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Abstract

Geometric semigroup theory means different things to different people, but it is agreed
that it involves associating a geometric structure to a semigroup and deducing properties
of the semigroup based on that structure.

One such property is finite presentability. In geometric group theory, the geometric
structure of choice is the Cayley graph of the group. It is known that in group theory
finite presentability is an invariant under quasi-isometry of Cayley graphs.

We choose to associate a metric space to a semigroup based on a Cayley graph of
that semigroup. This metric space is constructed by removing directions, multiple edges
and loops from the Cayley graph. We call this a skeleton of the semigroup.

We show that finite presentability of certain types of direct products, completely
(0-)simple, and Clifford semigroups is preserved under isomorphism of skeletons. A
major tool employed in this is the Svarc-Milnor Lemma.

We present an example that shows that in general, finite presentability is not an
invariant property under isomorphism of skeletons of semigroups, and in fact is not an
invariant property under quasi-isometry of Cayley graphs for semigroups.

We give several skeletons and describe fully the semigroups that can be associated

to these.
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Chapter 1

Introduction and Background

When you are a Bear of Very Little Brain,
and you Think of Things, you find
sometimes that a Thing which seemed very
Thingish inside you is quite different when
it gets out into the open and has other

people looking at it.

Winnie the Pooh

Geometric group theory is well explored and described terrain, much like reading
an Ordnance Survey map, in comparison to the strange and murky ocean floor charts of
geometric semigroup theory. Much of this is due to the underlying geometric structures
of groups already being developed and understood in their own right. Semigroups,
however, do not immediately lend themselves to a well-known geometric structure. The
idea of viewing semigroups from a geometrical standpoint has become increasingly
common in recent years, and various different approaches can be found in [8, 10, 15]. A
popular choice for a geometric structure is the Cayley graph of a semigroup, which is an
inherently directed graph. The machinery for understanding directed spaces is less well
studied than that of undirected spaces, namely semi-metrics and metrics respectively.
This thesis is an attempt to mesh semigroup theory with a well-understood notion of
geometry and discover if properties can be sensibly transferred from such a space to the

semigroup.



2 1.1. Groups and Finite Presentability

1.1 Groups and Finite Presentability

It has been observed (see for example [j5, 4]) that the property of being finitely presented
is preserved under quasi-isometries (and therefore also isometries) of groups. We give
a geometric proof for the quasi-isometry invariance of finite presentability, and a more
combinatorial proof for isometry invariance of finite presentability.

Theorem 1.1 ([4, Proposition 8.24])

Let G and H be groups such that Cay(Q) is quasi-isometric to Cay(H) (G is quasi-
isometric to H). Then G is finitely presented if and only if H is.

This proof relies on a lot of fairly involved topological methods which are outside the
scope of this thesis. Since our focus will lean more towards graphs that are isometric, we
give an alternative proof for groups that have isometric Cayley graphs which reduces the
amount of topological concepts needed. We introduce the concept of a skeleton graph
which is the fundamental object considered in this thesis.

Definition 1.2

A graphisatuple (V,E, ., 7). V is a set of vertices of the graph and E is a set of edges.
v E — V is a map denoting the initial or start vertex, and 7 : EE — V is a map giving
the terminal or end vertex. A graph may be labelled, where each edge is assigned a
label by a labelling function \ : E — A, from some set of labels A.

The Cayley graph of a semigroup S = sgp(A) with respect to the generating set A
is the labelled directed graph (V, E, 1,7, \), where V. = S and there is one edge e € E
for each x € S and a € A, namely the edge with start vertex (e). = x, end vertex
(e)T = y and label (e)\ = a.

Let S be a semigroup generated by A and let Cay(S, A) = (S, E,t,7,\) be the
Cayley graph of S with respect to A. We define a new set of edges

F={(e),7(e)), (1(e),e(e)) | e € E,u(e) # 7(e)}.

We then define two functions on this set7: F — Sand7 : F — S. Let f = (x,y) be
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an edge in I then

(fle=2
(HT=y

Then the skeleton of S with respect to A is the (undirected) graph
T(S,A) = (S, F,T,7).

We can intuitively think of the skeleton graph as the graph which is obtained by
taking the undirected version of the Cayley graph and removing any multiple edges or

loops that occur.

Theorem 1.3
Let G = gp(A) and H = gp(B) be groups such that T (G, A) is isometric to t (H, B).
G is finitely presented if and only if H is.

Proor: Suppose G is finitely presented. This means that G is finitely generated, say
|A| = k, so each vertex of 1 (G, A) has degree less than or equal to 2k. Let H have
generating set B. Since 1 (G, A) = 1 (H, B), each vertex of { (H, B) also has degree
of less than or equal to 2k. If B is finite there is nothing to show. For a contradiction,
assume B is infinite. Each vertex in T (H, B) must have a finite number of neighbours
since T (H, B) is locally finite. This implies that there are an infinite number of edges
between (at least) two vertices, say u and v. Without loss of generality, we consider
only two edges from u to v; edge a and edge b. From this we see ua = ub and since H
is a group, a = b. Hence there are only finitely many edges at each vertex in Cay(H, B)

and thus B is finite.

G is finitely presented so there exists a finite set of relators for G, say
R = {ry,...,r}. Consider a vertex v in Cay(G, A). Each r; forms a simple cy-
cle starting and ending at v - if there is some r = s7 . .. s,;, say, which does not form a
simple cycle, consider the vertex f which represents the longest subword [ = s1...5;
of r; such that fs;s;y1...84+5 = f forsome h and fs;s;41 ... s;4p is a product of ¢

simple cycles. Then s;8;41 - .. S;1, represents at most ¢ relators, {t1,...%;} say, and
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will form at most ¢ simple cycles at v so we can add these to our set R. Then the relation

r can be written as

1

(81 o 8171)151(81 . 3171)7 . (Sl e Slfl)tt(sl . 8171)71(51 . 5171)(Sm8m,1 o 81+h+1)71.

We iterate this process over the last two terms until we are left with a product of conju-

gates of relations in R \ {r}, so we can remove r from R.

Now we claim that these are all the simple cycles based at v. Suppose there exists an-
other simple cycle labelled ¢ # r; beginning and ending at v. Since G is a group then

c =1, and c is a product of conjugates of relators in R, say

c=gim1g1 "gaTng2 . GnTngn .

Then c cannot be a simple cycle, but a series of cycles already in R and “lollipops” (a
simple path followed by a simple cycle from R followed by the inverse of the simple

path). Hence R describes all simple cycles at v.

Now consider 1 (H, B). Since it is isomorphic to | (G, A), for any vertex v there are
a finite number of simple cycles starting and ending there, in particular for the vertex
corresponding to 1 € H. For these cycles based at 1, there are only | B| ways to label
each edge in a cycle, and hence at most n| B| different relators described by each cycle.
We then claim that this (finite) set of relators S, is a sufficient set of relations for H.
Suppose there exists some relator ¢ that is not a consequence of any relators in S. Then g
must form a cycle based at 1, but this cannot be a simple cycle, as these are all contained
in S. We now use the method from above to rewrite ¢ as a product of conjugates of

relations in S. Hence S is sufficient, and H is finitely related, and thus finitely presented.

The proof of the converse is analogous. g

1.2 Semigroups and semimetric spaces

In order to generalise these notions from group theory in to semigroup theory, connec-

tions between semigroups and what we here call semimetric spaces have been made in
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[8, 7, 91. There is some debate about how to correctly name these spaces equipped with
asymmetric distance functions. Many authors refer to these as quasimetric spaces [|1§],
yet others use the term quasimetric to refer to a metric satisfying a generalised form of
the triangle inequality [0]. We choose to follow [§] and use semimetric here (a pleasing
choice, give that we associate them to semigroups).

Definition 1.4

A semimetric space is a pair (X, d) where X is a set and d : X — [0, 00| is a distance

function that satisfies:
i d(z,y) =0ifandonlyifr =y
i d(z,z) < d(z,y) + d(y, 2)

forallz,y,z € X.

A natural semimetric space associated to a semigroup S = sgp(A) is given by
(S,da), where
da(a,b) = inf{lw| | w € A", aw = b},

that is, the smallest length of word w, such that aw = b.
A map p : X — X between two semimetric spaces (X, dx) and (X, dv) is a

(A, €)-quasi-isometric embedding if for all z,y € X

S (@) — & < d(pla), 9(p) < Mx(w,g) +2.

A subset Z C X is called p-quasi-dense if for every T € X there exists a z € Z with
dw (T, 2) < pand d(2,7) < p. If o : X — X is a (), €)-quasi-isometric embedding
and its image is p-quasi-dense, then ¢ is called a (), e, u)-quasi-isometry and X and
X are said to be quasi-isometric.

Two semigroups S = sgp(A)and T = sgp(B) are said to be quasi-isometric if
the spaces (S,d4) and (T, dp) are quasi-isometric. Gray and Kambites show in [B, J]
some results for finite presentability as a quasi-isometric invariant for certain types of

semigroups.
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Theorem 1.5 ([9, Theorem A}])
Let M and N be left cancellative, finitely generated monoids which are quasi-isometric.

Then M is finitely presentable if and only if N is finitely presentable.

Theorem 1.6 ([8, Theorem 4])
For finitely generated monoids with finitely many left and right ideals, finite presentabil-

ity is a quasi-isometry invariant.

In particular, Theorem E includes Clifford monoids and completely
(0-)simple semigroups [8, Corollary 2].

We take a different approach in this thesis, and instead of associating a semimetric
space to a semigroup, we will associate a metric space to the semigroup. There are both
advantages and disadvantages to our approach when compared to the semimetric space
approach.

The main advantage is that we are able to apply techniques associated with met-
ric spaces, such as the Svarc-Milnor lemma. Another advantage is that the rigidity of
the skeletons will also allow us to more easily find semigroups which possess given
skeletons, such as in Chapters B and B The fact that we consider isomorphic skeletons
allows us to approach the search in a combinatorial way by considering all possible
edge directions and labellings. Were we to look at quasi-isometries of skeletons here,
we would have to account for stretching and squashing of the graph, and our approach
would become much more difficult to implement.

A disadvantage to our approach is that we must always consider the generating set
when discussing skeletons. We are looking for isomorphic skeletons, and changing the
generating set of a semigroup will not necessarily result in an isomorphic skeleton: for
example the integers generated by {—1, 0, 1} has a different skeleton to the integers gen-
erated by {—1, 0, 2}. This is not an issue for the approach taken by Gray and Kambites,
as Proposition 4 of [§] tells us that for two generating sets A and B of a semigroup S
the semimetric spaces given by the word metrics are quasi-isometric.

We will consider preservation of finite presentability under isomorphism of skeleton
graphs in Chapters H, E] and E, in which we will look at both Clifford semigroups and

completely simple semigroups amongst others. When a property is preserved under
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isomorphism of skeletons, we will say that this property is skelefon invariant.
Chapter E answers an open question posed by Gray and Kambites
Question 1.7 ([8, Question 1])
Is finite presentability a quasi-isometry invariant of finitely generated semigroups in

general?

In Chapter B, we will present some examples of skeletons, and prove that these

skeletons represent only a finite number of semigroups, which are described therein.






Chapter 2

Definitions

It is a capital mistake to theorize before

one has data.

Sherlock Holmes

In this chapter we establish basic definitions, notation and concepts that will be used

throughout the thesis.

2.1 Semigroups

Definition 2.1
A semigroup is a set S together with an operation - : S x S — S such that for all
a,b,ce S

(a-b)-c=a-(b-c)

that is, - is associative.

Unless required for emphasis, we will often omit the - notation for the binary op-
eration, often referred to as multiplication, and simply juxtapose elements to denote
multiplication. There are two types of semigroup with special properties that we would

like to be able to refer to explicitly.
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Definition 2.2

A monoid is a semigroup M which contains an element e such that

forallm € M.

The element e is known as an identity, or more properly, the identity, since it is
unique. We will often write 1 to represent the identity element in a monoid. The family
of monoids forms a subfamily of semigroups. We now define a subfamily of monoids,

the family of groups.

Definition 2.3

A group is a monoid G in which for all g € G, there exists a ¢’ € G such that

/

99’ =g'g=1

The element ¢’ is the inverse of g, and is unique. The inverse of g will often be

denoted by g—!

Given two semigroups, we might like to compare their structure via mappings.

Definition 2.4
Let (S, ) and (T,~) be two semigroups. A semigroup homomorphism is a map ¢ : S —
T such that

(8)p7(s)p = (s-5")p

forall s,s' € S.
An injective homomorphism, that is, one such that

(@)p=(yp = v=y

for all z,y in S is known as a monomorphism. A surjective homomorphism, where for

all ¢ € T there exists an s € S such that

(s)p =1t
is an epimorphism.

10
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If S and T are both monoids and

(1s)p =17

then a semigroup homomorphism, epimorphism or monomorphism ¢ is called a monoid
homomorphism, epimorphism or monomorphism. If S and 7" are both groups, then ¢
is automatically a group homomorphism, epimorphism or monomorphism and requires
no extra conditions.

Finally, the map ¢ is a semigroup isomorphism between S and T if ¢ is a bijective
semigroup homomorphism. If there exists a semigroup isomorphism between .S and 7',

we say S and T are isomorphic, and write S = T

2.2 Presentations

We will wish to describe various semigroups without listing all their elements and mul-
tiplication. One such way of doing this is via a presentation, which first require the
concept of generation.
Definition 2.5
Let S be a semigroup and let X be anon-empty subset of S. Let {T; };c 1 be the collection
of all subsemigroups of S which contain X. Then T = mie] T; is the subsemigroup of
S generated by X. We denote this by T = sgp(X).

If S = sgp(X) then we say that X is a generating set for S.

A presentation requires two elements: a set of generators and a set of relations.
Definition 2.6
A semigroup presentation is a pair sgp(A | R) where A is an alphabet and a set of

generators, and R C AT x AT is a set of relations.

For a relation (u,v) € R we will normally write v = v.
Definition 2.7
The semigroup S defined by a presentation sgp(A | R) is any semigroup isomorphic to

AT /p, where p is the least congruence containing R.

11



12 2.2. Presentations

If a semigroup S is isomorphic to A™/p for a given presentation sgp(A | R), we
will write S = sgp(A | R).
Definition 2.8
A semigroup S is finitely presented if there exists a presentation sgp(S | R) such that
A and R are finite, and S = A /p.

We will write w; = w, if two words are equal in AT, and w; = ws if two words
are equal in S. For two words wy,ws € AT, we say that ws is obtained from w; by
applying a relation in R if we can write wy = auf and wy = av3 where either u = v
or v = u is a relation in R, and o, 3 € A*.

Definition 2.9

An elementary sequence from w; to wq is a sequence
W1 = 81,82,...,8p, = W2

where s; € AT and for each 1 < ¢ < k — 1 we have that either s; = s;11, or S;11 is
obtained from s; by applying a relation from R. If such a sequence exists, we say that

the relation w1 = ws is a consequence of relations in R.

A relation wq = w9 holds in S = sgp(A | R) if and only if it is a consequence of
relations in R.

Stable semigroups (as found in [|16]), which are those avoiding critical pairs, will
be useful to us in this thesis when deciding whether direct products of semigroups have
finite presentations. A critical pair may be thought of as a relation in S, where all

elementary sequences go via shorter words.

Definition 2.10
Let S = sgp(A | R), and let w1,wy € AT be arbitrary words. The pair (w1, ws) is

called a critical pair if:

(i) the relation wy = ws holds in S;

(ii) for every elementary sequence wy = S1, 83, . ..,Sn, = Ws from w1 to wo, there

exists an 1 < i < k such that |s;| < min(Jw |, |wa]).

12
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Definition 2.11
Let S be a semigroup with finite generating set A. We say that S is stable with respect
to A if there exists a finite presentation sgp(A | R) for S, with respect to which S has

no critical pairs.

Stability is in fact invariant under change of generating set [Proposition 3.4,[[1€]),
so we may refer to a semigroup being stable without reference to a specific generating

set.

2.3 Graphs

Graphs describe a collection of objects, or vertices, and the connections, or edges, be-
tween them. There are many ways to define a graph: the definition chosen here is to

allow us to work with graphs that have multiple edges, loops and labels.

Definition 2.12
A graphisatuple (V,E, ., 7). V is a set of vertices of the graph and E is a set of edges.
L : E — V is a map denoting the initial or start vertex, and T : E — V is a map giving

the terminal or end vertex.

Graphs can be directed or undirected. A graph is undirected if and only if for every
edge e € E with (e). = x and (e)7 = y, there exists an edge f € E such that (f)t =y
and (f)T = .

We note that in this definition of graph we allow for multiple edges between vertices
and loops on edges. We call a graph that contains no multiple edges or loops a simple
graph.

Graphs may also be labelled, where each edge is assigned a label by a labelling
function \ : £ — A, from some set of labels A.

The indegree of a vertex is the number of edges terminating at that vertex. The
outdegree is the number of edges originating at that vertex. For a directed graph, the
degree of a vertex is the sum of the indegree and outdegree. For an undirected graph,

we define the degree of a vertex to be equal to the number of vertices adjacent to that

13



14 2.3. Graphs

vertex. Note that a vertex can be adjacent to itself by way of a loop.

A graph is finite if it has finitely many vertices and edges. A graph is infinite if it
has infinitely many vertices or edges. A graph is locally finite if each vertex has finite
degree.

Definition 2.13
The (vertex)-induced subgraph of ' = (V, E, ¢, 7) induced by W C 'V is the graph with
vertex set W and edge set ' C E, where F' = {e € E | v(e),7(e) € W}, and the

maps L [pand T [p.

An important definition for us is that of the Cayley graph, which allows us to asso-
ciate a graph to a semigroup. It gives a representation of the multiplicative structure of
the semigroup with respect to a particular generating set.

Definition 2.14
A Cayley graph of a semigroup S = sgp(A) is a labelled directed graph (V, E, v, T, \),
where V. = S. Forall x,y € S and a € A such that xa = y there exists an edge e,

with the start vertex (e)i. = x, the end vertex (e)T = y and the label (e)\ = a.

Cayley graphs can also be constructed for monoids and groups. In the case of groups
with symmetric generating sets, that is, a generating set that contains an inverse for every
element, the Cayley graph of a group is an undirected graph.

We will wish to compare the structure of graphs so we introduce the notion of iso-
morphism for graphs.

Definition 2.15
LetT1 = (V1,FEy,11,m) and Ty = (Va, Eo, 1o, T2) be graphs. A graph isomorphism
w : I'y — D'g is a pair of bijective maps f : Vi — Vo and g : Fy — E5 such that for

any e € Ey we have

((e)g)r2 = ((e)m) f
((e)g)e2 = ((e)ur) f
If there exists a graph isomorphism between two graphs I'; and I's, we say that they

are isomorphic, and write I'y =2 T's.

14



2. Definitions 15

2.4 Spaces

A metric space is a set with a function describing distance between elements defined
on it.

Definition 2.16

Let X be asetandletd : X x X — Rxq be a function such that the following hold:

e d(z,x) =0forallx € X

e d(z,y) =0ifand onlyifx =y

o d(x,y) =d(y,z) forallx,y € X

o d(x,2) <d(x,y) +d(y,z) forall x,y,z € X

Then d is a metric and (X, d) is a metric space

If we are given two metric spaces, we will want to be able to compare them and have

some notion of similarity between them. There are two such notions that we will use.

Definition 2.17
Let (X,d) and (X, d) be two metric spaces. An isometric embedding is a map ¢ :
X — X such that d(p(x), p(y)) = d(z,y) for all z,y, € X. If ¢ is onto, then it is an

isometry and X, X are isometric.

Definition 2.18
Let (X,d) and (X, d) be two metric spaces. For constants 1 < X\ < 00, 0 < £ < 00

and 0 < p < 00, a (A, &, p)-quasi-isometry is a map ¢ : X — X such that
(i) forallx,y € X
sd(z,y) — e < d((x)p, (y)¢) < Ad(z,y) + ¢, and
(ii) for everyy € X there exists an v € X with d(y, (x)p) < p.

If there exists a quasi-isometry between two spaces they are said to be quasi-isometric.

Definition 2.19
A geodesic between two points x,y in a metric space (X, d) is the image of an isometric

embedding o of the interval [0,1] into X such that (0)p = z, (1) = yand d(x,y) = 1.

15



16 2.4. Spaces

A metric space is called geodesic if any two points can be joined by at least one

geodesic.

Definition 2.20
Let (X, d) be a metric space. An open ball of radius n centred at a point x for x € X,
n € Rxq is the set of all points y € X such that d(x,y) < n. A closed ball of radius

n € Rxq centred at a point © € X is the set of all points y € X such that d(z,y) < n.

Where metric spaces consider the distance between elements of the set, topological
spaces are concerned with describing the closeness of subsets of the set.
Definition 2.21
Let X be a set together with a non-empty collection T of subsets of X (known as open

sets) such that the following are satisfied:
e Any union of open sets is itself open
e Any finite intersection of open sets is open
e The empty set and X are both open

The collection of open sets T is a topology and (X, 7) is called a topological space.

We will often refer to a topological space (X, 7) simply by X, when it is clear what
the topology is. One such topology that we will make frequent use of is the metric
topology.

Definition 2.22

Let (X, d) be a metric space. We define an open set in X to be a subset of X that can
be written as the union of open balls with respect to d. The metric topology 7 is the
collection of such open sets, and we call (X, T) the topological space induced by the

metric d.

For the following definitions we let X be a topological space throughout.
Definition 2.23
A family F of open subsets of X is called an open cover of X if | JF = X. A subfamily
F of F is called a subcover of F if | JF = X.

16



2. Definitions 17

A topological space X is called compact if every open cover of X has a finite sub-
cover.
Definition 2.24

A topological (or metric) space is proper if its closed balls of finite radius are compact.

For semigroups we had the notion of isomorphism to show when semigroups look
the same. In topological spaces, this concept of sameness is described by homeomor-
phisms.

Definition 2.25
Let (X1,71) and (X2, 72) be two topological spaces. Then a map o : X1 — Xo is

1

continuous if for every open set V. C Xo, the preimage 0~ is an open subset of X1.

The map o is a homeomorphism if
(i) o is a bijection;
(ii) o is continuous, and
(iii) o has a continuous inverse.

If there exists such a homeomorphism we say that (X1,71) and (X2, 72) are homeo-

morphic.

2.5 Actions

A central concept in group theory, and one that will be used in this thesis, is that of
a group action. A group action provides a way of thinking about a group as a set of
bijective maps of a given object which allows us to understand properties of the group
more easily. We will want to act on spaces which have some sort of structure on them,
and our group actions should preserve this structure. In this thesis will use the following

definitions and notation for group actions.

Definition 2.26
Let G be a group and let X be a set. An action of G on X isamap G x X — X denoted

by (g,x) — 9z such that:

17



18 2.5. Actions

(i) 'g=g
(ii) 9(hx) = 9hz,
forall g,h € G and x € X. If we have such an action, we will say that G acts on X.

We will mostly be interested in acting on topological spaces, and so we wish for our
actions to be by homeomorphisms, that is for each g € G the map defined by =z — 9z
is a homeomorphism for all g € G. The following properties of actions are important.
Definition 2.27
An action of a group G on a topological space X is proper if for every compact subset
K C Xtheset {g € G| 9K NK # @} is finite. If such an action is proper, we will
say that G acts properly on X.

Definition 2.28

Let G be a group acting on a set X. The quotient space of the action is the set of
all orbits of X under the action of G. We denote the quotient space by X /G- Let
m:X — X/G be the projection from X onto X/g. We define a set U C X/G to
be open if and only if its preimage w~*(U) is open in X. This collection of open sets is

known as the quotient topology.

Definition 2.29
An action of a group G on a topological space X is cocompact if the quotient space

X /q is compact.

18



Chapter 3

Direct Products with Groups
and How to Draw a Graph

Pooh looked at his two paws. He knew that
one of them was the right, and he knew
that when you had decided which one of
them was the right, then the other one was
the left, but he never could remember how

to begin.

The House At Pooh Corner
A.A. Milne

For our first foray into the world of semigroups, we shall tackle direct products of
groups and semigroups. We recall that a direct product of two semigroups (G, -), (S, )

is the set of ordered pairs
GxS={(g.5)| g CscS)

along with the operation defined by applying the operations from G and .S component-

wise

(9,8)(h,t) = (g by s x1).
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Throughout the chapter (indeed, throughout the whole thesis) we shall (very sensi-
bly) choose G to represent a group, and S to represent a semigroup.

We begin first by looking at family of semigroups known as left zero semigroups.

Definition 3.1
A left zero is an element | € S such that ls =l for all s € S. A left zero semigroup is

one in which all elements are left zeros. We denote a left zero semigroup of size n by
L, ={li,la,....0 | il =1 forall1 <i,j <n}

Since we claimed to be interested in direct products in this chapter, we will consider
those of groups and left zero semigroups now. The following small lemma will be
useful.

Lemma 3.2
Let S = G X Ly, be a semigroup with G a group. If S if finitely presented, then G is

also.

Proor: Let A = {(a;,1;,) | ¢ € I} be a finite generating set for S and let
P =sgp(A| R)

be a presentation for S. Let 7o : S — G be the projection of .S onto GG. Since this map

is onto, g (A) is a generating set for G. We will show that
gp(ma(A) | 7a(R))
is a presentation for G. Let
(@iy, Uy ) @iy, Lgy) o (@i, ) = (A Loy ) (ks Loy ) - - - (G s Loy)

be a relation in . We may simplify this relation by carrying out the multiplication to
give

(u’ ljl) = (U’ l01)

where u = a;, a;, ... a;,, and v = ay, ag, . .. ag,.

20



3. Direct Products with Groups and How to Draw a Graph 21

Now if w = « is a relation in G we have (w,l;) = («,!;) for any [; € L,. This

means (w,l;) = (z,1;) is a consequence of relations in R, that is
(w,l;) = s1,82,...5k = (z,1;)

where for each 1 < y < k the element s, is obtained from s, by the application
of a relation in R. That is for each 1 < y < k we have s, = a(u,l;,)5 and s,y =
a(v,l,, )3 where (u,lj,) = (v,l,,) is arelation in R and a, 3 € S'. Now considering
the projection of this elementary sequence on to G we see that 7¢(s,) = mg(sy+1) is
a consequence of u = v for each y. This shows that w = z is a consequence of the
various relations u = v obtained by projecting the relations in R onto G.

We have shown that
gp(ra(A) | ma(R))

is a presentation for (G, and since both A and R are finite, this is a finite presentation for

G. t

We note that Lemma @ can also be proved using Theorem 3.5 from [[16].
Now we may show that finite presentability is preserved under isomorphism of

skeletons for direct products of groups with left zero semigroups.

Theorem 3.3
Let G, H be groups and let S = G x L, andT = H X L,, for some m,n € N, with
T(S,A) 21 (T, B). Then m = n and S is finitely presented if and only if T is.

Proor: We will assume that S is finitely presented and so first look at { (S, A). For
1<i<mletG; ={(g,l;) | g € G}. Since for (g,1;) € G;, (h,l;) € S we have

(g7l’i) (h’ l]) = (gh7l’t)

we may find a path between any two vertices (g, [;) and (gh, [;), that is the path labelled
by (h,1;) written as a product of generators for any {; € L,,. This product also shows
us that we can never find a path between two vertices with different L,, components,
and so each G; forms a strongly connected component of Cay(.S, A), and hence a con-

nected component of { (S, A). This tells us that { (.S, A) has n connected components.
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Similarly for T, if we let H; = {(h,l;) | h € H}, each H; is a connected component
in 1 (T, B). Since 1(S,A) = {(T, B), both graphs must have the same number of
connected components, that is, n = m.

We show that each component induced by the set of vertices G; is isomorphic to
7 (G,mg (A)), where ¢ : S — @ is the projection onto the group G. When restricted
to G;, the projection 7 [: G; — G is a bijection. Let e be an edge with initial vertex
(9,1;) and terminal vertex (ga, l;), with label (a,[;) in Cay(.S, A). Then the images of
these vertices are g and ga respectively, which are the initial and terminal vertices of an
edge labelled a € 7 (A) in the graph Cay(G, ¢ (A)). Similarly if g and ga are initial
and terminal vertices of an edge labelled a in Cay(G, g (A)), then the preimages are
(9,1;) and (ga, ;) respectively, which form an edge with label (a, ;) in Cay(G;, A).
Hence since 7 [ is a bijection which maps edges to edges, it is a graph isomorphism.

Similarly each component H; is isomorphic to {(H,7g (B)). Therefore
1 (G,7mq (A)) =2 1 (H, 7y (B)). We have S finitely presented, and so by Lemma ,
G is finitely presented also. We can then apply Theorem [1.3| to show that H is finitely
presented, and thus 7. O

This works very neatly, so it seems like it might be a good idea to investigate a
closely related class, right zero semigroups.
Definition 3.4
A right zero is an element v € S such that sr = r forall s € S. A right zero semigroup
is one in which all elements are right zeros. We denote a right zero semigroup of size n
by
R, ={ri,ro,....1y | iy =1 forall1 <i,j <n}

It would be nice if we could take the same approach here, and show that given two
semigroups S = G X R,,,T = H X R,,, we can find copies of { (G, A) and } (H, B)
nestled inside, and apply Theorem . Sadly, this is not the case. If we consider the
subgraph of 1 (S, A) induced by the set of vertices G; = {(g,7;) | g € G}, we do not

necessarily find a copy of | (G, g (A)) as the following example illustrates.

22



3. Direct Products with Groups and How to Draw a Graph 23

Example 3.5
Let S = V4 X Ra, the direct product of the Klein four group (generated by {a,b})
and the right zero semigroup Ry which has size 2. This can be generated by A =

{(a,r1), (b,72)}. The Cayley graph of S with generating set A is given in figure @

(b, 7’1)

A X (17T2)

(b, 7“2)

(a,r) ———

(b, 7“2) EE—

(ab,m1)

Figure 3.1: Cayley graph of S with generating set A

We then consider the subgraph of Cay(.5, A) induced by the set of vertices (V4); =
{(g9,7m1) | g € V4}, which is given in Figure @ Since this graph has two components,
then it is not a copy of Cay(Vy, {a, b}).

(a,m1) (ab, 1)
(a,r1) (a,71)
(1,7‘1) (b7 7“1)

Figure 3.2: Subgraph of Cay(S, A) restricted to F’

23



24 3.1. Turning Graphs into Metric Spaces

Thus it seems it will be tricky to follow the same procedure as with left zero semi-
groups. We turn instead to geometric group theory, which provides us with a handy
tool to apply to the problem. Sometimes referred to as the “Fundamental Observation
of Geometric Group Theory” (see [5]), the Svarc-Milnor Lemma, which was originally
proven independently by both Svarc [[19] and Milnor [[13] tells us that if we can act
nicely with a finitely generated group on a nice metric space, then the group, equipped
with the word metric, is quasi-isometric to that space. We note that a group along with
the word metric is a metric space, and we can refer to a group as being equipped with
the word metric without specifying a generating set, as we are concerned only with
quasi-isometries, and we have the following theorem, for which a proof can be found in
[B, Proposition 4.3].

Theorem 3.6
Let G be a group and let A, B be two finite generating sets. Let d o and dg be the word

metrics for the respective generating sets. Then (G, d ) is quasi-isometric to (G, dp).

We give the formulation of the lemma found in [4].

Theorem 3.7 (Svarc-Milnor Lemma)
Let X be a proper, geodesic metric space. Let G be a group acting co-compactly and
properly by isometries on X. Then G is finitely generated and for any o € X the map

G — X given by g — 9xq is a quasi-isometry.

In order to use the Svarc-Milnor lemma, we will need to turn our graphs into ap-
propriate metric spaces, and understand the quotient spaces. This turns out to require a

small amount of work, which we see in the following section.

3.1 Turning Graphs into Metric Spaces

Any connected graph I' can be equipped with the graph metric m where the distance
between any two vertices is the length of a shortest path between them.

We can define a topological space from any graph I' by adding a copy of the interval
[0, 1] to each edge. We take the set Z = V U (E x [0,1]) and define an equivalence
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3. Direct Products with Groups and How to Draw a Graph 25

relation p € Z x Z. For any point z € Z we define zpz. Additionally, given an
edge e with 1(e) = u and 7(e) = v we will let up(e,0) and vp(e, 1), and take the
symmetric and transitive closure of these. This is reflexive, symmetric and transitive
by construction.

We may then define a topological space by taking the set X = Z/p. We have a map
z: Z — Z/p,and we will write z(z) = 2’ or z((e, 1)) = (e, )’ depending on the level
of detail required. The open sets are then given by defining a metric d : X — [0, 00).
We will denote the topological space created from I" by IV,

Let 2/ = (e,pn) and y' = (f,v)’ be non-equal elements of X and define a path ¢

from z’ to 4’ as a sequence

(e, ) v1,02, ..oy op, (f, )
where v;, v;+1 are adjacent for all 1 < ¢ < n —1 and v; (resp. v, ) is an endpoint of the
edge e (resp. f). The shortest length of a path between two adjacent vertices is 1. The
length of a path (e, 1), ¢(e) is p and the length of a path (e, p)’, 7(e) is 1 — . Denote
the length of a path ¢ by I(¢). Let Q. , be the set of all paths from =’ to 3. Then the
metric d is defined by

mingeql(q). fora’ # 4
d@y) =4
0 for z’ =3/
Note that if two points (e, ;)" and (e, )’ are on the same edge, then the shortest

path between them is simply along the edge and so d((e, n)’, (e,v)") = |u — v|.
Claim 3.8

The map d is a metric.

Proor: Let 2/, 3’ be defined as above and let 2’ € X also.
By definition d(2’,2") = 0 and d(2/,y") > 0.
Suppose that d(z’,y’) = k. Then there exists some path

!/ /
q=2,0U1,02,...,Un,Y

such that [(g) = k. Traversing this path backwards, that is
b= y/7 Uns Un—15--- ,’Ul,x/
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26 3.1. Turning Graphs into Metric Spaces

is a path of length k from y' to 2’ so d(y’, z') = k.

Finally, we wish to show that the triangle inequality holds. Suppose ¢; is the shortest
path from z’ to ¢’ and ¢ is the shortest path between 3’ and z’. Then g;q2 is a path
from 2’ to 2" and has length d(2',y') +d(y/, z') and so d(2/, 2") < d(2/,y')+d(v', 2").

O

The topology on X is then the topology induced by the metric d.

We let I" be a connected, locally finite graph, and let G be a group that acts on I,
such that the action of each element g € G results in an automorphism of the underlying
undirected graph. We will do this by first defining an action on the vertices and edges.
We will then extend this to an action on points in the topological space. The following
example illustrates why we must be careful about how the action is defined.

Example 3.9
Let I' be the 3-cycle graph as given in Figure @ Let the starts and ends of edges be as

follows:

tler) =v1,7(e1) = vo
t(e2) = v2,7(e2) = v3

t(esz) = vy, 7(e3) = vs.

We act on I" with C's = gp(x) by rotation, that is

z’Ul = V2
1’1}2 = Vs
w’l}g = V1
U1
€3 €1
U3 c V2
2

Figure 3.3: 3-cycle graph
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3. Direct Products with Groups and How to Draw a Graph 27

and

161 = €2
z62 = €3
Tes = ey.

Notice that t(®es) = t(e1) = vy, but Te(e3) = 9v; = vy = 7(e1), and so we have an
automorphism of the underlying undirected graph, but not of I" itself, as the action has
swapped the start and end of an edge.

Suppose then that we had a point (e3, 1)’. If we were to naively define an action

! /!

= (“es, p)) = (e1, ), this is the point that is distance p from v;. This action

then is not an isometry, as an isometry should move (es, i)’ to the point that is distance

*(es, p)

w from “i(eg) = ve.
Thus we must be more careful about defining the action on points. Let (e;, ;t)’ be a

point in IV and define

(es,p) if%u(e;) = o(Te;)

(Pe;, 1 — ) if%u(e;) = 7(%e;)

x(eiv H)/ =

Then our previous troublesome point under the action becomes
ez p) = (Tes, 1 —p)f
= (617 1- /u)/
which is indeed the point that is distance p from vs.

Hence given an action of G on V' and E such that {¢(%¢), 7(9%¢)} = {9¢(e),97(e)},

that is ends of an edge are mapped to ends of an edge, we define a map on X by

(e, p) if u(e) = 1(%e),
“(e,p) = +)
(Ye,1—p) if *i(e) = 7(%e).
Claim 3.10
The map (H) is well defined and is an action.
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28 3.1. Turning Graphs into Metric Spaces

Proor: Let g,h € G and 2’ € X. The only type of point in X that can have multiple
representatives is one which was a vertex in the original graph. Let (e,0)’ € X and

t(e)’ be two representations of 2’, so (e,0)pc(e) in Z. If 91(e) = 1(%€) then
Yu(e) = (%)

and

9(e,0) = (Ye,0)".

Then since (9¢, 0)pe(9e) we have

Alternatively, if 9.(e) = 7(%¢) then

and

g(67 0)/ = (967 1)/'

Then since (Ye, 1)p7(9€) we have

This follows analogously if instead we have (e, 1)" and 7(e)’ being two representa-
tives for 2’ € X.

The final situation we may have is that we have two representatives (e, p)’, (f,v) €
X of &/, where u, v € {0,1}. This means (e, u)p(f,v) in Z. Suppose that y = 0 and
v=1.19%(e) = ¢(%) and 9¢(f) = ¢(9f) then

g(e’ M)/ = (ge, :u)l
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3. Direct Products with Groups and How to Draw a Graph 29

and
I(fv) =(fv).
Then since (%, 1)p(? f, ) we have (%e, ) = (9 f, v
If 94(e) = 7(%€) and 9.(f) = ¢(“f) then

Ie,pm) = (%e, 1 —p)
and
I(fv) =(Efwv).

Then since (Ye,1 — u)p(? f,v) we have (9e,1 — ) = (9f,v)".
If9u(e) = (%) and 9u(f) = 7(?f) then

I(e,p) = (Ye,p)’

and
I(fv) =(f1-v).
Then since (%e, 1)p(° f, 1 — 1) we have (%, ) = (9,1 — v)'.
Finally, if 9¢(¢) = 7(%¢) and 9.(f) = 7(9f) then

g(e"u)/ = (967 1- :u)/

and
g(fal/)/ = (gfv]-il/)l'

Then since (%e,1— p)p(f,1—v) we have (9e,1 — )’ = (9,1 —v)’. Hence the map
is well defined.

Now we can show that the map is an action. We observe that if only one of g or h
swaps the endpoints of the edge under the action, for example ".(e) = 7("¢), then we

will have



30 3.1. Turning Graphs into Metric Spaces

If both g and h swap the endpoints of the edge under the action, so "s(e) = 7("¢) and

9u(he) = 7(9("e)) then
Mi(e) =9("u(e))
_97(he)

= 1(Yhe).

This means we have two cases to examine when showing (H) is an action, namely

9hi(e) = 1(9he) and 9"1(e) = T("e).

(e, p)) i 9Ru(e) = u("e)

(9he, 1 —p)" if9"u(e) = 7(Ie)

9" (e, 1)) =

which is equal to 9" (e, p). If 1 € G is the identity then

1(67 /L)/ = (167 .u),

= (e,p)".
Hence (B) is an action. O

We will write [v] and [e] for the orbits of v and e under the action of G.
Definition 3.11
The quotient graph of T by Gis /o = (V) , £/ ) where V )y = {[v] | v € V}
and E ) = {le] | e € E}.

We are correct here to call this a graph, as we have specified that our action takes
endpoints of an edge to endpoint of an(other) edge. Hence an edge [e] has endpoints
[t(e)] = u([e]) and [7(e)] = 7([e]).

Since I’ /(@ is a graph, we can create a topological space Y in an analogous way to
X, with equivalence relation p and metric d. Points in ¥ are denoted [z]' = [(e, 11)].

We recall that the Svarc-Milnor Lemma requires our action to be an isometry, so we
should now show that we have defined a useful action here.

Claim 3.12

The map ©' — 92’ is an isometry.
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3. Direct Products with Groups and How to Draw a Graph 31

Proor: Let ',y € X such that 2’ = (e, ), ¥y’ = (f,v)" and d(2’,y') = . Suppose
a shortest path p from z’ to ¢/ is ', vg, v1,...,Vn_1, Un, Yy’ Where v; are vertices such
that v; is adjacent to v;_1 and v;41, and vy, v,, are endpoints of e and f respectively.
Consider the image of two adjacent vertices v;, v;41 under the action, which is 9v;
and 9v; 4 respectively. These vertices are endpoints of some edge e;. The image of this

edge under the action has endpoints

{e(%ei), 7(Pei) } = {7u(es), I (e)}
= {gvi, gvi+1}.

Hence the vertices 9v; and 9v; ;1 are adjacent. We now check that the point 92’ (and
analogously 97") remains the same distance from 9vq (respectively 9v,,) as x’ (respec-
tively y') from v, (respectively v,,) . Suppose that vg = 7(e), then 2’ is a distance of
1 — p from vg. Under the action, we may find either 97(e) = 7(%€) or 97(e) = 1(%€).
For the former, the point «’ is mapped to (Y¢, x)’, which is indeed distance 1 — p from
9vp. For the latter, our point is mapped to (9e,1 — p)’. Since ¢(9¢) = 9wy, our point is
still a distance of 1 — u from 9vy. This works analogously for vy = ¢(e).

From this we deduce that 92, 9vg, 901, ..., 90, _1,%v,, %%y’ is a path from 92’ to

94/, with length [. Suppose now that there exists some path
gx/a U, ULy« vy Un—1, Um, gyl

from 92’ to 9/, with length & < I. Then by an analogous argument,

—1 —1 —1 -1

-1 -1
/ /
g gx’g u(hg uly'”g ’g unflvumvg gy

. -1 1
is a path from 9 92’ = 2’ to 9 9y

= ¢/ of length k < I, which contradicts our
original path being of shortest length. Hence d(9z2',9y’) = I.

O
Definition 3.13

Consider the equivalence relation on X with equivalence classes
(2] = {2} | } =92’ for some g € G},

that is orbits of points in X under the action of G. The quotient space of X by this

equivalence relation is the set of these equivalence classes and is denoted X /G. Letm
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32 3.1. Turning Graphs into Metric Spaces

be the projection of X onto X/g, then a set U C X/G is open if and only if 7=1(U)
is openin X.

Claim 3.14

The set of points in the topological space Y created from the quotient graph and the set

of points X /G are in bijection.

Proor: We defineamap o : X/ — Y by o([(e, )']) = [(e, )] for (e, 1)’ € X.
This map is surjective as for every [(e, )]’ € Y, o([(e, )']) = [(e, p)]’. Tt is injective
since if o(((e, 1)]) = o([(f, »)']), then [(e, w)}" = [(f,)}. Hence (e, p) = 9(f,v)
for some g € G and so (e, 1)’ = 9(f,v)" in X. Therefore [(e, n)'] = [(f,v)] in X /7.

0

Finally we wish to show that Y and X /¢ are homeomorphic as topological spaces.
To show that these spaces are homeomorphic, we must show that the map o : X /G —
Y given by o([2']) = [(e, p)]" is continuous, and its inverse is continuous. That is, we

must show that sets are open in Y if and only if their preimage is open in X /G-

Claim 3.15
U is openinY if and only if o~ (U) is open in X/g.

Proor: Y is equipped with the metric topology, so U is a union of open balls. In
particular, we may write U as a union of open balls that contain a single vertex and
open balls that contain points from a single edge. We therefore consider two cases. We
first assume that U C Y is an open ball containing no vertices, thatis U = By, ([(e, )]")
where [(e, )] is a distance greater than n from ¢(e) and 7(e). We wish to show that the
preimage of U in X /¢y is open. We will denote o~ (U) by U. Since X /¢y has the
quotient topology, then to show that U is open, we must show that 7= (U) is open in
X.

We will show that 771(U) is a union of open balls. Let U = B,([(e,p)]’) =
{l(e, ;)] | ¢ € I} for some index set I. Then

7N U) = {(f, ) | f =Y9eforsome g € G,i€I}.
We then show that for any f € FE such that f = Y9¢e for some g € G, the set W =
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{(f,ps)" | € I} is an open ball, in particular, W = B, ((f, n)").
Let (f, 11;)" be an arbitrary point in B,,((f, 1)"). Then

d((fs 1), (fs 1)) = |y — pl < n.

We then have d([(f, u1;)', [(f, ))') = |p; — p| < m, and so [(f, )]’ € U and hence

(fimg) €W.
Similarly, if (f, ;)" is an arbitrary point in TV then

d([(f, 1) [(F 1)) = g =l <,

and since G acts by isometries, d((f, i)', (f, )") = |u; — p| < nand so (f,pu;) €

Bn((f,1))-
Hence 7=1(U) is a union of open balls B,,((f, 1)) where f € {% | g € G}.

Hence U is open in X /7.

Now suppose that U C Y is an open set containing one vertex [v]’. Without loss of
generality, let U = B, ([v]’), that is U is the ball of radius n centred at [v]’. Let I, J
be index sets, then U = {[(e;, 11;)]' | i € I,5 € J,d([v]',[(es,1;))') < n}. Then the
preimage of this set in X /7 is

o (U) = {l(es 1)1 | [(ei, 1)) € Ui € 1,j € J}

We will write 0~ 1(U) = U. The set U is open in X /(7 if and only if 7~ (T) is open

in X. This preimage is

7 O) = (o) | | = “end([o] [(eipy)])) <

for some g € G, foralli € I,j € J}.

Fix k € Tandlet W = {(ex, ;)" | 7 € J,d([v]’, (e, 1;)]") < n}. We wish to show
that TV is an open ball of radius n centred at 9v". Suppose [(e;, ;)] is a point in U.

Then the distance of this point from [v]” is

7 if o([e;]) = [v
d([(e:, 1)), [v]") = H ([ed]) = [v]
g ifr(led) = o

which must be less than n.
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34 3.1. Turning Graphs into Metric Spaces

Let (e, 11;)" be an arbitrary point in W. We want to show that (e, 11;)’ is distance

less than n from v’.

ey =" T
1—p; ifr(ey)=v
Now recall that ¢([ex]) = [¢(er)] so if t(ex) = v then ¢([ex]) = [t(ex)] = [v] and so
d((er, ), v") = p; < n. Onthe other hand if 7(e,) = vthen 7([ex]) = [7(ex)] = [v]
and d((eg, ptj)',v") = 1 — p; < n. Hence all points in W on the edge e}, are a distance
less than n from v". Therefore W C B,,(9v").

Suppose now that (e, 1t;)" is an arbitrary point in B,,(9v"). Then by a symmetric
argument B, (9v") C W.

Now since G acts by isometries, then all points in ¢V are a distance less than n from
from 9v’ for all g € G, and so 9W is also an open ball. Since 7~ 1(U) = Uyec ?W,
then 7~ (T7) is a union of open balls and so U is open in X /7.

Conversely, if 7 1(U) is open in X /7, then an analogous argument shows that U/
isopenin Y.

O

Lettx : I' — X be the map from the graph to its associated topological space, and
letty : I /G — Y be the map from the quotient graph to its associated topological
space. Additionally, letp : I' — r /@ be the map from the graph to the quotient graph.

Then we have the following commutative diagram.

t
r—=> . x
p o
Vg ——Y
ty

This means that when we speak of the quotient space of the topological space created
from I, it does not matter if we first take the quotient by the action on the graph and
then create the space Y, or if we first create the topological space X and then take the

quotient by the action on X.
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3. Direct Products with Groups and How to Draw a Graph 35

When using the Svarc-Milnor lemma, we will want to know that our quotient space
is compact, so we had best decide when a set in our topological space is compact. This
will involve us looking at unions of parts of edges in our space, so we define a formal

path to be a continuous map p : [0,1] — X.

Lemma 3.16

A set K C X is compact if and only if K is a finite union of images of formal paths.

Proor: First, suppose K is a set such that K = U pi([0, 1]) for formal paths p;, and
let F be an open cover of K. Let P; C F denote the subset that covers each p; ([0, 1]).
A formal path is compact, since it is the continuous image of the compact set [0, 1], and
so there exists some finite P; C P; that covers p;([0,1]). F = U P; is then a finite
subcover for K, and so K is compact. =

Now let K be a compact set. Let A be the set of all edges ¢ for which (6§, 1) € K for
some 4 € [0,1]. Then we construct an open cover JF by taking the union of the set of
open balls of radius 2/3 centred at (v, 1/2) for each v € I'. Since K is compact, there
exists a finite subcover, 7' C F. For each open ball B in ' we can find a formal path

p; such that p;([0,1]) = BN K, and hence K is the finite union of images of formal
paths. O

For the above to hold, it is important that our graph is locally finite, as it is possi-
ble to construct a compact set in the space constructed from a non-finitely generated

semigroup that is the image of infinitely many formal paths.

Example 3.17

Let S be a non-finitely generated semigroup with generators e; for ¢ € N. Take the
set containing all points between ((a, ae;),0) and ((a, ae;), 1/2%) for all i. This corre-
sponds to an infinite union of images of paths,for example, the paths which map [0, 1]
to the interval [0, 1/2¢] on each edge (a, ae;) but is in fact compact. Any open cover
must contain a set covering the centre point ((a, ae;),0). This open set must contain an
open ball of some radius 7 containing the centre point. This open ball covers infinitely
many of the intervals, those for which 1/2? < r, on the edges (a, ae;), leaving only a

finite number of closed intervals [r, 1/2], which are compact, and so any open cover of

35



36 3.2. Applying the Svarc-Milnor Lemma

these has a finite subcover.

Finally, we show that the metric space we have created from a graph is proper.
Lemma 3.18
Let X be the metric space created from a connected, locally finite graph I as outlined

above. Then X is proper.

Proor: Let B,.(2') = {y’ € X | d(«/,y") < r} be the closed ball of radius r centred
at z’. Then since B,.(z') has finite radius it contains finitely many vertices, and since I"
is locally finite B,-(z") contains finitely many edges. Hence B,.(z') is a finite union of

paths by Lemma is compact. Thus X is proper. g

Now we are ready to dive in to the wonderful world of the Svarc-Milnor lemma!

3.2 Applying the Svarc-Milnor Lemma

Fundamentally, the Svarc-Milnor lemma is a theorem about groups and how they act,
so it seems like a good idea for us to pick a group and decide how and where it should
act. We recall that we wished to investigate direct products of groups and right-zero
semigroups, and so it may be useful to know something about when direct products of

semigroups are finitely presented.

Theorem 3.19 ([16, Theorem 3.5])
Let C and D be two infinite semigroups. The direct product C x D is finitely presented

if and only if the following conditions are satisfied:
(i) C? = C and D*> = D;

(ii) C and D are finitely presented and stable.

We note that it is possible for a finite semigroup to fail to be stable, as demonstrated

in [|L6] by the following example.
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3. Direct Products with Groups and How to Draw a Graph 37

Example 3.20 ([16, Example 8.4])

Let S be the semigroup defined by the presentation

sgp(a,x,y ‘ ma:a,ya:a,my:x,a?’:az,mz :x7y2 :y>

Then S has 11 elements but is not stable.

We will prove the following theorem.

Theorem 3.21

Let S = G xUand T = H x V be semigroups such that G, H are groups and
U2 =U,V?=V,and U,V are both finite and stable. Then if { (S, A) = 1 (T, B) for
finite generating sets A and B, S is finitely presented if and only if T is.

We let S and T be as in Theorem , and suppose that S is finitely presented,
which by Theorem implies that G is finitely presented. We choose to act with G
on the metric space 1 (S, A)’ obtained from t (S, A) as outlined in . For a vertex

(z,u) € S, we define an action of G on the vertices by

Iz, u) = (ngu)'

We can then extend this to an action on edges. Let e be the edge originating at ¢(e) =
(z,u), labelled A(e) = (a,b) and terminating at 7(e) = (xa,ub). Then we define
9¢ = f where t(f) = 9u(e) = (z,u), 7(f) = 97(e) = (gza,ud) and the label is
A(f) = A(e) = (a,b). This can then be extended to an action on the space 1 (S, A)’.
Claim 3.22

The action of G on t (S, A) is by isometries.

Proor: To show this is action is by isometries we first check that adjacency of vertices
in the graph 1 (S, A) is preserved under the action. Let (z1,u1) and (z1a1,uiv1) be
adjacent vertices, which were connected by an edge labelled (a1, v1) in Cay(.S, A). Let
g € G, then 9(x1,u1) = (9x1,u1) and 9(z1a1,u1v1) = (gx1a1,uiv1). These two
vertices are adjacent in t (S, A) since (gz1,u1)(a1,v1) = (gz1a1, U1v1).

We then show that non-adjacency is also preserved under the action. Let (z2, us2)

and (x3,us3) be two non-adjacent vertices such that for some g € G, 9(x9,us) and
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38 3.2. Applying the Svarc-Milnor Lemma

9(xz3,us3) are adjacent, say 9(xa,us)(az,v2) = 9(x3,us) for (az,v2) € A. Then
(gr3,u3) = (graas,usve). If we multiply both sides by (g%, 1) then we see
(x3,u3) = (x2a2, ugvs) = (x2,u2)(as, ve) and so (z2, us) and (x3, ug) are adjacent,
connected by an edge labelled (az,v2). This is a contradiction and so non-adjacent
vertices cannot be mapped to adjacent vertices.

Since both adjacency and non-adjacency are preserved, then paths of shortest length
are preserved and so the action is by isometries. g
Claim 3.23
The action of G on t (S, A) is cocompact.

Proor: By Lemma we must show that the quotient space is a finite union of paths.
The orbit of a vertex is [(z,u)] = {(g,u) | g € G}, and so our quotient spaces has
finitely many vertices. We show that the size of the set £/ is |U|| A|. Given an edge

e with start vertex t(e) = (g, u) with label A\(e) = (a, v), the orbit of this edge is

le] ={f € E|(f) ="(g,u) = (zg,u),
7(f) =" (ga,uv) = (zga, uv)
A(f) = (a,v)
}.
If we consider the orbit of the vertex ¢(e), we note that every vertex (zg, ) in it has an

edge leaving it labelled (a, v), ending at (zga, uv). Hence the orbit of our edge e is all

edges labelled (a, v), beginning at any vertex (x, u).

el ={fe€E|f)=(x,u) forx € G,\(f) = (a,v)}.

Thus £ /¢ contains one edge per generator for each copy of G, of which there are
|U|, and so £/ contains |U]|A| edges, so it is certainly finite. We now have that the
quotient graph has finitely many vertices and edges, and hence the quotient space is a

finite union of paths, that is, compact. O

This means the action on 1 (S, A)" by G meets the first criterion for the application

of the Svarc-Milnor lemma. We would also like to show this action is proper.
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3. Direct Products with Groups and How to Draw a Graph 39

Claim 3.24
The action of G on 1 (S, A)' is proper.

Proor: Let K C M be a compact set, that is, a finite union of images of paths, say

n
K = |J pi([0,1]). Let @ be the set of group elements
i=1

K3
Q = {g € G| (g,u) is an endpoint of an edge that

contains a point in K for some u € U}.
Then the set P = {g € G|K9 N K # &} is precisely
P={geG|%e,u) €K forsome (e,u) € K}
={geG|gxeQforxeQ}
={9eGlgr=qforz,qeQ}

={geCG|glzqg")=1forz,q € Q}

Since @ is a finite subset of a group, there are finitely many products ¢!, and hence
finitely many ¢ that are inverses for these products. Therefore P is finite. Hence the

action is proper. (|

Now we can follow the exact same procedure for 7' and act on its metric space
(T, B)" with H. Applying the Svarc-Milnor lemma with G acting on 1 (S, A)’, we
see that G is quasi-isometric to 1 (S, A)’, and similarly we have H is quasi-isometric
to T (T, B)'. Now since (S, A) = t (T, B) with graph isomorphism «, the metric
spaces T (S, A)" and t (T, B)' are also isometric. The isometry ¢ is given by mapping
the endpoints of an edge to their images under a.

This allows us to prove a useful lemma, one showing that since G is quasi-isometric
tot (S, A), and H is quasi-isometric to { (T, B)', then via the isometry of these topo-

logical spaces ¢, we can show that GG is quasi-isometric to H.

Lemma 3.25

The group G is quasi-isometric to H.

Proor: Let G act on T (S, A) as outlined above. This is a cocompact and proper action

on a proper geodesic metric space, so by Theorem @ there exists a quasi-isometry
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40 3.2. Applying the Svarc-Milnor Lemma

¥ : G — M. Using the isomorphism ¢ above, the map ¢/ : G — N given by
¥'(g9) = p(1¥(g)) is also a quasi-isometry. By acting in an analogous way with H on
(T, B)', we can also establish a quasi-isometry § : H — N, and hence we have a

quasi-isometry 3 : G — H given by 3(g) = 67 1(¢'(g)). O

Now we recall that Theorem tells us that finite presentability of groups is pre-

served under quasi-isometry, giving the following corollary to Lemma .

Corollary 3.26
The group H is finitely presented.

Hence both H and V' meet the conditions of Theorem , and so T is finitely
presented. This completes the proof of Theorem .

We recall that we began this chapter by looking at direct products with left zero
semigroups, and lamenting the fact that we we not able to apply a similar method to
direct products with right zero semigroups. Happily, right zero semigroups are now
just a special case of what we have just proved.

Corollary 3.27

Let G and H be groups, let m,n be positive integers and let S = G X R, and T = H x
R, where S = sgp(A) and T = sgp(B), with A and B finite. If (S, A) = 1 (T, B),
then S is finitely presented if and only if T is.

Proor: Consider R,, and R,,, given by the presentations R,, = sgp(ri,...,7 | 7:r; =
rjforall 1 <4,j < n)and R,, =sgp(ri,...,rm | msr; =rjforalll <45 < m).
Both R, and R,, are clearly finite, and since for any right zero r; we have r;r; = r;,
then R2 = R, and R = R,,,.

We show that R,, (similarly R,,) is stable. Let r;, ...7;, and r; ...7; be two

k
words over 71, ..., r, T such that the relation
Til...’l"ik :’I"jl...’f'j

l

holds in R,,. We note that two words are equal in RR,, if and only if the last letters of the
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3. Direct Products with Groups and How to Draw a Graph 41

word are equal, so 7;,, = r;, . Suppose that k > [. Then an elementary sequence is

Tig oo o Tiy =Tip oo Ty Tig oo Tig_5Tip5
Tig oo Tig_gTigs v
. Tilrik- ; Til e Tilflr’ika
Tiq ov leflrilflrik,ril . leflrik,
P rilr]»z e ’I“.7‘l71’l“i,c7
TisTii Vo oo T a Vi Ui Vg - Vi1 Tige
= leTj2 e le.
The shortest word in this sequence is r;, ...7;,_,r;, which has length [, and so there is
no word shorter than the shortest of our two original words. Now if & < [, there exists

an elementary sequence

Tiqg oo Ti =744 ...Tik77’jl_17”7;1 Ty
rjzfzrjlfﬂnil B F TR ,7"]'1 .. .7"]'1717'1'1 T,
T’jl e szf1ri1 e Tik-fzrik’ ey
Tjr - T5_1Ti1 T Tgy - - - Tj_1 Ty,
= le "'le—lril'
The shortest word in this sequence is r;,_, 75, ...7;, which has length k& + 1, so this
sequence never goes via a word shorter than the original words. Hence R,, and R,,

have no critical pairs, and so are stable. Thus we may apply Theorem , and S is
finitely presented if and only if 7" is. (]
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Chapter 4

Completely Simple Semigroups

Of course, of course! Absurdly simple,

like most riddles when you see the answer.

Gandalf The Grey

A sensible path to follow is to investigate semigroups which feature groups some-
where in their construction, as this allows us to use the Svarc-Milnor Lemma (provided
we can construct a sensible action of course). Here we will look into completely sim-
ple and completely 0-simple semigroups which, due to Rees [[14], have a construction
which may be thought of as the direct product of a left zero semigroup, a group and
a right zero semigroup, with a twisted form of group multiplication. We will extend
our ideas on left and right zero semigroups from Chapter B to take into account the
difficulties introduced here. We begin with the definition of the objects we will work
with.

Definition 4.1
A semigroup S is simple if it has no proper two-sided ideals. A semigroup is completely

simple if it is simple and has minimal left and right ideals.

A famous theorem of Rees allows us to give a construction of such semigroups.

Definition 4.2

Let T be a semigroup, let I, A be arbitrary sets and let P = (py;) be a |A| x |I| matrix
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(known as the sandwich matrix) with entries in T. The set I x T x A is a semigroup

with the multiplication

(iv 9, )‘)(]7 h7 M) = (Za gijh, M)

called a Rees matrix semigroup. We write M[T'; I, A; P] to denote this semigroup.

Theorem 4.3 (Rees, [14])
A semigroup S is completely simple if and only if S = M|G; I, A; P), for some group

G, sets I, A and sandwich matrix P with entries in G.

When considering a completely simple semigroup, we will choose to work with
the Rees matrix semigroup to which it is isomorphic. We let S = sgp(A) and T' =
sgp(B) be two completely simple semigroups, with S = M|G; Ig, Ag; Ps] and T' =
M[H; It, Ap; Pr]. We of course wish to show that if we have { (S, A) = (T, B),
then S is finitely presented if and only if 7" is.

One approach we may consider is to see that if given an S = M|[G; Is, Ag; Ps], we
can detect clusters of vertices that represent the group G. That is, given a fixed ¢ € Ig
and A € Ag, can we identify the set of vertices V; x = {(¢,9,A) | g € G} in { (S, A).
We will see in Lemmas @ and @ that Ig can be viewed as a left zero semigroup
and so 7 (S, A) has at least |Ig| components. We can therefore identify the larger set
of vertices V; = {(4,9,1) | ¢ € G, € A} that contains V; 5. Now considering the
subgraph induced by this set of vertices V; we would like to be able to find all vertices
that represent elements with A as their third component. However, similarly to Example
@, restricting to V; » does not necessarily give us a copy of { (G, m¢(A)). Hence we
cannot deduce which vertices belong to V; », and therefore cannot even decide the size
of Ag.

We show by means of an example that two completely simple semigroups with iso-
morphic skeletons can in fact have differently sized A sets.

Example 4.4
Let S = M[Cq; {l1},{r1,m2};I) and let T = M[Vy; {41}, {s1}; I]. Let

S =sgp({(l1,x,71), (l1,2,72)})
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4. Completely Simple Semigroups 45

and let
T = Sgp({(]h a, 51)5 (j17 b7 51)}>

We then have the following Cayley graphs.

(li, L,r1) (I, z,m1)

(1171777"1) -

(ll,l'7’l"2) -

(li, L,m2) (I, z,7m2)

Figure 4.1: Graph Cay(S, {(I1,z,71), (I1,2,72)})

(j171781) (jlaaysl)

(li,z,m) ——

(l,,1m9) ——

(jha/basl)) (jhbasl)

Figure 4.2: Graph Cay(T, {(j1,a, s1), (j1,b,51)})

The skeletons of both S and 7" with respect to these generating sets are then as

follows.

Figure 4.3: Graph { (S, {(l1,z,71), (I1,2,72)}) and 1 (T, { (41, a, s1), (41,b,51)})

Lemma 4.5
Given an S = MI|G; Ig, As; Ps| we cannot necessarily identify the set of vertices
Via={0G,9,N) | g€ G}int(S,A)forafixedi € Ig and A € Ag. Given two semi-
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groups S = M|[G;Ig,As; Ps] and T = M[H; I, Ap; Pr] with 1 (S, A) = 1 (T, B)

we do not necessarily have |Ag| = |Ar|.

Proor: In Example @ we see that

T(Sv {(117I7T1)7 (11,13,7’2)}) = T(Tv {(jlvaa 51)7 (jlabvsl)}) .

If we attempt to identify the set V;, ,.,, which consists of the upper two vertices in Figure
, in the skeleton t (S, {(l1, z,71), (1, z,72)}) we are unable to see which set of two

connected vertices this should be. We also have that |Ag| = 2 and |Ar| = 1. O

Hence we see that we can determine neither the location of V;  nor the size of A
by inspection of the skeleton, and as such there is no clear way to describe when two
completely simple semigroups have isomorphic skeletons.

We will assume that S is finitely presented, with finite generating set

A = {(ix, gk, M) | 1 < k < nforsomen € N}.

Lemma 4.6

The sets Is and Ag can be viewed as left and right zero semigroups respectively.

Proor: If we consider the projection 7y, : S — Ig, then the set m,(A) forms a
generating set for the set /g under the multiplication ¢5 = ¢. This tells us that Ig is in
fact a finitely generated left zero semigroup, and hence is finite. Similarly, the projection
Tag = S — Ag gives a finite generating set mp4(A) for A under the multiplication
A = u, and so Ag is a finite right zero semigroup. O
Lemma 4.7

The graph 1 (S, A) has at least |Is| components.

Proor: Consider now an element (i, g, A). When we multiply this on the right with
an element (j, h, j1), say, our product is (¢, gpx;h, ). We notice that since Ig is a left
zero semigroup, the g component remains the same as in the original element. This
means that in the Cayley graph of .S, there are no edges between vertices with different

I's components, and so } (.S, A) has at least |Is| components. O
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4. Completely Simple Semigroups 47

We now restrict ourself to looking at the set R = {(i,9,A\) | ¢ € G, A € Ag}
for a fixed ¢ € Ig. This set is a subsemigroup of S, but it is not necessarily generated
by the set A N R, and even if it were, the graph (R, AN R) would not neccesarily
be isomorphic to the subgraph of 1 (S, A) induced by the set R. Hence we will work
with the graph (R, A). Recall that 1 (R, A)' denotes the metric space created from
the graph 1 (R, A) as described in . This space is geodesic, since IR is a right ideal
of S, meaning we can find a path between any two points in (R, A) that realises the

shortest distance. We will define an action of G on R by

(i, 2,0) = (1, gz, A) (%)
Claim 4.8

(®) is an action.

Proor: Let g,h € G and (i,z,\) € S. Then

(i, 2, \) = (i, (gh)a, \)
= (1, 9(hx), A)
=9(i,ha, \)
= g(h<i7$7>‘))
and
Yy, N) = (3,2, ).
O
We define an action on edges, by defining 9e = f where «(f) = 9u(e), 7(f) = 97(e)

and A\(f) = A(e). We can extend our action to an action of G on { (R, A)’, which we

desire to be by isometries, cocompact and proper.

Claim 4.9

The action (®) is by isometries.

Proor: Let (i,,)\) and (i, za, 1) be two vertices in 1 (R, A)’ joined by an edge la-
belled (4, a, ). Under the action ® we have 9(i,z, \) = (i, g2, \) and ?(i,xa, u) =
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(i, gxa, ). Since (4,2, \)(4, a, u) = (i, gxa, 1) then the action preserves adjacency of
vertices. Now let (i, 2, \) and (4, za, i) be two vertices such that there exists no edge
between them, but the exists an edge labelled (7, a, p) between 9(i, x, \) = (i, gz, A)
and 9 (i, za, u) = (¢, gza, u). Then since (¢, gz, A\)(J, a, ) = (4, gza, ) we have

-1

7 (i, 92, M) (G, a, p) = (2, X) (5, a, 1)
=9 (i, gwa, )
= (i, za, 1).
Hence there does exist an edge between (i, z, A) and (i, za, 1) labelled (4, a, ). Thus
the action preserves non-adjacency also. Since both adjacency and non-adjacency are
preserved, then paths of shortest length are preserved and so our action & is by isome-
tries. g

Claim 4.10

The action (®) is cocompact.

Proor: To check our action is cocompact, we simply need to establish that the quotient
graph of 1 (R, A) is finite. The orbit of a vertex (i, x, A) is
(4,2, \)] = “(i,2,\)
={(i,gz,\) | g € G}
={(i,9, M) | g € G}.

Thus we have |A| distinct orbits, and so T (R, A) /G has finitely many vertices.
An upper bound for the size of the set £/G is |A||A

, as given an edge e with start
vertex t(e) = (i, x, A) with label A\(e) = (¢, a, 1), the orbit of this edge is
le] ={f € FE|f)=90,z,N) = (i,gz, ),
T(f) = Q(i, TP @, ,u) = (7’7 grpi;a, ,U),

)‘(f) = (i7a7lu')}'

Consider the orbit of the vertex ¢(e). For every vertex (i, gz, A) in this orbit, there

is an edge leaving it labelled (i, a, 1), terminating at (¢, grpa;a, ). Hence the orbit of
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our edge e is all edges labelled (7, gzpja, it), beginning at any vertex (i, g, A).

el ={f € E|u(f) = (i,9,\) for g € G, A(f) = (i, a,1)}

Thus E/G contains one edge per generator for each copy of G, of which there are |A|,
and so E//G contains |A||A| edges, so it is certainly finite. Hence the quotient graph
has finitely many vertices and edges, and so the quotient space is a finite union of paths.
By Lemma , the quotient space is compact, and hence the action is cocompact. [
Claim 4.11

The action (®) is proper.

Proor: We now let K C (R, A)/ be a compact set, so by Lemma , K is a finite

union of paths. Let () be the set of group elements

Q={g €G] (i,g,\) is an endpoint of an edge that

contains a point in K for some \}.
Thenthe set P = {g € G| K N K # &} is precisely

P={geG|%e,u) €K forsome (e,u) € K}
={geG|gxeQforxeQ}
={9eGlgr=qforz,qecQ}
={g€Glg(zq ') =1forz,qeQ}.

Since () is a finite subset of a group, there are finitely many such g that are inverses for

mq_l, and so P is finite, and so the action is proper. O

We notice that in order to construct a nice action here, we required Ag to be finite.
We will want to be able to act in a similar way with H on 1 (T, B)" so we must show
that A is finite.

Lemma 4.12

The sets At and It are finite.

Proor: Given the multiplication of T, we know that each set of vertices { (i, h, \) | h €

H,\ € Ar} forms a component of 1 (T, B), meaning 1 (7, B) has |I| components.
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Since (S, A) = 1(T, B), and t (S, A) has |Is| components, then { (T, B) has |Ig|
components also, and so |I7| = |Ig| meaning Ir is finite.

Now suppose that A is infinite. This implies that there exists a generator (¢, a, A)
forall A € Ap; that is, infinitely many generators. Let v = (j, h, ). For each generator
(i,a, \) we have

(s s ) (@, @, A) = (4, hppias A).

Since there are infinitely many A € A, the vertex v is therefore connected to infinitely
many other vertices, but this is a contradiction, as 1 (T, B) is locally finite. Therefore
A is finite. 0
Lemma 4.13

The group G is quasi-isometric to H.

Proor: We apply the Svarc-Milnor Lemma, which tells us G is quasi-isometric to
t (R, A)’, via a map 1. Since we have ¢ : (S, A) — 1 (T, B)’, an isomorphism,
there exists a subset U of 7' such that 1 (R, A)" is isomorphic to { (U, B)'. We can
then construct a quasi-isometry ' : G — 1 (U, B)', where for an element g € G we
have 1/’ (g) = ¢(¢(g)). Acting analogously on t (U, B)" with H, we establish a quasi-
isometry o : H — 1 (U, B)', which allows us to build a quasi-isometry 3 : G — H

given by 3(g) = o~ (¢'(g)). Hence G is quasi-isometric to H. O

Thus far, we have not mentioned finite presentability in the context of Rees matrix

semigroups. The following result will be useful.

Theorem 4.14 (Ayik and Ruskuc, [2])
Let S be a Rees matrix semigroup M|T; I, A; P], and let W be the ideal of T generated
by the set {px; | A € A,i € I} of all entries of P. Then S is finitely generated (respec-

tively, finitely presented) if and only if the following three conditions are satisfied:
(i) both I and A are finite,
(ii) T is finitely generated (respectively, finitely presented)

(iii) the set T \ W is finite.
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Our semigroup S is assumed to be finitely presented, and so by Theorem @] the
group G is also. Since quasi-isometries preserve finite presentability of groups, we
establish a lemma.

Lemma 4.15
If S is finitely presented H is finitely presented.

Proor: By Theorem , S being finitely presented implies that G is finitely presented.
Lemma tells us that G is quasi-isometric to H, and since quasi-isometry of groups

preserves finite presentability, then H is finitely presented.

g

Consequently we have the following theorem.
Theorem 4.16
Let S =2 M[G;Ig, Ag; Ps] with finite generating set A and T = M[H; I7, Ar; Pr]
with finite generating set B. If 1(S, A) = { (T, B), then the semigroup S is finitely
presented if and only if T is.

Proor: Let S be finitely presented. Then by Lemma , H is finitely presented and
by Lemma I7 and A are finite. Since H is a group, the ideal W = T {py; | A €
A7, i € I7}T" is the whole group, as groups have no proper ideals. Hence H\W = &
which is clearly finite. By Theorem we then have that T’ is finitely presented. [

We can now turn our attention to completely simple semigroups sibling, the com-
pletely 0-simple semigroup. First we define a 0-simple semigroup S as a semigroup
with 0, for which the only proper two-sided ideal is {0}. We then say that an ideal I of
S is 0-minimal if I and {0} are the only ideals contained in I. Then S is completely 0-
simple if it is 0-simple and its left and right ideals are O-minimal. For completely simple
semigroups, we were able to find a characterisation in the form of Rees matrix semi-
groups. Completely 0-simple semigroups are similarly nice, and so we introduce the
Rees matrix semigroup with 0. We let T be a semigroup not containing a 0, let I, A be

index sets, and let P be a |A| x |I| matrix with entries in 7U{0}. Then (I x T'x A)U{0}
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is a semigroup with multiplication

_ , (4, gpajh, 1) ifpa; # 0
(2797/\)(]7hau) =
0 ifp)\j =0

and

This semigroup is a Rees matrix semigroup with 0 and is denoted M°[T’; I, A; P]. Our

characterisation in then given by the following theorem.

Theorem 4.17 (Rees, [14])
A semigroup S is completely O-simple if and only it is isomorphic to a Rees matrix

semigroup with 0, M[G; I, A; P] where G is a group, and P is regular.

Note that a matrix is regular if every row and every column contains at least one
non-zero element.

We let S = MO[G; Is, As; Ps] with Ps regular, and T = MC[H; I, Ar; Pr]
with Pr regular. We prove the following.
Theorem 4.18
Let S = M°[G; Is, As; Ps| where Ps is regular, and T = M°[H; I7, A; Pr] where
Py is regular. Let S = sgp(A) and T' = sgp(B) with A and B finite, and 1 (S, A) =
1 (T, B), then S is finitely presented if and only if T is.

Proor: Suppose that S is finitely presented, then by Lemma H is finitely presented.
Then by [2] and Lemmas and T is finitely presented. O

We now proceed to prove the lemmas used in the proof of Theorem . In order
to do this we will need to construct a slightly different space to the standard skeletons
to act on.

Suppose that 1 (S, A) = 1 (T, B), and assume S is finitely presented. As with com-
pletely simple semigroups, we can deduce that both I and Ag are finite (cf. Lemma
@). We assume that G is infinite, as if G is finite, then S is finite since Ig and Ag are
finite and so it is trivial to show T is finitely presented. Therefore, given an infinite G,

we claim that in | (S, A), that 0 is the unique vertex of infinite degree.
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Claim 4.19

Int (S, A), Og is the unique vertex of infinite degree.

Proor: We first show that Og has infinite degree. We know there are two possible ways
to get to 0 via multiplication. The first is that Og appears already in our generating set,
and s0s = Og for all s € S, which would mean 0 trivially has infinite degree. We
therefore assume that Og is not in our generating set, and so in order to reach Og we
must find two elements (¢, g, A), (4, k, 1) such that py; = Og, and then their product
will be zero. Let py; = Og be an entry of the matrix with value 0g. Now since I can
be viewed as a left zero semigroup, for each ¢ € I there must be a generator of S that
contains ¢ as its left most component. Therefore, there exists some generator (j, a, 1)

with j as the left component. Let
D={(i,9,\) |ge G,iel}.
This is an infinite set, and for all (i, g, \) € D we have

(i>ga )‘)(jv a’vu) = (Z"gp)\Ja7u)

= 0g.

Hence 0 has infinite degree.

Now suppose v = (4, g, A) # Og is a vertex in t (S5, A) with infinite degree. Since
S is finitely generated, v must have finite outdegree in Cay(S, A) and so has infinite
indegree. In particular, there are infinitely many vertices w such that wa; = v for some
generator a; = (j,a,A). Since Ig can be viewed as a left zero semigroup, we know
that each w has the same Ig component i as v. As Ag is finite, there must be infinitely
many such w that share the same Ag component, say . We thus consider the subset of
elements W = {w € T' | w = (¢, h, ), h € H}, which is an infinite set. We have that
forall w = (i,h,u) € W

(7:5 h7 ,u) (]7 a, /’L) = (7’? hp,ujaa lu)
= (4,9, A).

Since W is infinite, but 7, i1 are fixed, there are an infinite number of elements h € G

such that hp,ja = g. Since v # Og, we know that p,,; # Og, so p,; € G. This implies
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there are infinitely many different h in G such that h(p,;ag~") = 1, that is the fixed
element p,ag~! has infinitely many inverses. This is a contradiction, and so v must

have finite degree. Hence we have shown that Og is the unique vertex of infinite degree

in (S, A). 0

We now know that there exists exactly one vertex of infinite degree in 1 (.S, A), and
hence also in { (7, B). Since T also contains a zero element 07, we may show in an
identical way as in S that the vertex representing O has infinite degree, and hence
in both 1 (S, A) and t (T, B) the unique vertex of infinite degree represent the zero
element.

Since both graphs 1 (S, A) and 1 (T, B) have a single vertex of infinite degree, the
subgraphs generated by removing these vertices and their associated edges will remain
isomorphic. We will call these graphs t (S, A.) and { (T, B.) respectively. We wish
to work with a geodesic metric space, so we restrict our attention to the subgraph in-
duced by the set of vertices R, = {(i,9,A\) | ¢ € G, A € Ag}. We call this graph
T (R., A;). We then create a metric space from { (R., A) using the method outlined
in . We call this metric space 1 (R., A.)".

Lemma 4.20

The group G is quasi-isometric to the metric space T (R., A.)'.

Proor: We define an action of G on R, = {(i,g,)\) | g € G, A € Ag} by
(i@, A) = (i, g, A)

This is a map from G x R, — R,, as it is never the case that the multiplication gz
returns zero, and the action axioms are fulfilled in the same way as for Rees matrix
semigroups. This extends to give us an action on | (R, AZ)/, which is cocompact and
proper, following a similar line of reasoning to Rees matrix semigroups. We apply the

Svarc-Milnor lemma to obtain a quasi-isometry between G and 1 (R, A,)’ O

In order for such an action to be cocompact, we required Ag to be finite, and so
if we hope to act on the component t (U, B.)' of 1 (T, B.)" which is isomorphic to

T (R, Az)/, we will want to show that A is finite.
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Lemma 4.21

The sets A and I are finite.

Proor: To see that I is finite, consider the subgraph of 1 (7', B) induced by the set of
vertices T\ {Or}. Since I can be viewed as a left zero semigroup, then this graph
has |Ir| components. Since this is isomorphic to the subgraph of T (.S, A) induced by
the set of vertices S\ {0}, which has |Is| components, then |I| = |Is] and so I is
finite.

Assume that A is infinite. We will show that this means there exists a non-zero
vertex with infinite indegree. The matrix Pr then has finitely many columns and in-
finitely many rows. Since it is regular, this means there exists some column, say the
one indexed by j € Ir, which contains infinitely many non-zero entries. There exists
at least one generator, (j, g, \) say, with this j as its first component. Now consider
the vertex (i, 1z, A) for some i € Ir. For every element of the form (i, g~ 'p,; ™', 1),

provided that p,,; # 0, we have

(i,g_lpuj_l,u)(ﬁ% /\) = (i7g_1pu]’_1pu47‘ga )‘)
= (i, 11, A).

Now since we picked j such that the column indexed by it in Pr has infinitely many non-
zero entries, there are infinitely many values y such that the above product is realised,
and hence (4, 17, A) has infinite indegree. This is a contradiction to the fact that O is
the only vertex of infinite degree in | (7, B), and so A is finite. ]
Lemma 4.22

The group H is quasi-isometric to G.

Proor: We can then show similarly to Lemma that H is quasi-isometric to the
subset 1 (U, B.)" =t (R., A.) of 1 (T., B.)'. Hence G is quasi-isometric to H via
the isomorphism between 1 (U, B,)  and { (R., A.)’. O

There exists an analogous theorem to for Rees matrix semigroups with zero
in [2], which states identical conditions for a semigroup M°[T’; I, A; P] to be finitely

presented.
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Lemma 4.23
If S is finitely presented then H is finitely presented.

Proor: Since S is finitely presented, GG is also. Quasi-isometry preserves finite pre-

sentability of groups, and so by Lemma H has a finite presentation. g

Lemma 4.24
Let U is the ideal of H generated by the set {px; | \ € Ar,i € IT} of all entries in Pr,
then H \ U is finite.

Proor: Since H is a group, H \ U = &, and hence finite. O

This completes the proof of Theorem .

56



Chapter 5

Clifford Semigroups

“I invoke the All Nations Agreement
article number 39436175880932/B.”
“39436175880932/B? ‘All nations
attending the conference are only allocated
one car parking space?’ Is that entirely

relevant, sir?”

Red Dwarf

In the previous chapter, we discovered that completely simple semigroups were a
fruitful area of study for our question. This is because they are constructed from groups,
and retain some of the group structure for us to exploit. It is perhaps then a sensible idea
to look for more families of semigroups which are based on groups. One such family is
Clifford semigroups. We may construct these by taking a semilattice, placing a group
at each element of the semilattice, and defining a sensible multiplication. We expand
on this construction below.

Definition 5.1
A partially ordered set (X, <) is a set X together with a binary relation < such that for
alla,b,ce X

(i) a < a (reflexivity);
(ii) ifa < band b < a then a = b (anti-symmetry);
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(iii) ifa < band b < cthen a < c (transitivity).

If a pair of elements (a,b) € X x X are not in the relation <, we say they are incom-
parable and we write a||b.

Definition 5.2

Let (X, <) be a partially ordered set and let a,b € X. An element c is called the meet
ofaand bifc < aandc < b, and for any d € X such thatd < a, b, then d < c. If the
meet of two elements exists, then it is unique, and we write a \b = c.

Definition 5.3

Let (X, <) be a partially ordered set such that for all a,b € X, a A\ b exists. Then

(X, <) is a (lower) semilattice.

We may draw a Hasse diagram to represent a semilattice, for example let X =

{a,b,¢,d} with ¢ < a,c < band d < ¢, and a, b incomparable.

a b
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5. Clifford Semigroups 59

We can observe from the diagram here that every pair of elements does have a meet:

aNb=c
aNxT =2
bAa=c
bAz =z
cANd=d
cANr=c
dhzx=d

where x is any element of X that has not already been specified. Hence this is a semi-
lattice.

We can now construct a semigroup as follows. Suppose we have Y, a semilattice,
and a set of semigroups S indexed by Y. For every \,u € Y where A > pu let
©x,u : Sx — S, be a homomorphism such that ¢ » is the identity map on S and for

all A\, u,v € Y suchthat A > p > v

PrpPuy = Prv-

Our semigroup is the set S = [J,.y Sx, Where multiplication of two elements

x € Syandy € S, is given by

2y = (T xnw) (YPuAA)-

We call S a strong semilattice of semigroups, and denote it by S = S[Y; Sx; ox ).
To define Clifford semigroups, we first define completely regular semigroups. A
semigroup S is completely regular if there exists a unary operation a — a~! on S such

that

1 1 -1

(e t'=a,aa7ta=a,aa" =a"ta

for every a € S. An enlightening theorem which suggests to us why this may be a

sensible area to look is the following:
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Theorem 5.4 (Proposition 4.1.1, [[12])
Let S be a semigroup. Then S is completely regular if and only if every H-class of S is

a group.
A Clifford semigroup is a completely regular semigroup such that for all x,y € s

(za™ Y (yy™") = (yy~ H(az™).

We would like a characterisation of Clifford semigroups that allows us to easily
work with the group structure found within. The following theorem gives us such a
characterisation:

Theorem 5.5 (Theorem 4.2.1, [12])
Let S be a semigroup. Then S is Clifford if and only if it is a strong semilattice of

groups.

It is tricky to work with arbitrary Clifford semigroups, as given an arbitrary skele-
ton of a Clifford semigroup, we may not even be able to distinguish the semilattice
underlying it.

Example 5.6

One very small example of this is to let S = S[Y; Sx; px ], where Y = {«, B} is
the two-element semilattice with « > 3, and S, = Cy = gp(z,) and Sg = {1z},
with the obvious homomorphism ¢, g. Then if we let S = sgp(z,,13), we have

Cay(S,{zq,15}) as the following graph.

Lo

1

Now let T = T[Z;Tx; ¢ ] with Z = {«, 3, v} being a 3-element linear order and
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5. Clifford Semigroups 61

for all A € Z, we have T}, trivial groups. We let the homomorphisms be the obvious

ones. We have T' = sgp(1,, 18, 1,), and Cay(T, {14, 13, 1,}) is given below.

Now if we are to draw (S, {zq,15}) and 7 (T, {14, 15, 1+}), both result in the
following graph.

These are indistinguishable from their skeletons, but clearly have different semilat-

tice structures.

We might wonder if this occurs only if the component groups are finite. To dispel
such notions, we provide a further example.
Example 5.7
Let Y = {a, 3} be the two element semilattice, and let S, = Z x Cy = S3. Note
that we write Cy = {1, z}. Let ¢, g be the identity map; then S = S[Y’; Sx; ¢ ] is
a semigroup generated by A = {(—1q4,14), (1a;1a), (0a, 24)(08,15), (0g,z3)}. A
section of Cay(.9, A) is given in Figure El]
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(0a, 1a)

(laala) I

‘ (Oouxa) -
e t (0g,1g) ——
N e Ope)

7
v

Figure 5.1: Cayley graph of S

Let Z = {a,f,7,06} be the four element linear order, and T\ = Z for all A €
Z. For each \,u € Z, define ¢y, by z — 0,. Then T = T[Z;Tx;pxr,) is a
Clifford semigroup, which can be generated by B = {—1,, 14, 13,1,,15}. A section
of Cay(T, B) is given in Figure @

Figure 5.2: Cayley graph of T'

Now for S and T we have T (S, A) and 1 (T, B) as shown in Figure @

Figure 5.3: Skeleton of S and T'
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These infinite Clifford semigroups have different semilattice structures, but t (.S, A)

and (T, B) are isomorphic.

Sadly, then, it is not possible to deduce the structure of the semilattice simply by
inspection of the skeleton. We can, however, cheer ourselves slightly by proving a the-
orem linking isomorphism of skeletons of Clifford semigroups and finite presentability.
In order to do this, it will be useful to know exactly when Clifford semigroups are finitely
presented.

When proving this, it will be useful to know when Clifford semigroups are finitely

presented. The following theorem gives us conditions for when this occurs.

Theorem 5.8 ([[1, Theorem 6.1])
A strong semilattice of semigroups S = S[Y'; Sx; ¢ ] is finitely presented if and only

if Y is finite and every semigroup S\ is finitely presented.

We will also find the following lemma to be useful.

Lemma 5.9
Let G be a finitely generated group with a finite normal subgroup N. Then G is quasi-

isometric 1o G/ .

Proo¥: Define an action of G on G/ pr by 9aN = (ga)N. Then the orbit of a point
aN € G/ N is the entire group G/ N, and so the action is cocompact. If we let
K C G/ be a compact set, then K is finite. Let P = {g € G | 9K N K # @}, then

P={gecG|'KNK # o}
={g€ G| gaN € K forany aN € K}.
Since NV is finite, there are only finitely many g € G that move elements of K back to
itself, and so P is finite. Hence this action is proper, and so by the Svarc-Milnor lemma

the map g — (ga)N for any aN € G/ is a quasi-isometry between G and G/

equipped with the word metric. U

We will now prove the following theorem linking isomorphism of skeletons of Clif-
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ford semigroups and finite presentability.
Theorem 5.10
Let S = S[Y;Gx;oa ) and T = S[Z; Hy; 0, where Y, Z are finite and homomor-

phisms ., 0y, are such that
(i) ©xpu, 0, are surjective,
(ii) ker py ,,ker 8y, are finite.

Let S = sgp(A) and T = sgp(B) with A and B finite. If (S, A) = 1 (T, B) then S is
finitely presented if and only if T is.

Proor:

Let S = S[Y;Gx;oa,] and T = S[Z; Hy; 0, ,] be as in Theorem , and
suppose that S is finitely presented. Let w be the least element of Y.

We will prove this theorem by constructing a new semigroup {2 with skeleton
(22, A) for some generating set A, on which we can define an action of the group
G,. We will show that G,, is quasi-isometric to T (Q,Z) and that { (Q, Z) is quasi-
isometric to T (S, 4). Similarly we let ¢ be the least element of Z and define a new
semigroup ¥ with skeleton (\I', F) for some generating set B. We show that Hy, is
quasi-isometric to { (\IJ7 E) and that } (\I/, E) is quasi-isometric to T (T, B). Then since
(S, A) = 1 (T, B) we show that G, is quasi-isometric to H,, and hence H,, is finitely
presented and thus 7' is finitely presented.

We begin by describing how to construct the semigroup €2. Recall that w is the least
element of Y and let K ., denote ker ¢ ,. We create a semigroup () by taking the
union of Ga / Ky forall A € Y as elements. Elements of GA / Ky, are denoted
by sK) ., where s € Gy. Let 51K\, o, 52K, . € §2 then we define the following

multiplication:

SIK)\,wS2Ka,w = (51@)\,/\/\01 SQ@a,A/\a)K}\/\a,w~
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Let s1 Ky, o = 520K, wand t1 Ky, o, = t2 K, .. Then

51K>\1,wt1K)\2,w slspAl,Al/\AQtlsoAQ,)\l/\AQ )K)\l/\)\g,w

S10x1 A1 A ) B A w (190 A1 AN ) BN AN, w0

(
(
(52021 21 A% ) E 0 Aew (B2000 A Ae ) B AN w
(

52001 M AN E2020 A A ) O AN w0

82K/\1,wt2K)\2,w
Hence this multiplication is well defined. Let
A={aK,, |a€ Awherea € G,}.

We then have the following claim.

Claim 5.11

A is a generating set for Q.

Proor: Let sK ,, € Qandlets =ay...a, witha; € G, N Aforeach 1 <i < n.

We note that since s € Gy, then a; A ... A «;, = A. Now we have

alKal,w ce anKozn,w = SKOzl/\.../\Ozn,w

= SK)\M
and all a; K, ., € A. Hence A is a generating set for (). O

We will now show that our constructed space is quasi-isometric to the original metric
space.
Claim 5.12

The metric spaces 1 (S, A)" and 1 (Q, Z)/ are quasi-isometric.

Proor: For each group Gy, let fy : Gy — G /K, ,, be the quasi-isometry as given
in Lemma @, and denote the image of an element g € G by gf\ = gK) .. We
then define a map f : (S, A) — 1 (Q,Z)I by defining the map for vertices, which

induces a map for the space. We define sf = sf) where s € G. Let « € Y be such
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that K | > |K | for any A € Y. Then we claim that f is a (| K4, 1, 1)-quasi-
isometry.

Suppose that s and ¢ are two elements in S, with sf = sKg, and tf = tK, .
Letv = vy ... v, be a word labelling a shortest path between s and ¢ where v; € G, .
Then vK,, , = v1 Ky, ... VoK), o is a path from sKg , to tK ., which has length

n, and so

dT(Q7Z)/(SKﬁf‘*” tK%w) S dT(S,A)' (S, t)

< |Kawldi(s,ay (s, t) + 1.

We now consider how much shorter than d; (S, A) (s, t) a path between sKgz.,
and tK, ., can become. If a sequence of vertices v; . . . v; in the path v are found in the
same coset, then in T (Q,Z)I these vertices are mapped to a single vertex and so our
path length is reduced by j — i. The size of j — ¢ can be at most the size of the coset
these vertices were found in, which we recall is finite, as all kernels K ,, are finite.
Now suppose the path v travels through a number of cosets, the largest possible size
of which we know is of size | K, .,|. Then for each coset that the path travels through,
we know that we are mapping at most | K, .| vertices to a single vertex in t (Q, Z)I.

Thus we reduce the length of a path in 1 (S, A)" by a factor of at most |K,,,| when

—\/
moving into T (Q, A) . We note that we must then also subtract a constant of 1 from

1
Ko wl

di(s,4y (s,1) to find the true lower bound as we will always have at least one edge
/

which becomes a loop when passing to 1 (€2, A)

Therefore we have that

1

WdT(S,A)’(svt) — 1= digz)y (8Kpw thyw) < |[Kawldis,ay(st) + 1.

Now since 1 (£2, Z)/ is connected for any vertex y € 1 (€2, A) there exists an z €
(2, A) such that y = (2) faK ., for some a € A, that is dy(0.7) (y, (z)f = 1.
Hence f is a (|Kq.|, 1, 1)-quasi-isometry. O

Let g be a preimage of g € G, under ¢ ,,. We now define an action of G|, first on
the vertices of 1 (2, A) by
gSK/\,w = QSKA,w- (%)
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Claim 5.13

(=) is an action of G, on the vertices of T (Q, Z).

a”—1 =
Proor: Letg, h € G, and sK , € €. We first note that since (s~tgh Ghs)prw =1
then gﬁsK Aw = gAth Aw- Therefore

g(hSK)\yw) = giLSK)\yw
= giLSK)\’w
= gAhSK)\,w

= 9}L(3K,\,w).
We also have

1“’SKA7W ES 1WSK)\M
= 1)\SK,\,W

= SK)\UJ.

B}

Hence (&=) is an action. U

This is then extended to an action on edges, and then to an action on the metric space

T (Q, Z)/. We will show that this action is by isometries.

Claim 5.14

The action (&=) is by isometries.

Proor: Let g € GG,,. We show that the action of g preserves adjaceny of vertices. Let
sK, . and saK, ., be two vertices in 1 (€2, Z)/ that are connected by an edge labelled
akKy, . The images of these vertices under the action of g are gsKy, ., and gt K, .,

respectively. Then

gSKM,waKkz,w = g}saK,\z,w

= gtKy, w.

Hence edges are preserved under the action. Suppose now that sK, ., and sa Ky,

be two vertices in T (Q, Z)I that are not connected by any edge, but gsKy, ,aK), ., =
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GtK», ., for some aK,, ., € A. We multiply both sides of this equation by g~ K, .,

and see that

g_lK)\thSK/\l,waK/\g,w = g_lK)\hwgtK)\z,w

SK,\IMGK,\Q’W = gtK)\z’w.

This tells us there exists an edge between sK, ,, and gt K, ., labelled a K, ,. Hence
the action (=) preserves non-edges also. Since both adjacency and non-adjacency are
preserved, then paths of shortest length are preserved and so the action is by isometries.

O

We now show that the action (&=) is cocompact.

Claim 5.15

The action (&=) is cocompact.

Proor: Let sKy , € ). We consider the orbit of sK , under G,,,.

Yo sKyw = {G5Knw | g € Gu}

= G)\/K)\,w

Hence in the quotient of { (Q, Z)/ by the action there exists a single vertex for each
A\ € Y. Since A is finite, then the quotient space is a finite union of paths and so by

Lemma the action (=) is cocompact. O

The final thing we will show for the action (&=) is that it is proper.

Claim 5.16

The action (&=) is proper.

Proor: Let K be a compact set and let W be the set of vertices that are endpoints of
edges containing points in K. We will assume without loss of generality that W only
contains points from a single group G / Ky, - If this is not the case we simply split
W into the union of sets containing vertices in only single groups and consider the sets

individually. We will denote W N GA/f¢, by C.
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5. Clifford Semigroups 69

P={geG,|9KNK =g}
={geG, |IWnW =g}
={g€ Gy, |7cKnr, € C forsome cK) ,, € C}

={g9 € Gy | gcKy o = dKy, for some cK} ., dK) , € C}.

Since C is a finite subset of a group then P is a finite set and so the action (=) is

proper. (]

Hence we apply the Svarc-Milnor lemma which tells us that G, equipped with the
word metric is quasi-isometric to (Q,Z),. We will letd : G, — T (Q,Z)/ denote this
quasi-isometry. We can perform the same construction for 7', creating a metric space
T (\P,E)I which is quasi-isometric to the group H,, equipped with the word metric
where ¢ € Z is the least element of Z. We will let ¢ : Hy — 1 (\IJ,E)/ denote this
quasi isometry.

Now recall from Claim that f : 1(S,4) — t (Q,Z)/ is a quasi-isometry.
Similarly we may define a quasi-isometry g : (7, B)" — 1 (\Il7§)/. Additionally,
since 1 (S, A) = 1 (T, B) we have an isometry & : 1 (S, A)' — 1 (T, B)'. We therefore

have the following diagram.

This means that G, is quasi-isometric to I, and since these are groups then G,
being finitely presented means that Hy, is also finitely presented. Now since Hy, is

finitely presented, then so is H) /Ky, " for every A € Z. Then by Lemma @ Hy is
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quasi-isometric to Hx / Ky and so H is finitely presented by Theorem for all
A € Z. Hence by Theorem @ T is finitely presented. U

We have managed to show that finite presentability is invariant under our skeleton
operation for Clifford semigroups in which both semigroups have finite semilattices
where the homomorphisms are epimorphisms with finite kernel. Further work may

look at whether it is possible to relax the conditions on the homomorphisms.

Conjecture 5.17
Let S = S[Y;Gx;oa ) and T = S[Z; Hy; 0y, where Y, Z are finite and homomor-

phisms @ ., 0, are such that
(i) im pq g,im 0, g have finite index.
(ii) ker pq g,ker 0, g are finite.

Ift(S) 2 1(T) then S is finitely presented if and only if T is.

In order to follow a similar proof method here, we would need to find a sensible
action for the Svarc-Milnor Lemma, and it is not immediately clear how we would

define such an action.
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Chapter 6

A Counterexample

Der Graf ist nicht das, was er mal war

Ja, der Graf wirkt heut seltsam und bizarr

Der Graf
Die Arzte

Having developed the theory of finite presentability as a skeleton-invariant for cer-
tain families of semigroups, we now change tack, and demonstrate that it is not, in
general, a skeleton-invariant property. This chapter therefore presents a counterexam-
ple to the conjecture that finite presentability is a skeleton and quasi-isometry invariant
of semigroups by proving the following lemma.

Lemma 6.1
Let

S = mon(a,b | ab"a = aba for n € N)

and

T = mon(c,d | cde = cd®c = cd* = cd?c? = cd®cdc).

Then 1 (S,{a,b}) = 1(T,{c,d}).

We can see from the given presentation that 7" is finitely presented. We will shortly

prove that S does not have a finite presentation.
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Lemma 6.2 ([[17, Proposition 1.3.1])
Let S be a semigroup and A and B be two finite generating sets for S. If there exists a
finite presentation for S in terms of generators A, then there exists a finite presentation

for S in terms of generators B.

Proor: Since B is a generating set for S, there exists an onto mapping ¢ : AT — BT
such that a and a¢ represent the same element for all @ € A. This can be extended to
a homomorphism ¢ : A* — B such that for all w € A, we represents the same
element as w in S. Similarly there exists a homomorphism ¢ : B¥ — A™ such that w
and wo represent the same element in S for all w € B™.

Let sgp{A | R) be a finite presentation for S, and let Rp = {up = vy | (u=v) €
R}. We show that

P =sgp(B| Rp,b=boy forb € B)

is a finite presentation for .S.

The relations of P are satisfied by .S, so it remains to show that if w; = wo is a rela-
tion in S, then it is a consequence of P. Suppose w, wo are words in BT representing
the same element in S, then wyo and woo are in A™ and represent the same element
of S. Since sgp(A | R) is a presentation, w0 can be obtained from w; o by applying
relations from RR. Hence wa0 ¢ can be obtained from w; o by application of relations
from Rp. Now if wy = b1bs ... b forb; € B, thenwiop = (biop)(baop) ... (bkop)
since o and ¢ are both homomorphisms. Hence w; = wjoy is a consequence of the
relations b = boy for b € B. The relation wo = wooy is obtained similarly, and hence

wy = wsy is a consequence of the presentation P. g

We note that a monoid has a finite semigroup presentation if and only if it has a
finite monoid presentation, and hence the above lemma may be applied to our monoid
S.

Lemma 6.3 ([17, Example 1.3.2])

The monoid S does not admit a finite presentation.

Proor: Suppose that S has a finite presentation. Then by Lemma @, there exists a

finite presentation of the form mon{a,b | R). Since ab”a = aba holds in S for all
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6. A Counterexample 73

n € N, then aba can be obtained by applying relations in R to ab™a. However, since
ab™ and b"a do not satisfy any non-trivial relations, then for each n > 1, R must
contain a relation whose left or right-hand side is ab™a, and hence R must be infinite,

a contradiction. O

6.1 Normal Forms

In order to see that we have correctly established the Cayley graphs for S and 7', we
will need to have some way of representing the elements of both. We do this by finding
normal forms for S and 7', via the use of complete rewriting systems. Throughout, let
k={1,...,k} for k € Ny.

Recall that the semigroup defined by a presentation is the quotient of the free semi-
group over the generators by the smallest congruence containing the relations, and hence
is a set of congruence classes. Given two words in A™, we may be able to see if they
are in the same congruence class using a rewriting system to determine normal forms
for words.

Definition 6.4

A rewriting system is a set of ordered pairs LHS — RHS, a left-hand side and a right-
hand side, with LHS,RHS € At. Words in AT are rewritten by replacing subwords
that are left hand sides of rewriting rules with the corresponding right hand side. We
denote a word v being rewritten to w using a single rule by v — w. If we can rewrite
a word v to a word w by applying n > 1 rewrite rules, we will write v—"w. A word
w that cannot be rewritten, that is, there exists no word v such that w — v, is called

irreducible.

Definition 6.5
We denote by <»* the symmetric closure of — and so u <>* v if and only if for some

n > 0 there exist u = ug, U1, ..., U, = U With

u1 us Un—1
N N T N
Uug u Up, -
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74 6.1. Normal Forms

Then <> x forms a congruence.

We wish to use certain rewriting systems that allow us to find unique representatives
for congruence classes, which we will call normal forms. To do this, we will need to
order words in A*.

Definition 6.6
The shortlex order on a set of words W, denoted here by <, is a well order, in which for
u,v € W, we have u < v if u has shorter length than v, or if u and v have the same

length but u precedes v lexicographically.

We will use the shortlex order when defining the following properties. Given a
semigroup presentation S = sgp(A | R) let p be the least congruence containing R.
We will assume without loss of generality that given a relation (u,v) € R thatu < v
and we create a rewriting system from R by defining u — v for all (u,v) € R. Then
the congruences <+ * and p coincide.

Definition 6.7

A rewriting system is locally confluent if for a, by,by € AT with a — by and a — b,
there exists some ¢ € A such that by and by can be rewritten to ¢ in any number of
steps. A system is Noetherian if there is no infinite chain of strings a; where a; — a; 41

foralli> 0.

Definition 6.8

A rewriting system is complete if it is both Noetherian and confluent.

Lemma 6.9 ([11, Lemma 12.15])

A rewriting system is complete if it is both Noetherian and locally confluent.

We can now establish a condition for when we can find normal forms for elements
of our semigroups.
Lemma 6.10 ([11, Lemma 12.16])
If a complete rewriting system exists for A"/ p, then each congruence class contains a

unique irreducible element which is the normal form for that congruence class.
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Lemma 6.11 ([11, Lemma 12.17])
For an alphabet A and rewriting system R, the rewriting system is locally confluent if

and only if the following conditions hold for any two rules vi — w1 and vy — us in R.

(i) If vy = xyand vy = yz forx,y,z € A*andy # €, thenuyz —* tand xus —* t

for somet € A*.

(ii) If vi = zugy for x,y € A*, then uy —* w and xusy —* w for some w € A*.

We can now apply this theory to our semigroups .S and 7.

Claim 6.12

Elements of S have normal forms given by [] b“a® where a; = 1fori # 1,k, B; # 0
i€k

fori < k, and if ap, > 1 then By, = 0. The empty string, €g is also a normal form,

representing the identity.

Proor: Using the shortlex order with a < b, the following is an infinite complete

rewriting system made from the relations of the presentation of S:
ab™a — aba foralln > 1,n € N

This system is locally confluent[|l I, Lemma 12.17], as there exists only one form of
overlap when rewriting. We provide a diagram to demonstrate this below. The under-
lined subwords are rewritten following the upper and lower arrow respectively. In this

case, the only overlap is the central a in the diagram.

abab™ a —— ababa

7

ab™ab™q

.

ab™ aba —— ababa

Since both paths rewrite to the same word, we have local confluence. Now for all
rules we have RHS < LHS, that is if a rewrite rule is applied to a word, it will always
be rewritten to a shorter word. Thus the rewriting system is Noetherian, and hence is

complete.
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We must now check that our proposed normal forms are indeed the correct repre-
sentatives for their congruence classes, so we must show they are irreducible. Since
all rules have a left hand side with ab™a for n > 1, elements of the form [] hiqhi,
with the restrictions as above, cannot be reduced any further, since they do rf)% contain
any subwords of the correct form, and so are contained in the set of normal forms. The
empty word £g cannot be rewritten and hence is also irreducible.

We are sure now that our proposed normal forms are indeed that, but we must also
show that we have listed all normal forms. Suppose that s = [] b®a® € S where
«;, B; € Nis an element in normal form not given in the above sZ:iE For each 7 € k with

1 # k such that «; # 1, we apply the following rewrite to s:
brafr | pYimrgBimipigBe | pRaPr — pr B pYim1gBimipaBi L pk P

Hence s was not irreducible.

O

The normal forms for S are perhaps better understood by the following description:
words beginning with any number of b, which may be followed by any non-zero number
of a, then a single b, again any non-zero number of a and a single b, etc., then finally
ending in any number of occurrences of the letter a or any number of occurrences of
the letter b.

The normal forms for 7" are somewhat more complicated than for S.

Claim 6.13

Elements of T have one of the following as a canonical forms:

(i) T d*icP where a; = 1 fori # 1, B; # 0 fori < k. These words follow a
i€k
similar pattern to the normal forms of S, but must end in at least one c.

(ii) Elements of the form v (d3c)l d", where v is an element of the form given in (i)

andr € {0,1,2,3}

(iii) The empty string e is also a normal form, representing the identity.
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Proor: Using the shortlex order with ¢ < d, the following is a finite complete rewriting

system made from the relations of the presentation of 7":

ed?c = ede
4

cd® — cde

ed®c? = cde

ed®ede — cde

To show local confluence for this system we must consider the following overlaps:
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cded?c — cdede

e

cd?cd?c =

.

cd?cdec — cdede

cded* — cdede

\

ed?ed! =

/

cd?cdec — cdede

cded3c? —— cdede

\

ed?ed®c? =

/

cd?cde — edede

cded3edec — cdede

\

ed?cdede =

/

cd?cdec —— cdede

eded?c —— cdede

\

cd3ced?e

/

cd?cede — cdede

cded* —— cdede

\

cdsc@

/

cdBecde — cdede

cded®cdc — cdede

7

cd3cedede =

.

cd®cede — cdede

cded®cdec — cdede

\

ed3ced®edc

/

cd®cede —— cdede

cded?c —— cdede

ed3cdedic =

N

cd®cdede — edede

cded* —— cdede

\

cd® cd@ =

/

cd®edede — cdede

cded3c? —— cdede

ed3eded?c? =

™~

cd®edede — edede

cded3ede — cdede

\

ed3eded®ede =

/

cd®edede — cdede
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These describe all the possible overlaps, and hence the rewriting system is locally con-
fluent. All rewrite rules have LHS < RHS, so a shorter word is never rewritten to a
longer word, and so the system is Noetherian, and thus complete.

Since we have a complete rewriting system, we know that normal forms for elements
of T exist. We wish to check that we have found the correct representative for each
congruence class, that is, the unique irreducible element in each class.

Suppose we have an element s of the form (i). All left hand sides of rules can only
be applied to words containing a power of d greater than 1. Since s does not contain
any such powers, s is irreducible, and thus a normal form.

Now suppose s is in form (ii), that is, s = v (d3c)l d". As before, we cannot reduce
v, so we are concerned with reducing the substring ¢ (d?’c)l d". Given the restrictions
on [ and r we can see by inspection that this contains no left hand sides of rules, and
thus s is irreducible and so a normal form.

The empty string cannot be rewritten in any way, and is trivially a normal form.

Now conversely we must check that we have not forgotten any normal forms. We let
s be an element of 7" in normal form that does not have any of the above forms. We can
write s = [] d®icPi for a;, B; € N. We will assume that there is exactly one a; # 1,
as otherwiggﬁwe will apply the process described below to each «; # 1 until we are left
with only one.

Now if a; = 2 then

drePr L dir P @?ePi L o ePr s do P L g P deP L ok P
For o; = 3, if we have 3; = 1 then

dorePr 4P @Bediti P L dor P
— d P g P ded®ivr Pive o P,
If 5; > 2 then
dorePr 4P @Bl doRePR 5 qo P g B ddPit o P
Finally, if a;; > 4 we can rewrite the subword cBi-1di gs
Cﬁi—ldai %CBi*lil(Cd)mdnillm
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where m = |n/4] and then apply one of the above rewrites if n — 4m > 1. Hence s is

not irreducible and not in normal form. O

6.2 Graphs

Before providing an isomorphism between 1 (S) = 1 (7)) we will first establish an
intuitive description of these graphs. Since the Cayley graphs have many repeated sub-
graphs, we build them from smaller graphs to aid understanding. We will zoom in on a
section of the graph and describe fully the edges and vertices there. We will then zoom
out and gloss over occurrences of the section we examined previously.

Cay(.S) is built from four sections, the first of which, our deepest zoom level, is
Ci. This consists of the set of vertices V; = {b° | i € No} U {ba}, and the edges
Ey = {(b",b") | i € No} U{(b%,ba) | i € No}.
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Figure 6.1: C

Zooming out, the second section, Cy consists of vertices Vo = {([] ba®)v; | k €
No,v1 € Vi,a1 > 1}. Let w € V3 be a word ending in a, or the eflity word in V5
ev,. Then edges in Cs are given by Es = {(w,wa) , (wb*, wb' ™) , (wb’, wba) | i €
No,j € N} \ {(ev,, a)}. Subgraphs isomorphic to C; are represented in Figure @ of

C5 by dashed lines.
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Figure 6.2: Cy

The third section contains C3 has vertices Va3 = {a‘vy | i € N,vg € Vo} U {es}.

Let w € V3 where w ends in a, then edges are given by
E3 = {(w,wa), (wbi,wbiH) , (wbj,wba) | i€ Np,jeNU{(es,a)}.

In Figure @ representing C'3, dashed lines represent subgraphs isomorphic to C.

Figure 6.3: C
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Finally, we now zoom out as far as possible to the fourth section Cy. This has
vertices V; = {b'vz | i € No,v3 € V3} and if w € V3 with w being €5 or a word
ending in a, the edge set is By = {(w,wa), (wb’, wb™) | (wb?, wba) | w € Vj,i €
Ny,j € N}. Dashed lines in Figure E‘] represent subgraphs isomorphic to Cs in the
graph Cy. The Cayley graph of S is given by C}.

Figure 6.4: Cy

Now the vertex set of Cy can be expanded upon so that we better understand what

it is. We must expand the term v3 for v € V3, which gives us the following set

Vy ={b'a’ (] ] ba™)b™ | i, j,k,m € No, oy € N}
lek

u{v'a’ ([ ] ba®)ba | i,j,k € No, oy € N}
lek

U {bia?b® | 0,5,k € No}

U {b'a’ba | i,7 € No}

If we were to describe this set, we might say something like it consists of words that
can begin with any number of b (including zero), then any number of « (including zero),
which may be followed by a single b, then any non-zero number of a, which we may
repeat some number of times, before finally ending in either some number of a or some
number of b. That is, alternating products of any number of a and single a b, where the

first and last part of the word may be any number of b. This is exactly a description of
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the normal forms of .S, and so the set of vertices V is equal to the set of elements of S.

From the set of relations, we see that there exists an edge between wab® and waba
labelled by a for w € S. This corresponds to the edges (wbj , wba) in Fy. Since there
are no other relations, the rest of the edges labelled by a are (wa’, wa’™!) and those
labelled by b are (w, wb) for w € S, which completes the set Ej.

Having established the structure for S, we can now use a very similar method to
describe T'. Cay(T') is built from four sections, the first of which is D;. This consists
of the set of vertices W1 = {(d3¢c)'d" | 0 < r < 3,1 € Ny} U {dc}. Let ey, be the

empty word in V7, then the set of edges for C1 is
B ={((d%) &', (@) @) | € {0,1,2}.1 € No}

U{((@e) @, (@*)™") |1 € No}

u {((d%)l di,dc) lie{0,1,2,3},1 € No} \ {(ew,, de)}.
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85

Figure 6.5: D,

The second section D has vertices Wo = Wiy U {([] (dc*))wy | where k €
i€k
No,w; € Wiy > 1}. Let w € V5 be a word ending in ¢ and ey, be the empty word

in Ws, then the edges of Dy are

Fy ={(wc',wc™) | i € No}
U{(w (@) ' w (de) a) i € {0,1,2},1 € No}
U {(w (d3c)l d®,w (d?’c)lH) |l € Np}

U {(w (d%)ldi,wdc) lie{0,1,2,3},1€ No} \ {(ew,, de)}.
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Subgraphs isomorphic to D; are represented in the figure D, by dashed lines.

Figure 6.6: Dy

The third section D3 has vertices W3 = {c'ws | i € N,ws € Wa} U {er}. We let

w € W3 be a word ending in ¢, then the edges of D3 are

F3 :{(ETv C)}

{(wc',we™) i € No}
u{( (@) d, (dgc)ldi“) lie{0,1,2),] € No}
U{(w (@) dw (@%)™") | 1€ No}

u{( (d%c)' d' wdc) lie{0,1,2,3},1€ No}\ {(er,de)}.

In the figure D3 dashed lines represent subgraphs isomorphic to Ds.
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Figure 6.7: D3

Finally, the fourth section D has vertex set Wy = {d‘ws | i € No, w3z € W3} U

{er}. If we let w € T be a word ending in ¢, then D, has edge set

Fy ={(er,0), (ex, )}
U{(d",d"*") | i€ No}
U { (e, wetY) | i € No}
U{(w (@) d',w (d%) ™) i € {0,1,2},1 € No}
U{(w (@) @ w () ) |1 € No)
U {(w (d?’c)ldi,wdc) lie{0,1,2,3},1 € No}\ {(ep, de)}.

Dashed lines represent subgraphs isomorphic to Ds in the figure D4. The Cayley

graph of T is given by Dy.
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Figure 6.8: Dy

Now the vertex set of D4 can be expanded upon so that we better understand what

it is. We must expand the term w3 for w3 € W3, which gives us the following set

Wy ={d'd ([ [ de*)(d®c)™d" | i, j,k,m € No,0 < r < 3,eq € N}
lek

u{c'd ([ de*)de ] i, 4,k € No, oy € N}
lek

U{dicd(d®c)'d" | i,7,1 € Ny, 0 < r < 3}
U{d'dde|i,j € No}
The second and fourth sets cover all normal forms of type (ii) and (iii), whilst the

first and third sets cover all normal forms of type (i). Thus the set of vertices V, = T

From the relations, we can infer the following types of edge:

ved?, vcdc)} for v € T, labelled c.

ved®, vcdc)} for v € T, labelled d.

{(

{(

{(ved3e,vede)} for v € T, labelled c.
{(ved®cd, vede) } for v € T, labelled c.

These are all the edges found in the subset
{(w (d3c)l di,wdc) | i € {0,1,2,3},1 € Ny} of W,. We can describe the edges

labelled by the remaining generator for the first word in each of these pairs:
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{(ved?,ved®)} for v € T, labelled d.

¢ {(ved?,ved3c)} for v € T, labelled c.

(
(
(
(

{(ved3c,ved3ed)} for v € T, labelled d.

* {(ved3ed, ved®ed?) } for v € T, labelled d.

Edges of the first, second and fourth type are found in the subset
{(w (d?’c)ldi,w (d?’c)ldi“) | i € {0,1,2},1 € Ny} of Wy and describe almost
all edges in this subset, save for the edge (c, cd). Edges of the third type are all the
edges found in the subset {(w (d3c)l d3,w (d?’c)lH) | 1 € No}.

Suppose then that u € T butu ¢ {ved?, ved®, ved®c, ved3ed}. Then we have edges
of the type (u,uc) and (u,ud). These cover edges in the subsets {(er,¢), (e1,d)} ,
{(d*,d"**) | i € No} {(we’,we™) | i € No} and the missing edge (c, cd). Hence
the edges W, are indeed the edges we have in Cay(7).

Given these diagrams, we can intuitively see that these graphs are isomorphic. In

the next section we provide an explicit graph isomorphism.

6.3 Graph Isomorphism

Having established normal forms for elements, it is now possible to define a map be-
tween the vertex sets .S and 7. We have previously looked at normal forms as prod-
ucts, and from that perspective we would define a map f : S — 7T as follows. Let
w=[]b* aPi be a word that ends in either a single b, or any number of a. That is, let

ick
«; and (3; be as above, but , = 1 also. Then

(w) f = Hdo‘icﬁi =0

i€k

Now suppose w is such that 85 # 0, that is, w ends in an a. We define the following:
(wb) f =v (d%) d" where j = 41 + 1

Finally we observe that

(es) f=er.
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90 6.3. Graph Isomorphism

However, it will be more instructive to categorise our normal forms into different
types, from which we can describe the types of edges arising. We then provide two
mutually inverse maps between the types, which preserve edges and so form an isomor-
phism of the graphs Cay(.S) and Cay(T').

For S, let U = {a™ba®b...ba" | k > 0,i,, > 0}. Then our normal forms in S

are words of the form b7, b7w and b/ ubd. It will be useful later on to view information

in the form of tables, so Table @ describes our classification of normal forms of S.

Label | Normal Form | Parameters

NFS1 | b/ 7=>0

NFS2 | b'u j>0,uelU
NFS3 | biub? j>0,uecUq>0

Table 6.1:

We will assume these parameters apply throughout. For each vertex in Cay(S), there
are two edges leaving, one labelled a and one labelled b. Consider a vertex b/ ub? of type
NFS3. The edge labelled a initiating at this vertex will terminate at the vertex b’/ uba,
due to the relation ab™a = aba, giving us an edge (b/ub?, b’uba). The edge labelled b
that begins at b/ ub? will terminate at b ub?*!, as there are no relations to apply in this
instance, giving us an edge (b’ ub?, b’ ub?*1t). All types of edges in Cay(S) are listed in
Table , categorised by their initial vertex type followed by the edge label.

Label Edge Vertex Types

NFSla | (b/,ba) (NFS1,NFS2)
NFS1b | (v, 1) (NFS1,NFS1)
NFS2a | (Vu,b ua) (NFS2,NFS2)
NFS2b | (b/u, b ub) (NFS2,NFS3)
NFS3a | (b/ub?, b’ uba) (NFS3,NFS2)
NFS3b | (b ub?,bTub?™!) | (NFS3, NFS3)

Table 6.2:
For T, let V = {c"odc*d...dc" | k > 0,i,, > 0}. We then have three categories
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6. A Counterexample 91

of normal forms in 7, which are d’, d’v and d’v(d®c)!d", which are tabulated in Table

b3

Label | Normal Form | Parameters

NFT1 | &’ j>0
NFT2 | div j>0veV
NFT3 | div(dc)ld” | j,1>0,0<r<3,veV,i+r>0

Table 6.3:

As with S, we will assume these parameters apply to normal forms of 7" throughout.
For vertices in Cay(T'), each has an edge labelled ¢ and one labelled d. The most com-
plex case here is for a vertex d’ v(d3c)ld’” of type NFT3. If 0 < r < 2, then the edge
labelled ¢ will terminate at the vertex d’vdc thanks to the relations cd?c = cd®c? =
cd3cdc = cdc. If r = 3, then simple multiplication by c gives the terminating vertex as
d?v(d3c)" 1. Now for the edge labelled d starting at this vertex, if 0 < r < 2, then the
edge terminates at d’v(d3c)'d"*!. However if 7 = 3, then by the relation cd* = cde,

the terminating vertex is d’vdc. Other edges in Cay(T') are expanded upon in Table EI]

Label Edge Vertex Type
NFTIc | (d7,d’c) (NFT1,NFT2)
NFT1d | (d7,d7*1) (NFT1,NFT1)
NFT2c | (d/v,d’vc) (NFT2,NFT2)
NFT2d | (d/v,d’vd) (NFT2, NFT3)
NFT3c | (d7v(d?c)'d",d’vdc) for 0 < r < 2 (NFT3, NFT2)
(dv(d3c)ld?, div(d®c)+1) (NFT3, NFT3)
NFT3d | (d7v(d3c)'d", d?v(d3c)ld™+1) for 0 < r < 2 | (NFT3, NFT3)
(dv(d3c)'d?, dPvdc) (NFT3, NFT2)
Table 6.4:

We now define a bijection between normal forms of S and those of 7". We first define
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92 6.3. Graph Isomorphism

a natural bijection between the sets U and V. Let v = a’ba’'b...ba'* € U and @ =
codcd. .. dc'** € V. We then define the bijection by u + . The general bijection
S — T is then given in Table @ It is easy to find the image of most normal forms
by exchanging alphabets, however for those of type NFS3 the situation is slightly more
complicated. Here we must take the power ¢ and divide it by 4 to give an appropriate [

and r for a normal form of type NFT3.

Typeof w | w (w) f Type of (w) f
NFS1 b & NFT1
NFS2 bu A NFT2
NFS3 bl ub? du(d?c)'d” | NFT3
where ¢ = 41 +r

Table 6.5:

The inverse of f is given in Table @ and is found by exchanging the columns of

Table @

Type of w | w (w)f Type of (w)f~*
NFT1 @ b NFS1
NFT2 A bu NFS2
NFT3 du(d®e)td” | bubl NFS3
where g =4l + 1

Table 6.6:

We check finally that the map f is a graph isomorphism by checking that it maps
edges in Cay(.5) to edges in Cay(7T'), and vice-versa. Consider, for example an edge
of type NFS3b, which begins at 5’ub?. This initial vertex is mapped to d’u(d%c)'d",
however the image of the terminal vertex b’ ub?*! is dependent on the value of ¢. Given

agsuchthat 0 < r < 2, then the remainder of ¢+ 1 on division by 4 is 7+ 1, and so the
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6. A Counterexample 93

image of the vertex b/ub?*! is simply d’u(d®c)!'d"+!. However if ¢ is such that r = 3,
then upon division by 4, ¢ 4+ 1 has quotient [ + 1 and remainder 0, hence the image of

the terminal vertex is d/u(d%c)' 1.

Edge Type | (w,wx) ((w,wx)) f Edge Type
NFS1a (v, ba) (d7, dic) NFTlc
NFS1b (7, bi+1) (&, d7+Y) NFT1d
NFS2a (bu, b ua) (&, d'uc) NFT2c
NFS2b (b, bl ub) (d'u, diud) NFT2d
NFS3a (T ub?, biuba) (du(d®c)td", dudc) NFT3c
NFS3b (VY ub?, Bubd™h) | (da(d3e)ld", da(d3c)'d™+t) for 0 < r <2 | NFT3d
(da(d3c)td, du(d3c)*) forr = 3

Table 6.7:

In the opposite direction, we note that edge types NFT3c will map to edges of type
NFS3a or NFS3b depending on the value of r (similarly for NFT3d), but this mapping

is otherwise straightforward, and can be found in Table @
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94 6.4. Conclusions

Edge Type | (w,wx) ((w,wx))f! Edge Type
NFTlc (&, dc) (b7, b a) NFSla
NFTId | (&,d/+)) (7, b7 11) NES1b
NFT2c (dia, duc) (bIu, b ua) NFS2a
NFT2d | (@, d'ad) (b/u, bl ub) NFS2b
NFT3c (@ a(d3c)td", dudc) for 0 < r < 2 (b ub?, b uba) NFS3a
(da(d3c)'d3, d?a(d3c) 1) forr = 3 (b ub?, b ub?t1) | NFS3b
NFT3d (@ u(d3c)d, du(d3c)'d ) for 0 < r <2 | (Bub?,bub?!) | NFS3b
(da(d3c)'d®, dudc) for r = 3 (b ub?, b uba) NFS3a
Table 6.8:

Hence S is Cayley graph isomorphic to 7" via the map f.

6.4 Conclusions

We have demonstrated here two semigroups that have not only isomorphic skeleton
graphs, but isomorphic Cayley graphs, where one is finitely presented, and the other
infinitely presented. This provides an answer to the question asked in [§, Question 1]
and shows that in general, finite presentation of semigroups is not a quasi-isometry, or
even isometry invariant property.

Remark 6.14

There is in fact an infinite family of finitely presented semigroups {J,,} where 1 (S) and

1 (Jn) are isomorphic.
J, =mon(c,d | cde = cd*c = ... = cd"*c = cd” = cd"'¢* = cd" tedc)
where n > 4.

Each monoid J,, has normal forms:
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() [J d*icP where a; = 1fori # 1, 3; # 0 fori < k.
ick

(i) Let v be an element of the form given above (where the last letter is a ¢). Then we

have also elements of the form v (d”_lc)l d",where r € {0,1,2,3,...,n —1}.

We can generalise the isomorphism f to f,, : S — .J,, where
(w) f = Hdo‘icﬁi =
i€k
for w = [] b a® which ends in either a single b, or any number of as. Now suppose

ick
w is such that 8 # 0, that is, w ends in an a,then:

(wbj) f=v (d"_lc)l d" where j =nl +r

We can also note that throughout, we have been working with monoids. We may

also regard these as semigroup presentations

S =sgp(a,b | ab”a = aba for n € N)
and
T =sgple,d | ede = ed?c = cd* = cd®c® = ed®ede).
Theorem 6.15
The semigroup S is infinitely presented and has t (S) =7 (T)

Proor: From Lemma @, we have that S is not finitely presentable. We observe that
Cay (S) is isomorphic to the subgraph of Cay(S) induced by S \ {eg}. Similarly,
Cay (T) is the subgraph of Cay(T") induced by T\ {er}. Then since the map f from
above is an isomorphism, and maps €5 ++ er, then f [4 is a graph isomorphism

between | (S*) and T (T) O

Similarly all the monoids .J,, can be considered as semigroups.
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Chapter 7

Cayley Spectra of Semigroups

Your leafy screens throw down,

And show like those you are.

Macbeth

Shakespeare

In this chapter we leave behind notions of preserving finite presentability (or not

preserving as we have seen in Chapter E), and look at whether we can deduce any infor-

mation about semigroups by simply looking at a skeleton. One semigroup and skeleton

that we will consider in detail is that of the infinite monogenic semigroup, or natural
numbers under addition. This semigroup gives us the following proposition.

Proposition 7.1

It is not always possible to see if a semigroup has an identity by inspecting its skeleton.

Proor: Let N = sgp(1) be the natural numbers under addition, and let Ny = sgp(0, 1)
be the natural numbers under addition with an identity. Then { (N, 1) 2 { (Ng, {0, 1}),

but the latter has an identity whilst the former does not. O

There are however some special cases in which we can detect the presence of an
identity, which we will see in @

We introduce the notion of a Cayley spectrum of a semigroup.
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98 7.1. The Natural Numbers

Definition 7.2
Let S be a semigroup with skeleton 1 (S, A). Then the Cayley spectrum of .S with respect
to A is the maximal set of pairwise non-isomorphic semigroups such that if T; is in

C(S, A) then there exists some generating set B; for T; with T (T;, B;) = 1 (S, A).

The Cayley spectra of a semigroup with respect to a generating set tells us which
other semigroups share this skeleton. We will investigate the Cayley spectra of four
types of semigroup, and find that in some cases the skeleton is unique, and in others it
is shared by many other semigroups. Where the skeleton is not unique, we will describe
exactly the semigroups that have that skeleton.

We will explore the Cayley spectrum of the natural numbers, which we will prove
contains only the natural numbers themselves, either with or without an identity ele-
ment. We then expand to considering free monoids with generating sets of size at least
two, and find that the Cayley spectrum here is as small as possible, containing only
itself. It is interesting then, that when we move to consider free semigroups with gen-
erating sets of size at least 2, the number of semigroups we find in the Cayley spectrum
increases significantly. We give an exact number in Theorem , and exact descrip-
tions of these semigroups in . Finally we consider the Cayley spectrum of the in-
tegers. Here we find that there are seven semigroups in the spectrum, details of which
are found in Theorem , which we note is a curious number.

The proofs in this section will involve a significant amount of cases, but throughout
the cases we will rely on one common technique. We will attempt to find unique features
of the skeletons, such as vertices with unique degrees, and study the possible relations
that can arise from that feature. We will then take those relations and attempt to translate

them to another point in the graph and see whether this induces a contradiction.

7.1 The Natural Numbers

The first semigroup we look at is the natural numbers (without 0) under addition. We
will look at this with respect to the generating set {1}, and show that there are only two

semigroups in the Cayley spectrum of N with respect to this generating set. We first
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7. Cayley Spectra of Semigroups 99

prove the following theorem.

Theorem 7.3
Let S = sgp{a,b) with 7 (S, {a,b}) = 1 (N, 1). Then either S = N or S = Ny

Remark 7.4
Let S = sgp{a,b), where S 2 N and S 2 Ny, be such that 1 (S) = 1 (N, 1). When
visualising 1 (S, {a,b}), we think of it as a one-ended infinite line. We will place the
unique vertex u of degree one to the left, and all subsequent vertices to the right of this.
When traversing this line starting at u we will let the first generator we encounter be a,
and the second generator we encounter be b.

An example diagram is given in Figure @ and we will refer to edges point left and

right, or vertices being left and right of each other in accordance with this diagram.

Figure 7.1: Visualisation of 1 (.5, {a,b})

The convention established in this remark will be followed throughout the rest of
this section.

In this proof we will first consider the orders of our generators a and b, where order
is defined as follows.
Definition 7.5
Let S be a semigroup and let s € S. Then the order of s is the size of the semigroup
generated by s, that is sgp(s) = {s' | i € N}. If |sgp(s)| is finite, then s has finite

order. If sgp(s) is infinite, then the order of s is infinite.

A relatively short argument will eliminate either having infinite order, however when
both have finite order the argument is not so short. We will require a breakdown into
a large amount of cases. In some of the cases we will have that the unique vertex v is
equal to some word w and will pick a vertex s that is distance at least |w| + 1 right from
b and inspect the path labelled w from s to draw conclusions from. The breakdown of

cases will be as follows.
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100 7.1. The Natural Numbers

1 a and b both have infinite order.
2 Exactly one of a and b has infinite order.
3 Both a and b have finite order.

3.1 w is not a generator.

3.1.1 All edges from s labelled by w are right arrows.

3.1.2 There exists at least one right edge and one non-right edge in the path

labelled by w from s.
3.1.3 All edges in paths labelled w from s onwards are left edges.
3.2 w is a generator, that is u = a.
3.2.1 There exists an edge going left from b.
3.2.2 There exist only loops or right edges from b.
3221 ba=bb=b
3222 ba=0bb#b
32221 abb=ab=a
32222 abb=ab#a
3.2.2.23 abb=a # ab
3.2.2.2.4 abb # a # ab
3.2.2.3 ba =0b# bb
32231 ab=a
3.2.2.3.2 ab # a label
322321 aa=a
322322 aa#a
3224 bb=10# ba
32241 abb=ab=a
3.2.2.4.2 abb = ab # a label
32.24.2.1 aa # ab
322422 aa=a
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7. Cayley Spectra of Semigroups 101

In subcases of E, our unique feature that we will exploit here is the vertex u of degree
one in T (N, 1). For B.1| we will find some word w that represents this vertex, and then
attempt to follow the path labelled by this word from any vertex s sufficiently far from
the generators. The assumptions we make in these cases will lead us to finding that the
skeleton graph does not have the correct shape, and so we obtain contradictions.

For subcases of @, we will look at the products of length 2 starting at b, and then
translate these equalities to the unique vertex of degree one, that is u = a. From this
we will either deduce that we do not obtain the correct shape of graph, or that the graph
and semigroup that we do obtain is in fact either N or Ny.

We will approach the proof of Theorem B by examining the cases above in a series

of claims. The relation of claims to cases is given in the following table.

Claim
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102 7.1. The Natural Numbers

We now prove Theorem @

Proor:

First suppose both a and b are of infinite order (Case ) and consider the graph
Cay(S, {a,b}).
Claim 7.6
In Case B, that is, a and b both have infinite order, every edge in Cay(S, {a,b}) is an
edge pointing right, and S = N.

Proor: We first consider all vertices including and to the right of b. If any edge here
does not point right, we have either b = b+ or a* = a*** for some i € N and
x € {1, 2}; that is, either a or b has finite order. Thus all edges to the right of b are right
arrows.

Consider next all vertices between a and b, including a. All edges labelled a must
be right arrows, as otherwise we would have a' = a't® forsomei € Nand z € {1,2};
that is, a has finite order. Assume then that there exists an edge that is either a loop or a
left arrow labelled b. This means we have a’b = a*** for some i € Nand x € {0, 1}.
We know that since all edges from the vertices right of b are right arrows, we have

bb* = ba® and so

bb'b = ba'b
= ba't*

= bb'te,

This gives us that b has finite order, which is a contradiction. Hence all edges between
a and b must be right arrows. Since we have only two generators, a and b, both of which
point right from a, there can be no more vertices to the left of a.

Hence all edges in Cay(S, {a, b}) are right arrows. Therefore we deduce that b = a’
for some ¢ € N, and hence S is monogenic, meaning that S = N. 0
Claim 7.7

In Case B that is exactly one of a and b has finite order, then either S = N or S = Nj.
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7. Cayley Spectra of Semigroups 103

Proor: First suppose that a has infinite order and b has finite order. Then since a is
found to the left of b we have b = a’ for some i € N, so .S is monogenic and infinite and
therefore isomorphic to N. Hence we must have a with finite order and b with infinite
order, that is either a™ = a™*! or a™ = a™*? for some m € N. Suppose first that we
have the former. Then for all ¢+ € N there are three possibilities for b'a. First, we may
have bta = b*~! for some ¢, but then
bt+m+1 — bnl+2bt—1
= pmTmptgmtl
= pmrmptg™

— bt+m

which is a contradiction. Second, we may have b’a = b**! for some ¢, which means

bt+m+1 —_ bmbt+1
— btam+1
— btam

— bter

again a contradiction to the infinite order of b. Finally, if b'a = bt for all t € N then all
arrows labelled b are directed right, and so v = a and a is an identity. Hence S = Nj,.
We now consider the case where a™ = a™*2, and again consider the possibilities

for bta. If we have bta = b*~! for some ¢t € N we derive a contradiction as follows:

bt+m72 —_ bmflbtfl
— bm+mbtam+2
— bm—i—mbtam

_ bt+m
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104 7.1. The Natural Numbers

If b'a = b for some t € N we have
bt+m+2 — anbt+2
— ptgmt?
— pram

— bter

Finally if b’a = b for all t we have S = Ny as above.

d

We therefore are left to consider the case where both a and b have finite order (Case
H). We first make two observations that will be used throughout the proofs of subcases
of .
Lemma 7.8
In Case @ where u does not represent a generator, we have that u is equal to some
word w € {a,b}* where w = wyws ... wg for some k and w; € {a,b} and for any

generator x € {a,b} we have either wx = w or WL = Wy ... Wp_1.

Proor: Since u is not a generator we must be able to write it as a product of at least
two generators, that is, as a word over {a, b}*. Then since u has degree one and edges
from it may only end at w or the vertex immediately right of u we have either wx = w

or wx = wj ...wy—1 as demonstrated in this figure.

T
o T W1...Wp—1
Wn,

Figure 7.2: Observation 1

O
Claim 7.9

Let wyws . .. wy, be aword in S for some k and w; € {a,b}. Then we have that for any
1 < i < k — 1 and generator x € {a,b} we have either wy ... w;x = wy ... w;_1,

Wwy.. WX =Wp...W; Orwy ... W& = Wy ... W;W;541-
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7. Cayley Spectra of Semigroups 105

Proor:
This follows since edges may only end at the either their starting vertex, or the ones

immediately left or right of the starting vertex. It may be visualised as follows.

Wi41 Wy Wy ... Wi—1

Figure 7.3: Observation 2

O

We will now choose a vertex s that is a distance of at least |w| + 1 to the right of
generator b. This is to ensure that when we examine what happens when we follow the

path labelled by w from this vertex, we know that we will never end up either at or to

the left of any generators in the graph. We look at Cases B 1.1|,B.1.2| and BlSI

Claim 7.10
In Case , that is a and b have finite order, u is not a generator, and all edges from

s labelled by w are right arrows we have that 1 (S, {a,b}) is finite.

ProoF:
Suppose that every edge in the path from s labelled by w points right. Then we have
the following section of graph, where, using Observation @ x represents the possible

edges for generators leaving sw.

T
w1 L Ty
’ ) \_/. o
Wn,

Now the vertex sw is found to the right of any generators in the graph, and so there
must be an edge going right from this vertex. However, Observation @ means that all
edges leaving sw are either loops or point towards the left, which is a contradiction to

1 (S, {a,b}) being an infinite graph. O
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106 7.1. The Natural Numbers

Note that this eliminates any case in which when following the path w from s we
find w,, as a rightwards edge. Thus for cases and we can assume that w,, is
a leftwards edge.

Claim 7.11
In Case that is a and b have finite order, w is not a generator, and there exists at
least one non-right edge in the path labelled by w from s we have that 1 (S, {a, b}) is

finite.

Proor: Suppose that when following the path labelled w from s, at some point the path
folds back on itself, so sw; ... w;—; = swy ... w;4+1 for some 1 < ¢ < k. Since we
have established that the edge w,, must be leftwards, then we may assume that the edge
on this path labelled w; is a rightwards edge. Let x represent the generators of .S, then

by Observation B we see the following in the Cayley graph of S.

w1 w;

Wi41

We now note that similarly to the first case, since sw; ... w; is found at a vertex to
the right of any generator, in order to have the correct graph structure for 1 (S, {a, b})
there must be an edge from sw; . .. w; that goes right. Observation @ tells us that for
any generator x of S the edge labelled by x at sw; ... w; is either a loop or a leftwards

edge, which means 7 (S, {a, b}) is finite. O

We now come to Case . Claims and eliminate the possibility that,

for any vertex ¢ that is either s or found to the right of s, we find tw; ... w; for any
1 < i < k to the right of ¢. The second case eliminates any situation in which the
path labelled w folds back on itself. Hence for any such vertex ¢, if we follow the path
labelled by w, then each edge in it points left.

Claim 7.12

In Case , that is a and b have finite order, u is not a generator, and all edges in paths
labelled w from s onwards are left edges we have that Cay(S, {a,b}) % Cay(N, {1}).
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7. Cayley Spectra of Semigroups 107

Proor: Let ¢ be a vertex that is a distance exactly |w| right of the vertex s. Since we
are in Case , we have that tw = s. Let x represent any generator of .S, then by

Observation , our graph has the following structure.

€T T
- Le A, .4—.t
w1 S Wk w1

Due to Observation @, we have that for any generator z either twz = s or twzx =
twy ...w,—1. In particular, there is no generator left to label the edge labelled w; from

s in our diagram above and so Cay(S, {a,b}) 2 Cay(N, {1}) . O

Therefore the unique vertex u of degree one in 1 (.5, {a, b}) is not a generator. We
therefore now study Case @ where u represents a generator.
Claim 7.13
In Case , that is a and b have finite order and u is a generator, then u = a and we
have a # bv for any word v € {a, b}*.

Proor: Suppose that a = bv for some v € {a,b}*. Then we may apply an analogous
argument to Case B.1| when w is not a generator. Hence a # bv for any v € {a,b}*. O
Claim 7.14

In Case , that is a and b have finite order, u is the generator a and there exists an
edge going left from b we have that 1 (S, {a,b}) % 1 (N, {1}).

Proor: Suppose first that there is an edge that goes left from b and let y = y; . . . yj, for
some k be the longest word that does not traverse any loops or cycles such that by = ar
for some r € {a,b}*. This means that y labels the longest leftwards path that does
not include loops or cycles from b. We can now make an identical argument to when
the vertex w did not represent a generator using the word by in place of w. This works
because we have either byx = by or byx = by ...y, for any generator x of S. This is

visualised below.
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We can see that the vertex by behaves in much the same way as u with respect to its
out edges, and so the arguments from Case B.1| and its subcases are easily applied with
by instead of w.

O

Last but not least, we are left to consider when there is no path from b to a, and in
fact no edge left from b. This is Case . Below we demonstrate sections of graph
occurring in Cases B.2.2. 1|,B.2.2.2LB.2.2.3| and B.2.2.4|.

(i) ba = bb = b (see B.2.2.1),

a,b
b
(if) ba = bb # b (see ),
b,a
b
(i) ba = b # bb (see p.2.2.3).
a
P,
b
(iv) or bb = b # ba(see ).
b
pa
b

Claim 7.15
In Case , that is a and b have finite order, u is the generator a, there are only
loops and edges right from b and ba = bb = b we have that Cay(S, {a,b}) is finite.

Proor: There are no generators available to label an edge going right from b and so

Cay(S, {a,b}) is finite. O
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We now examine subcases of , by examining what happens at a, in particular
by looking at a - bb.
Claim 7.16
In Case , that is a and b have finite order, u is the generator a, there are
only loops and edges right from b, ba = bb # b and abb = ab = a we have that

1 (S, {a,b}) 2 T(N,{1}).

Proor: Since we have abb = a and ba = bb then aba = a as shown below.

a,b

ol

There are no more generators left to label an edge right from a and so
T (9, {a,b}) 2 1 (N, {1}). U
Claim 7.17
In Case , that is a and b have finite order, u is the generator a, there are
only loops and edges right from b, ba = bb # b and abb = ab # a we have that

1 (S, {a,b}) 2 T(N,{1}).

Proor: Since abb = ab and bb = ba then aba = ab as shown.

a,b
b

b b
a ab

There are no more generators left to label an edge right from ab and so
(S, {a,b}) 2 1(N,{1}) U
Claim 7.18
In Case , that is a and b have finite order, u is the generator a, there are
only loops and edges right from b, ba = bb # b and abb = a # ab we have that

T (5, {a,b}) 2 1 (N, {1}).

Proor: Since abb = a and bb = ba then aba = a as shown below.
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a \_/.ab
a,b

There are no more generators left to label an edge right from ab and so
(9 {a,b}) 2 1(N,{1}) O
Claim 7.19
In Case that is a and b have finite order, u is the generator a, there are only
loops and edges right from b, ba = bb # b and abb # a # ab we have that S = N.

Proor: If we consider the edge b leaving the vertex abb, this must be a right edge, as
otherwise we have both abbb and abba equal to either ab or abb, which results in no
more generators left to label an edge right from abb. This is true for all vertices ab’
between a and b, and since bb = ba we have ab’ = aa’ for all such vertices. This is

visualised in the following diagram.

a,b a,b a,b a,b

> — o

a ab abb b

This gives us b = a’ for some 7. This means a - a® = a - b and so b = a. Hence we

have S = N. O

We next consider subcases of . Here we will be concerned with looking at
a - ba.
Claim 7.20
In Case that is a and b have finite order, u is the generator a, there are only
loops and edges right from b, ba = b # bb and ab = a we have that 1 (S, {a,b}) 2

T (N, {1}).

Proor: Since ab = a and ba = b then aa = a shown.

a,b

P

a
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Then there are no generators left to label an edge right from a and so t (S, {a, b}) 2
P (N, {1}). 0
Claim 7.21
In Case that is a and b have finite order, u is the generator a, there are only
loops and edges right from b, ba = b # bb, ab # a and aa = a we have that S = Ny,.

Proor: Since ba = b, then aba = ab then the edge going right from ab must be labelled
b. Using ba = b, we can see that in the rest of the graph we must have b as a right edge

and a as a loop on every vertex.

R IR T

a

——

From this we can say that b = ab® for some ¢ > 1. This means that ab = aab’,
which in fact means ab = ab’ and so i = 1. Hence b = ab. The element a is an identity
for S, since ab = b, aa = a and ba = b. Removing the identity from S leaves us with
an infinite monogenic semigroup, and so here we have that S = Nj. O
Claim 7.22
In Case , that is a and b have finite order, u is the generator a, there are
only loops and edges right from b, ba = b # bb, ab # a and aa # a we have that

1 (S, {a,b}) 2 (N, {1}).

Proor: Since ab # a and aa # a then ab = aa, and since ba = bthen aaa = aba = ab

as shown here.

a,b
a,b

Then there are no generators left to label an edge right from aband so 1 (S, {a, b}) %

f (N, {1}). O
Finally we look into subcases of .
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Claim 7.23

In Case that is a and b have finite order, u is the generator a, there are only
loops and edges right from b, bb = b # ba, and ab = a we have that 1 (S, {a,b}) 2
TN, {1}).

Proor: We know that there must be an edge leaving a that goes right, and since ab = a
this edge must be labelled by a. Since ab = a, then aab = aa, and so b forms a loop on

aa. This can be extended for any a® between a and b, so a’a = 't and a’b = d’ (see

3.2.2.4.1).

This shows us that b = a’ for some i > 1, butsince a-b = a - a’ = a, then i = 0,
and so t (5, {a,b}) 2 1 (N, {1}). O
Claim 7.24
In Case that is a and b have finite order, v is the generator a, there are
only loops and edges right from b, bb = b # ba, ab # a and aa # a we have that

1 (S, {a,b}) 2 1 (N, {1}).

Proor: Since ab # a and aa # a then ab = aa. Since bb = b then aaa = aab =
abb = ab as shown below.

a,b
a,b

7

We can see here that we have no generator left to label an edge which goes right
from ab, and so 1 (5, {a,b}) & t (N, {1}). O
Claim 7.25
In Case , that is a and b have finite order, u is the generator a, there are only
loops and edges right from b, bb = b # ba, ab # a and aa = a we have that S is not a

semigroup.
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Proor: Since abb = ab, the edge leaving ab in the right direction must be labelled a,
and due to aa = a we have abaa = aba. We may continue this line of reasoning to
show that between a and b, the non loop edges always alternate between a and b, and a

non loop edge is always followed by a loop. This is visualised here.

a b a b

pb p e p b

In this case, we see that b is equal to some word beginning with a, say b = aw.

Then ab - b = ab but ab - aw # ab, which is a contradiction to .S being a semigroup. [J

This completes the proof that there is no 2-generated semigroup S with
7(S,{a,b}) = 1(N,1) such that S 2 N and S 2 Ny.
O

Having shown that there are no 2-generated semigroups that are skeleton isomorphic
to N = sgp(1) other than by adjoining an identity to N, it would be nice if we could show
that there are no n-generated semigroups with this property for any n € N. Fortunately,
we can extended the work we have done for the 2-generated case to fit any n. We
will now suppose that S = sgp(aj,as,...,a,) with S 2 Nand S 2 Ny, where
1(S,{a1,az,...,an}) = t(N,1). As before, we view the graph as an infinite line
from left to right, with the unique vertex of degree 1 placed at the left, and the generator
a; being found to the left of generator a,;4; for all 1 < ¢ < n. We prove the following
theorem.

Theorem 7.26
Let S be a finitely generated semigroup with generating set A such that 1 (S, A) =
T (N, 1). Then either S = N or S = Nj.

Now using the 2-generated case as a template, we have the following breakdown of

cases.
1 w is not a generator.

2 w is a generator, say a.
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2.1 There exists a path left from a.,.
2.2 There exists no path left from a,,.
2.2.1 anay = a, and apa, # a,
22.1.1 aya; = aya, # ay
22.1.2 ayja1 = a1a, = aq
2.2.1.3 a1a1 # ar1ay, = aq
22.14 aja1 = a1 # aray,
222 anay # a, and apa, = a,
223 apai = a, and ana, = a, with aya; # ay, for some j

224 anay # a, and apa, # an

Our proof techniques will also follow similarly to those in Theorem @ For case Iﬂ
we will find some word w such that u = w. We will then pick a special vertex s such
that s is sufficiently far right from any generator, and follow the path labelled by w from
s. This will lead us to contradictions in the form of incorrect graph shapes, allowing us
to rule out this case. This technique will also be use in case .

For subcases of @ we will consider the location of the elements a,,a; and a,a,,.
We will then take these equalities to the unique vertex of degree one, that is u = a;
and see what shape of graph these equalities force upon us. This will either lead to
contradictions, or to the semigroup produced being N or Nj.

We will approach the proof of Theorem by examining the cases above in a

series of claims. The relation of claims to cases is given in the following table.
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We now begin the proof of Theorem .

[ N N

NS ) NS
N ) N
I.. I

Prookr:
We will first investigate what happens when we assume u # a; for all 4.
Claim 7.27
In Case , that is u does not represent a generator we have that t (S, A) 2 1 (N, {1}).

Proor: We let v = w where w is a word over {aj,as,...,a,}*, x represent any

generator a; and pick a vertex s to be distance |w| + 1 right of a,,. The proof then

follows analogously to Claims E, , and . U

Therefore we will now consider the case u represents a generator, that is u = a;.
This is Case E
Claim 7.28
In Case @ that is u = aq is a generator we have that a; # a;v for any generator a; and

word v over the generators.

Proor: This follow analogously to Claim O
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Claim 7.29

In Case @ that is u = a1 and there exists an edge going left from any a; we have that

T(S,A) 21 (N, {1}).

Proor: This follows analogously to Claim . O
Claim 7.30
In Case @, that is u = ay and there are only loops or right edges from all a; we have

that there exists a path from aq to a,.

Proor: Since there are no leftwards paths from any generators and the graph is con-

nected, there must exist a path from a; to a,,. O

We will now consider all subcases of @ We will be concerned for the most part
with the behaviour of a; and a,, at their respective vertices. Considering the vertex a,,,
we have four possible cases for the location of edges a; and a,,, these are , ,

and . We illustrate these below.

(i) ana, = a, and ana, # a, (Case ).

ai

w,
an L]

(ii) anay # a, and a,a, = a, (Case ).

Qn

w,.
an

(iii) ana1 = a, and ana, = a, with ana; # ay, for some j (Case ).

a1, Qn

R
(o7 .

@iv) anai # a, and aya, # a, (Case ).

a1, 0n
Ay o—————>e
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7. Cayley Spectra of Semigroups 117

We will look first at Case and its subcases.
Claim 7.31
The case , that is w = aq, there are only loops or right edges from all a;,
AnQ1 = Qn, Qpay # ap and a1ay = aya, # ay is not possible as the relations

are not compatible.

Proor: Since aija; = aia, and a,a; = a, we have aya1a1 = a1a,a, = aia; as

shown.

a1, 0n
ay, Gn G

aA] e— >

This implies that a,, - a;a1 = a,, - a1a1a,, which is a contradiction as these are not

equal in this case. (]

Claim 7.32
In Case that is u = ay, there are only loops or right edges from all a;, ana1 =
Gn, Gy 7 Gn and a1a1 = a1a, = a1 is not possible as the relations are not compat-

ible.

ProOF:
ai, an
aq G
Here we have that a,, - a; = a,, - aja,, which is not compatible. O
Claim 7.33

In Case that is u = a1, there are only loops or right edges from all a;, ana; =
Gny Gy 7 an and a1a1 # a1a, = a1 is not possible as the relations are not compat-

ible.

ProOOF:

Qn

poa
ay .
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118 7.1. The Natural Numbers

This situation gives us a,, - aja, = a, - a; which is not compatible. Il
Claim 7.34
In Case , that is uw = a;, there are only loops or right edges from all a;, a,a1 =

Gy Gy 7 ap and a1a1 = a1 # aya, we have that S is 2-generated.

Proor:
ai a1
a
aq Q_n»@
By Claim we have a,, = aja,w for some word w, where w labels a shortest
path. Now a; - a,, = a1 - aya,w, thatis aja, = aja,w. The word w must then be

empty, and so a,, = aia,. Hence we are in the 2-generated case and we may refer to

the proof there. g

In the next case, Case 2.2.2 we let a,, label a loop on a,, and a; label a right edge.
Claim 7.35
In Case that is u = a1, there are only loops or right edges from all a;, a,a1 # ay
and ana, = a, we have that 7 (S, A) 2 7 (N, {1}).

Proor: By Claim we know that there exists a path from a; to a,,. Let w be a
shortest word labelling this path, so a;w = a,. Now we have a,, - a, = a, - a1w,
that is a,, = ana1w. Since ana; # ay, the word w must have non-zero length, and
when following the path labelled w from a, a1, this path must fold back on itself. We
may then follow an argument analogous to that in Case to show that there are no

generators left to label a required right edge. Thus (S, A) 2 1 (N, {1}). O

Claim 7.36
In Case that is u = aq, there are only loops or right edges from all a;, a,a1 = a,

and ayay, = a, we have that a,a; # ar, for some 1 < j < n.

Proor: Suppose that a,a; = a, for all 7. Then there are no generators left to label
an edge right from a,, and so t (S, A4) 2 T(N,{1}). Hence a,a; # a, for some

1<j<n. 0
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Claim 7.37
In Case , that is u = aq, there are only loops or right edges from all a;, apa1 = a,
and anay, = an, we have that T (S, A) 2 T (N, {1}).

Proor: By considering the behaviour of a; and a; at a;, we may apply the exact same

arguments as in Claims , , , and substituting a; for a,,. t
Claim 7.38
In Case , that is u = aq, there are only loops or right edges from all a;, ana1 = a,

and a,a, = a, we have that S = N.

Proor: From Claim m we know that a,, = a1 w for some word w that labels a shortest
path. Therefore, a,a,, = a,a1w, and by applying an argument analogous to Case @,
we see that w must be empty. Hence we have a,, = a1, and so S is an infinite monogenic

semigroup. (]

This concludes our look at possible configuration for an n-generated semigroup S
where § (S, A) = t (N, 1). Thus we have proved Theorem .
O

As a corollary we now know the Cayley spectra of N.

Corollary 7.39
The Cayley spectrum of Nis C(N,1) = {N,Ng}.

7.2 Free Monoids

Since the free monogenic semigroup has been a source of so much joy, it seems a
sensible idea to cast an eye over the free semigroups on n generators for n > 1. It
turns out that it makes more sense to first consider the free monoid, then return to the
free semigroup. We will take the natural generating set A of size n for each of these,
and observe that the skeleton of the free monoid A* is an n-ary rooted tree. We sup-
pose that we have some finitely generated semigroup S with generating set B such that

7(S,B) = {(A*, A). We will let u be the unique vertex of valency n in Cay(S). For
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120 7.2. Free Monoids

ease of understanding we will refer to the root vertex u as being found at the top of the
graph, and child vertices are found below. In this way we may also refer to edges having
direction up or down, if they are oriented towards or away from wu respectively.

We will prove the following theorem.
Theorem 7.40

Let S be a semigroup generated by B such that 1 (S, B) = t (A*, A) where |A| > 1.
Then S = A*.

Our key technique in this section will be to determine the exact structure at the
root vertex u, and then translate this structure to a vertex s that is sufficiently far below
any generators. Using Lemma we will then conclude that we do not have enough
edges to create the correct tree structure, and so eliminate all semigroups save for the

free monoid. The outline of cases will be as follows.

1 w is not an identity or generator and v = wb; for some word w.

1.1 wb;b; = w for some b;.

1.2 wb;b; # w for any b;.
2 w is an identity.
3 w is a generator, say b;.

3.1 |B| < n.
3.2 |Bl =n.
3.3 |B| > n and B includes some element bo.
3.3.1 biby # biba # by
3.3.2 biby = b1ba # by
3.33 biby = biba =1y
3.3.4 biby # biby = by
3.3.5 biby = by # biby
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7. Cayley Spectra of Semigroups 121

In case |lf we will use the word wb; as the structure we translate to s, and on following
this path we will find we have insufficient edges to create the correct tree. In cases E
and E we will make an important observation that there can be no edges in the upwards
direction (see Claim ). From this we will use the fact that any generator can be
written as the product of b; and some word w. In particular we will use the equality
be = byw. Incases E and @ we see that .S is simply the free semigroup on n generators.
In case @ we will again make use of by = b;w and apply this to the possible scenarios
for edges labelled b; and b, from the root of the tree. In each of these we will see that
we either do not have enough edges to form our tree, or the semigroup that we have
formed is in fact A*.

We will approach the proof of Theorem by examining the cases above in a

series of claims. The relation of claims to cases is given in the following table.

4

=] [&] ]
2 L b

ubcases

w

cC

w2
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ubcases
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We now begin the proof of Theorem .

Proor:
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122 7.2. Free Monoids

First we observe that S must be at least n-generated, otherwise there exists an un-

reachable subtree in Cay(S).
Claim 7.41

S is at least n-generated.

Proor: Suppose that S has a generating set B = {by,ba,...,by_m} of size n — m
and let s be a vertex where no generators are found below it in Cay(S). Then s has
valency of n + 1, and an outdegree of at most n — m. In-edges for s can only come
from the vertices sb;, and the vertex found above s in the tree. This is because for
the remaining m neighbouring vertices, there is no way of reaching them as we have
assigned all generators to edges already. Hence we have disconnected our graph in an

unacceptable way and so B must have size at least n. g

Since u is unique in the graph, we will use it as a focus point to establish the possible
forms of the semigroup S. The following lemma will be integral to the proofs made in
this section.

Lemma 7.42
Let s be avertex in Cay(S, A) such that in the subtree rooted at s, there are no generators
found below s. Then for every vertex v; on the level below s that is connected to s, there

must be an edge that starts at s and ends at v;.

Proor: Suppose that v; is a vertex one level below s that is connected to s such that there
is no edge starting at s and terminating at v;. Since Cay(S, A) is a tree, the only other
vertices that we can reach v; from are those in the subtree rooted at v;. However, since
these are in the subtree rooted at s, we know that none of these vertices are generators
and so v; cannot be reached from a generator. This is a contradiction, and so we must
have at least one edge from s to every vertex on the level below that is connected to s.

O

Suppose then that S has a generating set of size n + m for m € Ny, say B =
{b1,...,bpym} and that u # 1 and u # b; for any 1 < ¢ < n + m. Then u = wb; for
some w € B* and some b;. We examine two cases, the first where there exists an edge

back to w from u, and the second where no such edge exists.
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Claim 7.43
In Case B that is w is not a generator or identity and wb;b; = w for some b; € B we

have that 1 (S, B) 2 1 (A*, A).

Proor: We note that it may be the case that wb; b, = wb;b;, for some pairs by, b; € B,

or wby, = w for by, € B, or indeed both may occur. An example is shown here.

This means there are at most n different vertices that can be reached using a single
edge from n.

Assuming that the tree is oriented in the usual fashion (with u at the top), we chose
a vertex s that is a distance at least |wb;| + 1 below a generator. We then examine the
vertex swb;, which has precisely n + 1 neighbours as it cannot be u. These are the

vertices 1 to n and sw as shown below.

.1
b; °2

sw bj
-n

By Lemma we know that there must be an edge from swb; to every vertex 1 to
n in the above diagram.

Let P = {py } be a maximal set of generators such that no two generators in P visit
the same vertex from u. That is,upy # up; for any py , p; € P. The set P has size
at most n, which means we can reach at most n different vertices from swb; using the
edges from P. We know that there exists an edge from swb; to sw, say p,, leaving at

most n — 1 sets of edges with which we need to reach vertices 1 to n.
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All generators must label one of the edges in the above diagram, leaving at least one

vertex unreachable. This means that 1 (S, B) 2 1 (A*, A). O

Since we assumed there existed a generator b; such that wb;b; = w, we must now
then assume that there is no such generator
Claim 7.44
In Case @ that is w is not a generator or identity and wb;b; # w for any b; € B we
have that 1 (S, B) 2 1 (A*, A).

Prookr: In this case, © now has outdegree at most n — 1, as opposed to n previously.
Since S is n+m generated, there exist pairs (b;, by ) such that ub; = uby, or generators

b, such that uby, = u, or both.

We locate our favourite vertex s, found distance at least |wb;| + 1 below any gener-

ators, and study the graph at swb;.
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‘1
b; "2

Sw
N

By Lemma we know that there must be an edge from swb; to every vertex 1 to
n in the above diagram.

Let P = {px } be a maximal set of generators such that no two generators in P visit
the same vertex from u. That is,upy # up; for any py , p; € P. The set P has size at
most n — 1, which means we can reach at most n — 1 different vertices from swb; using

these edges in P.

P11

o2
b.
.’L—> p2
sw
Pn—1

en—1
N

Any remaining generators by, must lie on edges parallel to those we have drawn

already, and so we are left with nothing to label an edge to vertex n. Hence { (S, B) 2
T (A" A). O
Therefore v is either a generator or an identity element.

Claim 7.45

In Case B that is u is an identity element, then S is n-generated and is free.

Proor: If u is an identity element, then S must be precisely n generated as v has valency

n. Since every other vertex has degree n+1, S must be the free monoid on n generators.

O
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Now having u as an identity element allows us to show that S is isomorphic to A™.
It would be nice to see this the other way around, and show that if S is precisely n-
generated we also have S isomorphic to AT. In order to do this more neatly, we will
first say something about the direction of edges in Cay(.5).
Claim 7.46

In Case B that is w is a generator, we have that no edges in Cay(S) have upwards

direction.

Proor: Assume u is some generator, say u = b;. We select some other generator b,
and look at the existence of paths between b; and bs. Suppose there exists a path from
by to by. We may then apply the arguments from the proofs of Claims and ,
using b; in place of u.

Suppose then that there exists some path labelled x from b, that goes towards b; but

does not reach it.

M e

b2
We zoom in on the vertex box and see what happens at this vertex. The vertex box

must be connected to n+ 1 vertices, which are shown here in the diagram as the vertices

1 to n, and the vertex above byx.
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4 bgl‘

bQCCl e p_1

by

The edges leaving vertex box must all terminate at the vertices labelled 1 to n, as an
edge going up from by would mean that = was not the longest path towards b; from bs.
We let P = {p;} be a maximal set of edges such that no two p; label an edge starting
at box and terminating at the same vertex. The set P has size at most n, but we note
that if P has size exactly n, then we have boxp; = bz - - - £,,—1 for some p; € P. We
now find our favourite vertex s which sits a distance at least |boz| + 1 below b, which
means that no generators are found below sbox and so we can apply Lemma . We

then have the following.

-1
T .9

sboxy ... xHo1 sbox

We now consider the edges labelled by all p; € P. These can reach at most n
different vertices from sbox, as P has size at most n. If P has size precisely n then the
n vertices we can reach from sbox must include sboxy . .. x,_1. We can then reach an
additional n — 1 vertices, say those labelled 1 to n — 1. All remaining generators not in
P must label edges parallel to those in P and so we are left with an unreachable vertex

n. If P has size less than n, then we clearly cannot reach all of the vertices 1 to n.
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128 7.2. Free Monoids

Hence our scenario must be that between b; and all other generators there are no

edges which point in an upwards direction. U

Hence we may deduce from this claim that there exists a path from b; to any gener-
ator we choose, say by, with bo = byw. Note that as always w is a shortest word, so no
loops or cycles are traversed when walking the path.

We are now able to assert what happens when S is precisely n-generated.

Claim 7.47
In Case @ that is w is a generator and S is n-generated, then u is an identity element

and S is the free monoid on n generators.

Proor: Suppose S is n-generated but u is not an identity element. We have that v is a
generator, b; say. Now by Claim , no edges may be in the upwards direction, and
so all products b, b; are found on level 1 of the tree and b1 b; # b1 b; for any ¢ # j, since
all vertices on level 1 must be reached via an edge from the root. Now since no edges
are upwards, we have that for any generator, by say, by = byw for some word w € BT.

Therefore, we must have by - byw = by - bo.
by

by b

o Vo

ovl

Hence in this picture, the vertices v; and vy must in fact be the same vertex, and as
our graph is a tree, cycles are disallowed. Hence w must in fact be the empty word and
b1by = b1bs, a contradiction to our earlier statement. Hence u cannot be equal to some

generator and is therefore an identity, and by Claim is free. g

‘We can now assume that B has size n+m where m > 0. To elicit our contradictions,
we will look at what happens when we multiply b; by both b, and b; w, which are words
that should represent the same element of S. This is split into four cases depending on
what b; and by do at vertex b;. We first establish a small claim which will be useful

throughout these cases.
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7. Cayley Spectra of Semigroups 129

Claim 7.48
In Case B that is S is generated by more than n elements with u = by we have for

any generator b; € B we have b; = byw for some w € B*.

Proor: By Claim there are no edges in the upwards direction. The graph
Cay(S, B) must be an n-ary rooted tree and so wherever an edge occurs from a par-
ent to child vertex, the edge must be directed down. Hence we can find a path from b,
to any vertex v in Cay(.S, B), and in particular to all b;. This path is labelled by some
word w € B*, and hence b; = byw. O
Claim 7.49

In Cases and , that is S is generated by more than n elements with u = by
and either biby # b1by # by or biby = biby # by we have that 1 (S, B) 2 1 (A*, A).

PRrROOF:
by
b bo

o U2
wg

o U1

Now since by - byw = by - by by Claim m , the vertices labelled v; and v, must
in fact be the same vertex, and since there are no cycles in the graph or in w then
b1by = b1bo. Additionally, from this we also have that b = b,b1, which allows to us
deduce that since by - b1b; = by - bo, then bob; = bs. Finally, we have by - b1by = by - ba,

which gives us baby = bs.

by
b1 <> by

b1 == by

Now there are n sets of edges that have distinct destinations on leaving b1, and so at

most n distinct locations may be visited from bs. However, we see above that we have
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130 7.2. Free Monoids

already assigned one of these locations, namely by, and so this leaves us with at most

n — 1 sets of edges to travel to n different vertices, and so | (S, B) 2 1 (A*, A). O

Claim 7.50
In Case , that is S is generated by more than n elements with w = by and b1b; =
b1 = bybs, then by = bs.

Proor:

by
b1 o> by

This is easily dismissed. By Claim we have by - by = by - byw, and so we can
conclude that w = ¢ and b; = bs. O
Claim 7.51
In Case , that is S is generated by more than n elements with u = by and b1bs =

b1 # b1b1 we have that there must exist an upwards edge in Cay(S, B), a contradiction
to Claim .
Proor:

by
b L
by

This case is also easy to eliminate. Since by - b, = by, then by - byw = by using

Claim . However, we are not allowed to travel up towards b; by Claim . O

We then come to the final case, .
Claim 7.52
In Case , that is S is generated by more than n elements with uw = by and b1b; =
by # b1bg then S = A*,

Proor: Using our favourite equality from Claim , by - b = b1 - byw, we see that

blw = blbg and so b2 = b1b2.
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7. Cayley Spectra of Semigroups 131

by

by

We have assumed here that w # bo. If that is the case, then since w is some gener-

ator, then w = by v for some word v. Then

bi-w=>b1 -bjv = bv=bhw
= bv =10

= w = by

So in fact w = b9, and we can generalise this argument to show that there are
no multiple edges leaving b;. Similarly, we can show there is no b; # b; such that

b1b; = by, as if there is, we have b; = b,v for some word v. Then

by -b; =01 -biv = by =bv
= V=€

= b; = b;.

Hence there are exactly n 4+ 1 generators in B. We will now show that b; is an
identity. Suppose first that sb; # s for some element s € S. Then sb1b; = sb; and
sby = sbybs which tells us that sby = sbs and additionally sb;b; = sbs. Then from
the vertex sb;, we need to reach n vertices, but now have only n — 1 edges left to do
this with. Hence b; is a right identity. We have already established that b1b; = b; for
all generators b;, and so b; is also a left identity. Thus our semigroup S is actually A*

generated as a semigroup. (]

This completes the proof of Theorem .

Having established this, we can then write down the Cayley spectrum of A*.
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132 7.3. Free Semigroups

Corollary 7.53
Let A be an alphabet of size strictly greater than 1. Then the Cayley spectrum of A* is
C(A* A) ={A*}.

7.3 Free Semigroups

It seems now that it would be a simple task to prove an analogous theorem about the
free semigroup on generated by A, that is A™. Recall that Cay(A™, A) has the form of
n n-ary rooted trees, compared to Cay(A*, A) which is a single n-ary rooted tree. We
might wonder then, that since they share many similar features as graphs, whether we
might apply similar methods of proof to free semigroups as we had for free monoids.
Indeed, many of the steps in the proof for A* are applicable to A™. However, the last
step, in which we find we have drawn A* generated as a semigroup leads us to find many
more semigroups sharing the graph (AT, A).

In fact, we will enumerate all semigroups that have a skeleton isomorphic to
T (AT, A) and provide a presentation for each of them. To state the exact number of

such semigroups, we first need to establish the concept of partitions.

Definition 7.54
A partition of a number n € N is an expression for n as unordered sum of natural
numbers. We write a partition P of n into i parts as (p1,pe, .. .,p;) where n = p1 +

p2 + ...+ pi. The number of partitions of n is given by the partition function, p(n).

Definition 7.55

A restricted partition is a partition in which the largest part has size < N and the
number of parts is < M for some N, M € N. We denote a restricted partition of n
into M parts with largest part size N as P(N, M, n). The restricted partition function
p(N, M,n) gives the number of restricted partitions of n with largest part < N and

number of parts < M.

The following theorem is the main result of this section. A fully worked example of

this theorem for n = 4 can be found in subsection 7.3.1|.
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7. Cayley Spectra of Semigroups 133

Theorem 7.56
Letn € N, then fori < m < nandlet P, ; for1 < f < p(m) be partitions of m. For

each partition Py, if i is its size then define
Qfmi=pn—i,n+1l—m,n—1i)—pn—i,n—mn—i)
and
Bfmi=pn—i,n—m,n—1i)—pn—in—m—1mn—1).

Let Qyq for 1 < x < quy; be a partition of n — i inton + 1 — m parts, and let rq, ,
denote the number of distinct parts in Q) ... For a given i, define

Qf m,i /BnL,'i

2 Q.+ 2 (rgp, 1) fm A
Upf = =1 =1
1 ifm=1
Then there are exactly
#5=> > Ur.,
m=1 f=1

semigroups S = sgp(B) such that { (S, B) = 1 (AT, A).

In this section we prove this theorem, as well as provide an explicit presentation and
description for each semigroup .S. We will show that S must be generated by more than
n elements using Lemma , as otherwise it will not have the correct skeleton, or will
be isomorphic to A*. We will then focus on a single tree in Cay(.S) which contains at
least two generators, by and b,,11 say. We will call the unique vertex of degree n in this

tree u. The outline of cases will be as follows.

1 w is not a generator.
2 w is a generator, say by and b,, 11 = b;w for some w.

2.1 byy1 # byw for some w.
2.2 byy1 = byw for some w.

2.2.1 byby # bibnst # by
2.2.2 biby = bibny1 # b
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134 7.3. Free Semigroups

223 biby =bibpy1 =b1
224 biby # bibyt1 =by
2.2.5 biby = b1 # bibyi1

These cases will be eliminated similarly to their analogues in Section @, save for
case . In this case, we will find that w is in fact situated on level 1, and that we can
construct many different semigroups with the correct skeleton, which we will describe

in full.

»
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We now begin the proof of Theorem .

Proor:
Let S = sgp(B) be a semigroup such that 1 (S, B) = 1 (AT, A). Then S is at least
n generated as T (.5) is n disjoint n-ary rooted trees.
Claim 7.57
If S is exactly n-generated, then the generators are found at the n vertices of degree n

and S = A*.

Proor: Suppose S is n-generated; then there must be precisely one generator found in
each tree. Consider the tree containing by, and suppose that b; is found at some vertex

v of degree n + 1. Since we must be able to reach all vertices in the tree containing by
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7. Cayley Spectra of Semigroups 135

from v, there exists a path from v to the unique vertex of degree n which we will call u.
This means we have v = b, b;w for some b; € B, w € BT, that is, the edge labelled b;
is in the upwards direction. Now consider the vertices below v. By Lemma these
must also be reached using arrows from b;. However, since S is n-generated there are
only n — 1 edges available and n vertices to reach, a contradiction. Hence b; must be
found at u, and all other generators at the vertices of degree n.

Now we must reach all other vertices in each tree from the root vertex, and since
we are n-generated this means every vertex save the root vertex has indegree of 1 and

outdegree of n and so S is free. U

Hence we have that S is at least n + 1 generated. Suppose that B has size n + m
for some m > 1, and consider the subtree Cay(.S), of Cay(S) which contains at least
2 generators, say b and by, 41.

Let u be the vertex of degree n in Cay(S);.

Claim 7.58

In Case , that is the vertex u is not a generator we have that 1 (S, B) 2 1 (AT, A).

ProoF: Assume that u is not a generator, then . = wb; for some b; € B and w € BT
As when considering A*, we have either wb;b; = w for some b; € B, or wb;b; # w
for any b; € B. In both cases(cf. Claims and ) , we find a vertex s that is a
sufficient distance below any generators and consider swb;. We find in both cases that
we are trying to reach n vertices with only n — 1 sets of edges available to us. Therefore

(S, B) 21 (AT, A). O

Suppose that u = b;. We have the following observation on the direction of edges
in Cay(5).
Claim 7.59

In Case B, that is u = by we have that there are no upwards edges in Cay(.S).

Proor: The proof follows identically to Claim . |

This claim will help us rule out Case .
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136 7.3. Free Semigroups

Claim 7.60
In Case E]I that is uw = by and b, 1 # byw for any w € B* we have that 1 (S, B) 2
(AT, A).

Proor: Recall that b is the root vertex of the tree that b,, 11 is found in. If b, 11 # byw
this means there exists no path from b; to b,1, and by Claim we have that there
are no edges in the upwards direction, so there cannot be a path from b,, 41 to b either.

Hence this graph is disconnected and so 1 (S, B) 2 1 (A, A). O

We can then break down Case @ into five cases as we did for A* by considering
the terminating vertices of the edges labelled by b; and b,, 1 that come from b;. The
first four cases have a similar result to their counterparts in the free monoid case.
Claim 7.61

In Cases and , that is u = by, b1 = byw and either b1by # b1b,11 # by
or biby = bib, 11 # by we have that 7 (S, B) 2 1 (A, A)

Proor: The proof is analogous to Claim . g
Claim 7.62

In Case that is w = by, bp41 = biw and biby = b1b,11 = by we have that
t(S,B) 2 (AT, 4)

Proor: The proof is analogous to Claim . O
Claim 7.63

In Case , that is w = by, b1 = byw and biby # bibyy1 = by we have that
(9, B) 21 (AT, A)

Proor: The proof is analogous to Claim . O

However the argument of the last case for A*, , does not transfer to A1. This
means we must study what happens when b1b; = by but b1b,,11 # b1, thatis case .
From Claim we know that there must be a path from by to b, 11, say bp,4+1 =
byw. It is not immediately obvious to us where the vertex labelled by w is found in

Cay(S), but by establishing the following claims we will be able to locate it.
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7. Cayley Spectra of Semigroups 137

Claim 7.64
In Case that is u = by, b1 = byw and biby = by # b1b, 41 we have that w is

either a level 0 or level 1 vertex.

Proor: Suppose otherwise. By Claim all edges are in the downwards direction,
so all roots must be generators, and so w = b;v for some b; € B and v € AA*. Then

bn+1 = blbﬂ}.
by

bi bn+1,w

e U2
U§

e U1

Now these two vertices vy, vo are in fact the same vertex, but v has non-zero length
and so we have introduced a cycle into the graph, which is a contradiction. Hence w

must indeed be found on level O or 1. O

This helps us narrow down the location of w to a selection of n + n? vertices. The

following claim will allow us to specify exactly where w is located in Cay(S).

Claim 7.65
In Case , that is u = by, by11 = byw and b1by = by # b1b,41, we have that if
b; is a generator found on level 1 of the tree with root b; then b;b; = b; and b;b; = b;.

Additionally, we never have b;b,, = b; for some k # j.

Prookr:
If b;b; = b; and b;b; = b; is not the case, we may refer to Case , and .
Suppose that b;b;, = b; for some k # j. Then b; is written as the product of two
other generators, and can be removed without affecting the shape of { (S) and leaves a
semigroup isomorphic to S. Since we want our generating set as small as possible, then

b; should be removed. O

This shows us that since b1b,,+1 = b,4+1 we must have w = b, 41 and so w was

hiding in front of us all along. We can now deduce even more information about S.
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Claim 7.66
In Case , that is w = by, by41 = byw and b1by = by # b1b,11, we have that if

bi, b; are a generators of S such that b;b; = b;, then sb; = s forall s € S.

Proor: Suppose there exists some s € S such that sb; # s. By Claim , b;b; = b;,
and so we must have sb;b; = sb;. Since b;b; = b, then sb;b; = sb; which has two

possible realisations in the graph. If sb; # sb; our graph has the following section.

This has created a cycle, which is forbidden in our graph, so we must have sb; = sb;.

S

b1 bo

by = by

Now in this case, we must remember that we have to reach n new vertices from sbq,
but since sb1bs = sby, we are left with only n — 1 sets of edges to achieve this with, a
contradiction.

Hence sb; = s.

O

Now it would seem that we can have a generating set of size up to n + n? as this
is the number of level 0 and level 1 vertices. However, as we are interested in counting

the semigroups up to isomorphism, we in fact have the following.

Claim 7.67
In Case , that is w = by, by41 = byw and b1by = by # b1b, 41 we have that S has

a generating set with size at most n. + n.
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7. Cayley Spectra of Semigroups 139

Proor: Suppose that S has a generating set B = {b1,...,bp4nt1} of sizen +n+ 1.
Of the generators, n are found at level 0, say by, bo, ..., b,, and the rest are found at
level 1. Suppose that b,,1; for 1 < ¢ < n + 1 are distributed across level 1 vertices in
trees rooted at b; where 1 < 7 < k for some k. At least one of these trees contains at
least two level 1 generators. Without loss of generality, say the tree rooted at b; contains
generators b,, 11 and b, 2. Now by Claim we know that b1b; = by for1 < i <k
and b1b, 11 = by41 and b1b, 12 = b,42. We now have n — 2 vertices on level 1 for
which we have not determined the edge that meets it from level 0.

Let b; be a generator that is found on level 1 in the tree rooted at b; say, and assume
bib; = bi. Then b;b1b; = b;b; = b;, but bjb1b; = b;b1 = b;. Hence we have
that b, b; is always found on level 1 for any generator b; where 7 > n. Now there are
n + 1 such generators, and only n level 1 vertices, so it must be that b0, = bb, for
xz,y > n. Let b, be found in the tree rooted at b;. Then b;b:b, = b;b, = b, and
bibiby = bib1by = b;b, so b;b, = by,. This means that b, can be written in terms
of other generators, and its removal does not affect the shape of 1 (5). Hence we can
remove b, from the generating set and have a semigroup isomorphic to S with the same

skeleton. O
Claim 7.68

In Case that is w = by, b1 = byw and biby = by # b1by1 we have that for
n+1<j <n+m,then bib; # by.

Proor:

Suppose that b1b; = by for such a j. Then for n +4 < k < n + m where k # j we

have
bib1b; = bib;
= by
= brby
= bib1b;.
That is, b; = by, which is a contradiction. O
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140 7.3. Free Semigroups

Given these restrictions on the structure of Cay(.S, B), we may now construct pre-
cisely #S different semigroups such that { (S, B) = { (AT, A) but where S is not iso-
morphic to A7 itself.

Let the generating set of .S have size n + m for some 1 < m < n. We will let the
root generators be by, bs, ..., by, leaving us with m generators, which by Claim
are found on level 1.

The distribution of the m generators across vertices on level 1 gives rise to a par-
tition of m, so we create at least p(m) semigroups in this way. Suppose then that
P = (p1,p2,---,pi) is a partition of m. Without any loss of generality, we will let

generators {b,, 11, ..., bn1p, } be found in the tree rooted at b; and in general

{bntpitotpj 141 Onctprtotpy 1ty |

are in the tree with root b;. By Claim , we have b;b; = b; for 1 < j < 4, that
is, for each root vertex b; where 1 < j < ¢ we have a loop labelled by b; on that
vertex. Claim also determines precisely edges labelled by, p, +...4p,_, +1 Where
1 <k < pj, since bjbn+p1+_“+pj71+k = bn+p1+,__+pj71+k for 1 < j < 4. That is, for
each bn+p1+.__+pj71+k with1l < k < p;jand 1 < j < i, there is an edge from b; to
bnipi+...4p;_1+k labelled by b,y p, 4 4 p._, +k. We now consider what edges labelled
b, forn +1¢ < k < n + m can do.

By Claim sby = s forall s € S, then by determining b, by, we determine sby
for all s € S. We therefore need only consider the end vertex of the remaining edges
leaving b; in order to find all edges in Cay(S, B).

We have already determined the destination of p; of the edges leaving b1, specifi-
cally those labelled b, for 1 < z < iandn < z < n+ p;. This leaves n +m — ¢ — py
edges for which we need to find the end point, and n — p; level 1 vertices which have
not yet featured as the end point of an edge.

By Claims and we know that for any generator found on level 1, that is, b;
forn+1 < j < n+m, such a generator labels neither a loop on by, nor a multiple edge
from b;. We therefore have that generators b; for n +1 < j < n + m label m edges
terminating at m different level 1 vertices from b, and generators b; for 1 < j < i label

loops starting and terminating at b;. This gives us m + ¢ edges for which we know the
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7. Cayley Spectra of Semigroups 141

start and end, and therefore n — ¢ edges yet to be discovered, with n —m level 1 vertices
as yet unreachable.

There are now no further restrictions on edge locations, and so the remaining n — ¢
edges can be found either as loops on b; or as edges to the n — m level 1 vertices that
have not yet featured as a terminating vertex. There are a number of different ways this
can happen, and we shall now count these.

We observe that we must have an edge from b; to the n —m vertices that we have not
visited yet, and so we need to partition the n — ¢ generators into partitions with at least
n —m parts. If we create a partition Q@ = (q1,. . ., gn—m ) Of precisely n —m parts then
for each q; we have the generators {b; ¢, +...4q;_1+1,- -5 Ditqi+...+q;_1+q;  1abelling
an edge from b, to one of the n —m vertices we have not seen yet. To count the number

of partitions of n — ¢ into n — m parts we calculate
B=pn—in—mmn—1i)—pn—i,n—m-—1,n—1)

Now since there are only n — m + 1 permitted terminal vertices for our edges, that
is the n — m unvisited level 1 vertices and b, our partition of n — ¢ must be no bigger
than n — m + 1. Suppose we have such a partition @ = (q1,---,¢n_m+1) of B — i.
We notice that from this partition of edges we must select one set of edges to be loops
on by, as opposed to edges to level 1. If two parts of () are equal, say g, = gy, then it
makes no difference to our semigroup whether we find the set of edges relating to g,
as loops, or the set relating to g, as loops. Therefore, we let r represent the number of
distinct parts of (), and so a partition () gives rise to r different semigroups. We count

this by first calculating the number of partitions of the correct size:
a=pn—in—m+1,n—1i)—pn—i,n—m,n—1).

Then given a partition @), of the correct size, let r, represent the number of distinct
parts. We then have

non-isomorphic semigroups found from these configurations.
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Hence given an m, a partiion P = (p1,p2,...,p;) of m, a partition
Q= (q1,---,q;) of n— i and a choice i + g of how many generators should label the

loop on by, we have the semigroup

S[m,P,Q,Qk] :Sgp<b17"'7bn+m ‘bwbl :bz for 1 §l§271 <z<n+m
b1bn+l = bn+l for 1 < l < P1

b2bn+p1+l = bn+p1+l for 1 < l < b2

bibntpy+...4pi 14+l = bntpitotp i for1 < <p;
b1biyn—myr =b1biy1 for1 <1 < qy

b1bitn—mtq+1 = bibipofor1 <1 < go

b1bitn—mtqr+...4qe_otl = 01biyrp—1 for1 <1 < qpq
b1bitn—mtq+..4qe_1+1 =01 for 1 <1 < gy
b1bitn—miqit.tant+l = b1bigg for 1 <1 < qpyy

b10itn—mtgy+..tqy+1 = Drbiyj for 1 <1 < a5)-

We wish to prove the following theorem.

Theorem 7.69

Let A be an alphabet with n elements and let A™ be the free semigroup on A. Letm < n
and let P = (p1,Dp2, . .., p;) be apartition of m. Let Q = (qu, . . ., g;) be a partition of
n—iand a choose a q,. Then T (S[m, P, Q, qi],{b1,...bnim}) = 1 (A, AT) and given
the choices of m, P, Q, qi, there are precisely #S different semigroups S[m, P, Q, qx]-

Proor: This is a consequence of Claims , and O

We first show that there are the number of semigroups S[m, P, @, x| that we want
to have. We then use a rewriting system based on this presentation to find normal forms
for S[m, P, Q, gi] and then show that the skeleton graph of this semigroup is isomorphic
to that of AT = sgp(A).
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Claim 7.70
Let S1 = S[ma, P1,Q1, g, ], S2 = S[ma, Pa, Qa, qx,] be two semigroups as defined
above. Then S1 = Sy if and only if m1 = mo, Py = Ps, Q1 = Q2 and qx, = qx,.

Proor: If mq = mo, P, = P, Q1 = Q2 and g, = qi,, then clearly S7 = S5.

For the converse, suppose that 57 = S5, and let ¢ : S; — S5 be an isomorphism.
Let S1 = sgp(b1,...,bntm,) and = Sy = sgp{c1, ..., Cntm,)- Since ¢ must map
generators to generators and no generator in S7 or S2 can be written as a product of
other generators both semigroups must have generating sets of the same size, and so
my = meo.

Let the number of parts of P, and P be denoted by i; and 75 respectively. Then
bb, = b, forl < z <y and p(b,)p(b,) = ¢(b,). The only such elements in Sy
with this property are c, for 1 < z < 5. Since we must also have o~ (c.)p~(c,) =
¢~ *(c.) then we conclude that i; = is.

Let P, = (p1,...,pi,) and Py = (mq,...,7;, ). Given some 1 < z < iy, the tree
rooted at b, we have p, generators b, such that b,b, = b,. Under ¢ the element b, must
be mapped to some element ¢, such that there are p, generators b, such that ¢, cy = c,.
Hence P, = P.

Now ()1 and @2 can only have n — mj or n —mj + 1 parts. Suppose without loss
of generality that Q1 has n — my + 1 parts and ()2 has n — m; parts. Then we have
b1b, = by for i1 + qi, element b, then we must be able to find ¢; + ¢, elements c,
such that ¢y ¢, = ¢1. However, since ()5 has only n —m parts this means there are only
i1 such elements. Hence Q2 must in fact have n — m; + 1 and furthermore, gi, = qx,.
A similar argument applies if ()1 has n — m parts.

Finally, let Q1 = (q1,...,q;). If j = n — m + 1 then we know that ¢i, = g,. For
each 1 < z < j where z # ki such that , there are exactly ¢, generators b,,, b, such
that b1b, = b1b,,. Using ¢, there must also be exactly g, generators c,, ¢,, such that

C1¢y = €1Cy, and hence Q1 = @Q-. O

Hence there are #S non-isomorphic semigroups that can be found for a given n
using the above presentation. We will shortly show that semigroups given by these pre-

sentations are indeed skeleton-isomorphic to 1 (AT, A), however we will first describe
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an example of such a semigroup to aid understanding.

Example 7.71

As an illustrative example, suppose that A = {a1, as, as, a4}, and create the following
semigroup 7'. We choose the number of extra generators to be m = 3. The partition of
mis3 =2+ 1, and so s = 2. We then have n — ¢ = 2. We choose the one possible
partition into n — m = 1 parts, that is the partition 2 = 2. Finally this means we must
have exactly 7 generators labelling a loop on b;. Using the general presentation for S,

this gives us the specific presentation

T = sgp(bi, ba, b3, ba, bs, be, by [ biby = b, biby = b; for 1 <i <7,
bibs = bs, b1bs = be, bab7 = b7,
b1bs = b1by).
We will show that 7" has the graph that is partially shown in Figure @ by establishing

normal forms via a complete rewriting system, and considering the edges that arise

when using these as the vertices of Cay (7).

Figure 7.4: Cayley graph of T’

We show that 7" has the normal forms
I by and bo;
I b1b3{b37 b57 b67 b7}*’ b1b7{b3a b57 b67 b7}*
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babs{bs, bs, b, b7 }*,babs{bs, bs, b, b7 }*,b2bs{bs, bs, bs, b7 }*

I b3{bs,bs, b, b7 }*, ba{bs, bs, bs, b7 }*, bs{bs, bs, bs, b7 }*,
b{bs, bs, bs, b7 }*, b {bs, bs, bs, b7 }*.

Using the shortlex order with b, < b, for x < y, we have a rewriting system
RWI1 b,y = b, for1 <1<2,1 <2<,

RW2 bb; — by forb5 <1 <6,

RW3 bob; — b7,

RW4 b,.by — bybsforl <ax <7.

We will show that this system is locally confluent by considering possible overlaps of
rules when rewriting words. If we encounter the rule RW1 on the left, this can overlap

with RW1, RW2, RW3 and RW4 on the right.
RW1 RWI1 bibg, — b, RW1 RW2 baby

e S

b, biba, = bebiby =

N .

b, by — by, byby
RWI1 RW3 [ RWI1 RwW4 bpby —— bybs
bzb2b7 = M[M =
byby = by bybibg — b b3

Rule RW2 overlaps with only RW1,RW2 and RW4.
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RW2 RW1 bi, b, > by, RW2 RW2 b1b; > b

biby, — by, biby ——b;

RW2 RW4 biby —> bybs

b1bb3 — b;bs

The rule RW3 can only overlap with RW1 and RW4.

RW3 RW1 bsby —b; | RW3RW4 brby —— brbs
%bl = %IM =
baby —— by babrbs — brbs
Similarly RW4 also only overlaps with RW1 and RW4.
RW4 RW1 bybsb; — bybs | RW4ARW4 byb3by —— byb3bs
bgbaby = [N =
l)wb4 —_— bLbd bzb4b‘5 e bLbdbd

This shows that our system is locally confluent. Under the ordering that we have used,
all right-hand sides of rules are shorter than left-hand sides, and so when a word is
rewritten, it becomes shorter. Thus this system is Noetherian and so by Lemma @
we have a complete rewriting system. Then by Lemma there exist unique normal
forms for 7'

We must now show that the elements (I)-(III) are normal forms by showing they are
irreducible. An element of type I is a single letter and so a rewrite rule can never be
applied to it, hence it is irreducible. For a word of type II or III, we note that rewrite rule
RWI1 requires either by or b, to appear as a non-leading letter which is never the case for
such a word. Rule RW2 requires b5 or bg to appear after by, and this will never occur in

a word of type II or III. The third rewrite rule RW3 only operates on the subword b2 b7,
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Generator | by bo b3 by bs be b7

by (b1, b1) | (b1,b1) | (b1,b1bs) | (br,b1b3) | (b1,b5) (b1, bs) (b1, b1b7)
ba (b2, b2) | (b2,b2) | (b2,b2b3) | (b2,b2bs) | (b2, b2bs) | (b2,b2bs) | (b2,b7)
bs (b, b3) | (bs,b3) | (b3, bsbs) | (bs,bsbs) | (bs,b3bs) | (b3, bsbs) | (bs,br)
ba (basba) | (ba,ba) | (ba,babs) | (ba,bab3) | (basbabs) | (ba,babs) | (ba,badr)
bs (bs,bs) | (bs,b5) | (b5,bsb3) | (bs,bs5b3) | (bs.b5b5) | (b5, bsbs) | (bs,bsb7)
be (be,bs) | (be,b6) | (be,bsbs) | (be,bebs) | (be:bebs) | (b, bebs) | (be,bsbr)
b (b7, b7) | (br,b7) | (b7,b7b3) | (br,b7bs) | (b7.b7bs) | (b7,b7bs) | (br,brbr)

Table 7.1:

which cannot be made from any of the expressions listed in II and III. Finally, rule RW4
requires the letter b4 to occur as a non-leading letter, and this does not happen in any
words of type II and II. Hence all the elements of types I, I, and III are irreducible and
thus are normal forms.

We would now like to show that we have listed all the normal forms, so we will
suppose that w € {by,...,br}* is a normal form for 7" but is not of type L, II, or IIL
This means that w must have length at least 2, as all normal forms of length 1 are
found as types I or III. First suppose that w begins with b;. Then w either has b, for
y € {1,2,4,5,6} as a second letter, or b, for z € {1,2,4} as a third or later letter. If
we have b, as a second letter, then we can apply RW1, RW2 or RW4 to w, and so w
was not irreducible. If we have b, as a third or later letter, then we can apply RW1 or
RW4 to w and so w was not irreducible.

If w begins with by, then w must have either b, where y € {1,2,4,7} as a second
letter, or b, where z € {1, 2,4} as a third or later letter. For b, as a second letter, we can
apply either RW1, RW3 or RW4 to w, so w is not irreducible. If we have b, as a third
or later letter, then we can rewrite w using RW1 or RW4, and so w was not irreducible.

We can now consider the Cayley graph of 7. The set of vertices V is the set of
all normal forms as described above. We will describe the edges of Cay(T) by first
considering the edges that arise from the vertices representing the generators of 7'.

From Table E] we see that by, by, bs and by have at least 4 neighbouring vertices,

and b5, bg and b7 have at least 5. Now for any normal form of length 2 or greater,
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Generator | by by b3 by bs be br

wbs (wbs, wbs) | (wbs, wbs) | (wbs,wbsbs) | (wbs, wbsbs) | (wbs, wbsbs) | (wbs, wbsbs) | (wbs, wbsbr)

wbs (wbs, wbs) | (whs, wbs) | (wbs,wbsbs) | (wbs, wbsbs) | (wbs, wbsbs) | (wbs, wbsbg) | (wbs, wbsbr)

wbg (wbg, wbg) | (whe, whg) | (wbe,wbgbs) | (wbg, wbgbs) | (wbs, whebs) | (wbe, whebs) | (wbe, wbebr)

why (wbz, wbr) | (whr,wby) | (wbr,wbzbs) | (wby, wbrbs) | (why, wbrbs) | (wbr, wbrbg) | (wbr, wbrbr)
Table 7.2:

we know that the last letter is either b3, b5, bg or b7. Therefore we let w be a word in
normal form of length at least one, and consider the edges originating at vertices wb;
fori € {3,5,6,7}.

Together, Tables @ and @ describe all edges in Cay(7"). We can see here that
normal forms beginning with b1, b5 and bg are contained in a single connected com-
ponent of Cay(T) as there exist edges from b, to bs and bg, and all other edges from
normal forms that begin b, b5 or bg are to other normal forms that begin by, b5 or bg
respectively. Having listed all edges, we now know that b; has exactly four neighbours
(of which two are b5 and bg), and b5 and bg have exactly five neighbours (of which one
is by). If we consider an arbitrary vertex wb; for ¢ € {3,5,6,7} in this component,
we see that this vertex is the child of precisely one vertex, that is, the only edges for
which wb; is a terminal vertex are those beginning at w. The vertex wb; has precisely
four child vertices, specifically wb;bs, wb;bs, wb;bg, and wb;b7. Hence if we consider
this component in  (T") by removing all directions, loops and multiple edges from the
component in Cay(7'), we have a 4-ary tree rooted at the vertex b;.

By similar arguments we can show that Cay(7') contains three more components,
one containing normal forms beginning with b, and b7, one containing normal forms
beginning with b3, and one containing normal forms beginning with b4. All of these
components in T (T) are 4-ary trees rooted at by, b3 and by respectively.

Hence 1 (T') is isomorphic to 1 (A*), concluding the example.

We will now let A be of size n for some n > 1 and pick an m such that 1 < m < n,
a partition P of m into 7 parts, a partition () of n — 7 into j parts, and a number %k such
that 1 < k£ < j. We will show that the semigroup S given by the presentation defined

above has t (5) = 1 (A*). We follow a similar method to the example 7', and establish
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normal forms for S by creating a complete rewriting system, and then examining the

edges that arise in Cay(S) using these normal forms as the set of vertices.

Claim 7.72

The semigroup S has normal forms
e b, forl1 < g<i
e bbp{bs |i+1< f<i+n—m,n+1<f<n+m}*for
-1<g<y
-i+1<h<it+n—m,
-n+1<h<n+p+...+pg-1,

-n+pr+...+p,+1<h<n+my

e b {bp|i+l<h<i+n—mmn+l<h<n+m}*fori<g<n+m.

Proor: We first show that S does in fact have normal forms by showing it has a complete
rewriting system. Using the shortlex order with b, < b, forz < y we have the following

rewriting system.
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by > by forl <l<i,1<x<n+m
b1bpti = bpy for1 <1 <py

b2bn+p1+l — bn+p1+l for 1 < l < D2

bibn+;01+...+pi71+l - bn+l71+u~+,’01‘71+l for1 <1< Di
bzbi+n7m+l — bxbiJrl for1 <1< g, 1<z <n+m

bubiyn—miq+t = babiyofor1 <1< o, 1 <z <n+m

babitn—mtqit.taqeotl = bgbizp_1for 1 <I<gqpq,1<z<n+m
babitn—mtqit..4qe 1+l — bpforl <l < g, 1<z <n+m
brbitn—mtqit..taqutl — bebigp forl1 <l < gy, 1 <z <n+m
bebitn—mtqit..tqj14l = bzbipjfor1 <1< g, 1<x<n+m

We will show that this system is locally confluent by considering possible overlaps

of words when rewriting. We will break the rules down into five categories:
() bybp > b forl <i<i,l1<z<n+m

(ii) byby — byforl <y <i,g=n-+p +...+pr+ewherel < f <i—1and
1<e<pry1

(i) bzb, = bybigyqrr1forl <z <n+m,r=i+n—m-+q +...+q,+v where

1<v<qgupiandl <u<k—2

@{iv) bpby by forl <z <n+m,r=i4+n—m+q +...+ qx_1 + v where

1<v<grqa

W) bpby = bybipyforl <z <n+mt=i+n—m-+q +...+ g, + v where

1<v<qgpandk<u<j—1

Save for those of type (ii), all rewrite rules have any generator as the first letter of the

left-hand side, we can overlap all those rules. Rules of type (ii) may overlap its second
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letter with the first letter of any rule except those of type two. They may also overlap
their first letter with the second letter of rules of type (i).

The overlaps with rules of type (¢) at the front are:

® biby, ——> ba, (i) bib,
bz, biba, = bbibg =
by, by, — by, byby
(111) blbr - blbi+u+1 (IV) blbw I bl
bubib, = bubibe -
babibigu+1 ——= bibitutr baby ——= by
) biby ——> bibig

byby bH—u — bi+u

Overlaps with rules of type (%) at the front:
(iii)

@ bybi — by byby ——— bgbi i1

bybgbitut1 ——= bgbitut1

(iv)

byby — b,

(4]

bybr ——— bybi s

bz bg bi+u I bg bi+u

Overlaps with rules of type (i) at the front:
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byby ————bybitut1

() bbi 10y ——= by ——=1b; babi s 4107y ——= babipu, 1105 puy 11
bybr, bry =
b by ———> b, by biun 1 — bebitu, +1bitust1
(i) bybitut10w ——= bybitut1 )

bybituy +1b8 ——= bubituy +10itu,

\

.

bmbrbH»ug - bxbz+u1+1bl+u2

Overlaps with rules of type (iv) at the front:

() byby —= b

byby ———— bybitut1

A\

/

bzbw bi+u+1 —— bzbi+u+1

(iv)

bz bwl —— bz

)

bcc bt — bx bi+u

\

/

bz bwbH—u — bsz—u

Overlaps with rules of type (v) at the front:

(1) b bH—ubl —, bl — bl b, bH—ulbr - b;L'b'H—ul bi+u2+1
byby ——b bybib it+uz+1 —b, bz+u1bl+uz+1
(iv)

bwbi+'ub'w — b‘l/ bt+u,

bwbi+'u1 btg I bwbi+u1bi+u2

ba:bn bt+u2 I bzbiJrul bi+u2

These are all our overlaps, and in each case we always arrive at the same word, so we

have local confluence. Now if we consider left and right-hand sides of rules, we can see
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that under the order we have imposed, the right-hand side is always shorter under the
shortlex ordering, and so this system is Noetherian. Hence this is a complete rewriting
system.

In order to show that what we have given are actually normal forms, we check that
they are irreducible. First suppose we have a word of the form b, for 1 < g < 4. This
has length one and so cannot be rewritten using any rules.

Suppose we have a word w in the form bgbp{by | i +1 < f <i+n—m,n+1<
f<n+m}rforl <g<i,i+1 <h<i+n—-m,n+1 <h<n+pi+...+pg_1,n+
p1+...+pg+1 < h < n+m. We cannot apply rewrite rules of type (i) as these rule
require a letter b, for 1 < y < i to appear after some other letter which is not possible in
words of this form. For rules of type (ii), we observe that the only place we could apply
these is to the first two letters of w because this is the only place we find find a letter b,
for 1 <y < i. Now for a given b, with 1 <y < i we can only apply a rule of type (ii)
if b, is followed by a letter b, where n +p1 +... +py_1+1 <2 <n+pi+...+py,
however these letters are not found in any normal form of this type beginning with our
chosen b,. Finally to apply rules of type (iii), (iv) and (v) we require a letter b, for
t+n—m+1 <y < n, and none of these appear in our word w. Thus w is irreducible.

Suppose then we have a word in the form b;{b, | i+1 < h <i+n—morn+1 <
h <n+4+m}* fori <1 < n+m. We can never apply rewrite rules of types (i) or (ii) to
this word as it does not feature any letters b, for 1 < y < 7. The remaining rule types are
also not applicable, as they require a letter b, fori+n—m+1 <y <i+n—m+m—1
to follow some letter which is not possible given the restrictions on h. Therefore, all
our suggested normal forms are irreducible.

Finally, suppose we have some element w € B* which is in normal form but not
listed above. The element w must have at least length two since all elements of length
one are covered by our normal forms. Suppose then that w begins with b, for1 < g < ¢,
then either w has b, where 1 <y <7, i+n—m+1 <y <n,orn+pi+...+pg_1+1 <
y <n+pi+...+pgasasecondletteror b, where1 <y <iori+n—-m+1<y<n
as some letter that is in the third or later place.

Suppose that w has by, where 1 <y < i, i+n—-—m+1 <y <n,orn+p +

oot pg1+1 <y < n+p+ ...+ pyas asecond letter then if y is the first,
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1 < y < ¢, then we may apply a rewrite rule of type (i). If y in the second interval,
1+ n—m-+1 <y < n,then we may apply a rule of type (iii), (iv) or (v). Finally, if y
isin the interval n +p; +... +pg—1 +1 <y < n+p; + ...+ py then we can apply
a rule of type (ii).

Therefore we suppose w has b, where 1 <y <iori+n—-—m+1 <y < nas
some letter that is in the third or later place. If y is in the first interval then we can apply
a rule of type (i). For y in the second interval then we can apply rules of type (iii), (iv)
or (v).

Hence w must begin with b, for i +1 < g < n 4+ m and contain some letter b,
where 1 <y <iori+n—m <y < n. For the former case, we apply rules of type
(i). For y in the latter case, we apply rules of type (iii), (iv) or (v). Hence w can be

rewritten and is reducible, so is not a normal form.

Claim 7.73
For a given m, P, Q and g, we have 1 (S[m, P, Q, qx], B) = 1 (AT, A).

Proor: We may label all the vertices in Cay(S[m, P, @, qx], B) by the normal forms
given in Claim . Consider a vertex b,, for i < x < n+m. We will use the relations
to determine what edges occur within the graph. The relations can be classified into the

following classes:
() boby=bfor1 <l<il<z<n+m

(ii) byby =bgforl <y <i,g=n+pi+...+pr+ewherel < f<i—1and

1<e<pr1

(i) bib, = bypbjpyy1 forr=14+n—m+q1 +...+q, +vwherel <v < g4
andl1 <u<k-—2

(iv) biby =byforr=i+n—m+q +...+qx—1 +vwherel <ov < gpy1

) biby =bybipy fort=i4+n—m+q1+...+qu +vwherel <v < gyqq and
E<u<j-—-1
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Generator Type | Parameter

bo 1<a<i

bg i+1<p<i+n—m

b, i+n—-m+1<~y<i+n—-m+q+...+qr-1

bs i+n—-m4qg+...+qgp1+1<i<i+n—m+q+...+q

be t+n—-—m+qg+...+tqgp+l<eli+tn-m+q+...+q¢g=n

b¢ n+1<{<n+m

Table 7.3:

Generator | b b by bs be be

ba (basba) | (ba,babg) | (ba,babiyus1) | (bayba) | (ba,babiyu) | (ba,be)
(bas babe)

bs (bg,bg) | (bs,bsbs) | (bs,bsbivur1) | (bg,bg) | (bs,bsbitu) | (bg,bpbe)

by (b”rv bw) (bwv bwbﬁ) (bwv bvbi+u+1) (bw b“/) (bw bwbi+u) (by, bvbC)

bs (b5, bs5) | (bs,bsbs) | (b5, bsbisutr) | (bs,bs) | (bs:bsbivu) | (bs,bsbc)

be (beybe) | (beybebg) | (beybebipurt) | (beybe) | (beybebiva) | (e, bebe)

be (be;be) | (beibebs) | (bgsbebitusn) | (bg,be) | (besbebiu) | (b, bebe)

Table 7.4:

We will first consider the graph Cay(S[m, P, Q, qx], B). We will categorise the
generators of S[m, P, Q, qx] in to useful types, and examine the edges that arise from
these. From this we can then deduce the edges arising from all normal forms, and
hence we can see where multiple edges and loops occur, and thus understand the edges
in 1 (S[m, P,Q, q], B).

Edges leaving each type of generator are found by multiplying each type by all other
types and applying appropriate relations. For example, a vertex of type b, has an edge
labelled b,, forming a loop on it, due to the relations of type (i). If we multiply a vertex
of type b, by a generator of type b, then depending on whether these particular gener-
ators appear in a relation of type (ii) or not, we have either an edge (b,, b¢) or an edge
(ba, babe).

Now Table @ allows us to see the type of edges leaving each generator vertex in
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Generator | b, bs by bs be b¢

’Ujb‘_@ <’I_Ub‘_/.;, ’U.'b@) (’Ujl)/-;, ’Ll)bﬂb@) (’Ll)l)‘,’.;7 ’U.'b@b1‘,+u+1 ) ('Ujb@, ’lUb‘{-;) ('U.Vb[j, wb@bH,u) (’Ll)bl-;, 'U.’b[jb()

wbe¢ (wbe,wbe) | (whe,wbebg) | (wbe, wbebityt1) | (whbe, wbe) | (wbe, whebiyy) | (wbe, wbebe)
Table 7.5:

Cay(S[m, P, Q, qx], B). In particular, we see that columns b,, and bs always give rise
to loop type edges, and columns b, and b, give multiple edges - more specifically, they
have the same initial and terminal vertices as edges in column bg.

We would now like to see which edges arise from non-generator vertices. Given
our normal forms from Claim , we see that a normal form of length greater than or
equal to two always ends in a generator of type bg or b¢. Since all relations have left
hand side length of at most two, we may view our normal forms of length at least two
in two different ways. We let w be a word in normal form (including those of length
one), then all normal forms of length at least two may be written as either wbg or wbc.
The edges that these vertices give rise to are elaborated on in Table @, which follows
much the same reasoning as Table @

We see that the generators of type b, and bs again give rise to loops, and generators
of by and b, give multiple edges with the same initial and terminal vertices as edges
labelled bg. This allows us to count the outdegree of all vertices in t (S), by ignoring
the generators that result in loops or multiple edges in Cay(,S). This is given by counting

the number of edges with labels of type bg and b¢, that is

n—m-+m=n.

Hence each vertex in 1 (S[m, P, Q, qx|, B) has outdegree n.

We then consider the indegree of each vertex in {(S). We can see that for those
vertices in Cay(.S) which correspond to normal forms of length at least two, if we ig-
nore multiple edges and loops, they appear only once as a terminal vertex, and so have
indegree one. For normal forms of length precisely one, we see that those of type b,
bg, b, , bs and b, never appear as a terminal vertex, provided we ignore loops, and so

these vertices have indegree zero. Those of type b do appear as terminal vertices, but
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appear precisely once, and so have indegree one.

Suppose then that we have a vertex corresponding to a normal form b;, which is of
type b,. This has exactly n child vertices, which are all those of the form b,b3, b¢ for
n+1< ¢ <n+prandbibe forn+py +1 < ¢ < n+m. For those of type b1 bg and
b1b¢, each has n distinct child vertices, and there are no edges between vertices of the
same generation, as we see from Table @ that the non-loop edges are never between
words of the same length. Similarly, for the vertices of type b¢, each has n distinct child
vertices and no non-loop edges within the same generation via Table @ Every vertex
in this third level now has n child vertices, which from Table B we see are all unique,
and are not connected to each other by edges. Via a recursive process, we find that we
have in fact an n-ary rooted tree, rooted at b; .

This argument applies analogously to any vertex of type b, and a simplified argu-
ment applies to all vertices of type bg, b., bs and b. as on each level the length of normal
form increases by one and we need not worry about vertices of type b¢ here. Thus for
each vertex of these types, we have an n-ary rooted tree forming f (S), and all vertices
of type b are found within the trees rooted at b,, vertices.

Now we may count the number of vertices of type b, bg, b, bs and b., which is
simply n + m — m = n. Thus 1 (S[m, P, Q, ¢x], B) has the form of n n-ary rooted
trees, and is hence isomorphic to 1 (AT, A).

O

7.3.1 An Example

Let A = {a,b,c,d} and let AT be the free semigroup generated by A. We will now
look at how many different semigroups B; we can construct such that { (AT) = 1 (B;).

First we try adding a single generator e. There is only one possible configuration
for this, which is shown in Figure @

Adding two new generators, e and f, gives rise to three possible semigroups. Since
we have added two new generators, we have two possible partitions for these; into 2 and
1 + 1. The partition 2 results in semigroups B> (Figure @) and Bs (Figure @).

The partition of 1 + 1 gives us one single semigroup, displayed in Figure @
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Figure 7.5: B,

Figure 7.6: By
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Figure 7.7: By

Figure 7.8: By
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160 7.3. Free Semigroups

These are all possible semigroups for a generating set of size 4 4+ 2. We then add
another generator, g, giving us m = 3, and p(3) = 3. We can calculate U for each of
these partitions of 3. Let P, = 3, P, =2+ 1and P; = 1+ 1 + 1. For P;, we have
it = 1, son — ¢ = 3. There is exactly one partition of of 3 into n — m + 1 = 2 parts,
giving us an « value of 1. This partition is 3 = 2+ 1, which has two unique parts giving
an r,, value of 2. Similarly there is exactly one partition of 2 in to n — m = 1 part, and

so 8 = 1. Hence

1

Up1 :ZT’m+1

z=1

=2+1

=3.

For partition P,, we have i = 2 and son—¢ = 2. We can partition 2 inton—m+1 =
2 in one way, that is 2 = 1 + 1, which has only one unique part. Similarly there is only

one partition of 2 into n — m = 1 part, so 5 = 1.

1
Up2 :ij—‘rl
r=1

=1+1

=2.

Finally for P3, we have n—¢ = 1 and so there are no partitions of 1 inton—m+1 = 2

parts, giving o = 0. There is precisely one partition of 1 inton—m = 1 parts,so 8 = 1.

0
UP3 :Zrm+1
r=1

=0+1

=1.

Thus with the addition of three generators, we find Up, +Up, +Up, = 34+2+1 =6

new semigroups.

160



7. Cayley Spectra of Semigroups 161

Figure 7.9: By

A semigroup of type P is shown in Figure @ and one of type P, is shown in Figure
. The rest may be found in the appendix @

Finally, we add a fourth generator h, giving m = 4. For each partition of 4, the
U value is 1, and so since p(4) = 5, there are five new semigroups. One of these is
displayed in Figure , the rest can be found in appendix @

These are all the semigroups B; such that T (B;) =  (A*) for an alphabet of size

four. According to our formula, we get a sum of

4 p(m)
#5=3 YU,
m=1 y=1
p(1) p(2

p(3) p(4)
Up, + Z Up,
1 y=1

)
=3 Ur, 4+ Up, +
y=1 y=1

=M+ R+ +B+2+D)+(1+1+1+1+1)

y=

= 15.

This matches the number of semigroups which we have demonstrated.
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Figure 7.10: Bg

a,b,c,d Qa7b7 c,d

a,b,c,d %>a,b,c,d (-qsa,b,c,d ;
[ )

a,b,c,d

a,b,c,d a,b,c,d

a,b,c,d ~>a,b,c,d ~>a,b,c,d a,b,c,d ~>a,b,c,d ~>a,b,c,d

Figure 7.11: By
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7. Cayley Spectra of Semigroups 163

7.4 The Integers

When we considered the natural numbers, we looked at a one-ended infinite line. Why
not, then, look at a two-ended infinite line, which, at first glance represents the integers

Z.. We will prove the following theorem.

Theorem 7.74
The spectrum of the integers 7. = sgp{1, —1) is C(Z) = {Z, CoxC4, Ty, T, T3, T4, T5 },

where

a,b,c| aa = ac,ab = a,ba = a,bb = b,bc = ¢, cc = ca,cb = ¢)
=sgp{a,b,c| aa =a,ab = a,ba = a,bb =b,bc = c,cb = ¢, cc = ¢)

2p(

(

T5 = sgp{a,b,c | ab=a,ac = a,ba = a,bb = ¢,bc = b, cb = ¢,cc = ¢)

Ty = sgp{a,b,c | ab=a,ac = a,ba = a,bb = b,bc = ¢,cb = ¢,cc = ¢)
2p(

a,b | ab = a,ba = a, bbb = bb),

and Cs x Cy is the monoid free product of two copies of the cyclic group of order 2.

Suppose we have a semigroup S generated by B = {by,ba,...,b,} such that
1(S,B) = 1(Z,{1,—1}). As with N, we shall speak about the graph as being ori-
ented horizontally, so vertices may be described as being left or right of each other.
Let by and b,, be the left and right-most generators respectively. Figure gives a

visualisation of this.

e @ i e— oo

bl bn
Figure 7.12: Visualisation of { ()

We will first establish a claim that will be useful throughout.
Claim 7.75
Let w = wy . .. wg be any word over the generators of S and let s be any element of S.

Let the sequence of vertices v1 . .. v; be the path labelled by w starting from s. Suppose
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164 7.4. The Integers

that we encounter some vertex twice. Let v; be the first vertex that is encountered twice.
Then the edges leaving the vertex v;11 = vjw; are either loops or terminate at v;. In

particular edges that are not loops leaving viw; go either left or right, but not both.

Proor: Since 1 (.9) is a straight line graph, we know that for any 1 < ¢ < k we have
eitherw; ... wjz =w; ... Wi—1, W1 ... WiZ =W ... W; OL Wy ... W% = W] - .. Wi41]-

Now suppose that we have a vertex s such that the path labelled w encounters a
repeat vertex, SO Swj ...w;—1 = Swj ... w;4+1 for some 1 < ¢ < k. We will orient
our diagram with s to the left and sw; . .. w; to the right, but this applies equally to any

orientation of these vertices.

Wi+1 P
¥
——— > -
5 e Yl @ vt
W;

Now any generator z must label one of the dotted edges in the diagram, and so there

are no generators left to label any edges going right from swy ... w;. g

We will prove that only Z,Cy x Co and T; for 1 < ¢ < 5 have this skeleton by
examining three cases for S. These cases are based on the existence of paths between
the two extremal generators by and b,,, and contain several subcases. The case structure

is outlined as follows.
1 There exists a path from b; to b,, and from b,, to b;.

1.1 b1b, is equal to by

1.1.1 b1by is equal to by
1.1.2 byby is right of by
1.1.3 byby is left of by

1.2 b1b, is right of by
1.2.1 byb; is equal to by
1.2.2 by by is right of by
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7. Cayley Spectra of Semigroups 165

1.2.3 byby is left of by
1.3 b1b, is left of by

1.3.1 b1by is equal to by
1.3.2 byby is right of by
1.3.3 byb; is left of by

2 There exists a path from b,, to b; but no path from b; to b,,

2.1 There exists an edge going right from b
2.2 The exists no edge going right from b,

2.2.1 b1by equals by and by b, is left of by
2.2.2 byby is left of by and b1 b, equals by
2.2.3 by1b; and b1 b,, are both left of by

3 There exists a path from b, to b,, but no path from b,, to by
4 There exists no path from b; to b,, and no path from b,, to by

4.1 There exists an edge going left from b,, and an edge right from b;.

4.2 There does not exist an edge going left from b,, but there exists an edge right

from b .

4.3 There exists an edge going left from b,, but there does not exist an edge right

from b .

4.4 There exists neither an edge going left from b,, nor an edge right from by,

and we consider b,,, for some 1 < m < n (see Claim ).

4.4.1 byb; is left of by and b, b, equals by
44.1.1 b,b, isright of b,, and b,,b,, equals b,
44.1.2 b,b, equals b, and b, b,, is right of b,,
4.4.1.3 b,b, equals b, and b,,b,,, equals b,,
4.4.1.4 b,b, isright of b,, and b, b,, is right of b,,

4.4.2 b1by equals by and by b, is left of by
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166 7.4. The Integers

44.2.1 b,b, isright of b,, and b, b, equals b,
4422 b,b, equals b, and b, b,, is right of b,,
4423 b,b, equals b, and b,,b,,, equals b,,
4424 b,b, isright of b,, and b, b,, is right of b,,
4.4.3 byb; equals by and by by, equals by
4.4.3.1 b,b, isright of b,, and b, b,, equals b,
4.4.3.2 b,b, equals b, and b, b,, is right of b,,
4.4.3.3 b,b, equals b, and b,,b,,, equals b,
4.4.3.4 b,b, isright of b,, and b,,b,, is right of b,,
4.4.4 byb; if left of by and b1 b,, is left of by
44.4.1 b,b, isright of b,, and b, b, equals b,
4442 b,b, equals b, and b, b,, is right of b,,
4443 b,b, equals b, and b,,b,,, equals b,,
4.4.4.4 b,b, isright of b, and b, b,, is right of b,,
Claim 7.76

In case i there exists at least one generator b, where 1 < m < n.

Proor: Since there are no edges right (respectively left) from b; (respectively b,,), we
know there must exist some generator b, for 1 < m < n such that b,,w = by for
some word w and b,,v = b,, for some v otherwise the Cayley graph of S would be

disconnected. O

We will show that the only possible constructions for a Cayley graph with this skele-
ton are the aforementioned semigroups. The general method we will use is to establish
certain equalities in a given case, for example b; = b, w, and then starting at specific
vertex we will follow the paths labelled by both sides of this equality. This will either
allow us to deduce the location of more edges in the graph, or lead us to a contradiction.
If we write for example b; - b,w, this indicates that we are starting at vertex b; and
following the path labelled by b,,w.

The outcomes for each case can be found in the claims outlined in the following

table.
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Case ()

There exists a path from by to b, and a path from b,, to b;.

We first prove a claim that will be useful in the subcases of Case EI
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168 7.4. The Integers

Claim 7.77
In Case ﬂ, that is there exists a path from by to b,, and from b,, to by then b,, = byw and

by = b, for some w,v € B*.

Proor: Let the path from b; to b, be labelled by a word w = wjy . .. w,,, where w
is as short as possible. In the other direction let the path from b,, to b; be labelled by

v =1 ...V similarly. Hence we have b,, = byw and b; = b,v. O

We will make use of the following equality to establish which semigroups arise from
this construction.

bl-bn:b1~b1w1...wn (#)

By Claim we know that if we follow the path w from vertex b;b; we do not en-
counter any folds or loops, so the vertex by by w is distance exactly |w| from by b;.
We now further subdivide this case by looking at the placement of b, b,,. There are

three possibilities:
e b1b, is equal to by;
e b1b, is the vertex to the right of by;

e b1b,, is the vertex to the left of b,,.
Case (b1 b,, = bq, EI)
The element b1 b, is equal to b;.

We now consider the placement of b;b;. This gives us three subcases, that is Cases

.1.1J1.1. 9 and [1.1.3.

Claim 7.78
In Case that is if there exists a path from by to b,, and vice versa, b1b, = by and
b1by = by we have that t (S, B) 2 1 (Z,{1,—1}).

Proor: First, if the edge leaving b, labelled b, is a loop (case ) then b1b; = by and
using the equality (H) we deduce that w must be the empty word and so b; = b,,. This
would mean S is monogenic, and it is not possible to construct the graph { (S) from a

monogenic semigroup. g
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7. Cayley Spectra of Semigroups 169

Claim 7.79
In Case , that is if there exists a path from by to b,, and vice versa, b1b,, = by and
by labels an edge going right from by we have that 1 (S, B) 2 1 (Z,{1,—1}).

Proor: We use our equality (H) and Claim to deduce that w must have length 1,

giving us the following part of the graph.

b
by

blawl

Now this means b, = b1b; and so S has only two generators. If we examine
the graph, we see that we have already used both of these generators to label edges
from b;, but we have not labelled an edge going left from b;. This means { (S, B) 2
1(Z,{1,-1}). O
Claim 7.80
In Case that is if there exists a path from by to b,, and vice versa, b1b,, = by and
by labels an edge going left from by we have that 1 (S, B) 2 1 (Z,{1, —1}).

Proor: Using equality (B) we deduce that our graph has the following shape.

bn
@b
b1
w1 w1

We see that w only has length 1, and so S has only two generators. This is not
enough generators to label all the edges that leave b; and so 1 (S, B) 2 1 (Z, {1, —1}).
O

Case (b, by, right of by, [L.2)
The element b1 b, is found to the right of b;. We again consider which vertex represents

the element b1 b;.
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Claim 7.81
In Case , that is if there exists a path from by to by, and vice versa, b1b,, is found to
the right of by and byby = by we have that 1 (S, B) 2 1(Z, {1, —1}).

Proor: By equality (B) and Claim we draw a section of the Cayley graph of .S.

b1

bn7 w1

This tells us that w has length 1 and so S is only 2-generated. This does not leave

any generators to label an edge left from b, and so { (S, B) 2 t (Z, {1, —1}). O

Claim 7.82
In Case , that is if there exists a path from by to b,, and vice versa, b1b,, is found
to the right of by and by labels an edge going right from by we have that 1 (S, B) 2

T (Za {17 _1})
Proor: We can deduce that b1b; = b1b,. By Claim and (H) w has length 1, and
so we have the following graph.

w1

A

b17 bn; w1

This again has .S having only two generators and no label for the left edge from b1,

and hence 1 (S, B) 2t (Z,{1,-1}). O

Finally, the most complicated option here is that b, b; is found to the left of b, .

Claim 7.83
In Case that is if there exists a path from by to b,, and vice versa, b1b,, is found to
the right of by and by labels an edge going right from by we have that S = 7.

Proor: From the given information we know that our graph must have the following

structure.
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First we show that wo = b,,. If this is not the case, then wy must be equal to a third
generator, bs say, which is found at the vertex between b; and b,,. Then we would have
by = b1by, and b1b1 b, = bi1by = by, which would require an edge labelled b,, to leap
from b;b; to by, which is not allowed. Hence ws = b,. We then have the equality

by, = b1b,b,. Multiplying b by this tells us that

b1 - bibpby, = b1by,

and so we must have that b1b1b,, = b;.

If b, does exist, then since by = b1b,, we can deduce b;b, = by, which gives
us also that b1b1b2 = b1b;. We note that this means w; = b,, as there are no more
possible generators that it could be. We then see that boby does not equal b; or b, as
b1 - babs # by - by and by - baby # by - by,. Hence boby = bo.

Now we wish to establish what happens at the vertex b,,. By multiplying b; by
b1b,b1 we can see that b1 b,,b; is not equal to either b,, or b,. Hence b1b,,b; = b;. Now
since by, - by = b, - b1b, b1, the only viable way for this to hold in the graph structure
is if b,b1 = b1 b,. Next, we know that we cannot have b,,b,, being equal to by as this is
contradicted by the fact that by - b # by - b, b,. We also do not have b,,b,, equal to b,,,
as this would be contradicted by the fact that by - b,, # by - b, b,,. Thus b,,b,, is found to
the right of b,,. Finally it can be seen that b,,bo = b,,, as any other possibility results in
a contradiction.

We now have enough information to fully describe this semigroup.

b2 bl b2 bl bg b1 b2

We can write down a presentation for .S.
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S = Sgp<b17 b2, by, ‘blbn = by, b1bpby, = by, bpby = bo,
brbiby = b1, b1ba = by, baby = ba, byby = ba)

This is in fact a presentation for the integers as a semigroup. If we consider Z =
sgp(1l, —1,0) to be the standard generating set for the integers as a semigroup, then the
map sending b; — —1, by — 0 and b,, — 1 is an isomorphism. Notice that we assumed
here that there were three generators. If we removed the need for this third generator,
we would have a semigroup that was isomorphic to the integers presented as a monoid,

using the same isomorphism. g

This completes all the cases where by b,, is found right of b;.

Case (b1 by, left of by ,1.3)
The element by b, is found left of by.
We first have two easy cases.
Claim 7.84
In Case , that is if there exists a path from by to b, and vice versa, b1b,, is found
left of by and biby = by we have that 1 (S, B) 2 1 (Z,{1, —1}).

Proor: From the information we have we know that our graph contains the following

section.

by

T

by

Since w is not allowed to fold, the only way to have equality (H) b1b,, = b1byw hold
would be for w; to label an edge going left from b, but by definition w; goes right.
Hence t (S, B) 2 1 (Z,{1,—1}). O
Claim 7.85
In Case , that is if there exists a path from by to b,, and vice versa, b1b,, is found
left of by and byby = b1b,, we have that 1 (S, B) 2 1 (Z, {1, —1}).
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Proor: From the relations defined so far we have the following graph.

bn

S

by !

There is no way to achieve b1 b,, = byb;w without folding in w here, so 1 (S, B) 2
i (2, {1, -1}). O
Claim 7.86
In Case , that is if there exists a path from by to b, and vice versa, b1b,, is found
left of by and b1by right of by we have that S = Cy x Cs.

Proor: Due to equality (H), we know that w has length 2, and thus picture the graph as

follows.
bny w2 w1, V2 U1
/\
%n
bl , W1 w2

We will assume that there are three generators here: if there are only two, the same
argument holds, ignoring any statements about the third generator b,. We show that
wi; = by. Suppose not, then we must have wy; = bs. Now since by = b1b; then
b1 - biby = by - by = by. This implies that bob; = bs. However, by - by = by and
by - baby = ba, which is a contradiction, and so w; = b;.

We then show wy = b,. Suppose otherwise, then wo = by = b1b;. However
b1 - biby = by and by - by = b1b,, so we must have made an incorrect assumption.
Therefore wy = bs.

We can also also see that bybs # by and babs # by, as if the former were an equality,
we would have b1bs = by, but then byboby # by by. The latter follows similarly and we
are left with byby = bs.

Considering the product b;b,, we can see that if bjby = by, then b1bs = b1b;.
However, by - biby = by # bs = by - biby. If, then, b1by = b1b,, we can look at

by - biby = by, but by - b1b,, = b,,, and thus we can deduce that b1by = bs.
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We now wish to understand the edge v;. Suppose that v; = by, then b, - b1b; = by,
which should be equal to b, - b, but this would require an edge leaping from b,, to by
which is not allowed. In a similar manner, v; = by is also disallowed as b,, - bob; = by,
but we cannot have b,,b; = by as it should in this scenario. Hence, v{ = b,,.

Next, we establish the edge by leaving b,. We know already that b,b; # bo. If
bnb1 = by, then we should have b,,b,,b1 = b,,b,,, but we do not, so we are left with only
one option, that b,,b; is found to the right of b,,.

Finally, to find where b, b, lies, we rule out b,by = b,,b; as this would require
bnbpby = b,by, by, which is not the case. We already established that b,,b5 # b3, and so

we must have b,,bo = bs. This set of relations defines the whole graph, as shown here.

bg bn b2 bl b2 bn b2 b2
by
b 1 b 1 bn b 1

This semigroup has the following presentation.

S = Sgp<b1,b2,bn | blbl = bnbn = bg,bibz = bz fOI’i = 1,277’L>

This is the free product of two copies of the cyclic group of order 2, Cy x Cy, pre-
sented as a semigroup. A standard semigroup presentation for Cy x C5 is Co x Cy =
sgp{a,b,1 | a? =1 =b%al = la = a,bl = 1b = b, 1?2 = 1). Clearly we can then
construct an isomorphism by mapping b; +— a, b, — b and by — 1. Notice that if we
had removed all reference to the generator (or indeed, identity) b2, we would have our

semigroup being C5 x C5 presented as a monoid. |

This completes the case in which there exists a path from b; to b,, and vice versa.

Case (E)

There does not exist a path from by to b, but there exists some path from by, to b;.

Let v = vy ...v,, be a word labelling the shortest path from b,, to b;. There are two
subcases here depending on what occurs at b;. We may have that either there exists an

edge right from by, or that there exists no such edge.
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Case (There exists a path right from bl’@)

This case has no subcases, so we need only show the following claim.

Claim 7.87
In Case EI], that is there exists a path from by, to by but no path from by to b,, and there
exists an edge going right from by we have that 1 (S, B) 2 1(Z,{1,—1}).

Proor: Let w = wy . .. wyi be a word labelling the longest path right from b, that does

not visit any vertex more than once, and does not reach b,,. This may be visualised as

follows.
b,
Um i U1
e e —
b1 wy wp, bn

In this diagram by, and b; represent all generators in B. Now by an analogous proof
to Claim @ using the word w, and finding an appropriate vertex right of b,, we see that

this case 1 (S, B) 2 1(Z, {1, —1}). O

Case (There are no edges going right from b, @)

Recall that by = b,v, and so by - by = b1 - b,v. Due to the nature of the graph, this
means v has length 1 and S is 2-generated. We now ask what the edges labelled b; and
b,, do at b;.

Claim 7.88

In Case , that is there exists a path from b, to by but no path from by to b,,there
are no edges going right from by and b1by = by we have that 1 (S, B) 2 1 (Z,{1,—1}).

Proor: From the assumptions of the claim we have the following section of graph.

b, b
b
1 bl bn

Now v; = b; for either ¢ = 1 or ¢ = n. There exists an edge left from the vertex

b1by,, which must be labelled b; where j # i. Consider now b1b,, - b,,b;. This must be
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equal to b1 b, - by. If i = 1 then an edge skipping a vertex would be required to make
this hold. If i = n then b:b,, - b,,b,, = b1b,, and so for this to hold, we would need
b1by, - by = by also, and hence 1 (S, B) 2 t (Z, {1, —1}). O
Claim 7.89

In Case that is there exists a path from by, to by but no path from by to b,,there

are no edges going right from by and b1b,, = by we have that S = T5.

Proor: The following diagram shows a section of our graph.
bi,v;  bn by

bl bn

Since there are no other generators left to label edges from b;, we must have vy = b;.
We can then immediately deduce that b,,b,, is found right of b,,. We also deduce that
bbby is not equal to b, b, or b, since by - b, = by - b,b, = by which is not equal
to by - b,b,b1. This also shows us b,,b,,b,, = b,,b,,, because otherwise we would have

bnbyp by, = byb, by which would give us the same contradiction.

by by b, bn b

I e

b1 b

These relations now determine the entire graph, in that each vertex left of b; has an
edge labelled b; going left and a loop labelled b,,, and each vertex right of b,,b,, has an
edge labelled b; going right and a loop labelled b,,. Hence this is the Cayley graph of a

semigroup with presentation
Sgp<b17 by, ‘ bib, = b17 bpb1 = b17 bnbnb, = bnbn>-

This is the semigroup 75. O
Claim 7.90

In Case that is there exists a path from by, to by but no path from by to b,,there
are no edges going right from by and biby = bib, # by we have that 1(S,B) 2
F(zZ, {1, -1}).
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Proor: This means that v; has to label a loop on the vertex b1 b,

UL by, b1

G‘/\Q‘b/v_l\ .

Since b1b1 = b1 b, and vy is equal to one of by or b,,, we have by -b1b1 = b1-b1b,, =
b1b1. This means we have run out of generators to label the edge that must go left from

biby and so t (S, B) 2 1(Z,{1,—-1}). O

Case (B)

There exists a path from by to b, but no path from b,, to by

Claim 7.91

This case is symmetric to Case B

There is now one final case to consider.

Case (B)

There exists no path from by to b,, and no path from b,, to by

For the first three subcases we have the following.
Claim 7.92

In cases and , that is there exists some edge going towards by or by, origi-
nating at the other generator, we have that 1 (S, B) 2 1 (Z, {1, —1}).

Proor: This follows analogously to the proof of Claim . O

The remaining subcase has several subcases of its own.

Case (Case @)

There exists neither an edge going left from b,, nor an edge right from by.

Now in this case, there exists some generator b,,, such that b,,,w = by and b,,v = b,
for some words w = wjws...wi and v = v1vy...v;. Consider the product byby,
which is either found left of b1, or is equal to by. In either case, this must be equal to

the product b1b,,,w. Now by Claim we know that when following the path w from
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178 7.4. The Integers

b1b,, we must not encounter any folding or loops. Hence w must have length 1. This
means w = w1, and there are only three configurations which this works in. Since there
are no edges going left from b; then both b; and b,,, must label either loops on b; or

right edges from b;.

bi,wy bmoowy

b1 b,

Figure 7.13: Section A

ébé/lﬁl\
—b, b

Figure 7.14: Section B

bla bm7w1 w1

e

b1 b

Figure 7.15: Section C

» W1 bla bm wq

b T~

by b
Figure 7.16: Section D

These arguments are all equally applicable to b,, and b,,,v, so we end up with three

possible layouts for the b,, side of the graph, as shown here.
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/le\i)anLn\

Figure 7.18: Section 2

U1 bna bmvvl

P

bm by,

Figure 7.19: Section 3

(%} bna bm U1
T G
b b

Figure 7.20: Section 4

We can combine these sections in an attempt to construct Cayley graphs of semi-
groups. We note that since these sections are symmetrical, then we need only study ten

of the possible sixteen combinations. We shall look at the following:

* Section A and 1( and , case )

* Section A and 2 ( and , case ) (isomorphic to B and 1, case )
* Section A and 3 ( and, case ) (isomorphic to C and 1, case )
* Section A and 4 ( and , case ) (isomorphic toD and 1, case )
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« Section B and 2 (.14 and , case )

* Section B and 3 ( and , case ) (isomorphic to C and 2, case )
Section B and 4 ( and , case ) (isomorphic to D and 2, case )
* Section C and 3 ( and , case )

Section C and 4 ( and , case ) (isomorphic to D and 3, case )
* Section D and 4 ( and , case ).

When examining the combinations, we shall try to establish the destinations of all

edges leaving the generators, and decide whether this forms a Cayley graph of a semi-
group or not.

Case (Section A and Section 2)

The combination of these sections are visualised as follows.

b1, w1 b w1 U1 by b
S S —
bl bm bn n

Figure 7.21: Sections A and 2

Claim 7.93

In Cases |4.4.] Z and |4.4.2.1| we have that the graph is not the Cayley graph of a semi-

group.

Proor: We first show that b,,,b,,, = b,,,. Suppose otherwise, then either b,,,b,,, = by or
b bm = by,. In the former case, we see an immediate contradiction because by -b,,,b,,, =
b1 # by - by. In the latter, then we should have b,,, - b, b, = b by, = by, - by, but this
would create an edge that jumped over a vertex which is forbidden. Hence b,,,b,,, = by,
and as a consequence b,,b,,b,,, = b,,b,,,. Since b1b,,, = by, then b1b1b,,, = b10;.

This leaves us with only two generators to assign to v; and wy. If w; = b, and
vy = by, then we have b,,,b; = b,,. However, b,,, - b,,,b; = b,, but b,,, - b,, = by, which

is a contradiction. Hence wy = b; and v; = b,,.
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7. Cayley Spectra of Semigroups 181

bal by b by b b, by, bon b
/_\G /\V_\ bl .
e

Now we will examine the placement of the product b1b,,. Recalling that there are
no edges going right from by, there are only two options of where the edge labelled b,,
from vertex by goes, either a loop on by or a left edge. Suppose b,, labels a loop on by,
so b1b, = by. This means b, - b1b,, = b,, - by and hence b,,b; = b,,. Returning to by,
we now have b; - b,b; = b1b1, but by - b, = b;. Hence our assumption that b1 b,, = by
must be incorrect.

Thus b,, must label an edge going left from b1, and so b1b,, = b1b;. This implies
that b,,b; = b,,. Now looking at by - b,b; = by - b1, we see that by labels a loop on b1 b;.
Similarly, since by - b,b,, = b1 - by, there is also a loop labelled b,, on b1b,. Now we
have used up all our generators, but have not yet labelled an edge going left from b1 b;.
This is a contradiction, and so we must not have w; = by and v1 = b,,.

Thus sections A and 2 do not create a graph that is the Cayley graph of a semigroup.

(]

We will look now at using sections A and 1.

Case (Section A and Section 1)

These sections combine to make the following section of graph.

bi,w; bmowy U1 b by,

bl bm bn

Figure 7.22: Sections A and 1

Claim 7.94

In Case we have that S = T1.

Proor: Similarly to Claim , we can show that b,,,b,, = b,,.

Suppose w1 = b, and v; = by, then we have b,,b,, = by, but b, - b,,,b, = by and
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b, - b1 = by, and so wy; = by and v1 = b,,.
We look at where the product b,,b; lies. If b,,b; = b, then since we require b; -

b,b1 = by - b,,, we must have b1b,, = b1b;.

b by, by, b by bm by, bm; b1 bn, bm
b1 b by

However, b,, - b1b, = b,b, and b,, - b1by = b,,, a contradiction. Hence b,,b; =
bnby. This implies that b1b,, = b1by, as otherwise b1b,, = b, and this means that
bnb1b, = b,by and b, b, b, = b, b1b,,. This would mean every generator labels a loop
on the vertex b,,b,, leaving no generators to label the edge right from here. Therefore

b1b, = biby.
bin b1, bn b by b by, b bn, b1 b

bl bm, bn

Now we must have by -b,b; = b1-b,,b,,, and so b1b1b; = b1b1b,, # b1 as otherwise
there would be no generators going left from b1 b,. Similarly b,,b,,0,, = b,,b,,01 # by, b,,.
The relations defined here create a graph which for every vertex left of b; has left edges
labelled b1, b,, and loops labelled b,,,. Symmetrically for every vertex right of b,, there
are right edges labelled b1, b,, and loops labelled b,,,.

Hence this is the Cayley graph of a semigroup with the presentation

Sgp<b17bm7bn |blb1 = blbnabnbn = bnblvblbm = b17

bmbm = bmybnbm = bmvbmbl = blvbmbn = bn)

This is the semigroup 77 . g

Case (Section A and Section 3)

Sections A and 3 have the following graph section.
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o b%
b bm, b

Figure 7.23: Sections A & 3

Claim 7.95
In Cases |4.4.].j and |4.4.3.1| we have that either S = T, S = T3 or S = Ts.

Proor: By elimination we can determine that xz = b;. Since b1b,,, = by, then b,,b1b,,, =

bnbl and blblbm = blbl.
bm bl’ w1 bm w1 V1 bma bn bl bm

bl bm bn

We show that w; = b;. Suppose not, then w; = b; forv = nori = m, and
bmb; = by. However, by, - b,,b; = b, # b, - b1. Hence wy; = by;. Now we can consider
the possibilities for the edges labelled b,,, and b,, leaving vertex b,,,. We have determined
that these cannot go left to meet the vertex by, and so they may either label a loop on
b., or an edge right to meet b,,. At least one of b,,, b,,, must label an edge right to meet
by,.

Suppose first that we have b,,b,,, = b, and b,,b,, = b,,. From this we can show
that b1b,, = b1, as otherwise if b1b,, = b1b1, then we must have b - b,,b,, = by - b,,, so
by, labels a loop on the vertex b1b,,. Then since by - b1b; = by - b1b,, we also have by
labelling a loop on the vertex b1b,,. This means all generator label a loop on the vertex

b1b,,, which leaves no generators to label an edge left of here. Thus, b1b,, = b;.

S S SN

by bn, by b, bn, by bin by, bin, bn, by bmébn
b1 by,

bn
Figure 7.24: b,,b,, = b,,, and b,,,b,, = b,

Now using only the equalities defined so far, we see that since b1b,, = b1b,,, = by
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then we have a left edge labelled b; from every vertex left of b; and all such vertices
have a loops labelled b,, and b,,,. Similarly every vertex right of b,, has a right edge
labelled b; and loops labelled b,, and b,,. Hence this is the Cayley graph of semigroup

with the presentation

Sgp<b1> b7n7bn |b1bm = blv blbn == bla bmbl == bla

bmbm - bm7 bmbn - bn7 bnbm = bn7 bnbn = bn>

This is the semigroup T}.

Secondly, we can have that b,, labels a loop on b, and b,, labels a right edge from
by,. This gives us b,,b,,, = b, and b,,,b,, = b,,,. This immediately implies that b;b,, =
by since by - b, by, = by - by, These relations now establish the entire graph, as b1 b,, =
b1b,, = by tells us that every vertex left of b; has an edge labelled b; going left from it
and loops labelled b,, and b,,,. It also means every vertex right of b,, has an edge labelled

by going left from it and loops labelled b,, and b,,,.
b, by, b1 bin s bn by by b, bin, bn, by b, bn,

bl bm bn
Figure 7.25: b,,b,,, = b,, and b,,b,, = b,

This is therefore the Cayley graph of a semigroup with presentation

Sgp<b17 bm7 bn | blbm - b17 blbn - bla anbl = bla

This is the semigroup 75.

Finally we have both b,, and b,,, label an edge going right from the vertex b,,, and so
b bm = by b, = b,. From this we deduce that b1b,, = b,,, since we have by - b,,b,, =
b1 - by by, = by. Then for every vertex left of by there is an edge going left labelled b
and loops labelled b,, and b,,,. For every vertex right of b,, there is an edge going right

labelled b; and loops labelled b,, and b,,,.
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S

b, by b1 b, by by b, b b, bn by b, bn
by bm b

Figure 7.26: b,,b,, = byby, = by,

Now we notice that b,, = b,,b,, and so b,, is a superfluous generator. Hence this

Cayley graph defines a semigroup presented by
Sgp<b17 bm, ‘ blbm = b17 bm,bl = b17 bm,bmbm = bmbm>

This is the semigroup T5. t

Case (Section A and Section 4)
Sections A and 4 have the following graph section.
b17 w1 b w1 U1 vl bm7 b,

by b bn

Figure 7.27: Sections A & 4

Claim 7.96
In Cases W.4.1.4 and ¥.4.4.1 we have that 1(S,B) 21(Z,{-1,1}).

Proor: Consider vy. If v; = b, or vy = by, then since b,,b,, = b,,b,,, we get b, b, b,, =
bnbpby = byb,. Since b, by is equal to either b,, or b, b,,, then b, b,,b; = b, b, also, and

we have no generator left to label an edge going right from b,,0,,. Therefore, v; = b;.

biywi dmowy by bé/b’”&‘
.‘/\Q‘/\/_\ .
bl bm bn

Now we have b,,,b; = b,,. If we consider b; - b,,b; = b1b; we see that we must
have b; - b,, = b1b;. Additionally, if we look at b,, - b;, we know that this is either equal
to b, or b,b,. If it is the former, then we have a contradiction as b, - b1b,, # b, - b1.

Therefore b,, - b1 = b, b,,.
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We may now use the equality b1b,, = b1b; to see that b,, - b1b,, = b, - b1b1 = b1b,

and the equality b1b,, = by to see by, - b1b,, = by, - by = b, by,.

bl7bn;w1 bm w1 bl bl,bw
o‘/\(;‘/\/_\ .
by bm b,

Examining the vertex b, b,, we see that we have used all generators to label a loop,

and so there are none left to label the edge right from here. This means thatf (S, B) 2
Case (Section B and 2)

On combining these sections we create the following graph.

/% wy v, b by,

Figure 7.28: Sections B & 3

Claim 7.97
In Case we have that t (S, B) 2 1 (Z,{-1,1}).

Proor: We can show similarly to Claim that b,,b,, = by,

Suppose that wy; = b,, and v; = by, then we have b,,,b,, = b; and b,,b; = b,,.

kl/zl bm bn :

Now b; by, - by,b1 must equal by b,, - b, = b1, and so all generators leaving b b,,
have been assigned, leaving none to go left.

If wy; = by and v; = b,, then, we have b,,,b,, = b,, and b,,,b; = b;.

bm b, by by b, by b, bm

by bn,
bl bm bn
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Then b1b,y, - b,, b, must equal b1 b,,, - by = b1 and there are no generators left to label

an edge going left from b1b,, so 1 (S, B) 2 1 (Z,{-1,1}). O

Case (Section B and 3)

These sections combine to give the following graph section.

b by w1 V1 bins bn, v1 by
W
by b bn

Figure 7.29: Sections B & 3

Claim 7.98
In Cases 4.4.2.3 and $.4.3.2 we have that 1 (S, B) 2 1 (Z,{—1,1}).

Proor:

Now we can show that w; = b1, since otherwise b,,b; = by for either i = m or
1 =m,and b, - b,,b; # b, - b1.

We now ask where the edges labelled b,,, and b,, go from the vertex b,,,.

First we may have b,,, labelling a loop on b,, and b,, as an edge right meeting b,,, so
bmbm = by, and b, b, = b,,. Now this means that the edge going left from b, b,,, must

be labelled b,,.

Figure 7.30: Sections B & 3

Now we look at by - b,,,b,,. This product must be equal to by - b,,, but this requires
an edge to jump over a vertex which is not allowed in this graph. Hence we do not have
this configuration of edges.

Second, we may have b,, labelling a loop on b,,, and b,,, labelling an edge going right
from b,,, so b,,b,,, = b, and b,,,b,, = b,,,. We can then see that by - b,,,b,, = by - b,

and so there is a loop labelled by b,, on the vertex b1 b, .
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Figure 7.31: Sections B & 3

Now b,,, must label an edge right from b, b,,, as it is the only generator left to do so.
Now b1b,, - by, = b1by, # b1 - by by, Which is a contradiction.

Hence we are left with the final option, which is to have both b,, and b,,, label an
edge right from b,, and so b,,b,, = b,,b, = b,. Now since by - b,,b,, = b1 - b, we
must have b,, labelling a loop on b1 b,, as else b,, would have to jump over a generator.

As a consequence, b,, also labels a loop on by b, .

bma bn b, by by bm, by, b’n’m bn by

T T~ N
o

Figure 7.32: Sections B & 3

Now we can see from this that there are no edges left to label an edge left from b, b,,

andso t(S,B) 2 1(Z,{-1,1}). O

Thus the combination of sections B and 3 does not create a Cayley graph of a semigroup.

Case (Section B and Section 4)

Sections B and 3 have the following graph section.

b, by w1 U1 b, b, V1
‘/\/_\/_\
w
ST

Figure 7.33: Sections B & 4

Claim 7.99
In Cases H.4.2.4 and 4.4.4.3 we have that 1(S,B) 21(Z,{-1,1}).

Proor:
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Similarly to Claim , we have that v; = b;.

bm bl w1 bl bl bma bn bl
w

Figure 7.34: Sections B & 4

Now consider b,,, - b,,,. If b,,, - b,, = b,,, then b,, - b,,b,,, = b,,b,, and since b,,b,,, =
bn b, we also have b, - b, b, = by, - b,b,, = b, b,,, which means there are no generators
left to label an edge going right from b,b,,. Suppose then that b,, - b,, = b,,, then
by - biby, = bpby,. Since b, b,, = b, b,, then b,, - b,b,, = by, - b,,b,,, = b,,b,y,, and so

there are no generators left to label an edge right from b,,b,,. Hence b,,,b,,, = b;.

b b1 wy, by, by bW{i
w

Figure 7.35: Sections B & 4

Now by, - bbby = b1byy,, but by, - by = b, # b1b,,. This means the sections B and
4 do not form a graph with { (S, B) =t (Z,{-1,1}). O

Case (Sections C and 3)

In combining these sections we create the following piece of graph.

W
by b by,

Figure 7.36: Sections C & 3

Claim 7.100

In Case we have that S = T5.

ProOOF:
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We can show that w; = by since otherwise we would have either b,,b,, = by or
bimbmm = b1. In the first case a contradiction is found by inspecting by - b,,,b,, and by - by.
In the second we find a contradiction at b,, - b,,b,,, and b, - b;. Similarly, we find that

v1 = b,. As a consequence of these arguments we also deduce that b,,b,, = b,,.

bn bl ) bm bl bm bn bm ) bn bl

e e

bl bm bn
Figure 7.37: Sections C & 3

Now using these relations defined at the generators, we can draw a graph which has
the correct structure. Every vertex has a loop labelled b,,. Going left from b, the left
edges alternate between b,, and by, with the remaining generator forming a loop on the
vertex. Going right from b,, we alternate in the opposite order between b; and b,,, with
the remaining generator again forming a loop. This is the Cayley graph of a semigroup

with the presentation

Sgp<b17bm,bn |b1l)1 = bl,blbm = bl,bmbl = bl,

b’mbm = b’rn7 bmbn = b’m bnan = b’m bnbn = bn>-

This is the semigroup 75. g

Case (Section C and Section 4)

Sections C and 4 have the following graph section.

b17bm7w1 w1 bm bn
/\G/\/\/\G
bl bm

Figure 7.38: Sections C & 4

Claim 7.101
In Cases W.4.3.4 and ¥.4.4.3 we have that 1(S,B) 21(Z,{-1,1}).

Proor: Similarly to Claim , we have that v; = b;.
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I P Ry Ly
m

w

<o T

Figure 7.39: Sections C & 4

Now by - by,b; = by and so by - b, = b;. There are then no generators left to label

the edge going left from by, and so 1 (S, B) 2 1 (Z,{-1,1}). O

Case (Section D and Section 4)

Sections D and 4 have the following graph section.

blv bm w1 w1 U1 bma bn vl

bl bm bn

Figure 7.40: Sections D & 4

Claim 7.102
In Case we have that t (S, B) 2 1(Z,{—1,1}).

Proor: Similarly to Claim , we have that v; = b;.

bla bm w1 w1 bl bl bma bn bl

bl bm bn
Figure 7.41: Sections D & 4

Now consider b,,, - b,,. If b,, - b,, = b,, then b,, - b,,,b,,, = b, - b,, = b, b,,. Now
bnby = bpb, and so by, - b,b, = by, - byb,, = byb,. There are then no generators left
to label an edge right from b,,b,,. Suppose then that b,,, - b,,, = b,,,, and so b,, - b;,,b,, =
by - by, = by by,. Now since b, b, = b, b,,, then b,, - b,,b,, = b,, - b, b, = by, by, Then
there are no generators left to label an edge right from b,,b,,,. Therefore b,,b,,, = b1,
and so by, - by by, = b1byy, but by, -by = by, # bib,,. Hence 1 (S, B) 2 1(Z,{—1,1}).

d
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This completes the case analysis and the proof of Theorem .
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Chapter 8

Conclusions and Further Work

When we asked Pooh what the opposite of
an Introduction was, he said "The what of
a what?” which didn’t help us as much as
we had hoped, but luckily Owl kept his
head and told us that the Opposite of an
Introduction, my dear Pooh, was a
Contradiction; and, as he is very good at

long words, I am sure that that’s what it is.

The House At Pooh Corner
A.A. Milne

In this thesis we have presented a novel way of connecting semigroups with geomet-
ric structures. The results that we have acheived show us that this is a useful perspective
to take on geometric semigroup theory.

In chapters B E] and B we saw that certain semigroups with group-like properties
preserved finite presentability under isomorphism of skeletons. Futher work in this area
should include relaxing some of the conditions found in these chapters, and extending
the results to other categories of semigroups.

Conjecture 8.1
Let S = S[Y;Gx;oa ) and T = S[Z; Hy; 0y, ,] where Y, Z are finite and homomor-

phisms ©y ., 0y, are such that

193



194

(i) im pq g,im 04 g have finite index.
(ii) ker pq g, ker 0, g are finite.

If 1 (S) 2 1(T) then S is finitely presented if and only if T is.

Work by Gray and Kambites [§, Theorem 4] shows that when working with semi-
metric spaces as the geometric structure, finite presentability is a quasi-isometry invari-
ant for finitely generated monoids with finitely many left and right ideals.

Question 8.2
Is finite presentability a skeleton-invariant for semigroups with finitely many left and

right ideals?

We note that the proof of Gray and Kambites theorem relies on identifying R-
classes, which is not possible using the skeleton structure.
A further line of inquiry inspired by [J, Theorem A] is to consider cancellative

semigroups.

Question 8.3

Is finite presentability a skeleton-invariant for left cancellative semigroups?

Question 8.4
Are there futher classes of semigroups which have finite presentability as a skeleton-

invariant property?

In chapter B, we presented an example of two semigroups, one finitely presented
and one not, which are skeleton isomorphic, and in fact have isometric Cayley graphs.
This answers [§, Question 1]. A possible extension of work in this area would be to
find further examples, and to establish the Cayley spectra of the skeleton. We also
note that for both semigroups in this example, we found a regular language of unique

representatives. This leads us to ask the following question.

Question 8.5
If S and T are such that t (S) = 1 (T), is it true that S has a regular language of unique

representative if and only if T' does.
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Finally, the work of chapter B can be extended to incorporate many more skeletons
and the related semigroups. We suggest that it is perhaps not a sensible idea to attempt
to stretch the definition of Cayley spectra to disregard the generating set; that is, to try
find all semigroups that are skeleton isomorphic to a given semigroup S for any given
generating set of S. One issue with this sort of definition would be that for infinite
semigroups we can find infinitely many generating sets and may end up with infinitely
many skeletons which we would want to investigate. A final observation is that it may
be that the techniques we employ in this chapter are difficult to extend to more gen-
eral semigroups, as the semigroups we worked with here had very special structures as
skeletons which we were able to use in our arguments. We may not be so lucky with an

arbitrary semigroup.
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Appendix A

Lots of trees that look like A™

This appendix contains diagrams of semigroups constructed in pubsection 7.3.1, that is
semigroups which are skeleton-isomorphic to A* = sgp(a, b, ¢, d |).
A.1 Adding 3 generators

Figure gives a semigroup with partition P; and partition of n —¢ = 3 into one part,

where a, b, c are all idempotents.

Figure A.1: Bg
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198 A.l. Adding 3 generators

Figure @ gives a semigroup with partition P; and partition of n — ¢ = 3 into one

part, where only « is idempotent.

Figure A.2: By

Figure @ gives a semigroup with partition P, where a, b and ¢ are idempotents.

Figure A.3: By

Figure @ gives a semigroup with partition Ps.
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Figure A.4: Bqy

A.2 Adding 4 generators

Figure @ gives a semigroup with the partition 4 = 4.

a,b,c,d

a,b,c,d G
“>a,be,d =>a,b,c,d a,b,c,d

“>a,b, e, d a,b,c,d ~=>a,b,c,d Q

Figure A.5: Bis

Figure @ gives a semigroup with the partition 4 = 3 + 1.
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200 A.2. Adding 4 generators

a,b,c,d

a,b,c,d a,b,c,d

a,b,c,d &=a,b,c,d v>a,b,c,d G a,b,c,d > a,b,c,d v=a,b,c,d

Figure A.6: By3

Figure @ gives a semigroup with the partition4 =2 + 1 + 1.

a,b,c,d

Ga, b,c,d
a7b7c’d a7b7c’d .Oa7b7c’d » b » 9 » k)

a,b,c,d

Qa, b,c,d a,b,c,d
a,b,c,d ~>a,b,c,d v>a,b,c,d

h

a,b,c,d ~=>a,b,c,d v=>a,b,c,d

Figure A.7: B4

Figure @ gives a semigroup with the partition4 =141+ 14 1.
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A. Lots of trees that look like A™ 201

a,b,c,d a,b,c,d

a,b,c,d =>a,b,c,d v>a,b,c,d a,b,c,d <>a,b,c,d v>a,b,c,d Q

a,b,c,d

Figure A.8: Bis
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finite, @
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Rees matrix semigroup, @
with 0,
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irreducible, B
locally confluent, @
Noetherian, @

semigroup, E
Clifford, |5
completely 0-simple, @
completely simple, @
left zero, @
Rees matrix, @
Rees matrix with 0,
right zero, @
simple, @
stable,

semilattice, @

semimetric, E

shortlex order, @

skeleton, E

Svarc-Milnor Lemma, @

topological space,
compact,

homeomorphism,
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