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Abstract

Geometric semigroup theory means different things to different people, but it is agreed

that it involves associating a geometric structure to a semigroup and deducing properties

of the semigroup based on that structure.

One such property is finite presentability. In geometric group theory, the geometric

structure of choice is the Cayley graph of the group. It is known that in group theory

finite presentability is an invariant under quasi-isometry of Cayley graphs.

We choose to associate a metric space to a semigroup based on a Cayley graph of

that semigroup. This metric space is constructed by removing directions, multiple edges

and loops from the Cayley graph. We call this a skeleton of the semigroup.

We show that finite presentability of certain types of direct products, completely

(0-)simple, and Clifford semigroups is preserved under isomorphism of skeletons. A

major tool employed in this is the Švarc-Milnor Lemma.

We present an example that shows that in general, finite presentability is not an

invariant property under isomorphism of skeletons of semigroups, and in fact is not an

invariant property under quasi-isometry of Cayley graphs for semigroups.

We give several skeletons and describe fully the semigroups that can be associated

to these.
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Chapter 1

Introduction and Background

When you are a Bear of Very Little Brain,

and you Think of Things, you find

sometimes that a Thing which seemed very

Thingish inside you is quite different when

it gets out into the open and has other

people looking at it.

Winnie the Pooh

Geometric group theory is well explored and described terrain, much like reading

an Ordnance Survey map, in comparison to the strange and murky ocean floor charts of

geometric semigroup theory. Much of this is due to the underlying geometric structures

of groups already being developed and understood in their own right. Semigroups,

however, do not immediately lend themselves to a well-known geometric structure. The

idea of viewing semigroups from a geometrical standpoint has become increasingly

common in recent years, and various different approaches can be found in [8, 10, 15]. A

popular choice for a geometric structure is the Cayley graph of a semigroup, which is an

inherently directed graph. The machinery for understanding directed spaces is less well

studied than that of undirected spaces, namely semi-metrics and metrics respectively.

This thesis is an attempt to mesh semigroup theory with a well-understood notion of

geometry and discover if properties can be sensibly transferred from such a space to the

semigroup.

1



2 1.1. Groups and Finite Presentability

1.1 Groups and Finite Presentability

It has been observed (see for example [5, 4]) that the property of being finitely presented

is preserved under quasi-isometries (and therefore also isometries) of groups. We give

a geometric proof for the quasi-isometry invariance of finite presentability, and a more

combinatorial proof for isometry invariance of finite presentability.

Theorem 1.1 ([4, Proposition 8.24])
Let G and H be groups such that Cay(G) is quasi-isometric to Cay(H) (G is quasi-

isometric to H). Then G is finitely presented if and only if H is.

This proof relies on a lot of fairly involved topological methods which are outside the

scope of this thesis. Since our focus will lean more towards graphs that are isometric, we

give an alternative proof for groups that have isometric Cayley graphs which reduces the

amount of topological concepts needed. We introduce the concept of a skeleton graph

which is the fundamental object considered in this thesis.

Definition 1.2
A graph is a tuple (V,E, ι, τ). V is a set of vertices of the graph andE is a set of edges.

ι : E → V is a map denoting the initial or start vertex, and τ : E → V is a map giving

the terminal or end vertex. A graph may be labelled, where each edge is assigned a

label by a labelling function λ : E → A, from some set of labels A.

The Cayley graph of a semigroup S = sgp⟨A⟩ with respect to the generating set A

is the labelled directed graph (V,E, ι, τ, λ), where V = S and there is one edge e ∈ E

for each x ∈ S and a ∈ A, namely the edge with start vertex (e)ι = x, end vertex

(e)τ = y and label (e)λ = a.

Let S be a semigroup generated by A and let Cay(S,A) = (S,E, ι, τ, λ) be the

Cayley graph of S with respect to A. We define a new set of edges

F = {(ι(e), τ(e)), (τ(e), ι(e)) | e ∈ E, ι(e) ̸= τ(e)}.

We then define two functions on this set ι : F → S and τ : F → S. Let f = (x, y) be

2



1. Introduction and Background 3

an edge in F then

(f)ι = x

(f)τ = y

Then the skeleton of S with respect to A is the (undirected) graph

† (S,A) = (S, F, ι, τ).

We can intuitively think of the skeleton graph as the graph which is obtained by

taking the undirected version of the Cayley graph and removing any multiple edges or

loops that occur.

Theorem 1.3
Let G = gp⟨A⟩ and H = gp⟨B⟩ be groups such that † (G,A) is isometric to † (H,B).

G is finitely presented if and only if H is.

Proof: Suppose G is finitely presented. This means that G is finitely generated, say

|A| = k, so each vertex of † (G,A) has degree less than or equal to 2k. Let H have

generating set B. Since † (G,A) ∼= † (H,B), each vertex of † (H,B) also has degree

of less than or equal to 2k. If B is finite there is nothing to show. For a contradiction,

assume B is infinite. Each vertex in † (H,B) must have a finite number of neighbours

since † (H,B) is locally finite. This implies that there are an infinite number of edges

between (at least) two vertices, say u and v. Without loss of generality, we consider

only two edges from u to v; edge a and edge b. From this we see ua = ub and since H

is a group, a = b. Hence there are only finitely many edges at each vertex in Cay(H,B)

and thus B is finite.

G is finitely presented so there exists a finite set of relators for G, say

R = {r1, . . . , rk}. Consider a vertex v in Cay(G,A). Each ri forms a simple cy-

cle starting and ending at v - if there is some r = s1 . . . sm say, which does not form a

simple cycle, consider the vertex f which represents the longest subword l = s1 . . . sl

of ri such that fslsl+1 . . . sl+h = f for some h and fslsl+1 . . . sl+h is a product of t

simple cycles. Then slsl+1 . . . sl+h represents at most t relators, {t1, . . . tt} say, and

3



4 1.2. Semigroups and semimetric spaces

will form at most t simple cycles at v so we can add these to our setR. Then the relation

r can be written as

(s1 . . . sl−1)t1(s1 . . . sl−1)
−1 . . . (s1 . . . sl−1)tt(s1 . . . sl−1)

−1(s1 . . . sl−1)(smsm−1 . . . sl+h+1)
−1.

We iterate this process over the last two terms until we are left with a product of conju-

gates of relations in R \ {r}, so we can remove r from R.

Now we claim that these are all the simple cycles based at v. Suppose there exists an-

other simple cycle labelled c ̸= ri beginning and ending at v. Since G is a group then

c = 1, and c is a product of conjugates of relators in R, say

c = g1r1g1
−1g2rng2

−1 . . . gnrngn
−1.

Then c cannot be a simple cycle, but a series of cycles already in R and “lollipops” (a

simple path followed by a simple cycle from R followed by the inverse of the simple

path). Hence R describes all simple cycles at v.

Now consider † (H,B). Since it is isomorphic to † (G,A), for any vertex v there are

a finite number of simple cycles starting and ending there, in particular for the vertex

corresponding to 1 ∈ H . For these cycles based at 1, there are only |B| ways to label

each edge in a cycle, and hence at most n|B| different relators described by each cycle.

We then claim that this (finite) set of relators S, is a sufficient set of relations for H .

Suppose there exists some relator q that is not a consequence of any relators inS. Then q

must form a cycle based at 1, but this cannot be a simple cycle, as these are all contained

in S. We now use the method from above to rewrite q as a product of conjugates of

relations inS. HenceS is sufficient, andH is finitely related, and thus finitely presented.

The proof of the converse is analogous. □

1.2 Semigroups and semimetric spaces

In order to generalise these notions from group theory in to semigroup theory, connec-

tions between semigroups and what we here call semimetric spaces have been made in

4



1. Introduction and Background 5

[8, 7, 9]. There is some debate about how to correctly name these spaces equipped with

asymmetric distance functions. Many authors refer to these as quasimetric spaces [18],

yet others use the term quasimetric to refer to a metric satisfying a generalised form of

the triangle inequality [6]. We choose to follow [8] and use semimetric here (a pleasing

choice, give that we associate them to semigroups).

Definition 1.4
A semimetric space is a pair (X, d) where X is a set and d : X → [0,∞] is a distance

function that satisfies:

i d(x, y) = 0 if and only if x = y

ii d(x, z) ≤ d(x, y) + d(y, z)

for all x, y, z ∈ X .

A natural semimetric space associated to a semigroup S = sgp⟨A⟩ is given by

(S, dA), where

dA(a, b) = inf{|w| | w ∈ A∗, aw = b},

that is, the smallest length of word w, such that aw = b.

A map φ : X → X between two semimetric spaces (X, dX) and (X, dX) is a

(λ, ε)-quasi-isometric embedding if for all x, y ∈ X

1

λ
dX(x, y)− ε ≤ dX(φ(x), φ(y)) ≤ λdX(x, y) + ε.

A subset Z ⊆ X is called µ-quasi-dense if for every x ∈ X there exists a z ∈ Z with

dX(x, z) ≤ µ and dX(z, x) ≤ µ. If φ : X → X is a (λ, ε)-quasi-isometric embedding

and its image is µ-quasi-dense, then φ is called a (λ, ε, µ)-quasi-isometry and X and

X are said to be quasi-isometric.

Two semigroups S = sgp⟨A⟩and T = sgp⟨B⟩ are said to be quasi-isometric if

the spaces (S, dA) and (T, dB) are quasi-isometric. Gray and Kambites show in [8, 9]

some results for finite presentability as a quasi-isometric invariant for certain types of

semigroups.

5



6 1.2. Semigroups and semimetric spaces

Theorem 1.5 ([9, Theorem A])
LetM andN be left cancellative, finitely generated monoids which are quasi-isometric.

Then M is finitely presentable if and only if N is finitely presentable.

Theorem 1.6 ([8, Theorem 4])
For finitely generated monoids with finitely many left and right ideals, finite presentabil-

ity is a quasi-isometry invariant.

In particular, Theorem 1.6 includes Clifford monoids and completely

(0-)simple semigroups [8, Corollary 2].

We take a different approach in this thesis, and instead of associating a semimetric

space to a semigroup, we will associate a metric space to the semigroup. There are both

advantages and disadvantages to our approach when compared to the semimetric space

approach.

The main advantage is that we are able to apply techniques associated with met-

ric spaces, such as the Švarc-Milnor lemma. Another advantage is that the rigidity of

the skeletons will also allow us to more easily find semigroups which possess given

skeletons, such as in Chapters 6 and 7. The fact that we consider isomorphic skeletons

allows us to approach the search in a combinatorial way by considering all possible

edge directions and labellings. Were we to look at quasi-isometries of skeletons here,

we would have to account for stretching and squashing of the graph, and our approach

would become much more difficult to implement.

A disadvantage to our approach is that we must always consider the generating set

when discussing skeletons. We are looking for isomorphic skeletons, and changing the

generating set of a semigroup will not necessarily result in an isomorphic skeleton: for

example the integers generated by {−1, 0, 1} has a different skeleton to the integers gen-

erated by {−1, 0, 2}. This is not an issue for the approach taken by Gray and Kambites,

as Proposition 4 of [8] tells us that for two generating sets A and B of a semigroup S

the semimetric spaces given by the word metrics are quasi-isometric.

We will consider preservation of finite presentability under isomorphism of skeleton

graphs in Chapters 3, 4 and 5, in which we will look at both Clifford semigroups and

completely simple semigroups amongst others. When a property is preserved under

6



1. Introduction and Background 7

isomorphism of skeletons, we will say that this property is skeleton invariant.

Chapter 6 answers an open question posed by Gray and Kambites

Question 1.7 ([8, Question 1])
Is finite presentability a quasi-isometry invariant of finitely generated semigroups in

general?

In Chapter 7, we will present some examples of skeletons, and prove that these

skeletons represent only a finite number of semigroups, which are described therein.

7





Chapter 2

Definitions

It is a capital mistake to theorize before

one has data.

Sherlock Holmes

In this chapter we establish basic definitions, notation and concepts that will be used

throughout the thesis.

2.1 Semigroups
Definition 2.1
A semigroup is a set S together with an operation · : S × S → S such that for all

a, b, c ∈ S

(a · b) · c = a · (b · c)

that is, · is associative.

Unless required for emphasis, we will often omit the · notation for the binary op-

eration, often referred to as multiplication, and simply juxtapose elements to denote

multiplication. There are two types of semigroup with special properties that we would

like to be able to refer to explicitly.

9



10 2.1. Semigroups

Definition 2.2
A monoid is a semigroup M which contains an element e such that

m · e = e ·m = m

for all m ∈M .

The element e is known as an identity, or more properly, the identity, since it is

unique. We will often write 1 to represent the identity element in a monoid. The family

of monoids forms a subfamily of semigroups. We now define a subfamily of monoids,

the family of groups.

Definition 2.3
A group is a monoid G in which for all g ∈ G, there exists a g′ ∈ G such that

gg′ = g′g = 1.

The element g′ is the inverse of g, and is unique. The inverse of g will often be

denoted by g−1

Given two semigroups, we might like to compare their structure via mappings.

Definition 2.4
Let (S, ·) and (T, ·) be two semigroups. A semigroup homomorphism is a map φ : S →

T such that

(s)φ·(s′)φ = (s · s′)φ

for all s, s′ ∈ S.

An injective homomorphism, that is, one such that

(x)φ = (y)φ =⇒ x = y

for all x, y in S is known as a monomorphism. A surjective homomorphism, where for

all t ∈ T there exists an s ∈ S such that

(s)φ = t

is an epimorphism.

10



2. Definitions 11

If S and T are both monoids and

(1S)φ = 1T

then a semigroup homomorphism, epimorphism or monomorphismφ is called a monoid

homomorphism, epimorphism or monomorphism. If S and T are both groups, then φ

is automatically a group homomorphism, epimorphism or monomorphism and requires

no extra conditions.

Finally, the map φ is a semigroup isomorphism between S and T if φ is a bijective

semigroup homomorphism. If there exists a semigroup isomorphism between S and T ,

we say S and T are isomorphic, and write S ∼= T .

2.2 Presentations

We will wish to describe various semigroups without listing all their elements and mul-

tiplication. One such way of doing this is via a presentation, which first require the

concept of generation.

Definition 2.5
LetS be a semigroup and letX be a non-empty subset ofS. Let {Ti}i∈I be the collection

of all subsemigroups of S which contain X . Then T =
∩
i∈I Ti is the subsemigroup of

S generated by X . We denote this by T = sgp⟨X⟩.

If S = sgp⟨X⟩ then we say that X is a generating set for S.

A presentation requires two elements: a set of generators and a set of relations.

Definition 2.6
A semigroup presentation is a pair sgp⟨A | R⟩ where A is an alphabet and a set of

generators, and R ⊆ A+ ×A+ is a set of relations.

For a relation (u, v) ∈ R we will normally write u = v.

Definition 2.7
The semigroup S defined by a presentation sgp⟨A | R⟩ is any semigroup isomorphic to

A+/ρ, where ρ is the least congruence containing R.

11



12 2.2. Presentations

If a semigroup S is isomorphic to A+/ρ for a given presentation sgp⟨A | R⟩, we

will write S = sgp⟨A | R⟩.

Definition 2.8
A semigroup S is finitely presented if there exists a presentation sgp⟨S | R⟩ such that

A and R are finite, and S ∼= A+/ρ.

We will write w1 ≡ w2 if two words are equal in A+, and w1 = w2 if two words

are equal in S. For two words w1, w2 ∈ A+, we say that w2 is obtained from w1 by

applying a relation in R if we can write w1 ≡ αuβ and w2 ≡ αvβ where either u = v

or v = u is a relation in R, and α, β ∈ A∗.

Definition 2.9
An elementary sequence from w1 to w2 is a sequence

w1 ≡ s1, s2, . . . , sn ≡ w2

where si ∈ A+ and for each 1 ≤ i ≤ k − 1 we have that either si ≡ si+1, or si+1 is

obtained from si by applying a relation from R. If such a sequence exists, we say that

the relation w1 = w2 is a consequence of relations in R.

A relation w1 = w2 holds in S = sgp⟨A | R⟩ if and only if it is a consequence of

relations in R.

Stable semigroups (as found in [16]), which are those avoiding critical pairs, will

be useful to us in this thesis when deciding whether direct products of semigroups have

finite presentations. A critical pair may be thought of as a relation in S, where all

elementary sequences go via shorter words.

Definition 2.10
Let S = sgp⟨A | R⟩, and let w1, w2 ∈ A+ be arbitrary words. The pair (w1, w2) is

called a critical pair if:

(i) the relation w1 = w2 holds in S;

(ii) for every elementary sequence w1 ≡ s1, s2, . . . , sn ≡ w2 from w1 to w2, there

exists an 1 ≤ i ≤ k such that |si| < min(|w1|, |w2|).

12



2. Definitions 13

Definition 2.11
Let S be a semigroup with finite generating set A. We say that S is stable with respect

to A if there exists a finite presentation sgp⟨A | R⟩ for S, with respect to which S has

no critical pairs.

Stability is in fact invariant under change of generating set [Proposition 3.4,[16]),

so we may refer to a semigroup being stable without reference to a specific generating

set.

2.3 Graphs

Graphs describe a collection of objects, or vertices, and the connections, or edges, be-

tween them. There are many ways to define a graph: the definition chosen here is to

allow us to work with graphs that have multiple edges, loops and labels.

Definition 2.12
A graph is a tuple (V,E, ι, τ). V is a set of vertices of the graph andE is a set of edges.

ι : E → V is a map denoting the initial or start vertex, and τ : E → V is a map giving

the terminal or end vertex.

Graphs can be directed or undirected. A graph is undirected if and only if for every

edge e ∈ E with (e)ι = x and (e)τ = y, there exists an edge f ∈ E such that (f)ι = y

and (f)τ = x.

We note that in this definition of graph we allow for multiple edges between vertices

and loops on edges. We call a graph that contains no multiple edges or loops a simple

graph.

Graphs may also be labelled, where each edge is assigned a label by a labelling

function λ : E → A, from some set of labels A.

The indegree of a vertex is the number of edges terminating at that vertex. The

outdegree is the number of edges originating at that vertex. For a directed graph, the

degree of a vertex is the sum of the indegree and outdegree. For an undirected graph,

we define the degree of a vertex to be equal to the number of vertices adjacent to that

13



14 2.3. Graphs

vertex. Note that a vertex can be adjacent to itself by way of a loop.

A graph is finite if it has finitely many vertices and edges. A graph is infinite if it

has infinitely many vertices or edges. A graph is locally finite if each vertex has finite

degree.

Definition 2.13
The (vertex)-induced subgraph of Γ = (V,E, ι, τ) induced byW ⊆ V is the graph with

vertex set W and edge set F ⊆ E, where F = {e ∈ E | ι(e), τ(e) ∈ W}, and the

maps ι ↾F and τ ↾F .

An important definition for us is that of the Cayley graph, which allows us to asso-

ciate a graph to a semigroup. It gives a representation of the multiplicative structure of

the semigroup with respect to a particular generating set.

Definition 2.14
A Cayley graph of a semigroup S = sgp⟨A⟩ is a labelled directed graph (V,E, ι, τ, λ),

where V = S. For all x, y ∈ S and a ∈ A such that xa = y there exists an edge e,

with the start vertex (e)ι = x, the end vertex (e)τ = y and the label (e)λ = a.

Cayley graphs can also be constructed for monoids and groups. In the case of groups

with symmetric generating sets, that is, a generating set that contains an inverse for every

element, the Cayley graph of a group is an undirected graph.

We will wish to compare the structure of graphs so we introduce the notion of iso-

morphism for graphs.

Definition 2.15
Let Γ1 = (V1, E1, ι1, τ1) and Γ2 = (V2, E2, ι2, τ2) be graphs. A graph isomorphism

φ : Γ1 → Γ2 is a pair of bijective maps f : V1 → V2 and g : E1 → E2 such that for

any e ∈ E1 we have

((e)g)τ2 = ((e)τ1)f

((e)g)ι2 = ((e)ι1)f

If there exists a graph isomorphism between two graphs Γ1 and Γ2, we say that they

are isomorphic, and write Γ1
∼= Γ2.

14



2. Definitions 15

2.4 Spaces

A metric space is a set with a function describing distance between elements defined

on it.

Definition 2.16
Let X be a set and let d : X ×X → R≥0 be a function such that the following hold:

• d(x, x) = 0 for all x ∈ X

• d(x, y) = 0 if and only if x = y

• d(x, y) = d(y, x) for all x, y ∈ X

• d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X

Then d is a metric and (X, d) is a metric space

If we are given two metric spaces, we will want to be able to compare them and have

some notion of similarity between them. There are two such notions that we will use.

Definition 2.17
Let (X, d) and (X, d) be two metric spaces. An isometric embedding is a map φ :

X → X such that d(φ(x), φ(y)) = d(x, y) for all x, y,∈ X . If φ is onto, then it is an

isometry and X,X are isometric.

Definition 2.18
Let (X, d) and (X, d) be two metric spaces. For constants 1 ≤ λ < ∞, 0 < ε < ∞

and 0 < µ <∞, a (λ, ε, µ)-quasi-isometry is a map φ : X → X such that

(i) for all x, y ∈ X

1
λd(x, y)− ε ≤ d((x)φ, (y)φ) ≤ λd(x, y) + ε, and

(ii) for every y ∈ X there exists an x ∈ X with d(y, (x)φ) ≤ µ.

If there exists a quasi-isometry between two spaces they are said to be quasi-isometric.

Definition 2.19
A geodesic between two points x, y in a metric space (X, d) is the image of an isometric

embedding φ of the interval [0, l] intoX such that (0)φ = x, (l)φ = y and d(x, y) = l.

15



16 2.4. Spaces

A metric space is called geodesic if any two points can be joined by at least one

geodesic.

Definition 2.20
Let (X, d) be a metric space. An open ball of radius n centred at a point x for x ∈ X ,

n ∈ R≥0 is the set of all points y ∈ X such that d(x, y) < n. A closed ball of radius

n ∈ R≥0 centred at a point x ∈ X is the set of all points y ∈ X such that d(x, y) ≤ n.

Where metric spaces consider the distance between elements of the set, topological

spaces are concerned with describing the closeness of subsets of the set.

Definition 2.21
Let X be a set together with a non-empty collection τ of subsets of X (known as open

sets) such that the following are satisfied:

• Any union of open sets is itself open

• Any finite intersection of open sets is open

• The empty set and X are both open

The collection of open sets τ is a topology and (X, τ) is called a topological space.

We will often refer to a topological space (X, τ) simply byX , when it is clear what

the topology is. One such topology that we will make frequent use of is the metric

topology.

Definition 2.22
Let (X, d) be a metric space. We define an open set in X to be a subset of X that can

be written as the union of open balls with respect to d. The metric topology τ is the

collection of such open sets, and we call (X, τ) the topological space induced by the

metric d.

For the following definitions we let X be a topological space throughout.

Definition 2.23
A family F of open subsets ofX is called an open cover ofX if

∪
F = X . A subfamily

F of F is called a subcover of F if
∪
F = X .

16



2. Definitions 17

A topological space X is called compact if every open cover of X has a finite sub-

cover.

Definition 2.24
A topological (or metric) space is proper if its closed balls of finite radius are compact.

For semigroups we had the notion of isomorphism to show when semigroups look

the same. In topological spaces, this concept of sameness is described by homeomor-

phisms.

Definition 2.25
Let (X1, τ1) and (X2, τ2) be two topological spaces. Then a map σ : X1 → X2 is

continuous if for every open set V ⊂ X2, the preimage σ−1 is an open subset of X1.

The map σ is a homeomorphism if

(i) σ is a bijection;

(ii) σ is continuous, and

(iii) σ has a continuous inverse.

If there exists such a homeomorphism we say that (X1, τ1) and (X2, τ2) are homeo-

morphic.

2.5 Actions

A central concept in group theory, and one that will be used in this thesis, is that of

a group action. A group action provides a way of thinking about a group as a set of

bijective maps of a given object which allows us to understand properties of the group

more easily. We will want to act on spaces which have some sort of structure on them,

and our group actions should preserve this structure. In this thesis will use the following

definitions and notation for group actions.

Definition 2.26
LetG be a group and letX be a set. An action ofG onX is a mapG×X → X denoted

by (g, x) 7→ gx such that:

17



18 2.5. Actions

(i) 1g = g

(ii) g(hx) = ghx,

for all g, h ∈ G and x ∈ X . If we have such an action, we will say that G acts on X .

We will mostly be interested in acting on topological spaces, and so we wish for our

actions to be by homeomorphisms, that is for each g ∈ G the map defined by x 7→ gx

is a homeomorphism for all g ∈ G. The following properties of actions are important.

Definition 2.27
An action of a group G on a topological space X is proper if for every compact subset

K ⊂ X the set {g ∈ G | gK ∩K ̸= ∅} is finite. If such an action is proper, we will

say that G acts properly on X .

Definition 2.28
Let G be a group acting on a set X . The quotient space of the action is the set of

all orbits of X under the action of G. We denote the quotient space by X/G . Let

π : X → X/G be the projection from X onto X/G . We define a set U ⊆ X/G to

be open if and only if its preimage π−1(U) is open in X . This collection of open sets is

known as the quotient topology.

Definition 2.29
An action of a group G on a topological space X is cocompact if the quotient space
X/G is compact.

18



Chapter 3

Direct Products with Groups
and How to Draw a Graph

Pooh looked at his two paws. He knew that

one of them was the right, and he knew

that when you had decided which one of

them was the right, then the other one was

the left, but he never could remember how

to begin.

The House At Pooh Corner

A.A. Milne

For our first foray into the world of semigroups, we shall tackle direct products of

groups and semigroups. We recall that a direct product of two semigroups (G, ·), (S, ∗)

is the set of ordered pairs

G× S = {(g, s) | g ∈ G, s ∈ S}

along with the operation defined by applying the operations from G and S component-

wise

(g, s)(h, t) = (g · h, s ∗ t).
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Throughout the chapter (indeed, throughout the whole thesis) we shall (very sensi-

bly) choose G to represent a group, and S to represent a semigroup.

We begin first by looking at family of semigroups known as left zero semigroups.

Definition 3.1
A left zero is an element l ∈ S such that ls = l for all s ∈ S. A left zero semigroup is

one in which all elements are left zeros. We denote a left zero semigroup of size n by

Ln = {l1, l2, . . . , ln | lilj = li for all 1 ≤ i, j ≤ n}

Since we claimed to be interested in direct products in this chapter, we will consider

those of groups and left zero semigroups now. The following small lemma will be

useful.

Lemma 3.2
Let S = G × Ln be a semigroup with G a group. If S if finitely presented, then G is

also.

Proof: Let A = {(ai, lji) | i ∈ I} be a finite generating set for S and let

P = sgp⟨A | R⟩

be a presentation for S. Let πG : S → G be the projection of S ontoG. Since this map

is onto, πG(A) is a generating set for G. We will show that

gp⟨πG(A) | πG(R)⟩

is a presentation for G. Let

(ai1 , lj1)(ai2 , lj2) . . . (aim , ljm) = (ak1 , lo1)(ak1 , lo1) . . . (akq , loq )

be a relation in R. We may simplify this relation by carrying out the multiplication to

give

(u, lj1) = (v, lo1)

where u = ai1ai2 . . . aim and v = ak1ak2 . . . akq .

20



3. Direct Products with Groups and How to Draw a Graph 21

Now if w = x is a relation in G we have (w, li) = (x, li) for any li ∈ Ln. This

means (w, li) = (x, li) is a consequence of relations in R, that is

(w, li) ≡ s1, s2, . . . sk ≡ (x, li)

where for each 1 ≤ y ≤ k the element sy+1 is obtained from sy by the application

of a relation in R. That is for each 1 ≤ y ≤ k we have sy = α(u, lj1)β and sy+1 =

α(v, lo1)β where (u, lj1) = (v, lo1) is a relation in R and α, β ∈ S1. Now considering

the projection of this elementary sequence on to G we see that πG(sy) = πG(sy+1) is

a consequence of u = v for each y. This shows that w = x is a consequence of the

various relations u = v obtained by projecting the relations in R onto G.

We have shown that

gp⟨πG(A) | πG(R)⟩

is a presentation forG, and since bothA andR are finite, this is a finite presentation for

G. □

We note that Lemma 3.2 can also be proved using Theorem 3.5 from [16].

Now we may show that finite presentability is preserved under isomorphism of

skeletons for direct products of groups with left zero semigroups.

Theorem 3.3
Let G,H be groups and let S = G × Ln and T = H × Lm for some m,n ∈ N, with

† (S,A) ∼= † (T,B). Then m = n and S is finitely presented if and only if T is.

Proof: We will assume that S is finitely presented and so first look at † (S,A). For

1 ≤ i ≤ n, let Gi = {(g, li) | g ∈ G}. Since for (g, li) ∈ Gi, (h, lj) ∈ S we have

(g, li) (h, lj) = (gh, li)

we may find a path between any two vertices (g, li) and (gh, li), that is the path labelled

by (h, lj) written as a product of generators for any lj ∈ Ln. This product also shows

us that we can never find a path between two vertices with different Ln components,

and so each Gi forms a strongly connected component of Cay(S,A), and hence a con-

nected component of † (S,A). This tells us that † (S,A) has n connected components.
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Similarly for T , if we let Hi = {(h, li) | h ∈ H}, each Hi is a connected component

in † (T,B). Since † (S,A) ∼= † (T,B), both graphs must have the same number of

connected components, that is, n = m.

We show that each component induced by the set of vertices Gi is isomorphic to

† (G, πG (A)), where πG : S → G is the projection onto the group G. When restricted

to Gi, the projection πG ↾: Gi → G is a bijection. Let e be an edge with initial vertex

(g, li) and terminal vertex (ga, li), with label (a, lj) in Cay(S,A). Then the images of

these vertices are g and ga respectively, which are the initial and terminal vertices of an

edge labelled a ∈ πG (A) in the graph Cay(G, πG (A)). Similarly if g and ga are initial

and terminal vertices of an edge labelled a in Cay(G, πG (A)), then the preimages are

(g, li) and (ga, li) respectively, which form an edge with label (a, lj) in Cay(Gi, A).

Hence since πG ↾ is a bijection which maps edges to edges, it is a graph isomorphism.

Similarly each component Hi is isomorphic to † (H,πH (B)). Therefore

† (G, πG (A)) ∼= † (H,πH (B)). We have S finitely presented, and so by Lemma 3.2,

G is finitely presented also. We can then apply Theorem 1.3 to show that H is finitely

presented, and thus T . □

This works very neatly, so it seems like it might be a good idea to investigate a

closely related class, right zero semigroups.

Definition 3.4
A right zero is an element r ∈ S such that sr = r for all s ∈ S. A right zero semigroup

is one in which all elements are right zeros. We denote a right zero semigroup of size n

by

Rn = {r1, r2, . . . , rn | rirj = rj for all 1 ≤ i, j ≤ n}

It would be nice if we could take the same approach here, and show that given two

semigroups S = G×Rn, T = H ×Rm, we can find copies of † (G,A) and † (H,B)

nestled inside, and apply Theorem 1.3. Sadly, this is not the case. If we consider the

subgraph of † (S,A) induced by the set of vertices Gi = {(g, ri) | g ∈ G}, we do not

necessarily find a copy of † (G, πG (A)) as the following example illustrates.

22



3. Direct Products with Groups and How to Draw a Graph 23

Example 3.5
Let S = V4 × R2, the direct product of the Klein four group (generated by {a, b})

and the right zero semigroup R2 which has size 2. This can be generated by A =

{(a, r1) , (b, r2)}. The Cayley graph of S with generating set A is given in figure 3.1.

(a, r1)

(a, r2)

(ab, r1)

(ab, r2)

(1, r1)

(1, r2)

(b, r1)

(b, r2) (a, r1)

(b, r2)

Figure 3.1: Cayley graph of S with generating set A

We then consider the subgraph of Cay(S,A) induced by the set of vertices (V4)1 =

{(g, r1) | g ∈ V4}, which is given in Figure 3.2. Since this graph has two components,

then it is not a copy of Cay(V4, {a, b}).

(1, r1) (b, r1)

(a, r1) (ab, r1)

(a, r1) (a, r1)

Figure 3.2: Subgraph of Cay(S,A) restricted to F
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24 3.1. Turning Graphs into Metric Spaces

Thus it seems it will be tricky to follow the same procedure as with left zero semi-

groups. We turn instead to geometric group theory, which provides us with a handy

tool to apply to the problem. Sometimes referred to as the “Fundamental Observation

of Geometric Group Theory” (see [5]), the Švarc-Milnor Lemma, which was originally

proven independently by both Švarc [19] and Milnor [13] tells us that if we can act

nicely with a finitely generated group on a nice metric space, then the group, equipped

with the word metric, is quasi-isometric to that space. We note that a group along with

the word metric is a metric space, and we can refer to a group as being equipped with

the word metric without specifying a generating set, as we are concerned only with

quasi-isometries, and we have the following theorem, for which a proof can be found in

[3, Proposition 4.3].

Theorem 3.6
Let G be a group and let A,B be two finite generating sets. Let dA and dB be the word

metrics for the respective generating sets. Then (G, dA) is quasi-isometric to (G, dB).

We give the formulation of the lemma found in [4].

Theorem 3.7 (Švarc-Milnor Lemma)
Let X be a proper, geodesic metric space. Let G be a group acting co-compactly and

properly by isometries on X . Then G is finitely generated and for any x0 ∈ X the map

G→ X given by g 7→ gx0 is a quasi-isometry.

In order to use the Švarc-Milnor lemma, we will need to turn our graphs into ap-

propriate metric spaces, and understand the quotient spaces. This turns out to require a

small amount of work, which we see in the following section.

3.1 Turning Graphs into Metric Spaces

Any connected graph Γ can be equipped with the graph metric m where the distance

between any two vertices is the length of a shortest path between them.

We can define a topological space from any graph Γ by adding a copy of the interval

[0, 1] to each edge. We take the set Z = V ∪ (E × [0, 1]) and define an equivalence
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3. Direct Products with Groups and How to Draw a Graph 25

relation ρ ⊆ Z × Z. For any point z ∈ Z we define zρz. Additionally, given an

edge e with ι(e) = u and τ(e) = v we will let uρ(e, 0) and vρ(e, 1), and take the

symmetric and transitive closure of these. This is reflexive, symmetric and transitive

by construction.

We may then define a topological space by taking the setX = Z/ρ. We have a map

z : Z → Z/ρ, and we will write z(x) = x′ or z((e, µ)) = (e, µ)′ depending on the level

of detail required. The open sets are then given by defining a metric d : X → [0,∞).

We will denote the topological space created from Γ by Γ′.

Let x′ = (e, µ)′ and y′ = (f, ν)′ be non-equal elements of X and define a path q

from x′ to y′ as a sequence

(e, µ)′, v1, v2, . . . , vn, (f, ν)
′

where vi, vi+1 are adjacent for all 1 ≤ i ≤ n−1 and v1 (resp. vn) is an endpoint of the

edge e (resp. f ). The shortest length of a path between two adjacent vertices is 1. The

length of a path (e, µ)′, ι(e) is µ and the length of a path (e, µ)′, τ(e) is 1− µ. Denote

the length of a path q by l(q). Let Qx′,y′ be the set of all paths from x′ to y′. Then the

metric d is defined by

d(x′, y′) =

minq∈Q l(q). for x′ ̸= y′

0 for x′ = y′

Note that if two points (e, µ)′ and (e, ν)′ are on the same edge, then the shortest

path between them is simply along the edge and so d((e, µ)′, (e, ν)′) = |µ− ν|.

Claim 3.8
The map d is a metric.

Proof: Let x′, y′ be defined as above and let z′ ∈ X also.

By definition d(x′, x′) = 0 and d(x′, y′) ≥ 0.

Suppose that d(x′, y′) = k. Then there exists some path

q = x′, v1, v2, . . . , vn, y
′

such that l(q) = k. Traversing this path backwards, that is

b = y′, vn, vn−1, . . . , v1, x
′
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26 3.1. Turning Graphs into Metric Spaces

is a path of length k from y′ to x′ so d(y′, x′) = k.

Finally, we wish to show that the triangle inequality holds. Suppose q1 is the shortest

path from x′ to y′ and q2 is the shortest path between y′ and z′. Then q1q2 is a path

from x′ to z′ and has length d(x′, y′)+d(y′, z′) and so d(x′, z′) ≤ d(x′, y′)+d(y′, z′).

□

The topology on X is then the topology induced by the metric d.

We let Γ be a connected, locally finite graph, and let G be a group that acts on Γ,

such that the action of each element g ∈ G results in an automorphism of the underlying

undirected graph. We will do this by first defining an action on the vertices and edges.

We will then extend this to an action on points in the topological space. The following

example illustrates why we must be careful about how the action is defined.

Example 3.9
Let Γ be the 3-cycle graph as given in Figure 3.3. Let the starts and ends of edges be as

follows:

ι(e1) = v1, τ(e1) = v2

ι(e2) = v2, τ(e2) = v3

ι(e3) = v1, τ(e3) = v3.

We act on Γ with C3 = gp⟨x⟩ by rotation, that is

xv1 = v2

xv2 = v3

xv3 = v1

v3 v2

v1

e2

e1e3

Figure 3.3: 3-cycle graph
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3. Direct Products with Groups and How to Draw a Graph 27

and

xe1 = e2

xe2 = e3

xe3 = e1.

Notice that ι(xe3) = ι(e1) = v1, but xι(e3) = gv1 = v2 = τ(e1), and so we have an

automorphism of the underlying undirected graph, but not of Γ itself, as the action has

swapped the start and end of an edge.

Suppose then that we had a point (e3, µ)′. If we were to naïvely define an action
x(e3, µ)

′ = (xe3, µ)
′ = (e1, µ)

′, this is the point that is distance µ from v1. This action

then is not an isometry, as an isometry should move (e3, µ)′ to the point that is distance

µ from xι(e3) = v2.

Thus we must be more careful about defining the action on points. Let (ei, µ)′ be a

point in Γ′ and define

x(ei, µ)
′ =

(xei, µ)
′ if xι(ei) = ι(xei)

(xei, 1− µ)′ if xι(ei) = τ(xei)

Then our previous troublesome point under the action becomes

x(e3, µ)
′ = (xe3, 1− µ)′

= (e1, 1− µ)′

which is indeed the point that is distance µ from v2.

Hence given an action ofG on V and E such that {ι(ge), τ(ge)} = {gι(e), gτ(e)},

that is ends of an edge are mapped to ends of an edge, we define a map on X by

x(e, µ)′ =

(xe, µ)′ if xι(e) = ι(xe),

(xe, 1− µ)′ if xι(e) = τ(xe).

(+)

Claim 3.10
The map (+) is well defined and is an action.
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28 3.1. Turning Graphs into Metric Spaces

Proof: Let g, h ∈ G and x′ ∈ X . The only type of point in X that can have multiple

representatives is one which was a vertex in the original graph. Let (e, 0)′ ∈ X and

ι(e)′ be two representations of x′, so (e, 0)ρι(e) in Z. If gι(e) = ι(ge) then

gι(e)′ = ι(ge)′

and
g(e, 0)′ = (ge, 0)′.

Then since (ge, 0)ρι(ge) we have

gι(e)′ = ι(ge)′

= (ge, 0)′

= g(e, 0)′

Alternatively, if gι(e) = τ(ge) then

gι(e)′ = τ(ge)′

and
g(e, 0)′ = (ge, 1)′.

Then since (ge, 1)ρτ(ge) we have

gι(e)′ = τ(ge)′

= (ge, 1)′

= g(e, 0)′

This follows analogously if instead we have (e, 1)′ and τ(e)′ being two representa-

tives for x′ ∈ X .

The final situation we may have is that we have two representatives (e, µ)′, (f, ν)′ ∈

X of x′, where µ, ν ∈ {0, 1}. This means (e, µ)ρ(f, ν) in Z. Suppose that µ = 0 and

ν = 1. If gι(e) = ι(ge) and gι(f) = ι(gf) then

g(e, µ)′ = (ge, µ)′
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and
g(f, ν)′ = (gf, ν)′.

Then since (ge, µ)ρ(gf, ν) we have (ge, µ)′ = (gf, ν)′.

If gι(e) = τ(ge) and gι(f) = ι(gf) then

g(e, µ)′ = (ge, 1− µ)′

and
g(f, ν)′ = (gf, ν)′.

Then since (ge, 1− µ)ρ(gf, ν) we have (ge, 1− µ)′ = (gf, ν)′.

If gι(e) = ι(ge) and gι(f) = τ(gf) then

g(e, µ)′ = (ge, µ)′

and
g(f, ν)′ = (gf, 1− ν)′.

Then since (ge, µ)ρ(gf, 1− ν) we have (ge, µ)′ = (gf, 1− ν)′.

Finally, if gι(e) = τ(ge) and gι(f) = τ(gf) then

g(e, µ)′ = (ge, 1− µ)′

and
g(f, ν)′ = (gf, 1− ν)′.

Then since (ge, 1−µ)ρ(gf, 1− ν) we have (ge, 1−µ)′ = (gf, 1− ν)′. Hence the map

is well defined.

Now we can show that the map is an action. We observe that if only one of g or h

swaps the endpoints of the edge under the action, for example hι(e) = τ(he), then we

will have

ghι(e) = g(hι(e))

= g(τ(he))

= τ(ghe).
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30 3.1. Turning Graphs into Metric Spaces

If both g and h swap the endpoints of the edge under the action, so hι(e) = τ(he) and
gι(he) = τ(g(he)) then

ghι(e) = g(hι(e))

= gτ(he)

= ι(ghe).

This means we have two cases to examine when showing (+) is an action, namely
ghι(e) = ι(ghe) and ghι(e) = τ(ghe).

g(h(e, µ)′) =

(gh(e, µ)′) if ghι(e) = ι(ghe)

(ghe, 1− µ)′ if ghι(e) = τ(ghe)

which is equal to gh(e, µ). If 1 ∈ G is the identity then

1(e, µ)′ = (1e, µ)′

= (e, µ)′.

Hence (+) is an action. □

We will write [v] and [e] for the orbits of v and e under the action of G.

Definition 3.11
The quotient graph of Γ by G is Γ/G = (V /G , E/G ) where V /G = {[v] | v ∈ V }

and E/G = {[e] | e ∈ E}.

We are correct here to call this a graph, as we have specified that our action takes

endpoints of an edge to endpoint of an(other) edge. Hence an edge [e] has endpoints

[ι(e)] = ι([e]) and [τ(e)] = τ([e]).

Since Γ/G is a graph, we can create a topological space Y in an analogous way to

X , with equivalence relation ρ̂ and metric d̂. Points in Y are denoted [x]′ = [(e, µ)]′.

We recall that the Švarc-Milnor Lemma requires our action to be an isometry, so we

should now show that we have defined a useful action here.

Claim 3.12
The map x′ 7→ gx′ is an isometry.
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Proof: Let x′, y′ ∈ X such that x′ = (e, µ)′, y′ = (f, ν)′ and d(x′, y′) = l. Suppose

a shortest path p from x′ to y′ is x′, v0, v1, . . . , vn−1, vn, y
′ where vi are vertices such

that vi is adjacent to vi−1 and vi+1, and v0, vn are endpoints of e and f respectively.

Consider the image of two adjacent vertices vi, vi+1 under the action, which is gvi
and gvi+1 respectively. These vertices are endpoints of some edge ei. The image of this

edge under the action has endpoints

{ι(gei), τ(gei)} = {gι(ei), gτ(ei)}

= {gvi, gvi+1}.

Hence the vertices gvi and gvi+1 are adjacent. We now check that the point gx′ (and

analogously gy′) remains the same distance from gv0 (respectively gvn) as x′ (respec-

tively y′) from v0 (respectively vn) . Suppose that v0 = τ(e), then x′ is a distance of

1 − µ from v0. Under the action, we may find either gτ(e) = τ(ge) or gτ(e) = ι(ge).

For the former, the point x′ is mapped to (ge, µ)′, which is indeed distance 1− µ from
gv0. For the latter, our point is mapped to (ge, 1− µ)′. Since ι(ge) = gv0, our point is

still a distance of 1− µ from gv0. This works analogously for v0 = ι(e).

From this we deduce that gx′, gv0, gv1, . . . , gvn−1,
gvn,

gy′ is a path from gx′ to
gy′, with length l. Suppose now that there exists some path

gx′, u0, u1, . . . , un−1, um,
gy′

from gx′ to gy′, with length k < l. Then by an analogous argument,

g−1gx′, g
−1

u0,
g−1

u1, . . .
g−1

, g
−1

un−1, um,
g−1gy′

is a path from g−1gx′ = x′ to g−1gy′ = y′ of length k < l, which contradicts our

original path being of shortest length. Hence d(gx′, gy′) = l.

□
Definition 3.13
Consider the equivalence relation on X with equivalence classes

[x′] = {x′i | x′i = gx′ for some g ∈ G},

that is orbits of points in X under the action of G. The quotient space of X by this

equivalence relation is the set of these equivalence classes and is denoted X/G . Let π
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be the projection of X onto X/G , then a set U ⊆ X/G is open if and only if π−1(U)

is open in X .

Claim 3.14
The set of points in the topological space Y created from the quotient graph and the set

of points X/G are in bijection.

Proof: We define a map σ : X/G → Y by σ([(e, µ)′]) = [(e, µ)]′ for (e, µ)′ ∈ X .

This map is surjective as for every [(e, µ)]′ ∈ Y , σ([(e, µ)′]) = [(e, µ)]′. It is injective

since if σ([(e, µ)′]) = σ([(f, ν)′]), then [(e, µ)]′ = [(f, ν)]′. Hence (e, µ) = g(f, ν)

for some g ∈ G and so (e, µ)′ = g(f, ν)′ inX . Therefore [(e, µ)′] = [(f, ν)′] in X/G .

□

Finally we wish to show that Y and X/G are homeomorphic as topological spaces.

To show that these spaces are homeomorphic, we must show that the map σ : X/G →

Y given by σ([x′]) = [(e, µ)]′ is continuous, and its inverse is continuous. That is, we

must show that sets are open in Y if and only if their preimage is open in X/G .

Claim 3.15
U is open in Y if and only if σ−1(U) is open in X/G .

Proof: Y is equipped with the metric topology, so U is a union of open balls. In

particular, we may write U as a union of open balls that contain a single vertex and

open balls that contain points from a single edge. We therefore consider two cases. We

first assume thatU ⊂ Y is an open ball containing no vertices, that isU = Bn([(e, µ)]
′)

where [(e, µ)] is a distance greater than n from ι(e) and τ(e). We wish to show that the

preimage of U in X/G is open. We will denote σ−1(U) by U . Since X/G has the

quotient topology, then to show that U is open, we must show that π−1(U) is open in

X .

We will show that π−1(U) is a union of open balls. Let U = Bn([(e, µ)]
′) =

{[(e, µi)]′ | i ∈ I} for some index set I . Then

π−1(U) = {(f, µi)′ | f = ge for some g ∈ G, i ∈ I}.

We then show that for any f ∈ E such that f = ge for some g ∈ G, the set W =
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{(f, µi)′ | i ∈ I} is an open ball, in particular, W = Bn((f, µ)
′).

Let (f, µj)′ be an arbitrary point in Bn((f, µ)′). Then

d((f, µj)
′, (f, µ)′) = |µj − µ| < n.

We then have d̂([(f, µj)]′, [(f, µ)]′) = |µj − µ| < n, and so [(f, µj)]
′ ∈ U and hence

(f, µj)
′ ∈W .

Similarly, if (f, µj)′ is an arbitrary point in W then

d̂([(f, µj)]
′, [(f, µ)]′) = |µj − µ| < n,

and since G acts by isometries, d((f, µj)′, (f, µ)′) = |µj − µ| < n and so (f, µj)
′ ∈

Bn((f, µ)
′).

Hence π−1(U) is a union of open balls Bn((f, µ)′) where f ∈ {ge | g ∈ G}.

Hence U is open in X/G .

Now suppose that U ⊂ Y is an open set containing one vertex [v]′. Without loss of

generality, let U = Bn([v]
′), that is U is the ball of radius n centred at [v]′. Let I, J

be index sets, then U = {[(ei, µj)]′ | i ∈ I, j ∈ J, d̂([v]′, [(ei, µj)]
′) < n}. Then the

preimage of this set in X/G is

σ−1(U) = {[(ei, µj)′] | [(ei, µj)]′ ∈ U, i ∈ I, j ∈ J}

We will write σ−1(U) = U . The set U is open in X/G if and only if π−1(U) is open

in X . This preimage is

π−1(U) = {(f, µj)′ | f = gei, d̂([v]
′, [(ei, µj)]

′) < n

for some g ∈ G, for all i ∈ I, j ∈ J}.

Fix k ∈ I and let W = {(ek, µj)′ | j ∈ J, d̂([v]′, [(ek, µj)]
′) < n}. We wish to show

that W is an open ball of radius n centred at gv′. Suppose [(ei, µj)]
′ is a point in U .

Then the distance of this point from [v]′ is

d̂([(ei, µj)]
′, [v]′) =

µ if ι([ei]) = [v]

1− µ if τ([ei]) = [v]

which must be less than n.
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Let (ek, µj)′ be an arbitrary point in W . We want to show that (ek, µj)′ is distance

less than n from v′.

d((ek, µj)
′, v′) =

µj if ι(ek) = v

1− µj if τ(ek) = v

Now recall that ι([ek]) = [ι(ek)] so if ι(ek) = v then ι([ek]) = [ι(ek)] = [v] and so

d((ek, µj)
′, v′) = µj < n. On the other hand if τ(ek) = v then τ([ek]) = [τ(ek)] = [v]

and d((ek, µj)′, v′) = 1−µj < n. Hence all points inW on the edge ek are a distance

less than n from v′. Therefore W ⊂ Bn(
gv′).

Suppose now that (ek, µj)′ is an arbitrary point in Bn(gv′). Then by a symmetric

argument Bn(gv′) ⊂W .

Now sinceG acts by isometries, then all points in gW are a distance less than n from

from gv′ for all g ∈ G, and so gW is also an open ball. Since π−1(U) =
∪
g∈G

gW ,

then π−1(U) is a union of open balls and so U is open in X/G .

Conversely, if π−1(U) is open in X/G , then an analogous argument shows that U

is open in Y .

□

Let tX : Γ → X be the map from the graph to its associated topological space, and

let tY : Γ/G → Y be the map from the quotient graph to its associated topological

space. Additionally, let p : Γ → Γ/G be the map from the graph to the quotient graph.

Then we have the following commutative diagram.

Γ X

Γ/G Y

tX

p

tY

σπ

This means that when we speak of the quotient space of the topological space created

from Γ, it does not matter if we first take the quotient by the action on the graph and

then create the space Y , or if we first create the topological space X and then take the

quotient by the action on X .
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When using the Švarc-Milnor lemma, we will want to know that our quotient space

is compact, so we had best decide when a set in our topological space is compact. This

will involve us looking at unions of parts of edges in our space, so we define a formal

path to be a continuous map p : [0, 1] → X .

Lemma 3.16
A set K ⊆ X is compact if and only if K is a finite union of images of formal paths.

Proof: First, suppose K is a set such that K =
n∪
i=1

pi([0, 1]) for formal paths pi, and

let F be an open cover of K. Let Pi ⊆ F denote the subset that covers each pi([0, 1]).

A formal path is compact, since it is the continuous image of the compact set [0, 1], and

so there exists some finite Pi ⊆ Pi that covers pi([0, 1]). F =
n∪
i=1

Pi is then a finite

subcover for K, and so K is compact.

Now letK be a compact set. Let ∆ be the set of all edges δ for which (δ, µ) ∈ K for

some µ ∈ [0, 1]. Then we construct an open cover F by taking the union of the set of

open balls of radius 2/3 centred at (γ, 1/2) for each γ ∈ Γ. Since K is compact, there

exists a finite subcover, F ′ ⊆ F . For each open ball B in F ′ we can find a formal path

pi such that pi([0, 1]) = B ∩ K, and hence K is the finite union of images of formal

paths. □

For the above to hold, it is important that our graph is locally finite, as it is possi-

ble to construct a compact set in the space constructed from a non-finitely generated

semigroup that is the image of infinitely many formal paths.

Example 3.17
Let S be a non-finitely generated semigroup with generators ei for i ∈ N. Take the

set containing all points between ((a, aei), 0) and ((a, aei), 1/2
i) for all i. This corre-

sponds to an infinite union of images of paths,for example, the paths which map [0, 1]

to the interval [0, 1/2i] on each edge (a, aei) but is in fact compact. Any open cover

must contain a set covering the centre point ((a, aei), 0). This open set must contain an

open ball of some radius r containing the centre point. This open ball covers infinitely

many of the intervals, those for which 1/2i < r, on the edges (a, aei), leaving only a

finite number of closed intervals [r, 1/2i], which are compact, and so any open cover of
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36 3.2. Applying the Švarc-Milnor Lemma

these has a finite subcover.

Finally, we show that the metric space we have created from a graph is proper.

Lemma 3.18
Let X be the metric space created from a connected, locally finite graph Γ as outlined

above. Then X is proper.

Proof: Let Br(x′) = {y′ ∈ X | d(x′, y′) ≤ r} be the closed ball of radius r centred

at x′. Then since Br(x′) has finite radius it contains finitely many vertices, and since Γ

is locally finite Br(x′) contains finitely many edges. Hence Br(x′) is a finite union of

paths by Lemma 3.16 is compact. Thus X is proper. □

Now we are ready to dive in to the wonderful world of the Švarc-Milnor lemma!

3.2 Applying the Švarc-Milnor Lemma

Fundamentally, the Švarc-Milnor lemma is a theorem about groups and how they act,

so it seems like a good idea for us to pick a group and decide how and where it should

act. We recall that we wished to investigate direct products of groups and right-zero

semigroups, and so it may be useful to know something about when direct products of

semigroups are finitely presented.

Theorem 3.19 ([16, Theorem 3.5])
Let C andD be two infinite semigroups. The direct product C ×D is finitely presented

if and only if the following conditions are satisfied:

(i) C2 = C and D2 = D;

(ii) C and D are finitely presented and stable.

We note that it is possible for a finite semigroup to fail to be stable, as demonstrated

in [16] by the following example.
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Example 3.20 ([16, Example 8.4])
Let S be the semigroup defined by the presentation

sgp⟨a, x, y | xa = a, ya = a, xy = x, a3 = a2, x2 = x, y2 = y⟩.

Then S has 11 elements but is not stable.

We will prove the following theorem.

Theorem 3.21
Let S = G × U and T = H × V be semigroups such that G,H are groups and

U2 = U , V 2 = V , and U, V are both finite and stable. Then if † (S,A) ∼= † (T,B) for

finite generating sets A and B, S is finitely presented if and only if T is.

We let S and T be as in Theorem 3.21, and suppose that S is finitely presented,

which by Theorem 3.19 implies that G is finitely presented. We choose to act with G

on the metric space † (S,A)′ obtained from † (S,A) as outlined in § 3.1. For a vertex

(x, u) ∈ S, we define an action of G on the vertices by

g(x, u) = (gx, u).

We can then extend this to an action on edges. Let e be the edge originating at ι(e) =

(x, u), labelled λ(e) = (a, b) and terminating at τ(e) = (xa, ub). Then we define
ge = f where ι(f) = gι(e) = (x, u), τ(f) = gτ(e) = (gxa, ub) and the label is

λ(f) = λ(e) = (a, b). This can then be extended to an action on the space † (S,A)′.

Claim 3.22
The action of G on † (S,A)′ is by isometries.

Proof: To show this is action is by isometries we first check that adjacency of vertices

in the graph † (S,A) is preserved under the action. Let (x1, u1) and (x1a1, u1v1) be

adjacent vertices, which were connected by an edge labelled (a1, v1) in Cay(S,A). Let

g ∈ G, then g(x1, u1) = (gx1, u1) and g(x1a1, u1v1) = (gx1a1, u1v1). These two

vertices are adjacent in † (S,A) since (gx1, u1)(a1, v1) = (gx1a1, u1v1).

We then show that non-adjacency is also preserved under the action. Let (x2, u2)

and (x3, u3) be two non-adjacent vertices such that for some g ∈ G, g(x2, u2) and
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38 3.2. Applying the Švarc-Milnor Lemma

g(x3, u3) are adjacent, say g(x2, u2)(a2, v2) = g(x3, u3) for (a2, v2) ∈ A. Then

(gx3, u3) = (gx2a2, u2v2). If we multiply both sides by (g−1, 1) then we see

(x3, u3) = (x2a2, u2v2) = (x2, u2)(a2, v2) and so (x2, u2) and (x3, u3) are adjacent,

connected by an edge labelled (a2, v2). This is a contradiction and so non-adjacent

vertices cannot be mapped to adjacent vertices.

Since both adjacency and non-adjacency are preserved, then paths of shortest length

are preserved and so the action is by isometries. □

Claim 3.23
The action of G on † (S,A)′ is cocompact.

Proof: By Lemma 3.16 we must show that the quotient space is a finite union of paths.

The orbit of a vertex is [(x, u)] = {(g, u) | g ∈ G}, and so our quotient spaces has

finitely many vertices. We show that the size of the set E/G is |U ||A|. Given an edge

e with start vertex ι(e) = (g, u) with label λ(e) = (a, v), the orbit of this edge is

[e] = {f ∈ E |ι(f) = x(g, u) = (xg, u),

τ(f) = x(ga, uv) = (xga, uv)

λ(f) = (a, v)

}.

If we consider the orbit of the vertex ι(e), we note that every vertex (xg, u) in it has an

edge leaving it labelled (a, v), ending at (xga, uv). Hence the orbit of our edge e is all

edges labelled (a, v), beginning at any vertex (x, u).

[e] = {f ∈ E | ι(f) = (x, u) for x ∈ G,λ(f) = (a, v)}.

Thus E/G contains one edge per generator for each copy of G, of which there are

|U |, and so E/G contains |U ||A| edges, so it is certainly finite. We now have that the

quotient graph has finitely many vertices and edges, and hence the quotient space is a

finite union of paths, that is, compact. □

This means the action on † (S,A)′ by G meets the first criterion for the application

of the Švarc-Milnor lemma. We would also like to show this action is proper.

38



3. Direct Products with Groups and How to Draw a Graph 39

Claim 3.24
The action of G on † (S,A)′ is proper.

Proof: Let K ⊆ M be a compact set, that is, a finite union of images of paths, say

K =
n∪
i=1

pi([0, 1]). Let Q be the set of group elements

Q = {g ∈ G | (g, u) is an endpoint of an edge that

contains a point in K for some u ∈ U}.

Then the set P = {g ∈ G|Kg ∩K ̸= ∅} is precisely

P = {g ∈ G | g(e, µ)′ ∈ K for some (e, µ)′ ∈ K}

= {g ∈ G | gx ∈ Q for x ∈ Q}

= {g ∈ G | gx = q for x, q ∈ Q}

= {g ∈ G | g(xq−1) = 1 for x, q ∈ Q}

Since Q is a finite subset of a group, there are finitely many products xq−1, and hence

finitely many g that are inverses for these products. Therefore P is finite. Hence the

action is proper. □

Now we can follow the exact same procedure for T and act on its metric space

† (T,B)
′ with H . Applying the Švarc-Milnor lemma with G acting on † (S,A)′, we

see that G is quasi-isometric to † (S,A)′, and similarly we have H is quasi-isometric

to † (T,B)
′. Now since † (S,A) ∼= † (T,B) with graph isomorphism α, the metric

spaces † (S,A)′ and † (T,B)
′ are also isometric. The isometry φ is given by mapping

the endpoints of an edge to their images under α.

This allows us to prove a useful lemma, one showing that sinceG is quasi-isometric

to † (S,A)′, and H is quasi-isometric to † (T,B)
′, then via the isometry of these topo-

logical spaces φ, we can show that G is quasi-isometric to H .

Lemma 3.25
The group G is quasi-isometric to H .

Proof: LetG act on † (S,A)′ as outlined above. This is a cocompact and proper action

on a proper geodesic metric space, so by Theorem 3.7, there exists a quasi-isometry

39



40 3.2. Applying the Švarc-Milnor Lemma

ψ : G → M . Using the isomorphism φ above, the map ψ′ : G → N given by

ψ′(g) = φ(ψ(g)) is also a quasi-isometry. By acting in an analogous way with H on

† (T,B)
′, we can also establish a quasi-isometry θ : H → N , and hence we have a

quasi-isometry β : G→ H given by β(g) = θ−1(ψ′(g)). □

Now we recall that Theorem 1.1 tells us that finite presentability of groups is pre-

served under quasi-isometry, giving the following corollary to Lemma 3.25.

Corollary 3.26
The group H is finitely presented.

Hence both H and V meet the conditions of Theorem 3.19, and so T is finitely

presented. This completes the proof of Theorem 3.21.

We recall that we began this chapter by looking at direct products with left zero

semigroups, and lamenting the fact that we we not able to apply a similar method to

direct products with right zero semigroups. Happily, right zero semigroups are now

just a special case of what we have just proved.

Corollary 3.27
LetG andH be groups, letm,n be positive integers and let S = G×Rn and T = H×

Rm where S = sgp⟨A⟩ and T = sgp⟨B⟩, with A and B finite. If † (S,A) ∼= † (T,B),

then S is finitely presented if and only if T is.

Proof: ConsiderRn andRm given by the presentationsRn = sgp⟨r1, . . . , rn | rirj =

rj for all 1 ≤ i, j ≤ n⟩ and Rm = sgp⟨r1, . . . , rm | rirj = rj for all 1 ≤ i, j ≤ m⟩.

Both Rn and Rm are clearly finite, and since for any right zero ri we have riri = ri,

then R2
n = Rn and R2

m = Rm.

We show that Rn (similarly Rm) is stable. Let ri1 . . . rik and rj1 . . . rjl be two

words over r1, . . . , rn+ such that the relation

ri1 . . . rik = rj1 . . . rjl

holds inRn. We note that two words are equal inRn if and only if the last letters of the
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word are equal, so rin = rjm . Suppose that k > l. Then an elementary sequence is

ri1 . . . rik ≡ ri1 . . . rik , ri1 . . . rik−2
rik ,

ri1 . . . rik−3
rik , . . . ,

ri1 . . . rilrik , ri1 . . . ril−1
rik ,

ri1 . . . rjl−1
ril−1

rik , ri1 . . . rjl−1
rik ,

. . . ri1rj2 . . . rjl−1
rik ,

ri1rj1rj2 . . . rjl−1
rik , rj1rj2 . . . rjl−1

rik

≡ rj1rj2 . . . rjl .

The shortest word in this sequence is ri1 . . . ril−1
rik which has length l, and so there is

no word shorter than the shortest of our two original words. Now if k < l, there exists

an elementary sequence

ri1 . . . rik ≡ ri1 . . . rik , rjl−1
ri1 . . . rik ,

rjl−2
rjl−1

ri1 . . . rik , . . . , rj1 . . . rjl−1
ri1 . . . rik ,

rj1 . . . rjl−1
ri1 . . . rik−2

rik , . . . ,

rj1 . . . rjl−1
ri1rik , rj1 . . . rjl−1

rik

≡ rj1 . . . rjl−1
ril .

The shortest word in this sequence is rjl−1
ri1 . . . rik which has length k + 1, so this

sequence never goes via a word shorter than the original words. Hence Rn and Rm
have no critical pairs, and so are stable. Thus we may apply Theorem 3.19, and S is

finitely presented if and only if T is. □
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Chapter 4

Completely Simple Semigroups

Of course, of course! Absurdly simple,

like most riddles when you see the answer.

Gandalf The Grey

A sensible path to follow is to investigate semigroups which feature groups some-

where in their construction, as this allows us to use the Švarc-Milnor Lemma (provided

we can construct a sensible action of course). Here we will look into completely sim-

ple and completely 0-simple semigroups which, due to Rees [14], have a construction

which may be thought of as the direct product of a left zero semigroup, a group and

a right zero semigroup, with a twisted form of group multiplication. We will extend

our ideas on left and right zero semigroups from Chapter 3 to take into account the

difficulties introduced here. We begin with the definition of the objects we will work

with.

Definition 4.1
A semigroup S is simple if it has no proper two-sided ideals. A semigroup is completely

simple if it is simple and has minimal left and right ideals.

A famous theorem of Rees allows us to give a construction of such semigroups.

Definition 4.2
Let T be a semigroup, let I,Λ be arbitrary sets and let P = (pλi) be a |Λ| × |I| matrix
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(known as the sandwich matrix) with entries in T . The set I × T × Λ is a semigroup

with the multiplication

(i, g, λ)(j, h, µ) = (i, gpλjh, µ)

called a Rees matrix semigroup. We write M[T ; I,Λ;P ] to denote this semigroup.

Theorem 4.3 (Rees, [14])
A semigroup S is completely simple if and only if S ∼= M[G; I,Λ;P ], for some group

G, sets I,Λ and sandwich matrix P with entries in G.

When considering a completely simple semigroup, we will choose to work with

the Rees matrix semigroup to which it is isomorphic. We let S = sgp⟨A⟩ and T =

sgp⟨B⟩ be two completely simple semigroups, with S ∼= M[G; IS ,ΛS ;PS ] and T ∼=

M[H; IT ,ΛT ;PT ]. We of course wish to show that if we have † (S,A) ∼= † (T,B),

then S is finitely presented if and only if T is.

One approach we may consider is to see that if given an S ∼= M[G; IS ,ΛS ;PS ], we

can detect clusters of vertices that represent the group G. That is, given a fixed i ∈ IS

and λ ∈ ΛS , can we identify the set of vertices Vi,λ = {(i, g, λ) | g ∈ G} in † (S,A).

We will see in Lemmas 4.6 and 4.7 that IS can be viewed as a left zero semigroup

and so † (S,A) has at least |IS | components. We can therefore identify the larger set

of vertices Vi = {(i, g, µ) | g ∈ G,µ ∈ Λ} that contains Vi,λ. Now considering the

subgraph induced by this set of vertices Vi we would like to be able to find all vertices

that represent elements with λ as their third component. However, similarly to Example

3.5, restricting to Vi,λ does not necessarily give us a copy of † (G, πG(A)). Hence we

cannot deduce which vertices belong to Vi,λ, and therefore cannot even decide the size

of ΛS .

We show by means of an example that two completely simple semigroups with iso-

morphic skeletons can in fact have differently sized Λ sets.

Example 4.4
Let S = M[C2; {l1}, {r1, r2}; I] and let T = M[V4; {j1}, {s1}; I]. Let

S = sgp⟨{(l1, x, r1), (l1, x, r2)}⟩
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and let

T = sgp⟨{(j1, a, s1), (j1, b, s1)}⟩.

We then have the following Cayley graphs.

(l1, 1, r2) (l1, x, r2)

(l1, 1, r1) (l1, x, r1)

(l1, x, r1)

(l1, x, r2)

Figure 4.1: Graph Cay(S, {(l1, x, r1), (l1, x, r2)})

(j1, ab, s1)) (j1, b, s1)

(j1, 1, s1) (j1, a, s1)

(l1, x, r1)

(l1, x, r2)

Figure 4.2: Graph Cay(T, {(j1, a, s1), (j1, b, s1)})

The skeletons of both S and T with respect to these generating sets are then as

follows.

Figure 4.3: Graph † (S, {(l1, x, r1), (l1, x, r2)}) and † (T, {(j1, a, s1), (j1, b, s1)})

Lemma 4.5
Given an S ∼= M[G; IS ,ΛS ;PS ] we cannot necessarily identify the set of vertices

Vi,λ = {(i, g, λ) | g ∈ G} in † (S,A) for a fixed i ∈ IS and λ ∈ ΛS . Given two semi-
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groups S ∼= M[G; IS ,ΛS ;PS ] and T ∼= M[H; IT ,ΛT ;PT ] with † (S,A) ∼= † (T,B)

we do not necessarily have |ΛS | = |ΛT |.

Proof: In Example 4.4 we see that

† (S, {(l1, x, r1), (l1, x, r2)}) ∼= † (T, {(j1, a, s1), (j1, b, s1)}) .

If we attempt to identify the set Vl1,r1 , which consists of the upper two vertices in Figure

4.1, in the skeleton † (S, {(l1, x, r1), (l1, x, r2)}) we are unable to see which set of two

connected vertices this should be. We also have that |ΛS | = 2 and |ΛT | = 1. □

Hence we see that we can determine neither the location of Vi,λ nor the size of Λ

by inspection of the skeleton, and as such there is no clear way to describe when two

completely simple semigroups have isomorphic skeletons.

We will assume that S is finitely presented, with finite generating set

A = {(ik, gk, λk) | 1 ≤ k ≤ n for some n ∈ N}.

Lemma 4.6
The sets IS and ΛS can be viewed as left and right zero semigroups respectively.

Proof: If we consider the projection πIS : S → IS , then the set πIS (A) forms a

generating set for the set IS under the multiplication ij = i. This tells us that IS is in

fact a finitely generated left zero semigroup, and hence is finite. Similarly, the projection

πΛS : S → ΛS gives a finite generating set πΛS (A) for Λ under the multiplication

λµ = µ, and so ΛS is a finite right zero semigroup. □

Lemma 4.7
The graph † (S,A) has at least |IS | components.

Proof: Consider now an element (i, g, λ). When we multiply this on the right with

an element (j, h, µ), say, our product is (i, gpλjh, µ). We notice that since IS is a left

zero semigroup, the IS component remains the same as in the original element. This

means that in the Cayley graph of S, there are no edges between vertices with different

IS components, and so † (S,A) has at least |IS | components. □
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We now restrict ourself to looking at the set R = {(i, g, λ) | g ∈ G,λ ∈ ΛS}

for a fixed i ∈ IS . This set is a subsemigroup of S, but it is not necessarily generated

by the set A ∩ R, and even if it were, the graph † (R,A ∩R) would not neccesarily

be isomorphic to the subgraph of † (S,A) induced by the set R. Hence we will work

with the graph † (R,A). Recall that † (R,A)′ denotes the metric space created from

the graph † (R,A) as described in § 3.1. This space is geodesic, since R is a right ideal

of S, meaning we can find a path between any two points in † (R,A) that realises the

shortest distance. We will define an action of G on R by

g(i, x, λ) = (i, gx, λ) (⋆)

Claim 4.8
(⋆) is an action.

Proof: Let g, h ∈ G and (i, x, λ) ∈ S. Then

gh(i, x, λ) = (i, (gh)x, λ)

= (i, g(hx), λ)

= g(i, hx, λ)

= g(h(i, x, λ))

and
1(i, x, λ) = (i, x, λ).

□

We define an action on edges, by defining ge = f where ι(f) = gι(e), τ(f) = gτ(e)

and λ(f) = λ(e). We can extend our action to an action of G on † (R,A)′, which we

desire to be by isometries, cocompact and proper.

Claim 4.9
The action (⋆) is by isometries.

Proof: Let (i, x, λ) and (i, xa, µ) be two vertices in † (R,A)′ joined by an edge la-

belled (j, a, µ). Under the action ⋆ we have g(i, x, λ) = (i, gx, λ) and g(i, xa, µ) =
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(i, gxa, µ). Since (i, x, λ)(j, a, µ) = (i, gxa, µ) then the action preserves adjacency of

vertices. Now let (i, x, λ) and (i, xa, µ) be two vertices such that there exists no edge

between them, but the exists an edge labelled (j, a, µ) between g(i, x, λ) = (i, gx, λ)

and g(i, xa, µ) = (i, gxa, µ). Then since (i, gx, λ)(j, a, µ) = (i, gxa, µ) we have

g−1

(i, gx, λ)(j, a, µ) = (i, x, λ)(j, a, µ)

= g−1

(i, gxa, µ)

= (i, xa, µ).

Hence there does exist an edge between (i, x, λ) and (i, xa, µ) labelled (j, a, µ). Thus

the action preserves non-adjacency also. Since both adjacency and non-adjacency are

preserved, then paths of shortest length are preserved and so our action ⋆ is by isome-

tries. □
Claim 4.10
The action (⋆) is cocompact.

Proof: To check our action is cocompact, we simply need to establish that the quotient

graph of † (R,A) is finite. The orbit of a vertex (i, x, λ) is

[(i, x, λ)] = G(i, x, λ)

= {(i, gx, λ) | g ∈ G}

= {(i, g, λ) | g ∈ G}.

Thus we have |Λ| distinct orbits, and so † (R,A) /G has finitely many vertices.

An upper bound for the size of the set E/G is |Λ||A|, as given an edge e with start

vertex ι(e) = (i, x, λ) with label λ(e) = (i, a, µ), the orbit of this edge is

[e] = {f ∈ E |ι(f) = g(i, x, λ) = (i, gx, λ),

τ(f) = g(i, xpλja, µ) = (i, gxpλja, µ),

λ(f) = (i, a, µ)}.

Consider the orbit of the vertex ι(e). For every vertex (i, gx, λ) in this orbit, there

is an edge leaving it labelled (i, a, µ), terminating at (i, gxpλja, µ). Hence the orbit of
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our edge e is all edges labelled (i, gxpλja, µ), beginning at any vertex (i, g, λ).

[e] = {f ∈ E | ι(f) = (i, g, λ) for g ∈ G,λ(f) = (i, a, µ)}

Thus E/G contains one edge per generator for each copy of G, of which there are |Λ|,

and so E/G contains |Λ||A| edges, so it is certainly finite. Hence the quotient graph

has finitely many vertices and edges, and so the quotient space is a finite union of paths.

By Lemma 3.16, the quotient space is compact, and hence the action is cocompact. □
Claim 4.11
The action (⋆) is proper.

Proof: We now let K ⊆ † (R,A)′ be a compact set, so by Lemma 3.16, K is a finite

union of paths. Let Q be the set of group elements

Q = {g ∈ G | (i, g, λ) is an endpoint of an edge that

contains a point in K for some λ}.

Then the set P = {g ∈ G|gK ∩K ̸= ∅} is precisely

P = {g ∈ G | g(e, µ)′ ∈ K for some (e, µ)′ ∈ K}

= {g ∈ G | gx ∈ Q for x ∈ Q}

= {g ∈ G | gx = q for x, q ∈ Q}

= {g ∈ G | g(xq−1) = 1 for x, q ∈ Q}.

Since Q is a finite subset of a group, there are finitely many such g that are inverses for

xq−1, and so P is finite, and so the action is proper. □

We notice that in order to construct a nice action here, we required ΛS to be finite.

We will want to be able to act in a similar way with H on † (T,B)
′ so we must show

that ΛT is finite.

Lemma 4.12
The sets ΛT and IT are finite.

Proof: Given the multiplication of T , we know that each set of vertices {(i, h, λ) | h ∈

H,λ ∈ ΛT } forms a component of † (T,B), meaning † (T,B) has |IT | components.
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Since † (S,A) ∼= † (T,B), and † (S,A) has |IS | components, then † (T,B) has |IS |

components also, and so |IT | = |IS | meaning IT is finite.

Now suppose that ΛT is infinite. This implies that there exists a generator (i, a, λ)

for all λ ∈ ΛT ; that is, infinitely many generators. Let v = (j, h, µ). For each generator

(i, a, λ) we have

(j, h, µ)(i, a, λ) = (j, hpµ,ia, λ).

Since there are infinitely many λ ∈ ΛT , the vertex v is therefore connected to infinitely

many other vertices, but this is a contradiction, as † (T,B) is locally finite. Therefore

ΛT is finite. □

Lemma 4.13
The group G is quasi-isometric to H .

Proof: We apply the Švarc-Milnor Lemma, which tells us G is quasi-isometric to

† (R,A)′, via a map ψ. Since we have φ : † (S,A)′ → † (T,B)
′, an isomorphism,

there exists a subset U of T such that † (R,A)′ is isomorphic to † (U,B)
′. We can

then construct a quasi-isometry ψ′ : G → † (U,B)
′, where for an element g ∈ G we

have ψ′(g) = φ(ψ(g)). Acting analogously on † (U,B)
′ with H , we establish a quasi-

isometry σ : H → † (U,B)
′, which allows us to build a quasi-isometry β : G → H

given by β(g) = σ−1(ψ′(g)). Hence G is quasi-isometric to H . □

Thus far, we have not mentioned finite presentability in the context of Rees matrix

semigroups. The following result will be useful.

Theorem 4.14 (Ayik and Ruškuc, [2])
Let S be a Rees matrix semigroup M[T ; I,Λ;P ], and letW be the ideal of T generated

by the set {pλi | λ ∈ Λ, i ∈ I} of all entries of P . Then S is finitely generated (respec-

tively, finitely presented) if and only if the following three conditions are satisfied:

(i) both I and Λ are finite,

(ii) T is finitely generated (respectively, finitely presented)

(iii) the set T \W is finite.
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Our semigroup S is assumed to be finitely presented, and so by Theorem 4.14 the

group G is also. Since quasi-isometries preserve finite presentability of groups, we

establish a lemma.

Lemma 4.15
If S is finitely presented H is finitely presented.

Proof: By Theorem 4.14, S being finitely presented implies thatG is finitely presented.

Lemma 4.13 tells us thatG is quasi-isometric toH , and since quasi-isometry of groups

preserves finite presentability, then H is finitely presented.

□

Consequently we have the following theorem.

Theorem 4.16
Let S ∼= M[G; IS ,ΛS ;PS ] with finite generating set A and T ∼= M[H; IT ,ΛT ;PT ]

with finite generating set B. If † (S,A) ∼= † (T,B), then the semigroup S is finitely

presented if and only if T is.

Proof: Let S be finitely presented. Then by Lemma 4.15, H is finitely presented and

by Lemma 4.12 IT and ΛT are finite. Since H is a group, the ideal W = T 1{pλi | λ ∈

ΛT , i ∈ IT }T 1 is the whole group, as groups have no proper ideals. HenceH \W = ∅

which is clearly finite. By Theorem 4.14 we then have that T is finitely presented. □

We can now turn our attention to completely simple semigroups sibling, the com-

pletely 0-simple semigroup. First we define a 0-simple semigroup S as a semigroup

with 0, for which the only proper two-sided ideal is {0}. We then say that an ideal I of

S is 0-minimal if I and {0} are the only ideals contained in I . Then S is completely 0-

simple if it is 0-simple and its left and right ideals are 0-minimal. For completely simple

semigroups, we were able to find a characterisation in the form of Rees matrix semi-

groups. Completely 0-simple semigroups are similarly nice, and so we introduce the

Rees matrix semigroup with 0. We let T be a semigroup not containing a 0, let I,Λ be

index sets, and letP be a |Λ|×|I|matrix with entries in T∪{0}. Then (I×T×Λ)∪{0}
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is a semigroup with multiplication

(i, g, λ)(j, h, µ) =

(i, gpλjh, µ) if pλj ̸= 0

0 if pλj = 0

and

0(i, g, λ) = (i, g, λ)0 = 0 = 00.

This semigroup is a Rees matrix semigroup with 0 and is denoted M0[T ; I,Λ;P ]. Our

characterisation in then given by the following theorem.

Theorem 4.17 (Rees, [14])
A semigroup S is completely 0-simple if and only it is isomorphic to a Rees matrix

semigroup with 0, M0[G; I,Λ;P ] where G is a group, and P is regular.

Note that a matrix is regular if every row and every column contains at least one

non-zero element.

We let S = M0[G; IS ,ΛS ;PS ] with PS regular, and T = M0[H; IT ,ΛT ;PT ]

with PT regular. We prove the following.

Theorem 4.18
Let S = M0[G; IS ,ΛS ;PS ] where PS is regular, and T = M0[H; IT ,ΛT ;PT ] where

PT is regular. Let S = sgp⟨A⟩ and T = sgp⟨B⟩ with A and B finite, and † (S,A) ∼=

† (T,B), then S is finitely presented if and only if T is.

Proof: Suppose thatS is finitely presented, then by Lemma 4.23H is finitely presented.

Then by [2] and Lemmas 4.21 and 4.24 T is finitely presented. □

We now proceed to prove the lemmas used in the proof of Theorem 4.18. In order

to do this we will need to construct a slightly different space to the standard skeletons

to act on.

Suppose that † (S,A) ∼= † (T,B), and assume S is finitely presented. As with com-

pletely simple semigroups, we can deduce that both IS and ΛS are finite (cf. Lemma

4.6). We assume that G is infinite, as if G is finite, then S is finite since IS and ΛS are

finite and so it is trivial to show T is finitely presented. Therefore, given an infinite G,

we claim that in † (S,A), that 0 is the unique vertex of infinite degree.
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Claim 4.19
In † (S,A), 0S is the unique vertex of infinite degree.

Proof: We first show that 0S has infinite degree. We know there are two possible ways

to get to 0 via multiplication. The first is that 0S appears already in our generating set,

and s0S = 0S for all s ∈ S, which would mean 0 trivially has infinite degree. We

therefore assume that 0S is not in our generating set, and so in order to reach 0S we

must find two elements (i, g, λ), (j, h, µ) such that pλj = 0S , and then their product

will be zero. Let pλj = 0S be an entry of the matrix with value 0S . Now since I can

be viewed as a left zero semigroup, for each i ∈ I there must be a generator of S that

contains i as its left most component. Therefore, there exists some generator (j, a, µ)

with j as the left component. Let

D = {(i, g, λ) | g ∈ G, i ∈ I}.

This is an infinite set, and for all (i, g, λ) ∈ D we have

(i, g, λ)(j, a, µ) = (i, gpλ,ja, µ)

= 0S .

Hence 0 has infinite degree.

Now suppose v = (i, g, λ) ̸= 0S is a vertex in † (S,A) with infinite degree. Since

S is finitely generated, v must have finite outdegree in Cay(S,A) and so has infinite

indegree. In particular, there are infinitely many vertices w such that wa1 = v for some

generator a1 = (j, a, λ). Since IS can be viewed as a left zero semigroup, we know

that each w has the same IS component i as v. As ΛS is finite, there must be infinitely

many such w that share the same ΛS component, say µ. We thus consider the subset of

elements W = {w ∈ T | w = (i, h, µ), h ∈ H}, which is an infinite set. We have that

for all w = (i, h, µ) ∈W

(i, h, µ)(j, a, µ) = (i, hpµja, µ)

= (i, g, λ).

Since W is infinite, but i, µ are fixed, there are an infinite number of elements h ∈ G

such that hpµja = g. Since v ̸= 0S , we know that pµj ̸= 0S , so pµj ∈ G. This implies
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there are infinitely many different h in G such that h(pµjag−1) = 1, that is the fixed

element pwag−1 has infinitely many inverses. This is a contradiction, and so v must

have finite degree. Hence we have shown that 0S is the unique vertex of infinite degree

in † (S,A). □

We now know that there exists exactly one vertex of infinite degree in † (S,A), and

hence also in † (T,B). Since T also contains a zero element 0T , we may show in an

identical way as in S that the vertex representing 0T has infinite degree, and hence

in both † (S,A) and † (T,B) the unique vertex of infinite degree represent the zero

element.

Since both graphs † (S,A) and † (T,B) have a single vertex of infinite degree, the

subgraphs generated by removing these vertices and their associated edges will remain

isomorphic. We will call these graphs † (Sz, Az) and † (Tz, Bz) respectively. We wish

to work with a geodesic metric space, so we restrict our attention to the subgraph in-

duced by the set of vertices Rz = {(i, g, λ) | g ∈ G,λ ∈ ΛS}. We call this graph

† (Rz, Az). We then create a metric space from † (Rz, Az) using the method outlined

in § 3.1. We call this metric space † (Rz, Az)′.

Lemma 4.20
The group G is quasi-isometric to the metric space † (Rz, Az)′.

Proof: We define an action of G on Rz = {(i, g, λ) | g ∈ G,λ ∈ ΛS} by

g(i, x, λ) = (i, gx, λ)

This is a map from G × Rz → Rz , as it is never the case that the multiplication gx

returns zero, and the action axioms are fulfilled in the same way as for Rees matrix

semigroups. This extends to give us an action on † (Rz, Az)′, which is cocompact and

proper, following a similar line of reasoning to Rees matrix semigroups. We apply the

Švarc-Milnor lemma to obtain a quasi-isometry between G and † (Rz, Az)′ □

In order for such an action to be cocompact, we required ΛS to be finite, and so

if we hope to act on the component † (Uz, Bz)′ of † (Tz, Bz)′ which is isomorphic to

† (Rz, Az)′, we will want to show that ΛT is finite.
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Lemma 4.21
The sets ΛT and IT are finite.

Proof: To see that IT is finite, consider the subgraph of † (T,B) induced by the set of

vertices T \ {0T }. Since IT can be viewed as a left zero semigroup, then this graph

has |IT | components. Since this is isomorphic to the subgraph of † (S,A) induced by

the set of vertices S \ {0S}, which has |IS | components, then |IT | = |IS | and so IT is

finite.

Assume that ΛT is infinite. We will show that this means there exists a non-zero

vertex with infinite indegree. The matrix PT then has finitely many columns and in-

finitely many rows. Since it is regular, this means there exists some column, say the

one indexed by j ∈ IT , which contains infinitely many non-zero entries. There exists

at least one generator, (j, g, λ) say, with this j as its first component. Now consider

the vertex (i, 1H , λ) for some i ∈ IT . For every element of the form (i, g−1pµj
−1, µ),

provided that pµj ̸= 0, we have

(i, g−1pµj
−1, µ)(j, g, λ) = (i, g−1pµj

−1pµjg, λ)

= (i, 1H , λ).

Now since we picked j such that the column indexed by it inPT has infinitely many non-

zero entries, there are infinitely many values µ such that the above product is realised,

and hence (i, 1H , λ) has infinite indegree. This is a contradiction to the fact that 0T is

the only vertex of infinite degree in † (T,B), and so ΛT is finite. □

Lemma 4.22
The group H is quasi-isometric to G.

Proof: We can then show similarly to Lemma 4.20 that H is quasi-isometric to the

subset † (Uz, Bz)′ ∼= † (Rz, Az)′ of † (Tz, Bz)′. Hence G is quasi-isometric to H via

the isomorphism between † (Uz, Bz)′ and † (Rz, Az)′. □

There exists an analogous theorem to 4.14 for Rees matrix semigroups with zero

in [2], which states identical conditions for a semigroup M0[T ; I,Λ;P ] to be finitely

presented.
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Lemma 4.23
If S is finitely presented then H is finitely presented.

Proof: Since S is finitely presented, G is also. Quasi-isometry preserves finite pre-

sentability of groups, and so by Lemma 4.22 H has a finite presentation. □

Lemma 4.24
Let U is the ideal ofH generated by the set {pλi | λ ∈ ΛT , i ∈ IT } of all entries in PT ,

then H \ U is finite.

Proof: Since H is a group, H \ U = ∅, and hence finite. □

This completes the proof of Theorem 4.18.
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Chapter 5

Clifford Semigroups

“I invoke the All Nations Agreement

article number 39436175880932/B.”

“39436175880932/B? ‘All nations

attending the conference are only allocated

one car parking space?’ Is that entirely

relevant, sir?”

Red Dwarf

In the previous chapter, we discovered that completely simple semigroups were a

fruitful area of study for our question. This is because they are constructed from groups,

and retain some of the group structure for us to exploit. It is perhaps then a sensible idea

to look for more families of semigroups which are based on groups. One such family is

Clifford semigroups. We may construct these by taking a semilattice, placing a group

at each element of the semilattice, and defining a sensible multiplication. We expand

on this construction below.

Definition 5.1
A partially ordered set (X,≤) is a setX together with a binary relation ≤ such that for

all a, b, c ∈ X

(i) a ≤ a (reflexivity);

(ii) if a ≤ b and b ≤ a then a = b (anti-symmetry);
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(iii) if a ≤ b and b ≤ c then a ≤ c (transitivity).

If a pair of elements (a, b) ∈ X ×X are not in the relation ≤, we say they are incom-

parable and we write a∥b.

Definition 5.2
Let (X,≤) be a partially ordered set and let a, b ∈ X . An element c is called the meet

of a and b if c ≤ a and c ≤ b, and for any d ∈ X such that d ≤ a, b, then d ≤ c. If the

meet of two elements exists, then it is unique, and we write a ∧ b = c.

Definition 5.3
Let (X,≤) be a partially ordered set such that for all a, b ∈ X , a ∧ b exists. Then

(X,≤) is a (lower) semilattice.

We may draw a Hasse diagram to represent a semilattice, for example let X =

{a, b, c, d} with c ≤ a, c ≤ b and d ≤ c, and a, b incomparable.

a b

c

d
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We can observe from the diagram here that every pair of elements does have a meet:

a ∧ b = c

a ∧ x = x

b ∧ a = c

b ∧ x = x

c ∧ d = d

c ∧ x = c

d ∧ x = d

where x is any element of X that has not already been specified. Hence this is a semi-

lattice.

We can now construct a semigroup as follows. Suppose we have Y , a semilattice,

and a set of semigroups Sλ indexed by Y . For every λ, µ ∈ Y where λ ≥ µ let

φλ,µ : Sλ → Sµ be a homomorphism such that φλ,λ is the identity map on Sλ and for

all λ, µ, ν ∈ Y such that λ ≥ µ ≥ ν

φλ,µφµ,ν = φλ,ν .

Our semigroup is the set S =
∪
λ∈Y Sλ, where multiplication of two elements

x ∈ Sλ and y ∈ Sµ is given by

xy = (xφλ,λ∧µ)(yφµ,λ∧µ).

We call S a strong semilattice of semigroups, and denote it by S = S[Y ;Sλ;φλ,µ].

To define Clifford semigroups, we first define completely regular semigroups. A

semigroup S is completely regular if there exists a unary operation a 7→ a−1 on S such

that

(a−1)−1 = a , aa−1a = a , aa−1 = a−1a

for every a ∈ S. An enlightening theorem which suggests to us why this may be a

sensible area to look is the following:
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Theorem 5.4 (Proposition 4.1.1, [12])
Let S be a semigroup. Then S is completely regular if and only if every H-class of S is

a group.

A Clifford semigroup is a completely regular semigroup such that for all x, y ∈ s

(xx−1)(yy−1) = (yy−1)(xx−1).

We would like a characterisation of Clifford semigroups that allows us to easily

work with the group structure found within. The following theorem gives us such a

characterisation:

Theorem 5.5 (Theorem 4.2.1, [12])
Let S be a semigroup. Then S is Clifford if and only if it is a strong semilattice of

groups.

It is tricky to work with arbitrary Clifford semigroups, as given an arbitrary skele-

ton of a Clifford semigroup, we may not even be able to distinguish the semilattice

underlying it.

Example 5.6
One very small example of this is to let S = S[Y ;Sλ;φλ,µ], where Y = {α, β} is

the two-element semilattice with α ≥ β, and Sα = C2 = gp⟨xα⟩ and Sβ = {1β},

with the obvious homomorphism φα,β . Then if we let S = sgp⟨xα, 1β⟩, we have

Cay(S, {xα, 1β}) as the following graph.

1α xα

1β

xα

xα

1β 1β

Now let T = T [Z;Tλ;ψλ,µ] withZ = {α, β, γ} being a 3-element linear order and
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for all λ ∈ Z, we have Tλ trivial groups. We let the homomorphisms be the obvious

ones. We have T = sgp⟨1α, 1β , 1γ⟩, and Cay(T, {1α, 1β , 1γ}) is given below.

1α

1β

1γ

1β

1γ

1γ

Now if we are to draw † (S, {xα, 1β}) and † (T, {1α, 1β , 1γ}), both result in the

following graph.

These are indistinguishable from their skeletons, but clearly have different semilat-

tice structures.

We might wonder if this occurs only if the component groups are finite. To dispel

such notions, we provide a further example.

Example 5.7
Let Y = {α, β} be the two element semilattice, and let Sα = Z × C2 = Sβ . Note

that we write C2 = {1, x}. Let φα,β be the identity map; then S = S[Y ;Sλ;φλ,µ] is

a semigroup generated by A = {(−1α, 1α), (1α, 1α), (0α, xα)(0β , 1β), (0β , xβ)}. A

section of Cay(S,A) is given in Figure 5.1.
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(0α, 1α)

(−1α, 1α)

(1α, 1α)

(0α, xα)

(0β , 1β)

(0β , xβ)

Figure 5.1: Cayley graph of S

Let Z = {α, β, γ, δ} be the four element linear order, and Tλ = Z for all λ ∈

Z. For each λ, µ ∈ Z, define φλ,µ by x 7→ 0µ. Then T = T [Z;Tλ;φλ,µ] is a

Clifford semigroup, which can be generated by B = {−1α, 1α, 1β , 1γ , 1δ}. A section

of Cay(T,B) is given in Figure 5.2.

0α

−1α

1α
1β

1γ

1δ

Figure 5.2: Cayley graph of T

Now for S and T we have † (S,A) and † (T,B) as shown in Figure 5.3.

Figure 5.3: Skeleton of S and T
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These infinite Clifford semigroups have different semilattice structures, but † (S,A)

and † (T,B) are isomorphic.

Sadly, then, it is not possible to deduce the structure of the semilattice simply by

inspection of the skeleton. We can, however, cheer ourselves slightly by proving a the-

orem linking isomorphism of skeletons of Clifford semigroups and finite presentability.

In order to do this, it will be useful to know exactly when Clifford semigroups are finitely

presented.

When proving this, it will be useful to know when Clifford semigroups are finitely

presented. The following theorem gives us conditions for when this occurs.

Theorem 5.8 ([1, Theorem 6.1])
A strong semilattice of semigroups S = S[Y ;Sλ;φλ,µ] is finitely presented if and only

if Y is finite and every semigroup Sλ is finitely presented.

We will also find the following lemma to be useful.

Lemma 5.9
Let G be a finitely generated group with a finite normal subgroup N . Then G is quasi-

isometric to G/N .

Proof: Define an action of G on G/N by gaN = (ga)N . Then the orbit of a point

aN ∈ G/N is the entire group G/N , and so the action is cocompact. If we let

K ⊆ G/N be a compact set, then K is finite. Let P = {g ∈ G | gK ∩K ̸= ∅}, then

P = {g ∈ G | gK ∩K ̸= ∅}

= {g ∈ G | gaN ∈ K for any aN ∈ K}.

Since N is finite, there are only finitely many g ∈ G that move elements of K back to

itself, and so P is finite. Hence this action is proper, and so by the Švarc-Milnor lemma

the map g 7→ (ga)N for any aN ∈ G/N is a quasi-isometry between G and G/N

equipped with the word metric. □

We will now prove the following theorem linking isomorphism of skeletons of Clif-
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ford semigroups and finite presentability.

Theorem 5.10
Let S = S[Y ;Gλ;φλ,µ] and T = S[Z;Hλ; θλ,µ] where Y,Z are finite and homomor-

phisms φλ,µ, θλ,µ are such that

(i) φλ,µ, θλ,µ are surjective,

(ii) kerφλ,µ, ker θλ,µ are finite.

Let S = sgp⟨A⟩ and T = sgp⟨B⟩ with A and B finite. If † (S,A) ∼= † (T,B) then S is

finitely presented if and only if T is.

Proof:

Let S = S[Y ;Gλ;φλ,µ] and T = S[Z;Hλ; θλ,µ] be as in Theorem 5.10, and

suppose that S is finitely presented. Let ω be the least element of Y .

We will prove this theorem by constructing a new semigroup Ω with skeleton

†
(
Ω, A

)
for some generating set A, on which we can define an action of the group

Gω . We will show that Gω is quasi-isometric to †
(
Ω, A

)
and that †

(
Ω, A

)
is quasi-

isometric to † (S,A). Similarly we let ψ be the least element of Z and define a new

semigroup Ψ with skeleton †
(
Ψ, B

)
for some generating set B. We show that Hψ is

quasi-isometric to †
(
Ψ, B

)
and that †

(
Ψ, B

)
is quasi-isometric to † (T,B). Then since

† (S,A) ∼= † (T,B) we show thatGω is quasi-isometric toHψ , and henceHψ is finitely

presented and thus T is finitely presented.

We begin by describing how to construct the semigroup Ω. Recall that ω is the least

element of Y and let Kλ,ω denote kerφλ,ω . We create a semigroup Ω by taking the

union of Gλ/Kλ,ω
for all λ ∈ Y as elements. Elements of Gλ/Kλ,ω

are denoted

by sKλ,ω where s ∈ Gλ. Let s1Kλ1,ω, s2Kλ2,ω ∈ Ω then we define the following

multiplication:

s1Kλ,ωs2Kα,ω = (s1φλ,λ∧α s2φα,λ∧α)Kλ∧α,ω.
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Let s1Kλ1,ω = s2Kλ1,ω and t1Kλ2,ω = t2Kλ2,ω. Then

s1Kλ1,ωt1Kλ2,ω = (s1φλ1,λ1∧λ2t1φλ2,λ1∧λ2)Kλ1∧λ2,ω

= (s1φλ1,λ1∧λ2)Kλ1∧λ2,ω(t1φλ2,λ1∧λ2)Kλ1∧λ2,ω

= (s2φλ1,λ1∧λ2)Kλ1∧λ2,ω(t2φλ2,λ1∧λ2)Kλ1∧λ2,ω

= (s2φλ1,λ1∧λ2
t2φλ2,λ1∧λ2

)Kλ1∧λ2,ω

= s2Kλ1,ωt2Kλ2,ω

Hence this multiplication is well defined. Let

A = {aKα,ω | a ∈ A where a ∈ Gα}.

We then have the following claim.

Claim 5.11
A is a generating set for Ω.

Proof: Let sKλ,ω ∈ Ω and let s = a1 . . . an with ai ∈ Gαi ∩ A for each 1 ≤ i ≤ n.

We note that since s ∈ Gλ, then α1 ∧ . . . ∧ αn = λ. Now we have

a1Kα1,ω . . . anKαn,ω = sKα1∧...∧αn,ω

= sKλ,ω

and all aiKαi,ω ∈ A. Hence A is a generating set for Ω. □

We will now show that our constructed space is quasi-isometric to the original metric

space.

Claim 5.12
The metric spaces † (S,A)′ and †

(
Ω, A

)′ are quasi-isometric.

Proof: For each group Gλ, let fλ : Gλ → Gλ/Kλ,ω
be the quasi-isometry as given

in Lemma 5.9, and denote the image of an element g ∈ Gλ by gfλ = gKλ,ω . We

then define a map f : † (S,A)′ → †
(
Ω, A

)′ by defining the map for vertices, which

induces a map for the space. We define sf = sfλ where s ∈ Gλ. Let α ∈ Y be such
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that |Kα,ω| ≥ |Kλ,ω| for any λ ∈ Y . Then we claim that f is a (|Kα,ω|, 1, 1)-quasi-

isometry.

Suppose that s and t are two elements in S, with sf = sKβ,ω and tf = tKγ,ω .

Let v = v1 . . . vn be a word labelling a shortest path between s and t where vi ∈ Gλi .

Then vKγ,ω = v1Kλ1,ω . . . vnKλn,ω is a path from sKβ,ω to tKγ,ω which has length

n, and so

d†(Ω,A)
′(sKβ,ω, tKγ,ω) ≤ d†(S,A)′(s, t)

≤ |Kα,ω|d†(S,A)′(s, t) + 1.

We now consider how much shorter than d† (S,A)′ (s, t) a path between sKβ,ω

and tKγ,ω can become. If a sequence of vertices vi . . . vj in the path v are found in the

same coset, then in †
(
Ω, A

)′ these vertices are mapped to a single vertex and so our

path length is reduced by j − i. The size of j − i can be at most the size of the coset

these vertices were found in, which we recall is finite, as all kernels Kλ,ω are finite.

Now suppose the path v travels through a number of cosets, the largest possible size

of which we know is of size |Kα,ω|. Then for each coset that the path travels through,

we know that we are mapping at most |Kα,ω| vertices to a single vertex in †
(
Ω, A

)′.
Thus we reduce the length of a path in † (S,A)′ by a factor of at most |Kα,ω| when

moving into †
(
Ω, A

)′. We note that we must then also subtract a constant of 1 from
1

|Kα,ω|d†(S,A)′(s, t) to find the true lower bound as we will always have at least one edge

which becomes a loop when passing to †
(
Ω, A

)′.
Therefore we have that

1

|Kα,ω|
d†(S,A)′(s, t)− 1 ≤ d†(Ω,A)

′(sKβ,ω, tKγ,ω) < |Kα,ω|d†(S,A)′(s, t) + 1.

Now since †
(
Ω, A

)′ is connected for any vertex y ∈ †
(
Ω, A

)
there exists an x ∈

†
(
Ω, A

)
such that y = (x)faKλ,ω for some a ∈ A, that is d†(Ω,A)(y, (x)f = 1.

Hence f is a (|Kα,ω|, 1, 1)-quasi-isometry. □

Let ĝ be a preimage of g ∈ Gω under φλ,ω . We now define an action of Gω first on

the vertices of †
(
Ω, A

)
by

gsKλ,ω = ĝsKλ,ω. (⋆⋆)

66



5. Clifford Semigroups 67

Claim 5.13
(⋆⋆) is an action of Gω on the vertices of †

(
Ω, A

)
.

Proof: Let g, h ∈ Gω and sKλ,ω ∈ Ω. We first note that since (s−1ĝh
−1
ĝĥs)φλ,ω = 1

then ĝĥsKλ,ω = ĝhsKλ,ω . Therefore

g(hsKλ,ω) =
gĥsKλ,ω

= ĝĥsKλ,ω

= ĝhsKλ,ω

= gh(sKλ,ω).

We also have

1ωsKλ,ω = 1̂ωsKλ,ω

= 1λsKλ,ω

= sKλ,ω.

Hence (⋆⋆) is an action. □

This is then extended to an action on edges, and then to an action on the metric space

†
(
Ω, A

)′. We will show that this action is by isometries.

Claim 5.14
The action (⋆⋆) is by isometries.

Proof: Let g ∈ Gω . We show that the action of g preserves adjaceny of vertices. Let

sKλ1,ω and saKλ2,ω be two vertices in †
(
Ω, A

)′ that are connected by an edge labelled

aKλ2,ω. The images of these vertices under the action of g are ĝsKλ1,ω and ĝtKλ2,ω

respectively. Then

ĝsKλ1,ωaKλ2,ω = ĝsaKλ2,ω

= ĝtKλ2,ω.

Hence edges are preserved under the action. Suppose now that sKλ1,ω and saKλ2,ω

be two vertices in †
(
Ω, A

)′ that are not connected by any edge, but ĝsKλ1,ωaKλ2,ω =

67



68

ĝtKλ2,ω for some aKλ2,ω ∈ A. We multiply both sides of this equation by ĝ−1Kλ1,ω

and see that

ĝ−1Kλ1,ω ĝsKλ1,ωaKλ2,ω = ĝ−1Kλ1,ω ĝtKλ2,ω

sKλ1,ωaKλ2,ω = ĝtKλ2,ω.

This tells us there exists an edge between sKλ1,ω and ĝtKλ2,ω labelled aKλ2,ω. Hence

the action (⋆⋆) preserves non-edges also. Since both adjacency and non-adjacency are

preserved, then paths of shortest length are preserved and so the action is by isometries.

□

We now show that the action (⋆⋆) is cocompact.

Claim 5.15
The action (⋆⋆) is cocompact.

Proof: Let sKλ,ω ∈ Ω. We consider the orbit of sKλ,ω under Gω.

GωsKλ,ω = {ĝsKλ,ω | g ∈ Gω}

= Gλ/Kλ,ω

Hence in the quotient of †
(
Ω, A

)′ by the action there exists a single vertex for each

λ ∈ Y . Since A is finite, then the quotient space is a finite union of paths and so by

Lemma 3.16 the action (⋆⋆) is cocompact. □

The final thing we will show for the action (⋆⋆) is that it is proper.

Claim 5.16
The action (⋆⋆) is proper.

Proof: Let K be a compact set and let W be the set of vertices that are endpoints of

edges containing points in K. We will assume without loss of generality that W only

contains points from a single group Gλ/Kλ,ω
. If this is not the case we simply split

W into the union of sets containing vertices in only single groups and consider the sets

individually. We will denote W ∩ Gλ/Kλ,ω
by C.
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P = {g ∈ Gω | gK ∩K = ∅}

= {g ∈ Gω | gW ∩W = ∅}

= {g ∈ Gω | gcKλ,ω ∈ C for some cKλ,ω ∈ C}

= {g ∈ Gω | ĝcKλ,ω = dKλ,ω for some cKλ,ω, dKλ,ω ∈ C}.

Since C is a finite subset of a group then P is a finite set and so the action (⋆⋆) is

proper. □

Hence we apply the Švarc-Milnor lemma which tells us that Gω equipped with the

word metric is quasi-isometric to †
(
Ω, A

)′. We will let δ : Gω → †
(
Ω, A

)′ denote this

quasi-isometry. We can perform the same construction for T , creating a metric space

†
(
Ψ, B

)′ which is quasi-isometric to the group Hψ equipped with the word metric

where ψ ∈ Z is the least element of Z. We will let ζ : Hψ → †
(
Ψ, B

)′ denote this

quasi isometry.

Now recall from Claim 5.12 that f : † (S,A)′ → †
(
Ω, A

)′ is a quasi-isometry.

Similarly we may define a quasi-isometry g : † (T,B)
′ → †

(
Ψ, B

)′. Additionally,

since † (S,A) ∼= † (T,B) we have an isometry ξ : † (S,A)′ → † (T,B)
′. We therefore

have the following diagram.

† (S,A)′ † (T,B)
′

†
(
Ω, A

)′ †
(
Ψ, B

)′

Gω Hψ

ξ

f g

δ ζ

This means that Gω is quasi-isometric to Hψ , and since these are groups then Gω
being finitely presented means that Hψ is also finitely presented. Now since Hψ is

finitely presented, then so is Hλ/Kλ,ψ
for every λ ∈ Z. Then by Lemma 5.9 Hλ is
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quasi-isometric to Hλ/Kλ,ψ
and so Hλ is finitely presented by Theorem 1.1 for all

λ ∈ Z. Hence by Theorem 5.8 T is finitely presented. □

We have managed to show that finite presentability is invariant under our skeleton

operation for Clifford semigroups in which both semigroups have finite semilattices

where the homomorphisms are epimorphisms with finite kernel. Further work may

look at whether it is possible to relax the conditions on the homomorphisms.

Conjecture 5.17
Let S = S[Y ;Gλ;φλ,µ] and T = S[Z;Hλ; θλ,µ] where Y,Z are finite and homomor-

phisms φλ,µ, θλ,µ are such that

(i) imφα,β , im θα,β have finite index.

(ii) kerφα,β , ker θα,β are finite.

If † (S) ∼= † (T ) then S is finitely presented if and only if T is.

In order to follow a similar proof method here, we would need to find a sensible

action for the Švarc-Milnor Lemma, and it is not immediately clear how we would

define such an action.

70



Chapter 6

A Counterexample

Der Graf ist nicht das, was er mal war

Ja, der Graf wirkt heut seltsam und bizarr

Der Graf

Die Ärzte

Having developed the theory of finite presentability as a skeleton-invariant for cer-

tain families of semigroups, we now change tack, and demonstrate that it is not, in

general, a skeleton-invariant property. This chapter therefore presents a counterexam-

ple to the conjecture that finite presentability is a skeleton and quasi-isometry invariant

of semigroups by proving the following lemma.

Lemma 6.1
Let

S = mon⟨a, b | abna = aba for n ∈ N⟩

and

T = mon⟨c, d | cdc = cd2c = cd4 = cd3c2 = cd3cdc⟩.

Then † (S, {a, b}) = † (T, {c, d}).

We can see from the given presentation that T is finitely presented. We will shortly

prove that S does not have a finite presentation.
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Lemma 6.2 ([17, Proposition 1.3.1])
Let S be a semigroup and A and B be two finite generating sets for S. If there exists a

finite presentation for S in terms of generators A, then there exists a finite presentation

for S in terms of generators B.

Proof: Since B is a generating set for S, there exists an onto mapping φ̂ : A+ → B+

such that a and aφ̂ represent the same element for all a ∈ A. This can be extended to

a homomorphism φ : A+ → B+ such that for all w ∈ A+, wφ represents the same

element as w in S. Similarly there exists a homomorphism σ : B+ → A+ such that w

and wσ represent the same element in S for all w ∈ B+.

Let sgp⟨A | R⟩ be a finite presentation for S, and let Rφ = {uφ = vφ | (u = v) ∈

R}. We show that

P = sgp⟨B | Rφ, b = bσφ for b ∈ B⟩

is a finite presentation for S.

The relations of P are satisfied by S, so it remains to show that ifw1 = w2 is a rela-

tion in S, then it is a consequence of P . Suppose w1, w2 are words in B+ representing

the same element in S, then w1σ and w2σ are in A+ and represent the same element

of S. Since sgp⟨A | R⟩ is a presentation, w2σ can be obtained from w1σ by applying

relations from R. Hence w2σφ can be obtained from w1σφ by application of relations

fromRφ. Now ifw1 ≡ b1b2 . . . bk for bi ∈ B, thenw1σφ ≡ (b1σφ)(b2σφ) . . . (bkσφ)

since σ and φ are both homomorphisms. Hence w1 = w1σφ is a consequence of the

relations b = bσφ for b ∈ B. The relation w2 = w2σφ is obtained similarly, and hence

w1 = w2 is a consequence of the presentation P . □

We note that a monoid has a finite semigroup presentation if and only if it has a

finite monoid presentation, and hence the above lemma may be applied to our monoid

S.

Lemma 6.3 ([17, Example 1.3.2])
The monoid S does not admit a finite presentation.

Proof: Suppose that S has a finite presentation. Then by Lemma 6.2, there exists a

finite presentation of the form mon⟨a, b | R⟩. Since abna = aba holds in S for all
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n ∈ N, then aba can be obtained by applying relations in R to abna. However, since

abn and bna do not satisfy any non-trivial relations, then for each n > 1, R must

contain a relation whose left or right-hand side is abna, and hence R must be infinite,

a contradiction. □

6.1 Normal Forms

In order to see that we have correctly established the Cayley graphs for S and T , we

will need to have some way of representing the elements of both. We do this by finding

normal forms for S and T , via the use of complete rewriting systems. Throughout, let

k = {1, . . . , k} for k ∈ N0.

Recall that the semigroup defined by a presentation is the quotient of the free semi-

group over the generators by the smallest congruence containing the relations, and hence

is a set of congruence classes. Given two words in A+, we may be able to see if they

are in the same congruence class using a rewriting system to determine normal forms

for words.

Definition 6.4
A rewriting system is a set of ordered pairs LHS → RHS, a left-hand side and a right-

hand side, with LHS,RHS ∈ A+. Words in A+ are rewritten by replacing subwords

that are left hand sides of rewriting rules with the corresponding right hand side. We

denote a word v being rewritten to w using a single rule by v → w. If we can rewrite

a word v to a word w by applying n ≥ 1 rewrite rules, we will write v→∗w. A word

w that cannot be rewritten, that is, there exists no word v such that w → v, is called

irreducible.

Definition 6.5
We denote by ↔∗ the symmetric closure of → and so u ↔∗ v if and only if for some

n ≥ 0 there exist u = u0, u1, . . . , un = v with

u1
∗

}}||
||
||
|| ∗

!!B
BB

BB
BB

B u3
∗

}}||
||
||
|| ∗

!!C
CC

CC
CC

CC
un−1

∗

{{xx
xx
xx
xx
x ∗

##G
GG

GG
GG

G

u0 u2 . . . un.
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Then ↔ ∗ forms a congruence.

We wish to use certain rewriting systems that allow us to find unique representatives

for congruence classes, which we will call normal forms. To do this, we will need to

order words in A+.

Definition 6.6
The shortlex order on a set of wordsW , denoted here by ≺, is a well order, in which for

u, v ∈ W , we have u ≺ v if u has shorter length than v, or if u and v have the same

length but u precedes v lexicographically.

We will use the shortlex order when defining the following properties. Given a

semigroup presentation S = sgp⟨A | R⟩ let ρ be the least congruence containing R.

We will assume without loss of generality that given a relation (u, v) ∈ R that u ≺ v

and we create a rewriting system from R by defining u → v for all (u, v) ∈ R. Then

the congruences ↔ ∗ and ρ coincide.

Definition 6.7
A rewriting system is locally confluent if for a, b1, b2 ∈ A+ with a → b1 and a → b2,

there exists some c ∈ A+ such that b1 and b2 can be rewritten to c in any number of

steps. A system is Noetherian if there is no infinite chain of strings ai where ai → ai+1

for all i > 0.

Definition 6.8
A rewriting system is complete if it is both Noetherian and confluent.

Lemma 6.9 ([11, Lemma 12.15])
A rewriting system is complete if it is both Noetherian and locally confluent.

We can now establish a condition for when we can find normal forms for elements

of our semigroups.

Lemma 6.10 ([11, Lemma 12.16])
If a complete rewriting system exists for A+/ρ, then each congruence class contains a

unique irreducible element which is the normal form for that congruence class.
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Lemma 6.11 ([11, Lemma 12.17])
For an alphabet A and rewriting system R, the rewriting system is locally confluent if

and only if the following conditions hold for any two rules v1 → u1 and v2 → u2 in R.

(i) If v1 = xy and v2 = yz for x, y, z ∈ A∗ and y ̸= ε, then u1z →∗ t and xu2 →∗ t

for some t ∈ A∗.

(ii) If v1 = xu2y for x, y ∈ A∗, then u1 →∗ w and xu2y →∗ w for some w ∈ A∗.

We can now apply this theory to our semigroups S and T .

Claim 6.12
Elements of S have normal forms given by

∏
i∈k

bαiaβi whereαi = 1 for i ̸= 1, k , βi ̸= 0

for i < k, and if αk > 1 then βk = 0. The empty string, εS is also a normal form,

representing the identity.

Proof: Using the shortlex order with a ≺ b, the following is an infinite complete

rewriting system made from the relations of the presentation of S:

abna→ aba for all n > 1, n ∈ N

This system is locally confluent[11, Lemma 12.17], as there exists only one form of

overlap when rewriting. We provide a diagram to demonstrate this below. The under-

lined subwords are rewritten following the upper and lower arrow respectively. In this

case, the only overlap is the central a in the diagram.

ababn2a // ababa

abn1abn1abn2a

88qqqqqqqqqqq

&&MM
MMM

MMM
M

abn1aba // ababa

Since both paths rewrite to the same word, we have local confluence. Now for all

rules we have RHS ≺ LHS, that is if a rewrite rule is applied to a word, it will always

be rewritten to a shorter word. Thus the rewriting system is Noetherian, and hence is

complete.

75



76 6.1. Normal Forms

We must now check that our proposed normal forms are indeed the correct repre-

sentatives for their congruence classes, so we must show they are irreducible. Since

all rules have a left hand side with abna for n > 1, elements of the form
∏
i∈k

bαiaβi ,

with the restrictions as above, cannot be reduced any further, since they do not contain

any subwords of the correct form, and so are contained in the set of normal forms. The

empty word εS cannot be rewritten and hence is also irreducible.

We are sure now that our proposed normal forms are indeed that, but we must also

show that we have listed all normal forms. Suppose that s =
∏
i∈k

bαiaβi ∈ S where

αi, βi ∈ N is an element in normal form not given in the above set. For each i ∈ k with

i ̸= k such that αi ̸= 1, we apply the following rewrite to s:

bα1aβ1 . . . bαi−1aβi−1bαiaβi . . . bαkaβk → bα1aβ1 . . . bαi−1aβi−1baβi . . . bαkaβk

Hence s was not irreducible.

□

The normal forms for S are perhaps better understood by the following description:

words beginning with any number of b, which may be followed by any non-zero number

of a, then a single b, again any non-zero number of a and a single b, etc., then finally

ending in any number of occurrences of the letter a or any number of occurrences of

the letter b.

The normal forms for T are somewhat more complicated than for S.

Claim 6.13
Elements of T have one of the following as a canonical forms:

(i)
∏
i∈k

dαicβi where αi = 1 for i ̸= 1, βi ̸= 0 for i ≤ k. These words follow a

similar pattern to the normal forms of S, but must end in at least one c.

(ii) Elements of the form v
(
d3c

)l
dr, where v is an element of the form given in (i)

and r ∈ {0, 1, 2, 3}

(iii) The empty string εT is also a normal form, representing the identity.
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Proof: Using the shortlex order with c ≺ d, the following is a finite complete rewriting

system made from the relations of the presentation of T :

cd2c→ cdc

cd4 → cdc

cd3c2 → cdc

cd3cdc→ cdc

To show local confluence for this system we must consider the following overlaps:
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78 6.1. Normal Forms

cdcd2c // cdcdc

≡

��

cd2cd2cd2c

::uuuuuuuuuu

$$J
JJ

JJ
JJ

J

cd2cdc // cdcdc

cdcd4 // cdcdc

≡

��

cd2cd2cd4

::uuuuuuuuu

$$I
II

II
II

I

cd2cdc // cdcdc

cdcd3c2 // cdcdc

≡

��

cd2cd2cd3c2

99ssssssssss

%%KK
KKK

KKK
K

cd2cdc // cdcdc

cdcd3cdc // cdcdc

≡

��

cd2cd2cd3cdc

88rrrrrrrrrrr

&&LL
LLL

LLL
L

cd2cdc // cdcdc

cdcd2c // cdcdc

≡

��

cd3ccd3ccd2c

99ssssssssss

%%KK
KKK

KKK
K

cd3ccdc // cdcdc

cdcd4 // cdcdc

≡

��

cd3ccd3ccd4

99tttttttttt

%%JJ
JJJ

JJJ
J

cd3ccdc // cdcdc

cdcd3cdc // cdcdc

≡

��

cd3ccd3ccd3cdc

88qqqqqqqqqqq

&&MM
MMM

MMM
MM

cd3ccdc // cdcdc

cdcd3cdc // cdcdc

≡

��

cd3ccd3ccd3cdc

88qqqqqqqqqqq

&&MM
MMM

MMM
MM

cd3ccdc // cdcdc

cdcd2c // cdcdc

≡

��

cd3cdcd3cdcdic

88rrrrrrrrrrr

&&LL
LLL

LLL
L

cd3cdcdc // cdcdc

cdcd4 // cdcdc

≡

��

cd3cdcd3cdcd4

99rrrrrrrrrrr

%%LL
LLL

LLL
L

cd3cdcdc // cdcdc

cdcd3c2 // cdcdc

≡

��

cd3cdcd3cdcd3c2

88qqqqqqqqqqq

&&MM
MMM

MMM
MM

cd3cdcdc // cdcdc

cdcd3cdc // cdcdc

≡

��

cd3cdcd3cdcd3cdc

88ppppppppppp

&&NN
NNN

NNN
NN

cd3cdcdc // cdcdc
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These describe all the possible overlaps, and hence the rewriting system is locally con-

fluent. All rewrite rules have LHS ≺ RHS, so a shorter word is never rewritten to a

longer word, and so the system is Noetherian, and thus complete.

Since we have a complete rewriting system, we know that normal forms for elements

of T exist. We wish to check that we have found the correct representative for each

congruence class, that is, the unique irreducible element in each class.

Suppose we have an element s of the form (i). All left hand sides of rules can only

be applied to words containing a power of d greater than 1. Since s does not contain

any such powers, s is irreducible, and thus a normal form.

Now suppose s is in form (ii), that is, s = v
(
d3c

)l
dr. As before, we cannot reduce

v, so we are concerned with reducing the substring c
(
d3c

)l
dr. Given the restrictions

on l and r we can see by inspection that this contains no left hand sides of rules, and

thus s is irreducible and so a normal form.

The empty string cannot be rewritten in any way, and is trivially a normal form.

Now conversely we must check that we have not forgotten any normal forms. We let

s be an element of T in normal form that does not have any of the above forms. We can

write s =
∏
i∈k

dαicβi for αi, βi ∈ N. We will assume that there is exactly one αi ̸= 1,

as otherwise we will apply the process described below to each αi ̸= 1 until we are left

with only one.

Now if αi = 2 then

dα1cβ1 . . . dαi−1cβi−1d2cβi . . . dαkcβk → dα1cβ1 . . . dαi−1cβi−1dcβi . . . dαkcβk .

For αi = 3, if we have βi = 1 then

dα1cβ1 . . . dαi−1cβi−1d3cdαi+1cβi+1 . . . dαkcβk

→ dα1cβ1 . . . dαi−1cβi−1dcdαi+2cβi+2 . . . dαkcβk .

If βi ≥ 2 then

dα1cβ1 . . . dαi−1cβi−1d3cβi . . . dαkcβk → dα1cβ1 . . . dαi−1cβi−1dcβi−1 . . . dαkcβk .

Finally, if αi ≥ 4 we can rewrite the subword cβi−1dαi as

cβi−1dαi → cβi−1−1(cd)mdn−4m
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80 6.2. Graphs

where m = ⌊n/4⌋ and then apply one of the above rewrites if n− 4m > 1. Hence s is

not irreducible and not in normal form. □

6.2 Graphs

Before providing an isomorphism between † (S) = † (T ) we will first establish an

intuitive description of these graphs. Since the Cayley graphs have many repeated sub-

graphs, we build them from smaller graphs to aid understanding. We will zoom in on a

section of the graph and describe fully the edges and vertices there. We will then zoom

out and gloss over occurrences of the section we examined previously.

Cay(S) is built from four sections, the first of which, our deepest zoom level, is

C1. This consists of the set of vertices V1 = {bi | i ∈ N0} ∪ {ba}, and the edges

E1 = {
(
bi, bi+1

)
, | i ∈ N0} ∪ {

(
bi, ba

)
| i ∈ N0}.
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b

b
a

b

a

b

a

b

a

a

Figure 6.1: C1

Zooming out, the second section, C2 consists of vertices V2 = {(
∏
i∈k

baαi)v1 | k ∈

N0, v1 ∈ V1, α1 ≥ 1}. Let w ∈ V2 be a word ending in a, or the empty word in V2
εV2 . Then edges in C2 are given by E2 = {(w,wa) ,

(
wbi, wbi+1

)
,
(
wbj , wba

)
| i ∈

N0, j ∈ N} \ {(εV2 , a)}. Subgraphs isomorphic to C1 are represented in Figure 6.2 of

C2 by dashed lines.
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82 6.2. Graphs

b

a

b

a

b

a

b

a

a

a

b

b

a

a

a
a

a

b

b

a

a

a

Figure 6.2: C2

The third section contains C3 has vertices V3 = {aiv2 | i ∈ N, v2 ∈ V2} ∪ {εS}.

Let w ∈ V3 where w ends in a, then edges are given by

E3 = {(w,wa) ,
(
wbi, wbi+1

)
,
(
wbj , wba

)
| i ∈ N0, j ∈ N} ∪ {(εS , a)}.

In Figure 6.3 representing C3, dashed lines represent subgraphs isomorphic to C2.

a

a

a

a

Figure 6.3: C3
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6. A Counterexample 83

Finally, we now zoom out as far as possible to the fourth section C4. This has

vertices V4 = {biv3 | i ∈ N0, v3 ∈ V3} and if w ∈ V3 with w being εS or a word

ending in a, the edge set is E4 = {(w,wa) ,
(
wbi, wbi+1

)
,
(
wbj , wba

)
| w ∈ V4, i ∈

N0, j ∈ N}. Dashed lines in Figure 6.4 represent subgraphs isomorphic to C3 in the

graph C4. The Cayley graph of S is given by C4.

b

b

b

b

Figure 6.4: C4

Now the vertex set of C4 can be expanded upon so that we better understand what

it is. We must expand the term v3 for v3 ∈ V3, which gives us the following set

V4 ={biaj(
∏
l∈k

baαl)bm | i, j, k,m ∈ N0, αl ∈ N}

∪ {biaj(
∏
l∈k

baαl)ba | i, j, k ∈ N0, αl ∈ N}

∪ {biajbk | i, j, k ∈ N0}

∪ {biajba | i, j ∈ N0}

If we were to describe this set, we might say something like it consists of words that

can begin with any number of b (including zero), then any number of a (including zero),

which may be followed by a single b, then any non-zero number of a, which we may

repeat some number of times, before finally ending in either some number of a or some

number of b. That is, alternating products of any number of a and single a b, where the

first and last part of the word may be any number of b. This is exactly a description of
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84 6.2. Graphs

the normal forms of S, and so the set of vertices V4 is equal to the set of elements of S.

From the set of relations, we see that there exists an edge between wabi and waba

labelled by a for w ∈ S. This corresponds to the edges
(
wbj , wba

)
in E4. Since there

are no other relations, the rest of the edges labelled by a are
(
wai, wai+1

)
and those

labelled by b are (w,wb) for w ∈ S, which completes the set E4.

Having established the structure for S, we can now use a very similar method to

describe T . Cay(T ) is built from four sections, the first of which is D1. This consists

of the set of vertices W1 = {(d3c)ldr | 0 ≤ r ≤ 3, l ∈ N0} ∪ {dc}. Let εW1 be the

empty word in V1, then the set of edges for C1 is

F1 ={
((
d3c

)l
di,

(
d3c

)l
di+1

)
| i ∈ {0, 1, 2}, l ∈ N0}

∪ {
((
d3c

)l
d3,

(
d3c

)l+1
)
| l ∈ N0}

∪ {
((
d3c

)l
di, dc

)
| i ∈ {0, 1, 2, 3}, l ∈ N0} \ {(εW1 , dc)}.
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d

d
c

d

c

c

d

d

c

c

Figure 6.5: D1

The second section D2 has vertices W2 = W1 ∪ {(
∏
i∈k

(dcαi))w1 | where k ∈

N0, w1 ∈ W1α1 ≥ 1}. Let w ∈ V2 be a word ending in c and εW2 be the empty word

in W2, then the edges of D2 are

F2 ={
(
wci, wci+1

)
| i ∈ N0}

∪ {
(
w
(
d3c

)l
di, w

(
d3c

)l
di+1

)
| i ∈ {0, 1, 2}, l ∈ N0}

∪ {
(
w
(
d3c

)l
d3, w

(
d3c

)l+1
)
| l ∈ N0}

∪ {
(
w
(
d3c

)l
di, wdc

)
| i ∈ {0, 1, 2, 3}, l ∈ N0} \ {(εW2 , dc)}.

85



86 6.2. Graphs

Subgraphs isomorphic to D1 are represented in the figure D2 by dashed lines.

d

c

d

c

d

c

d

c

c

c

d

d

c

c

c
c

c

d

d

c

c

c

Figure 6.6: D2

The third section D3 has vertices W3 = {ciw2 | i ∈ N, w2 ∈ W2} ∪ {εT }. We let

w ∈W3 be a word ending in c, then the edges of D3 are

F3 ={(εT , c)}

{
(
wci, wci+1

)
| i ∈ N0}

∪ {
(
w
(
d3c

)l
di, w

(
d3c

)l
di+1

)
| i ∈ {0, 1, 2}, l ∈ N0}

∪ {
(
w
(
d3c

)l
d3, w

(
d3c

)l+1
)
| l ∈ N0}

∪ {
(
w
(
d3c

)l
di, wdc

)
| i ∈ {0, 1, 2, 3}, l ∈ N0} \ {(εT , dc)}.

In the figure D3 dashed lines represent subgraphs isomorphic to D2.
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c

c

c

c

Figure 6.7: D3

Finally, the fourth section D4 has vertex set W4 = {diw3 | i ∈ N0, w3 ∈ W3} ∪

{εT }. If we let w ∈ T be a word ending in c, then D4 has edge set

F4 ={(εT , c) , (εT , d)}

∪ {
(
di, di+1

)
| i ∈ N0}

∪ {
(
wci, wci+1

)
| i ∈ N0}

∪ {
(
w
(
d3c

)l
di, w

(
d3c

)l
di+1

)
| i ∈ {0, 1, 2}, l ∈ N0}

∪ {
(
w
(
d3c

)l
d3, w

(
d3c

)l+1
)
| l ∈ N0}

∪ {
(
w
(
d3c

)l
di, wdc

)
| i ∈ {0, 1, 2, 3}, l ∈ N0} \ {(εT , dc)}.

Dashed lines represent subgraphs isomorphic to D3 in the figure D4. The Cayley

graph of T is given by D4.
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d

d

d

d

Figure 6.8: D4

Now the vertex set of D4 can be expanded upon so that we better understand what

it is. We must expand the term w3 for w3 ∈W3, which gives us the following set

W4 ={dicj(
∏
l∈k

dcαl)(d3c)mdr | i, j, k,m ∈ N0, 0 ≤ r ≤ 3, αl ∈ N}

∪ {cicj(
∏
l∈k

dcαl)dc | i, j, k ∈ N0, αl ∈ N}

∪ {dicj(d3c)ldr | i, j, l ∈ N0, 0 ≤ r ≤ 3}

∪ {dicjdc | i, j ∈ N0}

The second and fourth sets cover all normal forms of type (ii) and (iii), whilst the

first and third sets cover all normal forms of type (i). Thus the set of vertices V4 = T .

From the relations, we can infer the following types of edge:

• {
(
vcd2, vcdc

)
} for v ∈ T , labelled c.

• {
(
vcd3, vcdc

)
} for v ∈ T , labelled d.

• {
(
vcd3c, vcdc

)
} for v ∈ T , labelled c.

• {
(
vcd3cd, vcdc

)
} for v ∈ T , labelled c.

These are all the edges found in the subset

{
(
w
(
d3c

)l
di, wdc

)
| i ∈ {0, 1, 2, 3}, l ∈ N0} of W4. We can describe the edges

labelled by the remaining generator for the first word in each of these pairs:

88
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• {
(
vcd2, vcd3

)
} for v ∈ T , labelled d.

• {
(
vcd3, vcd3c

)
} for v ∈ T , labelled c.

• {
(
vcd3c, vcd3cd

)
} for v ∈ T , labelled d.

• {
(
vcd3cd, vcd3cd2

)
} for v ∈ T , labelled d.

Edges of the first, second and fourth type are found in the subset

{
(
w
(
d3c

)l
di, w

(
d3c

)l
di+1

)
| i ∈ {0, 1, 2}, l ∈ N0} of W4 and describe almost

all edges in this subset, save for the edge (c, cd). Edges of the third type are all the

edges found in the subset {
(
w
(
d3c

)l
d3, w

(
d3c

)l+1
)
| l ∈ N0}.

Suppose then that u ∈ T but u /∈ {vcd2, vcd3, vcd3c, vcd3cd}. Then we have edges

of the type (u, uc) and (u, ud). These cover edges in the subsets {(εT , c) , (εT , d)} ,

{
(
di, di+1

)
| i ∈ N0} {

(
wci, wci+1

)
| i ∈ N0} and the missing edge (c, cd). Hence

the edges W4 are indeed the edges we have in Cay(T ).

Given these diagrams, we can intuitively see that these graphs are isomorphic. In

the next section we provide an explicit graph isomorphism.

6.3 Graph Isomorphism

Having established normal forms for elements, it is now possible to define a map be-

tween the vertex sets S and T . We have previously looked at normal forms as prod-

ucts, and from that perspective we would define a map f : S → T as follows. Let

w =
∏
i∈k

bαiaβi be a word that ends in either a single b, or any number of a. That is, let

αi and βi be as above, but αk = 1 also. Then

(w) f =
∏
i∈k

dαicβi = v

Now supposew is such that βk ̸= 0, that is,w ends in an a. We define the following:

(
wbj

)
f = v

(
d3c

)l
dr where j = 4l + r

Finally we observe that

(εS) f = εT .
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90 6.3. Graph Isomorphism

However, it will be more instructive to categorise our normal forms into different

types, from which we can describe the types of edges arising. We then provide two

mutually inverse maps between the types, which preserve edges and so form an isomor-

phism of the graphs Cay(S) and Cay(T ).

For S, let U = {ai0bai1b . . . baik | k ≥ 0, im > 0}. Then our normal forms in S

are words of the form bj , bju and bjubq . It will be useful later on to view information

in the form of tables, so Table 6.1 describes our classification of normal forms of S.

Label Normal Form Parameters

NFS1 bj j ≥ 0

NFS2 bju j ≥ 0, u ∈ U

NFS3 bjubq j ≥ 0, u ∈ U, q > 0

Table 6.1:

We will assume these parameters apply throughout. For each vertex in Cay(S), there

are two edges leaving, one labelled a and one labelled b. Consider a vertex bjubq of type

NFS3. The edge labelled a initiating at this vertex will terminate at the vertex bjuba,

due to the relation abna = aba, giving us an edge (bjubq, bjuba). The edge labelled b

that begins at bjubq will terminate at bjubq+1, as there are no relations to apply in this

instance, giving us an edge (bjubq, bjubq+1). All types of edges in Cay(S) are listed in

Table 6.2, categorised by their initial vertex type followed by the edge label.

Label Edge Vertex Types

NFS1a (bj , bja) (NFS1,NFS2)

NFS1b (bj , bj+1) (NFS1,NFS1)

NFS2a (bju, bjua) (NFS2,NFS2)

NFS2b (bju, bjub) (NFS2,NFS3)

NFS3a (bjubq, bjuba) (NFS3,NFS2)

NFS3b (bjubq, bjubq+1) (NFS3, NFS3)

Table 6.2:

For T , let V = {ci0dci1d . . . dcik | k ≥ 0, im > 0}. We then have three categories
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of normal forms in T , which are dj , djv and djv(d3c)ldr, which are tabulated in Table

6.3.

Label Normal Form Parameters

NFT1 dj j ≥ 0

NFT2 djv j ≥ 0, v ∈ V

NFT3 djv(d3c)ldr j, l ≥ 0, 0 ≤ r ≤ 3, v ∈ V, l + r > 0

Table 6.3:

As with S, we will assume these parameters apply to normal forms of T throughout.

For vertices in Cay(T ), each has an edge labelled c and one labelled d. The most com-

plex case here is for a vertex djv(d3c)ldr of type NFT3. If 0 ≤ r ≤ 2, then the edge

labelled c will terminate at the vertex djvdc thanks to the relations cd2c = cd3c2 =

cd3cdc = cdc. If r = 3, then simple multiplication by c gives the terminating vertex as

djv(d3c)l+1. Now for the edge labelled d starting at this vertex, if 0 ≤ r ≤ 2, then the

edge terminates at djv(d3c)ldr+1. However if r = 3, then by the relation cd4 = cdc,

the terminating vertex is djvdc. Other edges in Cay(T ) are expanded upon in Table 6.4.

Label Edge Vertex Type

NFT1c (dj , djc) (NFT1,NFT2)

NFT1d (dj , dj+1) (NFT1,NFT1)

NFT2c (djv, djvc) (NFT2,NFT2)

NFT2d (djv, djvd) (NFT2, NFT3)

NFT3c (djv(d3c)ldr, djvdc) for 0 ≤ r ≤ 2 (NFT3, NFT2)

(djv(d3c)ld3, djv(d3c)l+1) (NFT3, NFT3)

NFT3d (djv(d3c)ldr, djv(d3c)ldr+1) for 0 ≤ r ≤ 2 (NFT3, NFT3)

(djv(d3c)ld3, djvdc) (NFT3, NFT2)

Table 6.4:

We now define a bijection between normal forms ofS and those of T . We first define
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92 6.3. Graph Isomorphism

a natural bijection between the sets U and V . Let u = ai0bai1b . . . baik ∈ U and ū =

ci0dci1d . . . dcik ∈ V . We then define the bijection by u 7→ ū. The general bijection

S → T is then given in Table 6.5. It is easy to find the image of most normal forms

by exchanging alphabets, however for those of type NFS3 the situation is slightly more

complicated. Here we must take the power q and divide it by 4 to give an appropriate l

and r for a normal form of type NFT3.

Type of w w (w)f Type of (w)f

NFS1 bj dj NFT1

NFS2 bju dj ū NFT2

NFS3 bjubq dj ū(d3c)ldr NFT3

where q = 4l + r

Table 6.5:

The inverse of f is given in Table 6.6, and is found by exchanging the columns of

Table 6.5.

Type of w w (w)f−1 Type of (w)f−1

NFT1 dj bj NFS1

NFT2 dj ū bju NFS2

NFT3 dj ū(d3c)ldr bjubq NFS3

where q = 4l + r

Table 6.6:

We check finally that the map f is a graph isomorphism by checking that it maps

edges in Cay(S) to edges in Cay(T ), and vice-versa. Consider, for example an edge

of type NFS3b, which begins at bjubq . This initial vertex is mapped to dj ū(d3c)ldr,

however the image of the terminal vertex bjubq+1 is dependent on the value of q. Given

a q such that 0 ≤ r ≤ 2, then the remainder of q+1 on division by 4 is r+1, and so the
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image of the vertex bjubq+1 is simply dj ū(d3c)ldr+1. However if q is such that r = 3,

then upon division by 4, q + 1 has quotient l + 1 and remainder 0, hence the image of

the terminal vertex is dj ū(d3c)l+1.

Edge Type (w,wx) ((w,wx))f Edge Type

NFS1a (bj , bja) (dj , djc) NFT1c

NFS1b (bj , bj+1) (dj , dj+1) NFT1d

NFS2a (bju, bjua) (dj ū, dj ūc) NFT2c

NFS2b (bju, bjub) (dj ū, dj ūd) NFT2d

NFS3a (bjubq, bjuba) (dj ū(d3c)ldr, dj ūdc) NFT3c

NFS3b (bjubq, bjubq+1) (dj ū(d3c)ldr, dj ū(d3c)ldr+1) for 0 ≤ r ≤ 2 NFT3d

(dj ū(d3c)ldr, dj ū(d3c)l+1) for r = 3

Table 6.7:

In the opposite direction, we note that edge types NFT3c will map to edges of type

NFS3a or NFS3b depending on the value of r (similarly for NFT3d), but this mapping

is otherwise straightforward, and can be found in Table 6.8.
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Edge Type (w,wx) ((w,wx))f−1 Edge Type

NFT1c (dj , djc) (bj , bja) NFS1a

NFT1d (dj , dj+1) (bj , bj+1) NFS1b

NFT2c (dj ū, dj ūc) (bju, bjua) NFS2a

NFT2d (dj ū, dj ūd) (bju, bjub) NFS2b

NFT3c (dj ū(d3c)ldr, dj ūdc) for 0 ≤ r ≤ 2 (bjubq, bjuba) NFS3a

(dj ū(d3c)ld3, dj ū(d3c)l+1) for r = 3 (bjubq, bjubq+1) NFS3b

NFT3d (dj ū(d3c)ldr, dj ū(d3c)ldr+1) for 0 ≤ r ≤ 2 (bjubq, bjubq+1) NFS3b

(dj ū(d3c)ld3, dj ūdc) for r = 3 (bjubq, bjuba) NFS3a

Table 6.8:

Hence S is Cayley graph isomorphic to T via the map f .

6.4 Conclusions

We have demonstrated here two semigroups that have not only isomorphic skeleton

graphs, but isomorphic Cayley graphs, where one is finitely presented, and the other

infinitely presented. This provides an answer to the question asked in [8, Question 1]

and shows that in general, finite presentation of semigroups is not a quasi-isometry, or

even isometry invariant property.

Remark 6.14
There is in fact an infinite family of finitely presented semigroups {Jn} where † (S) and

† (Jn) are isomorphic.

Jn = mon⟨c, d | cdc = cd2c = . . . = cdn−2c = cdn = cdn−1c2 = cdn−1cdc⟩

where n ≥ 4.

Each monoid Jn has normal forms:
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(i)
∏
i∈k

dαicβi where αi = 1 for i ̸= 1, βi ̸= 0 for i ≤ k.

(ii) Let v be an element of the form given above (where the last letter is a c). Then we

have also elements of the form v
(
dn−1c

)l
dr, where r ∈ {0, 1, 2, 3, . . . , n− 1}.

We can generalise the isomorphism f to fn : S → Jn where

(w) f =
∏
i∈k

dαicβi = v

for w =
∏
i∈k

bαiaβi which ends in either a single b, or any number of as. Now suppose

w is such that βk ̸= 0, that is, w ends in an a,then:

(
wbj

)
f = v

(
dn−1c

)l
dr where j = nl + r

We can also note that throughout, we have been working with monoids. We may

also regard these as semigroup presentations

Ŝ = sgp⟨a, b | abna = aba for n ∈ N⟩

and

T̂ = sgp⟨c, d | cdc = cd2c = cd4 = cd3c2 = cd3cdc⟩.

Theorem 6.15
The semigroup Ŝ is infinitely presented and has †

(
Ŝ
)
∼= †

(
T̂
)

.

Proof: From Lemma 6.3, we have that Ŝ is not finitely presentable. We observe that

Cay
(
Ŝ
)

is isomorphic to the subgraph of Cay(S) induced by S \ {εS}. Similarly,

Cay
(
T̂
)

is the subgraph of Cay(T ) induced by T \ {εT }. Then since the map f from

above is an isomorphism, and maps εS 7→ εT , then f ↾Ŝ is a graph isomorphism

between †
(
Ŝ
)

and †
(
T̂
)

. □

Similarly all the monoids Jn can be considered as semigroups.
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Chapter 7

Cayley Spectra of Semigroups

Your leafy screens throw down,

And show like those you are.

Macbeth

Shakespeare

In this chapter we leave behind notions of preserving finite presentability (or not

preserving as we have seen in Chapter 6), and look at whether we can deduce any infor-

mation about semigroups by simply looking at a skeleton. One semigroup and skeleton

that we will consider in detail is that of the infinite monogenic semigroup, or natural

numbers under addition. This semigroup gives us the following proposition.

Proposition 7.1
It is not always possible to see if a semigroup has an identity by inspecting its skeleton.

Proof: Let N = sgp⟨1⟩ be the natural numbers under addition, and let N0 = sgp⟨0, 1⟩

be the natural numbers under addition with an identity. Then † (N, 1) ∼= † (N0, {0, 1}),

but the latter has an identity whilst the former does not. □

There are however some special cases in which we can detect the presence of an

identity, which we will see in 7.2.

We introduce the notion of a Cayley spectrum of a semigroup.
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98 7.1. The Natural Numbers

Definition 7.2
LetS be a semigroup with skeleton † (S,A). Then the Cayley spectrum ofS with respect

to A is the maximal set of pairwise non-isomorphic semigroups such that if Ti is in

C(S,A) then there exists some generating set Bi for Ti with † (Ti, Bi) ∼= † (S,A).

The Cayley spectra of a semigroup with respect to a generating set tells us which

other semigroups share this skeleton. We will investigate the Cayley spectra of four

types of semigroup, and find that in some cases the skeleton is unique, and in others it

is shared by many other semigroups. Where the skeleton is not unique, we will describe

exactly the semigroups that have that skeleton.

We will explore the Cayley spectrum of the natural numbers, which we will prove

contains only the natural numbers themselves, either with or without an identity ele-

ment. We then expand to considering free monoids with generating sets of size at least

two, and find that the Cayley spectrum here is as small as possible, containing only

itself. It is interesting then, that when we move to consider free semigroups with gen-

erating sets of size at least 2, the number of semigroups we find in the Cayley spectrum

increases significantly. We give an exact number in Theorem 7.56, and exact descrip-

tions of these semigroups in 7.69. Finally we consider the Cayley spectrum of the in-

tegers. Here we find that there are seven semigroups in the spectrum, details of which

are found in Theorem 7.74, which we note is a curious number.

The proofs in this section will involve a significant amount of cases, but throughout

the cases we will rely on one common technique. We will attempt to find unique features

of the skeletons, such as vertices with unique degrees, and study the possible relations

that can arise from that feature. We will then take those relations and attempt to translate

them to another point in the graph and see whether this induces a contradiction.

7.1 The Natural Numbers

The first semigroup we look at is the natural numbers (without 0) under addition. We

will look at this with respect to the generating set {1}, and show that there are only two

semigroups in the Cayley spectrum of N with respect to this generating set. We first
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prove the following theorem.

Theorem 7.3
Let S = sgp⟨a, b⟩ with † (S, {a, b}) ∼= † (N, 1). Then either S ∼= N or S ∼= N0.

Remark 7.4
Let S = sgp⟨a, b⟩, where S ≇ N and S ≇ N0, be such that † (S) ∼= † (N, 1). When

visualising † (S, {a, b}), we think of it as a one-ended infinite line. We will place the

unique vertex u of degree one to the left, and all subsequent vertices to the right of this.

When traversing this line starting at u we will let the first generator we encounter be a,

and the second generator we encounter be b.

An example diagram is given in Figure 7.1, and we will refer to edges point left and

right, or vertices being left and right of each other in accordance with this diagram.

u a b

Figure 7.1: Visualisation of † (S, {a, b})

The convention established in this remark will be followed throughout the rest of

this section.

In this proof we will first consider the orders of our generators a and b, where order

is defined as follows.

Definition 7.5
Let S be a semigroup and let s ∈ S. Then the order of s is the size of the semigroup

generated by s, that is sgp⟨s⟩ = {si | i ∈ N}. If |sgp⟨s⟩| is finite, then s has finite

order. If sgp⟨s⟩ is infinite, then the order of s is infinite.

A relatively short argument will eliminate either having infinite order, however when

both have finite order the argument is not so short. We will require a breakdown into

a large amount of cases. In some of the cases we will have that the unique vertex u is

equal to some word w and will pick a vertex s that is distance at least |w|+1 right from

b and inspect the path labelled w from s to draw conclusions from. The breakdown of

cases will be as follows.
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100 7.1. The Natural Numbers

1 a and b both have infinite order.

2 Exactly one of a and b has infinite order.

3 Both a and b have finite order.

3.1 u is not a generator.

3.1.1 All edges from s labelled by w are right arrows.

3.1.2 There exists at least one right edge and one non-right edge in the path

labelled by w from s.

3.1.3 All edges in paths labelled w from s onwards are left edges.

3.2 u is a generator, that is u = a.

3.2.1 There exists an edge going left from b.

3.2.2 There exist only loops or right edges from b.

3.2.2.1 ba = bb = b

3.2.2.2 ba = bb ̸= b

3.2.2.2.1 abb = ab = a

3.2.2.2.2 abb = ab ̸= a

3.2.2.2.3 abb = a ̸= ab

3.2.2.2.4 abb ̸= a ̸= ab

3.2.2.3 ba = b ̸= bb

3.2.2.3.1 ab = a

3.2.2.3.2 ab ̸= a label

3.2.2.3.2.1 aa = a

3.2.2.3.2.2 aa ̸= a

3.2.2.4 bb = b ̸= ba

3.2.2.4.1 abb = ab = a

3.2.2.4.2 abb = ab ̸= a label

3.2.2.4.2.1 aa ̸= ab

3.2.2.4.2.2 aa = a
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7. Cayley Spectra of Semigroups 101

In subcases of 3, our unique feature that we will exploit here is the vertex u of degree

one in † (N, 1). For 3.1 we will find some word w that represents this vertex, and then

attempt to follow the path labelled by this word from any vertex s sufficiently far from

the generators. The assumptions we make in these cases will lead us to finding that the

skeleton graph does not have the correct shape, and so we obtain contradictions.

For subcases of 3.2, we will look at the products of length 2 starting at b, and then

translate these equalities to the unique vertex of degree one, that is u = a. From this

we will either deduce that we do not obtain the correct shape of graph, or that the graph

and semigroup that we do obtain is in fact either N or N0.

We will approach the proof of Theorem 7.3 by examining the cases above in a series

of claims. The relation of claims to cases is given in the following table.

Case Claim

1 7.6

2 7.7

3 see subcases

3.1 see subcases

3.1.1 7.10

3.1.2 7.11

3.1.3 7.12

3.2 see subcases

3.2.1 7.13, 7.14

3.2.2 see subcases

3.2.2.1 7.15

3.2.2.2 see subcases

3.2.2.2.1 7.16

3.2.2.2.2 7.17

Case Claim

3.2.2.2.3 7.18

3.2.2.2.4 7.19

3.2.2.3 see subcases

3.2.2.3.1 7.20

3.2.2.3.2 see subcases

3.2.2.3.2.1 7.21

3.2.2.3.2.1 7.22

3.2.2.4 see subcases

3.2.2.4.1 7.23

3.2.2.4.2 see subcases

3.2.2.4.2.1 7.24

3.2.2.4.2.2 7.25
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We now prove Theorem 7.3.

Proof:

First suppose both a and b are of infinite order (Case 1) and consider the graph

Cay(S, {a, b}).

Claim 7.6
In Case 1, that is, a and b both have infinite order, every edge in Cay(S, {a, b}) is an

edge pointing right, and S ∼= N.

Proof: We first consider all vertices including and to the right of b. If any edge here

does not point right, we have either bi = bi+x or ai = ai+x for some i ∈ N and

x ∈ {1, 2}; that is, either a or b has finite order. Thus all edges to the right of b are right

arrows.

Consider next all vertices between a and b, including a. All edges labelled a must

be right arrows, as otherwise we would have ai = ai+x for some i ∈ N and x ∈ {1, 2};

that is, a has finite order. Assume then that there exists an edge that is either a loop or a

left arrow labelled b. This means we have aib = ai+x for some i ∈ N and x ∈ {0, 1}.

We know that since all edges from the vertices right of b are right arrows, we have

bbi = bai and so

bbib = baib

= bai+x

= bbi+x.

This gives us that b has finite order, which is a contradiction. Hence all edges between

a and bmust be right arrows. Since we have only two generators, a and b, both of which

point right from a, there can be no more vertices to the left of a.

Hence all edges in Cay(S, {a, b}) are right arrows. Therefore we deduce that b = ai

for some i ∈ N, and hence S is monogenic, meaning that S ∼= N. □

Claim 7.7
In Case 2, that is exactly one of a and b has finite order, then either S ∼= N or S ∼= N0.
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Proof: First suppose that a has infinite order and b has finite order. Then since a is

found to the left of bwe have b = ai for some i ∈ N, so S is monogenic and infinite and

therefore isomorphic to N. Hence we must have a with finite order and b with infinite

order, that is either am = am+1 or am = am+2 for some m ∈ N. Suppose first that we

have the former. Then for all t ∈ N there are three possibilities for bta. First, we may

have bta = bt−1 for some t, but then

bt+m+1 = bm+2bt−1

= bm+mbtam+1

= bm+mbtam

= bt+m

which is a contradiction. Second, we may have bta = bt+1 for some t, which means

bt+m+1 = bmbt+1

= btam+1

= btam

= bt+m

again a contradiction to the infinite order of b. Finally, if bta = bt for all t ∈ N then all

arrows labelled b are directed right, and so u = a and a is an identity. Hence S ∼= N0.

We now consider the case where am = am+2, and again consider the possibilities

for bta. If we have bta = bt−1 for some t ∈ N we derive a contradiction as follows:

bt+m−2 = bm−1bt−1

= bm+mbtam+2

= bm+mbtam

= bt+m.
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If bta = bt+1 for some t ∈ N we have

bt+m+2 = bmbt+2

= btam+2

= btam

= bt+m.

Finally if bta = bt for all t we have S ∼= N0 as above.

□

We therefore are left to consider the case where both a and b have finite order (Case

3). We first make two observations that will be used throughout the proofs of subcases

of 3.1.

Lemma 7.8
In Case 3.1, where u does not represent a generator, we have that u is equal to some

word w ∈ {a, b}∗ where w = w1w2 . . . wk for some k and wi ∈ {a, b} and for any

generator x ∈ {a, b} we have either wx = w or wx = w1 . . . wn−1.

Proof: Since u is not a generator we must be able to write it as a product of at least

two generators, that is, as a word over {a, b}∗. Then since u has degree one and edges

from it may only end at u or the vertex immediately right of u we have either wx = w

or wx = w1 . . . wn−1 as demonstrated in this figure.

u
w1 . . . wn−1

wn

x
x

Figure 7.2: Observation 1

□
Claim 7.9
Let w1w2 . . . wk be a word in S for some k and wi ∈ {a, b}. Then we have that for any

1 ≤ i ≤ k − 1 and generator x ∈ {a, b} we have either w1 . . . wix = w1 . . . wi−1,

w1 . . . wix = w1 . . . wi or w1 . . . wix = w1 . . . wiwi+1.
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Proof:

This follows since edges may only end at the either their starting vertex, or the ones

immediately left or right of the starting vertex. It may be visualised as follows.

w1 . . . wi−1wiwi+1

x
x

x

Figure 7.3: Observation 2

□

We will now choose a vertex s that is a distance of at least |w| + 1 to the right of

generator b. This is to ensure that when we examine what happens when we follow the

path labelled by w from this vertex, we know that we will never end up either at or to

the left of any generators in the graph. We look at Cases 3.1.1,3.1.2 and 3.1.3.

Claim 7.10
In Case 3.1.1, that is a and b have finite order, u is not a generator, and all edges from

s labelled by w are right arrows we have that † (S, {a, b}) is finite.

Proof:

Suppose that every edge in the path from s labelled byw points right. Then we have

the following section of graph, where, using Observation 7.2 x represents the possible

edges for generators leaving sw.

s sw
w1

wn

x
x

Now the vertex sw is found to the right of any generators in the graph, and so there

must be an edge going right from this vertex. However, Observation 7.2 means that all

edges leaving sw are either loops or point towards the left, which is a contradiction to

† (S, {a, b}) being an infinite graph. □
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Note that this eliminates any case in which when following the path w from s we

find wn as a rightwards edge. Thus for cases 3.1.2 and 3.1.3 we can assume that wn is

a leftwards edge.

Claim 7.11
In Case 3.1.2, that is a and b have finite order, u is not a generator, and there exists at

least one non-right edge in the path labelled by w from s we have that † (S, {a, b}) is

finite.

Proof: Suppose that when following the path labelled w from s, at some point the path

folds back on itself, so sw1 . . . wi−1 = sw1 . . . wi+1 for some 1 ≤ i ≤ k. Since we

have established that the edge wn must be leftwards, then we may assume that the edge

on this path labelled wi is a rightwards edge. Let x represent the generators of S, then

by Observation 7.3 we see the following in the Cayley graph of S.

s

w1 wi

wi+1

x
x

We now note that similarly to the first case, since sw1 . . . wi is found at a vertex to

the right of any generator, in order to have the correct graph structure for † (S, {a, b})

there must be an edge from sw1 . . . wi that goes right. Observation 7.3 tells us that for

any generator x of S the edge labelled by x at sw1 . . . wi is either a loop or a leftwards

edge, which means † (S, {a, b}) is finite. □

We now come to Case 3.1.3. Claims 7.10 and 7.11 eliminate the possibility that,

for any vertex t that is either s or found to the right of s, we find tw1 . . . wi for any

1 ≤ i ≤ k to the right of t. The second case eliminates any situation in which the

path labelled w folds back on itself. Hence for any such vertex t, if we follow the path

labelled by w, then each edge in it points left.

Claim 7.12
In Case 3.1.3, that is a and b have finite order, u is not a generator, and all edges in paths

labelled w from s onwards are left edges we have that Cay(S, {a, b}) ̸∼= Cay(N, {1}).
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Proof: Let t be a vertex that is a distance exactly |w| right of the vertex s. Since we

are in Case 3.1.3, we have that tw = s. Let x represent any generator of S, then by

Observation 7.2, our graph has the following structure.

s

t

w1 wk w1

x x

Due to Observation 7.2, we have that for any generator x either twx = s or twx =

tw1 . . . wn−1. In particular, there is no generator left to label the edge labelled w1 from

s in our diagram above and so Cay(S, {a, b}) ̸∼= Cay(N, {1}) . □

Therefore the unique vertex u of degree one in † (S, {a, b}) is not a generator. We

therefore now study Case 3.2 where u represents a generator.

Claim 7.13
In Case 3.2.1, that is a and b have finite order and u is a generator, then u = a and we

have a ̸= bv for any word v ∈ {a, b}∗.

Proof: Suppose that a = bv for some v ∈ {a, b}∗. Then we may apply an analogous

argument to Case 3.1 when u is not a generator. Hence a ̸= bv for any v ∈ {a, b}∗. □

Claim 7.14
In Case 3.2.1, that is a and b have finite order, u is the generator a and there exists an

edge going left from b we have that † (S, {a, b}) ̸∼= † (N, {1}).

Proof: Suppose first that there is an edge that goes left from b and let y = y1 . . . yk for

some k be the longest word that does not traverse any loops or cycles such that by = ar

for some r ∈ {a, b}∗. This means that y labels the longest leftwards path that does

not include loops or cycles from b. We can now make an identical argument to when

the vertex u did not represent a generator using the word by in place of w. This works

because we have either byx = by or byx = by1 . . . yn for any generator x of S. This is

visualised below.

a
b

r yk y1

x x
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We can see that the vertex by behaves in much the same way as u with respect to its

out edges, and so the arguments from Case 3.1 and its subcases are easily applied with

by instead of w.

□

Last but not least, we are left to consider when there is no path from b to a, and in

fact no edge left from b. This is Case 3.2.2. Below we demonstrate sections of graph

occurring in Cases 3.2.2.1,3.2.2.2,3.2.2.3 and 3.2.2.4.

(i) ba = bb = b (see 3.2.2.1),

b

a, b

(ii) ba = bb ̸= b (see 3.2.2.2),

b

b, a

(iii) ba = b ̸= bb (see 3.2.2.3),

b

b
a

(iv) or bb = b ̸= ba(see 3.2.2.4).

b

a
b

Claim 7.15
In Case 3.2.2.1, that is a and b have finite order, u is the generator a, there are only

loops and edges right from b and ba = bb = b we have that Cay(S, {a, b}) is finite.

Proof: There are no generators available to label an edge going right from b and so

Cay(S, {a, b}) is finite. □
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We now examine subcases of 3.2.2.2, by examining what happens at a, in particular

by looking at a · bb.

Claim 7.16
In Case 3.2.2.2.1, that is a and b have finite order, u is the generator a, there are

only loops and edges right from b, ba = bb ̸= b and abb = ab = a we have that

† (S, {a, b}) ≇ † (N, {1}).

Proof: Since we have abb = a and ba = bb then aba = a as shown below.

a

a, b

There are no more generators left to label an edge right from a and so

† (S, {a, b}) ≇ † (N, {1}). □

Claim 7.17
In Case 3.2.2.2.2, that is a and b have finite order, u is the generator a, there are

only loops and edges right from b, ba = bb ̸= b and abb = ab ̸= a we have that

† (S, {a, b}) ≇ † (N, {1}).

Proof: Since abb = ab and bb = ba then aba = ab as shown.

a ab

b

a, b

There are no more generators left to label an edge right from ab and so

† (S, {a, b}) ≇ † (N, {1}) □

Claim 7.18
In Case 3.2.2.2.3, that is a and b have finite order, u is the generator a, there are

only loops and edges right from b, ba = bb ̸= b and abb = a ̸= ab we have that

† (S, {a, b}) ≇ † (N, {1}).

Proof: Since abb = a and bb = ba then aba = a as shown below.
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a ab

b

a, b

There are no more generators left to label an edge right from ab and so

† (S, {a, b}) ≇ † (N, {1}) □

Claim 7.19
In Case 3.2.2.2.4, that is a and b have finite order, u is the generator a, there are only

loops and edges right from b, ba = bb ̸= b and abb ̸= a ̸= ab we have that S ∼= N.

Proof: If we consider the edge b leaving the vertex abb, this must be a right edge, as

otherwise we have both abbb and abba equal to either ab or abb, which results in no

more generators left to label an edge right from abb. This is true for all vertices abi

between a and b, and since bb = ba we have abi = aai for all such vertices. This is

visualised in the following diagram.

a ab abb b

a, b a, b a, b a, b

This gives us b = ai for some i. This means a · ai = a · b and so b = a. Hence we

have S ∼= N. □

We next consider subcases of 3.2.2.3. Here we will be concerned with looking at

a · ba.

Claim 7.20
In Case 3.2.2.3.1, that is a and b have finite order, u is the generator a, there are only

loops and edges right from b, ba = b ̸= bb and ab = a we have that † (S, {a, b}) ≇

† (N, {1}).

Proof: Since ab = a and ba = b then aa = a shown.

a

a, b
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7. Cayley Spectra of Semigroups 111

Then there are no generators left to label an edge right from a and so † (S, {a, b}) ≇

† (N, {1}). □

Claim 7.21
In Case 3.2.2.3.2.1, that is a and b have finite order, u is the generator a, there are only

loops and edges right from b, ba = b ̸= bb, ab ̸= a and aa = a we have that S ∼= N0.

Proof: Since ba = b, then aba = ab then the edge going right from abmust be labelled

b. Using ba = b, we can see that in the rest of the graph we must have b as a right edge

and a as a loop on every vertex.

a

a
b

a
b

a
b

a

From this we can say that b = abi for some i ≥ 1. This means that ab = aabi,

which in fact means ab = abi and so i = 1. Hence b = ab. The element a is an identity

for S, since ab = b, aa = a and ba = b. Removing the identity from S leaves us with

an infinite monogenic semigroup, and so here we have that S ∼= N0. □

Claim 7.22
In Case 3.2.2.3.2.2, that is a and b have finite order, u is the generator a, there are

only loops and edges right from b, ba = b ̸= bb, ab ̸= a and aa ̸= a we have that

† (S, {a, b}) ≇ † (N, {1}).

Proof: Since ab ̸= a and aa ̸= a then ab = aa, and since ba = b then aaa = aba = ab

as shown here.

a

a, b
a, b

Then there are no generators left to label an edge right from ab and so † (S, {a, b}) ≇

† (N, {1}). □

Finally we look into subcases of 3.2.2.4.
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Claim 7.23
In Case 3.2.2.4.1, that is a and b have finite order, u is the generator a, there are only

loops and edges right from b, bb = b ̸= ba, and ab = a we have that † (S, {a, b}) ≇

† (N, {1}).

Proof: We know that there must be an edge leaving a that goes right, and since ab = a

this edge must be labelled by a. Since ab = a, then aab = aa, and so b forms a loop on

aa. This can be extended for any ai between a and b, so aia = ai+1 and aib = ai (see

3.2.2.4.1).

a

b
a

b
a

b
a

b

This shows us that b = ai for some i ≥ 1, but since a · b = a · ai = a, then i = 0,

and so † (S, {a, b}) ≇ † (N, {1}). □

Claim 7.24
In Case 3.2.2.4.2.1, that is a and b have finite order, u is the generator a, there are

only loops and edges right from b, bb = b ̸= ba, ab ̸= a and aa ̸= a we have that

† (S, {a, b}) ≇ † (N, {1}).

Proof: Since ab ̸= a and aa ̸= a then ab = aa. Since bb = b then aaa = aab =

abb = ab as shown below.

a

a, b
a, b

We can see here that we have no generator left to label an edge which goes right

from ab, and so † (S, {a, b}) ≇ † (N, {1}). □

Claim 7.25
In Case 3.2.2.4.2.2, that is a and b have finite order, u is the generator a, there are only

loops and edges right from b, bb = b ̸= ba, ab ̸= a and aa = a we have that S is not a

semigroup.
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Proof: Since abb = ab, the edge leaving ab in the right direction must be labelled a,

and due to aa = a we have abaa = aba. We may continue this line of reasoning to

show that between a and b, the non loop edges always alternate between a and b, and a

non loop edge is always followed by a loop. This is visualised here.

a

a
b

b
a

a
b

b

In this case, we see that b is equal to some word beginning with a, say b = aw.

Then ab · b = ab but ab · aw ̸= ab, which is a contradiction to S being a semigroup. □

This completes the proof that there is no 2-generated semigroup S with

† (S, {a, b}) ∼= † (N, 1) such that S ≇ N and S ≇ N0.

□

Having shown that there are no 2-generated semigroups that are skeleton isomorphic

toN = sgp⟨1⟩ other than by adjoining an identity toN, it would be nice if we could show

that there are no n-generated semigroups with this property for any n ∈ N. Fortunately,

we can extended the work we have done for the 2-generated case to fit any n. We

will now suppose that S = sgp⟨a1, a2, . . . , an⟩ with S ≇ N and S ≇ N0, where

† (S, {a1, a2, . . . , an}) ∼= † (N, 1). As before, we view the graph as an infinite line

from left to right, with the unique vertex of degree 1 placed at the left, and the generator

ai being found to the left of generator ai+1 for all 1 ≤ i < n. We prove the following

theorem.

Theorem 7.26
Let S be a finitely generated semigroup with generating set A such that † (S,A) ∼=

† (N, 1). Then either S ∼= N or S ∼= N0.

Now using the 2-generated case as a template, we have the following breakdown of

cases.

1 u is not a generator.

2 u is a generator, say a.
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2.1 There exists a path left from an.

2.2 There exists no path left from an.

2.2.1 ana1 = an and anan ̸= an

2.2.1.1 a1a1 = a1an ̸= a1

2.2.1.2 a1a1 = a1an = a1

2.2.1.3 a1a1 ̸= a1an = a1

2.2.1.4 a1a1 = a1 ̸= a1an

2.2.2 ana1 ̸= an and anan = an

2.2.3 ana1 = an and anan = an with anaj ̸= an for some j

2.2.4 ana1 ̸= an and anan ̸= an

Our proof techniques will also follow similarly to those in Theorem 7.3. For case 1

we will find some word w such that u = w. We will then pick a special vertex s such

that s is sufficiently far right from any generator, and follow the path labelled byw from

s. This will lead us to contradictions in the form of incorrect graph shapes, allowing us

to rule out this case. This technique will also be use in case 2.1.

For subcases of 2.2, we will consider the location of the elements ana1 and anan.

We will then take these equalities to the unique vertex of degree one, that is u = a1

and see what shape of graph these equalities force upon us. This will either lead to

contradictions, or to the semigroup produced being N or N0.

We will approach the proof of Theorem 7.26 by examining the cases above in a

series of claims. The relation of claims to cases is given in the following table.
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Case Claim

1 7.27

2 7.28

2.1 7.29

2.2 see subcases

2.2.1 see subcases

2.2.1.1 7.31

2.2.1.2 7.32

2.2.1.3 7.33

2.2.1.4 7.34

2.2.2 7.35

2.2.3 7.36, 7.36

2.2.4 7.38
We now begin the proof of Theorem 7.26.

Proof:

We will first investigate what happens when we assume u ̸= ai for all i.

Claim 7.27
In Case 1, that is u does not represent a generator we have that † (S,A) ≇ † (N, {1}).

Proof: We let u = w where w is a word over {a1, a2, . . . , an}∗, x represent any

generator ai and pick a vertex s to be distance |w| + 1 right of an. The proof then

follows analogously to Claims 7.8, 7.10, 7.11 and 7.12. □

Therefore we will now consider the case u represents a generator, that is u = a1.

This is Case 2.

Claim 7.28
In Case 2, that is u = a1 is a generator we have that a1 ̸= aiv for any generator ai and

word v over the generators.

Proof: This follow analogously to Claim 7.13 □
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Claim 7.29
In Case 2.1, that is u = a1 and there exists an edge going left from any ai we have that

† (S,A) ≇ † (N, {1}).

Proof: This follows analogously to Claim 7.14. □

Claim 7.30
In Case 2.2, that is u = a1 and there are only loops or right edges from all ai we have

that there exists a path from a1 to an.

Proof: Since there are no leftwards paths from any generators and the graph is con-

nected, there must exist a path from a1 to an. □

We will now consider all subcases of 2.2. We will be concerned for the most part

with the behaviour of a1 and an at their respective vertices. Considering the vertex an,

we have four possible cases for the location of edges a1 and an, these are 2.2.1, 2.2.2,

2.2.3 and 2.2.4. We illustrate these below.

(i) ana1 = an and anan ̸= an (Case 2.2.1).

an
an

a1

(ii) ana1 ̸= an and anan = an (Case 2.2.2).

an
a1

an

(iii) ana1 = an and anan = an with anaj ̸= an for some j (Case 2.2.3).

an
aj

a1, an

(iv) ana1 ̸= an and anan ̸= an (Case 2.2.4).

an
a1, an
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We will look first at Case 2.2.1 and its subcases.

Claim 7.31
The case 2.2.1.1, that is u = a1, there are only loops or right edges from all ai,

ana1 = an, anan ̸= an and a1a1 = a1an ̸= a1 is not possible as the relations

are not compatible.

Proof: Since a1a1 = a1an and ana1 = an we have a1a1a1 = a1anan = a1a1 as

shown.

a1
a1, an

a1, an

This implies that an · a1a1 = an · a1a1an, which is a contradiction as these are not

equal in this case. □

Claim 7.32
In Case 2.2.1.2, that is u = a1, there are only loops or right edges from all ai, ana1 =

an, anan ̸= an and a1a1 = a1an = a1 is not possible as the relations are not compat-

ible.

Proof:

a1

a1, an

Here we have that an · a1 = an · a1an, which is not compatible. □

Claim 7.33
In Case 2.2.1.3, that is u = a1, there are only loops or right edges from all ai, ana1 =

an, anan ̸= an and a1a1 ̸= a1an = a1 is not possible as the relations are not compat-

ible.

Proof:

a1
a1

an
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This situation gives us an · a1an = an · a1 which is not compatible. □

Claim 7.34
In Case 2.2.1.4, that is u = a1, there are only loops or right edges from all ai, ana1 =

an, anan ̸= an and a1a1 = a1 ̸= a1an we have that S is 2-generated.

Proof:

a1
an

a1 a1

By Claim 7.30 we have an = a1anw for some word w, where w labels a shortest

path. Now a1 · an = a1 · a1anw, that is a1an = a1anw. The word w must then be

empty, and so an = a1an. Hence we are in the 2-generated case and we may refer to

the proof there. □

In the next case, Case 2.2.2 we let an label a loop on an and a1 label a right edge.

Claim 7.35
In Case 2.2.2, that is u = a1, there are only loops or right edges from all ai, ana1 ̸= an

and anan = an we have that † (S,A) ≇ † (N, {1}).

Proof: By Claim 7.30 we know that there exists a path from a1 to an. Let w be a

shortest word labelling this path, so a1w = an. Now we have an · an = an · a1w,

that is an = ana1w. Since ana1 ̸= an, the word w must have non-zero length, and

when following the path labelled w from ana1, this path must fold back on itself. We

may then follow an argument analogous to that in Case 7.1 to show that there are no

generators left to label a required right edge. Thus † (S,A) ≇ † (N, {1}). □

Claim 7.36
In Case 2.2.3, that is u = a1, there are only loops or right edges from all ai, ana1 = an

and anan = an we have that anaj ̸= an for some 1 < j < n.

Proof: Suppose that anaj = an for all j. Then there are no generators left to label

an edge right from an and so † (S,A) ≇ † (N, {1}). Hence anaj ̸= an for some

1 < j < n. □
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Claim 7.37
In Case 2.2.3, that is u = a1, there are only loops or right edges from all ai, ana1 = an

and anan = an we have that † (S,A) ≇ † (N, {1}).

Proof: By considering the behaviour of a1 and aj at a1, we may apply the exact same

arguments as in Claims 7.31, 7.32, 7.33, and 7.34 substituting aj for an. □

Claim 7.38
In Case 2.2.4, that is u = a1, there are only loops or right edges from all ai, ana1 = an

and anan = an we have that S ∼= N.

Proof: From Claim 7.30 we know that an = a1w for some wordw that labels a shortest

path. Therefore, anan = ana1w, and by applying an argument analogous to Case 7.1,

we see thatwmust be empty. Hence we have an = a1, and so S is an infinite monogenic

semigroup. □

This concludes our look at possible configuration for an n-generated semigroup S

where † (S,A) ∼= † (N, 1). Thus we have proved Theorem 7.26.

□

As a corollary we now know the Cayley spectra of N.

Corollary 7.39
The Cayley spectrum of N is C(N, 1) = {N,N0}.

7.2 Free Monoids

Since the free monogenic semigroup has been a source of so much joy, it seems a

sensible idea to cast an eye over the free semigroups on n generators for n > 1. It

turns out that it makes more sense to first consider the free monoid, then return to the

free semigroup. We will take the natural generating set A of size n for each of these,

and observe that the skeleton of the free monoid A∗ is an n-ary rooted tree. We sup-

pose that we have some finitely generated semigroup S with generating set B such that

† (S,B) ∼= † (A∗, A). We will let u be the unique vertex of valency n in Cay(S). For
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ease of understanding we will refer to the root vertex u as being found at the top of the

graph, and child vertices are found below. In this way we may also refer to edges having

direction up or down, if they are oriented towards or away from u respectively.

We will prove the following theorem.

Theorem 7.40
Let S be a semigroup generated by B such that † (S,B) ∼= † (A∗, A) where |A| > 1.

Then S ∼= A∗.

Our key technique in this section will be to determine the exact structure at the

root vertex u, and then translate this structure to a vertex s that is sufficiently far below

any generators. Using Lemma 7.42 we will then conclude that we do not have enough

edges to create the correct tree structure, and so eliminate all semigroups save for the

free monoid. The outline of cases will be as follows.

1 u is not an identity or generator and u = wbi for some word w.

1.1 wbibj = w for some bj .

1.2 wbibj ̸= w for any bj .

2 u is an identity.

3 u is a generator, say b1.

3.1 |B| < n.

3.2 |B| = n.

3.3 |B| > n and B includes some element b2.

3.3.1 b1b1 ̸= b1b2 ̸= b1

3.3.2 b1b1 = b1b2 ̸= b1

3.3.3 b1b1 = b1b2 = b1

3.3.4 b1b1 ̸= b1b2 = b1

3.3.5 b1b1 = b1 ̸= b1b2
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In case 1 we will use the wordwbi as the structure we translate to s, and on following

this path we will find we have insufficient edges to create the correct tree. In cases 2

and 3 we will make an important observation that there can be no edges in the upwards

direction (see Claim 7.46). From this we will use the fact that any generator can be

written as the product of b1 and some word w. In particular we will use the equality

b2 = b1w. In cases 2 and 3.2 we see that S is simply the free semigroup on n generators.

In case 3.3 we will again make use of b2 = b1w and apply this to the possible scenarios

for edges labelled b1 and b2 from the root of the tree. In each of these we will see that

we either do not have enough edges to form our tree, or the semigroup that we have

formed is in fact A∗.

We will approach the proof of Theorem 7.26 by examining the cases above in a

series of claims. The relation of claims to cases is given in the following table.

Case Claim

1 see subcases

1.1 7.43

1.2 7.44

2 7.45

3 see subcases

3.1 7.41

3.2 7.47

3.3 see subcases

3.3.1 7.49

3.3.2 7.49

3.3.3 7.50

3.3.4 7.51

3.3.5 7.52

We now begin the proof of Theorem 7.40.

Proof:
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First we observe that S must be at least n-generated, otherwise there exists an un-

reachable subtree in Cay(S).

Claim 7.41
S is at least n-generated.

Proof: Suppose that S has a generating set B = {b1, b2, . . . , bn−m} of size n − m

and let s be a vertex where no generators are found below it in Cay(S). Then s has

valency of n + 1, and an outdegree of at most n − m. In-edges for s can only come

from the vertices sbi, and the vertex found above s in the tree. This is because for

the remaining m neighbouring vertices, there is no way of reaching them as we have

assigned all generators to edges already. Hence we have disconnected our graph in an

unacceptable way and so B must have size at least n. □

Since u is unique in the graph, we will use it as a focus point to establish the possible

forms of the semigroup S. The following lemma will be integral to the proofs made in

this section.

Lemma 7.42
Let s be a vertex in Cay(S,A) such that in the subtree rooted at s, there are no generators

found below s. Then for every vertex vi on the level below s that is connected to s, there

must be an edge that starts at s and ends at vi.

Proof: Suppose that vi is a vertex one level below s that is connected to s such that there

is no edge starting at s and terminating at vi. Since Cay(S,A) is a tree, the only other

vertices that we can reach vi from are those in the subtree rooted at vi. However, since

these are in the subtree rooted at s, we know that none of these vertices are generators

and so vi cannot be reached from a generator. This is a contradiction, and so we must

have at least one edge from s to every vertex on the level below that is connected to s.

□

Suppose then that S has a generating set of size n + m for m ∈ N0, say B =

{b1, . . . , bn+m} and that u ̸= 1 and u ̸= bi for any 1 ≤ i ≤ n+m. Then u = wbi for

some w ∈ B∗ and some bi. We examine two cases, the first where there exists an edge

back to w from u, and the second where no such edge exists.
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Claim 7.43
In Case 1.1, that is u is not a generator or identity and wbibj = w for some bj ∈ B we

have that † (S,B) ≇ † (A∗, A).

Proof: We note that it may be the case that wbibk = wbibl, for some pairs bk, bl ∈ B,

or wbk = w for bk ∈ B, or indeed both may occur. An example is shown here.

u

bk

bl
bj bi

bo

bp

This means there are at most n different vertices that can be reached using a single

edge from n.

Assuming that the tree is oriented in the usual fashion (with u at the top), we chose

a vertex s that is a distance at least |wbi| + 1 below a generator. We then examine the

vertex swbi, which has precisely n + 1 neighbours as it cannot be u. These are the

vertices 1 to n and sw as shown below.

s

sw

1

2

n

bi

bj

By Lemma 7.42 we know that there must be an edge from swbi to every vertex 1 to

n in the above diagram.

Let P = {pk} be a maximal set of generators such that no two generators in P visit

the same vertex from u. That is,upk ̸= upl for any pk , pl ∈ P . The set P has size

at most n, which means we can reach at most n different vertices from swbi using the

edges from P . We know that there exists an edge from swbi to sw, say pn, leaving at

most n− 1 sets of edges with which we need to reach vertices 1 to n.
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s

sw

1

2

n− 1

n

bi

bj , pn

p1

p2

pn−1

All generators must label one of the edges in the above diagram, leaving at least one

vertex unreachable. This means that † (S,B) ≇ † (A∗, A). □

Since we assumed there existed a generator bj such that wbibj = w, we must now

then assume that there is no such generator

Claim 7.44
In Case 1.2, that is u is not a generator or identity and wbibj ̸= w for any bj ∈ B we

have that † (S,B) ≇ † (A∗, A).

Proof: In this case, u now has outdegree at most n − 1, as opposed to n previously.

Since S is n+m generated, there exist pairs (bj , bk) such that ubj = ubk, or generators

bk such that ubk = u, or both.

u

bk

bl
bi

bo

bp

We locate our favourite vertex s, found distance at least |wbi|+ 1 below any gener-

ators, and study the graph at swbi.
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s

sw

1

2

n

bi

By Lemma 7.42 we know that there must be an edge from swbi to every vertex 1 to

n in the above diagram.

Let P = {pk} be a maximal set of generators such that no two generators in P visit

the same vertex from u. That is,upk ̸= upl for any pk , pl ∈ P . The set P has size at

most n−1, which means we can reach at most n−1 different vertices from swbi using

these edges in P .

s

sw

1

2

n− 1

n

bi

p1

p2

pn−1

Any remaining generators bk must lie on edges parallel to those we have drawn

already, and so we are left with nothing to label an edge to vertex n. Hence † (S,B) ≇

† (A∗, A). □

Therefore u is either a generator or an identity element.

Claim 7.45
In Case 2, that is u is an identity element, then S is n-generated and is free.

Proof: If u is an identity element, thenS must be preciselyn generated as u has valency

n. Since every other vertex has degree n+1, S must be the free monoid on n generators.

□
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Now having u as an identity element allows us to show that S is isomorphic to A+.

It would be nice to see this the other way around, and show that if S is precisely n-

generated we also have S isomorphic to A+. In order to do this more neatly, we will

first say something about the direction of edges in Cay(S).

Claim 7.46
In Case 3, that is u is a generator, we have that no edges in Cay(S) have upwards

direction.

Proof: Assume u is some generator, say u = b1. We select some other generator b2
and look at the existence of paths between b1 and b2. Suppose there exists a path from

b2 to b1. We may then apply the arguments from the proofs of Claims 7.43 and 7.44,

using b1 in place of u.

Suppose then that there exists some path labelled x from b2 that goes towards b1 but

does not reach it.

b1

b2x

b2

We zoom in on the vertex b2x and see what happens at this vertex. The vertex b2x

must be connected to n+1 vertices, which are shown here in the diagram as the vertices

1 to n, and the vertex above b2x.

126



7. Cayley Spectra of Semigroups 127

b2

b2x1 . . . xn−1

b2x

1 2 n
xn

The edges leaving vertex b2xmust all terminate at the vertices labelled 1 to n, as an

edge going up from b2xwould mean that xwas not the longest path towards b1 from b2.

We let P = {pi} be a maximal set of edges such that no two pi label an edge starting

at b2x and terminating at the same vertex. The set P has size at most n, but we note

that if P has size exactly n, then we have b2xpj = b2x1 · · ·xn−1 for some pj ∈ P . We

now find our favourite vertex s which sits a distance at least |b2x|+ 1 below b2, which

means that no generators are found below sb2x and so we can apply Lemma 7.42. We

then have the following.

s

sb2x1 . . . xn−1 sb2x

1

2

n

xn

We now consider the edges labelled by all pi ∈ P . These can reach at most n

different vertices from sb2x, as P has size at most n. If P has size precisely n then the

n vertices we can reach from sb2x must include sb2x1 . . . xn−1. We can then reach an

additional n− 1 vertices, say those labelled 1 to n− 1. All remaining generators not in

P must label edges parallel to those in P and so we are left with an unreachable vertex

n. If P has size less than n, then we clearly cannot reach all of the vertices 1 to n.
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128 7.2. Free Monoids

Hence our scenario must be that between b1 and all other generators there are no

edges which point in an upwards direction. □

Hence we may deduce from this claim that there exists a path from b1 to any gener-

ator we choose, say b2, with b2 = b1w. Note that as always w is a shortest word, so no

loops or cycles are traversed when walking the path.

We are now able to assert what happens when S is precisely n-generated.

Claim 7.47
In Case 3.2 that is u is a generator and S is n-generated, then u is an identity element

and S is the free monoid on n generators.

Proof: Suppose S is n-generated but u is not an identity element. We have that u is a

generator, b1 say. Now by Claim 7.46, no edges may be in the upwards direction, and

so all products b1bi are found on level 1 of the tree and b1bi ̸= b1bj for any i ̸= j, since

all vertices on level 1 must be reached via an edge from the root. Now since no edges

are upwards, we have that for any generator, b2 say, b2 = b1w for some word w ∈ B+.

Therefore, we must have b1 · b1w = b1 · b2.

b1

v2

v1

w

b1 b2

Hence in this picture, the vertices v1 and v2 must in fact be the same vertex, and as

our graph is a tree, cycles are disallowed. Hence w must in fact be the empty word and

b1b1 = b1b2, a contradiction to our earlier statement. Hence u cannot be equal to some

generator and is therefore an identity, and by Claim 7.45 is free. □

We can now assume thatB has sizen+mwherem > 0. To elicit our contradictions,

we will look at what happens when we multiply b1 by both b2 and b1w, which are words

that should represent the same element of S. This is split into four cases depending on

what b1 and b2 do at vertex b1. We first establish a small claim which will be useful

throughout these cases.
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7. Cayley Spectra of Semigroups 129

Claim 7.48
In Case 3.3, that is S is generated by more than n elements with u = b1 we have for

any generator bi ∈ B we have bi = b1w for some w ∈ B∗.

Proof: By Claim 7.46 there are no edges in the upwards direction. The graph

Cay(S,B) must be an n-ary rooted tree and so wherever an edge occurs from a par-

ent to child vertex, the edge must be directed down. Hence we can find a path from b1

to any vertex v in Cay(S,B), and in particular to all bi. This path is labelled by some

word w ∈ B∗, and hence bi = b1w. □

Claim 7.49
In Cases 3.3.1 and 3.3.2, that is S is generated by more than n elements with u = b1

and either b1b1 ̸= b1b2 ̸= b1 or b1b1 = b1b2 ̸= b1 we have that † (S,B) ≇ † (A∗, A).

Proof:

b1

v2

v1

w

b1 b2

Now since b1 · b1w = b1 · b2 by Claim 7.48 , the vertices labelled v1 and v2 must

in fact be the same vertex, and since there are no cycles in the graph or in w then

b1b1 = b1b2. Additionally, from this we also have that b2 = b1b1, which allows to us

deduce that since b1 · b1b1 = b1 · b2, then b2b1 = b2. Finally, we have b2 · b1b1 = b2 · b2,

which gives us b2b2 = b2.

b1

b1 b2

b1 b2

Now there are n sets of edges that have distinct destinations on leaving b1, and so at

most n distinct locations may be visited from b2. However, we see above that we have
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130 7.2. Free Monoids

already assigned one of these locations, namely b2, and so this leaves us with at most

n− 1 sets of edges to travel to n different vertices, and so † (S,B) ≇ † (A∗, A). □

Claim 7.50
In Case 3.3.3, that is S is generated by more than n elements with u = b1 and b1b1 =

b1 = b1b2, then b1 = b2.

Proof:

b1
b1 b2

This is easily dismissed. By Claim 7.48 we have b1 · b2 = b1 · b1w, and so we can

conclude that w = ε and b1 = b2. □

Claim 7.51
In Case 3.3.4, that is S is generated by more than n elements with u = b1 and b1b2 =

b1 ̸= b1b1 we have that there must exist an upwards edge in Cay(S,B), a contradiction

to Claim 7.46.

Proof:

b1

b1

b2

This case is also easy to eliminate. Since b1 · b2 = b1, then b1 · b1w = b1 using

Claim 7.48. However, we are not allowed to travel up towards b1 by Claim 7.46. □

We then come to the final case, 3.3.5.

Claim 7.52
In Case 3.3.5, that is S is generated by more than n elements with u = b1 and b1b1 =

b1 ̸= b1b2 then S ∼= A∗.

Proof: Using our favourite equality from Claim 7.48, b1 · b2 = b1 · b1w, we see that

b1w = b1b2 and so b2 = b1b2.
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7. Cayley Spectra of Semigroups 131

b1

w b2

b1

We have assumed here that w ̸= b2. If that is the case, then since w is some gener-

ator, then w = b1v for some word v. Then

b1 · w = b1 · b1v =⇒ b1v = b1w

=⇒ b1v = b2

=⇒ w = b2

So in fact w = b2, and we can generalise this argument to show that there are

no multiple edges leaving b1. Similarly, we can show there is no bi ̸= b1 such that

b1bi = b1, as if there is, we have bi = b1v for some word v. Then

b1 · bi = b1 · b1v =⇒ b1 = b1v

=⇒ v = ε

=⇒ bi = b1.

Hence there are exactly n + 1 generators in B. We will now show that b1 is an

identity. Suppose first that sb1 ̸= s for some element s ∈ S. Then sb1b1 = sb1 and

sb2 = sb1b2 which tells us that sb1 = sb2 and additionally sb1b2 = sb2. Then from

the vertex sb1, we need to reach n vertices, but now have only n − 1 edges left to do

this with. Hence b1 is a right identity. We have already established that b1bi = bi for

all generators bi, and so b1 is also a left identity. Thus our semigroup S is actually A∗

generated as a semigroup. □

This completes the proof of Theorem 7.40.

□

Having established this, we can then write down the Cayley spectrum of A∗.
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132 7.3. Free Semigroups

Corollary 7.53
Let A be an alphabet of size strictly greater than 1. Then the Cayley spectrum of A∗ is

C(A∗, A) = {A∗}.

7.3 Free Semigroups

It seems now that it would be a simple task to prove an analogous theorem about the

free semigroup on generated by A, that is A+. Recall that Cay(A+, A) has the form of

n n-ary rooted trees, compared to Cay(A∗, A) which is a single n-ary rooted tree. We

might wonder then, that since they share many similar features as graphs, whether we

might apply similar methods of proof to free semigroups as we had for free monoids.

Indeed, many of the steps in the proof for A∗ are applicable to A+. However, the last

step, in which we find we have drawnA∗ generated as a semigroup leads us to find many

more semigroups sharing the graph † (A+, A).

In fact, we will enumerate all semigroups that have a skeleton isomorphic to

† (A+, A) and provide a presentation for each of them. To state the exact number of

such semigroups, we first need to establish the concept of partitions.

Definition 7.54
A partition of a number n ∈ N is an expression for n as unordered sum of natural

numbers. We write a partition P of n into i parts as (p1, p2, . . . , pi) where n = p1 +

p2 + . . .+ pi. The number of partitions of n is given by the partition function, p(n).

Definition 7.55
A restricted partition is a partition in which the largest part has size ≤ N and the

number of parts is ≤ M for some N,M ∈ N. We denote a restricted partition of n

into M parts with largest part size N as P (N,M,n). The restricted partition function

p(N,M,n) gives the number of restricted partitions of n with largest part ≤ N and

number of parts ≤M .

The following theorem is the main result of this section. A fully worked example of

this theorem for n = 4 can be found in subsection 7.3.1.
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7. Cayley Spectra of Semigroups 133

Theorem 7.56
Let n ∈ N, then for i ≤ m ≤ n and let Pm,f for 1 ≤ f ≤ p(m) be partitions ofm. For

each partition Pf , if i is its size then define

αf,m,i = p(n− i, n+ 1−m,n− i)− p(n− i, n−m,n− i)

and

βf,m,i = p(n− i, n−m,n− i)− p(n− i, n−m− 1, n− i).

Let Qf,x for 1 ≤ x ≤ αm,i be a partition of n− i into n+ 1−m parts, and let rQf,x

denote the number of distinct parts in Qf,x. For a given i, define

UPf
=


αf,m,i∑
x=1

rQf,x
+
βm,i∑
x=1

(rQf,x
+ 1) if m ̸= i

1 if m = i

Then there are exactly

#S =
n∑

m=1

p(m)∑
f=1

UPm,f

semigroups S = sgp⟨B⟩ such that † (S,B) ∼= † (A+, A).

In this section we prove this theorem, as well as provide an explicit presentation and

description for each semigroup S. We will show that S must be generated by more than

n elements using Lemma 7.42, as otherwise it will not have the correct skeleton, or will

be isomorphic to A+. We will then focus on a single tree in Cay(S) which contains at

least two generators, b1 and bn+1 say. We will call the unique vertex of degree n in this

tree u. The outline of cases will be as follows.

1 u is not a generator.

2 u is a generator, say b1 and bn+1 = b1w for some w.

2.1 bn+1 ̸= b1w for some w.

2.2 bn+1 = b1w for some w.

2.2.1 b1b1 ̸= b1bn+1 ̸= b1

2.2.2 b1b1 = b1bn+1 ̸= b1
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134 7.3. Free Semigroups

2.2.3 b1b1 = b1bn+1 = b1

2.2.4 b1b1 ̸= b1bn+1 = b1

2.2.5 b1b1 = b1 ̸= b1bn+1

These cases will be eliminated similarly to their analogues in Section 7.2, save for

case 2.2.5. In this case, we will find that w is in fact situated on level 1, and that we can

construct many different semigroups with the correct skeleton, which we will describe

in full.

Case Claim

1 7.58

2 see subcases

2.1 7.60

2.2 see subcases

2.2.1 7.61

2.2.2 7.61

2.2.3 7.62

2.2.4 7.63

2.2.5 7.64, 7.65, 7.66, 7.67, 7.68, 7.69

We now begin the proof of Theorem 7.56.

Proof:

Let S = sgp⟨B⟩ be a semigroup such that † (S,B) ∼= † (A+, A). Then S is at least

n generated as † (S) is n disjoint n-ary rooted trees.

Claim 7.57
If S is exactly n-generated, then the generators are found at the n vertices of degree n

and S ∼= A+.

Proof: Suppose S is n-generated; then there must be precisely one generator found in

each tree. Consider the tree containing b1, and suppose that b1 is found at some vertex

v of degree n+ 1. Since we must be able to reach all vertices in the tree containing b1
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7. Cayley Spectra of Semigroups 135

from v, there exists a path from v to the unique vertex of degree n which we will call u.

This means we have u = b1biw for some bi ∈ B, w ∈ B+, that is, the edge labelled bi
is in the upwards direction. Now consider the vertices below v. By Lemma 7.42 these

must also be reached using arrows from b1. However, since S is n-generated there are

only n − 1 edges available and n vertices to reach, a contradiction. Hence b1 must be

found at u, and all other generators at the vertices of degree n.

Now we must reach all other vertices in each tree from the root vertex, and since

we are n-generated this means every vertex save the root vertex has indegree of 1 and

outdegree of n and so S is free. □

Hence we have that S is at least n + 1 generated. Suppose that B has size n +m

for some m ≥ 1, and consider the subtree Cay(S)1 of Cay(S) which contains at least

2 generators, say b1 and bn+1.

Let u be the vertex of degree n in Cay(S)1.

Claim 7.58
In Case 1, that is the vertex u is not a generator we have that † (S,B) ≇ † (A+, A).

Proof: Assume that u is not a generator, then u = wbi for some bi ∈ B and w ∈ B+.

As when considering A∗, we have either wbibj = w for some bj ∈ B, or wbibj ̸= w

for any bj ∈ B. In both cases(cf. Claims 7.43 and 7.44) , we find a vertex s that is a

sufficient distance below any generators and consider swbi. We find in both cases that

we are trying to reach n vertices with only n−1 sets of edges available to us. Therefore

† (S,B) ≇ † (A+, A). □

Suppose that u = b1. We have the following observation on the direction of edges

in Cay(S).

Claim 7.59
In Case 2, that is u = b1 we have that there are no upwards edges in Cay(S).

Proof: The proof follows identically to Claim 7.46. □

This claim will help us rule out Case 2.1.
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136 7.3. Free Semigroups

Claim 7.60
In Case 2.1, that is u = b1 and bn+1 ̸= b1w for any w ∈ B∗ we have that † (S,B) ≇

† (A+, A).

Proof: Recall that b1 is the root vertex of the tree that bn+1 is found in. If bn+1 ̸= b1w

this means there exists no path from b1 to bn+1, and by Claim 7.59 we have that there

are no edges in the upwards direction, so there cannot be a path from bn+1 to b1 either.

Hence this graph is disconnected and so † (S,B) ≇ † (A+, A). □

We can then break down Case 2.2 into five cases as we did for A∗ by considering

the terminating vertices of the edges labelled by b1 and bn+1 that come from b1. The

first four cases have a similar result to their counterparts in the free monoid case.

Claim 7.61
In Cases 2.2.1 and 2.2.2, that is u = b1, bn+1 = b1w and either b1b1 ̸= b1bn+1 ̸= b1

or b1b1 = b1bn+1 ̸= b1 we have that † (S,B) ≇ † (A+, A)

Proof: The proof is analogous to Claim 7.49. □

Claim 7.62
In Case 2.2.3, that is u = b1, bn+1 = b1w and b1b1 = b1bn+1 = b1 we have that

† (S,B) ≇ † (A+, A)

Proof: The proof is analogous to Claim 7.50. □

Claim 7.63
In Case 2.2.4, that is u = b1, bn+1 = b1w and b1b1 ̸= b1bn+1 = b1 we have that

† (S,B) ≇ † (A+, A)

Proof: The proof is analogous to Claim 7.51. □

However the argument of the last case for A∗, 7.52, does not transfer to A+. This

means we must study what happens when b1b1 = b1 but b1bn+1 ̸= b1, that is case 2.2.5.

From Claim 7.59 we know that there must be a path from b1 to bn+1, say bn+1 =

b1w. It is not immediately obvious to us where the vertex labelled by w is found in

Cay(S), but by establishing the following claims we will be able to locate it.
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7. Cayley Spectra of Semigroups 137

Claim 7.64
In Case 2.2.5, that is u = b1, bn+1 = b1w and b1b1 = b1 ̸= b1bn+1 we have that w is

either a level 0 or level 1 vertex.

Proof: Suppose otherwise. By Claim 7.59 all edges are in the downwards direction,

so all roots must be generators, and so w = biv for some bi ∈ B and v ∈ AA∗. Then

bn+1 = b1biv.

b1

v2

v1

v

bi bn+1, w

Now these two vertices v1, v2 are in fact the same vertex, but v has non-zero length

and so we have introduced a cycle into the graph, which is a contradiction. Hence w

must indeed be found on level 0 or 1. □

This helps us narrow down the location of w to a selection of n+ n2 vertices. The

following claim will allow us to specify exactly where w is located in Cay(S).

Claim 7.65
In Case 2.2.5, that is u = b1, bn+1 = b1w and b1b1 = b1 ̸= b1bn+1, we have that if

bj is a generator found on level 1 of the tree with root bi then bibi = bi and bibj = bj .

Additionally, we never have bibk = bj for some k ̸= j.

Proof:

If bibi = bi and bibj = bj is not the case, we may refer to Case 7.49, 7.50 and 7.51.

Suppose that bibk = bj for some k ̸= j. Then bj is written as the product of two

other generators, and can be removed without affecting the shape of † (S) and leaves a

semigroup isomorphic to S. Since we want our generating set as small as possible, then

bj should be removed. □

This shows us that since b1bn+1 = bn+1 we must have w = bn+1 and so w was

hiding in front of us all along. We can now deduce even more information about S.
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Claim 7.66
In Case 2.2.5, that is u = b1, bn+1 = b1w and b1b1 = b1 ̸= b1bn+1, we have that if

bi, bj are a generators of S such that bibj = bj , then sbi = s for all s ∈ S.

Proof: Suppose there exists some s ∈ S such that sbi ̸= s. By Claim 7.65, bibi = bi,

and so we must have sbibi = sbi. Since bibj = bj , then sbibj = sbj which has two

possible realisations in the graph. If sbi ̸= sbj our graph has the following section.

s

bi bj

bj
bi

This has created a cycle, which is forbidden in our graph, so we must have sbi = sbj .

s

b1 b2

b2 b1

Now in this case, we must remember that we have to reach n new vertices from sb1,

but since sb1b2 = sb1, we are left with only n− 1 sets of edges to achieve this with, a

contradiction.

Hence sbi = s.

□

Now it would seem that we can have a generating set of size up to n + n2 as this

is the number of level 0 and level 1 vertices. However, as we are interested in counting

the semigroups up to isomorphism, we in fact have the following.

Claim 7.67
In Case 2.2.5, that is u = b1, bn+1 = b1w and b1b1 = b1 ̸= b1bn+1 we have that S has

a generating set with size at most n+ n.
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Proof: Suppose that S has a generating set B = {b1, . . . , bn+n+1} of size n+ n+ 1.

Of the generators, n are found at level 0, say b1, b2, . . . , bn, and the rest are found at

level 1. Suppose that bn+i for 1 ≤ i ≤ n + 1 are distributed across level 1 vertices in

trees rooted at bi where 1 ≤ i ≤ k for some k. At least one of these trees contains at

least two level 1 generators. Without loss of generality, say the tree rooted at b1 contains

generators bn+1 and bn+2. Now by Claim 7.65 we know that b1bi = b1 for 1 ≤ i ≤ k

and b1bn+1 = bn+1 and b1bn+2 = bn+2. We now have n − 2 vertices on level 1 for

which we have not determined the edge that meets it from level 0.

Let bj be a generator that is found on level 1 in the tree rooted at bi say, and assume

b1bj = b1. Then bib1bj = bibj = bj , but bib1bj = bib1 = b1. Hence we have

that b1bj is always found on level 1 for any generator bj where j > n. Now there are

n + 1 such generators, and only n level 1 vertices, so it must be that b1bx = b1by for

x, y > n. Let by be found in the tree rooted at bi. Then bib1by = biby = by and

bib1by = bib1bx = bibx so bibx = by . This means that by can be written in terms

of other generators, and its removal does not affect the shape of † (S). Hence we can

remove by from the generating set and have a semigroup isomorphic to S with the same

skeleton. □
Claim 7.68
In Case 2.2.5, that is u = b1, bn+1 = b1w and b1b1 = b1 ̸= b1bn+1 we have that for

n+ 1 ≤ j ≤ n+m, then b1bj ̸= b1.

Proof:

Suppose that b1bj = b1 for such a j. Then for n+ i < k ≤ n+m where k ̸= j we

have

bkb1bj = bkbj

= bj

= bk

= bkb1

= bkb1bj .

That is, bj = bk, which is a contradiction. □
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Given these restrictions on the structure of Cay(S,B), we may now construct pre-

cisely #S different semigroups such that † (S,B) ∼= † (A+, A) but where S is not iso-

morphic to A+ itself.

Let the generating set of S have size n +m for some 1 ≤ m ≤ n. We will let the

root generators be b1, b2, . . . , bn, leaving us with m generators, which by Claim 7.64

are found on level 1.

The distribution of the m generators across vertices on level 1 gives rise to a par-

tition of m, so we create at least p(m) semigroups in this way. Suppose then that

P = (p1, p2, . . . , pi) is a partition of m. Without any loss of generality, we will let

generators {bn+1, . . . , bn+p1} be found in the tree rooted at b1 and in general

{bn+p1+...+pj−1+1, . . . , bn+p1+...+pj−1+pj}

are in the tree with root bj . By Claim 7.65, we have bjbj = bj for 1 ≤ j ≤ i, that

is, for each root vertex bj where 1 ≤ j ≤ i we have a loop labelled by bj on that

vertex. Claim 7.65 also determines precisely edges labelled bn+p1+...+pj−1+k where

1 ≤ k ≤ pj , since bjbn+p1+...+pj−1+k = bn+p1+...+pj−1+k for 1 ≤ j ≤ i. That is, for

each bn+p1+...+pj−1+k with 1 ≤ k ≤ pj and 1 ≤ j ≤ i, there is an edge from bj to

bn+p1+...+pj−1+k labelled by bn+p1+...+pj−1+k. We now consider what edges labelled

bk for n+ i < k ≤ n+m can do.

By Claim 7.66 sb1 = s for all s ∈ S, then by determining b1bk, we determine sbk
for all s ∈ S. We therefore need only consider the end vertex of the remaining edges

leaving b1 in order to find all edges in Cay(S,B).

We have already determined the destination of p1 of the edges leaving b1, specifi-

cally those labelled bz for 1 ≤ z ≤ i and n ≤ z ≤ n+ p1. This leaves n+m− i− p1

edges for which we need to find the end point, and n − p1 level 1 vertices which have

not yet featured as the end point of an edge.

By Claims 7.65 and 7.68 we know that for any generator found on level 1, that is, bj
for n+1 ≤ j ≤ n+m, such a generator labels neither a loop on b1, nor a multiple edge

from b1. We therefore have that generators bj for n + 1 ≤ j ≤ n +m label m edges

terminating atm different level 1 vertices from b1, and generators bj for 1 ≤ j ≤ i label

loops starting and terminating at b1. This gives us m+ i edges for which we know the
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start and end, and therefore n− i edges yet to be discovered, with n−m level 1 vertices

as yet unreachable.

There are now no further restrictions on edge locations, and so the remaining n− i

edges can be found either as loops on b1 or as edges to the n −m level 1 vertices that

have not yet featured as a terminating vertex. There are a number of different ways this

can happen, and we shall now count these.

We observe that we must have an edge from b1 to the n−m vertices that we have not

visited yet, and so we need to partition the n− i generators into partitions with at least

n−m parts. If we create a partitionQ = (q1, . . . , qn−m) of precisely n−m parts then

for each qj we have the generators {bi+q1+...+qj−1+1, . . . , bi+q1+...+qj−1+qj} labelling

an edge from b1 to one of the n−m vertices we have not seen yet. To count the number

of partitions of n− i into n−m parts we calculate

β = p(n− i, n−m,n− i)− p(n− i, n−m− 1, n− i)

Now since there are only n−m+ 1 permitted terminal vertices for our edges, that

is the n−m unvisited level 1 vertices and b1, our partition of n− i must be no bigger

than n −m + 1. Suppose we have such a partition Q = (q1, . . . , qn−m+1) of n − i.

We notice that from this partition of edges we must select one set of edges to be loops

on b1, as opposed to edges to level 1. If two parts of Q are equal, say qx = qy , then it

makes no difference to our semigroup whether we find the set of edges relating to qx
as loops, or the set relating to qy as loops. Therefore, we let r represent the number of

distinct parts of Q, and so a partition Q gives rise to r different semigroups. We count

this by first calculating the number of partitions of the correct size:

α = p(n− i, n−m+ 1, n− i)− p(n− i, n−m,n− i).

Then given a partition Qx of the correct size, let rx represent the number of distinct

parts. We then have
α∑
x=1

rx

non-isomorphic semigroups found from these configurations.

□
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142 7.3. Free Semigroups

Hence given an m, a partition P = (p1, p2, . . . , pi) of m, a partition

Q = (q1, . . . , qj) of n− i and a choice i+ qk of how many generators should label the

loop on b1, we have the semigroup

S[m,P,Q, qk] = sgp⟨b1, . . . , bn+m |bxbl = bx for 1 ≤ l ≤ i, 1 ≤ x ≤ n+m

b1bn+l = bn+l for 1 ≤ l ≤ p1

b2bn+p1+l = bn+p1+l for 1 ≤ l ≤ p2

...

bibn+p1+...+pi−1+l = bn+p1+...+pi−1+l for 1 ≤ l ≤ pi

b1bi+n−m+l = b1bi+1 for 1 ≤ l ≤ q1

b1bi+n−m+q1+l = b1bi+2 for 1 ≤ l ≤ q2

...

b1bi+n−m+q1+...+qk−2+l = b1bi+k−1 for 1 ≤ l ≤ qk−1

b1bi+n−m+q1+...+qk−1+l = b1 for 1 ≤ l ≤ qk

b1bi+n−m+q1+...+qk+l = b1bi+k for 1 ≤ l ≤ qk+1

b1bi+n−m+q1+...+qj+l = b1bi+j for 1 ≤ l ≤ qj⟩.

We wish to prove the following theorem.

Theorem 7.69
LetA be an alphabet with n elements and letA+ be the free semigroup onA. Letm ≤ n

and let P = (p1, p2, . . . , pi) be a partition ofm. LetQ = (q1, . . . , qj) be a partition of

n−i and a choose a qk. Then † (S[m,P,Q, qk], {b1, . . . bn+m}) ∼= † (A,A+) and given

the choices of m,P,Q, qk there are precisely #S different semigroups S[m,P,Q, qk].

Proof: This is a consequence of Claims 7.70, 7.72 and 7.73 □

We first show that there are the number of semigroups S[m,P,Q, qk] that we want

to have. We then use a rewriting system based on this presentation to find normal forms

forS[m,P,Q, qk] and then show that the skeleton graph of this semigroup is isomorphic

to that of A+ = sgp⟨A⟩.
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Claim 7.70
Let S1 = S[m1, P1, Q1, qk1 ], S2 = S[m2, P2, Q2, qk2 ] be two semigroups as defined

above. Then S1
∼= S2 if and only if m1 = m2, P1 = P2, Q1 = Q2 and qk1 = qk2 .

Proof: If m1 = m2, P1 = P2, Q1 = Q2 and qk1 = qk2 , then clearly S1
∼= S2.

For the converse, suppose that S1
∼= S2, and let φ : S1 → S2 be an isomorphism.

Let S1 = sgp⟨b1, . . . , bn+m1⟩ and ∼= S2 = sgp⟨c1, . . . , cn+m2⟩. Since φ must map

generators to generators and no generator in S1 or S2 can be written as a product of

other generators both semigroups must have generating sets of the same size, and so

m1 = m2.

Let the number of parts of P1 and P2 be denoted by i1 and i2 respectively. Then

bzbz = bz for 1 ≤ z ≤ i1 and φ(bz)φ(bz) = φ(bz). The only such elements in S2

with this property are cz for 1 ≤ z ≤ i2. Since we must also have φ−1(cz)φ
−1(cz) =

φ−1(cz) then we conclude that i1 = i2.

Let P1 = (p1, . . . , pi1) and P2 = (π1, . . . , πi1). Given some 1 ≤ z ≤ i1, the tree

rooted at bz we have pz generators by such that bzby = by . Under φ the element bz must

be mapped to some element cv such that there are pz generators by such that cvcy = cy .

Hence P1 = P2.

Now Q1 and Q2 can only have n−m1 or n−m1 + 1 parts. Suppose without loss

of generality that Q1 has n −m1 + 1 parts and Q2 has n −m1 parts. Then we have

b1bz = b1 for i1 + qk1 element bz , then we must be able to find i1 + qk1 elements cz
such that c1cz = c1. However, sinceQ2 has only n−m1 parts this means there are only

i1 such elements. HenceQ2 must in fact have n−m1 +1 and furthermore, qk1 = qk2 .

A similar argument applies if Q1 has n−m1 parts.

Finally, let Q1 = (q1, . . . , qj). If j = n−m+1 then we know that qk1 = qk2 . For

each 1 ≤ z ≤ j where z ̸= k1 such that , there are exactly qz generators bv, bw such

that b1bv = b1bw. Using φ, there must also be exactly qz generators cv, cw such that

c1cv = c1cw, and hence Q1 = Q2. □

Hence there are #S non-isomorphic semigroups that can be found for a given n

using the above presentation. We will shortly show that semigroups given by these pre-

sentations are indeed skeleton-isomorphic to † (A+, A), however we will first describe
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an example of such a semigroup to aid understanding.

Example 7.71
As an illustrative example, suppose that A = {a1, a2, a3, a4}, and create the following

semigroup T . We choose the number of extra generators to be m = 3. The partition of

m is 3 = 2 + 1, and so i = 2. We then have n − i = 2. We choose the one possible

partition into n−m = 1 parts, that is the partition 2 = 2. Finally this means we must

have exactly i generators labelling a loop on b1. Using the general presentation for S,

this gives us the specific presentation

T = sgp⟨b1, b2, b3, b4, b5, b6, b7 | bib1 = bi, bib2 = bi for 1 ≤ i ≤ 7,

b1b5 = b5, b1b6 = b6, b2b7 = b7,

b1b3 = b1b4⟩.

We will show that T has the graph that is partially shown in Figure 7.4 by establishing

normal forms via a complete rewriting system, and considering the edges that arise

when using these as the vertices of Cay(T ).

b1

b5 b6

b2

b7
b3 b4

b1, b2

b1, b2 b1, b2 b1, b2

b1, b2

b1, b2

b1, b2 b1, b2 b1, b2

b1, b2

b1, b2

b1, b2 b1, b2 b1, b2

b1, b2

b1, b2

b1, b2 b1, b2 b1, b2 b1, b2

b7b3, b4 b5 b6 b7b3, b4 b5 b6

b7b3, b4 b5 b6 b7b3, b4 b5 b6

Figure 7.4: Cayley graph of T

We show that T has the normal forms

I b1 and b2;

II b1b3{b3, b5, b6, b7}⋆, b1b7{b3, b5, b6, b7}⋆
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7. Cayley Spectra of Semigroups 145

b2b3{b3, b5, b6, b7}⋆,b2b5{b3, b5, b6, b7}⋆,b2b6{b3, b5, b6, b7}⋆

III b3{b3, b5, b6, b7}⋆, b4{b3, b5, b6, b7}⋆, b5{b3, b5, b6, b7}⋆,

b6{b3, b5, b6, b7}⋆, b7{b3, b5, b6, b7}⋆.

Using the shortlex order with bx < by for x < y, we have a rewriting system

RW1 bxbl → bx for 1 ≤ l ≤ 2, 1 ≤ x ≤ 7,

RW2 b1bl → bl for 5 ≤ l ≤ 6,

RW3 b2b7 → b7,

RW4 bxb4 → bxb3 for 1 ≤ x ≤ 7.

We will show that this system is locally confluent by considering possible overlaps of

rules when rewriting words. If we encounter the rule RW1 on the left, this can overlap

with RW1, RW2, RW3 and RW4 on the right.
RW1 RW1 blbx2

// bx2

≡

��

bx1bx1blbx2

::uuuuuuuuuu

$$I
II

II
II

I

bx1bx2
// bx2

RW1 RW2 bxbl

≡

��

bxbxb1bl

<<xxxxxxxxx

""F
FF

FF
FF

F

bxbl

RW1 RW3 bxb7 // b7

≡

��

bxbxb2b7

;;xxxxxxxxx

##F
FF

FF
FF

F

bxb7 // b7

RW1 RW4 bxb4 // bxb3

≡

��

bxbxblb4

;;vvvvvvvvv

##H
HH

HH
HH

H

bxblb3 // bxb3
Rule RW2 overlaps with only RW1,RW2 and RW4.
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RW2 RW1 bl1bl2 // bl1

≡

��

b1b1bl1bl2

;;vvvvvvvvv

##H
HH

HH
HH

H

b1bl1 // bl1

RW2 RW2 b1bl // bl

≡

��

b1b1b1bl

<<yyyyyyyyy

""E
EE

EE
EE

E

b1bl // bl

RW2 RW4 blb4 // blb3

≡

��

b1b1blb4

;;wwwwwwwww

##G
GG

GG
GG

G

b1blb3 // blb3
The rule RW3 can only overlap with RW1 and RW4.

RW3 RW1 b7bl // b7

≡

��

b2b2b7bl

<<xxxxxxxxx

""F
FF

FF
FF

F

b2b7 // b7

RW3 RW4 b7b4 // b7b3

≡

��

b2b2b7b4

::vvvvvvvvv

$$H
HH

HH
HH

H

b2b7b3 // b7b3
Similarly RW4 also only overlaps with RW1 and RW4.

RW4 RW1 bxb3bl // bxb3

≡

��

bxbxb4bl

;;vvvvvvvvv

##H
HH

HH
HH

H

bxb4 // bxb3

RW4 RW4 bxb3b4 // bxb3b3

≡

��

bxbxb4b4

::vvvvvvvvvv

$$H
HH

HH
HH

H

bxb4b3 // bxb3b3
This shows that our system is locally confluent. Under the ordering that we have used,

all right-hand sides of rules are shorter than left-hand sides, and so when a word is

rewritten, it becomes shorter. Thus this system is Noetherian and so by Lemma 6.9

we have a complete rewriting system. Then by Lemma 6.10 there exist unique normal

forms for T .

We must now show that the elements (I)-(III) are normal forms by showing they are

irreducible. An element of type I is a single letter and so a rewrite rule can never be

applied to it, hence it is irreducible. For a word of type II or III, we note that rewrite rule

RW1 requires either b1 or b2 to appear as a non-leading letter which is never the case for

such a word. Rule RW2 requires b5 or b6 to appear after b1, and this will never occur in

a word of type II or III. The third rewrite rule RW3 only operates on the subword b2b7,
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Generator b1 b2 b3 b4 b5 b6 b7

b1 (b1, b1) (b1, b1) (b1, b1b3) (b1, b1b3) (b1, b5) (b1, b6) (b1, b1b7)

b2 (b2, b2) (b2, b2) (b2, b2b3) (b2, b2b3) (b2, b2b5) (b2, b2b6) (b2, b7)

b3 (b3, b3) (b3, b3) (b3, b3b3) (b3, b3b3) (b3, b3b5) (b3, b3b6) (b3, b7)

b4 (b4, b4) (b4, b4) (b4, b4b3) (b4, b4b3) (b4, b4b5) (b4, b4b6) (b4, b4b7)

b5 (b5, b5) (b5, b5) (b5, b5b3) (b5, b5b3) (b5, b5b5) (b5, b5b6) (b5, b5b7)

b6 (b6, b6) (b6, b6) (b6, b6b3) (b6, b6b3) (b6, b6b5) (b6, b6b6) (b6, b6b7)

b7 (b7, b7) (b7, b7) (b7, b7b3) (b7, b7b3) (b7, b7b5) (b7, b7b6) (b7, b7b7)

Table 7.1:

which cannot be made from any of the expressions listed in II and III. Finally, rule RW4

requires the letter b4 to occur as a non-leading letter, and this does not happen in any

words of type II and II. Hence all the elements of types I, II, and III are irreducible and

thus are normal forms.

We would now like to show that we have listed all the normal forms, so we will

suppose that w ∈ {b1, . . . , b7}∗ is a normal form for T but is not of type I, II, or III.

This means that w must have length at least 2, as all normal forms of length 1 are

found as types I or III. First suppose that w begins with b1. Then w either has by for

y ∈ {1, 2, 4, 5, 6} as a second letter, or bz for z ∈ {1, 2, 4} as a third or later letter. If

we have by as a second letter, then we can apply RW1, RW2 or RW4 to w, and so w

was not irreducible. If we have bz as a third or later letter, then we can apply RW1 or

RW4 to w and so w was not irreducible.

If w begins with b2, then w must have either by where y ∈ {1, 2, 4, 7} as a second

letter, or bz where z ∈ {1, 2, 4} as a third or later letter. For by as a second letter, we can

apply either RW1, RW3 or RW4 to w, so w is not irreducible. If we have bz as a third

or later letter, then we can rewrite w using RW1 or RW4, and so w was not irreducible.

We can now consider the Cayley graph of T . The set of vertices V is the set of

all normal forms as described above. We will describe the edges of Cay(T ) by first

considering the edges that arise from the vertices representing the generators of T .

From Table 7.1 we see that b1, b2, b3 and b4 have at least 4 neighbouring vertices,

and b5, b6 and b7 have at least 5. Now for any normal form of length 2 or greater,
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Generator b1 b2 b3 b4 b5 b6 b7

wb3 (wb3, wb3) (wb3, wb3) (wb3, wb3b3) (wb3, wb3b3) (wb3, wb3b5) (wb3, wb3b6) (wb3, wb3b7)

wb5 (wb5, wb5) (wb5, wb5) (wb5, wb5b3) (wb5, wb5b3) (wb5, wb5b5) (wb5, wb5b6) (wb5, wb5b7)

wb6 (wb6, wb6) (wb6, wb6) (wb6, wb6b3) (wb6, wb6b3) (wb6, wb6b5) (wb6, wb6b6) (wb6, wb6b7)

wb7 (wb7, wb7) (wb7, wb7) (wb7, wb7b3) (wb7, wb7b3) (wb7, wb7b5) (wb7, wb7b6) (wb7, wb7b7)

Table 7.2:

we know that the last letter is either b3, b5, b6 or b7. Therefore we let w be a word in

normal form of length at least one, and consider the edges originating at vertices wbi
for i ∈ {3, 5, 6, 7}.

Together, Tables 7.1 and 7.2 describe all edges in Cay(T ). We can see here that

normal forms beginning with b1, b5 and b6 are contained in a single connected com-

ponent of Cay(T ) as there exist edges from b1 to b5 and b6, and all other edges from

normal forms that begin b1, b5 or b6 are to other normal forms that begin b1, b5 or b6
respectively. Having listed all edges, we now know that b1 has exactly four neighbours

(of which two are b5 and b6), and b5 and b6 have exactly five neighbours (of which one

is b1). If we consider an arbitrary vertex wbi for i ∈ {3, 5, 6, 7} in this component,

we see that this vertex is the child of precisely one vertex, that is, the only edges for

which wbi is a terminal vertex are those beginning at w. The vertex wbi has precisely

four child vertices, specifically wbib3, wbib5, wbib6, and wbib7. Hence if we consider

this component in † (T ) by removing all directions, loops and multiple edges from the

component in Cay(T ), we have a 4-ary tree rooted at the vertex b1.

By similar arguments we can show that Cay(T ) contains three more components,

one containing normal forms beginning with b2 and b7, one containing normal forms

beginning with b3, and one containing normal forms beginning with b4. All of these

components in † (T ) are 4-ary trees rooted at b2, b3 and b4 respectively.

Hence † (T ) is isomorphic to † (A∗), concluding the example.

We will now letA be of size n for some n > 1 and pick anm such that 1 ≤ m ≤ n,

a partition P of m into i parts, a partition Q of n− i into j parts, and a number k such

that 1 ≤ k ≤ j. We will show that the semigroup S given by the presentation defined

above has † (S) ∼= † (A∗). We follow a similar method to the example T , and establish
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7. Cayley Spectra of Semigroups 149

normal forms for S by creating a complete rewriting system, and then examining the

edges that arise in Cay(S) using these normal forms as the set of vertices.

Claim 7.72
The semigroup S has normal forms

• bg for 1 ≤ g ≤ i

• bgbh{bf | i+ 1 ≤ f ≤ i+ n−m,n+ 1 ≤ f ≤ n+m}∗ for

– 1 ≤ g ≤ i,

– i+ 1 ≤ h ≤ i+ n−m,

– n+ 1 ≤ h ≤ n+ p1 + . . .+ pg−1 ,

– n+ p1 + . . .+ pg + 1 ≤ h ≤ n+m;

• bg{bh | i+ 1 ≤ h ≤ i+ n−m,n+ 1 ≤ h ≤ n+m}∗ for i < g ≤ n+m.

Proof: We first show thatS does in fact have normal forms by showing it has a complete

rewriting system. Using the shortlex order with bx < by for x < ywe have the following

rewriting system.
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bxbl → bx for 1 ≤ l ≤ i, 1 ≤ x ≤ n+m

b1bn+l → bn+l for 1 ≤ l ≤ p1

b2bn+p1+l → bn+p1+l for 1 ≤ l ≤ p2

...

bibn+p1+...+pi−1+l → bn+p1+...+pi−1+l for 1 ≤ l ≤ pi

bxbi+n−m+l → bxbi+1 for 1 ≤ l ≤ q1, 1 ≤ x ≤ n+m

bxbi+n−m+q1+l → bxbi+2 for 1 ≤ l ≤ q2, 1 ≤ x ≤ n+m

...

bxbi+n−m+q1+...+qk−2+l → bxbi+k−1 for 1 ≤ l ≤ qk−1, 1 ≤ x ≤ n+m

bxbi+n−m+q1+...+qk−1+l → bx for 1 ≤ l ≤ qk, 1 ≤ x ≤ n+m

bxbi+n−m+q1+...+qk+l → bxbi+k for 1 ≤ l ≤ qk+1, 1 ≤ x ≤ n+m

bxbi+n−m+q1+...+qj−1+l → bxbi+j for 1 ≤ l ≤ qj , 1 ≤ x ≤ n+m

We will show that this system is locally confluent by considering possible overlaps

of words when rewriting. We will break the rules down into five categories:

(i) bxbl → bl for 1 ≤ l ≤ i, 1 ≤ x ≤ n+m

(ii) bybg → bg for 1 ≤ y ≤ i, g = n+ p1 + . . .+ pf + e where 1 ≤ f ≤ i− 1 and

1 ≤ e ≤ pf+1

(iii) bxbr → bxbi+u+1 for 1 ≤ x ≤ n+m, r = i+n−m+ q1 + . . .+ qu+ v where

1 ≤ v ≤ qu+1 and 1 ≤ u ≤ k − 2

(iv) bxbw → bx for 1 ≤ x ≤ n +m, r = i + n −m + q1 + . . . + qk−1 + v where

1 ≤ v ≤ qk+1

(v) bxbt → bxbi+u for 1 ≤ x ≤ n+m, t = i+ n−m+ q1 + . . .+ qu + v where

1 ≤ v ≤ qu+1 and k ≤ u ≤ j − 1

Save for those of type (ii), all rewrite rules have any generator as the first letter of the

left-hand side, we can overlap all those rules. Rules of type (ii) may overlap its second
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letter with the first letter of any rule except those of type two. They may also overlap

their first letter with the second letter of rules of type (i).

The overlaps with rules of type (i) at the front are:
(i) blbx2

// bx2

≡

��

bx1bx1blbx2

::uuuuuuuuuu

$$I
II

II
II

I

bx1bx2
// bx2

(ii) blbg

≡

��

bxbxblbg

<<xxxxxxxxx

""F
FF

FF
FF

F

bxbg

(iii) blbr // blbi+u+1

≡

��

bxbxblbr

99sssssssssss

%%KK
KK

KK
KK

K

bxblbi+u+1
// blbi+u+1

(iv) b1bw // bl

≡

��

bxbxblbw

;;wwwwwwwww

##G
GG

GG
GG

G

bxbl // bl

(v) blbt // blbi+u

≡

��

bxbxblbt

::uuuuuuuuuu

$$II
III

III
I

bxblbi+u // blbi+u

Overlaps with rules of type (ii) at the front:
(i) bgbl // bl

≡

��

bxbxbgbl

<<yyyyyyyyy

""E
EE

EE
EE

bxbl // bl

(iii) bgbr // bgbi+u+1

≡

��

bxbxbgbr

99sssssssssss

%%KK
KKK

KKK
KK

bxbgbi+u+1
// bgbi+u+1

(iv) bgbw // bg

≡

��

bxbxbgbw

;;xxxxxxxxx

##F
FF

FF
FF

F

bxbg // bg

(v) bgbt // bgbi+u

≡

��

bxbxbgbt

::uuuuuuuuuu

$$II
III

III
I

bxbgbi+u // bgbi+u

Overlaps with rules of type (iii) at the front:
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(i) bxbi+u+1bl // bxbl // bl

≡

����
��
��
��
��
��
��
��

bxbxbrbl

99ssssssssss

%%KK
KKK

KKK
KK

bxbl // bl

(iii) bxbi+u1+1br2 // bxbi+u1+1bi+u2+1

≡

��

bxbxbr1br2

88qqqqqqqqqqq

&&MM
MMM

MMM
MM

bxbr1bi+u2+1
// bxbi+u1+1bi+u2+1

(iv) bxbi+u+1bw // bxbi+u+1

≡

��

bxbxbrbw

99rrrrrrrrrrr

%%LL
LLL

LLL
LL

bxbr // bxbi+u+1

(v) bxbi+u1+1bt // bxbi+u1+1bi+u2

≡

��

bxbxbrbt

99rrrrrrrrrr

%%LL
LLL

LLL
LL

bxbrbi+u2
// bxbi+u1+1bi+u2

Overlaps with rules of type (iv) at the front:
(i) bxbl // bl

≡

��

bxbxbwbl

;;xxxxxxxxx

##F
FF

FF
FF

F

bxbl // bl

(iii) bxbr // bxbi+u+1

≡

��

bxbxbwbr

99rrrrrrrrrrr

%%LL
LLL

LLL
LL

bxbwbi+u+1
// bxbi+u+1

(iv) bxbw2
// bx

≡

��

bxbxbw1
bw2

::uuuuuuuuuu

$$I
II

II
II

I

bxbw1
// bx

(v) bxbt // bxbi+u

≡

��

bxbxbwbt

99tttttttttt

%%JJ
JJJ

JJJ
J

bxbwbi+u // bxbi+u

Overlaps with rules of type (v) at the front:
(i) bxbi+ubl // bxbl // bl

≡

����
��
��
��
��
��
��
��

bxbxbtbl

::uuuuuuuuuu

$$II
III

III
I

bxbl // bl

(iii) bxbi+u1br // bxbi+u1bi+u2+1

≡

��

bxbxbtbr

99rrrrrrrrrr

%%LL
LLL

LLL
LL

bxbtbi+u2+1
// bxbi+u1bi+u2+1

(iv) bxbi+ubw // bxbi+u

≡

��

bxbxbtbw

99tttttttttt

%%JJ
JJJ

JJJ
J

bxbt // bxbi+u

(v) bxbi+u1bt2 // bxbi+u1bi+u2

≡

��

bxbxbt1bt2

99rrrrrrrrrr

%%LL
LLL

LLL
L

bxbt1bi+u2
// bxbi+u1bi+u2

These are all our overlaps, and in each case we always arrive at the same word, so we

have local confluence. Now if we consider left and right-hand sides of rules, we can see
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that under the order we have imposed, the right-hand side is always shorter under the

shortlex ordering, and so this system is Noetherian. Hence this is a complete rewriting

system.

In order to show that what we have given are actually normal forms, we check that

they are irreducible. First suppose we have a word of the form bg for 1 ≤ g ≤ i. This

has length one and so cannot be rewritten using any rules.

Suppose we have a word w in the form bgbh{bf | i+ 1 ≤ f ≤ i+ n−m,n+ 1 ≤

f ≤ n+m}∗ for 1 ≤ g ≤ i, i+1 ≤ h ≤ i+n−m,n+1 ≤ h ≤ n+p1+. . .+pg−1, n+

p1 + . . .+ pg +1 ≤ h ≤ n+m. We cannot apply rewrite rules of type (i) as these rule

require a letter by for 1 ≤ y ≤ i to appear after some other letter which is not possible in

words of this form. For rules of type (ii), we observe that the only place we could apply

these is to the first two letters of w because this is the only place we find find a letter by
for 1 ≤ y ≤ i. Now for a given by with 1 ≤ y ≤ i we can only apply a rule of type (ii)

if by is followed by a letter bz where n+ p1+ . . .+ py−1+1 ≤ z ≤ n+ p1+ . . .+ py ,

however these letters are not found in any normal form of this type beginning with our

chosen by . Finally to apply rules of type (iii), (iv) and (v) we require a letter by for

i+n−m+1 ≤ y ≤ n, and none of these appear in our word w. Thus w is irreducible.

Suppose then we have a word in the form bl{bh | i+1 ≤ h ≤ i+n−m or n+1 ≤

h ≤ n+m}∗ for i < l ≤ n+m. We can never apply rewrite rules of types (i) or (ii) to

this word as it does not feature any letters by for 1 ≤ y ≤ i. The remaining rule types are

also not applicable, as they require a letter by for i+n−m+1 ≤ y ≤ i+n−m+m−i

to follow some letter which is not possible given the restrictions on h. Therefore, all

our suggested normal forms are irreducible.

Finally, suppose we have some element w ∈ B∗ which is in normal form but not

listed above. The element w must have at least length two since all elements of length

one are covered by our normal forms. Suppose then thatw begins with bg for 1 ≤ g ≤ i,

then eitherw has by where 1 ≤ y ≤ i, i+n−m+1 ≤ y ≤ n, orn+p1+. . .+pg−1+1 ≤

y ≤ n+p1+ . . .+pg as a second letter or by where 1 ≤ y ≤ i or i+n−m+1 ≤ y ≤ n

as some letter that is in the third or later place.

Suppose that w has by where 1 ≤ y ≤ i, i + n −m + 1 ≤ y ≤ n, or n + p1 +

. . . + pg−1 + 1 ≤ y ≤ n + p1 + . . . + pg as a second letter then if y is the first,

153



154 7.3. Free Semigroups

1 ≤ y ≤ i, then we may apply a rewrite rule of type (i). If y in the second interval,

i+ n−m+ 1 ≤ y ≤ n, then we may apply a rule of type (iii), (iv) or (v). Finally, if y

is in the interval n+ p1 + . . .+ pg−1 + 1 ≤ y ≤ n+ p1 + . . .+ pg then we can apply

a rule of type (ii).

Therefore we suppose w has by where 1 ≤ y ≤ i or i + n −m + 1 ≤ y ≤ n as

some letter that is in the third or later place. If y is in the first interval then we can apply

a rule of type (i). For y in the second interval then we can apply rules of type (iii), (iv)

or (v).

Hence w must begin with bg for i + 1 ≤ g ≤ n + m and contain some letter by
where 1 ≤ y ≤ i or i + n −m < y ≤ n. For the former case, we apply rules of type

(i). For y in the latter case, we apply rules of type (iii), (iv) or (v). Hence w can be

rewritten and is reducible, so is not a normal form.

□
Claim 7.73
For a given m, P , Q and qk we have † (S[m,P,Q, qk], B) ∼= † (A+, A).

Proof: We may label all the vertices in Cay(S[m,P,Q, qk], B) by the normal forms

given in Claim 7.72. Consider a vertex bx for i < x ≤ n+m. We will use the relations

to determine what edges occur within the graph. The relations can be classified into the

following classes:

(i) bxbl = bl for 1 ≤ l ≤ i, 1 ≤ x ≤ n+m

(ii) bybg = bg for 1 ≤ y ≤ i, g = n+ p1 + . . .+ pf + e where 1 ≤ f ≤ i− 1 and

1 ≤ e ≤ pf+1

(iii) b1br = bxbi+u+1 for r = i+ n−m+ q1 + . . .+ qu + v where 1 ≤ v ≤ qu+1

and 1 ≤ u ≤ k − 2

(iv) b1bw = bx for r = i+ n−m+ q1 + . . .+ qk−1 + v where 1 ≤ v ≤ qk+1

(v) b1bt = bxbi+u for t = i+ n−m+ q1 + . . .+ qu + v where 1 ≤ v ≤ qu+1 and

k ≤ u ≤ j − 1
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Generator Type Parameter

bα 1 ≤ α ≤ i

bβ i+ 1 ≤ β ≤ i+ n−m

bγ i+ n−m+ 1 ≤ γ ≤ i+ n−m+ q1 + . . .+ qk−1

bδ i+ n−m+ q1 + . . .+ qk−1 + 1 ≤ δ ≤ i+ n−m+ q1 + . . .+ qk

bε i+ n−m+ q1 + . . .+ qk + 1 ≤ ε ≤ i+ n−m+ q1 + . . .+ qj = n

bζ n+ 1 ≤ ζ ≤ n+m

Table 7.3:

Generator bα bβ bγ bδ bε bζ

bα (bα, bα) (bα, bαbβ) (bα, bαbi+u+1) (bα, bα) (bα, bαbi+u) (bα, bζ)

(bα, bαbζ)

bβ (bβ , bβ) (bβ , bβbβ) (bβ , bβbi+u+1) (bβ , bβ) (bβ , bβbi+u) (bβ , bβbζ)

bγ (bγ , bγ) (bγ , bγbβ) (bγ , bγbi+u+1) (bγ , bγ) (bγ , bγbi+u) (bγ , bγbζ)

bδ (bδ, bδ) (bδ, bδbβ) (bδ, bδbi+u+1) (bδ, bδ) (bδ, bδbi+u) (bδ, bδbζ)

bε (bε, bε) (bε, bεbβ) (bε, bεbi+u+1) (bε, bε) (bε, bεbi+u) (bε, bεbζ)

bζ (bζ , bζ) (bζ , bζbβ) (bζ , bζbi+u+1) (bζ , bζ) (bζ , bζbi+u) (bζ , bζbζ)

Table 7.4:

We will first consider the graph Cay(S[m,P,Q, qk], B). We will categorise the

generators of S[m,P,Q, qk] in to useful types, and examine the edges that arise from

these. From this we can then deduce the edges arising from all normal forms, and

hence we can see where multiple edges and loops occur, and thus understand the edges

in † (S[m,P,Q, qk], B).

Edges leaving each type of generator are found by multiplying each type by all other

types and applying appropriate relations. For example, a vertex of type bα has an edge

labelled bα forming a loop on it, due to the relations of type (i). If we multiply a vertex

of type bα by a generator of type bζ , then depending on whether these particular gener-

ators appear in a relation of type (ii) or not, we have either an edge (bα, bζ) or an edge

(bα, bαbζ).

Now Table 7.4 allows us to see the type of edges leaving each generator vertex in
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Generator bα bβ bγ bδ bε bζ

wbβ (wbβ , wbβ) (wbβ , wbβbβ) (wbβ , wbβbi+u+1) (wbβ , wbβ) (wbβ , wbβbi+u) (wbβ , wbβbζ)

wbζ (wbζ , wbζ) (wbζ , wbζbβ) (wbζ , wbζbi+u+1) (wbζ , wbζ) (wbζ , wbζbi+u) (wbζ , wbζbζ)

Table 7.5:

Cay(S[m,P,Q, qk], B). In particular, we see that columns bα and bδ always give rise

to loop type edges, and columns bγ and bε give multiple edges - more specifically, they

have the same initial and terminal vertices as edges in column bβ .

We would now like to see which edges arise from non-generator vertices. Given

our normal forms from Claim 7.72, we see that a normal form of length greater than or

equal to two always ends in a generator of type bβ or bζ . Since all relations have left

hand side length of at most two, we may view our normal forms of length at least two

in two different ways. We let w be a word in normal form (including those of length

one), then all normal forms of length at least two may be written as either wbβ or wbζ .

The edges that these vertices give rise to are elaborated on in Table 7.5, which follows

much the same reasoning as Table 7.4.

We see that the generators of type bα and bδ again give rise to loops, and generators

of bγ and bε give multiple edges with the same initial and terminal vertices as edges

labelled bβ . This allows us to count the outdegree of all vertices in † (S), by ignoring

the generators that result in loops or multiple edges in Cay(S). This is given by counting

the number of edges with labels of type bβ and bζ , that is

n−m+m = n.

Hence each vertex in † (S[m,P,Q, qk], B) has outdegree n.

We then consider the indegree of each vertex in † (S). We can see that for those

vertices in Cay(S) which correspond to normal forms of length at least two, if we ig-

nore multiple edges and loops, they appear only once as a terminal vertex, and so have

indegree one. For normal forms of length precisely one, we see that those of type bα,

bβ , bγ , bδ and bε never appear as a terminal vertex, provided we ignore loops, and so

these vertices have indegree zero. Those of type bζ do appear as terminal vertices, but
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7. Cayley Spectra of Semigroups 157

appear precisely once, and so have indegree one.

Suppose then that we have a vertex corresponding to a normal form b1, which is of

type bα. This has exactly n child vertices, which are all those of the form b1bβ , bζ for

n+1 ≤ ζ ≤ n+ p1 and b1bζ for n+ p1 +1 ≤ ζ ≤ n+m. For those of type b1bβ and

b1bζ , each has n distinct child vertices, and there are no edges between vertices of the

same generation, as we see from Table 7.5 that the non-loop edges are never between

words of the same length. Similarly, for the vertices of type bζ , each has n distinct child

vertices and no non-loop edges within the same generation via Table 7.4. Every vertex

in this third level now has n child vertices, which from Table 7.5 we see are all unique,

and are not connected to each other by edges. Via a recursive process, we find that we

have in fact an n-ary rooted tree, rooted at b1.

This argument applies analogously to any vertex of type bα, and a simplified argu-

ment applies to all vertices of type bβ , bγ , bδ and bε as on each level the length of normal

form increases by one and we need not worry about vertices of type bζ here. Thus for

each vertex of these types, we have an n-ary rooted tree forming † (S), and all vertices

of type bζ are found within the trees rooted at bα vertices.

Now we may count the number of vertices of type bα, bβ , bγ , bδ and bε, which is

simply n + m − m = n. Thus † (S[m,P,Q, qk], B) has the form of n n-ary rooted

trees, and is hence isomorphic to † (A+, A).

□

7.3.1 An Example

Let A = {a, b, c, d} and let A+ be the free semigroup generated by A. We will now

look at how many different semigroupsBi we can construct such that † (A+) ∼= † (Bi).

First we try adding a single generator e. There is only one possible configuration

for this, which is shown in Figure 7.5.

Adding two new generators, e and f , gives rise to three possible semigroups. Since

we have added two new generators, we have two possible partitions for these; into 2 and

1 + 1. The partition 2 results in semigroups B2 (Figure 7.6) and B3 (Figure 7.7).

The partition of 1 + 1 gives us one single semigroup, displayed in Figure 7.8
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a

e

b

c d

a

a a a a

a

a a a a

a

a a a a

a

a a a a

b c d e b c d e

b c d e b c d e

Figure 7.5: B1

a

e f

b

c d

a, d

a, d a, d a, d
a, d

a, d

a, d a, d a, d
a, d

a, d

a, d a, d a, d
a, d

a, d

a, d a, d a, d a, d

b c e f b c e f

b c e f b c e f

Figure 7.6: B2
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a

e f

b

c d

a

a a a a

a

a a a a

a

a a a a

a

a a a a

b, d c e f b, d c e f

b, d c e f b, d c e f

Figure 7.7: B3

a

e

b

f
c d

a, b

a, ba, b a, b
a, b

a, b

a, ba, b a, b
a, b

a, b

a, ba, b a, b
a, b

a, b

a, ba, b a, b a, b

dc e f dc e f

dc e f dc e f

Figure 7.8: B4
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These are all possible semigroups for a generating set of size 4 + 2. We then add

another generator, g, giving us m = 3, and p(3) = 3. We can calculate U for each of

these partitions of 3. Let P1 = 3, P2 = 2 + 1 and P3 = 1 + 1 + 1. For P1, we have

i = 1, so n − i = 3. There is exactly one partition of of 3 into n −m + 1 = 2 parts,

giving us an α value of 1. This partition is 3 = 2+1, which has two unique parts giving

an rx value of 2. Similarly there is exactly one partition of 2 in to n−m = 1 part, and

so β = 1. Hence

UP1 =
1∑

x=1

rx + 1

= 2 + 1

= 3.

For partitionP2, we have i = 2 and son−i = 2. We can partition 2 inton−m+1 =

2 in one way, that is 2 = 1+ 1, which has only one unique part. Similarly there is only

one partition of 2 into n−m = 1 part, so β = 1.

UP2 =
1∑

x=1

rx + 1

= 1 + 1

= 2.

Finally forP3, we haven−i = 1 and so there are no partitions of 1 inton−m+1 = 2

parts, givingα = 0. There is precisely one partition of 1 into n−m = 1 parts, so β = 1.

UP3 =
0∑

x=1

rx + 1

= 0 + 1

= 1.

Thus with the addition of three generators, we findUP1
+UP2

+UP3
= 3+2+1 = 6

new semigroups.
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a

e f g

b

c d

a, b

a, b a, b a, b
a, b

a, b

a, b a, b a, b
a, b

a, b

a, b a, b a, b
a, b

a, b

a, b a, b a, b a, b

gc, d e f gc, d e f

gc, d e f gc, d e f

Figure 7.9: B5

A semigroup of typeP1 is shown in Figure 7.9 and one of typeP2 is shown in Figure

7.10. The rest may be found in the appendix A.1.

Finally, we add a fourth generator h, giving m = 4. For each partition of 4, the

U value is 1, and so since p(4) = 5, there are five new semigroups. One of these is

displayed in Figure 7.11, the rest can be found in appendix A.2.

These are all the semigroups Bi such that † (Bi) ∼= † (A∗) for an alphabet of size

four. According to our formula, we get a sum of

#S =
4∑

m=1

p(m)∑
y=1

Uy

=

p(1)∑
y=1

UPy +

p(2)∑
y=1

UPy +

p(3)∑
y=1

UPy +

p(4)∑
y=1

UPy

= (1) + (2 + 1) + (3 + 2 + 1) + (1 + 1 + 1 + 1 + 1)

= 15.

This matches the number of semigroups which we have demonstrated.
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a

e f

b

g

c d

a, b

a, b a, b a, b
a, b

a, b

a, b a, b a, b
a, b

a, b

a, b a, b a, b
a, b

a, b

a, b a, b a, b a, b

gc, d e f gc, d e f

gc, d e f gc, d e f

Figure 7.10: B6

a

e
f

b

g h
c d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

g he f g he f

g he f g he f

Figure 7.11: B7
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7.4 The Integers

When we considered the natural numbers, we looked at a one-ended infinite line. Why

not, then, look at a two-ended infinite line, which, at first glance represents the integers

Z. We will prove the following theorem.

Theorem 7.74
The spectrum of the integersZ = sgp⟨1,−1⟩ is C(Z) = {Z, C2⋆C2, T1, T2, T3, T4, T5},

where

T1 = sgp⟨a, b, c | aa = ac, ab = a, ba = a, bb = b, bc = c, cc = ca, cb = c⟩

T2 = sgp⟨a, b, c | aa = a, ab = a, ba = a, bb = b, bc = c, cb = c, cc = c⟩

T3 = sgp⟨a, b, c | ab = a, ac = a, ba = a, bb = c, bc = b, cb = c, cc = c⟩

T4 = sgp⟨a, b, c | ab = a, ac = a, ba = a, bb = b, bc = c, cb = c, cc = c⟩

T5 = sgp⟨a, b | ab = a, ba = a, bbb = bb⟩,

and C2 ⋆ C2 is the monoid free product of two copies of the cyclic group of order 2.

Suppose we have a semigroup S generated by B = {b1, b2, . . . , bn} such that

† (S,B) ∼= † (Z, {1,−1}). As with N, we shall speak about the graph as being ori-

ented horizontally, so vertices may be described as being left or right of each other.

Let b1 and bn be the left and right-most generators respectively. Figure 7.12 gives a

visualisation of this.

b1 bn

Figure 7.12: Visualisation of † (S)

We will first establish a claim that will be useful throughout.

Claim 7.75
Let w = w1 . . . wk be any word over the generators of S and let s be any element of S.

Let the sequence of vertices v1 . . . vj be the path labelled byw starting from s. Suppose
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164 7.4. The Integers

that we encounter some vertex twice. Let vl be the first vertex that is encountered twice.

Then the edges leaving the vertex vl+1 = vlwi are either loops or terminate at vl. In

particular edges that are not loops leaving vlwi go either left or right, but not both.

Proof: Since † (S) is a straight line graph, we know that for any 1 ≤ i ≤ k we have

either w1 . . . wiz = w1 . . . wi−1, w1 . . . wiz = w1 . . . wi or w1 . . . wiz = w1 . . . wi+1.

Now suppose that we have a vertex s such that the path labelled w encounters a

repeat vertex, so sw1 . . . wi−1 = sw1 . . . wi+1 for some 1 ≤ i ≤ k. We will orient

our diagram with s to the left and sw1 . . . wi to the right, but this applies equally to any

orientation of these vertices.

s vl vlwiw1

wi

wi+1

z

z

Now any generator z must label one of the dotted edges in the diagram, and so there

are no generators left to label any edges going right from sw1 . . . wi. □

We will prove that only Z, C2 ⋆ C2 and Ti for 1 ≤ i ≤ 5 have this skeleton by

examining three cases for S. These cases are based on the existence of paths between

the two extremal generators b1 and bn, and contain several subcases. The case structure

is outlined as follows.

1 There exists a path from b1 to bn and from bn to b1.

1.1 b1bn is equal to b1

1.1.1 b1b1 is equal to b1

1.1.2 b1b1 is right of b1

1.1.3 b1b1 is left of b1

1.2 b1bn is right of b1

1.2.1 b1b1 is equal to b1

1.2.2 b1b1 is right of b1
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1.2.3 b1b1 is left of b1

1.3 b1bn is left of b1

1.3.1 b1b1 is equal to b1

1.3.2 b1b1 is right of b1

1.3.3 b1b1 is left of b1

2 There exists a path from bn to b1 but no path from b1 to bn

2.1 There exists an edge going right from b1

2.2 The exists no edge going right from b1

2.2.1 b1b1 equals b1 and b1bn is left of b1

2.2.2 b1b1 is left of b1 and b1bn equals b1

2.2.3 b1b1 and b1bn are both left of b1

3 There exists a path from b1 to bn but no path from bn to b1

4 There exists no path from b1 to bn and no path from bn to b1

4.1 There exists an edge going left from bn and an edge right from b1.

4.2 There does not exist an edge going left from bn but there exists an edge right

from b1.

4.3 There exists an edge going left from bn but there does not exist an edge right

from b1.

4.4 There exists neither an edge going left from bn nor an edge right from b1,

and we consider bm for some 1 < m < n (see Claim 7.76).

4.4.1 b1b1 is left of b1 and b1bm equals b1

4.4.1.1 bnbn is right of bn and bnbm equals bn

4.4.1.2 bnbn equals bn and bnbm is right of bn

4.4.1.3 bnbn equals bn and bnbm equals bn

4.4.1.4 bnbn is right of bn and bnbm is right of bn

4.4.2 b1b1 equals b1 and b1bm is left of b1
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4.4.2.1 bnbn is right of bn and bnbm equals bn

4.4.2.2 bnbn equals bn and bnbm is right of bn

4.4.2.3 bnbn equals bn and bnbm equals bn

4.4.2.4 bnbn is right of bn and bnbm is right of bn

4.4.3 b1b1 equals b1 and b1bm equals b1

4.4.3.1 bnbn is right of bn and bnbm equals bn

4.4.3.2 bnbn equals bn and bnbm is right of bn

4.4.3.3 bnbn equals bn and bnbm equals bn

4.4.3.4 bnbn is right of bn and bnbm is right of bn

4.4.4 b1b1 if left of b1 and b1bm is left of b1

4.4.4.1 bnbn is right of bn and bnbm equals bn

4.4.4.2 bnbn equals bn and bnbm is right of bn

4.4.4.3 bnbn equals bn and bnbm equals bn

4.4.4.4 bnbn is right of bn and bnbm is right of bn

Claim 7.76
In case 4 there exists at least one generator bm where 1 < m < n.

Proof: Since there are no edges right (respectively left) from b1 (respectively bn), we

know there must exist some generator bm for 1 < m < n such that bmw = b1 for

some word w and bmv = bn for some v otherwise the Cayley graph of S would be

disconnected. □

We will show that the only possible constructions for a Cayley graph with this skele-

ton are the aforementioned semigroups. The general method we will use is to establish

certain equalities in a given case, for example b1 = bnw, and then starting at specific

vertex we will follow the paths labelled by both sides of this equality. This will either

allow us to deduce the location of more edges in the graph, or lead us to a contradiction.

If we write for example b1 · bnw, this indicates that we are starting at vertex b1 and

following the path labelled by bnw.

The outcomes for each case can be found in the claims outlined in the following

table.
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Case Claim

1 see subcases

1.1 see subcases

1.1.1 7.78

1.1.2 7.79

1.1.3 7.80

1.2 see subcases

1.2.1 1.2.1

1.2.2 7.82

1.2.3 7.83

1.3 see subcases

1.3.1 7.84

1.3.2 7.86

1.3.3 7.85

2 see subcases

2.1 7.87

2.2 see subcases

2.2.1 7.88

2.2.2 7.89

2.2.3 7.90

3 7.91

4.1 7.92

4.2 7.92

4.3 7.92

Case Claim

4.4 see subcases

4 see subcases

4.4.1 see subcases

4.4.1.1 7.94

4.4.1.2 7.93

4.4.1.3 7.95

4.4.1.4 7.96

4.4.2 see subcases

4.4.2.1 7.93

4.4.2.2 7.97

4.4.2.3 7.98

4.4.2.4 7.99

4.4.3 see subcases

4.4.3.1 7.95

4.4.3.2 7.98

4.4.3.3 7.100

4.4.3.4 7.101

4.4.4 see subcases

4.4.4.1 7.96

4.4.4.2 7.99

4.4.4.3 7.101

4.4.4.4 7.102

Case (1)
There exists a path from b1 to bn and a path from bn to b1.

We first prove a claim that will be useful in the subcases of Case 1.
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Claim 7.77
In Case 1, that is there exists a path from b1 to bn and from bn to b1 then bn = b1w and

b1 = bnv for some w, v ∈ B∗.

Proof: Let the path from b1 to bn be labelled by a word w = w1 . . . wm, where w

is as short as possible. In the other direction let the path from bn to b1 be labelled by

v = v1 . . . vm similarly. Hence we have bn = b1w and b1 = bnv. □

We will make use of the following equality to establish which semigroups arise from

this construction.

b1 · bn = b1 · b1w1 . . . wn (#)

By Claim 7.75 we know that if we follow the path w from vertex b1b1 we do not en-

counter any folds or loops, so the vertex b1b1w is distance exactly |w| from b1b1.

We now further subdivide this case by looking at the placement of b1bn. There are

three possibilities:

• b1bn is equal to b1;

• b1bn is the vertex to the right of b1;

• b1bn is the vertex to the left of bn.

Case (b1bn = b1, 1.1)
The element b1bn is equal to b1.

We now consider the placement of b1b1. This gives us three subcases, that is Cases

1.1.1,1.1.2 and 1.1.3.

Claim 7.78
In Case 1.1.1, that is if there exists a path from b1 to bn and vice versa, b1bn = b1 and

b1b1 = b1 we have that † (S,B) ≇ † (Z, {1,−1}).

Proof: First, if the edge leaving b1 labelled b1 is a loop (case 1.1.1) then b1b1 = b1 and

using the equality (#) we deduce that w must be the empty word and so b1 = bn. This

would mean S is monogenic, and it is not possible to construct the graph † (S) from a

monogenic semigroup. □
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Claim 7.79
In Case 1.1.2, that is if there exists a path from b1 to bn and vice versa, b1bn = b1 and

b1 labels an edge going right from b1 we have that † (S,B) ≇ † (Z, {1,−1}).

Proof: We use our equality (#) and Claim 7.75 to deduce that w must have length 1,

giving us the following part of the graph.

b1
b1, w1

bn

w1

Now this means bn = b1b1 and so S has only two generators. If we examine

the graph, we see that we have already used both of these generators to label edges

from b1, but we have not labelled an edge going left from b1. This means † (S,B) ≇

† (Z, {1,−1}). □

Claim 7.80
In Case 1.1.3, that is if there exists a path from b1 to bn and vice versa, b1bn = b1 and

b1 labels an edge going left from b1 we have that † (S,B) ≇ † (Z, {1,−1}).

Proof: Using equality (#) we deduce that our graph has the following shape.

b1
b1

bn

w1 w1

We see that w only has length 1, and so S has only two generators. This is not

enough generators to label all the edges that leave b1 and so † (S,B) ≇ † (Z, {1,−1}).

□

Case (b1bn right of b1, 1.2)
The element b1bn is found to the right of b1. We again consider which vertex represents

the element b1b1.
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Claim 7.81
In Case 1.2.1, that is if there exists a path from b1 to bn and vice versa, b1bn is found to

the right of b1 and b1b1 = b1 we have that † (S,B) ≇ † (Z, {1,−1}).

Proof: By equality (#) and Claim 7.75 we draw a section of the Cayley graph of S.

b1
bn, w1

b1

This tells us that w has length 1 and so S is only 2-generated. This does not leave

any generators to label an edge left from b1 and so † (S,B) ≇ † (Z, {1,−1}). □

Claim 7.82
In Case 1.2.2, that is if there exists a path from b1 to bn and vice versa, b1bn is found

to the right of b1 and b1 labels an edge going right from b1 we have that † (S,B) ≇

† (Z, {1,−1}).

Proof: We can deduce that b1b1 = b1bn. By Claim 7.75 and (#) w has length 1, and

so we have the following graph.

b1
b1, bn, w1

w1

This again has S having only two generators and no label for the left edge from b1,

and hence † (S,B) ≇ † (Z, {1,−1}). □

Finally, the most complicated option here is that b1b1 is found to the left of b1.

Claim 7.83
In Case 1.2.3, that is if there exists a path from b1 to bn and vice versa, b1bn is found to

the right of b1 and b1 labels an edge going right from b1 we have that S ∼= Z.

Proof: From the given information we know that our graph must have the following

structure.
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b1 bn
b1

w2w1 w1, w2, bn

First we show that w2 = bn. If this is not the case, then w2 must be equal to a third

generator, b2 say, which is found at the vertex between b1 and bn. Then we would have

b2 = b1bn, and b1b1bn = b1b2 = b2, which would require an edge labelled bn to leap

from b1b1 to b2, which is not allowed. Hence w2 = bn. We then have the equality

bn = b1bnbn. Multiplying b1 by this tells us that

b1 · b1bnbn = b1bn

and so we must have that b1b1bn = b1.

If b2 does exist, then since b2 = b1bn, we can deduce b1b2 = b1, which gives

us also that b1b1b2 = b1b1. We note that this means w1 = bn as there are no more

possible generators that it could be. We then see that b2b2 does not equal b1 or bn as

b1 · b2b2 ̸= b1 · b1 and b1 · b2b2 ̸= b1 · bn. Hence b2b2 = b2.

Now we wish to establish what happens at the vertex bn. By multiplying b1 by

b1bnb1 we can see that b1bnb1 is not equal to either bn or b2. Hence b1bnb1 = b1. Now

since bn · b1 = bn · b1bnb1, the only viable way for this to hold in the graph structure

is if bnb1 = b1bn. Next, we know that we cannot have bnbn being equal to b2 as this is

contradicted by the fact that b1 · b2 ̸= b1 · bnbn. We also do not have bnbn equal to bn,

as this would be contradicted by the fact that b1 · bn ̸= b1 · bnbn. Thus bnbn is found to

the right of bn. Finally it can be seen that bnb2 = bn, as any other possibility results in

a contradiction.

We now have enough information to fully describe this semigroup.

b1 b2 bn

b1

bnbn bn

b1 b1b2 b2 b2 b2

We can write down a presentation for S.
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S = sgp⟨b1, b2, bn |b1bn = b2, b1bnbn = bn, bnb1 = b2,

bnb1b1 = b1, b1b2 = b2, b2b2 = b2, bnb2 = b2⟩

This is in fact a presentation for the integers as a semigroup. If we consider Z =

sgp⟨1,−1, 0⟩ to be the standard generating set for the integers as a semigroup, then the

map sending b1 7→ −1, b2 7→ 0 and bn 7→ 1 is an isomorphism. Notice that we assumed

here that there were three generators. If we removed the need for this third generator,

we would have a semigroup that was isomorphic to the integers presented as a monoid,

using the same isomorphism. □

This completes all the cases where b1bn is found right of b1.

Case (b1bn left of b1,1.3)
The element b1bn is found left of b1.

We first have two easy cases.

Claim 7.84
In Case 1.3.1, that is if there exists a path from b1 to bn and vice versa, b1bn is found

left of b1 and b1b1 = b1 we have that † (S,B) ≇ † (Z, {1,−1}).

Proof: From the information we have we know that our graph contains the following

section.

b1
bn

b1

Since w is not allowed to fold, the only way to have equality (#) b1bn = b1b1w hold

would be for w1 to label an edge going left from b1, but by definition w1 goes right.

Hence † (S,B) ≇ † (Z, {1,−1}). □

Claim 7.85
In Case 1.3.3, that is if there exists a path from b1 to bn and vice versa, b1bn is found

left of b1 and b1b1 = b1bn we have that † (S,B) ≇ † (Z, {1,−1}).
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Proof: From the relations defined so far we have the following graph.

b1

bn

b1

There is no way to achieve b1bn = b1b1w without folding in w here, so † (S,B) ≇

† (Z, {1,−1}). □

Claim 7.86
In Case 1.3.2, that is if there exists a path from b1 to bn and vice versa, b1bn is found

left of b1 and b1b1 right of b1 we have that S ∼= C2 ⋆ C2.

Proof: Due to equality (#), we know that w has length 2, and thus picture the graph as

follows.

b1 bn

bn, w2

b1, w1

v1w1, v2

w2

We will assume that there are three generators here: if there are only two, the same

argument holds, ignoring any statements about the third generator b2. We show that

w1 = b1. Suppose not, then we must have w1 = b2. Now since b2 = b1b1 then

b1 · b1b1 = b1 · b2 = b2. This implies that b2b1 = b2. However, b2 · b2 = b1 and

b2 · b2b1 = b2, which is a contradiction, and so w1 = b1.

We then show w2 = bn. Suppose otherwise, then w2 = b2 = b1b1. However

b1 · b1b1 = b1 and b1 · b2 = b1bn, so we must have made an incorrect assumption.

Therefore w2 = b2.

We can also also see that b2b2 ̸= b1 and b2b2 ̸= bn, as if the former were an equality,

we would have b1b2 = b1, but then b1b2b2 ̸= b1b1. The latter follows similarly and we

are left with b2b2 = b2.

Considering the product b1b2, we can see that if b1b2 = b2, then b1b2 = b1b1.

However, b1 · b1b1 = b1 ̸= b2 = b1 · b1b2. If, then, b1b2 = b1bn, we can look at

b1 · b1b2 = b2, but b1 · b1bn = bn, and thus we can deduce that b1b2 = b2.
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We now wish to understand the edge v1. Suppose that v1 = b1, then bn · b1b1 = b1,

which should be equal to bn · b2, but this would require an edge leaping from bn to b1
which is not allowed. In a similar manner, v1 = b2 is also disallowed as bn · b2b1 = b1,

but we cannot have bnb1 = b1 as it should in this scenario. Hence, v1 = bn.

Next, we establish the edge b1 leaving bn. We know already that bnb1 ̸= b2. If

bnb1 = bn, then we should have bnbnb1 = bnbn, but we do not, so we are left with only

one option, that bnb1 is found to the right of bn.

Finally, to find where bnb2 lies, we rule out bnb2 = bnb1 as this would require

bnbnb2 = bnbnb1, which is not the case. We already established that bnb2 ̸= b2, and so

we must have bnb2 = b2. This set of relations defines the whole graph, as shown here.

b1 b2 bn

bn

b1b1

bnb1

bn b1

b1

b2 b2b2 b2 b2

This semigroup has the following presentation.

S = sgp⟨b1, b2, bn | b1b1 = bnbn = b2, bib2 = bi for i = 1, 2, n⟩

This is the free product of two copies of the cyclic group of order 2, C2 ⋆ C2, pre-

sented as a semigroup. A standard semigroup presentation for C2 ⋆ C2 is C2 ⋆ C2 =

sgp⟨a, b, 1 | a2 = 1 = b2, a1 = 1a = a, b1 = 1b = b, 12 = 1⟩. Clearly we can then

construct an isomorphism by mapping b1 7→ a, bn 7→ b and b2 7→ 1. Notice that if we

had removed all reference to the generator (or indeed, identity) b2, we would have our

semigroup being C2 ⋆ C2 presented as a monoid. □

This completes the case in which there exists a path from b1 to bn and vice versa.

Case (2)
There does not exist a path from b1 to bn, but there exists some path from bn to b1.

Let v = v1 . . . vm be a word labelling the shortest path from bn to b1. There are two

subcases here depending on what occurs at b1. We may have that either there exists an

edge right from b1, or that there exists no such edge.
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Case (There exists a path right from b1,2.1)
This case has no subcases, so we need only show the following claim.

Claim 7.87
In Case 2.1, that is there exists a path from bn to b1 but no path from b1 to bn and there

exists an edge going right from b1 we have that † (S,B) ≇ † (Z, {1,−1}).

Proof: Let w = w1 . . . wk be a word labelling the longest path right from b1 that does

not visit any vertex more than once, and does not reach bn. This may be visualised as

follows.

b1 bnw1

vm

wn

bi
bj

v1

In this diagram bk and bj represent all generators in B. Now by an analogous proof

to Claim 7.8 using the word w, and finding an appropriate vertex right of bn we see that

this case † (S,B) ≇ † (Z, {1,−1}). □

Case (There are no edges going right from b1, 2.2)
Recall that b1 = bnv, and so b1 · b1 = b1 · bnv. Due to the nature of the graph, this

means v has length 1 and S is 2-generated. We now ask what the edges labelled b1 and

bn do at b1.

Claim 7.88
In Case 2.2.1, that is there exists a path from bn to b1 but no path from b1 to bn,there

are no edges going right from b1 and b1b1 = b1 we have that † (S,B) ≇ † (Z, {1,−1}).

Proof: From the assumptions of the claim we have the following section of graph.

b1 bn

bn

v1

b1

v1

Now v1 = bi for either i = 1 or i = n. There exists an edge left from the vertex

b1bn, which must be labelled bj where j ̸= i. Consider now b1bn · bnbi. This must be
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equal to b1bn · b1. If i = 1 then an edge skipping a vertex would be required to make

this hold. If i = n then b1bn · bnbn = b1bn and so for this to hold, we would need

b1bn · b1 = b1 also, and hence † (S,B) ≇ † (Z, {1,−1}). □
Claim 7.89
In Case 2.2.2, that is there exists a path from bn to b1 but no path from b1 to bn,there

are no edges going right from b1 and b1bn = b1 we have that S ∼= T5.

Proof: The following diagram shows a section of our graph.

b1 bn

b1, v1 bn b1

Since there are no other generators left to label edges from b1, we must have v1 = b1.

We can then immediately deduce that bnbn is found right of bn. We also deduce that

bnbnb1 is not equal to bnbn or bn, since b1 · bn = b1 · bnbn = b1 which is not equal

to b1 · bnbnb1. This also shows us bnbnbn = bnbn, because otherwise we would have

bnbnbn = bnbnb1 which would give us the same contradiction.

b1 bn

b1 b1bn bn bn b1

These relations now determine the entire graph, in that each vertex left of b1 has an

edge labelled b1 going left and a loop labelled bn, and each vertex right of bnbn has an

edge labelled b1 going right and a loop labelled bn. Hence this is the Cayley graph of a

semigroup with presentation

sgp⟨b1, bn | b1bn = b1, bnb1 = b1, bnbnbn = bnbn⟩.

This is the semigroup T5. □
Claim 7.90
In Case 2.2.3, that is there exists a path from bn to b1 but no path from b1 to bn,there

are no edges going right from b1 and b1b1 = b1bn ̸= b1 we have that † (S,B) ≇

† (Z, {1,−1}).
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Proof: This means that v1 has to label a loop on the vertex b1b1

b1 bn

b1, bnv1 b1

v1

Since b1b1 = b1bn, and v1 is equal to one of b1 or bn, we have b1 ·b1b1 = b1 ·b1bn =

b1b1. This means we have run out of generators to label the edge that must go left from

b1b1 and so † (S,B) ≇ † (Z, {1,−1}). □

Case (3)
There exists a path from b1 to bn but no path from bn to b1

Claim 7.91
This case is symmetric to Case 2.

There is now one final case to consider.

Case (4)
There exists no path from b1 to bn and no path from bn to b1

For the first three subcases we have the following.

Claim 7.92
In cases 4.1, 4.2 and 4.3, that is there exists some edge going towards b1 or bn origi-

nating at the other generator, we have that † (S,B) ≇ † (Z, {1,−1}).

Proof: This follows analogously to the proof of Claim 7.87. □

The remaining subcase has several subcases of its own.

Case (Case 4.4)
There exists neither an edge going left from bn nor an edge right from b1.

Now in this case, there exists some generator bm such that bmw = b1 and bmv = bn

for some words w = w1w2 . . . wk and v = v1v2 . . . vl. Consider the product b1b1,

which is either found left of b1, or is equal to b1. In either case, this must be equal to

the product b1bmw. Now by Claim 7.75 we know that when following the path w from
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b1bm we must not encounter any folding or loops. Hence w must have length 1. This

meansw = w1, and there are only three configurations which this works in. Since there

are no edges going left from b1 then both b1 and bm must label either loops on b1 or

right edges from b1.

bmb1

w1b1, w1
bm

Figure 7.13: Section A

bmb1

w1bm

w1

b1

Figure 7.14: Section B

bmb1

w1
b1, bm, w1

Figure 7.15: Section C

bmb1

w1b1, bm, w1

Figure 7.16: Section D

These arguments are all equally applicable to bn and bmv, so we end up with three

possible layouts for the bn side of the graph, as shown here.
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bnbm

v1 bn, v1bm

Figure 7.17: Section 1

bnbm

v1 bm

v1

bn

Figure 7.18: Section 2

bnbm

v1 bn, bm, v1

Figure 7.19: Section 3

bnbm

v1 bn, bm v1

Figure 7.20: Section 4

We can combine these sections in an attempt to construct Cayley graphs of semi-

groups. We note that since these sections are symmetrical, then we need only study ten

of the possible sixteen combinations. We shall look at the following:

• Section A and 1(7.13 and 7.17, case 4.4.1.1)

• Section A and 2 (7.13 and 7.18, case 4.4.1.2) (isomorphic to B and 1, case 4.4.2.1)

• Section A and 3 (7.13 and7.19, case 4.4.1.3) (isomorphic to C and 1, case 4.4.3.1)

• Section A and 4 (7.13 and 7.20, case 4.4.1.4) (isomorphic to D and 1, case 4.4.4.1)
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• Section B and 2 (7.14 and 7.18, case 4.4.2.2)

• Section B and 3 (7.14 and 7.19, case 4.4.2.3) (isomorphic to C and 2, case 4.4.3.2)

• Section B and 4 (7.14 and 7.20, case 4.4.2.4) (isomorphic to D and 2, case 4.4.4.2)

• Section C and 3 (7.15 and 7.19, case 4.4.3.3)

• Section C and 4 (7.15 and 7.20, case 4.4.3.4) (isomorphic to D and 3, case 4.4.4.3)

• Section D and 4 (7.16 and 7.20, case 4.4.4.4).

When examining the combinations, we shall try to establish the destinations of all

edges leaving the generators, and decide whether this forms a Cayley graph of a semi-

group or not.

Case (Section A and Section 2)
The combination of these sections are visualised as follows.

bmb1 bn

w1b1, w1
bm v1 bm

v1

bn

Figure 7.21: Sections A and 2

Claim 7.93
In Cases 4.4.1.2 and 4.4.2.1 we have that the graph is not the Cayley graph of a semi-

group.

Proof: We first show that bmbm = bm. Suppose otherwise, then either bmbm = b1 or

bmbm = bn. In the former case, we see an immediate contradiction because b1 ·bmbm =

b1 ̸= b1 · b1. In the latter, then we should have bm · bmbm = bnbm = bm · bn, but this

would create an edge that jumped over a vertex which is forbidden. Hence bmbm = bm,

and as a consequence bnbmbm = bnbm. Since b1bm = b1, then b1b1bm = b1b1.

This leaves us with only two generators to assign to v1 and w1. If w1 = bn and

v1 = b1, then we have bmb1 = bn. However, bm · bmb1 = bn but bm · bn = b1, which

is a contradiction. Hence w1 = b1 and v1 = bn.
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bmb1 bn

b1b1 bmbm bn bm

bn

bnbm bm

b1

Now we will examine the placement of the product b1bn. Recalling that there are

no edges going right from b1, there are only two options of where the edge labelled bn
from vertex b1 goes, either a loop on b1 or a left edge. Suppose bn labels a loop on b1,

so b1bn = b1. This means bn · b1bn = bn · b1 and hence bnb1 = bn. Returning to b1,

we now have b1 · bnb1 = b1b1, but b1 · bn = b1. Hence our assumption that b1bn = b1

must be incorrect.

Thus bn must label an edge going left from b1, and so b1bn = b1b1. This implies

that bnb1 = bn. Now looking at b1 · bnb1 = b1 · b1, we see that b1 labels a loop on b1b1.

Similarly, since b1 · bnbn = b1 · bn, there is also a loop labelled bn on b1b1. Now we

have used up all our generators, but have not yet labelled an edge going left from b1b1.

This is a contradiction, and so we must not have w1 = b1 and v1 = bn.

Thus sections A and 2 do not create a graph that is the Cayley graph of a semigroup.

□

We will look now at using sections A and 1.

Case (Section A and Section 1)
These sections combine to make the following section of graph.

bmb1 bn

w1b1, w1
bm v1 bn, v1bm

Figure 7.22: Sections A and 1

Claim 7.94
In Case 4.4.1.1 we have that S ∼= T1.

Proof: Similarly to Claim 7.93, we can show that bmbm = bm.

Suppose w1 = bn and v1 = b1, then we have bmbn = b1, but bm · bmbn = b1 and
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bm · b1 = bn, and so w1 = b1 and v1 = bn.

We look at where the product bnb1 lies. If bnb1 = bn, then since we require b1 ·

bnb1 = b1 · bn, we must have b1bn = b1b1.

bmb1 bn

b1b1, bn bmbm bn bnbm, b1 bmbm

However, bn · b1bn = bnbn and bn · b1b1 = bn, a contradiction. Hence bnb1 =

bnbn. This implies that b1bn = b1b1, as otherwise b1bn = bn and this means that

bnb1bn = bnb1 and bnbnbn = bnb1bn. This would mean every generator labels a loop

on the vertex bnbn leaving no generators to label the edge right from here. Therefore

b1bn = b1b1.

bmb1 bn

b1b1, bn bmbm bn bn, b1bm bmbm

Now we must have b1·bnb1 = b1·bnbn, and so b1b1b1 = b1b1bn ̸= b1b1 as otherwise

there would be no generators going left from b1b1. Similarly bnbnbn = bnbnb1 ̸= bnbn.

The relations defined here create a graph which for every vertex left of b1 has left edges

labelled b1, bn and loops labelled bm. Symmetrically for every vertex right of bn there

are right edges labelled b1, bn and loops labelled bm.

Hence this is the Cayley graph of a semigroup with the presentation

sgp⟨b1, bm, bn | b1b1 = b1bn, bnbn = bnb1, b1bm = b1,

bmbm = bm, bnbm = bm, bmb1 = b1, bmbn = bn⟩

This is the semigroup T1. □

Case (Section A and Section 3)
Sections A and 3 have the following graph section.
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bmb1 bn

w1b1, w1
bm v1 xbm, bn

Figure 7.23: Sections A & 3

Claim 7.95
In Cases 4.4.1.3 and 4.4.3.1 we have that either S ∼= T4, S ∼= T3 or S ∼= T5.

Proof: By elimination we can determine that x = b1. Since b1bm = b1, then bnb1bm =

bnb1 and b1b1bm = b1b1.

bmb1 bn

w1b1, w1
bmbm v1 b1bm, bn bm

We show that w1 = b1. Suppose not, then w1 = bi for i = n or i = m, and

bmbi = b1. However, bn · bmbi = bn ̸= bn · b1. Hence w1 = b1. Now we can consider

the possibilities for the edges labelled bm and bn leaving vertex bm. We have determined

that these cannot go left to meet the vertex b1, and so they may either label a loop on

bm or an edge right to meet bn. At least one of bn, bm must label an edge right to meet

bn.

Suppose first that we have bmbm = bm and bmbn = bn. From this we can show

that b1bn = b1, as otherwise if b1bn = b1b1, then we must have b1 · bnbn = b1 · bn, so

bn labels a loop on the vertex b1bn. Then since b1 · b1b1 = b1 · b1bn, we also have b1
labelling a loop on the vertex b1bn. This means all generator label a loop on the vertex

b1bn, which leaves no generators to label an edge left of here. Thus, b1bn = b1.

bmb1 bn

b1b1 bm, bnbm, bn bn b1bm bm, bn bm, bn

Figure 7.24: bmbm = bm and bmbn = bn

Now using only the equalities defined so far, we see that since b1bn = b1bm = b1
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then we have a left edge labelled b1 from every vertex left of b1 and all such vertices

have a loops labelled bn and bm. Similarly every vertex right of bn has a right edge

labelled b1 and loops labelled bn and bm. Hence this is the Cayley graph of semigroup

with the presentation

sgp⟨b1, bm, bn | b1bm = b1, b1bn = b1, bmb1 = b1,

bmbm = bm, bmbn = bn, bnbm = bn, bnbn = bn⟩.

This is the semigroup T4.

Secondly, we can have that bn labels a loop on bm and bm labels a right edge from

bm. This gives us bmbm = bn and bmbn = bm. This immediately implies that b1bn =

b1 since b1 · bmbm = b1 · bn. These relations now establish the entire graph, as b1bn =

b1bm = b1 tells us that every vertex left of b1 has an edge labelled b1 going left from it

and loops labelled bn and bm. It also means every vertex right of bn has an edge labelled

b1 going left from it and loops labelled bn and bm.

bmb1 bn

b1b1 bm, bnbm, bn bm b1bn bm, bn bm, bn

Figure 7.25: bmbm = bn and bmbn = bm

This is therefore the Cayley graph of a semigroup with presentation

sgp⟨b1, bm, bn | b1bm = b1, b1bn = b1, bmb1 = b1,

bmbm = bn, bmbn = bm, bnbm = bn, bnbn = bn⟩.

This is the semigroup T3.

Finally we have both bn and bm label an edge going right from the vertex bm and so

bmbm = bmbn = bn. From this we deduce that b1bn = bm, since we have b1 · bmbn =

b1 · bmbm = b1. Then for every vertex left of b1 there is an edge going left labelled b1
and loops labelled bn and bm. For every vertex right of bn there is an edge going right

labelled b1 and loops labelled bn and bm.
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bmb1 bn

b1b1 bm, bnbm, bn bm, bn b1bm, bn bm, bn

Figure 7.26: bmbm = bmbn = bn

Now we notice that bn = bmbm and so bn is a superfluous generator. Hence this

Cayley graph defines a semigroup presented by

sgp⟨b1, bm | b1bm = b1, bmb1 = b1, bmbmbm = bmbm⟩.

This is the semigroup T5. □

Case (Section A and Section 4)
Sections A and 4 have the following graph section.

bmb1 bn

w1b1, w1
bm v1 bm, bnv1

Figure 7.27: Sections A & 4

Claim 7.96
In Cases 4.4.1.4 and 4.4.4.1 we have that † (S,B) ≇ † (Z, {−1, 1}).

Proof: Consider v1. If v1 = bn or v1 = bm, then since bnbn = bnbm, we get bnbnbn =

bnbnbm = bnbn. Since bnb1 is equal to either bn or bnbn, then bnbnb1 = bnbn also, and

we have no generator left to label an edge going right from bnbn. Therefore, v1 = b1.

bmb1 bn

w1b1, w1
bm b1 bm, bnb1

Now we have bmb1 = bn. If we consider b1 · bmb1 = b1b1 we see that we must

have b1 · bn = b1b1. Additionally, if we look at bn · b1, we know that this is either equal

to bn or bnbn. If it is the former, then we have a contradiction as bn · b1bm ̸= bn · b1.

Therefore bn · b1 = bnbn.
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We may now use the equality b1bn = b1b1 to see that bn · b1bn = bn · b1b1 = b1bn

and the equality b1bm = b1 to see bn · b1bm = bn · b1 = bnbn.

bmb1 bn

w1b1, bn, w1
bm b1 b1, bm, bnb1, bn, bm

Examining the vertex bnbn we see that we have used all generators to label a loop,

and so there are none left to label the edge right from here. This means that† (S,B) ≇

† (Z, {−1, 1}). □

Case (Section B and 2)
On combining these sections we create the following graph.

bmb1 bn

w1bm

w1

b1 v1 bm

v1

bn

Figure 7.28: Sections B & 3

Claim 7.97
In Case 4.4.2.2 we have that † (S,B) ≇ † (Z, {−1, 1}).

Proof: We can show similarly to Claim 7.93 that bmbm = bm.

Suppose that w1 = bn and v1 = b1, then we have bmbn = b1 and bmb1 = bn.

bmb1 bn

bnbm

bn

b1bm b1 bm

b1

bn bm

Now b1bm · bmb1 must equal b1bm · bn = b1, and so all generators leaving b1bm
have been assigned, leaving none to go left.

If w1 = b1 and v1 = bn then, we have bmbn = bn and bmb1 = b1.

bmb1 bn

b1bm

b1

b1bm bn bm

bn

bn bm
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Then b1bm ·bmbn must equal b1bm ·b1 = b1 and there are no generators left to label

an edge going left from b1bm so † (S,B) ≇ † (Z, {−1, 1}). □

Case (Section B and 3)
These sections combine to give the following graph section.

bmb1 bn

w1bm b1

w1

v1 b1bm, bn, v1

Figure 7.29: Sections B & 3

Claim 7.98
In Cases 4.4.2.3 and 4.4.3.2 we have that † (S,B) ≇ † (Z, {−1, 1}).

Proof:

Now we can show that w1 = b1, since otherwise bmbi = b1 for either i = m or

i = m, and bn · bmbi ̸= bn · b1.

We now ask where the edges labelled bm and bn go from the vertex bm.

First we may have bm labelling a loop on bm and bn as an edge right meeting bn, so

bmbm = bm and bmbn = bn. Now this means that the edge going left from b1bm must

be labelled bn.

bmb1 bn

w1bm b1

b1

bnbm b1bm, bn

Figure 7.30: Sections B & 3

Now we look at b1 · bmbn. This product must be equal to b1 · bn, but this requires

an edge to jump over a vertex which is not allowed in this graph. Hence we do not have

this configuration of edges.

Second, we may have bn labelling a loop on bm and bm labelling an edge going right

from bm, so bmbm = bn and bmbn = bm. We can then see that b1 · bmbn = b1 · bm,

and so there is a loop labelled by bn on the vertex b1bm.
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bmb1 bn

w1bm b1

b1

bmbn b1bm, bnbn

Figure 7.31: Sections B & 3

Now bm must label an edge right from b1bm as it is the only generator left to do so.

Now b1bm · bn = b1bm ̸= b1 · bmbm which is a contradiction.

Hence we are left with the final option, which is to have both bn and bm label an

edge right from bm and so bmbm = bmbn = bn. Now since b1 · bmbm = b1 · bn, we

must have bm labelling a loop on b1bm as else bn would have to jump over a generator.

As a consequence, bn also labels a loop on b1bm.

bmb1 bn

b1bm b1

b1

bm, bn bm, bn b1bm, bn

Figure 7.32: Sections B & 3

Now we can see from this that there are no edges left to label an edge left from b1bm

and so † (S,B) ≇ † (Z, {−1, 1}). □

Thus the combination of sections B and 3 does not create a Cayley graph of a semigroup.

Case (Section B and Section 4)
Sections B and 3 have the following graph section.

bmb1 bn

w1bm

w1

b1 v1 bm, bn v1

Figure 7.33: Sections B & 4

Claim 7.99
In Cases 4.4.2.4 and 4.4.4.2 we have that † (S,B) ≇ † (Z, {−1, 1}).

Proof:
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Similarly to Claim 7.96, we have that v1 = b1.

bmb1 bn

w1bm

w1

b1 b1 bm, bn b1b1

Figure 7.34: Sections B & 4

Now consider bm · bm. If bm · bm = bn, then bn · bmbm = bnbn and since bnbm =

bnbn we also have bn · bnbn = bn · bnbm = bnbn, which means there are no generators

left to label an edge going right from bnbn. Suppose then that bm · bm = bm, then

bn · bmbm = bnbm. Since bnbn = bnbm then bn · bnbn = bn · bnbm = bnbm, and so

there are no generators left to label an edge right from bnbn. Hence bmbm = b1.

bmb1 bn

w1, bmbm

w1

b1 b1 bm, bn b1b1

Figure 7.35: Sections B & 4

Now bm · bmbm = b1bm, but bm · b1 = bn ̸= b1bm. This means the sections B and

4 do not form a graph with † (S,B) ∼= † (Z, {−1, 1}). □

Case (Sections C and 3)
In combining these sections we create the following piece of graph.

bmb1 bn

w1bn b1, bm v1 b1bm, bn

Figure 7.36: Sections C & 3

Claim 7.100
In Case 4.4.3.3 we have that S ∼= T3.

Proof:

189



190 7.4. The Integers

We can show that w1 = b1 since otherwise we would have either bmbn = b1 or

bmbm = b1. In the first case a contradiction is found by inspecting b1 · bmbn and b1 · b1.

In the second we find a contradiction at bn · bmbm and bn · b1. Similarly, we find that

v1 = bn. As a consequence of these arguments we also deduce that bmbm = bm.

bmb1 bn

b1bn b1, bm bm bn b1bm, bn

Figure 7.37: Sections C & 3

Now using these relations defined at the generators, we can draw a graph which has

the correct structure. Every vertex has a loop labelled bm. Going left from b1 the left

edges alternate between bn and b1, with the remaining generator forming a loop on the

vertex. Going right from bn we alternate in the opposite order between b1 and bn, with

the remaining generator again forming a loop. This is the Cayley graph of a semigroup

with the presentation

sgp⟨b1, bm, bn | b1b1 = b1, b1bm = b1, bmb1 = b1,

bmbm = bm, bmbn = bn, bnbm = bn, bnbn = bn⟩.

This is the semigroup T2. □

Case (Section C and Section 4)
Sections C and 4 have the following graph section.

bmb1 bn

w1
b1, bm, w1 v1 bm, bn v1

Figure 7.38: Sections C & 4

Claim 7.101
In Cases 4.4.3.4 and 4.4.4.3 we have that † (S,B) ≇ † (Z, {−1, 1}).

Proof: Similarly to Claim 7.96, we have that v1 = b1.
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bmb1 bn

w1bm

w1

b1 b1 bm, bn b1b1

Figure 7.39: Sections C & 4

Now b1 · bmb1 = b1 and so b1 · bn = b1. There are then no generators left to label

the edge going left from b1, and so † (S,B) ≇ † (Z, {−1, 1}). □

Case (Section D and Section 4)
Sections D and 4 have the following graph section.

bmb1 bn

w1b1, bm w1 v1 bm, bn v1

Figure 7.40: Sections D & 4

Claim 7.102
In Case 4.4.4.4 we have that † (S,B) ≇ † (Z, {−1, 1}).

Proof: Similarly to Claim 4.4.1.4, we have that v1 = b1.

bmb1 bn

w1b1, bm w1 b1 bm, bn b1b1

Figure 7.41: Sections D & 4

Now consider bm · bm. If bm · bm = bn, then bn · bmbm = bn · bn = bnbn. Now

bnbm = bnbn and so bn · bnbn = bn · bnbm = bnbn. There are then no generators left

to label an edge right from bnbn. Suppose then that bm · bm = bm, and so bn · bmbm =

bn · bm = bnbm. Now since bnbn = bnbm, then bn · bnbn = bn · bnbm = bnbm. Then

there are no generators left to label an edge right from bnbm. Therefore bmbm = b1,

and so bm · bmbm = b1bm, but bm · b1 = bn ̸= b1bm. Hence † (S,B) ≇ † (Z, {−1, 1}).

□
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This completes the case analysis and the proof of Theorem 7.74.
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Chapter 8

Conclusions and Further Work

When we asked Pooh what the opposite of

an Introduction was, he said ”The what of

a what?” which didn’t help us as much as

we had hoped, but luckily Owl kept his

head and told us that the Opposite of an

Introduction, my dear Pooh, was a

Contradiction; and, as he is very good at

long words, I am sure that that’s what it is.

The House At Pooh Corner

A.A. Milne

In this thesis we have presented a novel way of connecting semigroups with geomet-

ric structures. The results that we have acheived show us that this is a useful perspective

to take on geometric semigroup theory.

In chapters 3, 4, and 5 we saw that certain semigroups with group-like properties

preserved finite presentability under isomorphism of skeletons. Futher work in this area

should include relaxing some of the conditions found in these chapters, and extending

the results to other categories of semigroups.

Conjecture 8.1
Let S = S[Y ;Gλ;φλ,µ] and T = S[Z;Hλ; θλ,µ] where Y, Z are finite and homomor-

phisms φλ,µ, θλ,µ are such that
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(i) imφα,β , im θα,β have finite index.

(ii) kerφα,β , ker θα,β are finite.

If † (S) ∼= † (T ) then S is finitely presented if and only if T is.

Work by Gray and Kambites [8, Theorem 4] shows that when working with semi-

metric spaces as the geometric structure, finite presentability is a quasi-isometry invari-

ant for finitely generated monoids with finitely many left and right ideals.

Question 8.2
Is finite presentability a skeleton-invariant for semigroups with finitely many left and

right ideals?

We note that the proof of Gray and Kambites theorem relies on identifying R-

classes, which is not possible using the skeleton structure.

A further line of inquiry inspired by [9, Theorem A] is to consider cancellative

semigroups.

Question 8.3
Is finite presentability a skeleton-invariant for left cancellative semigroups?

Question 8.4
Are there futher classes of semigroups which have finite presentability as a skeleton-

invariant property?

In chapter 6, we presented an example of two semigroups, one finitely presented

and one not, which are skeleton isomorphic, and in fact have isometric Cayley graphs.

This answers [8, Question 1]. A possible extension of work in this area would be to

find further examples, and to establish the Cayley spectra of the skeleton. We also

note that for both semigroups in this example, we found a regular language of unique

representatives. This leads us to ask the following question.

Question 8.5
If S and T are such that † (S) ∼= † (T ), is it true that S has a regular language of unique

representative if and only if T does.
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Finally, the work of chapter 7 can be extended to incorporate many more skeletons

and the related semigroups. We suggest that it is perhaps not a sensible idea to attempt

to stretch the definition of Cayley spectra to disregard the generating set; that is, to try

find all semigroups that are skeleton isomorphic to a given semigroup S for any given

generating set of S. One issue with this sort of definition would be that for infinite

semigroups we can find infinitely many generating sets and may end up with infinitely

many skeletons which we would want to investigate. A final observation is that it may

be that the techniques we employ in this chapter are difficult to extend to more gen-

eral semigroups, as the semigroups we worked with here had very special structures as

skeletons which we were able to use in our arguments. We may not be so lucky with an

arbitrary semigroup.
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Appendix A

Lots of trees that look like A+

This appendix contains diagrams of semigroups constructed in subsection 7.3.1, that is

semigroups which are skeleton-isomorphic to A∗ = sgp⟨a, b, c, d |⟩.

A.1 Adding 3 generators

Figure A.1 gives a semigroup with partition P1 and partition of n− i = 3 into one part,

where a, b, c are all idempotents.

a

e f g

b

c d

a, b, c

a, b, c a, b, c a, b, c
a, b, c

a, b, c

a, b, c a, b, c a, b, c
a, b, c

a, b, c

a, b, c a, b, c a, b, c
a, b, c

a, b, c

a, b, c a, b, c a, b, c a, b, c

gd e f gd e f

gd e f gd e f

Figure A.1: B8
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Figure A.2 gives a semigroup with partition P1 and partition of n− i = 3 into one

part, where only a is idempotent.

a

e f g

b

c d

a

a a a
a

a

a a a
a

ac

a a a
a

a

a a a a

gb, c, d e f gb, c, d e f

gb, c, d e f gb, c, d e f

Figure A.2: B9

Figure A.3 gives a semigroup with partition P2 where a, b and c are idempotents.

a

e f

b

g

c d

a, b, c

a, b, c a, b, c a, b, c
a, b, c

a, b, c

a, b, c a, b, c a, b, c
a, b, c

a, b, c

a, b, c a, b, c a, b, c
a, b, c

a, b, c

a, b, c a, b, c a, b, c a, b, c

gd e f gd e f

gd e f gd e f

Figure A.3: B10

Figure A.4 gives a semigroup with partition P3.
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a

e

b

f

c

g

d

a, b, c

a, b, c a, b, c a, b, c
a, b, c

a, b, c

a, b, c a, b, c a, b, c
a, b, c

a, b, c

a, b, c a, b, c a, b, c
a, b, c

a, b, c

a, b, c a, b, c a, b, c a, b, c

gd e f gd e f

gd e f gd e f

Figure A.4: B11

A.2 Adding 4 generators

Figure A.5 gives a semigroup with the partition 4 = 4.

a

e f g h

b

c d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

g he f g he f

g he f g he f

Figure A.5: B12

Figure A.6 gives a semigroup with the partition 4 = 3 + 1.

199



200 A.2. Adding 4 generators

a

e f g

b

h
c d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

g he f g he f

g he f g he f

Figure A.6: B13

Figure A.7 gives a semigroup with the partition 4 = 2 + 1 + 1.

a

e f

b

g

c

h

d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

g he f g he f

g he f g he f

Figure A.7: B14

Figure A.7 gives a semigroup with the partition 4 = 1 + 1 + 1 + 1.
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a

e

b

f
c

g

d

h

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

a, b, c, d

a, b, c, d
a, b, c, d a, b, c, d a, b, c, d

g he f g he f

g he f g he f

Figure A.8: B15
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complete, 74
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induced, 14

locally finite, 14

quotient, 30

group, 10

homomorphism, 10

epimorphism, 10

monomorphism, 10

isometry, 15

isomorphism

graph, 14

semigroup, 11

meet, 58

metric space, 15

proper, 17

metric topology, 16

monoid, 9

normal form, 74

partially ordered set, 57

partition, 132

partition function, 132

restricted partition, 132

restricted partition function, 132

presentation, 11

critical pair, 12

elementary sequence, 12

finite, 12
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Rees matrix semigroup, 44
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irreducible, 73

locally confluent, 74

Noetherian, 74

semigroup, 9

Clifford, 60

completely 0-simple, 51

completely simple, 43

left zero, 20

Rees matrix, 44

Rees matrix with 0, 51

right zero, 22

simple, 43

stable, 13

semilattice, 58

semimetric, 5

shortlex order, 74

skeleton, 2

Švarc-Milnor Lemma, 24

topological space, 16

compact, 16

homeomorphism, 17

path, 35

quotient, 31
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