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Abstract 

Computational group theory deals with the design, analysis and computer im-

plementation of algorithms for solving computational problems involving groups, 

and with the applications of the programs produced to interesting questions in 

group theory, in other branches of mathematics, and in other areas of science. 

This thesis describes an implementation of a proposal for a Soluble Quotient Al-

gorithm, i. e. a description of the algorithms used and a report on the findings 

of an empirical study of the behaviour of the programs, and gives an account of 

an application of the programs. The programs were used for the construction 

of soluble groups with interesting properties, e. g. for the construction of soluble 

groups of large derived length which seem to be candidates for groups having ef-

ficient presentations. New finite soluble groups of derived length six with trivial 

Schur multiplier and efficient presentations are described. The methods for find-

ing efficient presentations proved to be only practicable for groups of moderate 

order. Therefore, for a given derived length soluble groups of small order are of 

interest. The minimal soluble groups of derived length less than or equal to six 

are classified. 
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Chapter 1 

Introduction 

Recent research indicates that machine computations and mathematical theory 

have proceeded hand in hand and have proved to be of great benefit to one an-

other. Computer calculations have become an important element in mathematical 

research for various reasons : 

• Computer calculations allow new, often unexpected mathematical phenom-

ena to be observed. 

• Richer, more complex examples of known phenomena can be explored. 

These examples which might illustrate or be of central importance to a 

theory were previously beyond computation and detailed comprehension. 

• On the basis of exploration of examples and phenomena, new patterns are 

observed. This leads to the formulation of new theories and conjectures 

which are then the subject of formal mathematical investigation. 

• The computer acts as a guide in the construction of a formal proof. It 

provides a tool that yields insight into the problem at hand. Furthermore, 

it enables mathematicians to understand the behaviour of the examples at 

a level deep enough to construct many new examples. 
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Computers have traditionally been associated with the solution of numerical 

problems such as the calculation of the roots of an equation, numerical interpola-

tion and integration etc. However, a good deal of interesting work has been done 

using computers for essentially nonnumerical problems, such as sorting, trans-

lating languages, combinatorial analysis and solving mathematical problems in 

algebra. During the last three decades group theorists developed algorithms suit-

able for machine implementation to investigate the structure of groups ( Todd- 

Coxeter method of coset enumeration, C. Sims' techniques for the algorithmic 

investigation of permutation groups, algorithms for finite soluble groups, etc. ). 

The successful application of computers to group theory ( classification of four-

dimensional crystallographic groups and of finite simple groups, etc. ) led to a 

wide acceptance among researchers of machine computation in algebra. 

One of the objectives of computational group theory is the development of 

efficient algorithms for the purpose of calculating in groups and analysing their 

structure with the aid of a computer. The appearance of algorithms for comput- 

ing with finite soluble groups ( cf. [LNS 84] ) emphasizes the fact that a finite 

soluble group can be investigated very efficiently if it is defined in terms of an 

AG-presentation, i.e. roughly a presentation that exhibits a composition series 

for the group. This raises the question of producing an AG-presentation for a 

finite soluble group that has been defined in some other way. Recently Sims 

described the implementation of an algorithm for computing a strong generating 

set and an AG-presentation for a finite soluble permutation group. The major 

gap in the present capabilities is the lack of an efficient analogue of the nilpotent 

quotient algorithm for soluble groups. Even though there are some proposals for 

a soluble quotient algorithm ( cf. [Lee 84], [Ple 87] ) which would construct an 

AG-presentation for a finitely presented soluble group they are not implemented 

and therefore it is unknown whether the methods are practical. 

In early 1987 the author started on a project which aimed at an implementa-

tion of the basic algorithms of Plesken's proposal. By the end of 1987 a program 
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for the calculation of the extensions of finite soluble groups by finite elementary 

abelian groups became operational. The program was written in the C program-

ming language and running in the UNIX programming environment. At this 

stage the requirements for the other parts of the project ( in particular the calcu-

lation of the irreducible representations of finite soluble groups over finite fields ) 

had been assessed and it was decided to implement the algorithms in the group 

theoretical programming system GAP which proved to be a fast and efficient 

tool to implement experimental versions of algorithms. At the end of 1988 the 

basic algorithms were implemented and a running version of a "soluble quotient 

algorithm" became available. The present version consists of about 3400 lines 

of code and about 2000 lines of documentation. Both, code and documentation, 

will be made available with GAP version 3.2. Apart from the programs and the 

documentation a library of finite soluble groups has been compiled in order to 

test and study the implementation. Since GAP contains in a much better form 

almost all that had been incorporated in SOGOS ( cf. [LNS 84] ) the "soluble quo-

tient algorithm" makes the algorithms for computing with finite soluble groups 

accessible to finitely presented soluble groups. 

This thesis outlines the state of the implementation, i.e. a description of 

the algorithms used and the experience gained with these algorithms, and gives 

an account of applications of the programs, however it will not contain code 

nor documentation of the programs since both are available within the GAP 

programming environment. The contents are arranged as follows : The remainder 

of this chapter contains a brief introduction to finite soluble groups and related 

notions such as AG-presentations and collection processes. A description of the 

proposed algorithm concludes this chapter. Chapter 2 describes the calculation 

of the extensions of finite soluble groups by finite elementary abelian groups. In 

chapter 3 the lifting of epimorphisms is investigated and the calculation of the 

irreducible representations of finite soluble groups over finite fields is described in 

chapter 4. The findings of an empirical study of the behaviour of the programs 
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are summarised in chapter 5. The programs were used for the construction of 

soluble groups with interesting properties, e.g. for the construction of soluble 

groups of large derived length which seem to be candidates for groups having 

efficient presentations. In chapter 6 new finite soluble groups of derived length 

six with trivial Schur multiplier and efficient presentations are described. The 

methods for finding efficient presentations proved to be only practicable for groups 

of moderate order. Therefore, for a given derived length soluble groups of small 

order are of interest. The minimal soluble groups of derived length at most six 

are classified in chapter 6. 

The author assumes that the reader is familiar with the following topics, which 

are usually treated in a course on algebra : elementary group theory, rings and 

modules ( cf. part I of [Jac 74] and [Joh 90] ). For chapter 2 some background 

in the cohomology of groups ( cf. chapter 6 in part II of [Jac 74] ) would be 

helpful. For chapter 4 the reader is supposed to have knowledge of elementary 

representation theory such as that which may be obtained from reading intro-

ductory material in [Isa 76] or part II of [Jac 74]. The other prerequisites are 

rudiments of Galois theory ( cf. chapter 4 in part I of [Jac 74] ). 

Acknowledgements I would like to express my thanks to Dr. E. F. Robertson whose 

help and encouragement I have greatly appreciated throughout the course of this 

work. Further I would like to thank Prof. Dr. J. Neubiiser and Dr. C. M. Campbell 

for helpful discussions and advice. I would also like to express my gratitude to 

Dr. S. P. Glasby, Dr. W. Hanrath, Dr. R. B. Howlett and Dr. M. SchOnert, who 

have contributed most valuable ideas and information during this study. Finally, 

I would like to acknowledge the support of grant EEC SC1-0003-C(EDB). 
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1.1 Finite Soluble Groups 

The notion of solubility of groups was formulated by Galois in the earliest stages of 

the development of group theory. Indeed, the name 'soluble' reflects the intimate 

connection discovered by Galois between the possibility of solving polynomial 

equations by radicals and the solubility ( in the sense defined below ) of the 

groups associated by Galois with these equations. See chapter 4 of [Jac 74] for 

more information about Galois theory. 

DEFINITION 1.1 Let G be a group. If x, yEG, we define the commutator of 

x and y as [x, y] = x-1  y-1  xy . Let H, K <G. The commutator subgroup [H, K] 

is the subgroup generated by all the commutators [h, k] with hEH and kEK . 

The particular subgroup [G, G] generated by all commutators in G, is usually 

denoted by G' and called the derived subgroup of G. We define subgroups G(i) of 

G recursively by G(°) = G and G(1) = (G(i-1))' for each integer i > 0. Every G(i)  

is characteristic in G. By definition 

G = G(')  1> G(1)  I> G(2) i> • • • 

is a descending sequence of characteristic subgroups of G. A group is said to be 

soluble if G(') = 1 for some integer 1 and the least integer such that G(1) = 1 is 

called the derived length of G. 

THEOREM 1.2 For a finite soluble group G the following statements are equiv-

alent : 

(i) The group G has a subnormal series with abelian factors. 

(ii) The group G has a subnormal series with cyclic factors. 

(iii) Every composition factor Gi_i  /Gi of a composition series 

G = Go  t> Gi  t> • • • t> G„ = 1 

is cyclic of prime order. 
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Proof cf. theorem 4.9 and 4.12 in part I of [Jac 74] 	 ❑ 

Let G = Go  t> G1  C> • • • t> Gn  = 1 be a subnormal series of G with cyclic 

factors, that is, Gi<:i Gi_1  and Gi_1  = (Gi,gi) for i = 1, 	, n. Then the sequence 

(gi, • • • , gn) is called an AG-system for G ( cf. [LNS 84] ). If pi is the index of Gi 

in Gi_1, then in terms of the AG-system the group G has a presentation 

(gi, • • • ,gnIgiP. = 	 wji(1<i < jn)) 

where wii  is a word of the form gi+  a ( j,i +1 ) • gna(j,i,n) with 0<a(j, i, k) < pk  for 

all k = i 1, 	, n. We shall call such a presentation an AG-presentation. Every 

element of G can be expressed uniquely in the form gi  al  • • • gnan  with 0 < ak < Pk 

for k = 1,... , n. We shall call this a normal word for the element. A collection 

process may be used to reduce an arbitrary word in the generators gi , 	, gn  of 

G to a normal word. Let w be an element of G expressed as a word in 91, . • • , fin 

and their inverses; w can be written in normal form by repeated cancellation and 

performing the following operations : 

(i) Replace the subword gigi(i < j) by giwii  

(ii) If a < 0, replace the subword gia by gia+Pi 

(iii) If a>pi, replace the subword gia by gia-P'wii• 

This process always terminates in a normal word after a finite number of steps. 

If w contains more than one non-normal subword, we assume that there is a 

rule for determining which one to collect so that the process is well defined. 

Typical rules are "collect the rightmost minimal non-normal subword", or "collect 

the leftmost minimal non-normal subword" ( see [LeS 90] for more information 

about collection strategies ). Such a collection process can be used to compute 

the product gh or the inverse g-1  for any arbitrary elements g = giel • • • green and 
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h = gi dl • • • g,idn of G by collecting the word glee • • • gnen gi.di • • • thidn or the word 

gn" • • • gi-", respectively. 

1.2 The Construction of Finite Soluble Factor 

Groups of Finitely Presented Groups 

We conclude this chapter by describing an algorithm to compute an AG-presen-

tation for a finite soluble group G which is defined by a finite presentation. The 

principle idea is the computation of finite soluble factor groups of G by lifting 

epimorphisms e : G 	H onto extensions ( see p. 12 for a definition) of H by 

finite irreducible H-modules, where H is given by an AG-presentation. We begin 

with an analysis. 

Let G be a finite soluble group given by a finite presentation. Let H be a factor 

group of G and "J : G 	H be an epimorphism. Let H = Ho  t> Hi 	t>17i  = 1 

be a chief series for H. Then A = H1_1  is a minimal normal subgroup of H and A 

is therefore characteristically simple ( cf. Satz 1.4.8 of [Hup 67]). A finite group 

is characteristically simple if it is a direct product of finitely many isomorphic 

copies of simple groups ( cf. Satz 1.9.12 of [Hup 67] ). Hence A = Al  x • • • x Ad 

where the Ai  are isomorphic simple groups. Since all subgroups of a soluble 

group are soluble, Ai  is soluble for i = 1, 	, d. Then Ai'CAi  and because of the 

simplicity of Ai  we have Ai' = 1 and A = Al  x • • • x Ad  where the Ai  are cyclic 

groups (ai) of prime order p. The mapµ defined by (x1, 	, xd) H ais' • • • adsd 

is an isomorphism from the additive group of the vector space V of dimension 

d over the field Fp  with p elements onto A. If H is the factor group H/A and 

: H 	H the natural projection, then we have a short exact sequence 

1 	V 	1 	H --÷ 1 

and H is an extension of H by V. For each element xEH choose an element 

LEff such that ri(hx) = x. Since p(V) = A4H, Icl (pv)Lep(V) and we have 
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a unique element wE V such that Tc1(//v)izz  .--- µw. It is straightforward to verify 

that the definition vp, = w yields an automorphism of V and co : H 	GL(V) 

defined by x 1-4 (px  is a representation. The minimality of A in H implies that 

co is an irreducible representation of H and A may be viewed as an irreducible 

Fp[1/]-module. We conclude our analysis by noting that the map e : G -- H 

defined by e(g) = 9(e-(g)) is an epimorphism. 

We now outline an algorithm to compute an AG-presentation for a finite sol-

uble group which is defined by a finite presentation. Computing the commutator 

factor group G/G' is a matter of diagonalising the integer matrix resulting from 

the abelianised relations of the presentation for G ( cf. chapter 3 in part I of 

[Jac 74] or chapter 6 of [Joh 90] ). After this initialising step we may assume 

that an epimorphism e : G 	H has been computed and we repeat the following 

steps : For each prime divisor of IGI we calculate the irreducible representations of 

H over the field Fp  with p elements as outlined in chapter 4. For each irreducible 

representation we determine the extensions of H by the associated Fp[H]-module 

as outlined in chapter 2. Finally for each extension H we check whether the 

epimorphism e lifts to an epimorphism e-  : G —+ H, i.e. e = 71E-  ( cf. chapter 3 ). 

If a lift E is found we replace e by the epimorphism i and repeat the steps just 

described. If no lift is possible, we have calculated an isomorphism e : G -- H. 

A variation of this algorithm may be used to compute finite soluble factor 

groups of an arbitrary finitely presented group. Since we may not have informa-

tion about the group under investigation ( it may be infinite ), we choose a set 

P of primes and restrict interest to P-factor groups. 
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Chapter 2 

Extensions of Finite Soluble 

Groups by Finite Elementary 

Abelian Groups 

In this chapter we present an algorithm for the calculation of the extensions 

of finite soluble groups by elementary abelian groups which was suggested by 

W. Plesken. In section 2.1 we explore Schreier's approach to the extension prob-

lem. Schreier described extensions in terms of factor sets and automorphisms 

which are subject to rather complicated conditions. In section 2.2 we shall re-

strict our attention to extensions of an arbitrary group G by an abelian group A. 

With such an extension we can associate an action of G on A by automorphisms 

and an element of the cohomology group .112  (G , A). The main theorem establishes 

a one-to-one correspondence between the equivalence classes of extensions of G 

by A and the elements of H2(G, A). Using the associativity conditions for factor 

sets we may in principle calculate H2  (G , A) in order to get an overview of all non-

equivalent extensions of a finite soluble group G by a finite elementary abelian 

group A. This is a matter of solving a system of homogeneous linear equations, 

but this system of homogeneous linear equations is rather large, since each factor 

11 



set is determined by 1G12  values in A. The basic idea of the algorithm which 

we describe in section 2.3 is the calculation of an isomorphic image of H2(G, A). 

A motivation for the isomorphism is the desire to describe extensions of a finite 

soluble group G by an elementary abelian group A by AG-presentations. We 

shall see that elements of H2(G, A) may be described by n(n -1- 1)/2 elements in 

A, where n is the number of generators in an AG-system for G. 

2.1 Extensions of Groups and Factor Sets 

Among the subgroups of a group E there are some which are especially useful 

in deriving information about E : the so-called normal subgroups. We use the 

notation N4 E to mean N is a normal subgroup of E. If N<JE, then we can 

define a corresponding group E/N which is called the factor group of E by N. 

In some sense, E is built up from the two groups N and EIN. This raises the 

extension problem : Given groups G and N determine the groups E for which 

there exists M.IIE such that M^-_'N and EIML4G. We shall call E an extension 

of G by N. For a given G and N there always exist extensions of G by N --

for example, the direct product of G and N. However the group E is, in general, 

not uniquely determined by G and N; it therefore becomes desirable to give a 

complete survey of all distinct extensions of a given group G by a given group N. 

A first approach to the extension problem was made by Schreier ( cf. [Sch 26] ); 

his theory will be expounded in the present section. 

We shall investigate extensions by means of short exact sequences of groups 

and homomorphisms. To begin with, we call a diagram of groups and homomor- 

phisms N 	E 	G exact if p(N) = ker(r), that is, r(e) = 1 for eEE if 

and only if there exists a nEN such that ti(n) = e. More generally, a sequence 

of groups and homomorphisms • • • -4 G1  '24 G2  24 G3  -+ • • • is called exact if 
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for any three consecutive terms the sequence Gi_1  (PZ1  Gi 	G1+1  is exact. An 

exact sequence of the form 1 —+ N 	E 	G--1 is called a short exact sequence. 

This means that µ is a monomorphism, 7r is an epimorphism, and µ(N) = ker(ir). 

Thus µ(N)4E and Elp(N)G, so E is an extension of G by N. 

First we shall investigate the groups E which contain a normal subgroup 

isomorphic to N with factor group isomorphic to G. This is a good place to 

discuss briefly a notational convention which will be used in this chapter. It will 

be convenient to write certain maps on the right, that is, if a : S 	T, then 

we denote the image of s under a by sa. If : T 	U, ti-40, then we define 

the composite map a13 as the map having domain S and codomain U. Thus, by 

definition s(0) (sa)/3. 

THEOREM 2.1 Let 1 N 	E 	G 1 be a short exact sequence. For 

each xEG choose an element ezEE such that 7r(ex) = x. Let x, yEG and consider 

the element ezy-lezey  of E. Applying 71- to this element gives 7r(ezy-lezey) = 1. 

Hence there is a unique element a(x,y)EN such that ezy-lezey  = it(ce(x,y)) 

or ezey  = eryit(a(x, y)). Let xEG, nEN and consider the element ex-1(itn)ex• 

Since µ(N)4E, ex-1(µn)ex Eµ(N) and we have a unique element mEN such that 

ex-1(µn)ez  = µ(m). The definition rupx  = m yields an automorphism of N and 

(1) a(xy,z)a(x,y)cpz  = a(x,yz)ct(y,z) 

(2) n(cpxcpy) = a(x,y)-1  ncpxyct(x,y) 

for all nEN and x, y, zEG. 

Proof From the associative law in G it follows that 

(ezey)e, = ezyka(x, y))ez = exyzka(xy, z)a(x, y)cpz) 

and 

ex(eyez) = exeyzga(y, z)) = exyzµ(a(x, yz)a(y,  z)) 
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so that a(xy, z)a(x, y)cpz  = a(x,yz)a(y,z). Moreover, we have 

µ(n(wzcp y)) = (exey)-1µ(n)eey  = µ(a(x,y)-1w,oxya(x,y)). 

0 

The map a : GxG—>N is called a factor set relative to the transversal {ex  IxEG}. 

So far we have started from a given extension of G by N and have established 

a correspondence between this extension and a system of elements a(x, y), a so-

called factor set, and a set of automorphisms c,o x  of N. Conversely, let us assume 

now that in a group N a system of elements a(x, y) is chosen, where x and y 

range independently over all the elements of the group G and that every element 

xEG is associated with some automorphism (,oz  of N for which conditions (1) 

and (2) are satisfied. We shall show that there exists an extension of G by N 

for which the given elements a(x, y) and the given automorphisms correspond to 

this extension in the above sense. 

THEOREM 2.2 Let G and N be groups. Suppose a : GxG --4 N is a factor 

set and for every element xEG there is an automorphism cpx  of N such that for 

all nEN and x, y, zEG the conditions 

(1) a(xy,  , z)a(x,y)coz  = a(x,yz)a(y , z) 

(2) n(cpx(py) = a(x,y)-1n(pxya(x,y) 

are satisfied. Take E = GxN, the set of pairs (x, n), nEN, xEG, and define a 

multiplication in E by (x ,n)(y , m) = (xy,  , a(x, y)nvym). Then E is a group and 

N* = {(1, a(1, 1)-1  n)InEN}-1 E such that N''''._-'N and E I N* --11-G. 

Proof The associativity of the multiplication follows easily from its definition 

and conditions (1) and (2). 
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From (2) with x = y = 1 it follows that 

(ny,i)(pi  = n(pivi) = a(1,1) 1mpia(1,1) 

and since rupi  ranges over the whole group N as n does, we have 

//cm. = a(1, 1)-1na(1, 1). 	 (3) 

Further, from (1) it follows with y = z = 1 that 

a(x,1)a(x,1)(pi  = a(x, 1)a(1, 1) 

and hence a(1,1) = a(x,1)(pi  = a(1,1)-1a(x, 1)a(1,1) and since a(1,1) does 

not change when it is transformed by itself, we obtain 

a(x, 1) = a(1,1). 	 (4) 

If (x, n) is an arbitrary element of E, then using (3) and (4) we have 

(x, n)(1, a(1,1)-1) = (x, n) 

so that (1, a(1,1)-1) is a right unit of E. Furthermore, 

(x,n)(x-1,(ncpx-i)-la(x,x-1)-la(1,1)-1) = (1, a(1,1)-1) 

so that every element of E has a right inverse. This proves that E is a group. 

It remains to show that E is the required extension of G by N. If we define 

p : N -4 E by n )- (1, a(1,1)-1n), then 

µ(n)µ(m) = (1, a(1,1)(a(1,1)-10Pict(1,1)-1m) = 

= (1,a(1,1)-1nm) = gnm) 

and from p(n) = (1, a(1,1)-1) it follows that n = 1. Therefore µ is an isomor-

phism of N onto the subgroup N* of E. 

Further, if we define 7r : E ---> G by (x, n) 1-4 x, then r is an epimorphism 

of E onto G with ker('r) = N*. Hence N* is a normal subgroup of E such that 

15 



E/N*'-4-fG. If we use the notation ex  = (x, 1), then it follows that lexixEG1 is a 

transversal for the cosets of N* in E. The equation 

exey  = (xy, a(sy,1)a(1, l)-ia(x,y)) = 

= (xy,1)(1,a(1,1)-1a(x,y))= exyga(x,y)) 

shows that the factor set of this extension coincides with the given elements 

a(x, y). From (1) it follows with x = y = 1 that 

a(1,z)a(1,1)co, = a(1,z)a(1,z) 

and hence a(1,1)coz  = a(1, z). Hence the equation 

p(n)ex  = (x,a(1,x)(a(1,1)-1n)(px) = (x,nc,ox) = 

= (x,c(x, 1)a(1, Wimps) = (x,1)(1,a(1,1)-in(px) = estl(ncox) 

shows that the transformation by ex  induces an automorphism of N that coincides 

with the original automorphism (,ax  of N. 	 0 

The classification of extensions of a group G by a group N is usually carried 

to within equivalence. Two extensions E and E' of G by N are here called 

equivalent if there exists an isomorphism between E and E' that on N coincides 

with the identity automorphism and that maps onto each other the cosets of N 

corresponding to the same element of G. 

Two short exact sequences 1—, N -4 E 	G --+ 1 and 1--►  N 	E' 	G--41 

are said to be equivalent if there exists an isomorphism 1/) : E --+ E' such that 

1 

11 , 	, 11 

1 	N 	E'- 	 1 

is commutative ( that is Ott = p' and 	= 7r ) . 

16 



THEOREM 2.3 Two short exact sequences 1 —)N4E 24G—) 1 and 

1 —> N 4 E' - G ---+ 1 given by the factor sets cf(x,y) and a/(x, y) and the 

automorphisms wx  and (p's  relative to the transversals {exixEG} and { e'x ixEG} 

are equivalent if and only if every element x of G can be associated with an 

element /3(x) of N in such a way that 

(1) ru,oc = P(x)-17vpx13(x) 

(2) ce' (s , y) = 0 (xyr I  a(x , 00(x)coy,3(y) 

for all nEN and x, yEG. 

Proof Suppose there is an isomorphism 0 : E --4 E' such that µ = it' and 

eV, = 7r. Then we have e(0(ex)) = 7r(ex) ----. x = ri(e'x) and therefore e' x  = 

0(ex)µ'(0(x)) for a unique ,3(x)EN. Properties (1) and (2) are immediate. 

Conversely, suppose that every element xEG can be associated with an ele-

ment ,3(x) of N in such a way that conditions (1) and (2) are satisfied. Define 

0 : E -4 E' by ex  µ(n) 1-+ e'xit'( /3(x)-1n). It is easily checked that zi, is an 

isomorphism. Moreover, zl, tt = it' and 'eV, = 7r. Therefore the two short exact 

sequences are equivalent. 	 0 

A short exact sequence 1 —> N 2+ E 724 G —> 1 is said to split if there exists 

a homomorphism r : G --+ E such that irr = 1. Then T (x)r (y) = 7-  (xy) for 

any x, yEG and hence the factor set relative to the transversal {r(x)IxEG} is 

1. Conversely, if this is the case, then we have a map r : G —> E satisfying 

Irr = 1 for which the oi(x, y) are all 1, which means that r is a homomorphism. 

It is readily seen that the short exact sequence splits if and only if there exists 

a subgroup H of E such that E = Hµ(N) and Hnit(N) = 1. In this case E is 

said to be the semidirect product of H and p(N). 
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COROLLARY 2.4 Let 1 N E G 1 be a short exact sequence given 

by the factor set a(x, y) and the automorphisms cpx  relative to the transver-

sal {exixEG}. Then this short exact sequence splits if and only if every ele-

ment xEG can be associated with an element /3(x) of N in such a way that 

13(xy)-1  a(x,y)0(x)(pyi3(y) = 1 for all x, yEG. 

Proof The short exact sequence 1 -4 N 	E -4 G 1 splits if and only if 

there exists a subgroup H of E such that E = Hit(N) and Hny(N) = 1. Then 

H is a transversal for µ(N) in E. If { eiz ixEG} is another transversal for µ(N) 

in E, then ex  = ex/1(0(x)) and eti(x, Y) NxY)-1  a(x,Y)P(x)(Pyi3(Y) by theorem 

2.3. Hence there exists a transversal {e'lxEG) with a'(x, y) = 1 for all x, yEG 

if and only if there exist elements /3(x) which satisfy 

0(xY)-i  a(x, 013(x)(Py0(Y) = 1. 

This theory cannot be considered complete. The description of the distinct 

extensions of a given group G by a given group N is here reduced to the search 

for certain systems of elements and of automorphisms of N which are subject to 

rather complicated conditions and which, in general, do not simplify very much 

the survey of the totality of all nonequivalent extensions. In the following section 

we shall describe methods by which we can come closer to such a survey. 

2.2 Extensions of Groups by Abelian Groups 

In this section we shall study the extensions of an arbitrary group G by an 

abelian group A. With such an extension, we can associate an action of G on A 

by automorphisms and an element of the cohomology group H2(G, A) where A 

is regarded as a G-module by the action. 
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We begin with the cohomology groups and shall give the original definition 

of the cohomology groups of a group. For this purpose we require the concept 

of a G-module. If G is a group, we define a G-module A to be an abelian group 

( written additively ) on which G acts as endomorphisms. This means that we 

have a map (a, x) 1-4 ax of A xG into A such that 

(a + b)x = ax -I- bx 

a(xy) = (ax)y 

al = a 

for x, yEG and a, bEA. 

Let A be a G-module. For each xEG, define a map (px  : A -4 A by a(,ox  = ax, 

aEA. Then, because of the properties of the G-module A, we have (a -I- b)(Px = 

(a + b)x = ax + bx = aciox  + bcox, so that wx EEnd(A). The map c,ox  is an 

automorphism of A : for it has as its inverse the map cor-i. Moreover, we have 

(acps)(py  = (ax)y = a(xy) = acpxy  which shows that (,o : G -- Aut(A) defined by 

x i--> cox  is a homomorphism. 

Conversely, let c,o : G —> Aut(A), x 1--►  ciox  be a homomorphism. Then, for 

each xEG and aEA, we define ax = acpx. This definition gives rise to a G-module 

structure on A. 

Hence there is a one-to-one correspondence between G-modules and represen-

tations of G by automorphisms. 

Now let A be a G-module. For any n = 0,1, 2, ... let Cn(G, A) denote the set 

of maps Gx ... xG —* A. Every map of n elements of G with values in A shall be •—..„—, 
n 

called an n-dimensional cochain. If we define addition of n-dimensional cochains 

by (f + f')(gi, • • • ,gn)= f(gi, • • • ,gn)+ f'(gi, • • • ,gn) for f, J.' ECn(G, A), then 

we obtain an abelian group Cn(G, A). With every n-dimensional cochain f we 

can associate an (n + 1)-dimensional cochain brif called the coboundary of the 

cochain f and defined as follows 
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(8nf)(m., • • • , gn+i) = f(g2, • • • , gn+i) 

+ 	(_1 f11, • • • , gi—i , gi gi+i , • • • , gn+i) 
i=i 

(-1)n+1  f(gi, • • • , gn) gn+i • 

The map 8„, is a homomorphism of Cn(G, A) into Cn+1(G, A) . Let Zn(G, A) 

denote its kernel and Bn+1(G, A) its image in Cn÷l(G, A). We shall call an n-

dimensional cochain an n-dimensional cocycle if by, f = 0. For every f ECn(G, A) 

we have Sn(Sn_1( f )) = 0 and therefore Bn(G, A)CZn(G, A). Hence we can form 

the factor group Hn(G, A) = Zn(G, 	Bn(G, A), which is called the n-th coho- 

mology group of G with coefficients in A. 

Let 1 -+ A 4 E 	G 1 be a short exact sequence where A is abelian. For 

each xEG choose an element esEE such that r(ex) = x. We first define an action 

of G on A. Let xEG, aEA and consider the element ex-1  (µa)ex. Since tt(A)4E, 

ex' (pa)ex  Ep(A) and we have a unique element bEA such that ex" (µa)ex  = it(b). 

To obtain b we made a choice of an element ex EE such that r(ex) = x. If ex  is 

another element such that r (ex) = x, then r(ex-lec) = 1 and hence there exists 

a unique /3(x)EA such that e'x  = exµ(0(x)). Thus we have a map 3 : x H 13(x) 

of G into A such that e's  = exµ(0(x)), xEG. Since p(A) is abelian, we have 

e' x-1  (µa)e' x  = (ex  µ(0(x)))-1  (µa)ex p(0(x)) = ex'(Aa)ex. Thus the element b is 

independent of the choice of ex. It is straightforward to verify that the definition 

ax = b gives rise to a G-module structure on A. In other words, to the extension 

E of G by A corresponds a well-defined homomorphism of G into Aut(A) which 

will be called the homomorphism associated with the extension. 

Let x, y EG and consider the element exy-lexey of E. Applying it to this 

element gives r(exy-lexey) = 1. Hence there is a unique element a(x, y)EA such 

that exey = exyp(a(x, y)). If zEG also, then 

a(xy,  , z)a(x ,y)z = a(x, yz)a(y, z). 
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This relation shows that the map a : GxG 	A such that (x, y) 1-* a(x , y) is an 

element of Z2(G, A) as defined in the classical definition of H2(G, A). We now 

consider the alteration in a that results from changing the coset representatives 

ex  of 1(A) in E to e'x  for xEG. Then we have a map 9 : x H /3(x) of G into A 

such that e'x  = exµ(#(x)), xEG and a is replaced by a' where 

(x , y) = 13(xy)-1  t3(x)y 13 (y)a(x , y). 

This shows that a' and a determine the same element of H2(G, A) and the short 

exact sequence determines a unique element of H2(G, A). 

THEOREM 2.5 Two extensions of G by an abelian group A are equivalent if 

and only if they determine the same action of G on A and the same element 

of H2(G, A). Let G be a group, A a G-module, and let Ext denote the set of 

extensions of G by A having a given G-module A as associated module. Then 

we have a one-to-one correspondence between the set of equivalence classes of 

extensions of G by A contained in Ext with the elements of H2(G, A). 

Proof The result is immediate from theorem 2.1, 2.2 and 2.3. 

In this section we described the extensions of a group G by an abelian group A 

and we have seen, we can confine the classification of extensions of G by A to those 

non-equivalent extensions of G by A that have a given associated homomorphism 

of G into Aut(A), i.e. the way in which the elements of G act on A is fixed. 

2.3 	Extensions of Finite Soluble Groups by El- 

ementary Abelian Groups 

Let G be a finite soluble group and let G = Go  I>G1  t> 	DG,,, = 1 be a sub- 

normal series of G with cyclic factors, that is, Gel Gi_1  and Gi_1  = (G1, gi) for 
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i = 1, 	n. If pi  = 	: Gil, then in terms of the AG-systems (gi , 	,gn) the 

group G has a presentation 

(gi  , . ,gnlgiPi  = wii( 1 	 = wji(115i < j5_n)) 

where wii  is a word of the form gi+i a(i'i'i+1)  • • • gna(j'i'n)  with 0<a(j, i, k) < pk  for 

all k = i 1, . . . , n. Let A = Al  x 	x Ad be an elementary abelian G-module 

where Ai  = (ai) is a cyclic group of order p. We assume that A is given by dxd 

matrices (mij(k)) over the field Fp  with p elements describing the action of the 

generators gk  of G. If E is an extension of G by A, then E has a presentation 

consisting of generators x1, • • • 	Yi, • • • , yd and relations 

xiPt 	= x  i+  a (i,i,i+1) 	sn  a (i,i,n)yi  z(i,i,l) 	ydz(i,i,d) 	1<i<n 

xi-1 Xi X = 

xi-lyixi  = 

x 	 x na(j,i,n) y i z(j,i,l) 	ydz(j,i,d) 

yimi'(i)  • • • ydmid(  

1<i < j<n 

{1<j<d 

1<i<n 

1<i < j<d = 	 yj 

yiP 
	

1 	 1<i<d 

where 0<z(j, i, k) < p for k = 1, . . . , n ( cf. proposition 10.1 of [Joh 90] ). 

We proceed to calculate those sequences ( z(j, i, k) 1<k<d ,1<i<j<n ) for 

which the presentation above defines a group of order IGIIAI, in other words, the 

presentation above describes an extension of G by A. Denote the set of these 

sequences by L. If E is an extension of G by A corresponding to the factor set 

a, then we obtain a map t9 : Z2(G, A) —> L defined by 

a H ( z(j, 	 ,1<i<j<n). 

It is easily verified that this map is an epimorphism. 

DEFINITION 2.6 Let G be a group having a presentation 

(gi, • • • ,gnIgiP' = 	 = 	< j5n)) 
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where wii  is a word of the form gi+1a( j'i'i+1)  • • • gna( j'i'n)  with 0<a(j, i, k) < pk  for all 

k = i+1,..., n. Such a presentation will be called a power-conjugate presentation. 

A power-conjugate presentation is said to be consistent if I GI = pi• • •pn• 

A criterion for consistency may be obtained as follows. Let W be the set of 

normal words in the generators Th., 	, gn, that is the set of words of the form 

gial • • • gnan with 0<ak  < pk  for k =1,..., n. Note that W has order pi . • •pn. Any 

word in the generators can be transformed into a normal word using a collection 

process ( cf. section 1.1 ). We define the product u•v of two elements u, vE W to 

be the result of collecting the word uv into normal form. If W is a group, then 

IG1 = pi • • •pn  and the power-conjugate presentation for G is consistent. 

The following theorem shows that certain associativity conditions are sufficient 

to ensure that W is a group ( cf. proposition 6 of [Lee 84] ). The proof will follow 

very closely pp. 76-78 of [Vau 84]. 

THEOREM 2.7 ( Consistency Test ) A power-conjugate presentation is con-

sistent iff the following associativity conditions are satisfied : 

gi •(g i•gk ) 	1<k < j < i<n 

	

= gip' -1.(g.i .gk ) 	1<k < j<n 

	

gi.(gi-giPi-1) 	1<j < i<n 

.gi ) 1<i<n. 

(gi-g.i)•gk 

(gi*g.i)TiP3-1  

Proof We show that W is a group if the above associativity conditions are 

satisfied. For r = 1, . , n let W,. be the set of normal words grar • • • gnan. We 

assume that the associativity conditions hold, and we use induction to show that 

W = W1, W2, , Wn  are all groups. 

Clearly, Wn  is a cyclic group of order pn. We suppose that Wk+1  is a group 

for some 1<k<n, and we prove that Wk is a group. 
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We define a map Ok : W - k-1-1 	Wk+i  by w 	u, where gku is the normal 

word obtained from collecting wgk. We show that Ok is an automorphism of 

Wk+1 as follows. First we show that, if gigf • •grg, is a normal word in Wk+1, 

then Ok(gig;• • •grg.) = Ok(gi) • Ok(g;)• . • 0(gr)• ek(g.). To calculate Ok(gig3  • • •grgs), 

we must apply the collection process to gigi• • •grg,gk. We obtain 

gigi• • •grgsgk = gigi• • •grgkOk(g.) = gigi• • •gkek(gr) • Ok(g.). 

At this point there is some ambiguity since there may be more than one minimal 

non-normal subword. There is one minimal non-normal subword involving gk , 

and there may be also one in Ok(gr )• Ok(g8). However, if we identify Ok(gr)•Ok(98) 

with an element of the group Wk+1, then the collection of any of its subwords 

does not change its value as an element of Wk+1. So we can ignore collection of 

subwords to the right of gk.  Also, there is never any minimal non-normal subword 

to the left of gk  at any stage in the collection process. So when the collection 

process is complete we obtain a word gku, where u is a normal word equal to 

Ok (gi) • Ok (gj)• • • 0(gr ) • Ok (g.,) as an element of Wk+1. So Ok(gigi• • •grgs) = u, and 

this is the required result. 

Next notice that the associativity condition 

(9i-9i)-gk  = gi •(gi-fik ) 

is equivalent to the condition 

Ok(gj tvii ) = Ok(gi) • Ok(g;) 

and the associativity condition 

(gi p - 	= PI - 
.7 	gj'gk) 

is equivalent to the condition 

ok(w33 ) = ok(g3 )P3. 
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So gi H wok  for j = k +1,..., n extends to the endomorphism Ok of Wk+l  since 

0k preserves the relations satisfied by the generators of Wk÷i ( cf. proposition 4.3 

( Substitution Test ) of [Joh 901 ). Finally, the associativity condition 

(gi  .gk  ).fikPk 	 gi.(g k. gkPki.) 

is equivalent to the condition 

OkPk (gi) = wkk —l •gi•wkk• 

Hence Oki' is an inner automorphism of Wk+1  and therefore Ok is an automorphism 

of Wk.fi . Conditions (1) and (2) ensure that the map gi F-* wik defines an 

endomorphism of Wk+1 and by condition (3) the pkth power of this endomorphism 

is induced by wkk. 

Moreover, the associativity condition 

(.9k•gkPk-1).gk = gk•(gkPk —l •gi) 

is equivalent to the condition 

Ok(wkk) = Wkk• 

We can form the split extension G of Wk+1  by the infinite cycle x acting as Bk. 

The element ek Wkk-1  is central in G, and G/(xPk wkk-1) is isomorphic to Wk. 

This proves that Wk is a group, and so, by induction, that W is a group. 	❑ 

We apply theorem 2.7 to the power-conjugate presentation consisting of the gen- 

erators xl, • • , xn, yi, • • • , yd and relations 

xi+i  a(i,i,i-I-1) 	sn  a (i,i,n) 1<i<n 

—1 	= 	 ydzci,i, xi x.ixi 	 d) 	1<i < j<n 

1<i<n 

	

Yi lYiYi = 	 Yi 	 1<i < j<d 

yip 	= 	 1 	 1<i<d 

xi  yixi  = Yimil 	• • • Yd 
• CO 	 1<j<d 
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where the z(j, i, k) for k =1,...,d and 1<i<j<n are regarded as indeterminates. 

By theorem 2.7 this power-conjugate presentation is consistent if and only if the 

following associativity conditions are satisfied : 

(1)  (xi•x j )•xk  = xi•(x.i .xk) 1<k < j < i<n 

(2)  (x jPi-l•x j )•xk  = xiPi-1-(xi•xk ) 1<k < j<n 

(3)  (xi-x j ).xiPi-1  = xi•(xi•xiPj-1) 1<j < i<n 

(4)  (xi•xiPi-1)•xi  = xi•(xiPi-1  -xi ) 1<i<n. 

The evaluation of these associativity conditions yields a system of homogeneous 

linear equations in the indeterminates z(j, i, k) for k = 1, . ,d and 1<i<j<n. 

The space of solutions of this system of homogeneous linear equations is L. Note 

that the associativity conditions involving 	, yd  are superfluous since A is a 

G-module. 

Next, we consider the group E given by the presentation consisting of the 

generators xl, 	, xn, yi, 	, yd  and relations 

XiPi 	 • • • Xna(i'i'n) 	1<i<n 

Xj Xi =__ Xi+la(7,i,i+1) 	xna(j,i,n) 	1<i < j<n 

{1<j<d Ao) xi 	yixi 	mi yi 	• • • Yd 3-  
1<i<n 

1<i < j<d Yi 	 yi 

YiP 	= 	1 	 1<i<d. 

Obviously, the map : A 	E defined by ai  H yi  for i = 1, , d extends to a 

monomorphism and it : E 	G defined by xi 1-4 gi  for i = 1, ,n extends to 

an epimorphism such that ker(ir) = µ(A). So we obtain a short exact sequence 

1 	A 	E 	G --+ 1. Moreover, the map T : G 	E defined by gi  1--4 xi  
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for i = 1, , n extends to a homomorphism such that rr = 1 and therefore 

the short exact sequence splits. This shows that the kernel of the epimorphism 

19 : Z 2(G, A) —> L must be contained in B2(G, A). Denote the image of B2(G, A) 

under 19 by T and define T9 : H2(G, A) —> LIT by aB2(G, A) 	19(a)T . Then 

13 is obviously an isomorphism of H2(G, A) onto LIT. 

In order to calculate T we proceed as follows. Since T is a homomorphism the 

factor set a relative to the transversal {r(x)IxEG} of µ(A) in E is a = 1. Let 

1 -4 A 2-11+ E' 4 G 1 be a short exact sequence and let a' be the factor set 

relative to the transversal {e' x ixEG} of p'(A) in E'. By theorem 2.3 this short 

exact sequence splits if and only if there exists a map 0 : G -+ A such that 

a' (x,y) = 13(xy)-1  13(x)0(y). Hence, if E' splits, then E' is equivalent to E via 

the isomorphism •//, : E' 	E defined by e'xiii(v) 	7-(x)µ(0(x)v), xEG and 

vEA. Then the sequence 19(a') is obtained by calculating 

cei gn-a(i,i,n) 	etgi+i  

and 

( e gn  • • • et 	-a( j,i,i+1) 	-1 
91+1 	e gi e'gjegi ) 

for 1<i<j<n as words in the generators 	, yd  of E. Clearly, 19(a') is uniquely 

determined by the values of 3 on the generators gl , 	, gn  of G. Hence, in order 

to calculate T we compute 

(xn7(gn))-a(i,i,n) • • • (xi+17(gi+0)-a(i,i,i+1)(si7(ge 

and 

	

(xn7 	))-a(j,i,n) • • • (x i+17(gi+i ))-a(j,i,i+1)(xmgo)-1 xj,y(gi  )xo(gi) 

for 1<i<j<n as words in the generators yi, , yd  of E for every map -y : 

• • • gn} 	it(A)- 
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EXAMPLE Let G = (a, b) be the alternating group of degree 4 with the 

defining relations a3  = b2  = (ab)3  = 1. Take r = a, s = b and t = r-1  sr; then it 

is easily verified that r-ltr = st and therefore (s, t) is a normal subgroup of G. 

Moreover, we have s2  = t2  = 1 and st = ts. Hence (s, t) is elementary abelian 

and G b (s,t) t> (t) l>1 is a subnormal series with cyclic factors. In terms of the 

AG-system (r, s, t) the group G has a presentation 

(r,s,t1r3  = s2  = t2  = 1, r-lsr = t, r-ltr = st,s-lts = t). 

Let A be the cyclic group of order 2 and let G act on A. 

In order to calculate the set of sequences L as described earlier we consider 

the presentation consisting of the generators x1, x2, x3, y and relations 

Xi3 =  yzn 

x22 	 y222 

x32 	 y Z33 

X1.-1  X2X1 = 	x3yz21 

xi-1x3x1  = x2x3yz3i 

x2-1x3x2  = x3yz32 

y 

1 

for i = 1, 2, 3. The associativity conditions yield the following system of homo-

geneous linear equations ( throughout the calculations we used collection from 

the left ) : z22  z32  = 0, z22  z33  = 0, z32  z33  = 0. For example, the equation 

z22 	z32 = 0 arises from the condition (x3.x3).x1  = x3.(x3.x1) as follows 

(xxx3).xi = xiV" 

X3'(X3•X1) = X3X1X2X3e31  = X1X2X3X2X3 = 

= 	xi x22x32yZ32 = xi x32yZ22+z32 = xi yZ22+Z32 +Z33 
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The other equations arise from the conditions 

(X2.X2)•Xi = X2.(X2•X1) 

(x3.x1)-x12  - x3.(xrx12 ) 

),s12 = x2 	, .(xi.x12) and (x2.xi 	 respectively. The sequences 

(Z11, .Z21, Z31, Z22, Z32, Z33) = (1, 0, 0, 0, 0, 0), 

(0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0) and (0,0,0,1,1,1) generate the space L of solutions 

of this system of homogeneous linear equations. 

In order to calculate T = (B2  (G , A)) we consider the group given by the 

presentation consisting of the generators xl, x2, x3, y and relations 

X13 	1 
,„ 2 	1 

x32  1 

- Xi 1  X2X1 = x3 

- Xi 1  X3X1 = X2X3 

-1, 3 a,„  2 = X3 

for i = 1,2,3. Take y(r) 	-y (s) = yv and y(t) = yill; then we obtain 

(X17(0)3 
	

Yu  

(X27(S))2 
	

1 

(X37(t))2 
	

1 

(x3-y(t))-1(x0(0)-1x27(s)xi7(r) 	= Yv+v)  

(x37(0)-1(x27(s))-1(x17(0)-lx37(t)xv7(r) = Yv  

(x37(t))-1(x27(s))-1x37(t)x27(s) 	= 1. 

Hence T is the subspace of L generated by the sequences 

(Z11, Z21, Z31, Z22, Z32, Z33) = (1 , 0, 0, 0, 0, 0), 
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(0,1, 0, 0, 0, 0) and (0,1,1, 0, 0,0). As we have seen earlier the factor space LIT 

is isomorphic to H2(G, A) and therefore we have H2(G, A) ((O, 0, 0,1,1,1)). 

Thus there are two equivalence classes of extensions of G by A. The se-

quence (0, 0, 0, 0,0, 0) corresponds to the direct product Gx A while the sequence 

(0, 0, 0,1,1,1) corresponds to the representation group of G which is isomorphic 

to the special linear group SL2(3) of dimension 2 over F3. 

The method for the calculation of the extensions of a finite soluble group 

G by a finite elementary abelian G-module is easy to implement. The basic 

requirement is a collection process which allows to evaluate the associativity 

conditions in order to determine a set of homogeneous linear equations. In the 

remainder of this section we shall describe such a collection process. 

We begin by studying the substitutions which involve relations in which some 

of the exponents of generators are indeterminates. Earlier in this section we have 

seen that we only need to evaluate the associativity conditions which involve the 

generators x1, 	, xn. Let xi," • • • xi," with xi, E{xi, 	, xn} be a non-normal 

word with positive exponents r1, 	, ri. Then there exists a minimal k such that 

either rk>pik  or ik>ik+1. Let x jr = xik rk, xis = xi,c+,rk+1 and let vii be the word 

obtained from wii by substituting xk  for gk , k =1,...,n; then we may proceed 

with the following substitutions 

X; 	
xjr—Pi yl 	

ydZ(i,j,d) 

Xjr  Xis  4— 	 X jr+ s 

y dz(j,i,d) x is-1 
Xj r  Xis  4— X jr-1  Xi Vji y  

r> pj 

i = j 

i < j. 

We now carry out the substitutions and obtain a word in x1, , xn  if i = j. If 

r>pi or i < j, then we obtain 

xil rl • • • xii rl  = xii  rl • . . xjr—P3 v 	 z(j,i d) s 
33 .Y1 	• • Yd 	' Xi • • • Xii rl  
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and 

x . 	 —1 
7.1  • •• •• Xii rz  = Xii  r1  • •• •• Xir 	Xi Vai 	

ydz(j,i,d) 	3-1 	x . ri 
a,i 	• • • si 

respectively. Let R : G 	GLd(p), gk 	(mii(k)) for k = 1, . , n be the matrix 

representation associated with the G-module A and let v be a word in x1, , 

ydzo,i,d))w-i Then w(yi  

mil 	 mdi z(j,i,d) 	mddz(j,i,d) 
Yi 	• • Yd 	 • • Yi 	 • • Yd 

where (mij) = R(w)-1  and w is obtained from v by substituting gk  for xk , for 

k = 1, . . . ,n. Taking v = xi," • • • x jr-P,  vij  and xj1 r1 • • • xi'xivji respectively 

we obtain expressions in yi , 	, yd  where the exponents of yi, 	, yd  are linear 

combinations of z(j, 1), 	, z(j, i, d) for 1<i<j<n. Moreover, we see that the 

required collection process consists of a mechanism for dealing with the conjugates 

of yiZ(j,i,l) 	ydz(i,i,d) and essentially a collection process with respect to the AG- 

presentation for G. 

We now describe a collection process which we use to evaluate the associativity 

conditions in order to determine a system of homogeneous linear equations. We 

represent an expression in yi, 	, yd  where the exponents of 	, yd  are linear 

combinations of z(j, i, 1), 	, z(j, i, d) for 1<i <j<n by a sequence of matrices 

yl 

Yd 

	

z(j , i , 1) 	• • 

	

(

M[i][ilii 	• • 

	

Kii[ildi 	• • 

• 

• 

• 

z(j,i, d) 

MUi[ilid 

M[i][iidd 

each row representing the exponent of yk, k = 1, . . . , d ( initially all entries are 

zero ). Let gii  7.1  • • • thin with E 	 , g„} be a non-normal word with positive 

exponents r1, 	, ri. Then there exists a minimal k such that either rk>pik  or 

, gis 	gik+i rk+1 ; then we define the required collection ik>ik+1. Let gir 
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process by the following operations 

gi r 
	

<- gir-P2 	; M[i] [i] 	MU] U] + 	" • • • gir-P-7 	)-1 
	

r> p; 

gi  Tgi8 	 gi r+S 	 i = j 

g3r gi3  4-  gj r-l giWji ; MU] [z] := M  Eil + iR(gii 7.1  • • • gir-lgiWiiri 
	

i < j 

where tM denotes the transposed matrix of M. 
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Chapter 3 

Lifting Epimorphisms 

Let G be a finitely presented group G = 	, 	, gn) = 1,1<i<m) 

and let H be a finite soluble group with an AG-presentation 

H = (h1, . . . , hk jsi(hi , 	, hk) = 

Let E : G 	H be an epimorphism given by the images yi  = 6(g,) = wi(hi, • • • , hk) 

of g,  for i = 1, 	, n and words wl, • • • 	such that hi = 	• • • 'V.) for 

i = 1, 	, k. Let M be a finite irreducible Fp[H]-module, where Fp  is the field 

with p elements for some prime p, and let 

1--4M 	H -1* H -4 1 

be a short exact sequence. Finally, let h;  EHfor i = 1, . . . , k be members of a 

transversal {eixEH} of µ(M) in H such that 7/(iii) = hi for i = 1, . . . , k and 

assume that the factor set a relative to this transversal is given by 	, hk) 

for i = 1, . , 1 ( cf. section 2.3 ). Given this data, it is a question of solving linear 

equations over the field Fp  in order to check whether there exists an epimorphism 

: G 	H such that nE = 6. A homomorphism E with nE = e is said to lift the 

epimorphism e. 
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First, we show that in order to check whether an epimorphism e can be lifted to 

an epimorphism i it is sufficient to consider representatives of the one-dimensional 

EndF [m(M)-subspaces of H2  (H, M). 

We begin with a brief discussion of modules over rings. If V and W are 

modules over a ring R, then we write HomR(V, W) to denote the set of R- 

homomorphisms of V into W. Then HomR(V, W) is an abelian group with the 

addition defined by v(f + g) = v f + vg for all f, gEHomR(V, W) and vEV. 

In particular, EndR(V) = H omR(V,V) is a ring with multiplication defined by 

v(fg) = (v f)g for all f, gEEndR(V) and vEV. Let V be a nonzero R-module. 

Then V is irreducible if its only R-submodules are 0 and V. An immediate con-

sequence of Schur's lemma is that if V is an irreducible R-module, then EndR(V) 

is a division ring. 

Now, we apply this to the irreducible module M. Then E = EndF [m(M) 

is a division ring and E is a field by Wedderburn's theorem which asserts that 

finite division rings are commutative. 

Let aEZ2(H, M) and LEE. Define a map ce : H xH -4 M by (x,y) 1-4 

a(x,y)4*. Then we have (a)(xy, z) + (q)(x,y)z = (ae)(x,y z) + (a)(y, z) and 

therefore ozEZ2(H, M). It is easily verified that Z 2(H, M) together with the map 

Z 2(H, M) xE —> Z2  (H , M) defined by (oz,) E--> ce is a vector space over E. 

Now, let aEB2(H, M), that is, there exists a map 0 : H ---* M such that a(x, y) = 

— 0(xy) + 13(x)y + (3(y). Then we have (a)(x,y) = — #(xy) + (/3(y) )y + /3(y) 

and therefore aEB2(H, M), showing that B2(H, M) is a subspace of Z2(H, M) 

and H 2(H, M) = Z 2(H, M)/B2(H, M) is a vector space over E. 

Let 1 -4 M /2) H' 4 H -4 1 be a short exact sequence and let c be the 

factor set relative to the transversal {e' x ixEH}. Then 0 : H -4 H' defined 

by esii(m) 1-4 
 elx µ1(me) is an isomorphism. Moreover, we have 9'0 = ?I and 

z k IA = µ' 4. and therefore the following diagram is commutative. 
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1 	I° 	
11 

— 
1 	 -H-4-1 

T €Te  
G G 

If the epimorphism e : G 	H lifts the epimorphism E, then we have e = 77E = 

n'Og and therefore OF also lifts the epimorphism e. 

Suppose that the homomorphism E : G —+ H lifts the epimorphism e : G H. 

Take gi = wi(hi, • • • ,74) for i = 1, 	, n. Then we have 

y(E(gi)) = e(gi) = wi(hi, • • • , hk) = 

= wi(11(h-  1), • • • , 71(4)) = 71(wi(izi, • • • , 11'  k)) = 71W. 

Thus E(gi) = -nimi for i = 1, , n and miEµ(M). 

By proposition 4.3 of [Joh 90] the map gi 	§imi for i = 1, 	, n and 

miEp(M) extends to a homomorphism G —+ H if and only if 

ri(gimi, • • • gnmn) = 1 
	

(*) 

for i = 1, . . . , m. These equations for (mi, 	, mn) yield linear equations over the 

field Fp  for the coordinates of the mi for i = 1, 	, n in an implicitly given basis 

of it(M) and E lifts to a homomorphism if and only if (*) is soluble. All possible 

lifts E : G —+ H are given by -6(gi) = -§imi for i = 1, 	, n, where (mi, 	, mn) 

runs through the set S(*) of solutions of (*). 

We now have to decide which solutions of the system of equations (*) yield 

surjective lifts of the epimorphism e : G —+ H. Again, assume that E : G 	is a 
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homomorphism which lifts the epimorphism e : G ----+ H. The group p(M) is a nor-

mal subgroup of H and i(G) is a subgroup of H. Then E(G)p(M) is a subgroup of 

- and by the isomorphism theorem e(G)p(M)1 µ(M)-- -i(G)1E(G)n ii(M). Since 

n(e(G)) = H and the kernel of the restriction of i  to i(G) is E(G)nµ(M), we have 

E(G)µ(M). Therefore E(G)nµ(M) is a normal subgroup of Ti and since M 

is an irreducible F[I-11-module we have 

E(G)nµ(M) = 
P(M) 

1. 

Case (1) : act/32(H, M). In this case E(G)nµ(M) = p(M), that is µ(M)<E(G) 

and "e-  is necessarily an epimorphism. Therefore every solution of (*) yields 

an epimorphism E : G 	H given by i(gi ) = -§irni  for i = 1, 	, n. 

Case (2) : aEB2(H, M). In this case non-surjective lifts E arise, namely, the 

ones whose images are complements of 1.1(M) in H. We assume that 

the elements 	generate a complement of µ(M) in H, that is, 

, hk) = 1 for i = 1, 	, /. 

If E(G)nµ(M) = 1, then r : e(G) 	H is an isomorphism and 

1 	1, • • • ,Iik) 

si(71-1(14), • • • orl(hk)) 

= 	si(irl(thai, • • • ,gn)), • ..,711(1,14(Yi, • • • ,g.))) 

si(11)1(Agi), • • • , E(g.)), • • • ,fv-  k(E(gi), • • • ,E(g.))) 

Tgirni = 9-1(6(gi)) 

= 	77-1(ws(hi,. • • , hk)) 

71-1(wi(tzi(gi,...,yn),••• ,Ink( gi,.. • ,Y.))) 

= wietzi(E(m.),• • • ,E(g.)),...,@k(g(gi),...,N70)). 
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therefore (mi,...,mn) is a solution of the equations 

. • • ,§nMn), • • • ,14(-§1M1, • • • -onMn)) = 1 

= wi(lbanzi, • • • ,§nmn), • • .1 bagni, • • • ,§nrnn)) 

for i = 1,..., 1 and j = 1, . ,n. 

Conversely, if (m1, 	, mn) is a solution of the equations (**), then 

T : H ---+ H defined by hi  H ibami,...,-§nmn) for i = 1, 	, k is a 

homomorphism. Hence E: G 	H defined by E = TE is a homomorphism 

and E lifts the epimorphism e since 

E(9i) = (re)(gi) 

\ wi,...1,• • • , hk)) = ( (h 

= 	wi(T(hi),• • • ,T(hk)) 

(g1  m1i  • 	• , -§nrn.), • • • , iiik(girni, • • • §ninn)) 

= 

Therefore (mi,...,mn) is a solution of (*). Moreover, we have 

11(T (hi)) = 11(1,13airn1,• • •,jiint.)) 

= 	Ibi(71C91), • • • , 9(9n)) 

= 	16i(1/(w1(iii, • • • >ilk)), • • • , 7/(wn(iii, • • • , 4k))) 

= 	ivi(tvi 	, hk), • • • , wn(hi, 	, hk)) 

= 	@i(6(gi), • • • ,E(gn)) 

6(1)i(gi, • • • ,gn)) 

= hi 

for i = 1, , k and therefore e(G) is a complement of p(M) in H. 

If we denote the set of solutions of the equations (**) by S(**), then 

every element (mi, ••• ,mn)ES(*)\S(**) yields an epimorphism E : 	H 

given by gi 	-gimi  for i = 1, 	,n. 
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This brings us to the concluding part in this section. In view of a repeated ap-

plication of the lifting procedure outlined above it remains to calculate preimages 

of the generators in an AG-system for H. 

Suppose the epimorphism e : G 	H has been lifted to an epimorphism 

: G 	H. If xEker(e), then e(x) = (710x = 	= 1 and therefore xEker(e). 

This shows that ker(E)cker(e). Moreover, 71(Ex) = 1 implies EXEµ(M) and we 

have i(ker(e)) = p(M). Since M is an irreducible Fr[H]-module, (M) is the 

normal closure {y} in H for every element 1 0 yEµ(M). If w is an element of 

ker(e) such that Ew = y, then ker(e)/ker(e) is the normal closure {w•ker(E)} 

in G I ker(e-) and we may compute a preimage for every element of µ(M) by 

producing a Fr-basis for 1.1(M) ( cf. [Par 84] ). Finally, we have 

n(E(1),(mi, • • • ,g0)-1-42) = e(16,(g1, • • • ,gn))-1h, = 1 

and therefore hi  = 	, yn))y' for some y'Ep(M). 

This obviously yields the required preimages provided we have a sufficient 

description for ker(e). A normal subgroup generating set for ker(e) is obtained 

from the following theorem. 

THEOREM 3.1 

H = (gi, • • • ,gnisi(1761(9i, • • • ,97i), • • • ,Ink(91, • • • 'gm)), 

gj 	whcoi(gi , • • • ,gn), • • • , tzk(gi, • • • :gn)); = 	 = 1, . . . , n). 

Proof We have generating sets X = {h1, , hk } and Y 	, "gn} for H 

and R(X) = {si(hi , 	,hk)li = 1, . ,1} is a set of defining relations. Moreover, 

hi = @al, • • • ,g,i) for i = 1, 	, k and gi  = wi(hi, • • • hk) for i = 1, . , n are 

systems of equations expressing the generators X in terms of Y, and vice versa. 

Denote these systems of equations by X = X(Y) and Y = Y(X) respectively. We 

now apply Tietze transformations to the presentation (XIR(X)) in accordance 
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with the following scheme ( cf. proposition 4.6 of [Joh 90] ) : 

X+ : X Y R(X) Y = Y(X) 

R+ : X Y R(X) Y = Y(X) X = X(Y) 

R+ : X Y R(X) Y = Y(X) X = X(Y) R(X(Y)) 

R— : X Y Y = Y(X) X = X(Y) R(X(Y)) 

R+ : X Y Y = Y(X) X = X(Y) R(X(Y)) Y = Y(X(Y)) 

R— : X Y X = X(Y) R(X(Y)) Y = Y(X(Y)) 

X—: Y R(X(Y)) Y = Y(X(Y)) 

0 

In other words ker(e) is the normal closure of 

{ e 	( 	, • • • gn) • • • 111.4(g17 • • • gn))) 

g 3-1 W3 0:1)1(917 • • • gn), • • • l ei) k(g11 • • • fin)); 1,...,1; ~ = 1, ... ,12}  

in G. 

EXAMPLE Let G = (g1, g2) be the alternating group of degree four with the 

defining relations g1 3 = g22 = (g1g2)3 = 1 and let H = (hls(h) = h3). The map 

e : G —* H defined by gi 1-4 wi(h) = h and g2 H w2(h) = 1 extends to an 

epimorphism. Take in(gi,g2) = gi and let H be the semidirect product of H by 

an elementary abelian group A = (ai, a2) of type (2, 2) where the action of H on 

A is defined by arli = a2 and a2•h = a1a2. Then H has the presentation 

yl, y2I h3 = y12 = y22 = 1, h-1y1h = y 2 , h-
1y2h = yly2, 	1 Y2 = y2). 

It is easily verified that the system of equations (*) only yields trivial equations 

and therefore every pair (mi, m2) with m1, m2E(Yi, y2) yields a lift e : 

defined by gi 	izmi and g2 1—> m2. In order to find the nonsurjective lifts 

we consider the system of equations (**) of which only the following equation is 
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nontrivial : m2  = -§2m2 = w2(ti(ggni:§2m2)) = 1. Hence the nonsurjective lifts 

are the homomorphisms ë : G -►  H defined by gi  1-* iimi  and g2  }-* 1 with 

mi E(yi, y2). Let i : G -* H defined by gi  1-* ityi and g2 1--►  yiy2. In order 

to calculate preimages for h, yi  and y2  we consider the images of the normal 

subgroup generating set for ker(e) in G. We have E(s(iii(gi , g2))) = e(gi3) = 1, 

Agi-lwi(io(gi, g2))) = E(gclgi) = 1  

and finally e(g2-1w2(11,(91,92))) = 492-1) = YiY2. Then  yi = 11-1(yiy2)11 = 

E(gi-lg2-1gi) and we have obtained preimages for the generators yiy2 and yi. 

In order to find a preimage for y2  we express y2  in terms of the generators yi y2 

and yi. We have Y2 = (yly2)yl = e(g2 1  )4gClg2 1.9

1.  ) = Ag2  ..1.m.  1.g2  1..gi,  ). 

Finally, we have 2-(/3(gi,g2)) = 491) = hyi  and therefore gi(gr1g2gi) = 9291 is 

a preimage for it. 
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Chapter 4 

The Construction of the 

Irreducible Representations of 

Finite Soluble Groups over 

Finite Fields 

In this chapter an algorithm for the calculation of the irreducible representations 

of finite soluble groups over finite fields is presented. The principle tools are 

Clifford's results on the construction of the irreducible representations of a finite 

group from the irreducible representations of a normal subgroup. These results 

are summarised and applied in section 4.1 in order to develop an algorithm for 

the calculation of the irreducible representations of finite soluble groups over 

algebraically closed fields. The irreducible representations over arbitrary fields 

are considered in section 4.2. We shall see that the irreducible representations of a 

finite group over an algebraically closed field are absolutely irreducible. Moreover, 

in prime characteristic, we shall see that an absolutely irreducible representation 

of a group is realisable over its field of character values. This information may be 

used to construct ( up to similarity) all the irreducible representations of a group 
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over any given finite field. With the help of our knowledge of section 4.1 and 4.2 

we develop an algorithm for the calculation of the irreducible representations of 

finite soluble groups over finite fields in section 4.3. 

Throughout this chapter the reader is supposed to have knowledge of ele-

mentary representation theory such as that which may be obtained from reading 

introductory material in [Isa 76] or part II of [Jac 74]. The other prerequisites 

are Galois theory and some familiarity with cohomology theory. 

4.1 The Construction of the Irreducible Rep-

resentations of Finite Soluble Groups over 

Algebraically Closed Fields 

This section describes the connection between the irreducible representations of 

a finite group and the irreducible representations of a normal subgroup. The 

approach is based on an article by Clifford ( cf. [Cli 37] ). The first part of 

the section analyses the structure of the irreducible representations of a finite 

group in terms of the irreducible representations of a normal subgroup. Based 

on this analysis the second part describes the construction of the irreducible 

representations of a finite group from the irreducible representations of a normal 

subgroup. We conclude this section with an application of the theory which has 

been summarised in this section and describe an algorithm for the construction 

of the irreducible representations of finite soluble groups over algebraically closed 

fields : Going up a composition series G = Go  I>Gi b• • • i>G1  = (1) of a soluble 

group G all irreducible representations of Gi are constructed from those of Gi+1 

by extending the G;-invariant irreducibles of Gi+1  to irreducibles of Gi and by 

inducing up the non-invariant irreducibles of Gi+1. 
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The first theorem describes the structure of an irreducible F[G]-module V on 

restriction to a normal subgroup N of a group G. The irreducible F[G]-module 

V is identified with an induced module VjG  for some irreducible F[Uj]-module V 

where Uj  is a subgroup of G. 

DEFINITION 4.1 Let N be a normal subgroup of a group G and let R be a 

representation of N. For a fixed element gEG the map defined by n 	Rg(n) = 

R(g-1  ng) is obviously a representation of N and is called a conjugate represen-

tation of R with respect to G. 

THEOREM 4.2 Let N<IG and let V be an irreducible F[G]-module. 

(a) If W is an irreducible F[N]-submodule of V, then 

v 	E gW . 
gEG 

Every gW is an irreducible F[N]-module and therefore V is a completely 

reducible F[N]-module. If R is the representation of N corresponding to 

W, then Rg corresponds to gW. 

(b) Let W1, 	, Wk be representatives of the isomorphism classes of irreducible 

F[N]-submodules of V. Define the W=-homogeneous component by 

= E w 
wcV w.w, 

for 1 < i < k. Then V = Vi  ED • • • ED Vk and the homogeneous components are 

transitively permuted by the action of G. Let Ui  be the set {g gEG, 

Vj} and let Rj be the representation of N corresponding to Wj. Then Ui 

{g gEG, Rig is similar to Rj} for 1 < j < k, the homogeneous components 

Vi are irreducible F[Uj]-modules and 

V 2-2  F[G] ®F[U,] Vj = ViG  • 
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) = R(a) 

( 
= R(b). 

0 

1 0 ) 

SG(a) = 

and 

SG(b) = 

(e 0 

0 6-1  

Proof See Satz V.17.3 of [Hup 67] for the details. 	 E1 

EXAMPLE Let G = (a, b) be the Dihedral Group of order 6 with the defining 

relations a3  = b2  = 1, b-lab = a'. Consider the irreducible representation R 

over the field of complex numbers defined by 

R(a) = 

and 

(0 1 
R(b) = 

1 0 

where e is a primitive third root of unity in the field of complex numbers. The 

restriction of R to the normal subgroup (a) is obviously completely reducible and 

the irreducible components are defined by S(a) = e and Sb(a) = S(a-1) = 6-1  

Choose the transversal {1, b} for the left cosets of (a) in G ( that is, a set of 

representatives for these cosets ). Then 

Next consider a normal subgroup N of a finite group G and an irreducible 

F[G]-module V such that VN is a homogeneous F[N]-module. In other words, if 

W is an irreducible F[N]-submodule of VN, then 

v . E gW 
gEG 

where all the conjugates gW are F[N]-isomorphic to W. In the terminology of 

the previous theorem V corresponds to VI  and G to Ui. 
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DEFINITION 4.3 Let G be a group and F a field. A projective representation 

of G is a map P : G 1-4 GLn(F) such that 

P(g)P(h) = a(g,h)P(gh) 

for all g, hEG, where a(g, h) is a non-zero element of F depending on the pair 

(g, h). Its degree is n and the map (g, h) 1--4 a(g, h) is called the factor set of the 

representation. Exactly as in the case with ordinary representations, two projec-

tive representations P and Q are similar if Q = X-1PX for some nonsingular 

matrix X. Also P is irreducible if it is not similar to a projective representation 

in triangular block form 

g '-' 

for all gEG. 

The following lemma gives an instance of how projective representations arise in 

the study of ordinary representations. 

LEMMA 4.4 ( cf. theorem 11.2 of [Isa 76] ) Let N be normal subgroup of G 

and let F be an algebraically closed field. Let S be an irreducible representation 

of N over F such that the conjugate n 1-4 S9(n) = S(g-ing) is similar to S for 

all gEG. Then there exists a projective representation P of G such that 

(a) P(n) = S(n) 

(b) P(ng) = P(n)P(g) 

(c) P(gn) = P(g)P(n) 

for all nEN and gEG. If a is the factor set of P, then the values a(g, h) depend 

only on the cosets of G mod N in which g and h lie. Furthermore, if P' is another 

projective representation satisfying (a), (b) and (c), then Pi(g) = µ(g)P(g) for 

some map µ : G 1—k F*, which is constant on cosets of N and the factor set of 

P' is (g, h) i-4  a'(g, h) = a(g,h)µ(g)µ(h)ii(gh)-1. 
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Proof Choose a transversal T for N in G ( that is, a set of coset representatives ). 

Take lET. For each tET, choose a nonsingular matrix Pt  such that Pt-iSPt = 

St. Take P1  = I. For nEN and tET define P(tn) = PtS(n). Properties (a), (b) 

and (c) are immediate. Properties (a), (b) and (c) yield 

S(n)P(g) = P(ng) = P(gg-1  ng) = P (g)S(g- 1  ng) 

and 

P(g)-1S(n)P (g) = S(g-1  ng) 

for all gEG and all nEN. Also 

P(h)-1P(g)-1S(n)P(g)P(h) = S(h- 1  g-1  ngh). 

Comparing with 

P(gh)-1S(n)P (gh) = S((gh)- 1  ngh) 

yields P(g)P(h) = a(g, h)P(gh) for some a(g, h)EF* and thus P is a projective 

representation. By properties (b) and (c) 

a(gn, hm)P(gnhm) = P(gn)P(hm) = P(g)P(nhm) 

for m, nEN and g, hEG. Furthermore 

P(g)P(nhm) = P(g)P(h)P(h-lnhm) = 

= a(g, h)P(gh)P(h-1  nhm) = a(g,h)P(gnhm). 

Since P(gnhm) is nonsingular, a(gn, hm) = a(g, h). 

If X is any nonsingular matrix such that X-1S(n)X = S(g-1  ng) for all nEN, 

then XP(g)-1  commutes with all S(n) for all nEN and thus XP(g)-1  is a scalar 

matrix. If P' also satisfies (a), (b) and (c), take X = P'(g) and conclude that 

P'(g) = µ(g)P(g) for some ii(g)EF*. For nEN and gEG 

itt(gn)P(gn) = P' (gn) = Pt(g)Pt(n) = it(g)P(g)P(n)• 
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Since P(gn) = P(g)P(n) is nonsingular, p(gn) = µ(g). 

If a' is the factor set of P', then 

µ(g)p(h)a(g , h)P (gh) = µ(g)µ(h)P(g)P(h) = 

= 	(g)Pi  (h) = (g , h)131  (gh) = (g ,h)p(gh)P(gh). 

Since P(gh) is nonsingular a' (gh) = a(g ,h)µ(g)µ(h)µ(gh)-1  

THEOREM 4.5 ( cf. Satz V.17.5 of [Hup 67] ) Let N be a normal subgroup 

of G and let F be an algebraically closed field. Let V be an irreducible F[G]-

module and assume VN is a direct sum of s isomorphic F[N]-modules. If R is the 

representation corresponding to V, then R(g) = Q(g) 0 P(g) for all gEG, where 

Q and P are irreducible projective representations of G and Q is a projective 

representation of GIN of degree s. 

Proof Let VN = W1 ED • • • ED Ws  where the Wi  are isomorphic F[N]-modules. 

Then there exists a basis for the representation space V such that for nEN 

S(n) 0 • • • 0 

0 S(n) 0 
R(n) = 

0 0 • • • S(n) 

With regard to this basis let R(g) = (R22  (g)) (i, j = 1, . . . , s ). Since R(n)R(g) 

R(g)R(g-lng), it follows that S(n)R;3(g) = Rii(g)S(g-ing) = Rii(g)S9(n). The 

conjugates S and S9  are similar and therefore there exists an invertible matrix 

P(g) such that S(n)P(g) = P(g)S9(n). Then 

S(n)R1 (g)P(g)-1 = 

= Rii(g)S9(n)P(g)-1  = Rii(g)P(g)-1S(n). 

By Schur's lemma, since S is irreducible and F is algebraically closed, there 

exists an element aij(g) 0 0 in F such that Rij(g) = aii(g)P(g). Define Q by 

Q(g) = (aii(g)). Then R(g) = Q(g) 0 P(g) for all gEG. 
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Next, the mapping g i-+ P(g) is shown to be a projective representation. If 

g and h are elements of G, then 

S(n)P(g)P(h)P(gh)-1  = P(g)S(g-1ng)P(h)P(gh)-1  = 

= P(g)P(h)S((gh)-1ngh)P(gh)-1  =P(g)P(h)P(gh)-1S(n). 

By Schur's lemma P(g)P(h) = a(g, h)P(gh), where a(g, h)EF*. 

Because P is a projective representation of G with factor set a and R is an 

ordinary representation, Q is a projective representation of G with factor set 

a-1. Since Sn(m) = S(n)-1S(m)S(n) for all n, mEN, P(n) = S(n) can be 

assumed for nEN. Then I ®S(n) = R(n) = Q(n) ®P(n) = Q(n) ®S(n) implies 

Q(n) = I and Q is actually a projective representation of G/N. The projective 

representations Q and P are irreducible, because a reduction of either one would 

imply a reduction of R, contrary to the hypothesis that V is irreducible. 	0 

EXAMPLE Let G = ( a,b) be the Quaternion group of order 8 with the 

defining relations b-lab = a-1, a4  = 1 and b2  = a2. Consider the irreducible 

representation R over the field of complex numbers defined by 

R(a) = 

( 0 E-1  

and 

R(b) = 

where e is a primitive fourth root of unity in the field of complex numbers. The 

restriction of R to the normal subgroup (a2 ) is obviously completely reducible and 

up to similarity there is only one irreducible component. It is the representation 

S defined by S(a2) = —1. Choose the transversal {1, a, b, ba} for the left cosets 

of ( a2  ) in G and define a projective representation P of G by P(1) = P(a) = 

P(b) = P(ba) = 1 ( cf. lemma 4.4 ). The factor set a of P on the cosets of ( a2  ) 

in G may be given by the following table : 
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a 1 aN bN baN 

N 1 1 1 1 

aN 1 -1 -1 1 

bN 1 1 -1 -1 

baN 1 -1 1 -1 

The map Q define by 

Q( 1 ) 

Q(a) 

Q(b) 

Q(ba) 

= 

= 

= 

= 

(e 

0 ( 1  

0 

( 0 

1 

( 0 

e 

0  1 

0 

e-' 

—1 

0 

e 

0 

) 

) 

is a projective representation of GI( a2 ) with factor set a'. Evidently R(g) = 

Q(g) 0 P(g) for all gEG. 

Next, the procedure of starting from a known representation R of a group 

G and studying the restriction of R to a normal subgroup of G is reversed. In-

stead, the problem of embedding a given irreducible representation S of a normal 

subgroup N of G in an irreducible representation R of G is considered. The 

question is : Is there an irreducible representation R of G such that S occurs as 

an irreducible component of RN ? 

THEOREM 4.6 ( cf. §4 of [Cli 37] ) Let N be a normal subgroup of a finite 

group G and let S be an irreducible representation of N. Let U be the set of all 
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elements g in G such that the conjugate n H S9(n) = S(g-lng) is similar to S. 

If it is possible to embed S in an irreducible representation S' of U, then S can 

be embedded in an irreducible representation of G. 

Proof Let {r1  = 1, r2, 	,r„,} be a transversal for U in G. Then the representa- 

tions S(1)  of N defined by 

S(i)  : n 1-* S(ri-lnri ) 	(i = 1, • • • m) 

are the distinct conjugates of S. By hypothesis there exists an irreducible rep-

resentation S' of U such that S is an irreducible component of S'N. Since S is 

similar to all its conjugates relative to U, S'N  is necessarily a multiple of S. Now, 

define R to be the induced representation (S')G, that is 

R11(9) • • • Rim(9) 

R(g) = 	 • . 

R„,i (g) 	Etni„,(g) 

where 
S'(ri-lgri) if r=-lgriEU 

Rii (9) = 
0 	otherwise. 

For elements nEN, Rij(n) = 0 if i # j and 

S6)(n) 

• Rii(n) = S1(ri-1nri) = 

S(z)(n) 

For elements u in U we have 

S'(u) 0 0 

0 Si(r2-1ur2) Si(r2-lur„,.) 
R(u) = 

0 S'(rm-lur2) Si(rm-lur,n ) 
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To see that R is irreducible, let R' be an irreducible component of R such that 

leu  contains S'. But then R'N  will contain SIN  and hence by theorem 4.2 will 

contain S(1)  = S, S(2), ... , S(  m). Therefore R' has the same degree as R, and so 

R' must be similar to R. 	 0 

This reduces the problem to that of embedding the irreducible representation S 

of N in an irreducible representation S' of U. To simplify the notation replace U 

by G and assume that the given irreducible representation S of N is similar to 

all its conjugates with respect to G. 

THEOREM 4.7 ( cf. §4 of [Cli 37] ) Let N be a normal subgroup of a group 

G and let F be an algebraically closed field. Let S G F--+ GLr(F) be an 

irreducible representation of N and assume that S is similar to all the conjugate 

representations with respect to G. Then there exists a projective representation 

P of G such that P(n) = S(n) for all nEN. Let (g, h) 1-4 a(g,h) be the factor 

set of P. If (g, h) 	a(g, 0-1  is the factor set of an irreducible projective 

representation Q : GIN 	GL,(F), then S can be embedded in an irreducible 

representation of G. 

Proof Let R(g) = Q(g)OP (g) for all gEG. Evidently R is a matrix representation 

of G such that 
S(n) 

R(n) = 

S(n) 

for all nEN. By Burnside's lemma the representation R is irreducible if and only 

if a linear relation among the components of R(g) 

1,... ,si,j =  E aukiqii(g)pki(g) = 0 
i,j,k,1 

implies Clijki = 0, where Q(g) 	(qij(g)) and P(g) = (pki(g)). Let go  be a fixed 
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element of G, and n an element of N. Since Q(gon) = Q(go) we have 

E aiiklqii(go)Pki(gon) = 0 
i,j,k,l 	 k,1=1,...,r. 

Now P(gon) = P(go)S(n), and since there are r2  linearly independent matrices 

S(n) as n ranges over N ( by Burnside's lemma ), it follows that there are r2  

linearly independent matrices P(gon). Hence 

= 0 
	= 

k,1=1,...,r. 

This holds for each go  in G, and since Q is irreducible aijki = 0. 	 ❑ 

Finally we consider the problem of finding all possible ways of embedding an 

irreducible representation of N over an algebraically closed field in irreducible 

representations of G ( cf. §5 of [Cli 37] ). 

DEFINITION 4.8 Let N be a normal subgroup of a group G. The irreducible 

representations R and T of G are called associate relative to N if RN and TN 

have an irreducible component in common. 

Consider the associates R and T of G relative to N and denote the common 

irreducible component by S. By theorem 4.2(a), RN and TN have the same 

irreducible components, namely the conjugates of S relative to G. Let U be the 

group consisting of all elements g in G such that the conjugate n 1-4 S9(n) 

S(g-lng) is similar to S. By theorem 4.2(b) the associates R and T can be 

identified with the induced representations (11')G  and (r)G  where R' and T' are 

irreducible representations of U, which contain only components similar to S on 

restriction to N. Now fix a definite determination of an irreducible projective 

representation P of U such that P(n) = S(n) for all nEN. By theorem 4.5 

there are irreducible projective representations Q1  and Q2  of GIN such that 

R'(u) = Q1(u) 0 P(u) and T'(u) = Q2(u) 0 P(u) for all uEU. 
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Suppose there is an invertible matrix M, such that Q1(u) = M-1Q2(u)M for 

all uEU. Then R' and T' are obviously similar. If, on the other hand, R' and T' 

are similar, then there exists a nonsingular matrix M such that Q1(u)  P(u) = 

M-1(Q2(u) P(u))M. Thus Q1  and Q2  must evidently have the same degree. 

For elements nEN we have I 0 S(n) = M-1(I S(n))M. This means that 

M commutes with the matrices I 0 S(n) and so must be of the form M' ® I, 

where M' is of course a nonsingular matrix of degree s. Then Q1(u) P(u) = 

M'-1Q2(u)M' P(u) which implies Q1(u) = M'-1Q2(u)M' for all uEU. 

Therefore two associates of G relative to N differ only in the projective rep-

resentation of U/N which they determine and they are similar if and only if the 

latter are similar. 

We now describe an algorithm for the calculation of the irreducible represen-

tations of finite soluble groups over algebraically closed fields. 

A finite group G is soluble if and only if every composition factor Gi/Gi+i 

of a composition series G = Go  t>G1  C).• • • 1>G1 = (1) is cyclic of prime order. 

Going up a composition series of G one constructs all irreducible representations 

of Gi  from the irreducible representations of Gi+1. For describing the passage 

from Gi+1  to Gi assume that N = Gi+1  and G = Gt. Let r = [G : N] and let 

S be an irreducible representation of N. Let U be the set of all elements g in G 

such that n 	S9(n) = S(g-lng) is similar to S. Since N is contained in U and 

r is a prime, either U = N or U = G. 

Case (1) : U = N. In this case the induced representation SG  is irreducible by 

theorem 4.6. The conjugate representations of S with respect to G induce 

up to representations similar to SG  by theorem 4.2. 

Case (2) : U = G. In this case the representation S is similar to the conju-

gate representation Sg for all gEG. If tEG - N, then T = 
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is a transversal for N in G. Choose a nonsingular matrix Pt  such that 

PC1SPt = St  and take Pt. = Pt' for tiET. For nEN and tiET define 

P(tin) = PtiS(n). Then P is a projective representation satisfying (a), (b) 

and (c) of lemma 4.4. If 0<i, j < r and i j < r, then 

P(ti)P(P) = PtiPti  = Pii+j  = P(ti+j). 

Since r = [G : N], it follows that trEN and therefore Pt-rS(n)Ptr 

S(t-rntr) = S(tr)-1S(n)S(tr) for all nEN. By Schur's lemma Ptr = eS(tr) 

for some eEF*. Now, if 0<i, j < r and i j = r rt>r, then 

p(ti)p(ti) = Pti+j  = PtrPtri  

= eS(C)P(tri) = eP(ir+ri) = eP(ti+j). 

Therefore, if a is the factor set of P, then we have 

i j < r 
a(ti  N,ti N) =1 1  

e i j>r 
0<i, j < r. 

Since F is algebraically closed, there is an element cEF* such that cr = e. 

Define another projective representations P' by Pt(tin) = c-iPtiS(n) for 

all nEN and tiET. If a' is the factor set of P', then we have 

a(ti  N,ti N) =1 	0<i, j < r. 

This shows that every projective representation of a cyclic group can be 

normalised into an ordinary one. Moreover, every irreducible representa-

tion Q of G/N is of degree one. Q(g) is a rth  root of unity for each gEG and 

its value depends only on the coset of G mod N in which g lies. Therefore 

by theorem 4.7 and the discussion on associates every irreducible represen-

tation of G which contains a component similar to S on restriction to N is 

similar to a representation R defined by 

R(tin) = ciPtiS(n) 
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for tiET and nEN, where c is a rth root of e. The number of distinct 

associates is 1 if r is the characteristic of F and r otherwise. 

EXAMPLE Let G = (a, b) be the alternating group of degree four with the 

defining relations a2  = b3  = (ab)3  = 1. Let x = a and y = b-l xb. Then N = (x, y) 

is an abelian normal subgroup of index 3 in G. The irreducible representations 

of N over the field of complex numbers are defined by 

xH 1, y 1; 

	

1, 	y 1-+ -1; 

	

-1, 	y 1-0 	1; 

x 	-1, 	y 1-* -1. 

Let S be the trivial representation of N. Then S is obviously similar to the 

conjugate representation Sg for all gEG. Therefore Case (2) applies. Choose 

{1, b, b2 } as a transversal for N in G. Choose Pb = 1 and define a projective 

representation as outlined in the description above. Obviously e = 1 and the 

irreducible representations of G which contain a component similar to S on re-

striction to N are similar to the representations defined by 

a 	1---), 1, b F-4 1; 

a 	1-). 1, b i-►  c; 

a 	1-), 1, b H c2, 

where c is a third root of unity. 

Now, let S be the representation defined by x 	1, y 1-4 -1. Then Sb(x) 

-1, Sb(y) = -1, Sb2 (x) = -1 and S62  

induced representation defined by 

SG(a) = 

(y)= 

	

(

1 	0 

	

0 	-1 

	

0 	0 
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1. Hence 

0 

0 

-1 

Case (1) applies and the 



SG(b) = 1 

(0 

0 

0 

0 

1 

1 

0 

0 

is an irreducible representation of G. 

4.2 Extension of the Ground Field 

So far in this chapter our attention was restricted almost exclusively to irreducible 

representations and modules over algebraically closed fields. In this section we 

consider irreducible representations over arbitrary fields. We study the behaviour 

of an irreducible representation of a group under extension of the ground field. 

In particular, if E/F is a field extension we explore the connection between the 

irreducible E-representations and F-representations of a group. The emphasis is 

on representations over finite fields and algorithms for computations with repre-

sentations over finite fields. 

This section is based on chapter 9 of [Isa 76] and begins with an introduction 

of the concepts of absolutely irreducible representations and splitting fields. We 

shall see that an algebraically closed field is a splitting field for every group and 

therefore the irreducible representations of a group over an algebraically closed 

field are absolutely irreducible. Thereafter we study the irreducible representa-

tions of a group over splitting fields and their extensions. We are led in a natural 

way to the question whether an absolutely irreducible representation is realisable 

over smaller fields. In prime characteristic, we shall see that some finite field is a 

splitting field for a group. Moreover, we prove that an absolutely irreducible rep-

resentation R of a group G over a field EDF of prime characteristic is realisable 

over the field generated by F and the character values x(g) for all gEG where 

x is the character afforded by R and describe an algorithm for the realisation of 

representations over smaller finite fields. After the introduction of the concept of 
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Galois conjugacy of characters we investigate the structure of an irreducible rep-

resentation under extension of the ground field. We show that the representation 

is completely reducible; that all irreducible constituents occur with equal multi-

plicity and that the characters of the constituents constitute a Galois conjugacy 

class. As a consequence we shall see that an irreducible representation over a fi-

nite field may be described in terms of its absolutely irreducible constituents and 

describe an algorithm for the calculation of an absolutely irreducible constituent 

of an irreducible representation over a finite field. 

Let FCE and R be an F-representation of a group G. Then R maps G into a 

group of nonsingular matrices over F that are also nonsingular over E. Therefore 

R may be viewed as an E-representation of G. As such it will be denoted by RE. 

If RE  is irreducible, then clearly so is R. However, RE  may well reduce, even if 

R is irreducible. To illustrate what can happen, let G = (g) be cyclic of order 

3 and let R be the representation over the rational numbers defined by 

) 

( 0 —1 

1 —1 
R(g) = 

If E is the third cyclotomic field over the rational numbers, then RE  affords 

the character A + A', where A is a faithful linear character of G and so RE  is 

reducible. 

DEFINITION 4.9 Let R be a representation of G over F. Then R is absolutely 

irreducible if RE  is irreducible for every field EDF. 

We have already seen that an irreducible representation need not be absolutely 

irreducible. It is of importance, therefore, to obtain necessary and sufficient 

conditions for absolutely irreducibility. 

THEOREM 4.10 Let R be an irreducible F-representation of degree n. Then 

the following assertions are equivalent : 
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(a) R is absolutely irreducible. 

(b) RE  is irreducible for every finite degree extension E/F. 

(c) The centraliser of R(G) in the matrix ring Mn(F) of n xn-matrices over F 

consists of scalar matrices. 

(d) R(F[G]) = 111„(F). 

Proof See theorem 9.2 of [Isa 76] for the details. 	 0 

DEFINITION 4.11 The field F is a splitting field for G if every irreducible 

F-representation of G is absolutely irreducible. 

COROLLARY 4.12 ( cf. corollary 9.4 of [Isa 76] ) If F is an algebraically closed 

field, then F is a splitting field for every group. 

Proof Since F has no proper finite degree extension, condition (b) of theorem 

4.10 holds for every irreducible F-representation of G. 	 0 

Suppose F is a splitting field for G and EDF. Then every irreducible F-

representation R determines an irreducible E-representation RE. A natural 

question is : If {Ri} is a set of representatives for the similarity classes of ir-

reducible F-representations of G, is {RiE} a complete set of representatives for 

the irreducible E-representations of G ? In order to prove this, we need to discuss 

the irreducible constituents of possibly reducible representations. 

If V is an F[G]-module, then a composition series for V is a chain of submod- 

ules V = VT, > 	> V1  > Vo = 0 such that each Vi/Vi_i is an irreducible module. 

The modules Vi/Vi_i  are the factors of the series. The Jordan-Holder theorem 

asserts that the factors of any two composition series for V are the same up to 
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isomorphism. If R is an F-representation of G corresponding to the F[G]-module 

V, then R is similar to a representation T in triangular block form 

Ti(g) 	* 

T(g) = 	 . 

0 	Tri(g) 

where the irreducible representations Ti  correspond to the factors Vi /Vi_i . The 

matrices T(g) have zeros below the blocks on the main diagonal but may have 

nonzero entries above the diagonal blocks. Representations similar to the Ti are 

the irreducible constituents of R. By the Jordan-Holder theorem, the representa-

tion R has only finitely many irreducible constituents ( up to similarity ), namely 

those which appear in any single triangular representation similar to R. 

COROLLARY 4.13 ( cf. corollary 9.5 of [Isa 76] ) Let F be a field and G a 

group. Then 

(a) Every irreducible F[G]-module is isomorphic to a factor module of the reg-

ular F[G]-module. 

(b) There exist only finitely many similarity classes of irreducible F-represen-

tations of G. 

(c) If EDF and T is an irreducible E-representation of G, then T is a con-

stituent of RE  for some irreducible F-representation R. 

Proof Statement (a) is immediate and statement (b) follows from (a) via the 

Jordan-HOlder theorem. Let U be any F-representation of G. The irreducible 

constituents of UE  may be found by taking the irreducible constituents Ri  of 

U and then finding the irreducible constituents of the RiE. Now (c) follows by 

	

applying this remark to the regular F-representation. 	 0 

The following result is a useful tool for establishing the similarity of two F-

representations of G and for other purposes. 
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THEOREM 4.14 ( cf. theorem 9.6 of [Isa 76] ) Let R be an irreducible repre-

sentation of F[G] and let a be an element of F[G]. Then there exists b in F[G] 

such that R(b) = R(a) and T(b) = 0 for every irreducible F[G]-representation T 

which is not similar to R. 

Proof Let {Ri} be a set of representatives for the similarity classes of irreducible 

F[G]-representations. Denote the Jacobson radical of F[G] by J(F[G]). Let A ,---

F[G]lJ(F[G]), so that each Ri  may be viewed as a representation of the algebra 

A. As such, the Ri  are irreducible and pairwise nonsimilar. Since J(A) = 0, A is 

semisimple and therefore has minimal ideals M, such that Ri(Mi) = 0 if j i 

and Ri(Mi) = Ri(A) = Ri(F[G]). Now suppose R = R1  and choose b in the 

preimage of M1  in F[G] with R(b) = R(a). 	 ❑ 

COROLLARY 4.15 ( cf. corollary 9.7 of [Isa 76] ) Let R and T be irreducible 

F-representations of G. Suppose FCE and that RE  and TE  have a common 

irreducible constituent. Then R is similar to T. 

Proof Let U be an irreducible constituent of RE  and TE. If R and T are not 

similar, view them as representations of F[G] and choose bEF[G] with R(b) = 

R(1) and T(b) = 0. Hence U(b) is an identity matrix and U(b) = 0. This 

contradiction proves the result. 	 ❑ 

COROLLARY 4.16 ( cf. corollary 9.8 of [Isa 76] ) Let F be a splitting field for 

G and let {Rd be a set of representatives for the similarity classes of irreducible 

F-representations. If EDF, then E is a splitting field and {R1E} is a set of 

representatives for the irreducible E-representations of G. 

Proof Since the Ri  are absolutely irreducible, the RiE  are absolutely irreducible. 

They are pairwise nonsimilar by corollary 4.15. Suppose T is any irreducible E-

representation. By corollary 4.13(c), T is a constituent of RiE  for some i. Since 

RiE  is irreducible, it is similar to T and the proof is complete. 	 ❑ 

60 



Let R be a E-representation of G. Then R is said to be realisable in FCE 

if there exists a F-representation T of G such that R is similar to TE. We can 

characterise splitting fields in terms of the concept of realisability as follows. 

THEOREM 4.17 ( cf. theorem 9.9 of [Isa 76] ) Let E be a splitting field for 

G and let FCE. Then F is a splitting field if and only if every irreducible 

E-representation of G is similar to TE  for some F-representation T. 

Proof Suppose F is a splitting field. Then by corollary 4.16 every irreducible 

E-representation is as described. Conversely, let U be any irreducible F-represen-

tation and let R be an irreducible constituent of UE. By hypothesis, there exists 

an irreducible F-representation T, such that TE  is similar to R and hence TE  and 

UE  have an irreducible constituent in common. By corollary 4.15, T is similar 

to U, and thus UE  is absolutely irreducible. It follows that U is absolutely 

irreducible since the only F-matrices which centralise all U(g) are scalar. 	❑ 

COROLLARY 4.18 ( cf. corollary 9.10 of [Isa 76] ) Let F be any field and G 

a group. Then some finite degree extension of F is a splitting field for G. 

Proof Let F be the algebraic closure of F, so that P-  is a splitting field. Let {R1} 

be a set of representatives for the similarity classes of irreducible F-represen-

tations. By corollary 4.13(b), I {Ri}I < oo and hence only finitely many elements 

of F occur as entries in any of the matrices Ri(g) for gEG. Adjoin all of these 

elements to F so as to obtain the field E. Since F is algebraic over F, it follows 

that [E : F] < co. Since each Ri  may be viewed as an E-representation of G, it 

follows from theorem 4.17 that E is a splitting field. 	 ❑ 

Suppose now that E is an arbitrary extension field of F. Let R be an E-

representation of G and let x be the character of R. Denote the extension field of 

F generated by the elements { x(g)IgEG} by F(x). Then F(x) is a finite algebraic 
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extension field of F, since each X(g) is a sum of roots of unity. Moreover, if R is 

realisable in F, then F(x) = F. As the Quaternion group of order 8 will show R 

need not be realisable in F if F(X) = F. 

EXAMPLE Let G = (a, b) be the Quaternion group of order 8 with the defining 

relations b-1  ab = a-1, a4 = 1,  b2 = a2. Consider the irreducible representation R 

over the field of complex numbers defined by 

R(a) = ( 
6 0 

and 
0 —1 

1 0 

where e is a fourth root of unity in the field of complex numbers. Let R afford 

the character x. The elements 1, a2, a, b, ba are representatives of the conjugate 

classes of G and x(1) = —x(a2) = 2, x(a) = x(b) = x(ab) = 0. Suppose R is 

realisable in the field of rational numbers. For a suitable basis, 

R(1) = I, R(a2) = —I, R(a) = 

can be assumed. From ab = ba-1, it follows that 

( 0 1  1 0 — 

R(b) = 
( xy y 

—x • 

Then b2  = a2  implies that x2  + y2  = —1, which is impossible for rational numbers 

x and y. Therefore R is not realisable in the field of rational numbers. 

The next theorem asserts that R is realisable in a field F of prime characteristic 

if F(X) = F. We shall need the following lemmas. 

LEMMA 4.19 ( cf. lemma 9.12 of [Isa 76] ) Let E be a splitting field for G. 

Then the characters of nonsimilar irreducible E-representations of G are nonzero, 

distinct and linearly independent over E. 

0 T1 

R(b) = ( 
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Proof Let Ri be a set of representatives for the similarity classes of irreducible 

E-representations, and let xi be the character afforded by 	View xi  as being 

defined on all of E[G]. Since Ri(E[G]) is a full matrix ring over E by theorem 

4.10, aiEE[G] may be chosen such that xi(ai) = 1. By theorem 4.14 Xj(ai) = 0 

may be assumed for i # j. The result is now immediate. 	 ❑ 

This result is actually true without the assumption that E is a splitting field. 

The more general fact will be proved later ( cf. corollary 4.29 ). If E is a splitting 

field for G, the notation IrrE(G) is used to denote the set of characters of the 

absolutely irreducible E-representations of G. 

Let E be any field, u an automorphism of E, and R an E-representation of 

G. The automorphism o can be applied to every entry in the matrix R(g) for 

every gEG. What results is a new representation, denoted QR. 

LEMMA 4.20 Let El F be a finite Galois extension and let G = Gal(E I F). 

Let a : G -+ GL,i(E) such that a(gh) = ga(h)a(g) for g, hEG . Then there 

exists XEGL„(E) such that a(g) = gX-1X for all gEG. 

Proof ( cf. proposition X 1.3 of Corps Locaux by J. P. Serre ) Let MEMn(E) 

and define X = gEG gMa(g). Then gX = Xa(g)-1  and a is as required if M 

can be chosen such that X is invertible. 

Let m be an element of the row vector space En of dimension n over E and 

form x(m) = EgEG  gma(g). The elements x(m), mEEn, generate En  : Let 

EH om(En , E) such that 0 = V(x(m)) for all mEEn. If eEE, then 

0 = V(x(ern)) = t9(E g(em)a(g)) E geV(gma(g)). 
gEG 	 gEG 

By Dedekind's Independence Theorem V(gma(g)) = 0 and since a(g) is invertible 

it follows that 19 = 0. 

Let w1, 	, wnEEn such that {yi  = x(wi), 	, yi, = x(wn)} is linearly inde- 

pendent over E. Let M be the matrix of the homomorphism defined by vi H wt  
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where 	, v,,} is the canonical base for E". Now calculate the matrix X as 

described above. Apparently 

viX = vi(E gMa(g)) = > vigMa(g) = E gwia(g) = yi  
gEG 	 gEG 	 gEG 

and therefore X is invertible. 	 0 

THEOREM 4.21 ( cf. theorem 9.14 of [Isa 76] ) Let R be an absolutely irre-

ducible E-representation of G, where E is of prime characteristic. Suppose that 

R affords the character x and that x(g)EF for all gEG, where FCE. Then R is 

similar to TE  for some absolutely irreducible F-representation T. 

Proof First consider the case that 1E1 < oo. Denote the Galois group Gal(E F) 

by A. If 1/EA, then R and r/R afford the same character and are therefore 

similar by lemma 4.19. Hence there exist nonsingular matrices P(g) such that 

rilt(g) = P(7/)R(g)P(//)-1  for all gEG and all 7/EA. For 771,172EA we have 

P(lo2)R(g)P(771712)-1  = ii1(P(712)R(g)P(i 2)-1) = 

= 7711)(772)771R(g)r/1P(712)-1 	il1P(712)P(7/1)R(g)P(7/1)-17/1P(772)-1. 

By theorem 4.10(c), 7/113(7/2 )P(7/1) = a(//102)P(7/17/2 ) for some a(//1, 7/2 )EE*. 

From P((1 02)773) = P(771(7727/3)), it follows that 

c/(771772, 7/3)a(7/1,172) = a(7/10/2773)1ha(7/2 0/3). 

Hence aEZ 2(A, E*), where A acts naturally on E*. If P'(//) are other matrices 

such that 77R(g) = p'(9)R(g)Pi(71)-1  for all gEG and all r/EA, then Pim 

µ(//)P(//) for some /L : A —) E* and the factor set a' determined by P' is 

0102) H  ai(7/1, 7/2) = a(711, 112)71112(112)11(711)11(711712)-1  • 

Therefore the representation R determines an element aB2  (A, E*) of the coho-

mology group H2(A, E*). By Satz 1.16.10 of [Hup 67] the cohomology group 

H2(A, E*) = 1. Hence the matrices P(//) can be chosen such that P(7/17/2 ) 
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niP(7/2)P(771)• By lemma 4.20 there exists XEGL„(E) such that P(7/) = 7/X'X 

for all 7/EA. It follows that 

7/(XR(g)X-1) = 7/X7/R(g)7/X-1  = 

= 7/XP(7/)R(g)P(7/)-17/X-1  = XR(g)X'. 

Hence T = XRX-1  is the desired representation of G over F. 

Finally consider the case where E may be infinite. Since E may be replaced 

by a larger field, it is no loss to assume that E is algebraically closed. Let KCE 

be the prime field and let LDK be a splitting field with [L : K] < oo by corollary 

4.18. Since E is algebraically closed, assume LCE. Since L is a splitting field, 

R is similar to UE  for some L-representation U and U affords x which takes 

values in LnF. Since ILI < oo, the first part of the proof yields an absolutely 

irreducible (LnF)-representation T such that TL  is similar to U and hence TE  

is similar to R. Now TF  is the desired F-representation. 	 ❑ 

The proof for the case IEI < oo is actually an application of the remark V.14.14 

of [Hup 67], p.548. The idea can be traced back to an article by A. Speiser ( cf. 

[Spe 19] ). The following algorithm for finding a conjugating matrix X is due to 

S. P. Glasby and R. B. Howlett. The description given here follows unpublished 

notes and written communication with Glasby and Howlett. 

Let R be an absolutely irreducible E-representation of G, where E = Fq, is the 

field with q' elements. Suppose R affords the character x and that x(g)EF = Fq, 

the field with q elements, for all gEG. The Galois group Gal(E I F) is generated 

by the automorphism 7/ : x 1-+ xq. The representations R and 7/R afford the 

same character and are therefore similar. Let Z be a matrix over E such that 

1R(g) = ZR(g)Z-1  for all gEG and define 

P(ni) = 	
i = 0 

• • -7/ZZ 	0 < i<r - 1. 
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If 0<i, j < r and i j < r, then 

= P(71'). 

Since n has order r, it follows that 

R(g) = nrIt(g) = nr-1Z • • • nzzR(g)z-1riz-1 ...nr_iz-1  

for all gEG. Since R is absolutely irreducible, there exists a nonzero scalar fEE 

such that nr--1z • •-•nzz .11. Now, if 0<i, j < r and i j = r + r'>r, then 

niP(ni)P(qi) = nr"-'z • • qzzf = P(nrif = POr+r")f = P(zii+i )f• 

Therefore, if a is the factor set of P, then 

 

 

1 	
i + j <r 

f 	j>r 
0<i, j <r. 

 

Next, we will show that fEF. By theorem 4.21 there is a representation R' 

over F such that YRY-1  = R' for some nonsingular matrix Y. Hence 

nR(g) = nY-1nR'(g)nY = 

= 9Y-1YR(g)Y-177Y = 77Y-1YR(g)(7)Y-1Y)-1  

for all gEG. Then qr-1(7/Y-1Y) • • • q(7/Y-1Y)9Y-1Y = 7(Y-1Y = I and 

therefore f = 1 can be assumed. Suppose Z' is another matrix such that 

nR(g) = Z'R(g)Z'`i  for all gEG, then Z' = aZ for some aEE. Then 

= nr-lzi 	nzizi = /r-la 	naa7/1.-1Z • • • 71ZZ = NE1F(a)f. 

Hence f' is a F-multiple of f and therefore fEF. 

Let bEE such that NE/F(b) = f-1  and define 

I 	 i = 0 

q`-1(bZ) • • •77(bZ)bZ 	0 < i<r — 1. 
P'(ni) = 

66 



If a' is the factor set of P', then ce(niori) = 1 for 0<i, j < r and i + j < r. If 

0<i, j <r and i + j = r + ri>r, then 

ri`P'(//i)P'(qi) = 	z • • • nZZfiiri-l b • • • ribbNEIF(b) = 

= vr'-1(bZ) • • • 9(bZ)bZ = P'(yri ) = P'Or+ri) = P'(9i+j). 

It follows from lemma 4.20 that there is a matrix X over E such that 

nXbZ = X. 	 (*) 

This equation may be viewed as a system of homogeneous linear equations over 

F. Since the dimension of E over F is r, finding X is equivalent to solving 

rn2  homogeneous linear equations in rn2  unknowns where n is the degree of the 

representation R. Choose an invertible matrix X from the space of solutions, 

then X has the desired properties. The number of X satisfying (*) is the number 

of n xn matrices over F, namely qn2  : Suppose that X and Y satisfy (*) where X 

is invertible, then ri(YX-1) = nyqx-i yz-16_i,x-i = YX-1  and therefore 

M = YX-1  is a matrix over F. Hence any solution Y = MX for some M over F. 

Conversely if Y is any matrix over F and X satisfies (*), then YX also satisfies 

(*) because q(YX)bZ = r/YriXbZ = YX. 

The size of the system of homogeneous linear equations can be reduced by 

the following observation. Elements of E may be regarded as r-tuples over F, 

and therefore X is effectively a n xrn matrix over F. Each row x of X has to 

satisfy yxbZ = x. This is a system of rn homogeneous linear equations in rn 

unknowns : Let (el, 	, er) be a basis of E over F and let e = ET=.1  ci(e)ei be the 

unique representation of eEE. If Z = (zii), then the equation rixbZ = x yields n 

equations in n unknowns Elk1=1  rixkbzki= xi for i = 1, 	, n. If xk  = Eri=i  xkie j, 

where the xki  are regarded as unknowns, then 

E nxkbzki = E 7.1(E xkiej)bzki= 
k=-.1 	k=i 

n r 	 r n r 

= EE xkin(ei)bzki = EEE 
k=1 j=1 	 1=1 k=1 j=1 

ci(n(ei)bzki)xkiel• 
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Hence the equation i1xbZ = x yields the equations 
n r 

EE ci(rI ( cobzki)xki  = xi, 
k=1 j=1 

for 1 = 1, . . . ,r and i = 1, 	, n. 

If its space of solutions has dimension m, then the original system will have 

dimension mn. So mn = n2  and therefore m = n. Now, if (vi, , vn) is a base 

for this space of solutions then the n x rn matrix X having v1, , vn  as its rows 

will have rank n. It remains to show that it has rank n when viewed as a matrix 

over E. Since the F-rank is n, the only vector y over F satisfying yX = 0 is 

y = 0. But X = MX' where X' is invertible and M has entries in F. If M were 

not invertible, then the nullspace of X over F would clearly be nonzero. So M is 

invertible and therefore X is too. 

EXAMPLE Let G = (a, b) be the dihedral group of order 10 with the defining 

relations a5  = b2  = (ab)2  = 1. The field E = F24 of order 24  is the 15th  cyclotomic 

field over F2. The 15th  cyclotomic polynomial Q15(x) = x8-Fx7+ x5+ x4 + x3+x +1 

and Q15(x) = (x4 + x +1)(x4  +x3  + 1) is the decomposition of Q15 into irreducible 

factors in F2[x]. Let z be a root of x4  + x +1. Then z is a primitive 15th  root of 

unity over F2. Consider the representation S of ( a ) over E defined by S(a) = z3. 

By theorem 4.6 the representation R = SG  is irreducible and 

R(a) = SG(a) 	
z3  0 

( 0 1 
R(b) = SG(b) = 

There are four conjugate classes in G, which are given by C1  = {1}, Cb = 

{b,ba,ba2,ba3,ba4 },Ca  = {a, a4 }, Ca2 = {a2, a3}. The values of the character 

of R are given by the following table. 

C1  lib Ca  Ca2 

0 0 z10 z5 

0 z12  

68 



Obviously the character has values in F2(z5) which is the field of order four. 

Hence R is realisable over F = F22. The Galois group Gal(E/F) is generated by 

the automorphism n : x 1--p x4  and (1, z) is a base of E over F. 

(
z = 

01 01  

is a matrix over E such that iiR(g) = ZR(g)Z-1  for all gEG. We obtain fI = 

nZZ = Z2  = I and it follows that f = 1. This gives the following system of 

homogeneous linear equations 

/0 0 1 0 

0 0 1 1 
( x115  x121  x21)  x22 ) 	

1 0 0  0 	
"7---  ( x11 7  x121  x217  x22 ) • 

\1 1 0 0I 

Then ((1, 1, 0, 1), (1, 0, 1, 0)) is a base for the space of solutions and 

( z4 Z 
X = 

1 1 

satisfies 77XZ = X. Then g 1--+ XR(g)X-1  is a representation over F since 

( z5  1 
XR(a)X-1  = 

zio 1 

and 

XR(b)X-1  = 

Now let F be any field and let R be an irreducible F-representation of G. Let 

EDF be a splitting field for G. What does RE  look like ? We prove that RE  
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is completely reducible; that all irreducible constituents occur with equal multi-

plicity and that the characters of the constituents constitute a Galois conjugacy 

class over F. 

We begin with a consequence of theorem 4.21. The exponent of a group G is 

the least positive integer n such that gn = 1 for all gEG. 

COROLLARY 4.22 ( cf. corollary 9.15 of [Isa 76] ) Let G have exponent n 

and assume the polynomial xn — 1 splits into linear factors in the field F. If F 

has prime characteristic, then it is a splitting field for G. 

Proof Let EDF be a splitting field and let XEIrr E(G). Then x(g) is a sum of 

nth  roots of unity and hence x(g)EF. The result follows by theorem 4.21 and 

theorem 4.17. 	 ❑ 

An entirely different proof shows that corollary 4.22 also holds in characteristic 

zero. This result by R. Brauer depends on his theorem on induced characters. 

Let R be an E-representation of G. Suppose R affords the E-character X 

and that x takes values in FCE. If TEAut(F), it is not obvious that rx is an 

E-character of G. 

LEMMA 4.23 ( cf. lemma 9.16 of [Isa 76] ) Let E be a splitting field for G 

and let xE/rrE(G). Suppose x(g)EFCE for all gEG and let rEAut(F). Then 

rxE/rrE(G). 

Proof Let E be an algebraic closure of E and let FCE be an algebraic closure of 

F. Then IrrE(G) = IrrE(G) = Irr-T,(G) by corollary 4.16. Since r is extendible 

to an automorphism of F, the result follows. 	 ❑ 

Let FCE be a field extension and suppose x is an E-character of G. Note 

that F(x) is contained in a splitting field for a polynomial of the form xi' —1 over 

F. Since this polynomial yields a Galois extension with an abelian Galois group, 

it follows that F(x) is a finite degree Galois extension of F and the Galois group 

Gal(F(x)IF) is abelian. 

70 



DEFINITION 4.24 Let E be a splitting field for G and let FCE. If x and 

are in IrrE(G), then x and b  are said to be Galois conjugate over F if F(x) ,  

F(') and there exists crEGal(F(x)/F) such that ax = lk. It is clear that this 

defines an equivalence relation on IrrE(G). 

LEMMA 4.25 ( cf. lemma 9.17 (c) of [Isa 76] ) Let E be a splitting field for 

G and let XEIrrE(G). If S is the equivalence class of x with respect to Galois 

conjugacy over F where FCE, then ISI = [F(x): F]. 

Proof We have that S is the orbit of x under Ga/(F(x)/F). By definition of 

F(x), the stabiliser of x in Gal(F(x)IF) is trivial and so 

1S1=1Gal(F(x)1F)1=[F(x): F]. 

o 

LEMMA 4.26 ( cf. lemma 9.18 of [Isa 76] ) Let FCE with [E : F] = r < oo 

and let p be a regular representation of E over F. Let R be an irreducible E-

representation of G and let U = pR. In other words, the representation U of G 

is obtained by taking R and replacing the entries by the matrices representing 

them in the regular representation p of E over F. Then 

(a) deg U = r•deg R 

(b) U has a unique ( up to similarity ) irreducible constituent. It is the F-

representation T such that R is a constituent of TE  and deg T I r•deg R. 

(c) If R affords the E-character x and F(x) = F, then U affords rX• 

Proof Statement (a) is immediate. Let T be a ( unique up to similarity ) 

irreducible F-representation of G such that R is a constituent of TE. By theorem 

4.14, choose bEF[G]CE[G], such that T(b) = T(1) and Ti(b) = 0 for every 

irreducible F-representation T' not similar to T. Since R is a constituent of TE  

71 



and T(b) is an identity matrix, then so is R(b) an identity matrix. Hence U(b) is 

an identity matrix and Ti  (b) 0 for every irreducible constituent Ti  of U. Thus 

every Ti  is similar to T and (b) is proved. 

For (c), let p be the regular representation of E over F determined by the 

basis (ei, 	, ek) and let n be the degree of R. Write R(g) = (Rij(g)) for gEG 

and p(e) = (pii(e)) for eEE. If U affords the character 0, then 

r n 
Cg) = EE pii(Rii(g))• 

i=1 j=1 

Moreover, 
n 	 r n 

x(g)ek = (E Rii(oek = EE pik(Ri,(0)ei 
j=1 	 1=1 j=1 

and since E7=1  Rij(g) = x(g)EF, it follows that x(g) = E.7=1  pkk(Rjj(g)) for 

each k = 1, . . . , n. The result now follows. 	 0 

COROLLARY 4.27 ( cf. corollary 9.20 of [Isa 76] ) Let R be an absolutely 

irreducible E-representation of G which affords the character x. Let FCE be such 

that F(x) = F. Then there exists an irreducible F-representation T, such that 

R is the unique ( up to similarity) irreducible constituent of TE. In particular, 

T affords mx for some integer M. 

Proof If F has prime characteristic, then by theorem 4.21, there exists a F-

representation T such that TE  is similar to R. 

Assume now that char(F) = 0. It will suffice to show for some positive integer 

n that the character nx is afforded by some F-representation U. This is sufficient 

since by the linear independence of IrrL(G) for a splitting field LDE, it follows 

that every irreducible constituent of UL  affords x and so is similar to R.L. One 

may thus take T to be any irreducible constituent of U and quote corollary 4.15 

to complete the proof. 

To produce U, let K2F be a splitting field with [K : F] = n < oo and assume 

that E, KCL for some field L. By corollary 4.16, L is a splitting field for G and 
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XEIrrL(G) = IrrK (G). Let R' be a K-representation which affords x and let p 

be a regular representation of K over F. Then U = pR' affords nx by lemma 

4.26(c) and the result follows. 

THEOREM 4.28 ( cf. theorem 9.21 of [Isa 76] ) Let FCE, where E is a split-

ting field for G. Let T be an irreducible F-representation of G. Then 

(a) The irreducible constituents of TE  all occur with equal multiplicity m. 

(b) If char(E) 0, then m = 1. 

(c) The characters xi E/rrE(G) afforded by the irreducible constituents of TE  

constitute a Galois conjugacy class over F and so the fields F(xi) are equal. 

(d) Let L=F(x1). The irreducible constituents of TL  occur with multiplicity 1. 

(e) If U is any irreducible constituent of TL  then UE  has a unique irreducible 

constituent. Its multiplicity is m. 

(f) TL  and TE  are completely irreducible. 

Proof Let R be an irreducible constituent of TE  and suppose R affords the 

character XEIrrE(G). Let L = F(x) and let U be an irreducible constituent 

of TL  such that R is a constituent of UE. By corollary 4.27, R is the unique 

irreducible constituent of UE. Let m be its multiplicity. If char(E) 	0, then 

theorem 4.21 yields m = 1 and U is absolutely irreducible. 

Let x = Xi, 	, Xn be the distinct Galois conjugates of x over F, so that 

n = [L : F] by lemma 4.25. For aEGal(LIF), form the L-representations o-U. As 

o runs over Gal(L/F) we obtain n representations oU affording the characters 

mxi, i = 1, 	, n. Since m = 1, if char(E) 0 0, the mxi  are distinct in all 

cases and thus the aU are pairwise nonsimilar. Also, each (aU)E  has a unique 

irreducible constituent and it occurs with multiplicity m. 

We claim that the n = [L : F] representation o-U are exactly the irreducible 

constituents of TL  and that each occurs with multiplicity 1. Since the irreducible 

73 



constituents of (aU)E and (rU)E are nonsimilar if o• r, statements (a)-(e) will 

follow when the claim is established. 

Since U is a constituent of TL  and cr(T L) = TL  for crEGal(L I F) it follows 

that oU is a constituent of TL  for every o. Therefore n•deg U<deg T. By 

corollary 4.26, deg T divides n•deg U and thus n•deg U = deg T. Therefore the 

aU are the only irreducible constituents of TL. 

All that remains is to show that TL  and TE  are completely reducible. This 

follows from Maschke's theorem if char(E) = 0 so we assume that char(E) 0. 

Let V be an L[G]-module corresponding to TL  and let W be the sum of all the 

irreducible submodules of V. Note that W is completely reducible and it suffices 

to show W = V. Since o.(T L) = T L  for every o- EGal(L I F) every irreducible 

constituent of V is actually an irreducible submodule of V. Hence V/W is trivial. 

The proof for RE  is similar since UE  is irreducible in this case. 	 ❑ 

We obtain some consequences now. The first generalises theorem 4.19. 

COROLLARY 4.29 ( cf. corollary 9.22 of [Isa 76] ) Let F be any field. Then 

the characters of nonsimilar irreducible F-representations of G are nonzero, dis-

tinct and linearly independent over F. 

Proof Let EDF be a splitting field for G. By theorem 4.28, the characters of 

nonsimilar irreducible F-representations of G are nonzero multiples of sums of 

disjoint subsets of IrrE(G). The result follows from lemma 4.19. 	 0 

The next corollary will be used in order to describe an irreducible represen-

tation in terms of its absolutely irreducible constituents. 

COROLLARY 4.30 ( cf. problem 9.6 of [Isa 76] ) Let FCE with [E : F] = 

r < oo and let p be a regular representation of E over F. Let R be an irreducible 
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E-representation of G which affords the character x. If E = F(x), then U = pR 

is irreducible. 

Proof By lemma 4.26, deg U = [F(x) : F]deg R and U has a unique ( up to 

similarity) irreducible constituent. It is the F-representation T such that R is 

a constituent of TE. By theorem 4.28 the irreducible constituents of TE  occur 

with multiplicity 1 and the characters afforded by the irreducible constituents 

of TE  constitute a Galois conjugacy class over F. Then, by lemma 4.25(c), 

deg T = [F(x) : F]deg R = deg U. Therefore U is similar to T. 	 0 

Let R be an irreducible F-representation of G where F is a finite field and let x 

be the character of an ( absolutely) irreducible constituent T of RE  where EDF 

is a splitting field for G. Let L = F(x) and let p be a regular representation of L 

over F. By theorem 4.28, T is similar to T'E  for some absolutely irreducible L-

representation T'. By lemma 4.26 and corollary 4.30 the representation U = pr 

is irreducible and T' is a constituent of UL. Since T is a common irreducible 

constituent of UE  and RE  it follows that U is similar to R. 

We conclude this section with an algorithm for the calculation of an absolutely 

irreducible constituent of an irreducible representation. 

COROLLARY 4.31 ( cf. problem 9.8 of [Isa 76] ) Let F be of prime character-

istic and let R be an irreducible F-representation of G. Let D be the centraliser 

of R(G) in the matrix ring Mn(F) where n = deg R. Let x be the character 

of an irreducible constituent of RE  where EDF is a splitting field for G. Then 

F(x)2-fD. 

Proof Let L = F(x). By theorem 4.28(f) the representation RL  is completely 
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reducible and therefore there exists a matrix XEGL,,(L) such that 

( RI (g) 	0 

X-1R(g)X = 	.. 

0 	Rr(g) 

for all gEG. By theorem 4.28 (d) and (e) the irreducible constituents Ri  are 

absolutely irreducible and pairwise nonsimilar. If DED, then 

 

) X-1DX = X-1DX 

(

R1 (g) 	0 

0 	Rr(g) 

Ri(g) 	0 

0 	Rr(g) 

Therefore X-1DX is a matrix of the form 

/ /
lI 	0 

0 	/rI 

where /iEL for i = 1, .. . , r. Since D is a field D i--+ li  is a monomorphism of 

rings and it follows that dimFD<dimFL. 

Take T = R1  and let p be a regular representation of L over F. Then there 

exists an invertible matrix Y such that R(g) = Y-1p(T(g))Y for all gEG. If /EL, 

then R(g)Y-lp(n)Y = Y-1p(n)YR(g) for all gEG. Then 1 i- Y-lp(/I)Y is 

a monomorphism and dimFL<dim F D. 	 0 

Let F be of prime characteristic and let R be an irreducible F-representation of 

G. Let D be the centraliser of R(G) in the matrix ring Mr,(F) where n = deg R. 

Let T be an irreducible constituent of RE  where EDF is a splitting field for 

G. By theorem 4.21 the representation T is similar to UE  for some absolutely 

irreducible representation U over F(x) where x is the character of T. 

Since F(x)/F is a finite Galois extension F(x)IF has a primitive element, 

that is F(x) = F(u) for some uEF(x). Then (1, u, ... , u') is a base for F(x)IF 

where r = [F(x) : F]. Note that F(X)^='D by corollary 4.31. Let f(x) be the 
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minimal polynomial of u over F and 7(x) the corresponding polynomial in D[x] 

( under the isomorphism which extends the natural isomorphism between F and 

F•I and maps x 1-4 x ). If D is a root of 7(x) in D, then the natural isomorphism 

between F and F • I extends to an isomorphism F(X)^='D sending u 	D. Hence 

(I, D, 	, Dr-1) is a base for DI F • I. 

Let V be an F(u)[G]-modules corresponding to U and let (vi, , vm) be a 

base for V over F(u). Then 

(v1, uvi, 	, 	, vm, uvm, 	, ur' vm ) 

is a base for V over F and the representation of G corresponding to V over F 

with respect to this base is 

(

P(Utt(9)) • • • P(U17.(9)) 

p(Uni (g)) ... p(U„„(11)) 

Moreover, this representation is similar to R and therefore n = rm. 

Let W be the n-dimensional column vector space over F and let (wi, , wn) 

be a base for W over F such that R is the representation afforded by the F[G]-

module W with respect to this base. Suppose that 

B  = (w11,Dtd 	,Dr-itd 	 Dr-ltvii) 

is linearly independent. Choose wE{wi, , wn} such that B U {w} is linearly 

independent. Then BU 	Dw, , Dr-1W} is linearly independent. Hence there 

is a base for W over F of the form 

(w11, 	 w/m,Dwfm,...,Dr-twfm)  

where w'1, 	, w'mE{wi, • • • , wn}. If R' is the representation of G corresponding 

to W with respect to this base, then 

p(Un(g)) 	p(Uin(g)) 

R'(g) = 

P(Uni(g)) • • • P(Unn(9)) 

g 
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In other words, the representation U of G over F(x) is obtained by taking R' and 

replacing the matrices p(Uji(g)) which represent the elements Uii (g) of F(x) in 

a regular representation of F(x) over F by U;;  (g). 

EXAMPLE Let G = ( a, b) be the dihedral group of order 10 with the defining 

relations a5  = b2  = (ab)2  = 1. Consider the irreducible representation R over the 

field F2 of order two defined by 

R(a) = 

/0 1 0 0\ 

0 1 1 0 

0 0 1 1 

1 0 0 1 

/ 1 1 1 1 

0 1 0 1 

0 0 1 1 

0 0 0 1 

A base for the centraliser D of R(G) in the matrix ring 114.4 ( F2 ) is given by 

/ 0 0 1 1 

1 0 1 0 

1 1 0 1 

\0 1 1 0/ 

Hence D is isomorphic to the field F22 of order four, which is the 3rd cyclotomic 

field over F2. The 3rd  cyclotomic polynomial Q3(x) = x2  + x 1 is irreducible 

over F2. If z be a root of Q3(x), then z is a primitive 3rd  root of unity over F2. 

Let W be the 2-dimensional column vector space over F2 and let (wi, , w4) 

be a base for W over F2 such that R is the representation afforded by the F2[G]-

module W with respect to this base. Then (wi, Dwl , w2, Dw2) is another base 

and 

R(b) 

( I, D = 
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and the representation R' corresponding to W with respect to this basis is 

W(a) = 

1 0 1 1 0 1  

1 1 0 1 	(p(z) p(1) 

1 1 1 0 	p(z2) p(1) 

1 0 0 1 

and 

le(b) = 

1 1 0 1 0 

0 1 0 1 	P(1) P(1) 

0 0 1 0 	p(0) p(1) 

0 0 0 1 

where p is the regular representation of F22 determined by the base (1, z). There-

fore the representation U defined by 

1 
U(a) = ( z  

z2  1 

and 
1 

U(b) = 1  
0 1 

is an absolutely irreducible constituent of RF22 .  

4.3 The Construction of the Irreducible Rep- 

resentations of Finite Soluble Groups over 

Finite Fields 

In section 4.1 we described an algorithm for the construction of the irreducible 

representations of finite soluble groups over algebraically closed fields : Going 

up a composition series G = Go  t> G1  I> • • • t> G1  = ( 1 ) of a soluble group G all 

irreducible representations of Gi are constructed from those of Gi+1  by extending 
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the G;-invariant irreducibles of Gi+i  to irreducibles of Gi  and by inducing up the 

non-invariant irreducibles of Gi+i • 

In section 4.2 we studied the relation between the irreducible E-represen-

tations and F-representations of a group where E is a field extension of F. We 

have a one-to-one correspondence between the irreducible representations of a 

group over a field F and the absolutely irreducible representations over a field E, 

where E is a splitting field for the group. The absolutely irreducible constituents 

of an irreducible representation form a Galois conjugate class over F. Moreover, 

we showed that an irreducible representation R over a finite field F can be de-

scribed in terms of an absolutely irreducible constituent T over a finite extension 

field L over F. The information needed to construct the representation R from 

an absolutely irreducible constituent T is the realisation of T over L = F(x) 

where x is the character afforded by T. 

In this section we modify the algorithm described in section 4.1 in order to 

derive an algorithm for the construction of the irreducible representations of finite 

soluble groups over finite fields. The principle idea is to calculate representatives 

for the Galois conjugate classes of absolutely irreducible representations of Gi  

from those of Gi+1  and to realise them over their fields of character values. 

For describing the passage from Gi+1  to Gi we assume that N = Gi+i  and 

G = G. With the help of our knowledge of section 4.1 and 4.2 we investigate the 

absolutely irreducible representations of G in which a given absolutely irreducible 

representation of a normal subgroup N of prime index can be embedded. We 

summarise the results in the following theorem. 

THEOREM 4.32 Let N<IG such that GIN is a cyclic group of prime order r. 

Let tEG — N and let y be the automorphism of N defined by x H rixt. Let F 

be a finite field and let S be an absolutely irreducible representation of N over a 

finite extension field EDF such that E = F(x) where x is the character afforded 
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by S. Then one of the following occurs : 

(1) If S-y is not similar to ?IS for all nEGal(E I F), then the induced represen-

tation SG  is absolutely irreducible. If ii, is the character of SG, then 

F(0) = E. 

(2) If Sy is similar to ns for some 1 # nEGa/(E/F), then SG  is absolutely 

irreducible. If V) is the character of SG, then F(0). E'CE with [E: E'] = r. 

(3) If Sy is similar to S, then there exists an invertible matrix Pt  such that 

S'y = Pt-iSPt. Moreover, Ptr = eS(tr) for some eEE. Let c be a rth  

root of e which lies in E or possibly in an extension field of E. Then every 

irreducible representation of G which contains a component similar to S 

on restriction to N is similar to a representation defined by R, : tin i-

CiPtiS(n) for i = 0, ... , r - 1 and nEN. If 0 is the character of Rc, then 

F(0) = E(c). 

The characters of the representations R, and Re  are Galois conjugate over 

F if and only if c and c' have the same minimum polynomial over E. 

Moreover, the Galois conjugacy classes over F which are determined by the char-

acters 0 in (1), (2) and (3) are independent of the choice of the representative of 

the Galois conjugacy class of x over F. 

Proof The assertions about the representations in (1), (2) and (3) are easily 

checked by appealing to the algebraically closed case ( cf. section 4.1 ). Case 

(1) and (2) correspond to the inducing case there while case (3) corresponds to 

the extension case there and nothing has to be added. In order to prove the 

assertions about the fields F(0) we construct the Galois conjugacy classes of 0 

over F. 
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Suppose that Sy is not similar to riS for all 71EGal(E I F). Let S be a con-

stituent of UE  for some irreducible representation U over F. By theorem 4.28 

the irreducible constituents of UE  occur with multiplicity 1 and the characters af-

forded by the irreducible constituents of UE  constitute a Galois conjugacy class 

over F. Since S7 is an absolutely irreducible constituent of (U-y)E  and Sy is 

not similar to 	for all 11EGa1(E/F) the representation U-y is not similar to U 

by corollary 4.15. Hence 0 = {rix-yilnEGal(EIF),i = 0, 	, r — 1} is a set of 

r[E : F] characters. Let -yg  be the automorphism of N defined by x 1-4 g-ixg 

for gEG. We obtain a map of Gx O into 0 defined by (g,c,o) 	gcp = cio-yg. This 

map satisfies the conditions 1(p = (p and (gh)co = g(hcp) for (pEO and g, hEG.  
Hence G acts on 0 and 0 decomposes into orbits of length r under the action of 

G. The characters gx for tiEGal(EIF) are representatives of these orbits. Thus 

the induced characters (77x)G  = 71(xG) are distinct and {9(xG)19EGa/(E/F)} is 

the orbit of 1/) = XG  under Gal(E/F). Hence, if S is the Galois conjugacy class 

of 	over F, then [E : F] = 181 = [F(0): F] by lemma 4.25. 

Now, suppose that Sy is similar to riS for some 1 riEGal(E F) and let 0 

be the Galois conjugacy class of x over F. We obtain a map of GxO into 0 

defined by (g,c,o) F-4 gc,o = cp-yg. This map satisfies the conditions 1(p = (,o and 

(gh)c,o = g(hcp) for (toe() and g, hEG. Hence G acts on 0 and 0 decomposes into 

orbits of length r under the action of G. Let Xi = X, • • • , Xk be representatives 

of these orbits. Then the induced characters (xi)G are distinct and since (xi)G  

(OA) = Cr (XG) for some o-EGal(E I F), {xiGli = 1, . . . , k} is the orbit of = XG  

under Gal(E/F). Hence, if S is the Galois conjugacy class of b  over F, then 

[E : F] = r-k = r = r[F(0): F] by lemma 4.25. 

Finally, suppose that Sy is similar to S. Since 7/S-y = 7/Pt-1(,)71Pt  for all 

nEGal(E I F), the representations 77S-y and riS are similar. Let z be a rth  root of 

n(e) which lies in E or possibly in an extension field of E. Then every irreducible 

representation of G which contains a component similar to 97S on restriction to N 

is similar to a representation defined by tin 1-4 b-iy(PtiS(n)) for i = 0, 	, r — 1 
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and nEN. If aEGal(E(c)I F), then aRc(tin) = a(c)ia(PtiS(n)). The restric-

tion of a on E is an automorphism ilEGal(E I F). Since cr(c)ia(PtiS(n)) = 

a(c)i9(PtiS(n)) and a(c)r = a(cr) = a(e) = ri(e) it follows that all, is an 

extension of 9S. Hence, if 0 is the character of R, and S is the Galois conjugacy 

class of ti.) over F, then [E(c) : F] = ISI = [F(') : F] by lemma 4.25. 

If c and c' have the same minimum polynomial, then there is an automorphism 

o of E(c) extending the identity mapping of E and sending c 1-4 c'. Then aRc  = 

Rc, and the characters of Rc  and Re  are Galois conjugate over F. Conversely, let 

/Pc  and Oc, be the characters of Rc  and Re  respectively and let aEGal(E(c)I F) 

such that E(c) = F(11),) = F(r1,c,) = E(c') and a1/,c  = Oci. Since S(E[N]) 

is a full matrix ring over E, for every eEE we may choose nEE[N] such that 

S(n) = eE11  is the matrix having e as its (1, 1)-entry and all other entries 0. 

Then o(e) = crOc(n) = Oc,(n) = e and therefore crEGal(E(c)I E). Moreover, we 

may choose nEE[N] such that PtS(n) = En  and it follows that a(c) = alPc(tn) = 

,,(tn) = c'. Hence c and c' have the same minimal polynomial over E. 	0 

In view of a repeated application of theorem 4.32 and in order to obtain 

the irreducible representations of G over F ( we have to compose the absolutely 

irreducible representations of G with a regular representation of E, E' or E(c) over 

F respectively) it remains to outline the realisation of the induced representation 

SG  over E' in case (2) and to describe the fields E(c) in case (3). 

Case (2) : Initially we handled case(2) in a rather tedious way : Since Sy is 

similar to 9S for some 1 i 9EGal(E I F) there is a matrix Z such that 9S = 

Z(Sy)Z-1. Choose a base for El F and let p be a regular representation 

of E over F determined by this base. Let Y be the matrix of 9-1  with 

respect to the chosen base. Then p(9(x)) = Y-1  p(x)Y for all xEE. In 

other words Y induces the automorphism 9 on the matrix representation 
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of E by conjugation. Then X = (IOY)pZ is a matrix such that 

X-1  (pS)(n)X = (pS-y)(n). 

Note that by corollary 4.30 and 4.26 the representation pS is irreducible and 

that S is an absolutely irreducible constituent of (pS)E  . Moreover, if D is 

the centraliser of (pS)(N) in the matrix ring Md[E:fl (F) where d = deg S, 

then D'_'--.' F(x) = E by corollary 4.31. Since trEN, we have 

X'(pS)(n)Xr = p(S(t-  r lie)) = 

= p(S(C))-1(pS)(n)p(S(C)) 

and therefore Xr = Ep(S(tr)) for some 0 0 EED. Since {(pS)(n)InEN} = 

{(pSy)(n)InEN} it follows that D is the centraliser of pSy in the matrix 

ring Md[E: fl(F). Hence, X conjugates D into itself and therefore X induces 

an automorphism of D. Since X' centralises D it follows that X either 

induces an automorphism of order r or X centralises D. 

A central simple algebra A over a field F is a simple algebra A for 

which Z(A) = F and [A : F] < oo. If B is a simple subalgebra of a central 

simple algebra A, then [A : F] = [B : F][CA(B) : F] by theorem 4.11 of 

[Jac 74]II. We apply this theorem as follows. If A = M[E: fl(F), then A is a 

central simple algebra and B = p(E) is a simple subalgebra of A. Therefore 

[CA(B) : F] = [E : F] and it follows that CA(B) = B. Note that D actually 

consists of matrices of the form p(xI) for xEE. Hence, if X centralises D, 

then X = p(r) for some matrix X'EMd(E) and it follows that S is similar 

to Sy. Since S is similar to ijS for some 1 0 ziEGal(E 1 F) it follows that X 

induces an automorphism of order r of D. Let D' be a subalgebra of D with 

[D : D'] = r and let ND/DI denote the norm map. Since X centralises E 

we may choose CED such that ND/D,(C) = E and replace X by C-1X in 

order to arrange that E = 1. Now, define a representation R of G over F by 

R(nti) = p(S(n))Xi  for i = 0, ... , r —1 and nEN. It is easily checked that 
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R is indeed a representation of G and an absolutely irreducible constituent 

of R may be found by applying the algorithm described on page 76. 

EXAMPLE Let G = (a, b) be the Dihedral group of order 10 with the defining 

relations a5  = b2  = (ab)2  = 1. The field E = F24 of order 24  is the 15th  cyclotomic 

field over F2. The 15th  cyclotomic polynomial Q15(x) = x8+ x7+ x5+x4 + x3+ x +1 

and Q15(x) = (x4 + x +1)(x4  + x3 +1) is the decomposition of Q15  into irreducible 

factors in F2[x]. Let z be a root of x4  + x +1. Then z is a primitive 15th  root of 

unity over F2. Consider the representation S of ( a ) over E defined by S(a) = z3. 

Then S6(a) = S(b-lab) = z12 = 77 (z3) = n(S(a)) where I/ is the automorphism of 

E sending x to x4. Choose (1, z, z2, z3) for a base of E over F = F2  and let p be 

the regular representation of E over F determined by this base. The matrix of 

71-1 with respect to the chosen base is 

/ 	N 1 1 1 1 

0 1 0 1 
Y= 

0 0 1 1 

0 0 0 1 

Then X = Y is a matrix such that X-1(pS)(a)X = (pS)(b-lab). Moreover, 

X2  = I and therefore E = I. Now, we define R by 

R(a) = (pS)(a) = 

0 1 0 0 

0 1 1 0 

0 0 1 1 

1 0 0 1 ]  

 

and R(b) = X. Using the algorithm described on page 76 we obtain an absolutely 

irreducible constituent U of R defined by 

( z5  1 
U(a) = 

zio 1 
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and 

U(b) 

The problem with this approach is the calculation of the centraliser D of 

(pS)(N) in the matrix ring M 
	

in particular if F is the prime field Fr  of 

order p. Alternatively we may apply the algorithm described on page 65 in order 

to obtain the realisation of SG  over E'. The following treatment of Case (2) is 

due to R. B. Howlett ( private communication ). 

Case (2) : If Sy is similar to ziS for some 1 	nEGa/(E/F), then there is a 

matrix Z such that i7S = Z(Sy)Z-1. Since r = [G : N], it follows that 

riTS(n) = 7lr-1Z • • •7/ZZ S(t-rntr) (nr-1Z • • • nZZ)-1  = 

= nr-1Z • • • liZZS(tr)-1  S(n) (77r-1Z • • • nzzs(c)--1)-1. 

We know that ir  = 1 because otherwise S would be realisable over a sub-

field of E contrary to the hypothesis E = F (x). Hence qrS = S and 

nr-1Z • • • razz s(r)-1  = fI for some f EE*. The scalar f is in E', the fixed 

field of i  because, if we apply n to W = qr-1Z • • • 7/ZZ we get 

nW = nrZ • • • nZ = ZWZ-1. 

Moreover, nS(tr)-1  = (ZS(t-ltrt)Z-1)-1  = ZS(r)-1Z-1  and therefore 

n(fI) = n(ws(r)--1) = zws(tr)-1z-1 = fI  

showing that n(f) = f . Choosing cEE such that NE/E,(c) = f where 

NE /p denotes the norm map and replacing Z by c-1Z we may arrange that 

f = 1. Choose a base for E I E' and let p be the regular representation of E 

by r x r matrices over E' determined by this base. Furthermore, let Y be the 
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matrix of ri-1  with respect to the chosen base. Then p(q(x)) = Y -1  p(x)Y 

for all xEE. In other words Y induces the automorphism n on the matrix 

representation of E by conjugation. Now, define a representation R of G 

over E' by R(nti) = p(S(n))(I0Yi)p(qi-1Z • • • 7/ZZ) for i = 0, ... , r — 1 and 

nEN. It is easily checked that R is indeed a representation of G equivalent 

to the induced representation SG. 

For case (3), we begin with the following lemma on extraction of roots in finite 

fields ( cf. section 63 of Linear Groups with an exposition of Galois field theory 

by L. E. Dickson ). 

LEMMA 4.33 Given a positive integer rn the element aEFq* is the Mth  power 

of some element of Fq  if and only if a(q-1)/d = 1 where d = (q — 1,m) is the 

greatest common divisor of q — 1 and m. 

Proof Let a be a Mth  power of some element zEFq*. We have 

(q — 1)m = (q —1,m)[q — 1, m] 

where [q — 1, m] is the least common multiple of q — 1 and m. Hence 

a(q-1)Id = zm(q-1)Id = z[q-1,m] = 1.  

Conversely, let z be a primitive root of Fq. Then the elements zdi for i = 

1, . . . , (q —1)/d are the distinct roots of the equation x (q-1)Id = 1. We next prove 

that each root is a ?nth  power in Fq. We can determine integers 1 and t satisfying 

the equation t(q — 1) + lm = d. Hence zdi  = (Zt(q-1)+171 = (Zim )i  = (Zii)m 	0 

Case (3) : If r I 1E1, then r 0 p and E contains r distinct roots of unity. Let 

rk  be the biggest r power dividing IE*1. 
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A. If the order of e in E* is divisible by rk  , then elElir 0 1 and therefore 

xr — e has no root in E by lemma 4.33. Then xr — e is irreducible over 

E by lemma 2 of [Jac 74]I, p. 253. 

B. If the order of e in E* is not divisible by rk  , then elElir = 1 and 

therefore E contains r roots of xr — e. 

If r XIE*I, then raising elements to the rth  power is an automorphism of the 

multiplicative group of E and there is a unique cEE such that cr = e. 

A. If r = p, then xr — e = (x — Or and no further roots exist in E or 

extension fields of E. 

B. If r 0 p, then there are r distinct roots of unity in an extension field 

of E. The rth  cyclotomic polynomial (xr — 1)/(x — 1) factors into 

0(011 distinct irreducible polynomials in E[x] of the same degree 1. 

The rth  cyclotomic field E(r) over E is the splitting field for any such 

irreducible factor over E and [E(r) : E] = 1 where 1 is the least positive 

integer such that q'._. .1 mod r ( cf. theorem 2.47 of [LiN 83] ). 

Factorisation of polynomials can be achieved by Berlekamp's algo-

rithm ( cf. chapter 4 of [LiN 83] ). 

EXAMPLE Let G = (a, b) be the Dihedral group of order 10 with the defining 

relations a5  = b2  = (ab)2  = 1. The field E = F24 of order 24  is the 15th  cyclotomic 

field over F2. The 15th  cyclotomic polynomial Q15(x) = x8+x7+ x5+ x4 + x3+ x +1 

and Qi5(x) = (x4 + x +1)(x4  + x3  +1) is the decomposition of Q15 into irreducible 

factors in F2[x]. Let z be a root of x4  + x + 1. Then z is a primitive 15th  root of 

unity over F2. Consider the representation S of ( a ) over E defined by S(a) = z3. 

Then Sb(a) = S(b-lab) = z12  = q(z3) = i1(S(a)) where 77 is the automorphism 

of E sending x to x4. Take Z = I; then 77S = ZSb Z-1  and f = 1. Let p be 

the regular representation of E by 2 x2 matrices over F22 determined by the base 

(1, z) of E over F22. Furthermore, let Y be the matrix of 77' with respect to this 
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( z5  1 
R(a) = p(S(n)) = 

z10 1 

( 0 oz" 

z5 z5 
R(a) = p(S(a)) = 

) 

base. Then the representation R of G defined by 

and 

( 1 1 
R(b) = Y = 

0 1 

is absolutely irreducible. There are four conjugate classes in G which are given 

by C1  = {1}, Cb = {b,ba,ba2,ba3,ba4 },Ca  = {a,a4} and Ca2 = {a2, a3}. The 

values of the character IP of R are given by the following table. 

Ci lib Ca  Ca2 

0 0 z1°  z5 

Obviously, R is a representation over F22 and F2(0) = F22. 

Now, let S be the representation of ( a ) over E defined by S(a) = z6. Then 

Sb(a) = S(b-lab) = z9  = n(z6) = i(S(a)) and we obtain an absolutely irreducible 

representation R of G defined by 

and 

1 1 
R(b) -- Y -- ( 	) . 

0 1 

The values of the character IP of R are given by the following table. 

C1 lib Ca  Ca2 

0 0 z5 Z10 

Finally consider the trivial representation of ( a ). The trivial representation 

of ( a ) is G-invariant. Take Pi  = I; then e = 1 and c =1 is obviously the unique 

element in E such that cr = e. Moreover, since the characteristic of E is 2 there 

are no further roots in E or extension fields of E. Hence the trivial representation 

of G is the only extension of the trivial representation of ( a ). 
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Hence we obtain three absolutely irreducible representations of G. By corol-

lary 15.11 of [Isa 76] the number of similarity classes of irreducible K-represen-

tations of G for every splitting field K of characteristic p is the number of classes 

of p-regular elements of G ( that is, elements of order not divisible by p ). The 

classes of 2-regular elements of G are C1, Ca  and Cat and therefore we have cal-

culated all absolutely irreducible representations of G. 

In order to compute the irreducible representations of G we have to decide 

whether a given irreducible representation S of N is similar to Sy. The following 

suggestion ( cf. [Ple 87] ) is feasible : Since the algorithm on N provides the 

irreducible representations of N over E and the characters of the representations 

are distinct by corollary 4.29 we may choose random elements in N such that the 

irreducible representations are distinguished by their degrees and traces of the 

images of these elements under the irreducible representations. Note that this 

is asking for much less than representatives of the conjugate classes. We may 

also use this technique to distinguish the representations {riS171EGal(E F)} and 

decide the similarity of Sy and 7/S. 

To compute an intertwining matrix in case (3) ( that is a matrix X such that 

Sy = X-ISX ) we may regard X as a dxd matrix (Xii), the X,, unknowns, and 

consider the system of homogeneous linear equations 

X11 X11 Xld ( Xld) 

(Sy)(n) — S(n) =0 

Xdl Xdd Xdl Xdd 

where d is the degree of the representation S. For each nEN the evaluation of 

the left-hand side of the above equation yields a matrix whose (i, j)th  entry is 

a linear combination of the Xij and which must be equal to zero. It suffices to 

evaluate this formula for the generators of N coming from the AG-system of N. 

Any solution of this system of homogeneous linear equations in the Xij  will give 
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rise to an intertwining matrix. An intertwining matrix in case (2) ( that is a 

matrix Z such that Sy = Z-1(i7S)Z ) may be obtained in a similar way. 
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Chapter 5 

An Empirical Study of the 

Implementation 

The basic three parts of W. Plesken's proposal for a Soluble Quotient Algorithm 

( cf. chapter 2-4 ) are implemented in the GAP version 2.6 programming en-

vironment. The programs are used to implement an algorithm to compute an 

AG-Presentation for a finite soluble group which is defined by a finite presenta-

tion. In order to gain a better understanding of the algorithm we have undertaken 

an investigation into the implementation of the algorithm. In this chapter we re-

port the findings from sample runs of the programs on a 25 MHz SUN SPARC 

station. We begin with a more detailed description of the algorithm to set the 

stage. The following sections give details on the performance analysis and report 

on the problems that have been found. A major problem has been located and 

will be addressed in the concluding section of this chapter. 

The basic idea of the Soluble Quotient Algorithm proposed by W. Plesken 

is to lift epimorphisms : Suppose an epimorphism : G —> H from a finitely 

presented finite soluble group G onto a finite soluble H is given and let P be the 

set of prime divisors of IGI. For each prime pEP we calculate the irreducible rep- 
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resentations of H over the field Fp. Every irreducible representation R of H over 

the field Fp is given by an absolutely irreducible representation T which is realised 

over its field of character values Fp(x) where x is the character afforded by T and 

R = pT where p is a regular representation of Fp(x) over Fp. The motivation 

for this approach is that it was found to be beneficial for the subsequent calcu-

lations to compute with representations of small degree over large fields rather 

than representations of large degree over small fields. For every irreducible rep-

resentation the second cohomology group H2(H, M) of H with coefficients in the 

associated module M is determined. For a representative aB2(H, M) of every 

one-dimensional EndFAHi(M)-subspace of H2(H, M) we check whether the epi-

morphism e lifts to an epimorphism -e" : G —> H where H is an extension of H 

by M corresponding to the factor set a. If such a lift is found the epimorphism e 

is replaced by E and we repeat the steps just described. If no lift is possible, we 

have calculated an isomorphism e : G —> H. 

The performance of the algorithm as described above has been analysed by 

running selections of examples. In [Jam 88] Jamali calculated presentations for 

maximal subgroups of nonabelian finite simple groups. Initially, we used a selec-

tion of these groups to analyse the performance of the programs. For the purpose 

of this report we chose a smaller selection of six examples. A group of order 1296 

and derived length six ( cf. [Ken 90] ) : 

(x,y)(xy)2y-6 = x4y-lxy-9x-ly  = 1) .  

The groups G( —2, 2, —1), G( —2, 3, —1) and G(2, 2, —3) of derived length three 

and order 1320, 5832 and 6912, where 

G(I, m, n) = (a,blabincrib-la-nbl-1  = ban-Lb-la-lb-nal-I  = 1). 
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These groups have been investigated by Campbell in ( cf. [Cam 75] ). The groups 

(u, viu2vtrivu-lv-luv-2  = u2v-1uv-1uvu-lv2  = 1) and 

(u,viuv2(uv-1)2  = (u2v)2u-1vu2(vuv)-1  = 1) 

of derived length five and order 2400 and 3000 which are due to Kenne ( private 

communication ). 

Table T 

order T1  T2  T3  T4  

1296: 106.117 7271.067 113.131 7495.450 

1320: 231.400 4715.764 680.003 5642.100 

2400: 13406.716 51935.300 665.189 66033.567 

3000: 238.485 22045.733 363.985 22691.616 

5832: 1193.166 73608.382 1231.452 76081.050 

6912: 926.550 83369.229 275.769 84589.783 

Table T lists CPU times ( in seconds ) for the calculation of AG-presentations 

for these groups. T1, T2, T3  and T4  are the computing times for the calculation 

of the irreducible representations of finite soluble groups over finite fields, the 

calculation of the extensions of finite soluble groups by finite irreducible modules, 

lifting of epimorphisms and the total execution time. From this table, it is seen 

that at present most of the time is spent on the calculation of the extensions of 

finite soluble groups by finite irreducible modules. 

The calculation of the extensions of the finite soluble group H by a finite 

irreducible H-module M is based on the consistency test ( cf. section 2.3 ). The 

evaluation of the associativity conditions yields a system of homogeneous linear 

equations and we obtain an epimorphism V : Z2(H, M) —►  L where L is the 

vector space of solutions of the system of homogeneous linear equations. The 

second cohomology group H2(H, M) of H with coefficients in M is isomorphic to 

L/V(B2(H, M)). 
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In order to evaluate the associativity conditions which yield homogeneous 

linear equations we designed a particular collection process which is based on 

a collection process with respect to the AG-presentation for H. For the first 

implementation we used collection from the right, but later it was found that 

collection from the right is not practicable for certain groups. Consider the split 

extension H of a cyclic group (x) of order 13 by an elementary abelian group of 

order 33  where the action of x is given by the matrix 

0 

-1 

0 

( 0 

0 

-1 

1 

-1 

0 

Then H has the following presentation consisting of the generators x, yl, y2, y3 

and the relations x13  = yi3  = Y23  = y33  = [ye, Y2] = [y3, yl] = [y2, yl] = 1, 

x-lyix = y3, x-1  y2x = y12 y32  and x-1y3x = y22. We now evaluate the associa-

tivity condition (y3x)x12  = y3(xx12). We have y3(xx12) = y3x13  = y3. On the 

other hand we have (y3x)x12  = (xy22)x12 = xy22x12. A program written in the C 

programming language carried out 356.608.065 substitutions in order to produce 

y3. The program which implements collection from the left carried out only 93 

substitutions ! 

Table C 

order 	 T2 	T3 
	

T4 	T5 	T6 

1296: 41.733 31.115 7198.219 7077.111 73.514 47.594 

1320: 57.501 37.411 4620.852 4467.389 78.978 74.485 

2400: 241.596 189.452 51504.252 50995.358 409.540 99.354 

3000: 141.118 99.501 21805.114 21183.347 541.291 80.476 

5832: 265.370 353.463 72989.549 72522.359 344.081 123.109 

6912: 216.166 538.914 82614.149 82120.019 336.016 158.114 

During the sample runs we collected additional information ( Table C ) for 

the extensions of finite soluble groups by finite irreducible modules. T1, T2 and 
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T3 are the computing times for the calculation of quotient spaces, the calcula-

tion of the subspaces 19(B2(H,M)) and the calculation of the vector spaces L. 

T4 , T5 and T6 are the computing times for building and solving the systems of 

homogeneous linear equations which arise from the consistency tests, the matrix 

calculations and the collection process from the left ( these are the constituents 

of the collection process for the evaluation of the associativity conditions ). From 

Table C it can be seen that most of the computing time is spent on building 

and solving systems of homogeneous linear equations. The problem is caused by 

the large number of equations and indeterminates of the systems of homogeneous 

linear equations. There are d( (3) + 2(1'2) + n) = In(n2  + 3n + 2) homogeneous 

linear equations in In(n + 1) indeterminates arising from a consistency test ( n 

is the number of generators in the AG-system for H and d = rank(M) ). 

With regard to future development, different proposals by Holt ( cf. [Hol 85] ) 

and Plesken ( cf. Method (B) in [Ple 87] ) could be implemented and compared 

with the one described in section 2.3. Other useful algorithms to implement would 

be criteria for trivial cohomology : For example, if M is a faithful irreducible H-

module, then H2(H, M) = 0 by Satz 11.3.3 in [Hup 67]. More criteria may be 

found in [Gas 52]. 

The lifting of epimorphisms ( cf. chapter 3 ) is based on solving systems of 

linear equations. Given an epimorphism e : G -- H, a finite irreducible H-module 

M and a factor set a, we construct an extension H of H by M corresponding to 

the factor set a. Subsequently the system of linear equations which arises from 

the equations (*) ( see p. 35 ) is solved. In addition we solve the system of linear 

equations which arises from the equations (**) ( see p. 37 ) if aEB2(H, M). If 

the epimorphism e : G --4 H lifts to an epimorphism i : G --4 H, then preimages 

for the generators in the AG-system for H are calculated. 
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Table L 

order 	Ti. 	T2 	T3 	T4 
	T5 	T6  

1296: 1.252 5.865 1.850 2.550 96.601 5.013 

1320: 5.632 18.950 4.334 6.517 642.183 2.387 

2400: 4.552 21.849 4.753 6.517 624.416 3.102 

3000: 3.218 41.093 12.704 8.902 294.018 4.050 

5832: 7.562 55.563 8.409 9.417 1139.517 10.984 

6912: 3.002 31.415 6.802 4.445 217.134 12.971 

Table L shows CPU times for the lifting of epimorphisms. T1  is the computing 

time for the initialisation of the calculations ( e.g. computation of the images of 

the generators of G under e in H ). T2  and T3  are the computing times for the 

construction of an AG-presentation for H and the construction of H as an object 

within GAP ( cf. the function ag() in [NNS 88] ). Finally T4, T5  and T6  are the 

computing times for building and solving the systems of linear equations coming 

from the equations (*) and (**) and the calculation of preimages. 

Apparently, constructing and solving the systems of linear equations coming 

from the equations (**) is the most expensive task. This is due to the number of 

equations of the system of linear equations. There are 

d(n(n + 1)/2 + n) = (n2  + 3n) 
2 

linear equations arising from the equations (**) ( n is the number of generators 

in the AG-system for H and d = rank(M)). 

Initially, the preimages for the generators in the AG-system for H were calcu-

lated using the noncommutative Gauss algorithm ( NCGA ) which constructs an 

AG-system from a finite generating set for a subgroup of a finite soluble group 

by repeated formation of powers and commutators (cf. [LNS 84] ). If the epi-

morphism e : G -4 H lifts to an epimorphism g : G --- H, then the images of 

the generators of G under i generate H and the NCGA will produce the initial 

97 



AG-system for H. By formation of corresponding powers and commutators of 

preimages we obtain preimages for the generators in the AG-system for H. The 

major disadvantage of this technique is that the preimages tend to get rather 

long. Better results are obtained with the technique described in chapter 3. 

The calculation of the irreducible representations of finite soluble groups over 

finite fields is based on the calculation of representatives of the Galois conju-

gate classes of absolutely irreducible representations. These representatives are 

calculated using Clifford's theory for the construction of the irreducible repre-

sentations of a group from the irreducible representations of a normal subgroup. 

Going up a composition series H = Hot>111 1> 	= 1 of a finite soluble 

group H the representatives of the Galois conjugate classes of absolutely irre-

ducible representations of Hi are constructed from those of Hi+1  by extending 

the Hi-invariant representatives of H1+1  to representatives of Hi  and by inducing 

up the non-invariant representatives of Hi+1. Contrary to the calculation of the 

irreducible representations of a group over algebraically closed fields we have to 

consider the character fields of the representatives. There are three cases : 

(1) The conjugate with respect to Hi of a representative with character field 

E is not similar to any Galois conjugate of the representative. In this case 

the induced representative is absolutely irreducible and cannot be realised over 

subfields of E. 

(2) The conjugate with respect to Hi of a representative with character field 

E is similar to a Galois conjugate of the representative for a nontrivial Galois 

automorphism. In this case the induced representative is absolutely irreducible 

and has to be realised over a subfield of E. 

(3) A representative of a Galois conjugate class of Hi+i  with character field 

E is invariant. In this case extensions of the representative are constructed and 

their character fields are extension fields of E. 
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Table M 

order 	Ti 	T2 	T3 	T4 	T5 	T6  

1296: 7.595 4.670 1.464 59.603 16.801 15.599 

1320: 26.603 9.704 5.016 118.124 18.284 52.439 

2400: 15.966 12.384 4.099 13296.550 12.868 64.185 

3000: 68.533 12.168 11.100 55.246 22.169 68.499 

5832: 772.168 34.628 31.734 164.122 66.735 121.516 

6912: 224.351 22.364 22.588 627.931 7.932 18.079 

Table M shows CPU times for the calculation of the irreducible representa-

tions of finite soluble groups over finite fields. T1, T2  and T4  are the computing 

times for testing similarity of irreducible representations, for the calculation of 

conjugate representations of irreducible representations of Hi+1  with respect to 

Hi  and for the calculation of intertwining matrices. T3, T5  and T6  are the com-

puting times for the subsequent calculations in case (1), (2) and (3). It can be 

seen that at present testing similarity and finding intertwining matrices are the 

areas for further investigations ( initially we had difficulties handling case (2) in 

an efficient way ). 

The algorithm for the calculation of an AG-presentation for a finitely pre-

sented finite soluble group G produces a chief series 

H= H'0 1>H'1 t> 	1>H'n, = 1 

for a factor group H of G. There is a one-to-one correspondence between the rep-

resentations of HIH'i and the representations of H/1-1141  with kernel containing 

H'i/1/141. Furthermore, under this correspondence, irreducible representations 

correspond to irreducible representations. This fact may be used to improve the 

calculation of the irreducible representations of finite soluble groups over finite 

fields : Going down the chief series we calculate the irreducible representations of 

fri/M+1, discard the trivial representation and apply the techniques described 
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in chapter 4 to the remaining representations. Note that the restriction of a rep-

resentation of H/11%.4.1  to Wifiri+.1  is a multiple of the trivial representation if 

and only if the kernel of the representation contains Hii/H'i+1. If we keep infor-

mation from earlier stages ( e.g. the irreducible representations of H/Hi, j < m ) 

we only have to apply the algorithm above for i = j 1, , m. This "top down" 

algorithm reduces the burden on the similarity test since there are at any time 

less representations to consider than in the "bottom up" algorithm. 

With regard to future development we also mention Baum's dissertation ( cf. 

[Bau 91] ). He describes an algorithm for the calculation of the irreducible rep-

resentations of finite supersoluble groups. Every supersoluble group has a chief 

series with cyclic factors. Moreover, every irreducible representation of a super-

soluble group is monomial, i.e. every element of a supersoluble group is mapped 

under an irreducible representation onto a matrix which has exactly one nonzero 

entry in each row and column. In order to test similarity he used these facts and 

designed a recursive procedure for the calculation of intertwining matrices. This 

algorithm is considered to be the reason for the spectacular performance of his 

programs. His techniques may perhaps be generalised to the calculation of the 

irreducible representations of a finite soluble group along a chief series. 

In view of an application of the programs the following remarks are relevant. 

The algorithm proceeds by "trial and error" : Whenever an epimorphism of G 

onto a finite soluble group H is constructed, one tries to lift it onto extensions of 

H by finite irreducible H-modules. Earlier in this chapter we have seen that the 

most expensive tasks depend on the rank of the H-modules. In the course of the 

computations modules of increasing rank occur, but the epimorphism actually 

does not lift onto extensions of H by these modules. It therefore appears to 

be reasonable to impose an upper bound on the degree of the modules. The 

irreducible representations of degree less than or equal to b may be calculated as 
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follows. We observe that as we go up a composition series 

H = Hot:41l b ... DHi=1 

of a soluble group H the degree of the representations increases. Hence as we 

pass from Hi+1  to Hi  we may discard the irreducibles of H1  of degree larger 

than b. Since this modified algorithm performed on Hi+i  provides all irreducible 

representations of Hi+i  of degree less than or equal to b we may use the techniques 

described in chapter 4 in order to test similarity. 

The preceding remarks on the rank of the modules and the degree of the 

representations respectively may be translated in the language of groups. If 

H= H'0 t>H'1 1> 	1>H1,," =1 

is a chief series for H, then the chief factors are elementary abelian. If 

p;''., then r(G) = max ri is called the rank of H. The bound b introduced above 

thus sets a bound on the rank of the factor groups of G. The groups mentioned 

in the beginning of this chapter all have rank two. Using this information we 

can compute AG-presentations for these groups much faster. Table T' lists CPU 

times for the calculation of AG-presentations for these groups ( cf. Table T ). 

Table T' 

order T1  T2 T3 T4 

1296: 10.316 122.949 25.166 160.950 

1320: 16.184 111.001 101.735 232.483 

2400: 12.350 247.083 77.283 341.917 

3000: 8.700 106.135 22.497 139.517 

5832: 71.535 205.868 124.102 409.066 

6912: 89.950 487.415 68.500 652.183 
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Chapter 6 

Applications 

In 1978 Johnson and Robertson gave a survey of known finite groups of deficiency 

zero. They observed that all known finite soluble groups of deficiency zero had 

derived length less than or equal to four and asked whether there is bound on 

the derived length of a finite soluble group of deficiency zero. The first example 

of a finite group of derived length five and deficiency zero was given by Kenne 

in 1988. In [Ken 90] Kenne gave examples of finite groups of derived length six 

and deficiency zero. He considered non-abelian p-groups G of order p3  and expo-

nent pE {3, 5} and constructed split extensions of subgroups of the automorphism 

group Aut(G) by G. He then applied techniques described in [Ken 86] in order to 

find efficient presentations for these groups. In section 6.1 we use the programs 

for the calculation of finite soluble factor groups of finitely presented groups to 

find finite soluble groups of increasing derived length and trivial Schur multiplier. 

The method suggested by Kenne is then used to find efficient presentations for 

the constructed groups. We give further examples of finite groups of deficiency 

zero having derived length five and six. In the course of the computations we 

noticed that Kenne's method is only applicable for groups of moderate order. 

Therefore, for a given derived length the minimal soluble groups appeared to be 

of interest. In section 6.2 we classify the minimal soluble groups of derived length 

less than or equal to six. 
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6.1 Efficient Finite Soluble Groups 

The deficiency of a finite presentation (XIR) is defined to be IX I —1111, and the 

deficiency de f(G) of a group G is the maximum of IX I — 1111 taken over all finite 

presentations of G. It is easy to show that if (XIR ) is a finite presentation for a 

finite group, then IX I<IRI. Therefore finite groups have non-positive deficiency. 

An upper bound for de f (G) is given in terms of the rank of the Schur multiplier 

M(G) of G. In 1907 Schur showed ( cf. Satz V.25.2 in [Hup 67] ) that if G is a 

group with a presentation (XIR ), then 

'XI — [RI < —rank(M(G)). 	 (1) 

A group G is said to be efficient if equality holds in (1). 

In 1978 Johnson and Robertson (cf. [JoR 79] ) gave a survey of known finite 

groups of deficiency zero. They observed that all known finite soluble groups of 

deficiency zero had derived length less than or equal to four and asked whether 

there is a bound on the derived length of a finite soluble group of deficiency zero. 

The first example of a finite group of derived length five and deficiency zero was 

given by Kenne in 1988. In [Ken 90] Kenne gave examples of finite groups of 

derived length six and deficiency zero. 

In this section, we give further examples of finite groups of deficiency zero 

having derived length five and six. We also give an example of a soluble group 

of derived length seven and deficiency one and a possible candidate for a sol-

uble group of derived length seven and deficiency zero. The programs for the 

calculation of finite soluble factor groups of finitely presented groups are used to 

find efficient soluble groups of increasing derived length in the following way. We 

start with a known group G ( e.g. the symmetric group S3 of degree three or 

the alternating group A4 of degree four ). Using the programs we calculate an 

AG-presentation for G which is used to determine the extensions of G by finite 

irreducible Fp[G]-modules ( e.g. pE{2, 3} ). For each extension we compute the 
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derived length and choose a small group of larger derived length. A method sug-

gested by Kenne ( d. [Ken 86] ) is then used to find an efficient presentation for 

the selected group and the procedure is repeated. 

We will require a method for calculating the Schur multiplier M(G) of a group 

G. One possible approach depends upon a presentation for G by generators and 

relations. First we mention a few elementary facts about the Schur multiplier. 

A thorough treatment of the general theory of the Schur multiplier appears in 

section V.23 of [Hup 67]. Satz V.23.5 (a) and (c) show that the Schur multiplier 

M(G) is abelian and finite, while (d) shows that there exists a representation 

group C of G, that is, C I ALJG for suitable A<cnz(c) with A''--M(G). More-

over, the proof of Satz V.23.5 (e) shows that if r is a homomorphism of a group 

H onto G such that ker(ir)<H'nZ(H), then ker(ir) is a homomorphic image of 

the Schur multiplier of G and H is a homomorphic image of some representation 

group of G. This describes the underlying theory of the Schur multiplier; it re-

mains to discuss its actual calculation. Using a Todd-Coxeter coset enumeration 

program the Schur multiplier may be calculated from the largest group H such 

that HIA-2-f-G for suitable A<H'nZ(H). 

EXAMPLE Consider the alternating group A4 with generators r and s sat-

isfying the relations r3  = 32  = (rs)3  = 1. A representation group of A4 has a 

presentation of the form (r, 3, tir3r1  = 32P2 = (rs)3ta3 = [t, r] 	[t, 3] = 1) for 

suitable ai , i = 1,2,3. We calculate an invertible 3 x3 integer matrix P such that 

the product P•M of P and the relation matrix M determined by the presentation 

for A4 is a triangular matrix : 

0 0 1 3 0 3 3 

—1 

( 

—1 1 

) 

0 

( 

2 

) 

= 0 

( 

1 • 

—2 —3 2 3 3 0 0 
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Let P-1  = (pi,) and take ai  = pi3  for i = 1, 2, 3. Hence some representation 

group of A4 has the presentation (r, s, tir3t = s2t-1  = (rs)3  = [t, r] = [t, s] = 1). 

Coset enumeration shows that IM(A4)1 = 2. 

The problem of determining a method whereby it can be efficiently recognised 

whether a group G is isomorphic to another group H is called the isomorphism 

problem. Since the groups in this section are 2-generator groups the isomorphism 

problem is easily solved. The idea is to search for elements in H which generate a 

group of order VI and satisfy a set of defining relations for G. Suppose G = (x, y), 

where Ix' = n and lye = m. It is sufficient to take the set of representatives of 

the classes of elements of order n of H as possible images of x and the set of all 

elements of order m of H as possible images of y. The group H must be given 

explicitly enough that multiplication can be carried out and equality of elements 

can be decided. For example, if H is finite and soluble, it suffices that H is given 

by an AG-presentation. Moreover, the groups in this section will have faithful 

permutation representations of reasonable degree. 

We start with the symmetric group S3 of degree three ( the split extension of 

GLi  (3) by its natural module) with generators r and s satisfying the relations 

= s2  = (rs)2  = 1. The Schur multiplier M(S3) = 1. In order to show that 

S3 is efficient we have to show that S3 has a presentation with two generators 

and two relations. In [CaR 82] Campbell and Robertson describe a technique for 

reducing the number of relations in a presentation. Let H be the group obtained 

by combining two relations as follows H = (a, bla30 = (ab)2  = 1). Clearly, S3 is a 

homomorphic image of H and H is a homomorphic image of some representation 

group of S3. Thus H is isomorphic to S3 because M(S3) = 1. 
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Since S32---fGL2(2) we know that S3  has a faithful irreducible representation R 

of degree two over F2  defined by 

a 

1 1 
b 

( 0 1 

The split extension G of S3  by the module associated with this representation of 

S3  is generated by r, s, ti  and t2  subject to the defining relations r3s2  = (rs)2  = 

1, r-ltir = 11[ tj R(a).3,s-  f tiR(b),, ti2 = 1 for i = 1,2 and [t2, ti] = 1. 

Coset enumeration shows that x = st1  and y = rs generate G and that G has 

defining relations x4  = y2  = (xy)3  = 1. Hence G is isomorphic to S4  ( note that 

84  has derived length three ). 

The Schur multiplier of S4  is isomorphic to the cyclic group of order two 

and therefore S4  is efficient. The symmetric group S4  of degree four has two 

representation groups : 

(1) Let G be the group generated by r, s and t subject to the defining relations 

r4 = t, 32 = (rs)3  = [t, r] = [t, = t2  = 1. Coset enumeration shows that 

x = s and y = sr-1  generate G. The following efficient presentation for G 

was found (x, yjx2y3  = ((xy)2x-1y-1)2 = 1). The map 

X 1-4 

0 —1 

( 1 0 

1 1 

extends to an isomorphism R onto the general linear group GL2(3) of di-

mension two over the field F3  of order three. 

Y 
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(2) Let G1  be the group generated by r, s and t subject to the defining relations 
r4 = s2 = t, (rs)3  = [t, r] = [t, s] = t2  = 1. Coset enumeration shows that 

x = sr-1  and y = tr-1  generate G1. The following efficient presentation for 

G1  was found (x, ylx2yx-1y = xy3xy-1  = 1). 

The representation groups of S4 have derived length four and faithful permu-

tation representations for these groups can be obtained by enumeration of the 

cosets with respect to the Sylow 3-subgroups. Other groups of derived length 

four are obtained by the split extensions of S4 by the faithful irreducible F3[S4]-

modules. These groups are isomorphic to maximal subgroups of PSU4(2) and 

A9, respectively (cf. [Jam 88] ). 

A group of derived length five is obtained by constructing the split extension 

32  : GL2(3) of GL2(3) by the modules associated with the faithful irreducible 

representation of GL2(3) as defined above. This group is generated by r, s, 

ti  and t2  subject to the defining relations r2s3  = ((rs)2r-1  8-1)2  = 1, r-ltir = 

= jI ti R(Y ).3, ti3  = 1 for i = 1, 2 and [t2, ti] = 1. Jamali ( cf. 

[Jam 88] ) found the following presentation for the maximal subgroup of order 

432 of the projective special linear group PSL3(3) of dimension three over the 

field F3 of order three 

H = (x, yix2y3  = (xy)3(xy-lxy)2s-lysy-lx-ly(x-ly-1)3x-1y = 1). 

Coset enumeration shows that the map x 	r and y H st1t2-1  extends to an 

isomorphism of H onto 32  : GL2(3). 

Note that GL2(3) actually has two faithful irreducible representations of de-

gree two over the field F3, but the split extensions of GL2(3) by the associated 

modules are isomorphic. Another group of derived length five is obtained by 

constructing the split extension of G1  by the module associated with the faithful 

irreducible representation of degree four over F3. 
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We now consider the extensions of 32  : GL2(3) by the module associated with 

the alternating representation of 32  : GL2(3) over the field F3. There are the 

following non-isomorphic groups of derived length six : 

(1) Let G be the group generated by r, s and t subject to the defining relations 

r2s3  = (rs)3(rs-1rs)2r-isrs-1r-ls(r-1s-1)3r-ls = [t, r] = t, [t, s] = t3  = 1. 

Coset enumeration shows that x = s2rsrsr and y = s2rsr generate G. 

The following efficient presentation for G was found (x, yl(xy)2  xy'x-1  y = 
x2yx-2yx2y-2 = 1).  

(2) Let G be the group generated by r, s and t subject to the defining relations 

(rs)3(rs-i rs)2r-i sr s-i r-i s(r-i 3-1)3r-i s  = [t, r] = t, r2s3  = [t, s] = t3  = 1. 

Coset enumeration shows that x = ts-lrsrsr and y = is-1  r sr generate G. 

The following efficient presentation for G was found (x, ylxy(x-1y)2xy-2 = 

x2yx-iy-3xy2  = 1). 

(3) Let G2 be the group generated by r, s and t subject to the defining relations 

(rs)3(rs-i rs)27,-1 srs-i r-i s(r-i s-1)37.-1 s  = [t, r] j = t, r2  s3  t = [t, s] = t 3= 1. In 

[Ken 90] Kenne gave the following efficient presentation for a group of order 

1296 and derived length six : 

H  = (x,y i (xy)2y-6 = x4y-lxy-9x-ly  = 1).  

Coset enumeration shows that the map xi-4s'r,  , yi--+ s2  r sr s-1  (rs)3r extends 

to an isomorphism of H onto G2. 

Faithful permutation representations for these groups can be obtained by enu-

meration of the cosets with respect to the Sylow 2-subgroups. 
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The group G2 of derived length six may be used to construct a small group 

of derived length seven. It has a faithful irreducible representation R of degree 

six over the field of order two F2 defined by 

o 1 1 0 1 11 

1 0 1 1 0 1 

1 1 1 1 1 1 

0 1 0 1 0 1 

1 1 1 0 0 1 

`0 1 1 1 1 0/ 

1 0 0 1 0 1 

0 1 1 1 1 1 

1 0 1 1 1 0 
y 

0 1 1 0 0 1 

1 0 1 0 1 1 

`0 1 0 1 1 0 

The split extension G of G2 by the module associated with this representation 

is generated by r, s and t1, 	, t6  subject to the defining relations (r s)2  

r4 	r 3-9  r-1  s = 1, r-ltir =11 	 = fl tiR(Y).), tit = 1 for i = 1, 	, 6 

and [ti, ti] = 1 for 1<j < i<6. Coset enumeration shows that x = r s and 

y = s-iti  generate G and that G has defining relations x2 = y6 = (xyxy-lxy2)2 = 

(xy)2(xy3)2(xy-1 )3y-1 xy-1(xy-2)2y  -1 = 

(x y )2 (x y2)2 yX y (Xy-2)2y-lxy2(xy-2)2 = 1. The Schur multiplier of G is iso-

morphic to the cyclic group of order two and therefore an efficient presenta-

tion has two generators and three relations. It is easily verified that the rela-

tion (xy xy-lxy2
)

2 is redundant. Let H be the group obtained by combining 

two relations as follows H = (a, bla2b6  = (ab)2(ab3)2(ab- 	 = 

(ab)2  (ab2)2  bab(ab-2)2 b-1 ab2 (ab-2)2 = 1). Clearly G is a homomorphic image of 
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H and H is a homomorphic image of some representation group of G. In [JaR 89] 

Jamali and Robertson describe a technique which allows one to determine whether 

H is isomorphic to G by using a coset enumeration program ( see also lemma 

2.2 in [CaR 82] ). Let i : H --►  G be the epimorphism defined by a 1--+ x and 

b 1---+ y. Take h = b2; then 9(h) = y2  has order 3 and gcd(In(h)1, m) = 1 where 

m = IM(G)I. If [H : (hm)] can be found, then 1111 = [H : (hm)]19(h)I. Coset 

enumeration shows that [H : (hm)] = 27648, proving that H_G. Note that G2 

actually has three faithful irreducible representations of degree six over F2, but 

the split extensions of G2 by the associated modules are isomorphic. 

We may also start with the alternating group A4 of degree four ( the split 

extension of SL2(2) by its natural module) with generators r and s satisfying 

the relations r3  = s2  = (rs)3  = 1. The Schur multiplier M(A4) is isomorphic to 

the cyclic group of order two and therefore A4 is efficient. 

The representation group G of A4 is generated by r, s and t subject to the 

defining relations s2  = t, r3  = (rs)3  = [t, r] = [t, s] = t 2  = 1. Coset enumeration 

shows that x = r sr and y = s-1  generate G. The following efficient presentation 

for G was found (x, yjx3  = y2, (x-1y)3  = 1). The representation group of A4 has 

derived length three and a faithful permutation representation for this group can 

be obtained by enumeration of the cosets with respect to the Sylow 3-subgroups. 

It is easily verified that the map 

 

( "1 —1 0 

( 0 1 
y 1-4 

-1 0 

extends to an isomorphism R onto the special linear group SL2(3) of dimension 

two over the field F3 of order three. Another group of derived length three is the 

split extension of A4 by its faithful irreducible F3[A4]-module. 

x "-' 
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The split extension 32  : SL2(3) by the module associated with the repre-

sentation above is generated by r, s, t1  and t2  subject to the defining relations 
tift(x),, , s-itis  = 	ti (y),, ti2 r3  = s2, (r-1s)3  = r-1  tir = 	 R 	1 for i = 1, 2 

and [t 2, t1] = 1. Jamali ( cf. [Jam 88] ) found the following presentation for the 

maximal subgroup of order 216 of the alternating group A9 of degree nine : 

H = (x,y1y3  = (ys)4x-3  = (yx02x-2(yx0-2x-1  = 1). 

Coset enumeration shows that the map x 	r2, y 1-4 rtes-1  extends to an 

isomorphism of 32  : SL2(3), which has derived length four, onto H. 

The Schur multiplier of 32  : SL2(3) is isomorphic to the cyclic group of or-

der three and therefore 32  : SL2(3) is efficient. 32  : SL2(3) has the following 

representation groups : 

(1) Let G be the group generated by r, s and t subject to the defining relations 

s3  = t, (sr)4r-3  = (srs)2r-2(srs)-2r-1t = [t, r] = [t, s] = i3  = 1. Coset enu-

meration shows that x = r2s' and y = rsrt-i generate G. The following 

efficient presentation for G was found 

(x, YlxY2x-
ly2x_y-1 = 	 = 1). 

(2) Let G be the group generated by r, s and t subject to the defining relations 

(srs)2r-2(srs)-2r-1  = t, s3  = (sr)4r-3t = [t,r] = [t,s] = t3  = 1. Coset 

enumeration shows that x = s-1  and y = sr-1  generate G. The following 

efficient presentation was found 

(x5 Yi(xY)2
x-2y-5 = xy2x—ly3x—l ye = 1).  

(3) Let G3 be the group generated by r, s and t subject to the defining relations 

(sr)4r-3  = t,s3t = (srs)2r-2(srs)-2r-1  = [t,r] = [t,s] = t3  = 1. Jamali 

( cf. [Jam 88] ) found the following presentation for a maximal subgroup 

of order 648 of PSU4(2) : 

-iy)2 = x2yxyx-iy-ix-iyxy  = 1).  H = (x, ylx3y(x 
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X  

y 

Coset enumeration shows that the map x 1-* sr and y 1-* rs-1r-1 sr-1 

extends to an isomorphism of G3 onto H. 

All three groups have derived length five and faithful permutation representations 

for these groups can be found by enumeration of the cosets with respect to the 

Sylow 2-subgroups. 

The group G3 of derived length five may be used to construct a group of 

derived length six. It has a faithful irreducible representation R of degree six 

over the field of order two F2 defined by 

and 

The split extension 26  : G3 of G3 by the module associated with this repre- 

sentation is generated by r, .s and ti, 	, 16  subject to the defining relations 
n  tiR(x),3,s-i tis  = n  tiR(y),,, tit r3s(r-1s)2  = r2  srsr-1  s — Jr-1  srs = 1, 	= 

1 for i = 1, 	, 6 and [ti, = 1 for 1<j < i<6. Coset enumeration shows that 

x = r3t3  and y = tirs generate 26  : G3 and that 26  : G3 has defining relations 

(xy)3ys = xyx-1yxy3xyx—lyxy-1 = x2y-2xyx—ly3xy—lx—lye = 1. The Schur 

multiplier of 26  : G3 is isomorphic to the cyclic group of order two and therefore 
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26  : G3 is efficient. Note that G3 has three faithful irreducible representations of 

degree six over F2, but the split extensions of G3 by the associated modules are 

isomorphic. 

The representation group G of 26  : G3 is generated by r, s and t subject to the 

defining relations (rs)3s6t = rsr-1  srs3rsr-1  srs-lt = r2  .5-2  r sr-183r8-ir-Is2 = 

[r, t] = [s ,t] = 1. The group G has derived length seven and trivial Schur mul-

tiplier, but we were unable to find an efficient presentation for G. A faithful 

permutation representation for G can be obtained by enumeration of the cosets 

with respect to the Sylow 3-subgroups. 

We shall now derive some results on extensions of finite soluble groups by 

finite irreducible modules. We begin with an elementary observation. If g, hEG, 

the commutator of g and h is defined by [g,h] = g-1h-1  gh. If 7r : G -+ H is 

an epimorphism, then r ([g , h]) = [7-  (g), 7r(h)]. Hence 7r(G')CH'. Moreover, every 

commutator [x, y] for x, yEH is in ir(G'). Then ir(G') = (7r(G))' = H', so 7r 

restricted to G' is an epimorphism of G' onto H'. By induction we have 

7r(G(i)) = (ir(G))(') = H(i). 

Let 1 —p M --L' G - 
ir 
4 H -4 1 be a short exact sequence where H is a finite 

soluble group of derived length n and M is a finite H-module. Then 1 = H (n)  = 

(7 r (G))(n)  = 7r(G(n)) and therefore G(n)Cµ(M). Hence G has derived length n or 

n + 1. 

THEOREM 6.1 Let 1 -* M 4 G --> H -- 1 be a short exact sequence where 

H is a finite soluble group of derived length n and M is a finite irreducible H - 

module. If G has derived length n, then H(n-1)  is contained in the kernel of the 

representation associated with the action of H on M. 

Proof Let N = µ(M). The (n - 1)st derived subgroup 11(71-1)  is contained in 

the kernel of the representation associated with the action of H on M if and only 
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if [N, G(')] = 1. Consider the normal subgroup G(n-l)nN of G. Since N is a 

minimal normal subgroup, G(n-i)nN is either N or 1. 

Now, G(n-l)nN = N implies N<G(n-1)  and thus [N,G(n-1)]<p(n-i),  G(n-1)].=  

G(n)  = 1. In the case G01-1>nN = 1, we have [N,G(n-1)]<G(n-l)nN by Hilfssatz 

III.1.6(f) in [Hup 67]. 	 0 

Theorem 6.1 explains the observation that an extension of a finite soluble group 

of derived length n by a faithful irreducible module has derived length n 1. 

The reverse of the assertion does not hold for arbitrary extensions. Consider the 

symmetric group S4 of degree four. The Schur multiplier M(S4) is isomorphic to 

the cyclic group of order two and the representation groups of S4 have derived 

length four. But the reverse holds for split extensions. 

THEOREM 6.2 Let H be a finite soluble group of derived length n and let 

M be a finite irreducible H-module. If H(11-1)  is contained in the kernel of the 

representation associated with the action of H on M, then the split extension of 

H by M has derived length n. 

Proof Suppose the short exact sequence 1 -+ M 	G 	H 1 splits and let 

N = 1.1(M). Then G(n-l)nN is either N or 1. 

If G(n-i)nN = 1, then the preimage of H(n-1) is the semidirect product of 

G(1/-1)  and N. By the second isomorphism theorem we have 

N A  --*(n-1) G(n-1)nNeeG(n-1)  

and therefore G(n)  = 1. 

If G(n-IMN = N, then N<G(n-1) and therefore G(n-1) N = G(11-1). We 

conclude that G(11-1)  is isomorphic to the semidirect product of H(n-1) and N. 

But the action of 11(n-1) on N is trivial and thus G(n-1) is isomorphic to the 

direct product 11(n-1)  x N and therefore G(11-1)  is abelian. 	 0 

We have already seen that faithful irreducible modules are useful for the con-

struction of finite soluble groups. The calculations which led to the groups pre- 
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sented in this section suggest that extensions of finite soluble groups by finite 

faithful irreducible modules split. 

COROLLARY 6.3 If 1 —> 1 1 / 1' - G -T-.  H --> 1 is a short exact sequence where 

H is a finite soluble group and M a finite faithful irreducible H-module, then the 

short exact sequence splits ( i. e. 112(H, M) = 0 ). 

Proof Obviously N = µ(M) is a minimal normal subgroup of G such that 

N = CG(N). The result follows from Satz 11.3.3 in [Hup 67]. 	 0 

Satz 11.3.3 also shows how to obtain a faithful permutation representation for a 

finite soluble group G which has a minimal normal subgroup N with CG(N). 

Next we obtain a result on the normal subgroup structure of the groups pre-

sented in this section. 

THEOREM 6.4 Let 1 ---* M -4 G — H --+ 1 be a short exact sequence where 

H is a finite soluble group of derived length n and M is a finite irreducible H-

module. If G has derived length rt + 1 and the commutator series is the only 

normal series of H, then the commutator series is the only normal series of G. 

Proof Let N = p(M). Since G has derived length n + 1 and N is a minimal 

normal subgroup of G, we have G(n)  = N. All we have to show is that N is the 

unique minimal normal subgroup of G. Let K be a minimal normal subgroup of 

G and consider the normal subgroup NnK of G. Since N is a minimal normal 

subgroup, we have NnK is either N or 1. 

If NnK = N, then N<K and N = K since K is a minimal normal subgroup 

of G. If NnK = 1, we consider the product NK which is a normal subgroup of 

G. Since NCNK it must coincide with one of the commutator subgroups G(1), 

i = 0, ... , n — 1. However, [N, K]CNnK by Hilfssatz III.1.6(f) in [Hup 67] and 

therefore NK is abelian — a contradiction. 	 0 
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Using theorem 6.4 we see that by construction the commutator subgroups are 

the only normal subgroups of the groups presented in this section. Note that 

finite groups with a unique minimal normal subgroup have faithful irreducible 

representations. If F is a field such that char(F)AGI, then the regular repre-

sentation is completely reducible. Suppose every irreducible representation of G 

over F has a nontrivial kernel. Then the kernel of every irreducible representation 

contains the minimal normal subgroup and therefore the regular representation 

of G over F has a nontrivial kernel — a contradiction. 

Another problem being investigated using the techniques in this section is 

that of constructing examples of soluble groups for which the orders of the de-

rived factors decrease. To be more specific, we are looking for examples of soluble 

groups G for which ai>a2> ... >an_i, where ai = [G(2)  : G(i+1)] and 71 is reason-

ably large, say n>4. This problem is due to E. A. Bertram ( University of Hawaii 

at Manoa ) and is related to the problem of finding "good" lower bounds to the 

number of conjugate classes of soluble groups. 

By Hilfssatz 1.9.9 of [Hup 67] we have (Gx H)' = G' xHi  for given groups G 

and H. Hence we may start with a soluble group of derived length 4 ( e. g. the 

general linear group GL2(3) for dimension 2 over the field F3  ). The sequence 

of orders of derived factor groups of GL2 (3) is (2, 3, 4, 2). The group generated 

by x, y subject to the defining relations x2  = ym = 1 and x'yx = y-1  is a 

finite group of order 2m ( the Dihedral group D2m  ) . The group D2m  has a cyclic 

normal subgroup N = (y) of order m and (x) is a complement of N in G. We 

conclude that D2„, is metabelian and that [D2,, : D2,7,1 = 2 if m is odd and 

[D2m  : D2,4 = 4 if m is even. The elements of D2m  are 

1 , Y , Y 2  , • • • , ym-1  , xY , • • • , xYm-i• 

Since y'(xyl)y = y-lxyi+1  = xyi+2  we see that xyi  is conjugate to xyl+2  for 
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every i. Also, since xyix = y-i we see that yi is conjugate to y-i. If m is odd, 

then the conjugate classes are {1}, {xy, 	, xy"`-1}, {yi, y-i} for li(rn — 1)12 

and D2,7, has 2 + (m — 1)/2 = (m + 3)/2 conjugate classes. If m is even, the con- 

jugate classes are {1}, {x, xy2, 	xym_2}, {xy, xy3, 	 {yrn/2}, {yi, y-i} 

for 1<i<(m — 2)/2 and D2,7, has 4 + (m — 2)/2 = (m + 6)/2 conjugate classes. 

The sequence of orders of derived factor groups of GL2  (3) x Ds is (4, 9, 4, 2) and 

GL2(3) X Ds has 8.3 = 24 conjugate classes. 

With the help of Theorem 6.2 we may also start with a group G of derived 

length 4 ( e. g. the general linear group GL2(3) of dimension 2 over F3 ) and 

construct split extensions of G by finite irreducible Fp[G]-modules. Obviously 

the split extension of GL2 (3) by the modules associated with the trivial represen-

tations over the fields F2 and F3 yield groups for which the sequences of orders of 

derived factor groups are (4,3,4,2) and (6, 3,4,2) respectively. The split exten-

sion of GL2  (3) by the module associated with the alternating representation over 

the field F3 has 15 conjugate classes and the sequence of orders of derived factor 

groups is (2,9,4, 2). The split extension of GL2 (3) by the module associated with 

the irreducible representation of degree 2 over F2 has the sequence (2, 3,16, 2). 

The split extensions of GL2(3) by the modules associated with the irreducible rep-

resentations of degree 3 over F3 have the sequence (2, 3,4, 54). Note that every 

representation mentioned above is a faithful irreducible representation of some 

derived factor group of GL2(3). This observation brings us to the concluding 

theorem in this section. 

THEOREM 6.5 Let H be a finite soluble group and M a finite irreducible H-

module. Suppose the short exact sequence 1 --+M4G 14H--1 splits. If H(i) 

is and H(1-1) is not contained in the kernel of the representation associated with 

the action of H on M, then G(i)L1H(i)xM. 

Proof Since 1/(i-1)  is not contained in the kernel of the representation associated 

with the action of H on M, there exist xEN = µ(M) and yEG(i-1)  such that 
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[x, y] 	1. Therefore [x, y] is a nontrivial element of G('-')nN. Since N is a 

minimal normal subgroup of G, we conclude that NCG(i-1). But this implies 

[x, y]EG(i) and therefore [x, y] is a nontrivial element of G(1)nN. We conclude 

that NCG() and that G() is isomorphic to the semidirect product of H(1) and 

M. But the action of MO on M is trivial and thus G(1) =' H( )x M. 

6.2 Minimal Soluble Groups 

By a minimal soluble group of derived length d we mean a soluble group of 

smallest order and derived length d. For example, the symmetric group S3 of 

degree 3 is the smallest nonabelian group. Therefore S3 is the minimal soluble 

group of derived length 2. In this section we investigate the minimal soluble 

groups of derived length less than or equal to 6. 

The following problem sparked off our interest in minimal soluble groups. A 

group G with a finite presentation (X1/1) is said to be efficient if IRI = IX + 

rank(M(G)), where M(G) is the Schur multiplier of G. The first example of a 

finite group of derived length 5 having an efficient presentation and trivial Schur 

multiplier was given by P. Kenne in 1988. In [Ken 90] Kenne gave examples of 

finite groups of derived length 6 having efficient presentations and trivial Schur 

multiplier. Programs for the calculation of finite soluble quotients of finitely 

presented groups have been developed in the GAP programming system. These 

programs were used to find soluble groups with trivial Schur multiplier and a 

method suggested by Kenne ( cf. [Ken 86] ) was then used to find efficient 

presentations for these groups. In this method a small number of generating pairs 

for a group are chosen and for each generating pair a presentation is constructed 

and modified towards obtaining an efficient presentation. This method is only 

practicable for groups of moderate order. Therefore, for a given derived length d 

soluble groups of small order and derived length d are of interest. 
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Throughout this section we use the notation of [Gla 89] : The derived and 

composition length of a finite soluble group G are denoted by d(G) and n(G) 

respectively. When no confusion arises, the symbols d and n will be used in 

preference to d(G) and n(G). We restate some results on upper bounds for 

d(G) in terms of n(G) which will be used in this section. Given a group G of 

order p" and derived length d, Hall showed ( cf. Satz 111.7.11 of [Hup 67] ) that 

n>2d-1  + d — 1. It is well known that a soluble group with composition length 

n may have much larger derived length than a nilpotent group with the same 

composition length. It is proved in Theorem 2 of [Gla 89] that d< 12n/31, where 

ix] denotes the least integer greater than or equal to x. Table I shows some 

values for the function h(n) = 12n/31. Since h(n) is a non-decreasing function, 

only the smallest value of n for which h(n) = m are listed. 

Table I 

1 2 4 5 
	

8 n 

1 6 4 2 h(n) 5 3 

The following result ( cf. Lemma 1(b) of [Gla 89] ) is used to prove Theorem 2 of 

[Gla 89]. If G is a soluble group of derived length 3 and G" is cyclic, then G' I G" 

is not cyclic. In order to prove this, Lemma 1(a) is needed : Let N be a normal 

subgroup of a group G. If N<Z(G) and GIN is cyclic, then G is abelian. With 

the help of this knowledge we can now investigate the minimal soluble groups of 

derived length less than or equal to 6. 

As we mentioned in the introduction the symmetric group S3 of degree 3 is 

the minimal soluble group of derived length 2. 

The symmetric group 84 of degree 4 and the special linear group SL2 (3) of 

dimension 2 over the field of order 3 have derived length 3. By Theorem 2 of 

119 



[Gla 89] the composition length of a soluble group of derived length 3 is at least 

4 and therefore S4 and SL2(3) are minimal soluble groups of derived length 3. 

Let G be a minimal soluble group of derived length 3. Then n(G I G") > 2 by 

Theorem 2 of [Gla 89] and therefore n(G") is either 1 or 2. If n(G") = 1, then G 

is a covering group of the alternating group A4 of degree 4. It follows that G is 

isomorphic to SL2(3). If n(G") = 2, then G is isomorphic to the split extension 

of the symmetric group S3 of degree 3 by its natural module over the field of 

order 2. It follows that G is isomorphic to the symmetric group 84 of degree 4. 

The Schur multiplier of the symmetric group S4 of degree 4 is isomorphic 

to the cyclic group of order 2. There are exactly two nonisomorphic covering 

groups of S4 both of which have derived length 4. By Theorem 2 of [Gla 89] 

the composition length of a soluble group of derived length 4 is at least 5 and 

therefore the covering groups of S4 are minimal soluble groups of derived length 

4. Let G be a minimal soluble group of derived length 4. Then n(G I GO)) > 4 by 

Theorem 2 of [Gla 89] and therefore n(G(3)) = 1. It follows that G is a covering 

group of S4. 

Next we show that a minimal soluble group of derived length 5 is isomorphic 

to the split extension of the general linear group GL2(3) of dimension 2 over the 

field of order 3 by its natural module. Note that by Theorem 2 of [Gla 89] the 

composition length of a group of derived length 5 is at least 7. First of all we 

show that a group of smallest order, derived length 5 and composition length 7 

is isomorphic to the split extension of GL2 (3) by its natural module. In order to 

show that this group is minimal of derived length 5 we show that there are no 

groups of smaller order, derived length 5 and composition length larger than 7. 

LEMMA 6.6 If G is a finite soluble group of smallest order such that d(G) = 5 

and n(G) = 7, then G is isomorphic to the split extension of the general linear 

group GL2(3) of dimension 2 over the field of order 3 by its natural module. 
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Proof Let G be a finite soluble group of smallest order such that d(G) = 5 and 

n(G) = 7. By Theorem 2 of [Gla 89], n(G/G(4)) > 5 and therefore n(G(4)) is 

either 1 or 2. If n(G(4)) = 1, then G(4) is a cyclic group of order q. By Theorem 2 

of [Gla 89], n(G IG(3))> 4 and so n(G(3) /G(4)) < 2. Since G(4) is cyclic, G(3)/G(4) 

is not cyclic by Lemma 1(b) of [Gla 89]. Therefore G(3)/G(4) is abelian of type 

(p, p). If p q, then G(3) is abelian, since G(3) is a split extension of G(3)/C(4) by 

G(4) and G(3) centralises G(4) — a contradiction. Hence G(3) is a group of order 

p3. Moreover, Z(G(3)) = G(4) by Lemma 1(a) of [Gla 89] and G(3) is extraspecial 

by Satz III.3.14(a) of [Hup 67]. If p > 3, then IGI = IG/G(3) 110)1 > 24./33  > 648 

— a contradiction. Therefore p = 2 and G(3) is isomorphic to the dihedral group 

D8 of order 8 or the quaternion group Qs of order 8. Since G(3) is not contained in 

C G  (G(3)  ) the derived length of G/CG(G(3)) is larger than or equal to 4. This yields 

a contradiction as the automorphism groups of D8 and Qg  are isomorphic to Dg 

and the symmetric group S4 of degree 4 respectively. This shows that n(G(4)) = 2. 

If G(4) is cyclic, then G(3)/G(4) is not cyclic by Lemma 1(b) of [Gla 89] and 

n(G(3)) > 4. But then n(G) = n(G I G(3))+ n(G(3)) > 8 — a contradiction. Hence 

G(4) is abelian of type (p,p). If p > 5, then IGI = IG/G(4) I1G(4)1 > 48 • 52  = 1200 

— a contradiction. Now, suppose p = 2. Since n(G /G(3)) > 4, G(3)/G(4) is cyclic 

and it follows that G(3) is isomorphic to the alternating group A4 of degree 4. 

Since G(3)  is not contained in CG(G(3) ) the derived length of G/CG(G(3) ) is larger 

than or equal to 4. This yields a contradiction as the automorphism group of A4 

is isomorphic to S4. Hence p = 3 and G/G(4) is a covering group of S4. Note 

that the commutator subgroups are the only normal subgroups of the covering 

groups of S4. If G(4)  < CG(G(4)), then G(3) is abelian — a contradiction. Hence 

G(4)  = CG(G(4) ) and therefore G/G(4) is isomorphic to GL2(3). It follows that 

G(4) is a minimal normal subgroup and G(4) has a complement in G by Satz 11.3.3 

of [Hup 67]. 	 ❑ 
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THEOREM 6.7 If G is a minimal soluble group of derived length 5, then G is 

isomorphic to the split extension of the general linear group GL2(3) of dimension 

2 over the field of order 3 by its natural module. 

Proof By Lemma 6.6 it remains to show that there are no groups of order less 

than 432, derived length 5 and composition length larger than 7. Let G be a 

group of order 384 = 273 and derived length 5. If P is a Sylow 2—subgroup of G, 

then [G : NG(P)] is either 1 or 3. If [G : N(P)] = 1, then P is a normal subgroup 

of G and G I P is isomorphic to the cyclic group of order 3. It follows that G' 

is contained in P and ICI > 211  by Satz 111.7.11 of [Hup 67] — a contradiction. 

If [G : NG(P)] = 3, then we get an action of G on the coset space of G relative 

to P. The homomorphism associated with the action is an epimorphism of G 

onto the symmetric group S3 of degree 3 and G" is contained in the kernel of the 

epimorphism. By Satz 111.7.11 of [Hup 67], IG"I > 26  and therefore G" coincides 

with the kernel. Moreover, the proof of Satz 111.7.11 shows that G"/G(3) is 

elementary abelian of order p2. By Satz 111.11.9 of [Hup 67], G" is metacyclic 

— a contradiction. Hence, there are no groups of order 384 = 273 and derived 

length 5 and the split extension of GL2(3) by its natural module over the field of 

order 3 is the minimal group of derived length 5. 	 0 

We now show that a minimal soluble group of derived length 6 is isomorphic 

to an extension of the minimal soluble group of derived length 5 by the alter-

nating module over the field of order 3. Note that by Theorem 2 of [Gla 89] the 

composition length of a group of derived length 6 is at least 8. First of all we 

show that a group of smallest order, derived length 6 and composition length 

8 is isomorphic to an extension of the minimal soluble group of derived length 

5 by the alternating module over the field of order 3. In order to show that 

these groups are minimal of derived length 6 we show that there are no groups of 

smaller order, derived length 6 and composition length larger than 8. We begin 

with the following lemma. 
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LEMMA 6.8 If G is a group of order 72, then d(G) < 4. 

Proof If P is a Sylow 3-subgroup of G, then [G : NG(P)] is either 1 or 4. If 

[G : NG(P)] = 1, then P is an abelian normal subgroup of G and IG/PI = 23. 

Since d(G I P) < 2, it follows that d(G) < 3. If [G : NG(P)] = 4, then we get an 

action of G on the coset space of G relative to P. The homomorphism associated 

with the action is an epimorphism of G onto a subgroup of the symmetric group S4 

of degree 4 which has four conjugate subgroups of index 4. Thus, the epimorphism 

is onto S4. If G has derived length 4, then G is either a covering group of S4 or 

G' is a covering group of the alternating group A4, contrary to the fact that the 

Schur multiplier of S4 and A4 is isomorphic to the cyclic group of order 2. 	❑ 

LEMMA 6.9 If G is a finite soluble group of smallest order such that d(G) = 6 

and n(G) = 8, then G is isomorphic to an extension of the minimal soluble group 

of derived length 5 by the alternating module over the field of order 3. 

Proof Let G be a finite soluble group of smallest order such that d(G) = 6 and 

n(G) = 8. By Theorem 2 of [Gla 89], n(G I G(5)) > 7 and therefore n(G(5)) = 1. 

Since G(5)  is cyclic of order q, G(4) I G(5) is not cyclic by Lemma 1(b) of [Gla 89]. 

By Theorem 2 of [Gla 89], n(G I G(4)) > 5 and therefore G(4)/G(5) is abelian 

of type (p,p). If p # q, then G(4)  is abelian, since G(4)  is a split extension of 

G(4)/G(5) by G(5) and G(4) centralises G(5) — a contradiction. Hence G(4) is a 

group of order p3. Moreover, Z(G(4)) = G(5) by Lemma 1(a) of [Gla 89] and G(4) 

is extraspecial by Satz III.3.14(a) of [Hup 67]. If p = 2, then G(4) is isomorphic 

to the dihedral group Dg of order 8 or the quaternion group Q8 of order 8. Since 

G(4)  is not contained in CG(G(4) ) the derived length of G/CG (G(4)) is larger than 

or equal to 5. This yields a contradiction as the automorphism groups of Dg and 

Q8 are isomorphic to D8 and the symmetric group 84 of degree 4 respectively. 

This shows that p = 3 and G/G(5) is isomorphic to the minimal soluble group of 

derived length 5. 	 ❑ 
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THEOREM 6.10 If G is a minimal soluble group of derived length 6, then G 

is isomorphic to an extension of the minimal soluble group of derived length 5 by 

the alternating module over the field of order 3. 

Proof By Lemma 6.9 it remains to show that there are no groups of order less 

than 1296, derived length 6 and composition length larger than 8. We have to 

consider groups of order 768 = 283, 1152 = 2732  and 1280 = 285. By Satz 111.7.11 

of [Hup 67], there are no groups of order 768 and 1280 respectively of derived 

length 6. Finally, let G be a group of order 1152 and derived length 6. Since 

IG/G(5) I > 432, it follows that G(5) is cyclic of order 2. Therefore G(4)/G(5) is 

not cyclic by Lemma 1(b) of [Gla 89]. By Theorem 2 of [Gla 89], n(G IGO)) > 5 

and therefore n(G(4) I G(5) ) is either 2 or 3. If n(G(4)  I GO) ) = 2, then G(4) /G(5)  is 

abelian of type (p, p). If p # 2, then G(4) is abelian, since G(4) is a split extension 

of G(4)/G(5) by GO) and G(4) centralises G(5) — a contradiction. Hence G(4) is 

a group of order 23. Since G(4) is not contained in CG (G(4)) the derived length 

of G/CG(G(4)) is larger than or equal to 5. This yields a contradiction as the 

automorphism groups of D8  and Q8  are isomorphic to D8  and S4  respectively. 

Hence, n(G(4) /G(5)) = 3. If IG(4)/G(5)I = 2 • 32, then IG/G(4)I > 211  by Satz 

111.7.11 of [Hup 67] — a contradiction. If IG(4) /G(5) I = 223, then G(4)/G(5)  is 

abelian of type (2,2,3) since G(4) /G(5)  is not cyclic. Hence GO) is isomorphic to 

the direct product of the cyclic group of order 3 and D8  or Q8  respectively. Since 

G(4) is not contained in CG(G(4)) the derived length of G/CG(G(4)) is larger than 

or equal to 5. This yields a contradiction as the automorphism group of G(4) is 

isomorphic to the direct product of the cyclic group of order 2 and D8  or S4  ( cf. 

Satz 1.9.4 of [Hup 67] ). It follows that IG(4)/G(5)I = 23  and IG/G(4) I = 2332  = 72. 

This yields a contradiction by Lemma 6.8. 	 0 

The classification of the minimal soluble groups of derived length 7 remains 

an open problem. Using results on soluble subgroups of 2-dimensional general 
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linear groups, Glasby proved ( cf. Lemma 6 of [Gla 89] ) that the composition 

length of G(4) is at least 6 if G has derived length 7, and thus he is able to improve 

the previous bound to d< Rn + 3)/2 — 3/(n + 2)1 = g(n). The bound d<g(n) 

is not best possible since g(11) = 7 and Glasby showed ( cf. Appendix A ) that 

there is no group with composition length 11 and derived length 7. In [Gla 89], 

Glasby described a group of order 211313  and derived length 10 which has factors 

of derived length 7 and order 21034, showing that PI 2.<  o  io-4 if G is a minimal 

soluble group of derived length 7. 
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ON THE MINIMAL SOLUBLE GROUPS 

OF DERIVED LENGTH AT MOST SIX 

S. P. GLASBY and A. WEGNER 

16 June 1992 

ABSTRACT. For d < 6, we classify the soluble groups of derived length d and minimal 
order. Also for d < 6, we classify the soluble groups of derived length d and minimal 
composition length. 

1. INTRODUCTION 

A soluble group G is said to have minimal order (respectively minimal composition 
length) amongst the soluble groups of derived length d, if every soluble group H 
of derived length d has order (respectively composition length) at least that of 
G. We denote by MO(d) (respectively MC(d)) the set of all soluble groups of 
derived length d with minimal order (respectively composition length). Since the 
composition factors of a finite soluble group have prime order, the composition 
length of a soluble group of order pit • • • prkr is k1  + • • • + kr  if the pi are prime. 
Clearly the elements of MC(1) comprise the groups of prime order, and MO(1) 
contains only the group of order 2. The elements of MC(2) are nonabelian of order 
pq where p and q are primes and p divides q —1, while MO(2) has only one element: 
the symmetric group 53 of degree 3. 

In this paper, we describe the elements of MC(d) and MO(d) for d < 6, and 
give an incomplete description of the elements of MC(7) and MO(7). While it 
seems unlikely that MO(d) is always a subset of MC(d), we observe that this is 
the case for d < 6. One may also observe that the elements of MC(d), 1 < d < 6, 
have a unique chief series which coincides with the derived series. While it is easy 
to show that G(d-1)  is the unique minimal normal subgroup of an element G of 
MC(d) (respectively MO(d)), since G/G(d-1)  need not be an element of MC(d) 
(respectively MO(d)), it is not obvious that there should be a unique chief series 
for G. 

One motivation for the study of minimal soluble groups, apart from their intrinsic 
interest, is for the calculation of deficiency zero presentations. It was conjectured 
by Johnson and Roberston [8], that a finite soluble group with deficiency zero has 
bounded derived length. Kenne [10] showed this bound is at least 6 by exhibiting a 

1980 Mathematics Subject Classification (1985 Revision). 20 D10, 20 F15. 
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2 	 S. P. GLASBY AND A. WEGNER 

deficiency zero presentation for a group, which turns out to be an element of MO(6). 
In [9] Kenne suggested a method for constructing deficiency zero presentations 
which is practical only for groups of "small" order. The second author used this 
method to show that all three elements of MO(6) have deficiency zero presentations 
and trivial Schur multipliers (see Section 5). 

Throughout the paper we use the notation of [2] where the derived and compo-
sition length of a finite soluble group G are denoted by d(G) and n(G) respectively. 
The ith derived subgroup of G is denoted by G(i), and n(G('-1) /G(i)) is abbreviated 
by ni. 

2. MINIMAL SOLUBLE GROUPS OF DERIVED LENGTH 3 AND 4 

In this section we describe the elements of MC(d) and MO(d) where d equals 3 
or 4. First, we prove the following Lemma. 

Lemma 0. 

(i) If i > 2, then G(i')  / G(')  and G(' )  /G('+1)  are not both nontrivial cyclic 
groups, and so (ni,ni+i) (1,1). 

(ii) If i > 2 and (ni,ni+i ) = (2,1), then G('-1) /G(1+1) is extraspecial of order 
p3  and so G(i-1) /G(i) is abelian of type (p,p). 

(iii) If (ni,ni+i) = (1,a) where a > 0 and G('-1)  /G(i)  is the unique minimal 
normal subgroup of G/G('), then G /G(')  acts faithfully on G(')  /G(i+1)  . If, 
in addition, G(')  /G('+1)  is a Hall subgroup of G('-1) / G(i+1)  and G(i-1)  / G(i)  
acts fixed-point-freely on G(0/0+1), then G /G(i+1) is a split extension of 
G(i)  /G(i+1)  by G/G(i). 

Proof. (i) Suppose that G(i) /G(i+1) is cyclic. Since Aut(G(i)/G(i+1)) is abelian, we 
have G' < CG(G(i)  /G(i+1)) and so 

G(i) /G(i+1)  < Z(G7G(i+1)) < Z(G(i-1) /G(i+1)) 	as i > 2. 

Therefore G('-1) /G(i)  is not cyclic, otherwise G('-1)/G(i+1) would be abelian. 
(ii) Since G(i) /G(i+1) is cyclic, (i) shows that 

G(i) /G(i+1)  < Z(G(i-1) /G(i+1)) 

and G(i-1)  /G(i)  is noncyclic. Thus the abelian group G(i-1) /G(i)  has type (p,p). 
If G(i) /G(i+1)  has prime order q, then p = q, otherwise G(:-1)/G(i+1)  would be 
abelian. Therefore G(i-1) /G(i+1) is a nonabelian group of order p3, and so is 
extraspecial. 
(iii) By replacing G by G/G(i+1), we may assume that G(')  is a nontrivial abelian 
subgroup. Let C = CG(G(0). Then G(1) < C <I G so either 

G(i)  = C or G(i-1)  < C. 

If G(i-1) < C, then since G(i-1) /G(i) is cyclic, it follows that G('-1)  is abelian, a 
contradiction. Hence C = G(i)  and so G/G(i)  acts faithfully on G(0/04-1). 
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Suppose now that G(-1)/G(')  has order p and G(1)  has order coprime to p. Let 
H be a Sylow p-subgroup of G(i-1). By the Frattini argument G = G(i) K where 
K = NG(H). Now G(`) n K and H are normal subgroups of K whose orders are 
coprime, so H centralizes G(i) n K. However, H acts fixed-point-freely on G(i), so 
G(*)  n K = {1}, and therefore G is a split extension of G( Z)  by K. 	 ❑ 

Theorem 1. G E MC(3) if and only if either 

(i) (ni , n2 , n3) = (1,1,2) and G is a split extension V • H where V is abelian 
of type (r, r) and H E MC(2) acts faithfully and irreducibly on V, or 

(ii) (ni  , n2  , n3) = (1, 2,1) and G is a split extension N(a) where N is extraspe-
cial of order q3  and a is an automorphism of N of prime order which acts 
fixed-point-freely on N/N'. 

Furthermore, MO(3) = {S4, SL2(3)} where 54 is the symmetric group of degree 4 
and SL2(3) is the special linear group of degree 2 over the field of three elements. 

Proof. If d(G) = 3, then by Lemma 0(i), n2  + n3  > 3 so n(G) = n1  + n2  + n3  > 4. 
Thus any group G, such as S4, with d(G) = 3 and n(G) = 4 is an element of 
MC(3). Hence if G E MC(3), then n(G) = 4 and so (ni , n2 , n3) equals (1,1, 2) or 
(1, 2,1). 

CASE (i) (ni , n2 , n3) = (1,1,2). Then the abelian group G(2)  is noncyclic by 
Lemma 0(i) and so has type (r, r) where r is a prime. Now G(2) is a minimal 
normal subgroup of G because if N were a nontrivial normal subgroup of G properly 
contained in G(2) , then d(G/N) = 3 and n(G/N) = 3, a contradiction. Clearly 
G/G(2)  E MC(2) and by Lemma 0(iii), G/G(2) acts faithfully (and irreducibly) on 
G(2), and G is a split extension of G(2)  by G/G(2). Conversely, if V is an abelian 
group of type (r, r) and H E MC(2) acts faithfully and irreducibly on V, then the 
split extension G = V • H is an element of MC(3). (Note that 1H11 and 1V1 are 
coprime so V = Cv(H') x [H', V]. Since H acts irreducibly [H', V] is trivial or V, 
and since H acts faithfully [H' ,V] = V. This shows that G(2) = V and hence that 
d(G) = 3.) 

CASE (ii) (ni  , n2, n3) = (1, 2, 1). Then by Lemma 0(ii), G' is an extraspecial group 
of order q3  for some prime q. If GIG' has prime order p, then p q and G is a split 
extension of G' by an automorphism a of order p. Now a must act fixed-point-
freely on the abelian group V = G'/G(2) of type (q, q), otherwise [a, V] would be 
a proper subspace of V and 1G' I < q3. Conversely, if N is extraspecial of order q3  
and a is an automorphism of N of prime order p which acts fixed-point-freely on 
N/N', then p # q and the split extension N(a) is an element of MC(3). 

Amongst the groups in MC(3), those of smallest order are 54  in Case (i) and 
SL2(3) in Case (ii). Since groups with composition length greater than 4 have 
order greater than 24 = 1541 = 1SL2(3)1, it follows that MO(3) = {S4, SL2(3)}. ❑ 

Theorem 2. G E MC(4) if and only if (ni,n2, n3, n4) (1,1,2,1) and G is an 
extension of an extraspecial group N of order r3  by H E MC(2) where H acts 
faithfully and irreducibly on N/N'. Furthermore, MO(4) = {GL2(3), S4 } where 

GL2(3) and S4 are the two covering groups of S4. 



4 	 S. P. GLASBY AND A. WEGNER 

Proof. If d(G) = 4, then by Lemma 0(i), n2 + n3  > 3 so n(G) > 5. Thus any group 

G, such as GL2(3), with d(G) = 4 and n(G) = 5 is an element of MC(4). Hence if 

G E MC(4), then n(G) = 5 and the only choice for (ni , n2 , n3, n4) which complies 

with Lemma 0(i), is (1, 1, 2,1). By Lemma 0(ii), G(2)  is extraspecial of order r3. 

Clearly, G/G(2)  E MC(2) and G/G(4)  E MC(4). By Theorem 1, G/G(2)  acts 

faithfully and irreducibly on G(2) /G(3). Conversely, if N is extraspecial of order 

r3  and H E MC(2) is a group of automorphisms of N which acts faithfully and 
irreducibly on N/N', then an extension of N by H is an element of MC(4). 

Suppose now that G has smallest order amongst the elements of MC(4). Then 

G(2) has order 8 and is isomorphic to either the dihedral group D8 , or the quaternion 
group Q8 . Now Aut(D8) D8  and Aut(Q8) 54, so the only way a group H E 
MC(2) can act faithfully and irreducibly on G(2) /G(3)  is if G(2)  L-d Qg  and H S3 . 
There are two nonisomorphic groups which are extensions of Q8 by S3  where S3  
acts faithfully and irreducibly on Q8 /Q8: one is a split extension and is isomorphic 

to GL2(3), while the other group, which we call S4, is a nonsplit extension. These 
groups are the covering groups of 54. Since groups with composition length greater 

than 5 have order greater than 48 = IGL2(3)I = 1S41, it follows that MO(4) = 

{GL2(3), S4  }. 	 ❑ 

3. MINIMAL SOLUBLE GROUPS OF DERIVED LENGTH 5 AND 6 

Theorem 3. G E MC(5) if and only if either 

(i) (ni , 	, n5) = (1,1,2,1, 2) and G is a split extension V • H where H E 
MO(4) and V is a faithful absolutely irreducible two-dimensional GF(s)H - 
module where s is a prime, or 

(ii) (ni ,..., n5) = (1,2,1,2,1) and G is an extension of an extraspecial group 
N of order s3  and exponent s by the symplectic group Sp2(3), where Sp2(3) 
acts faithfully and absolutely irreducibly on N/N'.  

Furthermore, MO(5) contains only one group: the split extension V • GL2(3), where 
V is the natural module for GL2(3). 

Proof. If d(G) = 5, then it follows from [2, Theorem 2] that n(G) > 7. If V is 
the natural module for GL2(3), then the split extension G = V • GL2(3) satisfies 
d(G) = 5 and n(G) = 7. Hence if G E MC(5), then n(G) = 7. If G E MC(5), 
then it follows from Lemma 0(i) that (ni, 	, n5) equals either (1,1,2,1,2) or 
(1, 2, 1, 2, 1). 

CASE (i) (ni ,...,n5) = (1,1, 2,1, 2). Now G(2) /G(4)  is an extraspecial group of 
order r3  by Lemma 0(ii) and GO) is abelian of type (s, s). It follows that r s and 

G/G(4)  E MC(4). Thus G(3) /G(4)  is the unique minimal normal subgroup of the 
extraspecial group G(2)/G(4)  and by Lemma 0(iii), G(2)/G(4) acts faithfully, and 
hence irreducibly, on G(4). One may show that an ordinary faithful irreducible rep-
resentation of an extraspecial group is necessarily absolutely irreducible. Further-
more, each faithful absolutely irreducible representation of an extraspecial group of 
order r3  has degree r by [6, V Satz 16.14]. Therefore r = 2 and G(2)/G(4) Dg  or 

Q8 . Since G/G(2)  acts faithfully on G(2) /G(3), we must have G(2)/G(4) Qg  and 
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G/G(2) e.-j  S3. By Theorem 2, G/G(4)  E MO(4). By Lemma 0(iii), G/G(4) acts 
faithfully, and hence absolutely irreducibly, on G(4). It can be shown (see [3], for 

example) that GL2(3) (respectively S4) has a faithful absolutely irreducible two-
dimensional representation over the prime field GF(s) if and only if s is odd and 
-2 (respectively 2) is a square in GF(s). 

Conversely, suppose that H E MO(4) and V is a faithful absolutely irreducible 
two-dimensional GF(s)H-module. Then the split extension G = V • H satisfies 
d(G) = 5 and n(G) = 7. (Note that H(3)  = Z(H) has order 2 and so the nontrivial 
central element induces the transformation -1 on V. As H acts faithfully, s 0 2, 
and so [H(3), V] = V. Therefore G(4)  = V and d(G) = 5.) 

CASE (ii) (ni, 	, n5) = (1,2,1,2,1). By Lemma 0(ii), G'/G(3)  and G(3)  are ex- 
traspecial groups of order, say, r3  and s3  respectively. Arguing as above, r = 2 
and s 0 2. Therefore G'/G(3)  Qg  and G/G' has order 3 so G/G(3)  is isomor- 
phic to Sp2(3) 	SL2(3). By Lemma 0(iii), G/G(3) acts faithfully on G(3) /G(4). 
This representation is irreducible otherwise G has a normal subgroup M such that 
G(4)  < M < G(3), and G I M contradicts Lemma 0(i). Therefore G(3) has no char-
acteristic subgroups strictly between G(3) and G(4), and so G(3) is the extraspecial 
group of exponent s. In addition, G/G(3)  acts absolutely irreducibly on G(3)/G(4). 
(Otherwise, if F is the algebraic closure of GF(p), then G/G(3) would be isomorphic 
to a subgroup of the matrix group 

f(a 	
I a, b,c E F, ac 0} 

0 cb) 

and so d(G/G(3)) < 2, a contradiction.) 

Conversely, if V is a faithful irreducible two-dimensional GF(s)Sp2(3)-module, 
then s 0 2. One may show (cf. [4, Section 7]) that Sp2(3) preserves a nondegenerate 
alternating bilinear form on V, and hence Sp2(3) acts on the extraspecial group N 
of order S3  and exponent s by [4, Sections 2,3]. Arguing as above, it follows that if 
G is an extension of N by Sp2(3) where Sp2(3) acts faithfully and irreducibly on 
N/N', then G E MC(5). If s 0 3, then G is a split extension while if s = 3, there 
are three possible extensions. 

We now classify the elements of MO(5). First, we show that the group in MC(5) 
of smallest order is the split extension G = V • GL2(3), with natural action. If K 
is a group occurring in Case (ii), then IKI = 233s3  > 2433  = IGI. If K is a group 
occurring in Case (i), then IKI = 243.92 > 2433 = IGI. Thus equality holds if and 
only if .s = 3, in which case K is a split extension V • H where V is abelian of type 
(3, 3) and H is isomorphic to a subgroup of GL2(3). Since IHI = IGL2(3)I, H is 
isomorphic to GL2(3) as claimed. 

It remains to prove that there is no group G with d(G) = 5, n(G) > 7 and 

IGI < 2433. If G were such a group, then IGI = 273. If P were a Sylow 2-subgroup 
of G, then IG : NG(P)I is either 1 or 3. If IG : N(P)I = 1, then P is a normal 
subgroup of G and GI P has order 3. It follows that G' is contained in P and 

IG'I > -11 z 	by [6, III Satz 7.11], a contradiction. If IG : NG(P)I = 3, then G acts 
by left translation on the left cosets of P in G. This induces a homomorphism p 
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of G onto S3. Now G(2)  < ker(p) and IG(2)1 > 26  by [6, III Satz 7.11]. Therefore 
G(2)  = ker(p). Moreover, the proof of [6, III Satz 7.11] shows that G(2) /G(3)  
is elementary abelian of order 22. By [6, III Satz 11.9], G(2)  is metacyclic, a 
contradiction. Hence, there are no groups of order 273 and derived length 5, and 
so MO(5) = {V • GL2(3)} as claimed. 	 0 

Theorem 4. G E MC(6) if and only if G is an extension of the extraspecial group 
of order s3  and exponent s by H E MO(4) where H acts faithfully and absolutely 
irreducibly on N/N' . There are precisely three groups in MO(6), namely the 
extensions of the extraspecial group N of order 33  and exponent 3 by GL2(3), 
where GL2(3) acts naturally on N/N'.  

Proof. If d(G) = 6, then n(G) > 8 by [2, Theorem 2]. First, we assume there is a 
group G with d(G) = 6 and n(G) = 8. Then, after determining the structure of G, 
we show that G does indeed exist. 

If d(G) = 6 and n(G) = 8, then it follows from Lemma 0(i) that (ni, , n6) = 
(1,1, 2, 1, 2,1). Hence, G/G(5)  and G' are elements of MC(5). By Theorem 3(i), 
G / G(4)  E MO(4) and by Theorem 3(ii), GO) is extraspecial of order S3  and expo-
nent s. Also, G/G(4)  acts faithfully, and hence absolutely irreducibly, on G(4) /G(5)  
by Lemma 0(ii). 

Conversely, let H E MO(4). As remarked above, for appropriate primes s there 
is a faithful absolutely irreducible degree-two representation of H over GF(s). It 
is shown in [4] that this representation preserves, up to a sign, a nondegenerate 
alternating bilinear form. By [4, Sections 2,3] there is an extraspecial group N 
of order S3  and exponent s containing H in its automorphism group. Therefore, 
extensions of N by H where H acts faithfully and irreducibly on N/N' do indeed 
exist. If G were such an extension, then it follows from the proof of Theorem 3 
that d(G) = 6. This classifies the elements of MC(6). Note that if s 0 3, then 
G is a split extension of N by H. If s = 3, then H GL2(3) and there are three 
extensions of N by H: one split and two nonsplit extensions. 

If G E MC(6), then IGI = 243s3  where s is odd, so the three groups with s = 3 
have minimal order amongst the elements of MO(6). To show that these three 
groups are elements of MO(6), we must show there are no groups G satisfying 
d(G) = 6, n(G) > 8 and IGI < 2434. It follows from [6, III Satz 7.11] that G is not 
nilpotent. Therefore IGI  equals 283, 2732  or 285, and so n(G) = 9. 

By Theorem 3, IG/G(5) I > 2433  and since IGI < 2434 , we must have IG(8) I = 2. 
We may assume that G has a unique minimal normal subgroup. Therefore this is 
G(5)  and 02,(G) is trivial. Let P = 02(G) and let IP/cD(P)I = 2'. We use the 
fact that G/P acts faithfully on the r-dimensional vector space P/ (P) by [6, VI 
Hilfssatz 6.5], and consider four cases. 

CASE (i) d(P) > 4. By [6, III Satz 7.11], n(P) > 23+3 = 11. This is a contradiction 
as 9 = n(G) > n(P) > 11. 

CASE (ii) d(P) = 3. Now d(G/ P) > 3 so n(G / P) > 4. In addition, n(P) > 6 so 

9 = n(G) = n(G / P) n(P) > 6 + 4, 
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a contradiction. 

CASE (iii) d(P) = 2. Now d(G/P) > 4 so n(G/P) > 5. Since G/P is a soluble 
subgroup of GL,-(2) with n(G/P) > 5, it follows that r > 4. Hence n(P) > 5 and 
so n(G) > 10, a contradiction. 

CASE (iv) d(P) = 1. Now d(G/P) > 5 so n(G/P)?. 7. The argument of Case (iii) 
shows that r > 4. Therefore n(P) > 4 and so n(G) > 11, a contradiction. 

Hence, no such group exists, and the proof is complete. 	 ❑ 

4. MINIMAL SOLUBLE GROUPS OF DERIVED LENGTH 7 

In this section we show that if G E MC(7), then 12 < n(G) < 13. The lower 
bound is proved in Theorem 7 below. Guided by the proof of Theorem 7, we 
construct a family GI, of groups with d(Gp) = 7, IGpl = 2334p6  and n(Gp) = 
13, thereby establishing the upper bound. We show that if G E .A40(7), then 
IC! < 21034 by constructing a group K with d(K) = 7 and IKI = 21034 . In [4, 
Section 7] soluble groups with arbitrarily large derived lengths are constructed from 
extraspecial groups. A group H of order 211313  and derived length 10 is described 
which has such a group K as the quotient group H/H(7). Although K is not an 
element of MC(7), we have IKI < 233476  < IGp I, and by a conspiracy of small 
primes, K may be an element of MO(7) which is not an element of MC(7). 

Before proving Theorem 7, we establish two preliminary results. 

Lemma 5. A p-group of order p6  and derived length 3 has maximal class. 

Proof. Suppose P is such a p-group. It follows from the proof of [6, III Satz 7.11] 
that IP/P11 = p2 , IP1/P(2)1 = p3  and IP(2)I = p. Now -y2(P)/-y3(P) is cyclic since 

Ph2 ( P) I = p2  . Therefore, 

P(2)  = [72(P) , 72(P)] = [72(P) , 73(P)] 75(P), 

and so -y5(P) is nontrivial. Hence P is of maximal class. Note that such groups can 
be classified using Blackburn's paper [1]. In particular, p is not equal to 2 or 3. 0 

Lemma 6. Let G be a p-soluble group such that Opi(G) = {1}. If P = Op(G) and 
P/4 (P) has order pr.  then G/P is isomorphic to a completely reducible subgroup 
of GLr(p). 

Proof. By [6, VI Hilfssatz 6.5] G = G/P acts faithfully on the r-dimensional vector 
space V = PP:1)(P). Suppose that W is an s-dimensional G-invariant subspace of 
V corresponding to a normal subgroup of G lying between (I)(P) and P. Now G is 
a subgroup of the parabolic group H which stabilizes the flag {0} < W < V. Since 
H acts on W and V/W, there is a homomorphism 

(1): H GL(W) x GL(V/W) 
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whose kernel is isomorphic to the matrix group 

( Ios Iris  ) 

of order ps(1-8). Since Op(G) is trivial, the restriction of q to G is injective. Hence 

G is isomorphic to a completely reducible subgroup of GL(V). 	 0 

Theorem 7. If G has derived length 7, then its composition length is at least 12. 

Proof. It suffices to prove that if G E MC(7), then n(G) > 12. Our proof is similar 

in style to [2, Theorem 8]. Now G(6) is the unique minimal normal subgroup of G. 

Therefore G(6) is an elementary abelian p-group and Op,  (G) = {1}. Let P = Op(G), 
and let IP/(1)(P)I = pr. We consider five cases. 

CASE (i) d(P) > 5. By [6, III Satz 7.11], n(G) > n(P) > 2" -I- 4 > 12. 

CASE (ii) d(P) = 4. Then n(P) > 11. Since d(G/P) > 3 we have n(G/ P) > 4 so 
n(G) = n(G/P) -I- n(P) > 4 + 11 > 12. 

CASE (iii) d(P) = 3. Then n(P) > 6 and d(G/P) > 4 so n(G/P) > 5. Thus 
n(G) > 5 + 6 = 11. We must rule out the case when n(G) = 11. In this case 
n(P) = 6, and it follows from Lemma 5 that P is a p-group of maximal class. Hence 
P/4)(P) has order p2  and Cp(-y2(P)/74(P)) is a characteristic subgroup of index p. 
By Lemma 6, G/P is isomorphic to a subgroup of the group of GL1(p) x GL1(p). 
This shows that d(G/P) < 1, a contradiction. Therefore n(G) > 12 as claimed. 

CASE (iv) d(P) = 2. Now G/P is a soluble subgroup of GL,-(p) with d(G/P) > 5. 
It follows from [11] that r > 3, and so n(P) > 4. By [2], n(G/P) > 7 and hence 
n(G) > 11. 

We must rule out the case when n(G) = 11. In this case r = 3 and both c(P) 
and P' have order p. If Z(P) also has order p, then P would be an extraspecial 
group of order p4 , a contradiction. Hence Z(P) lies strictly between (I)(P) and P. 
By Lemma 6, G/P is isomorphic to a subgroup of GL1(p) x GL2(p). By [11] it 
follows that d(G/P) < 4, a contradiction. Hence n(G) > 12 holds in this case too. 

CASE (v) d(P) = 1. Since d(G/P) > 6, we have n(G/P) > 8 by [2] and r > 4 by 
[11]. Therefore n(G) > 12 and the proof is complete. 	 0 

We now construct a group G with d(G) = 7 and n(G) = 13. 

Example. Let V be an r-dimensional vector space over the finite field GF(q). 
Then the homogeneous component A2V of the exterior algebra AV has dimension 
(D. We construct a group of order qm where m = r + (2) by setting P = V x A2 V, 
and defining multiplication by the rule 

(vi , wi )(v2 , w2 ) = (vi -I- v2, wi + w2  -I- vi  A v2 ) 	where v1, v2  E V, w1, w2 E A2  V. 

This makes P into a special group of order en. Note that when q is even, P is 
elementary abelian, and when q is odd 

P' = 4)(P) = Z(P) = {(0,w) I w E A2V} 
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is elementary abelian. There is a right action of GLr(q) on the group P defined by 

(v, w)g = (vg ,w(g A g)) 

which gives rise to a split extension P • GL,-(q). 

Suppose now that H E MC(5) and the subgroup H(3)  is extraspecial of order 

33  and exponent 3. Then H is one of the three extension of H(3)  by Sp2(3). 

(There are at most three such extensions because if g H(3)  has order 3 in H/H(3), 

then g3  E Z(H' 3)), so there are three choices for g3. Indeed, the resulting three 
groups are nonisomorphic.) One may determine the odd primes p for which there 
is an absolutely irreducible faithful representation 0: H 	GL3(p). (A necessary 
condition for the existence of is that p 1(mod 3), and if H is a split extension of 

H(3)  by H/H(3) , this condition is also sufficient. If H is a nonsplit extension, then 

p 	1(mod 9) is sufficient.) If q = p and r = 3, then the group P above has order 

ps  and the subgroup G = P • H of P • GL3(p) has order 2334p6 , and so n(G) = 13. 
If r = 3 and g has matrix A relative to the basis el , e2 , e3  for V, then the matrix 
of g A g relative to the basis e2  A e3, e3  A e1 , el  A e2  for A2V is det(A)(A-1)t . Now 

a nontrivial element g E H(4)  = Z(H) induces a scalar transformation wl on V 
where w is a primitive cube root of 1, and so g A g induces w21 on A2V. This shows 
that G(5) = P, and so d(G) = 7. Note also that the smallest prime p for which the 

group G p  exists is p = 7. 

5. DEFICIENCY ZERO PRESENTATIONS 

In this section we show that the soluble groups of derived length 6 and minimal 
order have deficiency zero presentations. 

By Theorem 3, the split extension V•GL2(3), where V is the natural module for 
GL2(3), is the only element of MO(5). The maximal subgroups of order 432 of the 
projective special linear group PSL3(3) are isomorphic to V•GL2(3). Indeed, there 
is a monomorphism from V•GL2(3) into SL3(3)('Ld P S L3(3)) defined by 

d 
(x, 

A)1-4et(A)A 	0 
 

x 	det(A) ) 

Jamali [7] found the deficiency zero presentation (R, S R2  S3  = T = 1) for 
V•GL2(3) where T is the word 

T = (RS)3  (RS-1  RS)2  R-1  SRS-1  R-1  S(R-1  S-1)3  R-1  S, 

and where R and S are identified with the matrices 

0 0 0 1 0 
0 

(1 
-1 0 

) 
and -1 

( 
-1 0 

0 0 -1 0 1 1 

By Theorem 4, the elements Go, G1  and G2 of MO(6) are extensions of V•GL2(3) 
by the alternating module over the field with 3 elements. The second author de-
veloped programmes for calculating finite soluble quotients of finitely presented 
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groups in the GAP programming system (cf. [13] and [12]). These programmes 
were used to compute the appropriate extensions Gi, 0 < i < 2, of V•GL2(3). The 

0 < i < 2, have presentations 

Gi = (R,S I R2S3  = Ti, [T, = T,[T,S]= T 3  = 1), 

where T is defined above. The following deficiency zero presentations were found 

Go  = (X,Y I XY(X-1Y)2 XY-2  = X2 YX-1Y-3XY2  = 1) and 
G1 = (X, Y  I (XY)2XY-2X-1Y = X2YX-2YX2 Y-2  = 1), 

and Kenne [10] found the following deficiency zero presentation 

G2  = (X,Y I (XY)2Y-6  = X4Y-1XY-9X-1Y = 1). 

Coset enumeration may be used to show that the maps 

X 1-* TS-1(RS)2 R, Y H TS-1RSR 

X 1-* S2(RS)2 R, 	Y 1-* S2RSR 

X 1-* TS-1R, 	Y F-►  S2RSRS-1(RS)3 R 

define isomorphisms between the respective presentations of Go ,G1  and G2. 

Note that G2 is isomorphic to the quotient group HMO) where H is the group 
described in Section 4, and is a split extension of the exponent-3 extraspecial group 
by GL2(3). The group K = H/H(7)  was shown to have Schur multiplier of order 
2 (and H/H(8)  is a covering group). We showed that H'/H(8) has a trivial Schur 
multiplier, but were unable to find a deficiency zero presentation for it. 
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