∑
j=1

θ j1A j(x)

∣∣∣∣∣
α(x)

dx

 .

By Lévy’s continuity theorem (Theorem 1.2.39), since (3.18) is already the char-
acteristic function of a random vector and therefore is continuous at 0,

(Mn(A1),Mn(A2), ...,Mn(Am)) d→ (M(A1),M(A2), ...,M(Am))

as n→ ∞.

We will use this result in the next section on approximation of α(x)-multistable
measures.
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3.4 Approximation by sums of stable measures
To get a feel for α(x)-mutistable measures, we show that, for a continuous α(x),
the α(x)-multistable measure M defined in Section 3.2 may be approximated by
random measures that are the sum of many independent α-stable measures defined
on short intervals.

Assume in this section that α : R→ [a,b] ⊂ (0,2] is continuous. We may
define an α(x)-multistable measure M on the sets E0 as in Section 3.2. We now
use the same procedure but with piecewise constant functions αn(x) to obtain
approximating measures Mn. We will arrange for the restriction of Mn to each
interval [r2−n,(r +1)2−n) to be an α(r2−n)-stable measure independently for all
r. We will show that when n is large Mn is close in distribution to M.

Definition 3.4.1. For each n let αn : R→ [a,b]⊂ (0,2) be given by

αn(x) = α(r2−n) if x ∈ [r2−n,(r +1)2−n) for r ∈ Z.

Let Mn ≡ Mαn(x) be the αn(x)-multistable measure obtained from this αn(x) as
in Section 3.3. In particular Mn has finite-dimensional distributions given by the
characteristic function

E

(
exp i

{
d

∑
j=1

θ jMn(A j)

})
= exp

{
−

Z ∣∣∣∣∣ d

∑
j=1

θ j1A j(x)

∣∣∣∣∣
αn(x)

dx

}
. (3.19)

That Mn is independent scattered and σ-additive, follows from Theorem 3.2.8
and Theorem 3.2.9 with α(x) replaced by αn(x).

We show how to decompose Mn as an independent sum of measures on the
intervals [r2−n,(r + 1)2−n)). Let Mn,r denote the restriction of α(r2−n)-stable
measure to the interval [r2−n,(r +1)2−n)),

Mn,r(A) = Mα(r2−n)(A∩ [r2−n,(r +1)2−n)) = Mαn(x)(A∩ [r2−n,(r +1)2−n)),
(3.20)

where Mα(r2−n) is α(r2−n)-stable measure.

Theorem 3.4.2. We have that Mn is a random measure given by the sum of inde-
pendent random measures

Mn(A) = ∑
r∈Z

Mn,r(A), (3.21)

almost surely for A ∈ E0.

Proof. By Theorem 3.2.8, Mαn(x) is independent scattered, so since that the sets
A∩ [r2−n,(r +1)2−n) are disjoint for distinct r, we have that

Mαn(x)(A∩ [r2−n,(r +1)2−n)) = Mn,r(A)
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are independent for distinct r from the definition of independent scattered.
Let A ∈ E0, then by Theorem 3.2.9 and (3.20)

Mn(A) = Mαn(x)(A)

= Mαn(x)

([
r∈Z

A∩ [r2−n,(r +1)2−n)

)
a.s= ∑

r∈Z
Mαn(x)(A∩ [r2−n,(r +1)2−n))

a.s= ∑
r∈Z

Mn.r(A),

as required.

The fact that the random measures Mn approximate M follows from the result
of Section 3.3.

Theorem 3.4.3. Let α : R→ [a,b], 0 < a ≤ b ≤ 2 be continuous. Then Mn
fdd→M

as n→ ∞.

Proof. For each n we have αn(x) = α(r2−n) for all x ∈ [r2−n,(r +1)2−n). Since
α(x) is assumed continuous we have

lim
n→∞

αn(x) = α(x)

for all x. Thus by Theorem 3.3.1, it follows that Mn
fdd→M as n→ ∞.

3.5 Local behaviour of α(x)-multistable measure
One would expect, partly because of the results of the previous section, that an
α(x)-multistable measure looks like an α(u)-stable measure in a very small inter-
val around u. In this section, we make this idea precise.

Definition 3.5.1. For u ∈ R, r > 0, let Tu,r : R→ R be

Tu,r(x) =
x−u

r
.

This induces a mapping T #
u,r on random measures, given byZ

f (x)d(T #
u,rM)(x) =

Z
f
(

x−u
r

)
dM(x)

≡ I
(

f
(

.−u
r

))
. (3.22)

In particular (3.9) implies that

(T #
u,rM)(A) := M(T−1

u,r (A)) = I(1T−1
u,r (A))

for A ∈ E0.
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We now show that the α(x)-multistable random measure M ≡ Mα(x) “looks
like” the α(u)-stable measure Mα(u) near u.

We firstly introduce a lemma which will be useful in the proof of our next
theorem.

Lemma 3.5.2. Let α: R→ R+, let u ∈ R and suppose

|α(u)−α(v)|= o
(

1
| log |u− v||

)
(3.23)

as v→ u. Let [z1,z2]⊆ R be a bounded interval. Then

lim
r→0

r1/α(u)−1/α(u+rz) = 1 (3.24)

uniformly for z ∈ [z1,z2] and

lim
r→0

r1−α(u+rz)/α(u) = 1 (3.25)

uniformly for z ∈ [z1,z2].

Proof. Note that since α is continuous so bounded away from 0 on compact in-
tervals, there is a constant c1 such that for r sufficiently small,

| logr1/α(u)−1/α(u+rz)| =
|α(u+ rz)−α(u)|
|α(u)α(u+ rz)|

| logr|

≤ c1| logr|o
(

1
| log |rz||

)
= o(1)

| logr|
| log |r|+ log |z||

→ 0

as r→ 0 uniformly for z ∈ [z1,z2]. The proof of (3.25) is similar.

Here is our result on the local form of multistable measures.

Theorem 3.5.3. Let α : R→ [a,b]⊆ (0,2] be continuous with α(x + r)−α(x) =
o( 1

logr ) uniformly on bounded intervals and let u ∈ R. Then for all functions
f1, . . . , fd ∈ Fa,b with compact support, the vectors(

r−1/α(u)
Z

f1(x)d(T #
u,rM)(x), . . . ,r−1/α(u)

Z
fd(x)d(T #

u,rM)(x)
)

d→
(Z

f1(x)dMα(u)(x), . . . ,
Z

fd(x)dMα(u)(x)
)

(3.26)

as r→ 0. In particular,

r−
1

α(u)
(
(T #

u,rM)(A1), . . . ,(T #
u,rM)(Ad)

) d→ (Mα(u)(A1), . . . ,Mα(u)(Ad)) (3.27)

as r→ 0, for all bounded sets A1, . . . ,Ad ∈ E0.
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Proof. Let f1, f2, ..., fm ∈Fa,b be functions with compact support, say in [−z0,z0].
Let θ j ∈ R, j = 1,2, ...,m, and consider the characteristic functions.

E

(
exp i

m

∑
j=1

θ jr
− 1

α(u)

Z
f j(x)d(T #

u,rM)(x)

)

= E

(
exp i

m

∑
j=1

θ jr
− 1

α(u)

Z
f j(

x−u
r

)dM(x)

)
by (3.22) (3.28)

= exp

−Z ∣∣∣∣∣ m

∑
j=1

θ jr
− 1

α(u) f j(
x−u

r
)

∣∣∣∣∣
α(x)

dx

 by (3.13)

= exp

−Z ∣∣∣∣∣ m

∑
j=1

θ jr
− 1

α(u) f j(z)

∣∣∣∣∣
α(rz+u)

rdz


= exp

−Z ∣∣∣∣∣ m

∑
j=1

θ j f j(z)

∣∣∣∣∣
α(rz+u)

r1−α(rz+u)
α(u) dz

 , (3.29)

on writing x−u
r = z.

By Lemma 3.5.2 we have

lim
r→0

r1−α(rz+u)
α(u) = 1

uniformly for all z ∈ [−z0,z0], and limr→0 α(rz+u) = α(u) also uniformly for all
z ∈ [−z0,z0] since α is continuous.

We note that∣∣∣∣∣ m

∑
j=1

θ j f j(z)

∣∣∣∣∣
α(rz+u)

≤
m

∑
j=1

(|θ j|| f j(z)|)a,b ≤ c
m

∑
j=1
| f j(z)|a,b

where c is independent of r. Thus for r sufficiently small,∣∣∣∣∣ m

∑
j=1

θ j f j(z)

∣∣∣∣∣
α(rz+u)

r1−α(rz+u)
α(u) ≤ 2c

m

∑
j=1
| f j(z)|a,b,

for z∈ [−z0,z0], so as f j ∈Fa,b, we can apply the dominated convergence theorem
to get

lim
r→0

Z ∣∣∣∣∣ m

∑
j=1

θ j f j(z)

∣∣∣∣∣
α(rz+u)

r1−α(rz+u)
α(u) dz =

Z ∣∣∣∣∣ m

∑
j=1

θ j f j(z)

∣∣∣∣∣
α(u)

dz.
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Thus from (3.29)

lim
r→0

E

(
exp i

m

∑
j=1

θ jr
− 1

α(u)

Z
f j(x)d(T #

u,rM)(x)

)
= exp

−Z ∣∣∣∣∣ m

∑
j=1

θ j f j(x)

∣∣∣∣∣
α(u)

dx


= E

(
exp i

m

∑
j=1

θ j

Z
f j(x)dMα(u)(x)

)
.

We conclude by Lévy’s continuity theorem (Theorem 1.2.39) that (3.26) holds,
and then letting f (x) = 1A, that (3.27) holds.
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Chapter 4

Multistable processes and
localisability

4.1 Introduction
In this chapter, we study the localisability of the multistable processes. The first
part of the chapter considers sufficient conditions for the general processes defined
by stochastic integrals to be localisable. The second part contains a number of
examples of localisable processes.

4.2 The localisability of multistable processes
In this section, we first state our main theorem on localisability. We then derive a
number of lemmas concerning the spaces Fa,b, and then prove the theorem.

4.2.1 Localisability theorem
Recall from Definition 2.2.2 that a stochastic process Y is localisable at u if Y has
a unique non-trivial scaling limit at u, that is Y = {Y (t) : t ∈R} is h-localisable at
u with local form Y ′u = {Y ′u(t) : t ∈ R} if

Y (u+ rt)−Y (u)
rh

fdd→ Y ′u(t)

as r→ 0.

Definition 4.2.1. A stochastic process {Y (t), t ∈ R} is multistable if for almost
all u, Y is localisable at u with Y ′u an α-stable process for some α = α(u) where
0 < α(u)≤ 2.
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In this chapter, we consider multistable processes defined by stochastic inte-
grals, that is for t ∈ R and f ∈ Fa,b

Y (t) =
Z

f (t,x)dM(x), (4.1)

where M is α(x)-multistable measure as in Definition 3.2.7. Thus by (3.13) and
(4.1), for (t1, t2, . . . , td) ∈ Rd and (θ1,θ2, . . . ,θd) ∈ Rd , the characteristic function
of the random vector (Y (t1),Y (t2), . . . ,Y (td)) is

E

(
exp i

d

∑
j=1

θ jY (t j)

)
= E

(
exp i

d

∑
j=1

Z
f (t j,x)dM(x)

)

= exp

−
Z ∣∣∣∣∣ d

∑
j=1

θ j f (t j,x)

∣∣∣∣∣
α(x)

dx

 .

For a stochastic process Y , it is natural to ask what conditions are sufficient
for Y to be localisable. The following theorem, which is a multistable analogue of
Proposition 2.3.1, gives some conditions.

Theorem 4.2.2. Let
Y (t) =

Z
f (t,x)dM(x),

where M ≡Mα(x) is α(x)-multistable measure and α : R→ [a,b] ⊆ (0,2) is con-
tinuous. Assume that f (t, .) ∈ Fa,b for all t and

lim
r→0

Z ∣∣∣∣ f (u+ rt,u+ rz)− f (u,u+ rz)
rh−1/α(u+rz) −h(t,z)

∣∣∣∣a,b

dz = 0 (4.2)

for a jointly measurable function h(t,z) with h(t, .) ∈ Fa,b for all t. Then Y is
h-localisable at u with local form

Y ′u =
{Z

h(t,z)dMα(u)(z) : t ∈ R
}

(4.3)

where Mα(u) is α(u)-stable measure.

4.2.2 Lemmas
In order to prove Theorem 4.2.2, we need several lemmas.

Lemma 4.2.3. If β : R→ R is a measurable function with 0 < a ≤ β(z) ≤ b and
g(z) ∈ Fa,b, then Z

|g(z)|β(z)dz≤
Z
|g(z)|a,bdz < ∞. (4.4)
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Proof. We haveZ
|g(z)|β(z)dz =

Z
|g(z)|≤1

|g(z)|β(z)dz+
Z
|g(z)|>1

|g(z)|β(z)dz

≤
Z
|g(z)|≤1

|g(z)|adz+
Z
|g(z)|>1

|g(z)|bdz

=
Z
|g(z)|a,bdz

< ∞,

since g(z) ∈ Fa,b

Lemma 4.2.4. Let g, k be Lebesgue measurable functions. If 0 < p≤ 1, then∣∣∣∣Z |g(z)|pdz−
Z
|k(z)|pdz

∣∣∣∣≤ Z
|g(z)− k(z)|pdz, (4.5)

and if p > 1∣∣∣∣∣
(Z
|g(z)|p

)1/p

−
(Z
|k(z)|p

)1/p
∣∣∣∣∣

p

≤
Z
|g(z)− k(z)|pdz. (4.6)

Proof. If 0≤ p≤ 1, since (x1 + x2)p ≤ xp
1 + xp

2 for all x1, x2 ≥ 0, we haveZ
|g(z)|pdz =

Z
|g(z)− k(z)+ k(z)|pdz

≤
Z
|g(z)− k(z)|pdz+

Z
|k(z)|pdz,

which implies Z
|g(z)|pdz−

Z
|k(z)|pdz≤

Z
|g(z)− k(z)|pdz.

In the same way,Z
|k(z)|pdz−

Z
|g(z)|pdz≤

Z
|g(z)− k(z)|pdz,

so ∣∣∣∣Z |g(z)|pdz−
Z
|k(z)|pdz

∣∣∣∣≤ Z
|g(z)− k(z)|pdz.

For p ≥ 1, (4.6) immediately follows from the reverse triangle inequality for the
norm || f ||= |

R
f (z)pdz|1/p.

Lemma 4.2.5. If 0 < c≤ d and ρ,τ : R→ [c,d] are continuous, then∣∣∣∣Z |g(z)|ρ(z)dz−
Z
|g(z)|τ(z)dz

∣∣∣∣≤ |c−d|
Z
|g(z)|c,d| log |g(x)||dz, (4.7)

for all measurable g : R→ R.
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Proof. By the mean value theorem, for all x > 0, |xc−xd| ≤ |c−d|| log |x||max{xc,xd},so∣∣∣∣Z |g(z)|ρ(z)dz−
Z
|g(z)|τ(z)dz

∣∣∣∣
≤

∣∣∣∣Z max{|g(z)|c, |g(z)|d}dz−
Z

min{|g(z)|c, |g(z)|d}dz
∣∣∣∣

=
Z ∣∣∣|g(z)|c−|g(z)|d

∣∣∣dz

≤
Z
|c−d|| log |g(z)|||g(z)|c,ddz.

Lemma 4.2.6. Let 0 < a < b and 0 < δ < 1/2(b−a). Then there is a number M1
such that for all c,d with a+δ≤ c≤ d ≤ b−δ and all f ∈ Fa,b,Z

| f (z)|c,d| log | f (z)||dz≤M1

Z
| f (z)|a,bdz. (4.8)

Proof. We can find M1 such that for all x

M1 max{|x|a, |x|b} ≥ max{|x|a+δ, |x|b−δ}| log |x||
≥ max{|x|c, |x|d}| log |x||,

if a+δ≤ c≤ d ≤ b−δ. Taking x = f (z) and integrating we get inequality (4.8).

The following proposition will lead us to the proof of Theorem 4.2.2.

Proposition 4.2.7. Let [a,b] ⊂ (0,2], and g : R+×R→ R with g(r, .) ∈ Fa,b for
all r > 0. Let k ∈ Fa,b and let β : R→ [a,b] be continuous with β(0) ∈ (a,b). If

lim
r→0

Z
|g(r,z)− k(z)|a,bdz = 0, (4.9)

then
lim
r→0

Z
|g(r,z)|β(rz)dz =

Z
|k(z)|β(0)dz. (4.10)

Proof. We may assume k(z) is not almost everywhere 0, otherwise the result fol-
lows immediately from Lemma 4.2.3. Let ε be given. Choose M such thatZ

|z|≥M
|k(z)|a,bdz < ε, (4.11)

so in particular, Z
|z|≥M

|k(z)|β(0)dz < ε. (4.12)
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By (4.9) we may take r1 such that for all 0 < r ≤ r1Z
|z|≥M

|g(r,z)− k(z)|a,bdz < ε. (4.13)

By Lemma 4.2.3 and Lemma 3.2.2, if 0 < r ≤ r1,Z
|z|≥M

|g(r,z)|β(rz)dz ≤
Z
|z|≥M

|g(r,z)|a,bdz

≤ c1

Z
|z|≥M

|g(r,z)− k(z)|a,bdz+ c1

Z
|z|≥M

|k(z)|a,bdz

≤ 2c1ε, (4.14)

by (4.11) and (4.13) where c1 depends only on a and b.
For the other part of the integrals,∣∣∣∣Z|z|<M

|g(r,z)|β(rz)dz−
Z
|z|<M

|k(z)|β(0)dz
∣∣∣∣

≤
∣∣∣∣Z|z|<M

|g(r,z)|β(rz)dz−
Z
|z|<M

|g(r,z)|β(0)dz
∣∣∣∣+ ∣∣∣∣Z|z|<M

|g(r,z)|β(0)dz−
Z
|z|<M

|k(z)|β(0)dz
∣∣∣∣

≡ I1(r)+ I2(r).

We show that I1(r), I2(r)→ 0 as r→ 0. Let ε > 0 be given. We first estimate I1.
Since β(0)∈ (a,b), we may find δ such that a+δ < β(0) < b−δ. Let M1 be given
by Lemma 4.2.6 for this a,b and δ. Let c1 be given by Lemma 3.2.2 for this a and
b. Choose c, d such that

a+δ≤ c < β(0) < d ≤ b−δ

and
|c−d|c1M1

Z
|k(z)|a,bdz≤ ε (4.15)

Using the continuity of β, let 0 < r2 ≤ r1 be such that if 0 < r ≤ r2 and |z| ≤M
then β(rz) ∈ [c,d]. By Lemma 4.2.5, Lemma 4.2.6 and Lemma 3.2.2 we get

I1(r) ≤ |c−d|
Z
|g(r,z)|c,d| log |g(r,z)||dz

≤ |c−d|M1

Z
|g(r,z)|a,bdz

= |c−d|M1

Z
|(g(r,z)− k(z))+ k(z)|a,bdz

≤ |c−d|c1M1

(Z
|(g(r,z)− k(z))|a,bdz+

Z
|k(z)|a,bdz

)
≤ ε+ ε

= 2ε, (4.16)
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provided 0 < r ≤ r3 for some 0 < r3 ≤ r2, using (4.9) and (4.15).
For I2, by (4.9) and Lemma 4.2.3 with β(z) replaced by β(0), limr→0

R
|z|<M |g(r,z)−

k(z)|β(0)dz = 0, so by Lemma 4.2.4Z
|z|<M

|g(r,z)|β(0)dz→
Z
|z|<M

|k(z)|β(0)dz, (4.17)

as r→ 0, so I2(r) < ε if 0 < r ≤ r4 for some 0 < r4 ≤ r3.
Now if 0 < r ≤ r4, then∣∣∣∣Z |g(r,z)|β(rz)dz−

Z
|k(z)|β(0)dz

∣∣∣∣
≤

∣∣∣∣Z|z|≥M
|g(r,z)|β(rz)dz−

Z
|z|≥M

|k(z)|β(0)dz
∣∣∣∣+ ∣∣∣∣Z|z|<M

|g(r,z)|β(rz)dz−
Z
|z|<M

|k(z)|β(0)dz
∣∣∣∣

≤ 2c1ε+ ε+2ε+ ε

= (2c1 +4)ε,

using (4.12), (4.14), (4.16) and (4.17). Since ε is arbitrary, (4.9) implies (4.10).

4.2.3 Proof of the localisability theorem
Now we come to the proof of Theorem 4.2.2.

Proof. Fix u∈R. We consider the characteristic function of the finite-dimensional
distributions of r−h(Y (u + rt)−Y (u)). Let θ j ∈ R and t j ∈ R for j = 1,2, ...,m.
Then, using (3.13),

E

(
exp i

m

∑
j=1

θ jr−h(Y (u+ rt j)−Y (u))

)
(4.18)

= E

(
exp i

m

∑
j=1

θ jr−h
Z

( f (u+ rt j,x)− f (u,x))dM(x)

)

= exp

−
Z ∣∣∣∣∣ m

∑
j=1

θ jr−h( f (u+ rt j,x)− f (u,x))

∣∣∣∣∣
α(x)

dx


= exp

−
Z ∣∣∣∣∣ m

∑
j=1

θ jr−h( f (u+ rt j,rz+u)− f (u,rz+u))

∣∣∣∣∣
α(rz+u)

rdz


= exp

−
Z ∣∣∣∣∣ m

∑
j=1

θ jr−h+1/α(rz+u)( f (u+ rt j,rz+u)− f (u,rz+u))

∣∣∣∣∣
α(rz+u)

dz

 ,

(4.19)
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after setting x = rz+u.
Defining

Z(t) =
Z

h(t,z)dMα(u)(z), (4.20)

its finite-dimensional distributions are given by the characteristic function

E

(
exp i

m

∑
j=1

θ jZ(t j)

)
= exp

−
Z ∣∣∣∣∣ m

∑
j=1

θ jh(t j,z)

∣∣∣∣∣
α(u)

dz

 . (4.21)

We now use Proposition 4.2.7, taking

g(r,z) =
m

∑
j=1

θ j
f (u+ rt j,rz+u)− f (u,rz+u)

rh−1/α(rz+u) , (4.22)

k(z) =
m

∑
j=1

θ jh(t j,z), (4.23)

and
β(x) = α(u+ x). (4.24)

Observe that Z
|g(r,z)− k(z)|a,bdz→ 0, (4.25)

as r→ 0, by (4.2) and Lemma 3.2.2. Thus by Proposition 4.2.7, since
β(0) = α(u) ∈ (a,b) we have

Z ∣∣∣∣∣ m

∑
j=1

θ jr−h+1/α(rz+u)( f (u+ rt j,rz+u)− f (u,rz+u))

∣∣∣∣∣
α(rz+u)

dz

→
Z ∣∣∣∣∣ m

∑
j=1

θ jh(t j,z)

∣∣∣∣∣
α(u)

dz,

as r→ 0.
Since the exponential function is continuous, (4.19), and hence (4.18), is

pointwise convergent to (4.21) as r→ 0. Thus by the Lévy’s Theorem (Theorem
1.2.39), r−h(Y (u + rt)−Y (u)) fdd→ Z(t) as r→ 0, since (4.21) is a characteristic
function, it is continuous at 0.

Thus Y is h-localisable with local form Y ′u given in (4.3).

4.3 Examples
We give a number of examples to illustrate Theorem 4.2.2. Some of these are
considered in [7, Section 5] using the Poisson process definition of multistable
processes.
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Remember that in (2.13) we made the convention that

1[u,v] =−1[v,u], (4.26)

if v < u which we will also use in the following examples.

Example 4.3.1. Multistable Lévy motion.
Let

Y (t) =
Z

1[0,t](x)dMα(x)(x) = Mα(x)[0, t], (4.27)

where α: R→ (0,2) is continuous. Let u ∈ R and suppose that as v→ u,

|α(u)−α(v)|= o
(

1
| log |u− v||

)
. (4.28)

Then Y is 1/α(u)-localisable at u with local form

Y ′u =
{Z

1[0,t](z)dMα(u)(z), t ∈ R
}

= Lα(u), (4.29)

where Lα(u) is a α(u)-stable Lévy motion.

Proof. Let f (t,x) = 1[0,t](x). For t > 0 and u > 0, we have

f (u+ rt,u+ rz)− f (u,u+ rz) = 1[0,u+rt](u+ rz)−1[0,u](u+ rz)
= 1[u,u+rt](u+ rz)
= 1[0,t](z).

When t > 0, u < 0; t < 0, u > 0 and t < 0, u < 0, applying (4.26) the same
argument gives f (u+ rt,u+ rz)− f (u,u+ rz) = 1[0,t](z).

Then taking h(t,z) = 1[0,t](z) in Theorem 4.2.2,

lim r→0

Z ∣∣∣∣ f (u+ rt,u+ rz)− f (u,u+ rz)
r1/α(u)−1/α(u+rz) −1[0,t](z)

∣∣∣∣a,b

dz

= lim r→0

Z ∣∣∣∣ 1[0,t](z)

r1/α(u)−1/α(u+rz) −1[0,t](z)
∣∣∣∣a,b

dz

= 0,

since r1/α(u)−1/α(u+rz)→ 1 as r→ 0 uniformly for z ∈ [0, t] by Lemma 3.5.2, so
the integrand converges to 0 uniformly. By Theorem 4.2.2, we conclude that Y is
1/α(u)-localisable at u with local form (4.29).

Here is a weighted version of the previous example.
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Example 4.3.2. Weighted multistable Lévy motion.
Let

Y (t) =
Z

w(x)1[0,t](x)dMα(x)(x), (4.30)

where α: R→ (0,2) is continuous and w : R→ R is continuous. Let u ∈ R,
α(u) ∈ (a,b) and suppose that as v→ u,

|α(u)−α(v)|= o
(

1
| log |u− v||

)
. (4.31)

Then Y is 1/α(u)-localisable at u such that w(u) 6= 0 with local form

Y ′u =
{Z

w(u)1[0,t](z)dMα(u)(z), t ∈ R
}

= w(u)Lα(u), (4.32)

where Lα(u) is a α(u)-stable Lévy motion

Proof. Let f (t,x) = w(x)1[0,t](x). For t > 0 and u > 0, we have

f (u+ rt,u+ rz)− f (u,u+ rz) = w(u+ rz)1[0,u+rt](u+ rz)−w(u+ rz)1[0,u](u+ rz)
= w(u+ rz)1[u,u+rt](u+ rz)
= w(u+ rz)1[0,t](z).

With the convention (4.26), the other three cases give the same answer.
Then

lim r→0

Z ∣∣∣∣ f (u+ rt,u+ rz)− f (u,u+ rz)
r1/α(u)−1/α(u+rz) −w(u)1[0,t](z)

∣∣∣∣a,b

dz

= lim r→0

Z ∣∣∣∣w(u+ rz)1[0,t](z)

r1/α(u)−1/α(u+rz) −w(u)1[0,t](z)
∣∣∣∣a,b

dz. (4.33)

By Lemma 3.5.2 we have r1/α(u)−1/α(u+rz)→ 1 as r→ 0 uniformly for z ∈ [0, t],
and since w is a continuous function, w(u + rz)→ w(u) as r→ 0 uniformly for
z ∈ [0, t], so (4.33) equals 0. By Theorem 4.2.2, we conclude that Y is 1/α(u)-
localisable at u with local form (4.32).

Note that the multistable process (4.30) has independent increments Y (t2)−
Y (t1) =

R
w(x)1[t1,t2](x)dMα(u)(x).

We now consider multistable reverse Ornstein-Uhlenbeck motion. Notice that
in the multistable cases, we get a curious restriction on the range of α(x).

Example 4.3.3. Multistable reverse Ornstein-Uhlenbeck motion.
Let

Y (t) =
Z

∞

t
exp(−λ(x− t))dMα(x)(x), (4.34)
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where α: R→ [a,b] ⊆ (1,2) is continuous and 1 <
√

b < a ≤ b < 2. Let u ∈ R
and suppose that as v→ u,

|α(u)−α(v)|= o
(

1
| log |u− v||

)
. (4.35)

Then Y is 1/α(u)-localisable at u with local form

Y ′u =
{Z
−1(0,t)(z)dMα(u)(z), t ∈ R

}
. (4.36)

Proof. Let f (t,x) = exp(−λ(x− t))1[t,∞)(x). Then for t > 0,

f (u+ rt,u+ rz)− f (u,u+ rz)
= exp(−λ(rz− rt))1[u+rt,∞)(u+ rz)− exp(−λrz)1[u,∞)(u+ rz)
= exp(−λr(z− t))1[t,∞)(z)− exp(−λrz)1[0,∞)(z)
= exp(−λr(z− t))1[t,∞)(z)− exp(−λrz)1[t,∞)(z)− exp(−λrz)1[0,t)(z)
= exp(−λrz)(exp(λrt)−1)1[t,∞)(z)− exp(−λrz)1[0,t)(z). (4.37)

With the convention (4.26), the same argument implies that (4.37) holds for t ≤ 0.
We take h(t,z) =−1[0,t)(z) in (4.2). Consider

Z ∣∣∣∣ f (u+ rt,u+ rz)− f (u,u+ rz)
r1/α(u)−1/α(u+rz) +1[0,t)(z)

∣∣∣∣a,b

dz

=
Z ∣∣∣∣exp(−λrz)(exp(λrt)−1)1[t,∞)(z)− exp(−λrz)1[0,t)(z)

r1/α(u)−1/α(u+rz) +1[0,t)(z)
∣∣∣∣a,b

dz

=
Z |t|
−|t|

∣∣∣∣exp(−λrz)(exp(λrt)−1)1[t,∞)(z)− exp(−λrz)1[0,t)(z)

r1/α(u)−1/α(u+rz) +1[0,t)(z)
∣∣∣∣a,b

dz

+
Z

∞

|t|

∣∣∣∣exp(−λrz)(exp(λrt)−1)1[t,∞)(z)− exp(−λrz)1[0,t)(z)

r1/α(u)−1/α(u+rz) +1[0,t)(z)
∣∣∣∣a,b

dz

≡ φr,1(t)+φr,2(t),

say.
For φr,1(t), by Lemma 3.5.2 we have

r1/α(u)−1/α(u+rz)→ 1,

exp(−λrz)(exp(λrt)−1)→ 0

and
exp(−λrz)1[0,t)(z)→ 1[0,t)(z)

all uniformly as r→ 0 for z ∈ [−|t|, |t|]. Thus φr,1(t)→ 0 as r→ 0.
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For φr,2(t), we have

φr,2(t) =
Z

∞

|t|

∣∣∣∣exp(−λrz)(exp(λrt)−1)
r1/α(u)−1/α(u+rz)

∣∣∣∣a,b

dz

≤
Z

∞

|t|

∣∣∣r−1/a+1/b exp(−λrz)(exp(λrt)−1)
∣∣∣a,b

dz

≤ r1−b/a
Z

∞

|t|
|exp(−λrz)(exp(λrt)−1)|a,b dz

≤ c1r1−b/a
Z

∞

|t|
|exp(−λrz)(exp(λrt)−1)|a dz

= c1r1−b/a|exp(λrt)−1|a
Z

∞

|t|
|exp(−λarz)|dz

≤ c2r1−b/a(λr|t|)a exp(−λar|t|)(λra)−1

≤ c3ra−b/a,

for fixed t, where c1, c2 and c3 are independent of r < 1, say. Notice that a−b/a >
0 since a >

√
b, so

φr,2(t)→ 0

as r→ 0.
Thus

lim
r→0

Z ∣∣∣∣ f (u+ rt,u+ rz)− f (u,u+ rz)
r1/α(u)−1/α(u+rz) +1(0,t)(z)

∣∣∣∣a,b

dz = 0.

By Theorem 4.2.2, we conclude that Y is 1/α(u)-localisable at u with local form
(4.36).

The next example is linear fractional multistable motion. Recall from (2.14)
that asymmetric linear fractional α-stable motion is given by

Lα,h,b+,b−(t) =
Z

∞

−∞

ρα,h(b+,b−, t,x)dMα(x) (4.38)

where t ∈ R, b+,b− ∈ R, and

ρα,h(b+,b−, t,x)= b+
(
(t− x)h−1/α

+ − (−x)h−1/α

+

)
+b−

(
(t− x)h−1/α

− − (−x)h−1/α

−

)
,

(4.39)
where Mα is a symmetric α-stable random measure (0 < α < 2). Note that by the
convention after Definition 2.2.6, if h−1/α = 0 then

ρα,h(b+,b−, t,x) = (b+−b−)1[0,t](x)

if t ≥ 0, and
ρα,h(b+,b−, t,x) =−(b+−b−)1[t,0](x)

if t < 0. Then (4.38) is an α-stable process, see Example 1.4.19 and (2.14). We
introduce a multistable analogue of this.
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Definition 4.3.4. Let α : R→ [a,b] ⊆ (0,2). We define linear fractional α(x)-
multistable motion by

Lα(x),h,b+,b−(t) =
Z

∞

−∞

ρα(x),h(b
+,b−, t,x)dMα(x)(x) (4.40)

where t ∈ R, b+,b− ∈ R, and

ρα(x),h(b
+,b−, t,x)= b+

(
(t− x)h−1/α(x)

+ − (−x)h−1/α(x)
+

)
+b−

(
(t− x)h−1/α(x)

− − (−x)h−1/α(x)
−

)
,

(4.41)
where Mα(x) is an α(x)-multistable random measure.

To ensure that (4.40) is well-defined, we need to show that
ρα(x),h(b+,b−, t, .) ∈ Fa,b. This may be done as in Example 1.4.19. However, we
separate out the convergence at ∞ as a lemma.

Lemma 4.3.5. Let α: R→ [a,b] ⊆ (0,2) be continuous, t ∈ R and 0 < h < 1 +
1/b−1/a. For any given t ∈R and ε > 0, we can choose M sufficiently large such
that Z

|z|≥M

∣∣∣(t− z)h−1/α(rz+u)
+ − (−z)h−1/α(rz+u)

+

∣∣∣a,b
dz≤ ε (4.42)

for all r > 0.

Proof. Given t, for M ≥ max{|t|+ 1,2|t|}, we get, for z ≤ −M, using the mean
value theorem,

(t− z)h−1/α(rz+u)
+ − (−z)h−1/α(rz+u)

+ = (t− z)h−1/α(rz+u)− (−z)h−1/α(rz+u)

= (h−1/α(rz+u))t(w− z)h−1/α(rz+u)−1

where w ≡ w(z) ∈ (0, t) or (t,0) depending on the sign of t. Hence there is a
constant c2, such that for all z≤−M,∣∣∣(t− z)h−1/α(rz+u)

+ − (−z)h−1/α(rz+u)
+

∣∣∣ ≤ c2|w− z|h−1/α(rz+u)−1

≤ c2|w− z|h−1/b−1

≤ c3|t− z|h−1/b−1.

Thus Z
|z|≥M

∣∣∣(t− z)h−1/α(rz+u)
+ − (−z)h−1/α(rz+u)

+

∣∣∣a,b
dz

≤ c4

Z
|z|≥M

|t− z|(h−1/b−1)adz

< ∞,

since (h− 1/b− 1)a < −1. Thus this integral is convergent at ∞ uniformly in r,
as required.
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Corollary 4.3.6. Let α : R→ [a,b] ⊆ (0,2) be continuous, t ∈ R and 0 < h <
1+1/b−1/a. Then ρα(x),h(b+,b−, t, .) ∈ Fa,b.

Proof. By Lemma 4.3.5, we have
R
|ρα(x),h(b+,b−, t,x)|a,bdx convergent at ∞, and

it is clearly convergent at x = 0 and x = t. Thus ρα(x),h(b+,b−, t, .) ∈ Fa,b.

We now show that linear fractional multistable motion has linear stable motion
as its local form. We consider the case when b+ = 1 and b− = 0, the argument is
similar for other b+ and b−.

Proposition 4.3.7. Linear fractional multistable motion.
Let

Y (t) =
Z [

(t− x)h−1/α(x)
+ − (−x)h−1/α(x)

+

]
dMα(x)(x)

=
Z

ρα(x),h(1,0, t,x)dMα(x)(x)

= Lα(x),h,1,0(t), (4.43)

where α: R→ [a,b]⊆ (0,2) is continuous. If

1/a−1/b < h < 1+1/b−1/a, (4.44)

then Y is h-localisable at each u ∈ R with local form

Y ′u(t) =
{Z

(t− z)h−1/α(u)
+ − (−z)h−1/α(u)

+ dMα(u)(z), t ∈ R
}

= Lα(u),h,1,0(t). (4.45)

Proof. Let f (t,x) = (t− x)h−1/α(x)
+ − (−x)h−1/α(x)

+ , then

f (u+ rt,u+ rz)− f (u,u+ rz)
rh−1/α(u+rz)

=
(rt− rz)h−1/α(u+rz)

+ − (−rz)h−1/α(u+rz)
+

rh−1/α(u+rz)

=
rh−1/α(u+rz)((t− z)h−1/α(u+rz)

+ − (−z)h−1/α(u+rz)
+ )

rh−1/α(u+rz)

= (t− z)h−1/α(u+rz)
+ − (−z)h−1/α(u+rz)

+ .

We apply Theorem 4.2.2 with h(t,z) = (t − z)h−1/α(u)
+ − (−z)h−1/α(u)

+ . Thus
we need to considerZ ∣∣∣∣ f (u+ rt,u+ rz)− f (u,u+ rz)

rh−1/α(u+rz) − ((t− z)h−1/α(u)
+ − (−z)h−1/α(u)

+ )
∣∣∣∣a,b

dz

=
Z ∣∣∣(t− z)h−1/α(u+rz)

+ − (−z)h−1/α(u+rz)
+ − ((t− z)h−1/α(u)

+ − (−z)h−1/α(u)
+ )

∣∣∣a,b
dz

≡
Z
|φr(z)|a,bdz, (4.46)

70



say, given t and u. We consider the domain of the integration in several parts. Let
ε > 0.

First using Lemma 3.2.2 and Lemma 4.3.5, we can choose M sufficiently large,
so that Z

|z|>M
|φr(z)|a,bdz < ε, (4.47)

for all 0 < r ≤ r0, for some r0 > 0.
If h < 1/α(u+ rz),

(h−1/α(u+ rz))a≥ (h−1/α(u+ rz))b≥ (h−1/a)b >−1.

Hence, for |t − z| ≤ 1, |(t − z)h−1/α(u+rz)
+ |a,b ≤ max{1,(t − z)(h−1/a)b

+ }, so we
may find δ such that

R
|z−t|<δ

|(t − z)h−1/α(u+rz)
+ |a,bdz < ε for all r. SimilarlyR

|z|<δ
(−z)h−1/α(u+rz)

+ < ε for all r and
R
|z−t|<δ

(t− z)h−1/α(u)
+ < ε andR

|z|<δ
(−z)h−1/α(u)

+ < ε if δ is small enough. Thus we can take δ sufficiently small
such that Z

(|z|<δ)∪(|z−t|<δ)
|φr(z)|a,bdz < 4c1ε, (4.48)

using Lemma 3.2.2, for all 0 < r ≤ r0.
Now let A = {z : δ≤ |z| ≤M and δ≤ |z− t|}. Then, uniformly for z ∈ A,

α(u+ rz)→ α(u)

and so
(−z)h−1/α(u+rz)

+ → (−z)h−1/α(u)
+

and
(t− z)h−1/α(u+rz)

+ → (t− z)h−1/α(u)
+ .

Thus φr(z) is bounded and continuous on A with

φr(z)→ 0

uniformly.
By the bounded convergence theorem,Z

A
|φr(z)|a,bdz→ 0 (4.49)

as r→ 0.
Combining (4.47), (4.48) and (4.49), we conclude that

R
|φr(z)|a,bdz→ 0 as

r→ 0, so applying Theorem 4.2.2 to (4.46), we conclude that Y is h-localisable at
u with local form (4.45).

We now generalise Proposition 2.3.3 to multistable processes.
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Proposition 4.3.8. Let α : R→ [a,b]⊆ (0,2) be continuous, and let

Y (t) =
Z

f (t,x)dMα(x)(x), (4.50)

for t ∈ R, where f (t, .) ∈ Fa,b for t ∈ R. Let p and h satisfy 1/a− 1/b < h <
p +1/b−1/a with p < 1. Let u ∈ R and suppose there are numbers c+

0 ,c−0 such
that

f (t,x)
(t− x)h−1/α(x) → c+

0 , as t,x→ u with t > x; (4.51)

f (t,x)
(x− t)h−1/α(x) → c−0 , as t,x→ u with t < x. (4.52)

Suppose also that there is c > 0, such that

| f (w,x)− f (v,x)| ≤ c|w− v|p|x− v|h−1/α(x)−p, (4.53)

for all x,v.w such that |x− v| ≥ 2|w− v|.
Then Y is h-localisable at u ∈ R with local form

Y ′u =
{Z

ρα(u),h(c
+
0 ,c−0 , t,z)dMα(u)(z), t ∈ R

}
= L

α(u),h,c+
0 ,c−0

. (4.54)

Proof. To use Theorem 4.2.2 we want to show (4.2) is satisfied with h(t,z) =
ρα(u),h(c

+
0 ,c−0 , t,z). This is clearly true when t = 0, so assume t 6= 0. As in [6,

Proposition 3.1], we decompose

f (u+ rt,u+ rz)− f (u,u+ rz)
rh−1/α(u+rz) =

f (u+ rt,u+ rz)
(r(t− z))h−1/α(u+rz) |t− z|h−1/α(u+rz)1{t≥z}

+
f (u+ rt,u+ rz)

(r(z− t))h−1/α(u+rz) |t− z|h−1/α(u+rz)1{t<z}

− f (u,u+ rz)
(rz)h−1/α(u+rz) |z|

h−1/α(u+rz)1{z≥0}

− f (u,u+ rz)
(−rz)h−1/α(u+rz) |z|

h−1/α(u+rz)1{z<0}.(4.55)

For fixed t and z, since α is continuous, as r→ 0,

f (u+ rt,u+ rz)− f (u,u+ rz)
rh−1/α(u+rz) → c+

0 |t− z|h−1/α(u)1{t≥z}

+c−0 |t− z|h−1/α(u)1{t<z}

−c+
0 |z|

h−1/α(u)1{z≥0}

−c−0 |z|
h−1/α(u)1{z<0}

= ρα(u),h(c
+
0 ,c−0 , t,z), (4.56)
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so ∣∣∣∣ f (u+ rt,u+ rz)− f (u,u+ rz)
rh−1/α(u+rz) −ρα(u),h(c

+
0 ,c−0 , t,z)

∣∣∣∣a,b

→ 0

pointwise.
We now apply the dominated convergence theorem. For fixed t 6= 0 let |z| ≤

2|t|, we consider the first term of (4.55).∣∣∣∣ f (u+ rt,u+ rz)
r(t− z)h−1/α(u+rz) |t− z|h−1/α(u+rz)1t≥z

∣∣∣∣ ≤ (|c0|+ +1)|t− z|h−1/α(u+rz)1t≥z

≤ c2|t− z|h−1/a1t≥z, (4.57)

for all 0 < r ≤ r0, for some c2 and r0 > 0. Note that
R
|z|≤2|t| |t− z|(h−1/a)b < ∞,

since h < 1/a−1/b.
Similarly the other three terms in (4.55) raised to the power b are dominated

by integrable functions for |z| ≤ 2|t| for all 0 < r ≤ r1, say.
If |z| ≥ 2|t|, then letting w = u + rt,v = u and x = u + rz in (4.53), we have

|x− v| ≥ 2|w− v|, so∣∣∣∣ f (u+ rt,u+ rz)− f (u,u+ rz)
rh−1/α(u+rz)

∣∣∣∣a,b

≤ c3

∣∣∣∣∣ |rt|p|rz|h−1/α(u+rz)−p

rh−1/α(u+rz)

∣∣∣∣∣
a,b

= c3 ||t|p|a,b
∣∣∣|z|h−1/α(u+rz)−p

∣∣∣a,b

≤ c4

∣∣∣|z|h−1/α(u+rz)−p
∣∣∣a,b

≤ c5|z|(h−1/b−p)a, (4.58)

where c3, c4 and c5 depend only on t. Since (h−1/b− p)a <−1, this has a finite
integral on |z| ≥ 2|t|. Thus by Lemma 3.2.2∣∣∣∣ f (u+ rt,u+ rz)− f (u,u+ rz)

rh−1/α(u+rz)

∣∣∣∣a,b

≤ c1c6|t− z|(h−1/a)b1|z|≤2|t|+ c1c7|z|(h−1/a)b1|z|≤2|t|

+c5|z|(h−1/b−p)a1|z|>2|t|,

where c6 and c7 only depend on t, and this is integrable.
Since

R
|ρα(u),h(c

+
0 ,c−0 , t,z)|a,bdz < ∞, the dominated convergence theorem

gives Z ∣∣∣∣ f (u+ rt,u+ rz)− f (u,u+ rz)
rh−1/α(u+rz) −ρα(u),h(c

+
0 ,c−0 , t,z)

∣∣∣∣a,b

dz→ 0,

so the result follows from Theorem 4.2.2.

Note that Proposition 2.3.3 is a special case of this, taking α(x) = α, f (t,x) =
g(t− x) and letting v = x+u and w = x+u+h in Proposition 4.3.8.
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Chapter 5

The dimensions of graphs of
α-stable Weierstrass functions

5.1 Introduction
The Weierstrass function F : [0,1]→ R is defined as

F(t) =
∞

∑
k=1

λ
(D−2)k sin(λkt), (5.1)

where λ > 1 and D < 2. It is a continuous function and when 1 < D < 2 is nowhere
differentiable. As we can see, the Weierstrass function is constructed from a series
of rapidly increasing frequency terms and it is known to have a fractal graph. A
natural question to ask is what is the dimension of the graph. The graph of the
Weierstrass function has box-counting dimension D if 1 < D < 2 and is believed to
have Hausdoff dimension D but finding a lower bound of the Hausdorff dimension
has proved difficult. See [5] and [11].

In this chapter, we introduce α-stable Weierstrass functions, that is a random
version of the Weierstrass function, by including an α-stable random amplitude
with each term. We prove that the box-counting and Hausdoff dimensions of
the graphs of α-stable Weierstrass functions equal D almost surely under certain
conditions. These random functions provide specific examples of the α-stable
random processes discussed earlier.

5.2 Background to fractal dimensions
We first recall a series of standard definitions and lemmas relating to dimensions
of a set. See [4, 5, 16] for more details.

We write |U | ≡ sup{|x− y| : x,y ∈ A} for the diameter of a set A ⊆ Rn, and
take the diameter of the empty set to be zero.
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Definition 5.2.1. For F a subset of Rn, a δ−cover {Ui}∞
i=1 of F is a finite or

countable collection of sets such that

F ⊆
∞[

i=1

Ui

with |Ui| ≤ δ for all i.

Definition 5.2.2. Let s≥ 0. For any δ > 0, we define the δ-premeasure H s
δ
(F) of

F ⊆ Rn as

H s
δ
(F) = inf

{
∞

∑
i=1
|Ui|s : {Ui} is a δ-cover of F

}
, (5.2)

where the infimum is taken over all δ−covers of F.

From this definition, we can see as δ decreases, the class of permissible covers
of F in (5.2) is reduced. Therefore, the infimum H s

δ
(F) increases as δ→ 0, and

so it approaches to a limit, which may be zero or infinity.

Definition 5.2.3. For s≥ 0, we define s−dimensional Hausdorff measure of F ⊆
Rn to be

H s(F) = lim
δ→0

H s
δ
(F). (5.3)

There is a critical value at which H s(F) jumps from zero to infinity as s in-
creases. We define this value to be the Hausdorff dimension of F .

Definition 5.2.4. The Hausdorff dimension of a set F ⊆ Rn is

dimH F = inf{s≥ 0 : H s(F) = 0}= sup{s : H s(F) = ∞}. (5.4)

Thus

H s(F) =
{

∞ if 0≤ s < dimH F
0 if s > dimH F .

(5.5)

When s = dimH F , H s(F) may equal zero, infinity or be a positive finite real
number.

For a nonempty bounded set F ⊆Rn, let Nδ(F) be the smallest number of sets
with diameter at most δ which cover F .

Definition 5.2.5. The lower box-counting dimension of F is

dimB F = lim
δ→0

logNδ(F)
− logδ

, (5.6)

and the upper box-counting dimension of F is

dimB F = lim
δ→0

logNδ(F)
− logδ

. (5.7)
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If the two values are equal, the common value is called the box-counting dimen-
sion or box dimension of F and we write

dimBF = lim
δ→0

logNδ(F)
− logδ

. (5.8)

Lemma 5.2.6. For any bounded, nonempty set F ⊆ Rn

0≤ dimH (F)≤ dimB (F)≤ dimB (F)≤ n

Proof. See [5].

The potential theoretic method is one of the main techniques used to find lower
bounds for Hausdoff dimensions of sets. We say µ is a mass distribution on F if µ
is a Borel measure with 0 < µ(Rn) < ∞ and µ(Rn\F) = 0.

Definition 5.2.7. For s≥ 0, we define the s−energy Is(µ) of µ by

Is(µ) =
Z Z dµ(x)dµ(y)

|x− y|s
. (5.9)

The following proposition relates the existence of mass distributions with fi-
nite energy to Hausdoff measures and dimensions.

Proposition 5.2.8. Let F be a subset of Rn.
1) If there is a mass distribution µ on F with Is(µ) < ∞, then H s(F) = ∞ and

dimH F ≥ s.
2) If F is a Borel set with H s(F) > 0, then there exists a mass distribution µ

on F with It(µ) < ∞ for all 0 < t < s.

Proof. See [5].

5.3 Dimensions of Weierstrass-type graphs
The Weierstrass function

F(t) =
∞

∑
k=1

λ
(D−2)k sin(λkt), (5.10)

where λ > 1 and 1 < D < 2 has a fractal graph, graph(F), and it is a long-standing
problem to find its Hausdorff dimension, dimH (graphF). It is known that

dimH (graphF)≤ dimB (graphF) = dimB (graphF) = D,

but finding a lower bound for the Hausdoff dimension has proved difficult. How-
ever, it is possible to introduce random versions of the Weierstrass functions
whose Hausdoff dimension can be found almost surely.
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The Weierstrass function F can be randomized in several ways including the
following:

with a random phase added to each term

Fθ(t) =
∞

∑
k=1

λ
(D−2)k sin(λk(t +θk)),

where θ1,θ2, . . . are independent uniformly distributed random variables on [0,2π];
with a random amplitude for each term

FA(t) =
∞

∑
k=1

Akλ
(D−2)k sin(λkt),

where A1,A2, . . . are independent identically distributed random variables.
Hunt proved that the graph of Fθ has Hausdorff dimension D almost surely in

[11]. Here we study the dimensions of the graph of FA where the Ak are indepen-
dent symmetric α-stable random variables. The function FA provides a realisation
of an α-stable process, since (FA(t1), . . . ,FA(tm)) will then be an α-stable random
vector for all t1, . . . , tm.

The next theorem is the main theorem of this chapter. We will use the rest of
the chapter to prove it.

Theorem 5.3.1. Let 0 < α ≤ 2 and Ak be independent identically distributed
symmetric α-stable random variables. Let λ > 1. Then the random function
FA : [0,1]→ R

FA(t) =
∞

∑
k=1

Akλ
(D−2)k sin(λkt) (5.11)

is continuous, and has

dimB(graphFA) = dimH (graphFA) = 1, (5.12)

almost surely when D < 1, and

dimB(graphFA) = dimH (graphFA) = D (5.13)

almost surely when 1≤ D < 2.

The lower bound of the Haudorff dimension comes from a potential-theoretic
approach, and the upper bound of the box-counting dimension depends on a ran-
dom Hölder condition.

5.3.1 Continuity and upper bounds for dimensions
We use the Weierstrass M-test to show that FA is almost surely continuous.
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Lemma 5.3.2. Weierstrass M-test
Let fk : [a,b]→ R be a sequence of functions, and suppose that there exists a

sequence ak ≥ 0 with the property that | fk(t)| ≤ ak for all k ≥ 1 and t ∈ [a,b]. If
∑

∞
k=1 ak is convergent, then ∑

∞
k=1 fk(t) is uniformly convergent for t ∈ [a,b].

Proof. See [3, Theorem 3-4c].

Lemma 5.3.3. With probability one, the random function FA defined in (5.11) is
continuous.

Proof. Consider

FA(t) =
∞

∑
k=1

Akλ
(D−2)k sin(λkt) (5.14)

where the Ak are independent identically distributed α-stable random variables
with α > 1 for all k.

Since Ak is an α-stable random variable, by Lemma 1.3.7,

P(|Ak| ≥ β)≤ cβ
−α,

for all β > 1 with c independent of k and β. Take 0 < δ < 2−D, then

P(|Ak| ≥ λ
kδ)≤ cλ

−kδα.

Since λ−δα < 1, we have ∑
∞
k=1 λ−kδα < ∞. By the Borel–Cantelli lemma, with

probability 1, there is a random K0 such that

P(|Ak| ≥ λ
kδ) = 0,

for all k ≥ K0, that is
|Ak| ≤ λ

kδ,

for k ≥ K0.
Let

fk(t) = Akλ
(D−2)k sin(λkt)

and
Ck = |Ak|λ(D−2)k,

so | fk(t)| ≤Ck for all t ∈ R. But

∞

∑
k=1

Ck ≤
K0

∑
k=1
|Ak|λ(D−2)k +

∞

∑
k=K0+1

|Ak|λ(D−2)k

≤ max
1,...,K0

|Ak|
K0

∑
k=1

λ
(D−2)k +

∞

∑
k=K0+1

(λδ)k
λ

(D−2)k

= max
1,...,K0

|Ak|
K0

∑
k=1

λ
(D−2)k +

∞

∑
k=K0+1

λ
(D−2+δ)k

< ∞,
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almost surely.
By the Weierstrass M-test, we have that, almost surely, (5.14) is uniformly

convergent on R, so FA(t) is continuous.

The case of D < 1 is less interesting in that FA is smooth.

Lemma 5.3.4. When D < 1, FA is differentiable almost surely with

F ′A(t) =
∞

∑
k=1

Akλ
(D−1)k cos(λkt),

and
dimH (graphFA) = dimB(graphFA) = 1

almost surely.

Proof. Let

(FA)n(t) =
n

∑
k=1

Akλ
(D−2)k sin(λkt),

then (FA)n is differentiable with

(FA)′n(t) =
n

∑
k=1

Akλ
(D−1)k cos(λkt),

and
lim
n→∞

(FA)n(t) = FA(t).

Since Ak is an α-stable random variable, by Lemma 1.3.7,

P(|Ak| ≥ β)≤ cβ
−α,

for all β > 1 with c independent of k and β. Take 0 < δ < 1−D, then

P(|Ak| ≥ λ
kδ)≤ cλ

−kδα.

Since λ−δα < 1, we have ∑
∞
k=1 λ−kδα < ∞. By the Borel–Cantelli lemma, with

probability 1, there is a random K0 such that

P(|Ak| ≥ λ
kδ) = 0,

for all k ≥ K0, that is
|Ak| ≤ λ

kδ,

for k ≥ K0.
Let

fk(t) = Akλ
(D−1)k cos(λkt)
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and
Ck = |Ak|λ(D−1)k,

so | fk(t)| ≤Ck for all t ∈ R. But

∞

∑
k=1

Ck ≤
K0

∑
k=1
|Ak|λ(D−1)k +

∞

∑
k=K0+1

|Ak|λ(D−1)k

≤ max
1,...,K0

|Ak|
K0

∑
k=1

λ
(D−1)k +

∞

∑
k=K0+1

(λδ)k
λ

(D−1)k

= max
1,...,K0

|Ak|
K0

∑
k=1

λ
(D−1)k +

∞

∑
k=K0+1

λ
(D−1+δ)k

< ∞,

almost surely.
By the Weierstrass M-test, we get limn→∞(FA)′n(t) = ∑

∞
k=1 Akλ(D−1)k cos(λkt)

converging uniformly almost surely. Thus FA(t) is differentiable with

F ′A(t) =
∞

∑
k=1

Akλ
(D−1)k cos(λkt).

Finally, we note that the graph of a differentiable function has dimension 1.

Next we show that FA satisfies an almost-sure Hölder condition.

Lemma 5.3.5. Hölder condition
Let 1≤D < 2 and let 0 < η < 2−D. Then with probability one, FA : [0,1]→R

satisfies
|FA(t +h)−FA(t)| ≤ B|h|η (5.15)

if |h| ≤ H0 for some random H0 > 0 and B > 0.

Proof. Since Ak are identically distributed α-stable random variables, by Lemma
1.3.7,

P(|Ak| ≥ β)≤ cβ
−α,

for all β > 1 where c is a constant. Take β = (λξ)k for 0 < ξ < 2−D, then

P(|Ak| ≥ λ
ξk)≤ c(λξk)−α.

Since λ−αξ < 1, we have ∑
∞
k=1 λ−kαξ < ∞. By the Borel–Cantelli lemma, with

probability one there exists K0 such that,

P(|Ak| ≥ λ
ξk) = 0,
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for all k ≥ K0. This implies
|Ak| ≤ λ

ξk,

for all k ≥ K0, so
λ

(D−2)k|Ak| ≤ λ
(D−2+ξ)k,

for all k ≥ K0.
For such K0, suppose 0 < h ≤ H0 ≡ λ−K0 and let k1 be the integer such that

λ−(k1+1) < h≤ λ−k1 . Then

|FA(t +h)−FA(t)| =

∣∣∣∣∣ ∞

∑
k=1

Akλ
(D−2)k(sin(λk(t +h))− sin(λkt))

∣∣∣∣∣
≤

∞

∑
k=1

λ
(D−2)k|sin(λk(t +h))− sin(λkt)||Ak|

≤
k1

∑
k=1

λ
(D−2)k

λ
k|h||Ak|+2

∞

∑
k=k1+1

λ
(D−2)k|Ak|

≤ max
1,...,k1

|Ak|
k1

∑
k=1

λ
(D−1)k|h|+2

∞

∑
k=k1+1

λ
(D−2+ξ)k

≤ max
1,...,k1

|Ak||h|
λ(D−1)k1

1−λ1−D +2
λ(k1+1)(D−2+ξ)

1−λ(D−2+ξ)

≤ C1|h||h|1−D + c2|h|(2−D−ξ)

≤ C3|h|(2−D−ξ),

where C1, C3 are random constants, c2 is a constant and this valid for 0 < h ≤
λ−K0 ≡ H0. By choosing ξ sufficiently small, we have for all 0 < η < 2−D

|FA(t +h)−FA(t)| ≤ B|h|η

as required.

A standard property on the dimension of graphs leads to our upper bound on
the box-counting dimension.

Proposition 5.3.6. Let FA : [0,1]→ R be a continuous function. Suppose that for
some h0 > 0

|FA(t)−FA(u)| ≤ c|t−u|2−s (0≤ t,u≤ 1 and |t−u| ≤ h0)

where c > 0 and 1≤ s≤ 2. Then dimB (graphFA)≤ s.

Proof. See [5, Corollary 11.2].

Corollary 5.3.7. Let FA be the function (5.11) with λ > 1 and 1 ≤ D < 2. Then
with probability one, dimH (graphF)≤ dimB (graphF)≤ dimB (graphFA)≤ D.
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Proof. Combining the almost-sure Hölder condition of Lemma 5.3.5 and Propo-
sition 5.3.6, we get

dimB (graphFA)≤ D,

almost surely, with the other inequalities from Lemma 5.2.6.

5.3.2 Lower bounds for dimensions
There are several difficulties in estimating the lower bound of the dimension of
graph(FA):

1) The α-stable random variables Ak have infinite variance when α < 2 and
infinite expectation when α≤ 1.

2) When we estimate FA(t +h)−FA(t), we get terms of the form

sin(λk(t +h))− sin(λkt) = 2sin
(

λ
k h
2

)
cos
(

λ
k
(

t +
h
2

))
and cos

(
λk (t + h

2

))
can be very small, giving ‘flat’ parts of the graph which have

to be removed.

Lemma 5.3.8. For k = 1,2, . . . , let Ak be independent identically distributed sym-
metric α-stable random variables, and let ak be real numbers such that Z =
∑

∞
k=1 akAk is convergent in distribution. Then for all r > 0,

P(|Z| ≤ r)≤ cr
|ak|

,

for all k, where c > 0 is independent of r.

Proof. Note that Z is symmetric α-stable with the distribution of (∑∞
k=1 |ak|α)1/α A1.

Then

P(Z ≤ r) = P

|A1| ≤ r

(
∞

∑
k=1
|ak|α

)−1/α


≤ P(|A1| ≤ r/|ak|)
≤ cr
|ak|

,

for all k, since the α-stable random variable A1 has bounded density. (See [17,
Section 1.6])

We will need the following estimate.

Lemma 5.3.9. Let s > 1 and Z be a random variable satisfying

P(|Z| ≤ r)≤ ar
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for all r ≥ 0, for some a > 0. Then

E
(
(Z2 +h2)−s/2

)
≤ ca|h|1−s,

with c independent of h and a.

Proof. Let F be the distribution function of |Z|, so F(z) ≤ az for all z ≥ 0. Then
for an appropriate constant c independent of h and a, on integrating by parts

E
(
(Z2 +h2)−s/2

)
=

Z
∞

0
(z2 +h2)−s/2dF(z)

≤
Z |h|

0
|h|−sdF(z)+

Z
∞

|h|
z−sdF(z)

≤ |h|−sF(|h|)+ [z−sF(z)]∞z=|h|+ s
Z

∞

|h|
z−s−1F(z)dz

≤ 2a|h||h|−s + s
Z

∞

|h|
z−s−1azdz

≤ 2a|h|1−s +as
Z

∞

|h|
z−sdz

≤ ca|h|1−s

as required.

We will let Z = FA(t + h)−FA(t), and bound the probability P(|Z| ≤ h) for
h > 0 in order to bound E

(
(Z2 +h2)−s/2

)
using Lemma 5.3.9. Then we show

that there is a random mass distribution on the graph FA, which has finite s-energy
almost surely. By the potential theoretic criterion (Lemma 5.2.8), FA will have
dimension at least s almost surely.

Proposition 5.3.10. With the notation above, for 0 < α≤ 2 and 1≤ D < 2

dimH (graphFA)≥ D

almost surely.

Proof. Fix t and h for the time being and write

Z = FA(t +h)−FA(t) =
∞

∑
k=1

Zk,

where Zk = Akλ(D−2)k(sin(λk(t +h))− sin(λkt)).
Since A1,A2, . . . are independent α-stable random variables with α > 1, then

by Lemma 5.3.8, for r > 0 and all k

P(|Z| ≤ r)≤ c1
r∣∣λ(D−2)k(sin(λk(t +h))− sin(λkt))

∣∣ , (5.16)
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where c1 is a constant.
Let ε > 0 be a small number and choose a constant b such that 0 < bλ−ε < π/4.

Given 0 < h≤ bλ−(1+ε), let k be the integer such that,

bλ
−(k+1)(1+ε) < h≤ bλ

−k(1+ε). (5.17)

Using that sinx≥ (2
√

2x)/π if 0 < x < π/4, we get,

w≡ w(k, t,h) ≡
∣∣∣λ(D−2)k(sin(λk(t +h))− sin(λkt))

∣∣∣
=

∣∣∣∣2λ
(D−2)k sin

(
λ

k h
2

)
cos
(

λ
k
(

t +
h
2

))∣∣∣∣
≥

∣∣∣∣∣2λ
(D−2)k

√
2λkh
π

cos
(

λ
k
(

t +
h
2

))∣∣∣∣∣
≥ c2

∣∣∣∣λ(D−1)khcos
(

λ
k
(

t +
h
2

))∣∣∣∣ , (5.18)

where c2 does not depend on k, t and h.
Let Sk be the union of intervals

Sk =
∞[

n=−∞

1
λk [nπ− (

π

2
−bλ

−kε),nπ+(
π

2
−bλ

−kε)].

For k ≥ 1 suppose t ∈ Sk and bλ−(k+1)(1+ε) ≤ h ≤ bλ−k(1+ε). Then for some
integer n

nπ− (
π

2
−bλ

−kε)≤ λ
kt ≤ nπ+(

π

2
−bλ

−kε)

so
nπ− (

π

2
− b

2
λ
−kε)≤ λ

k(t +
h
2
)≤ nπ+(

π

2
− b

2
λ
−kε).

This implies∣∣∣∣cos(λk(t +
h
2
))
∣∣∣∣≥ ∣∣∣∣cos(

π

2
− b

2
λ
−kε)

∣∣∣∣= ∣∣∣∣sin(
b
2

λ
−kε)

∣∣∣∣≥
√

2b
π

λ
−kε > 0.

For some integer k0 to be defined later, if t ∈
T

∞
k=k0

Sk and bλ−(k+1)(1+ε) ≤ h <

bλ−k(1+ε) where k ≥ k0, by (5.18) and (5.17) we have

w(k, t,h) ≥ c2λ
(D−1)kh

√
2b
π

λ
−kε

= c3(λ−k)(1−D+ε)h

≥ c4h(1−D+ε)/(1+ε)+1, (5.19)

for some constants c3 and c4.
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Let t ∈
T

∞
k=k0

Sk and 0 < h≤ h0 ≡ bλ−k0(1+ε), then by (5.16) and (5.19)

P(|Z| ≤ r) ≤ c1r
c4h(1−D+ε)/(1+ε)+1

= c5rh(D−1−ε)/(1+ε)−1, (5.20)

where c5 is independent of h and r. Thus if t ∈ S≡ (
T

∞
k=k0

Sk)
T

[0,1] and 0 < h≤
h0, by Lemma 5.3.9, taking a = c5h(D−1−ε)/(1+ε)−1, we have

E
(
(|FA(t +h)−FA(t)|2 +h2)−s/2

)
= E

(
(Z2 +h2)−s/2

)
≤ cc5h(D−1−ε)/(1+ε)−1h1−s

= c6h(D−1−ε)/(1+ε)−s, (5.21)

where c6 is independent of h.
Consider the set S = (

T
∞
k=k0

Sk)
T

[0,1]. Then

L(S)≥ 1− c7

∞

∑
k=k0

(λ−k)ε = 1− c7λ−k0ε

1−λ−ε
>

1
2
,

where c7 > 0 is a constant and L is Lebesgue measure, by choosing k0 large
enough.

We may lift Lebesgue measure restricted to S onto the graph of FA to get a
random mass distribution µFA on FA, that is

µFA(B) = L{t : t ∈ S and (t,FA(t)) ∈ B}

for any Borel B⊆ R2, with 1/2≤ µFA(graphFA) = L(S)≤ 1. By (5.21),

E
Z

t∈S

Z
u∈[0,1],|t−u|≤h0

(|FA(t)−FA(u)|2 + |t−u|2)−s/2dtdu

= E
Z

t∈S

Z
t+h∈[0,1],|h|≤h0

(|FA(t +h)−FA(t)|2 +h2)−s/2dhdt

=
Z

t∈S

Z
t+h∈[0,1],|h|≤h0

E
(
(|FA(t +h)−FA(t)|2 +h2)−s/2

)
dhdt

≤ 2c6

Z
t∈S

Z
t+h∈[0,1],|h|≤h0

|h|−s+(D−1−ε)/(1+ε)dhdt

≤ c8h1−s+(D−1−ε)/(1+ε)
0

< ∞ (5.22)

for some c8 > 0, if 1− s+(D−1− ε)/(1+ ε) > 0.
For all s < D we may choose ε small enough, so that

1− s+(D−1− ε)/(1+ ε) > 0, so (5.22) is valid. ThusZ
t∈S

Z
u∈[0,1],|t−u|≤h0

(|FA(t)−FA(u)|2 + |t−u|2)−s/2dtdu < ∞
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almost surely.
Since Z

t∈S

Z
u∈S,|t−u|>h0

(|FA(t)−FA(u)|2 + |t−u|2)−s/2dtdu < ∞

always, we getZ Z
|t−u|−sdµFA(t)dµFA(u) =

Z
t∈S

Z
u∈S

(|FA(t)−FA(u)|2 + |t−u|2)−s/2dtdu < ∞

almost surely.
Thus the finite measure µFA is supported by graph(FA) and has finite s-energy

almost surely, so by the energy criterion (Lemma 5.2.8), we get

dimH (graphFA)≥ s

for all s < D, so dimH (graphFA)≥ D almost surely.

5.4 Proof of the theorem
We now get Theorem 5.3.1 by combining the earlier results.

Proposition 5.4.1. With probability one,

dimH (graphFA) = dimB(graphFA) = 1

when 0 < D < 1 and 0 < α≤ 2.

Proof. By Lemma 5.3.3 and Lemma 5.3.4, when D < 1, the random function FA
is a continuous and differentiable, so

dimH (graphFA) = dimB(graphFA) = 1.

Proposition 5.4.2. With probability one, when 1≤D < 2 and 0 < α≤ 2, we have

dimH (graphFA) = dimB(graphFA) = D.

Proof. By Lemma 5.3.6 and Proposition 5.3.10,

D≤ dimH (graphFA)≤ dimB (graphFA)≤ dimB (graphFA)≤ D,

almost surely, so

dimH (graphFA) = dimB(graphFA) = D

almost surely.

Together these two propositions give Theorem 5.3.1.
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