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Abstract

The Thompson groups F, T and V are important groups in geometric group theory: T and V
being the first discovered examples of finitely presented infinite simple groups. There are many
generalisations of these groups including, for n and r natural numbers and 1 < r < n, the groups
Frn, Tnrand Grr (T = Tp1 and V = Gy ). Automorphisms of F and T were characterised in the
seminal paper of Brin ([16]) and, later on, Brin and Guzman ([[17]) investigate automorphisms of
Ta,n—1 and Fy for n > 2. However, their techniques give no information about automorphisms of
Gnr

The second chapter of this thesis is dedicated to characterising the automorphisms of
Gn,r. Presenting results of the author’s article [10], we show that automorphisms of Gy are
homeomorphisms of Cantor space induced by transducers (finite state machines) which satisfy a
strong synchronizing condition.

In the rest of Chapter 2] and early sections of Chapter 8| we investigate the group Out(Gn, )
of outer automorphisms of G, . Presenting results of the forthcoming article [6] of the author’s,
we show that there is a subgroup Hy, of Out(Gn, ), independent of r, which is isomorphic to the
group of automorphisms of the one-sided shift dynamical system. Most of Chapter 3|is devoted to
the order problem in H;,, and is based on [44]. We give necessary and sufficient conditions for an
element of H;, to have finite order, although these do not yield a decision procedure.

Given an automorphism ¢ of a group G, two elements f,g € G are said to be ¢-twisted
conjugate to one another if for some h € G, g = h~1f(h)d. This defines an equivalence relation on
G and G is said to have the R, property if it has infinitely many ¢-twisted conjugacy classes for
all automorphisms ¢ € Aut(G). In the final chapter we show, using the description of Aut(Gn ),
that for certain automorphisms, G, » has infinitely many twisted conjugacy classes. We also show
that for certain ¢ € Aut(Gy ;) the problem of deciding when two elements of G; ; are ¢p-twisted
conjugate to one another is soluble.
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Preface

This thesis investigates certain subgroups of the rational group Ry, of [30] and its generalisations
Rn,r for natural numbers n and r satisfying 1 < r < n. It is a fact, which we do not make use of in
this work, that Ry, » and R, are isomorphic to the group R;,. Hence, in this preface we shall refer
to both by the name ‘the rational group’ and phrase our discussion in terms of the group Ry, . In
subsequent paragraphs we shall use the notation ®+, r, for some symbol ®, to represent certain
subgroups of R+, however, to have uniformity in our notation and to make correspondences
clear, when r = 1 we set D+ = Dp; for instance Ry, 1 = Rn.

Since the rational group Ry, was first introduced in [30] it has generated a lot of research
activity. It has been shown to have insoluble order problem ([4]), and demonstrated to be simple
(I5]) and not finitely-generated ([[5],[30]). Moreover, all of its finitely generated subgroups have
soluble word problem ([30] ). The group R, ; also contains many important classes of groups. For
instance it contains the Thompson groups F, T and V and the Higman-Thompson groups G »
generalising V ([30]); the Brin-Thompson group nV ([4])); the groups of automorphisms of the shift
dynamical system ([30]); and groups generated by automata.

The groups T and V were the first discovered examples of finitely presented infinite simple
groups, whilst Thompson’s group F, also finitely presented, has a simple derived subgroup.
Groups generated by automata are a vast source of groups with interesting properties. For
instance the Grigorchuk group, which is an infinite torsion group of intermediate growth ([29],
[31]), belongs to the class of groups generated by automata. The automorphisms of the shift
dynamical system are an important class of groups in symbolic dynamics. These are defined
as those homeomorphisms of the Cantor space of one-sided or two-sided infinite sequences
over a finite alphabet, which commute with the shift map. The group Aut({0,1,...,n —1}*, on)
of shift commuting homeomorphisms of the one-sided infinite sequence space is called the
group of automorphisms of the one-sided shift (dynamical system). In a similar manner, the group
Aut({0,1,...,n—1}%, o) of shift commuting homeomorphisms of the two-sided infinite sequence
space is called the group of automorphisms of the two-sided shift dynamical system.

This thesis will mainly be concerned with the subgroup G, r, its automorphism group, and a
subgroup of its outer automorphisms group which is isomorphic to the group of automorphisms
of the one-sided shift dynamical system. We also consider the monoid consisting of continuous
functions from the Cantor space of one or two-sided infinite sequences to itself which commute
with the shift map. These are the so called endomorphisms of the one or two-sided shift dynamical
system

We begin in Chapter |1 by defining, for 1 < r < n, the groups R . These are groups
of homeomorphisms of Cantor space €, r, the disjoint union of r copies of €, which may
be represented by finite state machines called transducers. Hence, in Chapter [1} we also
introduce automata and transducers and present various algorithms for multiplying, inverting
and minimising transducers. We distinguish synchronous transducers, which always write a single
output letter on consuming an input letter, as a subclass of asynchronous transducers which are
allowed to write strings (including the empty string) on reading a single input. Additionally, we
show how to construct from an element of Ry, r, a transducer representing this homeomorphism.
This is a technical chapter carrying out the fundamental constructions from [30] in full detail in the
context of the groups Ry, . These constructions are particularly relevant to later work in Chapter 2}

We begin our investigation of subgroups of the rational group in Chapter 2} by considering
the Higman-Thompson groups Gn . As mentioned above, these are a family of groups, which
are either simple or have an index two subgroup which is simple ([34]), generalising Thompson



group V. More specifically, in this chapter we characterise the automorphisms of the group Gn,r,
presenting the results of the author’s article [10]]. This completes a line of research first begun by
Brin in his seminal paper [16] characterising the automorphisms of the Thompson groups F and T.
Later on, Brin together with Guzman, in the article [17], also investigate automorphisms of groups
generalising Thompson’s groups F and T. However their techniques do not apply to the groups
Gn,r-

The article [10], making use of the transitivity of the action of Gy on €, » and a deep result of
Rubin ([47]), shows that automorphisms of Gy, ; are elements of R, » for which the transducers
representing these homeomorphisms have a particular property. This property is called the
synchronizing property. The set of all rational homeomorphisms of €, » whose transducers have the

synchronizing property forms a submonoid B, . The largest inverse closed subset of By,  is the
group By . The results of [10] demonstrate that Aut(Gr,+) is isomorphic to By r.

We do not present all the results of the article [10] in Chapter |2} we instead show that the
normalizer of G, in the rational group is the group B . By appealing to Rubin’s Theorem and
finiteness results on local actions of rational homeomorphisms in Yonah Maissel’s thesis ([39]),
which also appear in [10]), we conclude that the map which takes an element T € By, to the
automorphism of G, induced by conjugation by 7 is an isomorphism. Additionally, in this
chapter we explore various consequences and characterisations of the synchronizing property. We
close the chapter by examining the outer automorphisms of the group Gy .

It is immediate from the characterisation of Aut(G, ) as those homeomorphisms in Ry, that
can be represented by transducers with the synchronizing property, that Out(G, ) is best thought
of as a group consisting of non-initial transducers with the synchronizing property. (Observe that
since groups are inverse closed, then inverses of elements of Out(Gy,-) also have the synchronizing
property.) Perhaps surprisingly, it turns out that for r = n — 1, Out(Gy, ) contains a subgroup
which is isomorphic to the quotient of the group of automorphisms of the two-sided shift dynamical
system, by the group generated by the shift map. We observe that, by Ryan’s Theorem ([48])), the
group generated by the shift map is the centre of the group of automorphisms of the two-sided
shift dynamical system.

The author’s forthcoming paper [6] explores this connection between Out(Gy ) and the group
of automorphisms of the two-sided shift dynamical system further. One of the results contained
in this article, is that shift commuting homeomorphisms of the two-sided infinite sequence space
can be represented by elements of Out(Gr, ), together with natural combinatorial data arising
from the structure of the non-initial transducers. A consequence of the results of [6], is that there is
a subgroup H;, independent of 1, that is H, < Ni<r<n—10ut(Gn, ), which is isomorphic to the
group of automorphisms of the one-sided shift dynamical system. This subgroup is the focus of
Chapter

In Chapter[3] we begin our investigation of H, by first demonstrating the isomorphism between
Hn and the group of automorphisms of the one-sided shift dynamical system. As a somewhat
natural starting point, we show that a submonoid of endomorphisms of the shift dynamical system
(those requiring no ‘future information’), is isomorphic to a monoid of non-initial transducers Py,
which contains the group J{,,. We then deduce, as a corollary of this fact, that the group ¥, is
isomorphic to the automorphisms of the one-sided shift dynamical system.

The rest of the chapter, is based on the paper [44] which explores the order problem in H,,. Now,
elements of {;, are precisely those elements of Out(G, ;) which can be represented by synchronous
transducers with the synchronizing property. We observe that, as a synchronous transducer on
reading a single input letter, will always write a single output letter, inverses of elements of H,
are also synchronous; they are synchronizing since Out(G, ) is a group. It is a standard result
in the literature that each state of an invertible synchronous transducer induces an element of
Rn. Thus, invertible synchronous transducers naturally generate subgroups of R, by taking the
group generated by the homeomorphisms of ¢, induced by the states of such transducers. Groups
generated in this way are called automata groups, and, as we mentioned in an earlier paragraph,
this class of groups contain many groups with interesting properties.

In the latter half of Chapter 3| we also investigate the finiteness and order problems in the
automata groups generated by elements of H{;,. These are problems of interest highlighted by [30]
for elements of the group Ry, +. The finiteness problem asks if there is an algorithm which, given
an invertible synchronous transducer, will decide in finite time if the automata group generated by



the transducer is finite. The order problem asks if there is an algorithm, which, given an invertible
synchronous transducer and an element of the group as a product of the generators, decides in
finite time if the given element has finite order.

Bleak and Belk in [4] investigate the finiteness and order problems in their full generality. For
groups generated by finitely many elements of the rational group, they show that the finiteness
and order problem are undecidable in general. However, the decidability of these problems for
groups generated by invertible, synchronous transducers, remained open.

Recently, the order problem for groups generated by invertible, synchronous, transducers was
shown to be insoluble in general. This was done independently by Gillibert ([27]), and Bartholdi
and Mitrofanov ([3]]). The finiteness problem remains open for synchronous transducers. As it
turns out, the finiteness problem for transducers in H,, is equivalent to the order problem for
automata groups generated by elements of J(;,, and to the order problem in H;,. The equivalence
of the finiteness problem for transducers in H;, to the order problem in H,, was shown in the
paper [23]. However, we provide an independent proof all three equivalences in Chapter

We also provide in Chapter [3|some new and sufficient conditions for when an element of H,
has finite or infinite order. These conditions focus on studying properties of the dual transducer
for elements of Hy,. This is a technique which has been used effectively in investigating the order
problem, as in the paper [1]. We prove some new results about the dual transducer of finite order
elements of H,, which go some way towards resolving a conjecture of Picantin in [40]. These
properties of the dual automata for elements of J(,, lead us to study a new combinatorial object
we call the graph of bad pairs. For each element of J(,,, we associate infinitely many such graphs.
Properties of this graph, for instance if it contains a circuit, help in determining whether an element
of Hy, has infinite or finite order. In fact we conjecture that whenever an element of 3(,, has infinite
order, then eventually one of its graph of bad pairs contains a circuit. It is a consequence of our
structure results for the dual transducer of a finite order element of H,, that for a given finite
element of J{;,, eventually all of its graphs of bad pairs are precisely the empty graph.

To close Chapter[3} we investigate the growth rate of automata groups generated by transducers
in ;. As indicated above, this is a standard question to ask about groups generated by invertible,
synchronous transducers. We show that all such groups, whenever they are infinite, have
exponential growth rate. This result, as it happens, is already implied by work of Chou in [21]
and results of Silva and Steinberg in [51] showing, amongst other things, that groups generated
by transducers in JH,, are elementary amenable groups. (We should perhaps also remark that
Chou’s proof showing that finitely generated elementary amenable groups either have polynomial
or exponential growth rate contains a gap. The gap, however, is fixed in a paper by Rosset ([46])
from which one also deduces that, in the case where a group generated by an element of H;, has
polynomial growth, it is finite. The author is grateful to Bartholdi for drawing his attention to the
work of Chou and for pointing out both the error in Chou’s proof and the fix by Rosset.)

Chapter 3| also contains results which do not fit under the umbrella of order problem and
growth, but which naturally arise in our consideration of these problems: for instance we present
certain embedding results for the groups Hr, and some conjugacy invariants in Hy,.

In Chapter 4] we again consider the group G . Having now an understanding of the
automorphisms of the group G, we consider the twisted conjugacy problem in G . The twisted
conjugacy problem is a generalisation of the conjugacy problem and asks for a finitely presented
group G, if there is an algorithm which, given elements f,g € G and an automorphism ¢ of G,
decides in finite time if there is an element h € G such that f = h=!g(h)¢. If such an h exists
then f and g are said to be ¢-twisted conjugate. Moreover if ¢ is the identity automorphism of G,
then f and g are conjugate in G. For a given ¢ in Aut(G), the relation on G defined by, f ~¢, g if
and only if f and g are ¢-twisted conjugate to one another, is an equivalence relation. A natural
question to ask then, is if there are finitely many or infinitely many ¢-twisted conjugacy classes for
¢ an automorphism of a finitely presented group. We note that a group which has infinitely many
twisted conjugacy classes for all automorphisms is said to have the Ry, property.

The twisted conjugacy problem and corresponding R, question have been investigated for
Thompson’s group F and T, whose automorphisms were classified by Brin in the article [16]. The
paper [7]] shows that F has the R, property, whilst the paper [[19] shows that the twisted conjugacy
problem in F is soluble, and demonstrates that both F and T have the R-property.

In the final chapter we begin an investigation of the twisted conjugacy problem and Ry,
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property for the Higman-Thompson groups G, ». We demonstrate that for automorphisms ¢
of Gn r such that the image of ¢ in the quotient Out(Gn ) is in Hn, there are infinitely many
¢d-twisted conjugacy classes. The remainder of the chapter focuses on the group Gy, and, for
automorphisms ¢ whose image in Out(Gn ;) is in Hy, we solve the ¢-twisted conjugacy problem.

The majority of the computations with transducers appearing in this work were vastly helped
by the GAP software ([25]) together with the GAP packages “AutomGrp” ([41]) and “aaa”. The
former package deals only with synchronous transducers and was helpful in the computations
appearing in Chapter 3} the latter package handles asynchronous transducers and is currently
still being developed by Collin Bleak (the author’s supervisor), Fernando Flores-Brito, Plamena
Minerva, the author, and Angela Richardson. Already implemented in this package are many
of the algorithms in the paper [30], moreover, this package allows for graphical visualization of
transducers which was a great help to the author as a starting point for many of the figures of
transducers appearing in this document.

Throughout the document we state several open questions and conjectures indicating the
current state of research and future work.
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Chapter 1

The Rational Group R, and Related
groups Rn r

This chapter shall be concerned primarily with defining the groups R, and R, ». Along the way
we shall introduce certain algorithms that will play a key role in future discussion. We shall keep
the exposition as self-contained and detailed as possible, illustrating key ideas with examples so
the reader can become as familiar as possible with these groups and some of the ways we will be
working with them.

We begin by introducing the notion of words, then graphs and trees, then automata and finally
transducers. Afterwards, we define the groups R, and Ry, with which this thesis will be primarily
concerned. In the process we establish some notation that we will be using throughout this work.
Subsequent notation and terminology shall be introduced as we require them. The contents of
the next few sections should therefore be thought of as containing the ‘essentials’. Our exposition
throughout this chapter is based on those given in the author’s article [10] and the paper [30].

For a given j an element of Z or IN, we often need to refer to the subsets of Z or IN consisting
of those elements which are greater than or equal to j. We establish the following general notation
to refer to these subsets.

Notation 1.0.1. Let I be one of Z, N or R, and let i € I, then we denote by I; the subset of 1
consisting of those elements greater than or equal to i.

1.1 Words

Definition 1.1.1. A finite set of symbols X :={x1,x2,...,xn} will be called an alphabet. An element
x € X will be called a letter. Let X be an alphabet, then the size of X, denoted |X| is the number of
symbols in X.

Definition 1.1.2. Let X :={x1,%y,...,xn} be an alphabet, a word or string (over the alphabet X) is a
finite or infinite sequence wiwyws ... of elements of X. The length of a word T" over X, is the length
of the sequence representing the word, and we denote it by |I'|. The empty word, denoted by the
symbol ¢, is the unique word of length zero. Let ' be a word over X, then we call I an infinite word
if | = oo otherwise we call I" a finite word.

Notation 1.1.3. Let X be a finite alphabet. Set X* to be the set of all finite words over X, and set
XT := X*\{e}. Fork € N, set X* := {" € X | IT| = k}.

Remark 1.1.4. For n € IN; let n be the ordered set{0,...,n—1}. Let N € {n | n € IN;}U{IN} and
X:={x1,...,xn} be an alphabet. A function f : N — X defines a non-empty word f(0)f(1) ... over
X. In particular, every non-empty word over X can be identified with a function f : N — X for
some N € {n | n € N1} U{IN} with cardinality equal to the length of the word.

Definition 1.1.5. Let X be a finite alphabet and let ' € X* be a word. Suppose that I' is the sequence
Y1Y2--- Yk, YVi € Xforall 1 <i <k Let1 <j <|[I', then we call y; the it Tetter of T.

12



Definition 1.1.6. Given two words I, I'; € X* the concatenation of Ty with T is the word TqT5.

Remark 1.1.7. Concatenation with the empty word returns the original word. Thus X* forms a
monoid under concatenation.

Notation 1.1.8. Let X be a finite alphabet and let I' € X* be a word. Forj € N, j > 1, we shall
denote by I’ the word I'T;...Tj where I} =T forall 1 <1 <j. Set ro.—e.

Definition 1.1.9. Let X be a finite alphabet. By Definition[I.1.4 we may identify a map f: IN — X
with the infinite word f(0)f(1)f(2).... Analogously, a map g : Z — X defines a bi-infinite word
consisting of the sequence ...g(—2)g(—1)g(0)g(1)g(2).... We shall identify the map g with the
bi-infinite sequence ... g(—2)g(—1)g(0)g(1)g(2)....

Remark 1.1.10. We shall sometimes omit the prefixes infinite or bi-infinite when it is clear from
the context that the word in question is infinite or bi-infinite.

Notation 1.1.11. Let X be a finite alphabet. Set X to be the set of all infinite words over X and set
XZ to be the set of all bi-infinite words over X. Given a bi-infinite word g € X% and i € Z we shall
sometimes denote by g; the letter g(i) and we shall call this letter the it" letter of g.

Definition 1.1.12. Given an alphabet X and two words u,v over X such that u € X* and
v € X* UX®, we say that u is a prefix of v if v = uvy for some word v; € X* U X%; we say
that vy is a suffix of v.

Remark 1.1.13. The empty word is a prefix and suffix of every word.

Definition 1.1.14. Define a relation ‘<’ on X* UX® by v <1, for v € X* andn € X* U X%, ifand
only if v is a prefix of . If v £ n and n £ v, then we say that v and 1 are incomparable and we
denote this by v L 1.

Remark 1.1.15. It is easy to see that the relation ‘<" on X* L X% of Definition [1.1.14]is a partial
order.

Notation 1.1.16. Let v, u € X* and suppose v < p. Let T € X* be such that p = vt, then we set
pu—v:=1 LetU C X*UX®. If v € X* is such that v is a prefix of every element of U then we shall
indicate this by writing v < U. Furthermore, for U C X* UX% and v € X* such that v < U, set
U—v:={e X" UX?|vde Ul

Definition 1.1.17. Let X be an alphabet, and let 6 € X® LX*. Leti € IN besuch that1 <1i < (9,
and let 5; € X' be the unique word of length 1 such that 3; < §, then we call §; the length i prefix of
5.

Definition 1.1.18. Given two alphabets X and Y, and subsets V C X*, and W C Y* L Y® we shall
denote by VW the set {vw |[v € V,w € W}.

We now introduce the notion of antichains.

Definition 1.1.19. A finite, ordered, subset u C X* is called an antichain if for any distinct pair
v,m € U we have v L 1. An antichain U is called complete if for any T € X* there is some v € u such
thatt<vorv<<rm

Remark 1.1.20. Observe that the definition of an antichain only depends on the partial order on
the set X*. Thus, for an arbitrary set Y with a partial order < on Y we may define antichains on Y

as in Definition

Definition 1.1.21. Let X = {x3,X2,...,xn} be a finite alphabet and let u = {uj, up,..., w} C X*
be an antichain of length 1. For 1 < i < 1, a single expansion of u (over u;) is the ordered set
{ug, ..o, Wi, WiXg, WX, -, WiXn, Wit - - -, Un ). A k-fold expansion of 6 for k € N7 is a set @’ such
that there is a finite sequence u := 1y, Uy, ..., Uk := u’ where u;, 1 < 1 < k, is a single expansion of
U;_1. An antichain v is called an expansion of u if it is equal to u or it is a k-fold expansion of u for
some k € INj.
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Remark 1.1.22. Let U be a (complete) antichain over some finite alphabet X. If u’ is a single
expansion of @ over some element v € W, then U’ is still a (complete) antichain. Thus any expansion
of u is a (complete) antichain. Moreover, if W is an expansion of u then [u] = [W| mod |X|—1;if w
is a k-fold expansion of u then [w| = [u| + k(|X| —1).

Now that we have the necessary preliminaries on words and related notions, in the next section
we establish the essential definitions and facts concerning graphs and trees that we will require in
this work.

1.2 Graphs and trees

This section shall be concerned with introducing some of the main geometric objects we will be
working with.

Definition 1.2.1. A directed graph is a tuple G = (V, E, ,T) where V is a set of symbols and is called
the vertex set of G, E is a set of edges of G and 1, T: E — V are maps. For an edge e € E, (e)uis called
the start of the edge and (e)7 is called the end or terminus of the edge. Elements of V are called vertices
or nodes and elements of E are called edges. The size of G, denoted |G|, is the size of the vertex set of
G. If |G| is finite then we say that G is finite, otherwise we say that G is infinite.

Definition 1.2.2. Let G = (V, E, (, ) be a directed graph and let V/ C V. The subgraph of G induced
by V' is the graph G’ = (V/,E’,/,t/) where E’ C E consists precisely of those edges e such that
(e)t, (e)t € V’; the maps t" and t’ are the restrictions of tand T to E'.

Definition 1.2.3. Let G = (V, E,, T) be a directed graph. A path (in G) is a sequence of edges
(alternatively a finite or infinite word over the set of edges) p := ey, ey, e3... such that, for any
1 <i< Ipl, (eix1)v = (eq)7. If the sequence is finite then we say that the path is finite otherwise we
say that the path is infinite. The length of the path, denoted |p|, is the length of the sequence. We call
(1)1 the initial vertex of p and, if [p| < oo, we call (e, )T the terminal vertex of p.

Definition 1.2.4. Let G = (V, E, (,T) be a directed graph. Two vertices u and v of G are called
connected if there is a path p in G with initial vertex u and final vertex v. The directed graph G is
called connected, if for any pair u, v of distinct vertices of G, there is a path p with initial and final
vertices p and v, respectively, such that {y, v} = {u, v}. If for any pair of vertices u, v of G there is a
path with initial vertex u and final vertex v then we say that G is strongly connected.

Definition 1.2.5. An (undirected) graph is a directed G = (V, E, (, T) such that for every edge e € E,
there is an edge e~ 1 € E, called the inverse of e, such that (e Hi=(e)rand (e 1)t = (e).

Remark 1.2.6. For a graph G = (V, E, (,T) we shall identify every edge e € E with its inverse e !

and denote both by e. Thus a graph can be described by a triple G = (V, E, &), where V is the
vertex set of G, E is the set of edges, and & : E — V/(2) where V(2) := {{u,v} | u,v € V}. For an
edge e € E, (e)& = {u,v}is called the ends of e and we say e is an edge between u and v. For an
undirected graph G = (V, E, &), a path (in G) is a sequence p := ey, e, e3,... of edges with ends
{v1,v2},{v2,v3},{v3,v4}.... Notice that an undirected graph is connected if and only if it is strongly
connected.

Definition 1.2.7. Let G = (V, E, &) be a graph, and let v{,v, € V. Then we say that v; is incident to
vy if there is an edge e € E with (e)& = {vy,v2}. A vertex v € V is said to belong to an edge e € E if
v € (e)&. If a vertex vy is incident to a vertex v, then we call v, a neighbour of vy.

Definition 1.2.8. Let G = (V, E, &) be a graph. An edge e is called a loop if (e)¢ is a singleton.

Definition 1.2.9. Let G = (V, E, £) be a graph. A pathp = ej, ey ... defines a sequence v{,v; ... of
vertices of length |p| + 1 (|p| for an infinite path), where, for 1 <i < p, (ei)& = {vi, vi11}. We call
this sequence the vertex sequence of p. For a path p of G and a vertex v € V, we say that p visits v or
v is visited by p if v belongs to an edge in p (alternatively, v occurs in the vertex sequence of p). For
a finite path p = e, ..., ey, with vertex sequence vi, vy, ..., vx11, we call v the initial vertex (of the
path) and vy, 1 the final vertex (of the path). A finite path is called a circuit if its initial vertex is equal
to its final vertex. A circuit, ey, ey, ..., ey is called basic if k > 3 and the only repeated vertex in its
vertex sequence is the start vertex. A geodesic is a shortest path connecting any two vertices.
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Definition 1.2.10. Let G = (V, E, £) be a graph. Then two vertices v; and v; are said to be connected
if there is a path in G with start vertex v; and final vertex v. A graph G = (V, E, &) is said to be
connected if any pair of distinct vertices are connected.

Definition 1.2.11. Let G; = (V4,Eq,&1) and Gy = (V,, Ep, &) be graphs. A pair of maps
Ye : BE1 = Ep, vv 1 Vi — Vais called a graph homomorphism if whenever e € Eq with (e)&; = {u, v},
then ((e)ve)& = {(uw)yv, (v)yv} If the maps y¢ and vy are also injective/ surjective/ bijective
then we say that v is a graph monomorphism/ epimorphism/ isomorphism.

Definition 1.2.12. Let G = (V, E, 1, T) be a directed or undirected graph and let S be an alphabet. A
map .2 : E — Sis called an edge labelling of G. The pair (G, %) is called a labelled graph.

Definition 1.2.13. A graph G = (V, E, &) is called simple if it has no loops and for any pair v;, v, of
vertices of V, there is at most one edge e € E for which (e)& = {v1, v }.

Remark 1.2.14. For a simple graph G = (V, E, ), an edge e € E is characterised precisely by (e)&.
In particular, a simple graph can be represented by a pair G = (V,E) where E C V(2) = {{u, v} |
u,v € V}. From henceforth, we denote all simple graphs by pairs G = (V, E) of vertices and edges,
where E C V(2). For a simple graph G = (V, E) we represent a path p as a sequence vi,v,v3, ... of
vertices where for all 1 < i < Ipl, {vi,vi11} € E.

Definition 1.2.15. A simple graph G is called a tree if it is connected and contains no basic circuits.
A tree G is said to be rooted if there is a distinguished vertex; we call this distinguished vertex the
root (of the tree). Let G be a rooted tree, then we call a vertex of G with only one neighbour a leaf of
the tree G. A vertex which is neither a leaf nor the root will be called an internal vertex.

Remark 1.2.16. Observe that in a tree T there is a unique geodesic connecting any two vertices.

Definition 1.2.17. A rooted n-ary tree Ty, is a rooted tree with an infinite set of vertices such
that every vertex apart from the root has precisely n + 1 neighbours, and the root has n distinct
neighbours.

Remark 1.2.18. There is only one rooted n-ary tree up to isomorphism, thus, we fix a representative
tree T,. We phrase all subsequent discussion with regards to this tree, and refer to it as the rooted
n-ary tree.

Definition 1.2.19. Let Ty, be the rooted n-ary tree. For i € INy, let v be a vertex such that there is a
geodesic from the root € of Ty, to v of length 1, then we say that v is at level i or the level of v is 1. We
set the level of the root to be 0. For a vertex v of T1,, we denote by 1(v) the level of the vertex v.

Remark 1.2.20. Let T, be the rooted n-ary tree, as there is a unique geodesic connecting any two
vertices it follows that every vertex of Ty, has a unique level. Moreover, for i € INj, every vertex at
level i is incident to precisely one vertex at level i — 1. Thus, since every vertex apart from the root
is incident to n + 1 distinct vertices, the number of vertices at level i of Ty, for 1 € IN, is precisely

nt.

Definition 1.2.21. Let T, be the rooted n-ary tree with root €. Let v be a vertex of T, not equal to
the root, then we call the unique neighbour of v at level 1(v) — 1, the parent of v. Let v be any vertex
of Tn, the children of v are the n distinct neighbours of v at level 1(v) 4 1. A child of v is therefore a
neighbour of v at level 1(v) + 1.

Definition 1.2.22. Let T, be the rooted n-ary tree and let v be an internal vertex of Ty,. The subtree
Tn(v) of Tny, rooted at v, is the rooted subtree of T;,, with root v, induced by v and all vertices of T,
which are connected to v by a path which does not visit the parent of v.

Remark 1.2.23. Let T}, be the rooted n-ary tree and let v be a vertex of Ty, then 71, (v) is a rooted
n-ary tree. Moreover, any internal vertex of Ty, (v) is at a level of T, strictly greater than 1(v).

Definition 1.2.24. We define a partial ordering of the nodes of the n-ary tree T, as follows: for
two vertices vq, v, of Ty, we say that vi < vy, if vy is a vertex of Ty (v). Two vertices v, v are
incomparable if vi € vp and vo € vi. An antichain is, as in Section an ordered set {v1,Vvs,...,Vi}
of pairwise incomparable vertices. An antichain V is called complete, if for every vertex u of Tp,
there is a vertex v € vsuch thatu <vorv < u.
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Remark 1.2.25. Let T, be the rooted n-ary tree, and let {v1,vo, ... vk} be an antichain. Observe that
the subtrees T, (v1), ..., Tn(vk) have no vertices in common.

Definition 1.2.26. Let T;, = (V, E) be the rooted n-ary tree with root €, and let v := {v{, v, ... vy}
be an antichain. The subtree TY, is the rooted subtree of T, with root €, induced by the all the
vertices of Ty, except those which are internal vertices of some Ty, (vi) for some 1 < i < k. We may
also refer to TY, as the complement of the subtrees T (v1),..., Tn (V).

Remark 1.2.27. Let Ty, be the rooted n-ary tree, and let v be an antichain of T,,. All elements of
v are vertices of T}, moreover, if v is not the antichain consisting only of the root, any v € V is
a leaf. All other vertices of the tree T7,, apart from the root which has n neighbours, have n +1
neighbours. Thus the leaves of T}, are precisely the vertices in v. If V is the antichain consisting
only of the root, then V is the rooted tree with precisely one vertex. If v is a complete antichain,
then TY,_is a finite rooted tree.

(b) A finite rooted tree.
(a) The binary tree T5.

Figure 1.1: The binary tree and a finite subtree

Remark 1.2.28. All rooted trees will be drawn with the root at the top, and with the neighbours of
a vertex v at level 1(v) + 1, immediately below the vertex v. Thus, as in the examples in Figure
we mainly leave the roots of such trees unlabelled.

Deﬁnitiog 1.2.29. Let Ty, be the rooted n-ary tree, then a finite (rooted) subtree of Ty, is a (rooted)
subtree T}, for some complete antichain v of T7,.

Remark 1.2.30. Note that the definition of finite subtrees that we have above is stronger than
definitions that occur elsewhere in the literature, since in our definition, all internal vertices of a
subtree have n children.

Definition 1.2.31. A simple graph G = (V, E) is called a forest if it is a disjoint union of trees.

Definition 1.2.32. An r-rooted n-ary forest Tn v, is a forest which is the disjoint union of r rooted
n-ary trees.

Remark 1.2.33. There is a unique r-rooted, n-ary forest up to isomorphism. We shall thus fix a
representative Ty, ; for the r-rooted n-ary forest. We refer to this representative forest as the r-rooted
n-ary forest in subsequent discussions.

Definition 1.2.34. Let T, be the r-rooted n-ary forest. A finite r-rooted subforest of Ty,  is the
disjoint union of r finite subtrees with roots corresponding to the roots of the r n-ary trees making
up the forest.

Remark 1.2.35. We partially order the nodes of T, as follows. Let €;, 1 < i < r be the roots of the
rooted n-ary trees making up the forest T, ;. For each n-ary tree in the forest, we order the nodes
of the tree as in Definition[1.2.24] For i #j,1,j € {1,...,7}, set any node connected to the root €; to
be incomparable to any node connected to the root €;. This gives a partial ordering of Ty, . We
may thus refer to antichains and complete antichains of T . By definition a complete antichain
u of Ty,» can be written as a disjoint union u; Luz U... Uu, where uj, 1 < i < 1, is a complete
antichain for the n-ary tree with root ;. Thus Ty' is a finite subtree of the n-ary tree with root
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ei. Hence Thi Li... LI Th" is finite subforest of Ty, ;. Observe that, as in Remark the leaves

of I_Ilgigr‘TTﬁJ are precisely the vertices of u not equal to a root. Moreover, by Definition [1.2.34] it
follows that all finite subforests of Tr; are obtained in this way. Thus, for a complete antichain u

of Tnr, we write ‘J’E,T for the finite subforest ulgigrﬂ'ﬁi, where the u; (1 < i < ) are disjoint and
each u; (1 <1i < r)isacomplete antichain for the n-ary tree with root €;.

(a) The forest T3, (b) A finite rooted subforest of T3>

Figure 1.2: The r-rooted n-ary forest and a subforest

In the next section we introduce special types of labelled graphs called transducers and automata.
These may also be viewed as machines with a set of states which process inputs according to
certain rules.

1.3 Automata and Transducers

In this section we describe some of the key machinery that we use to understand the various groups
of homeomorphisms that this work considers. The ‘machinery’ referred to are called automata and
transducers. We begin by first introducing automata, then we define transducers. We introduce
in some sense the basics of these objects, further concepts will be revealed as needed in relevant
sections.

1.3.1 Automata

As a transducer is a special type of automaton we shall begin by first defining automata.
Definition 1.3.1. An automaton is a triple A := (X, Qa, A ) where:

(1) Xis a finite alphabet,

(2) QA is a finite or infinite set of states of the automaton,

(B) ma : X x Qa — QA is the transition function.

Remark 1.3.2. Note that finite automata as defined in Definition[I.3.1]are elsewhere in the literature
called deterministic finite automata, see for instance [35].

Inductively we may extend the domain of 5 to X* according to the following rules:

miale,q) = qforallq e Qa, (1.1)
forT € X* and x € X we have A (T'x, q) = ma (x, (T, q)) forall g € Qa. (1.2)

Hence an automaton can be thought of as a machine with a finite set of states which reads
letters from an input tape and changes states according to some rules. Notice that by|(1.1)|and [(1.2)
above, all states of an automata process words from left to right.

Definition 1.3.3. Let A = (X, Qa,7ta), then the size of A, denoted |A|, is the number of states of A.
If |QAl < oo then we say that A is finite, otherwise we say that A is infinite.
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Usually we represent a finite automaton A by a finite, labelled directed graph as in Figure
The vertices of the graph correspond to the states of the automaton. There is an edge from a state
g1 to a state q; labelled with an x, whenever, in the automata A we have 7a (x, q1) = qp. We
shall identify the automata A with the labelled graph representing it. Thus when we refer to an
automaton, A, we shall mean both the labelled graph representing it, and the tuple (X, Qa, A ).

Definition 1.3.4. Let A = (X,Qa,mA) and B = (X, Qp, 7p) be automata over the same alphabet X.
We say that A and B are isomorphic if there is a bijection ¢ : Qa4 — Qg satisfying, for any i € X,
7ia(i,q) = p if and only if 75 (i, (q)0) = (p)d.

Given an automaton A = (X, Qa, A ) we may fix a state q of A from which to begin reading
inputs, in this case we say that A is initialised at the state q and we denote this by A 4. In the graph
of the automaton, we indicate that A is initialised at q by double circling the state q.

Below we have an example of an initial automaton:

Figure 1.3: An example of an initial automaton.

1.3.2 Transducers
Definition 1.3.5. A transducer is a quintuple T = (X1, Xg, QT, 7tT, A1) such that:
(1) Xy and Xp are finite alphabets called the input and output alphabets respectively.
(2) QT is a set consisting of states of the transducer.
(B) 71 : X1 x Q1 — QT is the transition function.
(4) At : X1 x Q1 — X{ is the re-write function.

A transducer can be thought of as an automaton which, as well as reading inputs from an input
tape, may also write strings from the output alphabet onto the output tape.

As in[(T.T)]and [(1.2)| we may extend the domain of 7t to X{ x Q7. We may also analogously
extend the domain of At to XT x Q. We do this as follows. First set At (e, q) = € and mt7(€, q) = q
for all states g € Q1. Now for I' € X7 and x € X; we have:

At(Tx, q) = At (T, @)AT(x, 71 (T, q)). (1.3)

Notice that we process inputs from left to right.
Now let 5 € X{°, and, for i € N, let 8; € X} be the length i prefix of 5. Observe that, for a given
state g € Qr, there is a unique element p of X{" LI X7 satisfying the following conditions:

(1) At(81,q) < pforallie N,

(if) For any prefix v of p thereis ani € N such that v < A1 (83, q).
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Notation 1.3.6. Let T = (X1, X0, Q1, 71, AT) be a transducer. For 6 € X{* we denote by At (9, q)
the unique word p € X{* LI X} satisfying conditions [(i)]and

Given a transducer T = (X1, X, QT, 71, A1) and an element y € X] we shall use the language
read 'y through a state q; (to a state qp) or read 'y from a state qq (to a state qp) to indicate the transition
7r(Y,q1) = q2. We may also append the phrase with output &, for some & € X, if in addition
Ay, q1) =&

Notation 1.3.7. Given a transducer T = (X1, Xo, QT, 71, A7), denote by A(T) the automaton
(X1, QT,71). We call A(T) the underlying automaton of T. Given a word y € Xj and q € Qr, it will
sometimes be convenient to use the notation (y)Tq for the word At (v, q). On rare occasions we
also extend the notation (y)Tq to words y € X{*.

If we fix a state q € Q7 from which we begin processing inputs, then we say that T is initialised
at state g and we denote this by Ty. We call Ty an initial transducer. We say the transducer T is
finite if the underlying automaton A(T) is finite, otherwise we say that T is infinite. The size of a
transducer T is the size of the underlying automaton A(T).

Definition 1.3.8. Let Ty, be an initial transducer and let q be any state of T not equal to qo. We call
q a non-initial state (of Tq ).

Notation 1.3.9. If Ty, is an initial transducer, then we shall write T for the transducer Ty, with no
states initialised. We shall sometimes call the transducer T the underlying transducer of Tq,. This is
not to be confused with the underlying automaton A(T) of T.

Notation 1.3.10. For a transducer T with input and output alphabet both equal to an alphabet X,
we write T = (X, Qr, 7t1, A1). We call such a transducer a transducer over the (alphabet) X.

Usually we represent a finite transducer T = (X1, Xo, QT, 71, AT) by a finite labelled graph.
The vertices of the graph will correspond to the states of T. For every state, q € Q, and for every
x € Xi, there is a directed edge from q to 7t(x, q) labelled by ‘x|A(x, q)’. If we fix an initial state
q € QT, then we represent this in the graph of the transducer T, by doubly circling the state q.

We have the following definitions:

Definition 1.3.11. A transducer, T is said to be synchronous if for every letter x € Xp, and all states
q € QT1, we have [A1(x, q)| = 1. Otherwise we say the transducer is asynchronous.

Definition 1.3.12. Let T be a transducer, and let qg be a state of T so that Tq, is an initial transducer.
A state q € QT is said to be accessible if there is a word w € X7 such that 71 (w, qo) = g, and we
say that q is accessible (in Tq,) by w. If w € X{ then we say that q is strictly accessible (in Tq, by w).
If all the states of Ty, are (strictly) accessible, we say that T is (strictly) accessible.

Definition 1.3.13. Let Ty, be an initial transducer. A state q € Qr is called non-trivially accessible if
there is a word w € X7 such that q is accessible in Tq, by w and At (w, qo) # €.

Below are examples of synchronous and asynchronous transducers.

2|0

LR 20

1/1,012

Figure 1.4: Example of a synchronous transducer
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Figure 1.5: Example of an asynchronous transducer with initial state q3

Eventually we shall see that transducers which satisfy certain non-degeneracy conditions
induce continuous functions on Cantor space. To this end we begin by introducing Cantor space:
we present several different ways we will be viewing Cantor space in this work.

1.4 Cantor Space from different points of view

In this section we introduce different ways of thinking of Cantor space. Subsequently we shall
move between these different points of view as necessary.

From henceforth we shall fix n € N> and r € INy a number strictly less than n. We shall also fix
Xn =1{0,1,...,n—1} a finite alphabet, and fix the ordering 0 <1 <2 < ... < n—1 of elements
of Xn. Fix also t := {1,2,...,7} and let the elements of  be ordered 1 < 2 < ... < . We begin by
establishing some further notation.

Notation 1.4.1. Set X . == iX},, Xj, , := X{ . U{e} and X& := iX®. For k € N let XX  be the
subset of X}, . consisting of all elements of length k. Observe that X}l/r = . We identify, as in
Definition X7y with the set of maps f : N — U Xy, such that f(i) € i if and only if i = 0.
Therefore given an infinite word w in X1, we denote by w; the letter w(i), for i € IN and we call
this letter the it letter of w.

We extend the partial order < of Definition to a partial order on the set X7, ;. in the natural
way and again denote this partial order by <. We retain the symbol ‘L’ for two incomparable
words in X7, ... More specifically, for two words v,n € X7, ;, we say that v < n if v is a prefix of n; if
v £ nandn £ v then v is incomparable ton i.e v L 1. We also extend the notion of antichains and

complete antichains (Definition[I.1.19) to subsets of X}, ..

We now define a metric on X, X4 and X3 r which makes each of these sets homeomorphic to
Cantor space.

First we define a metric dn, on X&'.

Definition 1.4.2. Let d, : X{Y X X§ — RRg be given by:

dn (Wi, Wy) = PR k is minimal such that wq (k) # w» (k)

0, otherwise.

(1.4)

The metric do, On X%, which we define below, is a natural extension of d,, to bi-infinite
sequences.

Definition 1.4.3. Let do : X2 x X4 — R be given by:

dos (Wi, wp) = 4 K117 k € IN is minimal such that wq (k) # wy (k) or wy(—k) # wo(—k)

0, otherwise.

(1.5)
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Finally the metric on X}y .. is the natural extension of d,, to X}, and we again denote this new
metric by d., appealing to the context to clarify any ambiguities that may arise.

Note that each of the spaces X& ., X% and X% are homeomorphic to each other. This follows
from the well known result that any compact, totally disconnected, perfect, metric space is
homeomorphic to Cantor space. Moreover, one can also define homeomorphisms from each
of these spaces into X5°.

Notation 1.4.4. We also use the symbol &, ;- for the Cantor space X} .., and the symbol &, for the
Cantor space X5

We will be considering groups of self-homeomorphisms of each of the spaces X{ .., X{, XZ. We

begin with the spaces X}, and X{. Later on we consider groups of self-homeomorphisms of XZ.

Notation 1.4.5. Let H(¢,, ») and H(€}, ) denote the group of self-homeomorphisms of €,  and €y,
respectively.

We now describe a basis for each of the topologies induced by the metrics dn on X}y and X ..
However, we first establish some further notation.

Notation 1.4.6. Letv € X}, set U, :={vd|d € €n}. Forv € Xﬁlr, set Uy :={vd | & € €,}. For
v = e take Uy := &y 1. For a subset I C X}, U X}, ;. we shall set U(I) = {Uy | v € I}.

Remark 1.4.7. For v € X}, or v € XJ, , the subset of ¢y, or &, ; given by Uy, is a clopen set. That
U, is open follows since for any point € U, and letting X be one of €, or ¢, . as appropriate,
the open ball B(5, m) ={p € X | dn(d,p) < 1/|v|+1}is a subset of U,,. That U, is closed
follows since the complement of U, is either empty if v = € otherwise it is equal to the union
Uuexmu#vu”'

Notation 1.4.8. Let By := U(X}}) ={Uy | v € Xj;}and let By, » := U(X], ;) ={Uy | v € X}, . }.

Remark 1.4.9. The sets B,, and By, » form a basis of clopen sets for the topology induced by the
metric dn, on €;, and €, ; respectively. This follows since, setting X to be one of €, or €, ;, for any
point $inX and any number a € IRy, the open ball B($, a) coincides with Uy for v € X}, a prefix
of 5 of appropriate length. For a point x € €,,, we shall use the phrase open neighbourhood of x (or
neighbourhood of x) for an open set U containing x.

Notation 1.4.10. For a subset U of &;, or ¢, » and a continuous function h with domain ¢, or ¢, ,
we shall use the notation (U)h for the set {(x)h | x € U}.

We shall also view €, and €, , as the boundaries of the rooted n-ary tree (Definition
and the r-rooted n-ary forest (Definition respectively. We do this by assigning a label to
the edges of T, and Ty, (Section[1.2) such that the concatenation of labels of infinite geodesics
beginning at the root in 7, and Ty, correspond to elements of €, and €,  respectively. We begin
with ¢,.

Let v be a node of Ty,. Label the n edges leaving v to nodes at level 1(v) + 1, successively with
the symbols 0,1...,n — 1. This gives a bijection between the set of edges from v to nodes at level
L(v) +1, and the set X;,. Recall that X, is an ordered set, thus we may assume that the edges of the
graph are ordered according to the ordering induced by Xx,.

Notation 1.4.11. Let {v, u} be an edge of T,,, we denote by lab({v, u}) the label of the edge.

Given an infinite geodesic, vq,Vy, ..., where v; is the root of 7y, we may uniquely identify
this geodesic with the element lab({vy, vo})lab({v,v3})... € €. Moreover each element of ¢;,
corresponds to a unique infinite geodesic of T, starting at the root. Thus elements of €,, correspond
to infinite geodesics in Ty, beginning at the root.

The labelling on the edges of T;, induces a labelling on the vertices. This is because if v is an
internal vertex of 7, we may identify v with the word v, € X{ labelling the unique geodesic in
Tn from the root to v. The root may then be labelled by the empty word e. Henceforth, we identify
an internal vertex of the tree T, with the word labelling the unique geodesic starting at the root
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to the vertex and we identify the root with the empty word. This labelling of the vertices of Ty,
gives a bijection from the nodes of Ty, to the set X},. Thus, we may assume that the vertices at
level i, i € IN, are ordered according to the lexicographic ordering induced from Xj3,. Figure
depicts the labelled rooted binary tree T3, the lexicographic ordering of the edges is indicated by
drawing smaller edges to the left of larger ones; likewise the ordering of the vertices at each level
is indicated by having smaller vertices appearing to the left of larger ones.

0 € 1
. 01/ \
OO/ \01 / \
o/ \1 0/ \1 Q// \@ Q// \@

000 001 010 011 100 101 110 111
0/\1 0/\1 0/\1 0/\1 0/\1 0/\1 o0/\1 o0/\1

Figure 1.6: Labelled binary tree

Observe that a clopen set U, € By, for v € X}, corresponds to the set of infinite geodesics
beginning at the root which pass through the vertex v of T7,.

Now we extend the labelling of T, to the r-rooted forest Ty, . Let v be an internal vertex of one
of the n-ary trees of the forest Ty, . We label, as in the case of T, the n edges from v to vertices on
level 1(v) + 1, bijectively with the symbols 0,1,...,n—1. Now let rq, for 1 < a < 1, be the root of
the a'h n-ary tree in the forest 7, . Label all the edges leaving r, successively with the symbols dj
for 0 < j < n—1. Thus, we have a bijection from the set of edges leaving the root r to the set aXy.
Therefore, as in the case of T, an infinite geodesic beginning at the root of an n-ary tree in T, r,
corresponds uniquely to an element of ¢, . Moreover, any given element of ¢;, ; corresponds
to a unique geodesic beginning at the root of a particular n-ary tree in Ty, ». Thus, whenever we
depict the r-rooted n-ary forest, as in Figure[1.7] we shall have: (1.) vertices atlevel i+ 1, fori € IN,
appearing below vertices at level i, (2.) vertices at level i arranged so that a vertex appears to the
left of vertices larger than it in the lexicographic ordering of Xj, ;. and, (3.) edges leaving a vertex
arranged so that smaller edges are to the left of larger ones.

/\ /\ /\ /\ /\ /\

Figure 1.7: Labelled forest 732

This last geometric representation of the spaces ¢, and ¢, r, turns out to be very useful for
visualising the action of certain subgroups of H(€,) and H(€n ;) on €, and €, ; respectively as
we will see later on.

However, we now demonstrate how transducers satisfying a certain non-degeneracy condition
induce homeomorphisms of Cantor space.
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1.5 Transducers and continuous functions on Cantor space

In this section, we demonstrate how finite initial transducers satisfying a certain non-degeneracy
condition induce continuous functions of Cantor space €, and €, . Our exposition follows
those given in [30] and the author’s article [10]. We begin first with ¢, and then make slight
modifications for €, r.

1.5.1 Transducers and continuous functions on ¢,,

In this subsection, we demonstrate that finite initial transducers over the alphabet X;, satisfying
a certain non-degeneracy condition induce continuous functions on ¢,,. We also identify those
homeomorphisms of €, which may be represented by finite initial transducers satisfying the
non-degeneracy condition.

All transducers in this subsection shall be over the alphabet X;,.

Definition 1.5.1. Let A = (X, Qa, A, Aa ) be a transducer, then A is called non-degenerate if there
is a k € INj such that for all words ' € XX, and for any q of A, we have A5 (T, q) # e.

Remark 1.5.2. Given 6 € €, a non-degenerate initial transducer Ay, over the alphabet Xy,
necessarily satisfies: Aa (8, q) € €, where q is any accessible state of A q,.

Henceforth, unless stated otherwise, all transducers introduced will be assumed non-degenerate
and initial transducers are also assumed to be accessible. Therefore, we shall mostly omit these
phrases in subsequent discussions; whenever we include them, we choose to do so for emphasis.

Notation 1.5.3. Let A be a transducer over the alphabet X;,, and let q be a state of A. We denote by
ha,, the map on ¢, defined by 6 — A (8, q). When it is clear that q is a state of A then we shall
use the symbol hq for ha .

We have the following result:

Proposition 1.5.4. Let A be a transducer over the alphabet Xy, and q be a state of A, then hq : € — €y
is continuous.

Proof. Letd € €y, Let p = (5)hq and let U be any open neighbourhood of p. Letn € X;{ be such
that Uy, is an open neighbourhood of p contained in U. Let j be minimal such that for any I' € xJ,
we have |[Aa (T, q)| > | (such a j exists since A is non-degenerate). Now let A € XJ;L be such that
d = Ab for some b € €. Observe that Aa (A, q) has a prefix 1 since A is a prefix of 4 and an element
of X%, and p € Uy,. Therefore, for any point { € Ux, we have (p)hg € U,,. O

Notation 1.5.5. Let A be a transducer over €, and let q be a state of A. We write im(q) for the
image of the map hq : €, — &;,. We will also refer to im(q) as the image of q.

Proposition demonstrates that an initial non-degenerate transducer A g, induces several
continuous functions on ¢,,. In what follows we shall show how to construct an initial transducer
Aq, from a homeomorphism h : &, — €&, such that hy, = h. We need a few definitions
beforehand.

Notation 1.5.6. Let U C &,. We set (U)rt € X, UXY to be the greatest common prefix of all
elements of U.

Definition 1.5.7. Let h : €, — €, be a continuous function. Define 0y : X}, — X} UX¥ by
(V)0 = ((Uy)h)rt. Given a transducer A g, over ¢;, and q a state of A then we will write 04 for
the function 6y, .

Remark 1.5.8. Note that for v € X}, and a continuous function h : ¢, — &, (v)6y, is the greatest
common prefix of the set (Ll )h. Further observe, since h is continuous, that for a sequence v; in
X3, 1 € N, such that for i < j, v; is a proper prefix of v;, then either |(v{)0y| also tends to infinity
with i, or there is some i such that for all j > i (v;)0y, € &;.
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Remark 1.5.9. If h is the continuous map sending all of &;, to a point x € €y, then clearly for any
v e X} (v)on =x. Ifh: &€y — €, is a homeomorphism, we observe that for any point v € X},
since (U )h is clopen (homeomorphisms map clopen sets to clopen sets), then (v)6y, € Xj;.

Definition 1.5.10. Let h: &, — &, be a continuous function and let v € Xj,. Define h., : €, — €,
as follows:
(x)hy = (vx)h — (v)0p.

We call hy a local map of h.

Remark 1.5.11. For v € X}, and h: ¢,;, — €, continuous, the local map h is the restriction of h
to U, where we delete the prefix (v)0y from all outputs. Observe that if h is a continuous and
injective map from €, to itself, and v € X, then hy is also injective by definition.

Proposition 1.5.12. Let h : €, — €y be a continuous function, and let v € X}, then h. is also
continuous.

Proof. Let x € €, and let U be an open neighbourhood of y := (x)hy. Let p € X, such
thaty € U, C U. Observe that since (vx)h = (v)0ny it follows that U(,,g,, is an open
neighbourhood of (vx)h. Since h is continuous, there is an open neighbourhood V of vx such
that (V)Jh C U(yyg, . Since V is a neighbourhood of vx, there is some p € Xt such that
Uy, C Vis an open neighbourhood of vx. Therefore U, is an open neighbourhood of x such that
(Up)hy C U, C U O

We have the following fact about local maps and the function 04, for h a homeomorphism.

Proposition 1.5.13. Let h: &, — €, be a homeomorphism and let v, u € X3,. The following holds:

(VIO = (V)On (1)Or, .

Proof. Observe that (v)0y, is a prefix of (Uy,)h. Moreover, (i1)61,, is the greatest common prefix
of the set (U )h — (v)0y. It therefore follows that (v)0y (1)0h, = (Vi)On. O

We now give the construction in [30] for building an initial transducer Aq, from a
homeomorphism h € H(€y,) such that hgq, = h.

Construction 1.5.14. Let h : ¢;, — &,; be a homeomorphism. Construct an infinite transducer
Ae = (Xn, X5, A, AA). For v a state of Ae and i € Xy, the transition and output functions of A
are defined as follows:

mia(l,v) =viand Aa (1,v) = (vi)0y, — (V)Op.
Observe that for v a state of Ac and i € Xn, Aa (1, V) = (1)0n, .
We have the following result:

Theorem 1.5.15. Let h: €, — &, be a homeomorphism and let A ¢ be the initial transducer constructed
from h as in Construction|(1.5.14 For any point x € €, we have, Aa (x, €) = (x)h.

Proof. Letx € €, and suppose that x = xpx1x2 ... forx; € X,. To demonstrate thatAa (x, €) = (x)h,
it suffices, by Remarks [I.5.8| and to show that for every non-empty finite prefix w of x,
Aa(w, €) = (W)0}. We proceed by induction on [w].

By definition A(xg, €) = (x¢)0n which is a (possibly empty) prefix of (x)h. This proves the base
case.

Assume, for m € INj and for w = xg...xm, that Apx(w,e) = (w)0,. Now consider
AA (WX 41, €). By definition of the transition and output function we have

AA (WXm41,€) = A (W, €)AA (Xm41,W).

Notice that Ap (Xm+1, W) = (Wxm11)0n — (W)01,. Therefore, by the inductive assumption, we
have:
A (Wxm i1, €) = (W)OR (WX 11)0h — (W)O1) = (WX 11)0n

as required. O
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Remark 1.5.16. A similar proof to that given above demonstrates that for x € €, and for v € X},
we have Aa (x,v) = (x)hy. A consequence of this is that the states of A correspond to the
local maps of h. Furthermore, A¢ is non-degenerate by Remarks and In particular
Theorem[1.5.15 demonstrates that he = h.

We now modify the Construction [1.5.14{for homeomorphisms of €, ;.. To do this, we will need
to adjust our definition of transducers slightly so that they induce continuous functions on €y, ..
The approach taken follows that given in the author’s article [10].

1.5.2 Transducers and continuous functions on ¢, ,

In order to allow for transducers to model homeomorphisms of Cantor space €, r for1 <r<n
we shall have to adjust and impose certain additional restrictions on the transducers.

Definition 1.5.17. An initial transducer Aq, = (t,Xn,Ra,SA,TA,AA, qo) 01 €y v is a tuple such
that:

(@) the input and output alphabets are equal to the disjoint union i LI X;,,
(b) the set of states QA of A is the disjoint union Ra USA and qg € Ra,

(c) ma : (Ex{q0}) U (Xn x Qa\qo}) — Qa\{qo}is the transition function and A5 : (¥ x {qo}) U
(Xn x Qa\do}) — X§, - UX3, is the output function.

The functions ta and A5 also satisfy the following restrictions:

(R.1) Whenever we transition from a state in R5 to another state in R4 we output the empty word:

If q1,92 € Ra and a (X, q1) = qp, then Aa (%, q1) = €.

(R.2) Whenever we transition from a state in Ra to a state in So we output a word in X .:

If g € Ra, and x € Xy, such that 7ta (x, q) € Sa, then Ap(x, q) € X}{ .

(R.3) We always transition from a state in S 5 into another state in S o, and the output is a word in
X
If € SA, then Vx € X, Aa (%, q) € X}, and 7ta (x,q) € SA.

(R.4) Whenever we read a word from a state q € Q o to the same state q the output of this transition
is non-empty:

If g € Qa, and w € X} UXY | such that ta (w, q) = q then, Ax (w, q) # €.

Remark 1.5.18. Notice that we can only read a letter from ¥ from the state qp. Furthermore, by
item|(c)| of Definition after processing any element of i from qp, we leave the state qo and
never return to it. We usually write Ag, = (¥, Xn,Ra,SA, A, Aa) when it is clear that qq is the
initial state of A .

We extend the domain of ta and A5 to (i x {qo}) U (X;} X QA \{qo}) by the following rules: for
w e X}, 1€ Xy and q € Qa\{qo} we have,

A (Wi, q) = A (1, A (W, q)) and Aa (Wi, q) = Aa (W, @)AA (1, T(w, q)); (L.6)
forw e Xif |, 1 € X, we have,

A (Wi, qo) = a (1, TA (W, qo)) and A (Wi, qo) = Aa (W, qo)AA (1, T(W, qo)). (1.7)
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Notation 1.5.19. For a state q € Qa\{qo}, and a word p € X&', we set Ax (p, q) as in Notation[1.3.6]
Thus, for a € fand § € X&', we set Ap (ad, qo) :=Aa(a, qo)Aa (8, A (a, qo))-

Remark 1.5.20.

(a) Conditions|(R.1)[to[(R.4)|imply that whenever we read a word 6 € €;, through a state in S5
the output is again an infinite word in €.

(b) Conditions|(R.1)|to[(R-4)mean that we only ever output a symbol from i once. Conditions
(R.T)|and [(R.4)mean that the transducer must exit R4 for long enough inputs. Conditions
(R.2)| to [(R.4) and the preceding sentence imply that whenever we process an element of
Cn,r through the state qo of Aq,, the output is also an element of &;, ;. In analogy with

Definition a transducer satisfying conditions|(R.1)[to|(R.3){but which does not satisfy

condition is called a degenerate transducer. On the other hand, a transducer satisfying

conditions to is called non-degenerate.

(c) Let Ag, = (t,Xn,RA,SA,TA,AA, qo) be a non-degenerate initial transducer over ¢;, » and
let ¢ € Q\{qo} be an accessible state of Aq,. The initial transducer A4 induces a map ha a
from €,, defined by (6)hAq = AA (5, q). The range of ha,is€n if g € Sa and €4, ;- otherwise.
The initial transducer A, induces a map ha, from &y . to itself.

Notation 1.5.21. Let A, = (f, Xn,Ra,SA, A, AA, qo) be a non-degenerate initial transducer over
€n,r. For a state g € Qa, we use the notation hq for ha, whenever it is unambiguous that q is a
state of A.

Remark 1.5.22. Let Aq, = (i, Xn, Ra,SA, A, AA, qo) be a non-degenerate initial transducer over
Cn,r. For any state q of A, the induced map hq is continuous and the argument demonstrating
this is almost identical to the proof of Proposition[1.5.4]

Notation 1.5.23. Let A, = (f, Xn,Ra,SA, A, AA, qo) be a non-degenerate initial transducer over
Cn,rand let g € Q)A. As before (Notation|1.5.5), we use im(q) to denote the image of the map hq.
We shall refer to im(q) as the image of q.

Throughout this work we assume, unless otherwise stated, that all transducers over ¢, .
are non-degenerate.

In what follows we outline a procedure given in [10] for constructing a transducer A4, over
Cn,r from a homeomorphism h of €, ;- such that hg, = h. We first extend the definition of the map
rt of Definition an,r and the definition of the map 0, for g a continuous function of ¢,
given in Definition to homeomorphisms of €, » and we do so in the natural way. (It is possible
to extend 04 to continuous functions on €, ,, however, as we only focus on homeomorphisms of
€n,r in this work, we have not done so.) For g € H(€y, 1) and a sequence v; € Xj, ,, 1 € N, such
that |vi| tends to infinity as i tends to infinity, 04 still retains the property that |(vi)04| tends to
infinity with i also. For A4, a transducer over ¢;, ; and q a state of A4, we again use the notation
04 for O,,. We now adjust the definition of local maps (Definition for homeomorphisms of
¢, to homeomorphisms of ¢, r.

Notation 1.5.24. Let h € H(&;, ) be a homeomorphism. Let Py, C X} , be the maximal set
satisfying the following conditions:

(1) for all v € Py, thereis an a € ¥ such that (Uy)h C Ug;

(2) if p is a proper prefix of some element of Py, then there are distinct d; and a, such that
(U hNUg, #0and (U, )hNUg, # 0.

Lemma 1.5.25. Let h € H(&y, ) be a homeomorphism. The set Py, exists and is a complete antichain for
X5,

Proof. Leta € t. As the set Uy is clopen and h is a homeomorphism, its preimage under h, (Ug)h ™!
is also clopen and so compact. Therefore, there is a minimal finite subset P, (a) C X7, ;. such that

the set {Uy | 1 € Pn(a)}is an open cover of (Ug)h~! and, for anyn € Pp(a), Uy C (Ug)h™ L

26



Minimality ensures that if u € X}, ;. is a proper prefix of an element of Py, (a), then thereisa b € i
distinct from a such that (U, )h N # (). From this we conclude that Py, (@) is an antichain since
any two elements of Py (d) must be incomparable.

For each a € i form the set P, (d) as above. Observe that for any pair 4, b of distinct elements
of t, it must be the case that Py, (a) N Py, (b) = 0. This is because for any v € Py, (d) and n € Py, (b),
we have that (Uy)h C U4 and (U,)h C Uy, therefore for any v € Py (a) andn € Pr(b) vandn
are incomparable. This means that the set Py, := Uac;Pn () is an antichain for X7, ;.. We now argue
that it is a complete antichain.

Observe that since h is a homeomorphism and Ugeilla = € v, we must have that Uges{Uy |
v € Pr,(a)}is an open cover of €y, ;. Therefore, for any T € Xj, ., either T is a prefix of some element
of Py, or some element of Py, is a prefix of 1. Hence Py, is a complete antichain for Xj, ,.. Moreover,
from this we may deduce that Py, is the maximal set satisfying the conditions|(1)land |(2)|above. [

Remark 1.5.26. Let g € H(¢y ;) and let u € XJ, ;. be a proper prefix of an element of Pgy. Then it
follows that (1)64 = e. If thas an element of Py as a prefix, then (1)64 € X ...

Definition 1.5.27. Let h € H(C, ), and let p € X?:,r- Define a map h,, : ¢, — €, UC, by
(O)hy =pford € €, and p € €, U&,,  such that (ud)h = (n)Oyp. For p € Xfm we call h, the
local action of h at .

Remark 1.5.28. For h € H(€y ;) and p € Xﬁ/r, we have the following observations about h,,
which should be compared with Remark1.5.11} Proposition|1.5.12|and Proposition[1.5.13

(a) If pis a proper prefix of an element of Py, then h, has range €, , otherwise h,, has range
Cn,

(b) h, is injective and continuous,

(c) furthermore, if v € X7, then (uv)0y, = (1)0n (V)0 . This follows, since for pvd € Uy, we
have, (uvd)h = (n)0y (vo)h,.

We now outline the procedure for constructing an infinite initial transducer which represents a
given homeomorphism of &, r.

Construction 1.5.29. Let h € H(¢, ) be a homeomorphism. Define an initial transducer,
Ae = (f,Xn,RA,SA,Ta, AA, €), Wwhere R is the set of all prefixes of elements of Py, SA = X}, ;\Ra,
and Qa, the set of states of A, is given by Qa = Ra USA = XJ, ;. The transition and output
functions obey the following rules:

(i) foralla e, ma(a,e) =aand Ap(a, ) = (a)0y;
(ii) forv € Xfm\{e}, and i€ Xy, ma (1, v) =viand Aa (1, v) = (vi)0 — (V)On.
We make the following observations:
Remark 1.5.30.

(1) Since for all v € X}, . we have (v)0y = e if v is a proper prefix of P, and (v)0y, € Xfm if vis
equal to some element of Py, it follows that the transducer A satisfies restrictions to

(R.3)
(2) In analogy with Theorem [1.5.15|and Remark [1.5.16] for § € €,, and v € X}, ., we have

ikl . . . . . n,r, . .
Aa(x,v) = (8)hy. The proot is almost identical and so we omit it. This means that A satisfies
restriction also, and so A¢ is a non-degenerate transducer whose states correspond to

the local actions of h.

Therefore, every homeomorphism of ¢, » can be represented by a transducer. We still have
some problems to address: the transducer constructed above might be one of many representing
the homeomorphism h: is there a unique minimal transducer representing h? Is there a finite one?
In the next subsection, given an initial transducer A q, which induces a continuous function hq, of
¢n or €y, we introduce several procedures for trimming off redundancies in Aqo which produce
a unique minimal transducer with induced continuous function hg, on &, or &y r.
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1.6 Minimising Transducers

In this section we demonstrate how to minimise an initial transducer. The algorithms we quote
below are taken from [30]; in [10] the authors indicate how to adapt the algorithms for transducers
over €, ». We shall omit proofs of the correctness of the algorithms, giving only an indication why
these algorithms work. For this section only we drop the standing hypothesis that all transducers
are accessible. We require the following definitions:

Definition 1.6.1. Let A4, and By, be initial transducers over ¢, or &;, r. Then A4, and By, are
said to be w-equivalent if hq, = hy,. Let g1 and g3 be states of a transducer C. Then ¢ is said to be
w-equivalent to qp if the initial transducers Cq4, and Cq, are w-equivalent.

Notation 1.6.2. Let A be a transducer, and let qy, g2 be a states of A. If q; and q; are w-equivalent
states of A we shall write q; ~, g2. We shall denote by [q1]w the w-equivalence class of q;. That

isldqilw :={q9 € Qa | 9 ~w q1}

Definition 1.6.3. Let A, be an initial transducer over ¢, ;- or &;,. Let q be a state of A, then q is
called a state of incomplete response if for some i € X, Ut we have Aa (i, q), if defined, is a proper
prefix of (i)ehq.

Definition 1.6.4. An initial accessible transducer Aq, is called minimal if it has no states of
incomplete response and no pair of w-equivalent states, otherwise we say that A g, is non-minimal.

Definition 1.6.5. A, not necessarily initial, transducer A is called weakly minimal if it has no pair of
w-equivalent states.

Definition 1.6.6. Let Aqo and By, be two minimal initial transducers over €, or &y, , with state sets
QA and Qg respectively. We say that A, and B, are isomorphic if there is a bijection b : QA — Qg
such that (qo)b = po, and, for every state ¢ € Qa, we have Aq and B, are w-equivalent. Now
let C and D be non-initial transducers such that for any state p of C and q of D the transducers C,,
and D 4 are minimal. We say that C and D are isomorphic if there is a bijection b : Q¢ — Qp such
that for every state q" € Q¢ we have C4/ and D4/, are w-equivalent.

Notation 1.6.7. Let Aq, and B}, be minimal initial transducers. We write A4, =w Bp, if Aq, is
isomorphic to Byp,.

’

The algorithms below remove inaccessible states of an initial transducer over €, or €, ;, ‘repair
the states of incomplete response by correcting the output function of the transducer, and identify
w-equivalent states. A package for GAP ([25]) is currently being developed which implements
these algorithms.

For the remainder of the section fix Aq, a, not necessarily accessible, transducer over ¢ »
or €,,. Recall Definition that for a transducer Aq, = (i, Xn,Ra,SA, A, AA) OVer Cp r,
QA = Ra USA. We minimise A 4, by successively applying the following algorithms.

M1 (Removing inaccessible states) Remove from the set of states of Ag, those which are
inaccessible from qg. This does not affect the function h 5 4"

M2 (Removing incomplete response) Given a transducer A g, over &;, or &y, -, form a new initial
transducer
Aélo = <i‘,Xn, RA, SA, TTA , A/IA, q0>

if A, is an initial transducer over €y, v, or in the case that A 4, is a transducer over &,
/ L / / /
Aq71 - <XT1/ QA/ T[A/ AAI q*1>

where q_1 is a new symbol disjoint from Qa, and Q7 := Qa LU{q_1}.

Suppose first that A, is a transducer over &y, r, then the output function of A is defined
by the following rules:

(@) fora i, A)(a,qo) = (a)eh/-\qo’
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M3

(b) and for g € Qa, q # qo, and for all i € X, we have A} (i, q) = (i)GhAq — (e)GhAq.

If Aq, is a transducer over €, then the transition and output functions of A4, are defined
by the following rules:

(@) Myl =ma and 7y (i, q—1) = A (i, qo) foralli € Xy,

(b) forallie Xn, wehave A, (i,q_1) = (i)GhAqO,

(c) forq € Qa and foralli € X, wehave A, (i,q) = (i)GhAq — (e)BhAq.

It is possible to show that h AL, = ha @ in the case that A g, is a transducer over ¢, , and in
the case that A g, is transducer over €, one can likewise show that hAé = ha 4"

(Identifying w-equivalent states) Let A4, be a transducer over &, or &y, » without states of
incomplete response. Let [Qalw :={[qlw | g € QA}J; in the case that A 4, is a transducer over
Cnr let [Ralw :=1{lqlw | g € Ra}and [SAlw ={lqlw | g € Sa}. Observe that for every state
of R there is a path into S o with output an element of X;{ , (restrictions|(R.1)}|(R.2){and(R.4)).
Since outputs of states in S are always in X}, (Remark [I.5.20), states in R are never w-
equivalent to states in S 5. From this it follows that [Qa]w = [Ralw U [SAlw. Moreover, since
qo is the only state of A 4, for which ha a@ has domain ¢, r, then [qolw = {q0}-

Form a new transducer A[,qohu = (£, Xn, [Ralw,[Salw, a7, Aa/) in the case where Ag,

is a transducer over €, r, and in the case where Ayq, is a transducer over €, Af qole =
w

(Xn, [Qalw, mar, Aa ). We describe the transition and output function first in the case where
Aq, is a transducer over ¢y, r, and then in the case where A, is a transducer over ¢,,. We
first require the following claim.

Claim 1.6.8. Let A g, be an initial transducer over €y or &y v with no states of incomplete response,
and let q1 and qy be a distinct pair of w-equivalent states of Aq,. Then, forw € X and i € Xy,

AA (W, q1) = Aa (W, q2) and 7ta (1, q1) ~w TA (1, q2).

Proof. First observe that if q; and qp satisfy Aa (W, q1) = A (W, q2) for all w € X{, then it
must be the case that 7ta (v, q1) ~w A (v, q2) for all v € Xi{. This is because for any § € €,
we may write 6 = wp for some p € €, and w € Xj, hence A (p, t(W, q1)) = Aa (p, 7T(W, q2))
as q1 ~w 2. From this it follows that 7ta (v, 1) ~w 7A (v, q2) for any v € Xii. Thus, we only
have to prove that, for allw € X}, Aa (w, q1) =Aa (W, q2).

We proceed by contradiction. Suppose for some minimal length w € X, Aa(w, q1) #
A (W, q2). Since q1 ~w (2, it must be the case that either Aa(w, q1) < Aa(w,q2) or
AA (W, q2) < Aa (W, q1). Relabelling if necessary, we assume the former inequality holds. Let
N =Ar(W,q2) —Aa (W, q1) so thatn # e. Let w = wyi for some wy € X}, and i € X;, and
let p = ma (w1, q1). Notice that p must be a state of incomplete response. This is because,
since g1 ~w g2, and Ap (W, q1) < Aa(w, q2), it must be the case that Aa (i, p)n < (i)ehp,
therefore Aa (1,p) < (i)ehp. However, this contradicts the assumption that A 4, has no states
of incomplete response. O

Now we describe the transition and output function of
A{Q(ﬂw - <i‘/ XTL/ [RA](U/ [SA] w7/ 7TA// )\A/>
in the case that A g is a transducer over &y, ;.

(a) For a € 1, we set ma/(a,[qolw) = [MA (@, qo)lw and A (a, [qolw) = Aa(a, qo). Since
[qolw = {qo} both of these maps are well defined.

(b) Fori € X, and [qlw € [Qalw, we set Ta/(i, [qlw) = [MA (L, Q)]w, and A (1, [qlw) =
Aa (i, q). By Claim both of these maps are well-defined.
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In the case that Aq, is a transducer over &, the transition and output function of A,
are given by the following rules: for i € X, and [qlw € [Qalw, we have ma/ (i, [qlw) =
[ta (i, q)]w and Aa - (i, [qlw) = AA (i, ). Once more, the transition and output functions of

Alqole are well defined by Claim

The following proposition is proved in [30] for transducers over ¢, and, with very little change,
was adapted for transducers over €, , in the author’s article [[10]:

Proposition 1.6.9. Let A g, be an initial transducer over &y, or €y » and let By, be the result after applying

the procedures and [M3|in order, then, up to isomorphism, By, is the unique minimal transducer
w-equivalent to Aq,.

Definition 1.6.10. We shall call the procedure which takes as an input an initial transducer A,

then applies in order and [M3]to return a minimal transducer By, w-equivalent to A, the
minimisation procedure.

We illustrate the minimization procedure with an example.

Example 1.6.11. Let A4, be the initial transducer shown below:

011 @ 0|1

11| | 0/0

0l0 G 1/0 q 1|0 q m
90 ) 2

Figure 1.8: A non-minimal initial transducer A 4, over ¢y

We now apply the minimisation procedure to Aq,. Firstly, observe that A, is an accessible
transducer, therefore does not change A q,. Secondly, observe that all states of A are states of
incomplete response. For instance, consider the state state q3: (0)6y, = 10 however A(0, q3) = 1.

We now apply The resulting transducer, Aq_, is as shown below:

00

qz 11

Figure 1.9: Resulting transducer A4 _, after applyingto Aqo
Lastly, we apply to obtain the minimal transducer By, depicted below.
0[0
wor (")
1j001
11

Figure 1.10: Resulting transducer By, after minimising.
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We have the following lemma about initial transducers constructed from homeomorphisms
of €, r or €,,. We state the lemma simultaneously for transducers over €,; and transducers over
Cn,r, we distinguish between the two readings using square brackets. For example we write: ‘Let
h € &, [h € &y r]and let A g, be an initial transducer over &y, [€y, ;] representing...” for the two
distinct sentences: ‘Let h € €, and let A4, be an initial transducer over ¢, representing...” and
‘Leth € €y, and let Aqo be an initial transducer over ¢,  representing...” We will often make
use of this convention to avoid repetition.

Lemma 1.6.12. Let h € H(€n) [h € H(€n)] and Ac = (Xn,Qa,7a,AA) [Ae =
(£, Xn,RASA, A, AA)] be an initial transducer representing h given by Construction [1.5.14
[Construction(1.5.29)]. The transducer A is accessible and has no states of incomplete response.

Proof. Leth € H(¢) [h € €, ] and a € X, [a € Xu,r]. By construction of the output function,
we have A (a, qg) = (a)0y,. Recall Remark [1.5.16 [Remark[1.5.30] asserting the equality ha, = h,
from this we see that ¢ is not a state of incomplete response.

Now let i € Xy and let v € X{ [v € Xj ;]. Once again by construction we have,
AA(i,v) = (vi)0y, — (v)On. By Proposition|1.5.13|[Remark|1.5.28|part|(c)| we have (vi)0y — (V)0 =
(V)Oh(1)0n, — (V)Bh = (1)0n,. However, by Remark[1.5.16 [Rema we have, ha, = hy
and so v is not a state of incomplete response.

That A is accessible follows by construction of the transition function 7 . O

A consequence of the lemma above is the following fundamental result which was proved first
in [30] for h € H(€, ) and then adapted by the authors of [10] for h € €4, .

Theorem 1.6.13. Let h € H(€y ) UH(Cy) such that the set of local actions of h is finite, then there is a
finite minimal initial transducer A q, such that hAqo =h.

Proof. Let A¢ be the transducer representing h given by Constructions [1.5.14] and [1.5.29] By
Lemma A is accessible and has no states of incomplete response therefore, in order to
minimize A q,, it suffices to apply only the process

Let By, be the resulting transducer. Since h has only finitely many local actions and all the
states of A corresponds to a local action of h, it follows that A has finitely many w-equivalence
classes. From this we deduce that the transducer B, has only finitely many states. Now, as By, is
w-equivalent to A the result follows.

Let
Rn:={h € H(C) | h=hp a0 for A, a finite initial transducer}

and
Rnr={heH(€ ) h=ha a0 for A, a finite initial transducer}.

Definition 1.6.14. We call an element h € H(&,,) UH(&y +) which is an element of Ry, or Ry, @
rational homeomorphism

Remark 1.6.15. We observe that R, ; and Ry, are equal, thus we make the identification R, 1 = Rn.

In the next section we shall demonstrate that both Ry, and R, ;- are groups under the operation
of composition of functions.

1.7 The groups R,, and R,

In this section we show that the sets R, and Ry, ; are groups under composition of functions. To
demonstrate this fact, we define a multiplication of initial transducers such that the resulting initial
transducer induces a map on Cantor space equal to the composition of the functions induced
by the original two transducers. We shall then see that for given finite, initial transducers, the
result of this multiplication is a finite transducer. From this we will deduce that R, and R, ; are
closed under composition of functions which is an associative product. We then give an algorithm
which constructs, given a transducer inducing a homeomorphism on the relevant Cantor space, a
transducer which induces the inverse homeomorphism called the inverse transducer. As it turns
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out, if the original initial transducer is finite, then its inverse is also finite. Since the identity

homeomorphism, which has a finite set of local actions, is an element of Ry, and Ry, , we deduce

from the previous points that both R, and Ry, » are subgroups of H(¢,,) and H(&, ) respectively.
We begin by first describing how to multiply (initial) transducers.

1.7.1 Multiplying Transducers

In this section we outline the algorithm in Section 2.3 of [30] for multiplying transducers. We then
observe that the initial transducer arising from applying this multiplication algorithm to two given
initial transducers induces a function on Cantor space equal to the composition of the functions
induced by the original two transducers.

We first describe how to multiply two arbitrary (not necessarily reduced or initial) transducers
such that the output alphabet of the first is equal to the input alphabet of the second. We then go
on to describe how to modify this procedure for transducers over €y, ;.

Let A = (X,Y,QaA,ma,Aa) and B = (Y,Z,Qp, 7, A\g) be transducers. We define the
product of A and B to be the transducer, A «B = (X,Z,Qa.B,TA«B, M) Where the set
Qass =1{p,q) | p € Qa,q € Qp}is the set of states of A x B, and the transition and output
functions of A x B are as follows: for (p, q) € Qa.p and x € X, the transition and output functions
satisfy,

TaxB (% (P, q)) = (ma (X, P), B (AA (X, D), q)) (1.8)
}\A*B(X/ (pr q)) :)\B (}\A(X/p)/ q) (19)
Definition 1.7.1. Let A = (X,Y,Qa,7a,Aa) and B = (Y, Z,Qg, g, Ap) be transducers. Let
AxB = (X,Z, QaxB,TaxB, MxB) be the transducer with state set Qa.p = Qa X Qp and

transition and output functions satisfying equations [(1.8)] and [(1.9)} We call A « B the product
transducer of A and B. If pg is a state of A, and q is a state of B, then we define the product of the
initial transducers A and B, to be the initial transducer (A * B)(

qo,Po)"

Definition 1.7.2. Let A, = (X, Y, QA,7a,AA) and By, = (Y, Z, Qp, 7B, Ag) be initial transducers.
Let A and B be the underlying transducers of Ay, and B, respectively. We call the product A * B
the full product transducer of A q, and B q,. We shall omit the word ‘full” when it is clear that A and B
are not initial.

We have the following lemma:

Lemma 1.7.3. Let A = (X,Y,Qa,7ta,An) and B = (Y, Z,Qpg,ntg,Ag) be transducers. Let A x B
be the product transducer of A and B. Then, for w € X* and for any state (p, q) of A * B, we have:
Aas (W, (p, q)) = Ag(Aa (W, p), q) and mta.g (W, (p, ) = (mta (W, p), g (AA (W, P), q)).

Proof. We proceed by induction. For w = X LI {e} the lemma holds by Equations|(1.8)|and |(1.9)|and
the convention that the output when the empty word is read from any state of a transducer is the

empty word.
Therefore, for m € IN; we assume that the lemma holds for all words of length m in X*. Let

x € X,w € X™ and (p, q) be any state of A x B. Let (p1, q1) := A« (W, (p, q)). By equation|(1.3.2)
We have:

A/A*B (WX/ (p/ q)) = AA*B (WI (p/ q))AA*B (X/ (pll ql)) and/
Tia«B (WX, (P, q)) = TasB (X, (P1, d1)) = (A (X, P1), B (AA (X, P1), 41)).

By the inductive assumption, Aa«g (W, (p,q)) = Ap(Aa(w,p),q) and ma.s (W, (p,q)) =
(WA(W/p)/TfB ()\A(er)r Q)) Hence,

A« (WX, (p,q)) = AB(AA (W, P), @)AB(AA (X, P1),q1) and, (1.10)
TaxB (WX, (P, q)) = (A (Wx, p), i (AA (WX, P), q)). (1.11)

Equation demonstrates that 7a .5 (WX, (p, q)) = (A (Wx, p), g (AA (WX, P), q)) as required.
We now focus on Equation[1.10]
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Observe that Ag (A (wx, p), q) is equal to Ag (A (W, p)Aa (x, p1), q) by Equations[(1.2)} [(1.3.2)
and the inductive assumption on ma.g. We can further break this up (again by

Equations[(T.2)|[(1.3.2)} [(I.8)|and the inductive assumption on 1A .g) to get:

AB ()\A (lep)/ q) = )\B (}\A (W/P)}\A (X/ pl)/ q) = )\B ()\A (W/p)/ q)}\B ()\A (X/Pl)/ ql)
Hence we conclude that:
AA*B (WX/ (p/ q)) = )\B ()\A (erp)/ q)
as required. O
The lemma above may be viewed pictorially. Let A = (X,Y, Qa7a,Aa) and B(Y, Z, Qg7g, Ap)

be transducers with pg a state of A and ¢ a state of B. Let w = wy...wy be a word in X,
Figure indicates how the word w is processed through the state (po, qo) of A * B:

wilwy Ty

3
(O—

wn W},

OO
;\

Figure 1.11: Reading a word through a state in the product transducer.

Lemmaindicates that instead of reading each letter w; of w, for 1 < 1 < n, successively
through the states (pi, qi), we may also read the entire word w through the state p, then read the
output from this process through the state qg as pictured above.

As a corollary of Lemma [1.7.3|we have the following:

Lemma 1.7.4. Let A = (X,Y,Qa,7a,Aa) and B = (Y, Z,Qp, 7g, Ap) be transducers. Let py and qo
be states of A and B respectively, and hy, and hq, be the continuous functions induced by the initial
transducers Ay, and Bq,. We have, h(po,qo) = hyp, o hq, where h is the continuous function
induced by the initial transducer (A * B) 1 q0)-

Proof. This follows by Lemma and the definition (Notation[1.5.3) of the functions hq for Cq
an initial transducer. O

Po.d0)

Lemma demonstrates that for two non-degenerate initial transducers A, and Bg,, the

resulting initial transducer (A x B) (5, 4,) is also non-degenerate.

Remark 1.7.5. The transducer product defined above is not associative. However, given three
transducers A,B and C, and states pg, qo, and tg of A, B, and C respectively, Lemma m
demonstrates that ((A x B) * C)((p,,qo),t,) 18 w-equivalent to the initial transducer (A x (B *
C) (Po,(qo,to)) since composition of functions is associative.
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In order to make an associative product on initial transducers, we tweak the transducer product
slightly. Let Ap, = (X,Y,Qa,ma,AA) and Bq, = (Y, Z,Qg, 7B, Ap) be initial transducers, we
define the product of the initial transducers Ay, and Bg, to be the minimal transducer ABp, q,)
representing the transducer (A * B)p ,q,- By uniqueness of the minimal transducer (up to
isomorphism), we see that this product is now an associative product of initial transducers.

Notation 1.7.6. Let A,,; = (X,Y,Qa,7a,AA) and Bg, = (Y, Z, Q, 7B, Ag) be initial transducers.

We denote by AB the minimal initial transducer w-equivalent to (A x B)

(Po,90) Po,90)"

We need to be a little careful, in extending this definition to initial transducers over ¢, ,, that
the resulting initial transducer still satisfies all of the conditions to We recall that a
transducer over ¢, , is called non-degenerate if it satisfies the restrictions to We also
recall that we only consider non-degenerate transducers; however, from now until the end of this
section we shall make the non-degeneracy assumption explicitly as we have not yet verified that
the product transducer is also non-degenerate. We proceed by first constructing the product of two
initial transducers over €, ;, then we verify that the resulting initial transducer is non-degenerate.
We recall the convention (see Section[1.3) that whenever we read the empty word from a state of
a transducer we remain in the same state and the output is empty. We begin with the following
definition.

Definition 1.7.7. Let A, = (i, Xn,Ra,SA, A, AA) be an initial, non-degenerate transducer over
Cn,r. Set ORA to be the subset of Ra consisting of those states p for which there is some i € Xy,
such that Ax (i,p) € X{{ ;.

Let Ap, = (i, Xn,Ra,SA,7A,AA) and By, = (&, Xn,Rp,Sg,7,AR) be two initial, non-
degenerate transducers over €, . Let (A x B)(po,qo) = (£, Xn,RA+«B,SA«B,TA«B, M «B) be an
initial transducer such that

() Raxs = {(0RA U{po}) x {qo U{[RA\(ORA U{po})] x Re}LI{SA x (Re\{qo})},
(11) SA*B = SA x Sg.

The transition function 7a.p and output function Aa.p of (A x B),
following rules: for a €  we have,

po,qo) are defined by the

TiasB(a, (Po, q0)) = (A (@, o), B (AA (@, Do), q0)) (1.12)
AaxB(a, (Po,q0)) = A (Aa(a, o), qo0); (1.13)

forie Xn and (p, q) € {Ra\{po} X Rg}U{SA x Rg}we have:

a8 (1 (P, q)) = (ma (L, p), B (AA (1, D), 9)) (1.14)
)\A*B(i/ (P/ q)) - )\B(}\A(i/p)/ q) (115)

By definition of the transition function, it is clear that (po, qo) is the only state from which the
transducer reads a symbol from i. Furthermore, we also observe that with very little adjustment
to the proof of Lemma one way prove the following analogous lemma for the transducer

(A B)(pquO):

Lemma 1.7.8. Let A, = (i, Xn,Ra,SA,mA,AA) and Bg, = (i, Xn,Rp,Sg, 7, AB) be initial,
non-degenerate transducers over €nx and (A * B)(p, q,) be as above. For w € X} . UX}, and for
appropriate states (q,p) of A * B such that Aa.g(w, (q,p)) and ta.s(w, (q,p)) are deﬁned we have:
AasxB(W, (q,P)) =Ag(Aa (W, q),p) and Tta.g (W, (q,P)) = (TtA (W, q), B (AA (W, q), P)).

We now verify that s . and Aa . satisfy the restrictions|(R.1)|to|(R.4)|in the following lemma.

Lemma 1.7.9. Let Ay, = (t,Xn,RA,SA, A, AA) and Bq, = (&, Xn,RB,SB,nB,AB> be initial, non-
degenerate transducers over €n r. The transducer (A x B) (t, X1, RA+B, SA+B, TTA+B, AA+B)
with transition and outputfunctzons as defined in equatzons il 125L (1.14)| [(1.13)|and [(1.15)] satisfies the

restrictions|[(R.1)|to[(R.4)
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Proof. We take the restrictions one at a time.

(R.1) Let (p,q) € Rasp and i € ¥U Xy, such that 7ta .5 (1, (p, q)) is well-defined and is an element
of RA*B‘

Suppose that a5 (i, (p, q)) = (p2, q2). Observe that by definition of the set R ,g we must
have q2 € Rg. Letw =Aa (1,p) € Xj r UXS,.

If w = €, then by convention we have Ag (w, q) = e and so Aa .5 (i, (P, q)) = €.

If w € X;{ ,, then it must be the case that p € 0RA. Therefore, we have q = qg and 75 (w, q)
and Ag(w, q) are defined. Since 7tg (w, q) € Rp, it follows that Ag (w, q) = € (Restriction|(R.1)
applied to Bg,). Hence, we have Aa .8 (i, (p, q)) = €.

If w € X{t, then p € Sa by|(R.2) applied to A. Therefore, q € Rg\{qo} and 75 (w, q) and
AB (W, q) are defined. Since g (w, q) = q2 € R, we must have Ag (w, q) = e by|(R.1)|applied
to Bp,.

(R.2) Let(p,q) € Rasp and i € ¥U Xy, such that a5 (1, (p, q)) is well-defined and is an element of
Sax«B- From the last condition, we deduce that p € 0R5 and so q = qg by definition of R 5.
Now, by restriction m applied to Ap,, we must have w := Aa(i,p) € X\ .. However,
since B, satisfies restriction|(R.2)land |(R.1)} and since 7tg (W, qo) € S, we must also have
AB (W, qo) S X'r+1,r'

(R3) Let (p,q) € Sas«p and i € X, then the fact that ma.g(i, (p,q)) € Sas«p and
AaxB (1, (p, q))Inn(X}, ) follows from the definition of the transition function and since A,

and B g, satisfy restriction [(R.3)]

(R4) Let (p,q) € Qa.p and w € X;| . LUX{ be such that wa g (w, (p, q)) is well-defined and equal
to (p,q). By Lemma we must have ma (w, p) = p and so, since A is non-degenerate,
we conclude that A5 (w, p) # € and p € Sa which further implies that A5 (w, p) is in fact in
Xit. Moreover, mtg (A (W, ), q) = q and we once more deduce, since B is non-degenerate,
that g € Sg and Ag (Aa (W, P), q) € X;.. Therefore by Lemma once again, we have that
AaxB (W, (p,q)) # €. This gives the result.

O

Thus, we have now verified that for Ap,, = (&, Xn,Ra,SA,mA,AA) and By, =
I, Xn, Rg, Sg, 718, Ag ) non-degenerate, initial transducers over &, ., the transducer
g ,

(A% B)(pg,q0) = (t Xn, RAxB, SA«B, TAB, AA«B)

with transition and output functions as defined by equations[(1.12)} [(1.14)} [(1.13)]and [(1.15)] is also
a non-degenerate initial transducer.
We make the following definition:

Definition 1.7.10. Let Ap, = (£, Xn,Ra,SA, A, AA) and By, = (&, Xn,Rp, Sg, 7B, Ag) be non-
degenerate, initial transducers over ¢, . The transducer

(A B)(pg,q0) = (B Xn, RAxB, SA«B, TAB, AA«B)

with transition and output function as defined in equations|(1.12)} |(1.14)}((1.13)|and |(1.15)} is called
the product transducer of Ap, and Bg,.

With very little change to the proof of Lemma one may prove the following analogous
lemma for transducers over €, ;:

Lemma1.7.11. Let Ap = (i, Xnn, Ra,SA, A, AA) and B, = (t, Xn, R, S, 7tg, Ap) be non-degenerate

initial transducers. Let hy, and hq, be the continuous functions induced by the initial transducers Ap, and

1(3 XO, é/\)/e have, h = hp,hq, where by q,) is the continuous function induced the initial transducer
*

(

Po.90)
Po.90)"
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The transducer product defined above for transducers over ¢, , is not associative, however,
we may once more make use of Lemmaf(l.7.11} as in the case of transducers over €, to obtain
an associative product in the same way. Thus, we define the product of non-degenerate initial

transducers Ap, and Bg, to be the minimal transducer AB representing the transducer

(pO/qO)

Po.qo)*

Notation 1.7.12. Let A}, and B, be non-degenerate initial transducers over €, .. We denote by
(A *B)(pg,qo) the transducer product of Ay and Bq,, whilst we denote by AB, 4y the minimal

initial transducer w-equivalent to (A * B) (po,qo)- We also write A2 for the transducer (AA) (Popo)-

More generally, for i € INp, we write Al for the minimal transducer representing the product of

the initial transducer A, with itself i tlmes

For two finite, non-degenerate, initial transducers Ay, and B, over &, [€;, ], by construction,
the minimal transducer AB(;, 4,) representing the transducer product of Ay, with Bq, is also
finite. We therefore have the following proposition:

Proposition 1.7.13. The sets R, Rn,» C H(Cy) are closed under composition of functions.

Proof. This follows since, by definition, all elements of R, and Ry, » can be represented by finite,
initial, non-degenerate transducers over ¢, and ¢, , respectively and, by the observation above,
the composition of two such elements can also be represented by a finite, initial transducer over
CnorChr. ]

We close this section with some examples.

Example 1.7.14. We compute the product of the initial transducer from Figure[L.5|with itself. We
denote this transducer by A 4, and reproduce it below for convenience.

010

00
111

Figure 1.12: Figure[1.5|revisited

lle 0l0

We now form the product (A x A) (g, q5)-
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Figure 1.13: The transducer (A x A) (g, q3)

Observe that the transducer A (g, 4,) has (g1, q1) as a state of incomplete response and also has
some inaccessible states. In order to compute AA (4, 4,) we need to apply procedures and
After applying[M1]and [M2|we obtain the transducer below:

0l0
0|0
1)1 00
0lo 111
11

11

Figure 1.14: Resulting transducer after applyingM2jto (A x A) 4, qs)

After applying we see that AA (g, 4,) is the single state identity transducer. Thus the
homeomorphism hq, € Ry, has order 2.

In the next subsection we show that R, and Ry, » are closed under inverses and so conclude
that they are subgroups of the group of homeomorphisms of €, and &, ; respectively.

1.7.2 Inverting transducers

In this section we give an algorithm for inverting transducers over ¢, » or ¢, which induce
homeomorphisms. As a consequence of this algorithm, we will see that the inverse of a finite
transducer over ¢, ; or €, which induces a homeomorphism, is again a finite transducer. From
this we will conclude that both R;, ;- and Ry, are closed under products and inverses. Since R, and
Rn,r both contain the identity transducer, we will thus have demonstrated that they are subgroups
of H(€,) and H(Cy +) respectively. The algorithm we produce here is based on that given in [30].
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Following the structure of previous sections, we first give the algorithm for transducers over ¢;,
and then show how to modify it for transducers over €y, . Recall (see Section[L.5) in what follows
that for any homeomorphism h of Cantor space, there is a unique, up to isomorphism, possibly
infinite transducer representing h. We begin with a definition of the inverse of a transducer.

Definition 1.7.15. Let Aq, be a transducer such that hq, induces a homeomorphism of ¢, or €, ;.
Let By, be the minimal transducer such that h,, = haol Then we call By, the inverse transducer of
A q, or just the inverse of A q,.

Definition 1.7.16. Let A4, be a transducer over €, or &;, . Then we say that A is invertible if
hg, is @ homeomorphism.

Let Aq, = (Xn, Qa,TA,AA) be a transducer representing a homeomorphism hg, of €. We
have the following proposition about the states of A .

Proposition 1.7.17. Let A, be a transducer which induces a homeomorphism of €. Let q be any state of
QA, then hq is injective and im(q) is clopen.

Proof. Injectivity follows from the fact that hq, is a homeomorphism. For let q be a state of A 4, and
let v € X3, be such that ta (v, qg) = g. If there are distinct §,1 € €, such that A5 (5, q) =Aa (1, q)
then we must have that A (v8, qg) = Aa (¥7, qo) contradicting the injectivity of hg,.

Fixing still v € Xj;, such that a (v, qo) = q, we argue that im(q) is clopen. Since hq,
is a homeomorphism, it maps clopen sets to clopen sets. Thus, the set (Uy)hg, is clopen.
Let 1 = Aa(Vv,qo), and observe that (Uy)hgq, = pim(q). Recall from Definition that
wim(q) ={up | p € im(q)}. Now, since p im(q) is clopen, it follows that im(q) is also clopen. O

Definition 1.7.18. Let Aqo be a transducer such that hq,isa homeomorphism of €,,,let g € QA
andn € X3,. Define (n)0q = ((Un)hal)rt.

Remark 1.7.19. Let A4, be a transducer such that hq, is a homeomorphism of &;,. Observe that
forn € X3, M)y is the longest common prefix of all elements p € &, such that (p)hq € Uy.
Moreover, (€)©4 = € for any state g € Qa, since Ue = €.

We have the following lemma:

Lemma 1.7.20. Let A, be a finite transducer such that hq, induces a homeomorphism of €n,. Let g € Qa,
then there are only finitely many words v € X, such that Uy N im(q) # e and (v)Oq = €.

Proof. For each state q of A let Bq C X}, be minimal such that, for all v € B4, Uy C im(q), and
U(B4) ={Uy | v € Bq}is a finite cover by basic open sets of im(q). Since im(q) is clopen for any
state g € Qa, such a set exists. For q € Qa let mq = max{|v|| v € Bq} and M = maxqeq{mq}-

Observe that as A 4, is assumed to be non-degenerate and has only finitely many states, there is
aj € IN; such that for any word y € X}, and any state ¢ € Qa, A (v, q)| = M.

Fix a state q of Ag, and lety Xhandi€ Xn. Letv=2Aa(i,q),p =ma(i,q) andn = Ax (v, p).
Observe that as n| > M, we must have U,; C im(p), since there is a prefix of n which is an element
of Bp. Moreover, as q is injective, (vn)®4 must have prefix i, since if there a word & € X}, and a
letter j € X, such that Aa (&, q) has vn as a prefix, then (U;jz Jhgq C (Ui Jhg.

Since y € X}, was arbitrary, it follows that the set Iqg:={AA(l,q) [T € XL} C X! is such that
U(Ig) ={Uy | u € Igq}is a cover for im(q), moreover, by the previous paragraph, for any u € I
we have, (W)@q # €. O

Thus, given a finite transducer A4, = (XnQAa, A, AA), for every state g € Q A, it is possible
to compute the set Sq = {wy, wa,..., wm} of all words w; € X7 such that Uy, N im(q) # € and
(Wi)Bq =e.

We now construct the inverse transducer of A ;. The states of the inverse transducer will be
given as a finite subset of X}, X QA.

Construction 1.7.21. First we recursively construct the set of states Q/, of the inverse of Ay,. Let
Q’[1] :={(e, qo)} and observe that Ue = im(qo) (as qo is a homeomorphism). For k € INy, set

Q'k+1] :={(Wi—Aa((Wi)Oq, q), A ((W1)Oq, q)) | 1 € Xn, (W, q) € Q'[KI}UQ'[K].
We have the following claim about the sets Q’[k].
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Claim 1.7.22. Let k € Ny, then, for all (w, q) € Q'[k] we have, U,, C im(q) and (W)Bq = €.

Proof. We proceed by induction on k. For k = 1 this follows by the definition of the set Q'[1].
Assume that the claim holds for the set Q’[k]. We now show that it holds for the set Q[k + 1].

Let (w,q) € Qlk] and i € Xy. Since U,, C im(q), we must have that (Wi)Oq satisfies
AA((Wi)Bg, q) is a prefix of wi. Since if Aa (Wi)Bgq, q) = wip for some p € X}, then there is some
@ € Xi{ incomparable with p such that Ui, ¢ im(q). Thus wi—Ax ((wi)Ogq, q) is well defined.
Letp = ma((Wi)Ogq, q) and let v = wi— A ((Wi)@g, q). Observe that since U,,; € im(q), we
must have that U, C im(p). Furthermore, since 7ta ((Wi)®q, q) = p, then (v)©, = € otherwise
(Wi)8q = (Wi)Oq(v)Bp # (Wi)By.

Now as

Q'k+1] :={(wi—=2AaA((Wi)®, q), MA ((W1)O, q) | i € Xn, (W, q) € Q'[KI}UQ'[K]

it follows, by the inductive assumption and the arguments of the previous paragraph, that Q' [k +1]
satisfies the claim also. O

Remark 1.7.23. As part of the proof above, we demonstrated that for k € Ny, (w, q) in Q’[k] and
i€ Xn, Aa((Wi)@g, q) is a prefix of wi. Therefore, wi —Aa ((Wi)@g, q) is well defined.

Since A g, has finitely many states, by Lemma it follows that there is a j € IN7 such that
Q'lll = Q'+ 1] and |Q'[j]| < oo. Set Q7 := Q’jl.

Let Ae,q0) = (Xn, Q T, A ) be a transducer with transition and output functions obeying
the following rules: for i € X and (w, q) € Q},

A (L, (W, q)) = (Wi—Aa((Wi)Oq, q)) and A/ (i, (w, q)) = (Wi)Oq.
By construction, 71;\ :Q ,/L\ —-Q /’L\ and Aq, isa finite transducer. This concludes the construction.

Let Aq, be a transducer inducing a homeomorphism of ¢,, we have the following
observation about the transducer A (¢ q,) = (Xn, Q/4,7a, A/ ) constructed from A 4, by following
Construction[1.7.21

Lemma 1.7.24. Let (w,q) € Qh andn € X, then A, (n, (w, q)) = (Wn)Ogq, and 7w\ (n, (w, q)) =
(Wwn —Aq((wn)®g, q), A ((Wn)Byq, q).

Proof. We proceed by induction on the length of the word n. For n = € the lemma follows by
Claim [1.7.22|and the definition of the transition function 71;\. We assume, for m € N1, that the
lemma holds for all words 1 € X}, of length m.
Letn € X' and i € Xy. By Equation we have:
Aa (i, (w,q)) =AM, (W, q))AR (4, ma (0, (W, q)).

Letv =wn—Aa((wn)Bq, q) and let p = 1A ((Wn)Byq, q). By the inductive assumption,

Ap M, (w, @)A1, th (n, (W, q))) = (Wn)OgAA (L, (v, p)).
Thus,
Aa (M, (W, Q)AR (1, 7tx (n, (W, q))) = (Wn)Oq (vi)Op.

Let u = (wWwn)@q. By the inductive assumption on 7, v = wn — A (n, q), and ma (1, q) = p.
Therefore, (Wni)@q = pu(vi)®, since the greatest common prefix of all elements of ¢, with image
in the set Uyyy, is i, and v =wn —Aa (1, q).

Now consider 7a (ni, (w, q)). Using Equation [(1.2)| we may have:

T (i, (W, q)) = ma (i, (v, p)) = (vi—AA((vi)Op, p), A ((vi)Op, P)).

Observe that

using (Wni)@q = u(vi)®, and Equation ((1.3.2)| Thus,

wii—Aa (1, Q)AL ((VI)Op, p) = vi—AA((V)Oyp, p).
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Moreover,
A ((Wwni)Oq, q) = A (L(Vi)Op, q) = TtA (VI)Op, P).
Thus,

T (L, (W, q)) = (Vi—AaA((VD)Op, p), A ((V)Op, p)) = (Wwni—Aa((Wni)Oq, q), A ((WNi)Oq, q))
as required. O

Remark 1.7.25. Let A, be a finite transducer such that hq, induces a homeomorphism of ¢, and
let A (¢ q,) be the transducer constructed from A 4, using Construction The lemma above
and Lemma demonstrate that the transducer A o) is non-degenerate. Moreover, for any
word v € X}, we have, A, (v, (e, qp)) = (v)Ogq,. Therefore, for any word 6 € ¢,, we must have,
AL (8, (e,q0)) = (6)hg01. This proves the proposition below.

Proposition 1.7.26. Let Aq, be a transducer such that hq, induces a homeomorphism of €, and let

A (e,qq) be the transducer constructed from A g, by Construction(1.7.21f Then h = hgol.

€,90 €/q0]

Henceforth, given a transducer Aq, over &, we shall denote by A (¢ q,) the transducer
constructed from Aq, by Construction [1.7.21} The inverse of A, is the transducer obtained
by minimising the transducer A . However, the following proposition demonstrates that
A

€,q0)

¢,qo) 18 not far from being minimal.

Proposition 1.7.27. Let A, be a transducer such that hq, induces a homeomorphism of €. The initial

transducer A (¢ q,) has no states of incomplete response and is accessible.

Proof. We proceed by contradiction. Suppose A ¢ q,) has a state (w, p) of incomplete response. This
means that there is some i € Xy, such that A (i, (w,p)) is a prefix of (1)0(w,p) (for the definition of
0, see Deﬁnition). Let (v, q) = 7 (i, (W, p)), then, for all j € Xn, A/, (j, (v, q)) has a non-empty
prefix. However, for j € Xn, A4 (5, (v, q)) = (vj)Ogq, thus (v)@4 # € which is a contradiction by
Claim[1.7.22]

That A4, is accessible follows by construction (see Construction [1.7.21]. O

Therefore, given A 4, a transducer such that hg, induces a homeomorphism of ¢y, in order to
minimise A ¢ q,) We only need to apply step of the minimization procedure.

We now demonstrate how to alter the above process to account for transducers over €y, ..

Let Aq, = (£, Xn,Ra,SA, Qa, A, Aa) be a transducer over €, . Trivial modifications to the
proof of Proposition demonstrate that states of Aq,. (Recall from Definition|1.5.17)that some
states of A 4, have range ¢, ; and other have range ¢;,.) We extend the definition of the function ©®
as follows:

() ®aqp : Xy = Xp by m e+ ((Un)hglrt
(ii) for q € Ra\{do}, ©q : X}, — X5 by n = ((Un)hg )rt;

(iii) for g € Sa, ©q : X5, — Xjy by n — ((n)hgh)rt.

The following lemma is analogous to Lemma|1.7.20|and is proved almost identically using the
fact that states of A, are injective and have clopen image.

Lemma 1.7.28. Let Aq, be a finite transducer such that hq, induces a homeomorphism of &y r. Let
q € Ra [q € SAl then there are only finitely many words v € X3, . [v € X\ ] such that Uy N im(q) # €
and (v)BOq = €.

It follows from this lemma that, as in the case of transducers over ¢, given a transducer A 4,
inducing a homeomorphism of ¢, ,, for every state q € Q A it is possible to compute the finite set
Sq = {wl,...,wmq} of words such that U,,; N im(q) # € and (w;)Bq = € for 1 <i < my.

We now describe how to construct the inverse of a transducer A 4, inducing a homeomorphism
of €y . This will mirror construction[1.7.21}

40



Construction 1.7.29. We begin with the recursive construction of the set of states of the inverse
transducer. Let Q[0] :={(e, qo)}, for k € INg set

Q'k+1] :={ (Wi—Aa((Wi)Bq, q), A ((W1)Oq, q))
| (w,q) € Q'kl,i € Xpnifw#¢; ifw=eand q € Ra, thenici}uQ’[K].

The following claim should be compared with Claim [1.7.22}
Claim 1.7.30. Let k € Ny, then, for all (w, q) € Q'[k] we have,
(i) ifw=ethenq=qoporqeSa,
(ii) Uy C im(q),
(iii) (W)Oq = € and,
(iv) fori e Xn A €tifw =€) Aa((Wi)Og, q) is a prefix of wi.

Proof. We only prove that (€, q) € Q’[k] when q = qg or q € Sa since the rest of the proof follows
almost exactly as in the proof of Claim We proceed by induction on k. The case k = 1
is trivially satisfied since Q’[1] = {(€, qo)}. Assume that the statement holds for k € IN; and let
(w,q) € Q'[k].

First suppose that w # €. Leti € Xy, and suppose that wi —Aa ((Wwi)®q,q) = €. This
means that A ((Wi)@gq, q) # €. Thus by restrictions and on A4, we must have that
A ((Wi)Oyq, q) € Sa. Hence the pair (Wi —Aa (Wi)Og, q), ma ((Wi)Oq, q)) € Q’[k + 1] satisfies|(i)

Next suppose that w = e. By the inductive hypothesis q = qg or q € SA. We take each subcase
in turn.

If q € Sa then, for i € Xy, by restriction[[R.3)on A4, we have A (W)@, q) € Sa. Therefore,
the pair (Wi —Aa ((Wi)Bq, q), A (Wi)Oq, q)) € Q' [k + 1] satisfies|(i)

We now suppose that q = qo. For a € #if Aa ((a)@g,, qo) = a then by restrictions|(R.2)]and [(R.T)]
we must have A ((a)®q,, qo) € Sa. Therefore, the pair (a —Aa ((a)®q,, qo), A ((a)Oq,, qo)) €
Q'[k + 1] satisfies|(i)

Now by definition of the set Q’[k + 1] and the inductive assumption, we see that Q'[k + 1]
satisfies[()| O

Since A g, has only finitely many states, Lemma [1.7.28| guarantees that there is some j € Ny
such that Q’[j] = Q’[j + 1] and |Q[jI| < oo. Set Q4 = Q'[j.

Observe that if (Wi)Oq, # €, then a ((Wi)®q,, qo) # qo, this follows by restriction|(R.4)l Thus
set

Sa={w,q) | (w,q) € Qa,q # qo} and set R, := QA \Sh.

By Claim[1.7.30} if (w, q) € Q) satisfies q € Sx and w = ¢, then q = qo. Moreover, if (w, q) € R)
then q = qp by definition.

We may now construct the transducer A ¢ q,)-

Let A(¢,q,) = (T, Xn, R\, Sh, 1, Ny ) be the transducer with transition and output functions
obeying the following rules:

(i) for a € i we have
mala, (e,q0))) = (a—Aa((a)®gy, o), A ((a)Og,, qo)) and Aa (g, (€, qo)) = (@)Oqy;
(ii) forie€ Xn and (w, q) € Qa\{(€e, qo)} we have
7t (Wi, q) = (Wi—AA((W)Oq, q), A (Wi)Og, q)) and Aj (Wi, q) = (Wi)O,
(observe that if w = € then q € Sa by Claimso (1)©4 is well-defined).

We have the following claim for the transducer A (¢ 4,)-

Claim 1.7.31. The transducer A q,) satisfies restrictions[[R.T)|to
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Proof. We take each in turn.

(R.1) Let (w,qo) € Rj. Observe that, by Claim ifw = ethenq = qp. Leta € t
and suppose 7, (a, (€, qo)) € Ri. If (a)@q, # €, then, since 7/ (a,(€,qg)) € Ry, we
must have ma((a )®q0,q0) = qo. However, by restriction |(R.1) m )| for Agq,, this means

Aa((a)®qq,qo) = €, since qo € Ra. This contradicts restriction [[R.4)] on Ag,. Thus,
(a)®q, =€, ma((a)®q,, qo) = qo and 7 (a, (€, qo)) = (a, qo).
Now we consider the case that (w, qp) € R}, and w # €. By Clalmmpartm 1t must be
the case that w € X} |, since im(qo) = Cn,r. Let i € Xy and suppose 7 (i, (W, qo)) € R}.
If (Wi)@q, # €, then, since 7/, (i, (W, qo)) € R we must have ma ((Wi)Og,, qo) = qo-
However, by restriction for Ag,, this means Aa ((Wi)©gq,, qo) = €. This contradicts
restriction on Ag,. Therefore, we conclude that (Wi)@q, = €, A ((Wi)Oq,, q0) = qo
and 7 (1, (w, qo)) = (wi, qo)-

(R.2) Let (w, qo) € R/, and let i be an element of Xy LI Xy » such that 7, (i, (W, qo)) is well defined
and is an element of S/, . This means that 7a ((Wi)©g,, qo) € Sa and so is not equal to qo,
therefore, we must have (Wi)®q, # €. Hence, (Wi)Qq, € XIJ since hq, has domain and
range equal to €, » and we conclude that A, (i, (w, qo)) # e.

(R.3) This follows by definition of the transition function 7/, , the fact that A 4, is a non-degenerate
transducer over &;, » and the fact that for all ¢ € R4 U S such that g # Qq, hq is an injective
map with domain ¢;,.

(R4) Let (w, q) € Q) be any state and let i € Xy, LI X, be such that 7t (i, (w, q)) is well-defined.
Suppose that 7, (i, (W, q)) = (w, q). This means that 7wa (Wi)©q, q) = q. If, furthermore,
(Wi)@q = ¢, then 7}, (i, (W, q)) = (Wi, q) # (w, q) a contradiction. Therefore we must have
(Wi)®q # € as required.

O

Therefore we conclude that A ) is a non-degenerate transducer. We have the following
claim.

Claim 1.7.32. Let (w,q) € Q) and letn € X5, then Ay (n, (w, q)) = (wn)@gq, and 1, (n, (w, q)) =
(Wwn —Aq((wn)Ogq, q), A (WN)Bq, q)).

The proof is similar to the proof of Claim[1.7.32|and so we omit it.
From Claim|1.7.32} it follows that h(¢ 4,) = hy, - This concludes the construction.

Notation 1.7.33. Let Aq, be a transducer inducing a homeomorphism of &, ., we denoteby A (¢ 4)

the transducer arising from Construction[T.7.29 The inverse transducer of A, is the minimal

transducer obtained by minimising A (¢ q,), and we denote it by A a5 We use the symbol Q 5 1

for the states of A gl T for the transition function of A ! and A 5 -1 for the output function of
do do

Aq_1 In the case that A, is a transducer over ¢, ;, we use the notation S -1 and R, -1 for the

disjoint subsets of Qo such that Q -1 =S5-1 UR4 -1 and Aq o= = (£, Xn,Rp-1,50-1,Ta-1,A 1)

satisfies restrictions[(R.T)| to[(R.4)}

As with transducers over &, (Proposition [1.7.27), the transducer A, q,) has no states of
incomplete response.

Proposition 1.7.34. Let Aq, be a transducer over €y, +, then A has no states of incomplete response.

€,qo)

This proposition is proved in a similar way to Proposition and so we omit its proof here.
Constructions [1.7.21|and [1.7.29| together with subsequent results demonstrate the following:

Proposition 1.7.35. The sets Ry, and Ry, are closed under inverses.

Since the identity homeomorphism over €, and €, ;- is an element off R, and R,  respectively,
we have the following result:
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Theorem 1.7.36. The monoids Ry, and Rn, » are subgroups of the groups H(€y ) and H(Cy ) respectively.

Notation 1.7.37. We use the symbol id to represent both the single state identity transducer
inducing the identity element of the group R, and the two state identity transducer inducing the
identity element of Ry, r. We also sometimes use this symbol for the identity element of a group,
however, whenever we do so, it will be clear from the context which point of view is being taken.

Remark 1.7.38. We use the term rational group to refer to the groups R and Ry, and specify
which group we are referring to whenever it is unclear from the context. We should perhaps
mention that, for distinct n, m € IN», the groups R, and R, are isomorphic ([30]). Furthermore
the group Ry, + is isomorphic to Ry, it is however more natural to work in the group Ry » when
discussing the automorphisms of the groups G, as will be seen in Chapter 2}

We close this section with some examples.
First we compute the inverse of a synchronous transducer A 4, inducing a homeomorphism of
Chor€p .

Example 1.7.39. Let Ay, = (Xn, Qa, A, AA) be a possibly infinite synchronous transducer such
that hq, induces a homeomorphism of &;,. Observe that this means, for each state ¢ € Q A, the map
AA (s, q) : Xn — Xy is a permutation. Therefore, each state q of A, induces a homeomorphism
hg : €n — &,. For g € QAa let us denote by g the permutation Aa (., q) : Xiu = Xn. We now
show that the set of states Q) of the inverse transducer A (¢ q,) = (Xn, Q474 ,AR) is precisely
the set{(e,q) | g € Qa}. We also demonstrate that the transition and output functions 7%, and
Ay of A(e q,) satisfy, i (1, (€,q))) = (e,p) and A, (i, (¢,q)) = j if and only if A (j, q) = p and
AA (], q) =1

We begin with the set of states Q/, . First we make the following observation: let q € Qa, for
i€ Xn, wehave (1)9q = (1)g—!. This is because A (, q) : Xn — X, is the permutation g, thus
AA((1)Bq, q) = 1. Thus, we have (1 —Aa ((1)Oq, q), A ((1)Oq, q)) = (€, A ((1)Oq, q)). It therefore
follows, by induction and Construction that Q, :={(e,q) [ q € Qal

Now let (e,q) € Qr, i€ Xpandj = (i)g L. Observe that A (i, (e,q)) = (1)®4 = j. Moreover,
i (i, (€,q)) = (e,ma(j, q)). This demonstrates the relation stated above for the transition and
output functions 7, Ay of A(¢ q,)-

If A g, is an invertible synchronous transducer over €, ; then we deduce, by similar arguments,
that A (¢ q,) has state set Q) := {(e,q) | g € Qa}. Moreover for a,b € i and p € Qa we have,
mh(a,(e,q0)) = (e,p) and A'(q, (€, qg)) = b if and only if A (b, qo) = p and Aa (b, qo) = a; for
i,j € Xpand q,p € Qa\{qo} we have, 7/ (i, (e,q)) = (e,p) and A'(i, (¢,q)) = j if and only if
A (3, q) =pandAa(j, q) =1i

We may deduce a few things about invertible synchronous transducers over ¢, or ¢,  from
Example(1.7.39, these constitute the remark below.

Remark 1.7.40. Let Ay, be a minimal invertible synchronous transducer, then the following
statements are true:

(1.) Aq, has no states of incomplete response since every state q of A, induces a permutation
A(s,q) : Xn = XnorAa(.,q):t—t

(2.) If Aq, is minimal then A 4, is minimal.
(3) 1QAl=1QA]
(4.) If Aq, is a transducer over &y, » then Ry = {qo}.

(5.) For q € QA, the composition of the permutations A (., )A}, (-, (€, q)) is the identity map on
ior Xy.

The following definition arises since every state of an invertible synchronous transducer induces
a self-homeomorphism on the appropriate Cantor space €y, or €y, ;. First we recall Notation [1.3.9]
that, for an initial transducer A q,, we denote by A the transducer A 4, with no state initialised i.e
A is the underlying transducer.
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Definition 1.7.41. Let A 4, be a synchronous transducer over €y, or &;, » with no inaccessible states
and let A be the underlying transducer of A q,. Then we say that A is invertible if and only if A 4, is
invertible. In this case we write A~ ! for the inverse of A.

Notation 1.7.42. Let Ay, be a synchronous transducer over &;, or €, , with underlying transducer
A. For each state ¢ € Q we denote by q—! the state (e, qg) of A~!. We thus write Aq—l for the
0

inverse transducer A q,)- We use the symbol Q' for the set of states of A g1 TA-1 for the
0

€,90
transition function of A arl and A 4 -1 for the output function of A a The map from QA to Q;l
0 0

sending a state q to the state q~! is a bijection, thus we set (q~!)~! = q. We also extend this

notation for the underlying transducer A~! of Aaol.

In the next example, we compute the inverse of an asynchronous transducer A 4, inducing a
homeomorphism of €,,.

Example 1.7.43. We compute the inverse of the transducer in Figure|1.5|(we reproduce it below
for convenience). Let us once more denote this transducer by A ;.

0|10

1le 010
0|0

111

Figure 1.15: Example of an asynchronous transducer with initial state q3

In Example[1.7.14)we showed that this transducer induces a homeomorphism of €, of order
two. Thus, we expect that the minimal transducer representing the inverse of A4,, A g1 to satisfy
3

the equality: A a5 = Agqs- The reader may verify that A ¢ ,) is the transducer below:

0/10
176 00
0/0
111
(1,q1) (e, q3) 11

Figure 1.16: The inverse transducer of A g,

Thus since A

¢,q3) =w Aq, we therefore have Ayt o Aegs) Fw Ags:

A natural question one may ask at this stage is: given an invertible minimal transducer A 4,
over €y or €y y, is it true that [A__1| = |A4,[? We have seen in Example [1.7.39| that this equality
7 q 0

holds for synchronous transducers, however the example below demonstrates that in general this
question has a negative answer.



Example 1.7.44. Consider the transducer A 4, over €3> below.

01
N ili, 212 @
e ¢ — qo0
" 1le NN
1/10 0010 0010
Ole
1|0 cD 011
1/1010
1le
Ole

(=

Figure 1.17: A transducer whose inverse has strictly more states

This transducer is minimal since it has no states of incomplete response and no pair of w-
equivalent states. Moreover, the initial transducer A, induces a homeomorphism of ¢;. In
particular, since state qg acts as the identity on the symbols 3 ={i,2,3}, it follows that the state
(e,qo) also acts as the identity on the set 3 and transitions to the state (e, c) after reading these
symbols. Therefore it suffices to show that A1 has strictly more states than A..

We leave it to the reader to verify that A 1 is the transducer given below.

011

11010
Cfl Cs

Ole 1le
1/11010
O==
0/110 00

Figure 1.18: The inverse transducer of A has strictly more states

We should point out that the transducer A ¢ ), constructed from A, using Construction
has 11 states. Thus it is also not true, in general, that for a minimal transducer By, the inverse
transducer B ;) is minimal. While these examples have been computed by hand, they have
also been verified with the GAP package ”"aaa” for working with asynchronous transducers being
developed by Collin Bleak, Fernando Flores-Brito, Plamena Minerva, the author and Angela
Richardson.

In the next chapter we introduce the subgroups of R, and Ry » we shall primarily be concerned
with. These subgroups may be characterised combinatorially by imposing restrictions on the
transducers representing their elements.
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Chapter 2

Subgroups of R, and Ry, ¢

The rational group Ry, and the closely related group R were introduced in the papers [30]
and [10]. In the paper [30] the authors demonstrate that the isomorphism class of the group Rn
is independent of n, however we shall not require that fact here. These groups are of current
topical interest in the research community: many important families of groups are subgroups of
the rational group. Furthermore, as elements of R, and R, are homeomorphisms induced by
finite transducers, this gives rise to nice representations of elements of those groups which embed
as subgroups of R, and R . For instance, although the groups R, and Ry, ;- are not finitely
generated ([30], [5]) it is still possible to decide when a finite product results in the identity element
by using the algorithm for multiplication in Chapter|l| Thus, in any finitely generated subgroup of
the rational group it is possible to decide whether or not a finite products in the generators results
in the trivial element of the group. If the subgroup in question is in fact finitely presented, the
decision problem just stated is known as the word problem, and has been shown to be insoluble in
general by Novikov [43] and independently by Boone [11]. However, by finding embeddings of a
finitely presented group into Ry, or Ry, » one can immediately conclude that the group in question
has soluble word problem.

This chapter shall be primarily devoted to showing that the group R, and Ry, contain as
subgroups the Higman-Thompson groups G, » and their automorphism group Aut(Gy ). Finally,
we shall focus in on a particular subgroup I, of the quotient Out(Gn ) = Aut(Gn,+)/Inn(Gn )
of the automorphism group by the inner automorphisms. In the next chapter, we show that this
group coincides exactly with a well-known and well-studied group in symbolic dynamics, namely,
the group of automorphisms of the one-sided shift dynamical system.

We begin by defining a property & of transducers. We then observe that the set of all transducers
with property § forms a monoid. However, when we restrict to those elements of R, and Ry »
with property § whose inverses also have property 8§, the corresponding sets yield subgroups
By and By . We then demonstrate that the groups Gn,r and Aut(Gn ) are subgroups of By, +.
A consequence of this is a nice characterisation in terms of transducers of Out(G, ). We close
by homing in on a specific subgroup H;, of Out(Gn +), showing that this group is isomorphic to
the group of automorphisms of the one-sided shift dynamical system. We shall intersperse the
discussion with various consequences of the property § wherever it is appropriate to do so.

2.1 The synchronizing property

We now define the property 8 for an arbitrary automaton, we then extend to it to transducers by
making use of the underlying automaton of a transducer.

Definition 2.1.1 (Synchronizing, [10]). An automaton A = (X, Qa,7A) is said to be synchronizing
at level m or synchronizing if there a natural number m and a map fm, : X™ — QA such that for all
w e X™and q € Qa we have, ma (w, q) = (W)fm. We call m the synchronizing level of A, and fy,
the synchronizing map at level m or a synchronizing map. If A is synchronizing at level 1 we shall also
refer to it as a reset automaton.
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Remark 2.1.2. If A is an automaton synchronizing at level m, the definition above can be
interpreted as follows: whenever the automaton processes a word of length m the new active state
is independent of the initial state. An automaton is synchronizing at level 0 if and only if it has a
single state. Observe that if A is a synchronizing automaton, then, for any state q of A, the initial
automaton A is also synchronizing.

Definition 2.1.3. Let A = (X, Qa, A ) be an automaton. A word w € X* is called a synchronizing
word if the map ma (w,.) : Qa — QA takes only one value.

Definition 2.1.4. Let A = (X, QA, 7ta) be an automaton, and U C X%. A base for A over U is a finite
set . C X* consisting entirely of synchronizing words such that every element of U has a prefix in

.

Remark 2.1.5. Let A be the single state automaton over X. For a subset U C X, we refer to a base
of A over U simply as a base for L. For a subset U of €,,, a base .# for U is simply a subset of X},
such that every element of U has a prefix in .

Lemma 2.1.6. Let A = (X, Qa, A ) be an automaton, U C X and .7 be a base for A over U. There is a
j € IN such that the set of all finite prefixes of elements of U of length j consists entirely of synchronizing
words for A. This implies that A is synchronizing if and only if there is a base for A over X< (the forward
implication follows from the definition of synchronization).

Proof. Let A, U and .7 be as in the statement of the lemma Take j = max[v| | v € .. Then the set
prefixes of elements of U of length j, must have a prefix in .. Since appending a finite suffix to
a synchronizing word, results in a synchronizing word and since, by definition, .7 consists only
of synchronizing words, it follows that the set of all finite prefixes of elements of U of length j
consists entirely of synchronizing words for A.

For the second part of the lemma, we observe that if A is synchronizing at length k, for some
k € N, then the set of all words of length k is a base for A over X. The ‘only if’ direction is a
consequence of the first part of the lemma. O

Remark 2.1.7. Observe that if A is a synchronizing automata then, by definition, A has only finitely
many states.

Remark 2.1.8. There is weaker notion of synchronizing automata which occurs in the literature
concerning the Cerny Conjecture and the road colouring problem, as for instance in the articles
[54] and [53]. In this definition a transducer is synchronizing if there is at least one word which
is a synchronizing word for the automaton. In this work we use the word ‘synchronizing’ as an
adjective to describe an automaton to mean precisely what is stated in Definition 2.1.1}

Notation 2.1.9. Let A = (X, Qa, A ) be an automaton which is synchronizing at level m with f,
the synchronizing map at level m. For w € X™, we denote by q, the state (W)f, and say that q.,
is the state of A forced by w.

Remark 2.1.10. Let A = (X, Qa, A ) be an automaton which is synchronizing at level m with fy,,
the synchronizing map at level m. Observe that for any k € Ny, A is also synchronizing at level k.
This is because after processing a word of length k from any state of A, the resulting state depends
only on the length m suffix of the word. This implies that there is a minimal synchronizing level
for A. Let j € N be the minimal synchronizing level of A, then, we denote by f the synchronizing
map f; and call f the synchronizing map of A. Clearly, for my > m; > j, the image sets of the
synchronizing maps fm, and fn, coincide.

Definition 2.1.11. Let A := (X,QA,7A) be an automata which is synchronizing at level m
with f, the synchronizing map at level m. Let im(fy) = {(W)fm | w € X™} C Qa. Set
Core(A) = (X, im(fm),ﬂA[im(fm)>, the subautomaton of A with state set im(f,,). We call

Core(A) the core of A and, if A = Core(A) we say that A is core.

Remark 2.1.12. It follows from Remark[2.1.10|that the definition of the core of a synchronizing
automaton is independent of which synchronizing map is used.

We have the following proposition about Core(A):
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Proposition 2.1.13. Let A := (X, Qa, 7ta ) be an automaton which is synchronizing at level m and fm
the synchronizing map at level m. We have:

(i) foranyie Xand q € im(fm), ma (i, q) € im(fm),
(ii) Core(A) is a strongly connected subautomaton of A.

Proof. We begin with the first point. Let q € im(f ). By definition of the map f,, there is a word
w € X™ such that q = q. Leti € X, and let W be such that w = wyw for wy € X. Consider the
word Wi € X™. For any state p € Qa, A (Wi, p) = 7a (i, qw) (by rule[(1.2)). Thus, it must be the
case that for any state p’ € Qa 7a (Wi, p’) = 7a (1, qw ). Therefore, since wi € X™, we conclude
that (Wi)fm = 7a (i, qw)-

The second part follows from the definition of a synchronizing automata, since for any state g
of Core(A), there is a word w € X™ such that g, = q. O

We now extend the definition to transducers over €,, and €, .. We begin with transducers over
Ch.

Definition 2.1.14. Let T = (Xy, Qt, 71, A1) be a transducer over Xy, then T is said to be
synchronizing if the underlying automaton A(T) is synchronizing. If m € IN is a synchronizing
level of A(T), we say that T is synchronizing at level m and we call m a synchronizing level of T. The
synchronizing map at level m of T is precisely the synchronizing map at level m of A(T) and the
synchronizing map of T is the synchronizing map of A(T).

Definition 2.1.15. Let T = (X, QT, 7t1, A1) be a transducer over X,,. A word w € Xj; is called a
synchronizing word for T if and only if it is a synchronizing word of A(T). Given a subset U C ¢, a
subset . of X7, is called a base for T over U if it is a base for A(T) over U. As in Remark if Tis
a single state transducer, then we shall simply refer to .# as a base for U.

Notice that if T is a synchronizing transducer over Xy, then, for any state q of T, the initial
transducer Ty is also synchronizing.

Definition 2.1.16. Let T = (Xn, QT, 71, A1) be a synchronizing transducer over X;, and let f be the
synchronizing map of T. Set Core(T) := (Xn, im(f), rr | im(f)” ATl im(f)> be the subtransducer of
T consisting of the states of Core(A(T)). We call Core(T) the core of T; if T = Core(T), we say that
T is core.

We now extend the definition to transducers over ¢, . First we set up some further notation.

Notation 2.1.17. Let Tq, = (i, Xn, R, ST, 77, A7) be an initial transducer over ¢y, . Recall

(Definition|1.5.17) that Q1 = Ry U St. Set A(T)\{qo} := (Xn, QT\{qo}, 7rT) the automata consisting
of all the states of T without the initial state q.

Definition 2.1.18. Let Tq, = (&, Xn, RT, ST, 71, A7) be an initial transducer over €, ;, then Ty, is
said to be synchronizing at level m if and only if A(T)\{qo} is synchronizing at level m — 1. In this
case call m the synchronizing level of Tq,. If T, is synchronizing at level m for some m € INj, then
we say that Ty is synchronizing.

Remark 2.1.19. Let Tq, = (&, Xn, RT, ST, 71T, AT) be an initial transducer over &;, ». Observe that
by restrictionwe must have, for any a € t, 71 (a, o) # qo. Thus, as letters from i can only be
processed at qg, the synchronizing property really depends on the states of Q1\qo. Therefore, it
makes sense to set the synchronizing level of a transducer Tq, over &;, ; to be m precisely when
A(T)\{qo} is synchronizing at level m — 1.

Definition 2.1.20. Let Ty, = (¥, Xy, RT, ST, 711, AT) be a transducer over €, . A word aw € X:{,r,
for a € i, is called a synchronizing word for Tq, if and only if w is a synchronizing word of A(T)\{qo}-
Given a subset U C €y, +, a subset . of X}, . is called a base for Tq, over U if it consists entirely of
synchronizing words and every element of U has a prefix in .#. If Tq, has only two states, then we
call the set .7 a base for L.
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Definition 2.1.21. Let Tq, = (&, Xn, R1,ST,77,AT) be an initial transducer over €, ; which is
synchronizing at level m + 1. Let gy, and g, +1 be the synchronizing maps at level m and m + 1,
respectively, of A(T). Define a map g, : Xr“f,r“ — Q7 by (aw)gy,, = (W)gm where a € i and
w € X Let f 1 : XL UXIMH — Q be such that fi, 4 q [xms1 =G and fin 1 [yme1 = gm1-

We call fp, 1 the synchronizing map at level m + 1 of Tq, or a synchronizing map of Tq,. For j the
minimal synchronizing level of Tq,, we denote by f the map f;, and we call it the synchronizing map

of Tqp-
The following remark is essentially a consequence of Remark|2.1.19

Remark 2.1.22. Let Tgq, = (&, Xn,R7, ST, 71, AT) be an initial transducer over &, which is
synchronizing at level m, let fi, be the synchronizing map at level m of Tq, and w € X,
then 7tr(w, qo) = (W)fm.

Notation 2.1.23. Let Tq, = (i, Xn, Ry, QT,71,AT) be an initial transducer over &, » which is
synchronizing at level m. Let f;,, be the synchronizing map at level m of Tq, and w € XJ'. UXTT,
then we denote by g,y the state (W), and say q, is the state of Tq, forced by w.

Definition 2.1.24. Let Ty, = (&, Xn, RT, Q1, 717, AT) be an initial transducer over &, » which is

synchronizing at level m. Let fy,, : X7, U X" — Q7 be the synchronizing map at level m of T,

and im(fy) = {(W)fm | w e X' LX) Set Core(Tq,) := (Xn, im(f),nT[im(f),Aﬂim(f)> the
subtransducer of Tq, generated by stated in im(f,). We call Core(Tq,) the core of Tg,,.

Remark 2.1.25. Let Tgq, = (&, Xn,R1, ST, 701, AT) be an initial transducer over &, which is
synchronizing. We have the following:

(i) For my and my greater than the minimal synchronizing level of Ty, the synchronizing maps
fm, and fi, of Tq, at levels m; and my respectively, satisfy, im(f,) = im(f,). Therefore,
the definition of Core(Tg,) is independent of the synchronizing map used to define it.

(ii) By restriction|(R.1), we must have Core(Tq,) € Q1\{qo}.
(iii) As in Proposition[2.1.13, Core(T) is a strongly-connected subtransducer of Tg,.
Below we give examples of synchronizing transducers.

Definition 2.1.26. Let T, be an initial transducer over &, or € ; which is synchronizing, then
Tq, is said to have trivial core if Core(Tq,) = id.

Example 2.1.27. Let T, be the transducer below:

01,112

1/1,012 0121, 120

2|1

Figure 2.1: bi-synchronizing transducer

The reader can verify that T, is synchronizing at level 3.
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Example 2.1.28. The transducers Ag, and A. -1 in Example [1.7.44] are both synchronizing
transducers. Thus the initial transducer A., where c is the state of the transducer Ag, in
Example1.7.44) is such that both A, and A ! are synchronizing.

Definition 2.1.29. Let Tq, be a synchronizing transducer such that hq, € Ry U Ry v, If haol can be
represented by a synchronizing transducer then we say that Ty, is bi-synchronizing; we say that
Tq, is bi-synchronizing at level k if Tq, and the minimal transducer T, o representing the inverse of

Tq, are synchronizing at level k. The minimal bi-synchronizing level of Tq, is therefore the minimal
integer k such that Tq, and Tq0_1 are both synchronizing at level k. If T is an invertible synchronous

transducer, such T~ is synchronizing then we say that T is bi-synchronizing.

The transducers A and Ag, of Example are both examples of bi-synchronizing
transducers.

The following Proposition demonstrates that the property of being synchronizing is unaffected
by the minimisation procedure.

Proposition 2.1.30 ([10]). Let Ay, be a synchronizing transducer over €y, v or €. Let By be the minimal
transducer representing A q,. Then By, is synchronizing and has minimal synchronizing level less than or
equal to the minimal synchronizing level of A q.

Proof. Let Aq, be a synchronizing transducer over &, or €, ;. Clearly removing inaccessible states
of Agq, does not affect the transition function of A. Thus if By, is the resulting transducer after
removing inaccessible states from A4, then By, will also be synchronizing. Moreover, the minimal
synchronizing level of By, is less than or equal to the minimal synchronizing level of A g

Let B, , be the transducer obtained from By, by applying procedure Observe that the
set of states Qg of B af , can be written as Qg = Qp L'{q—1} where q_; is a symbol distinct from
Qp . Moreover, mg/[q, =7 and mg/[(q ;3 = 7B [{q,)- Thus, B(’L1 is synchronizing with minimal
synchronizing level equal to the minimal synchronizing level ot A.

Finally let B [,:Lﬂ be the transducer obtained from B, | by applying procedure The states

of B” are the w-equivalence classes of states of B/, moreover the transition function is defined by
nign(a,[q]) = [mg/(a, q)] for a € Xy r U X}, such that g~ (a, [q]) is defined. Thus, it follows that
B fail] is also synchronizing and has minimal synchronizing level less than or equal to the minimal

synchronizing level of 867 e O

Notation 2.1.31. Let By, ;- [B,] denote the set of all elements of Ry, [Rn,] which can be represented

by bi-synchronizing transducers. Let Bn,r [Bn] be the set of all elements of Ry, » [Rn] which can
be represented by synchronizing transducers.

The following proposition demonstrates that the product of two synchronizing transducers
over ¢, or ¢, is again a synchronizing transducer.

Proposition 2.1.32 ([10]). Let Aq,, Bp, be synchronizing transducers over € or &y v. Then the product

AB (p,qq) 1S also synchronizing.

Proof. First assume that A, = (Xn, QA,7a,AA) and By = (X, Qp, 7tg, A) are transducers over
¢ with minimal synchronizing level j and k respectively.
Since Ag, and By, are non-degenerate transducers, there is a minimal M € IN; such

that j < M and, for all w € XT’\L/l and any state ¢ € Qa, Aa(w,q)] > k. Let wy € X 1,
wy € XT’\LA, qw, be the state of Aq, forced by wy and qw, = qw,w, be the state of Aq, forced
by wy. Now let (q,p) be an arbitrary pair in Qa x Qg. By assumption on M, the length
of wy, we have: [Ax (w2, qw,)l = k. Therefore, let v := Aa (w2, qw,) and p, be the state of
Bp, forced by v. Since Ap (wiwy,q) = Aa (W1, q)AA (W2, gw, ), then Aa(wiwn,q) has a v as a
suffix. Thus, wa.B(W1W2, (q,P)) = (dw;wy, Pv). Since wiwy € XTI\{l and (q,p) € Qa x Qp were
chosen arbitrarily, it follows that (A * B) (g, p,) i synchronizing at level M. It follows from
Proposition[2.1.30|that AB}, 4,) is also synchronizing.

Now let Aq, = (i, Xn,Ra,SA, A, AA) and By, = (t, Xn, Rp, S, 7B, Ap) be initial transducers
over ¢,y r. Let j+ 1 and k + 1 be the minimal synchronizing levels of A, and By, respectively.
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By Definition [2.1.18] and Proposition 2.1.30} it suffices to show that the automaton A((A *
B) (qo,p0)) \{(P0, o)} is synchronizing, where (A * B)( is the transducer product of A, with

qOLet M € Nj be such that for any word w € XM and any state q # qo of Aq, we have,
AaA(W,q)l =k+1. Letwy € X}, wy € XTALA, and let (q,p) € Qa * Qp be such that (q,p) # (qo,Po)-
Let qw, and qw,w, be the states of A(Aq,)\{qo} forced by w; and wyw, respectively, and let
Vv = Aa (W2, qw, ). Now as [v| > k +1, let p,, be the state of By, forced by v. Thus, as before,
we have ma.g(W1w2, (q,P)) = (qwyw,, TB(AA (W1, )V, P)) = (qw;w,, Pv). Since the choices of
wiwy € XEM and (q,p) € Qa * Qp\{(qo, po)} were arbitrary, (A * B)(po/qo) is synchronizing, and
so AB is synchronizing as well. O

Po,90)

(pO/qO)

Notice that if Aqo and By, above are synchronous, synchronizing transducers over €, ;- or €y,
with j the minimal synchronizing level of A 4, and k the minimal synchronizing level of B, then
we may take M in the proof above to be k. Thus as a corollary of Proposition[2.1.32|we have:

Proposition 2.1.33. Let Aq, and By, be synchronizing, synchronous transducers over &y, or €y 1. Let
j,k € IN be such that the minimal synchronizing levels of Aq, and Bq, are j and k respectively, then
the minimal synchronizing level of AB is at most j +k if hqy, hp, € Bn and at most j +k + 1 if

hq hpy € Brre

(Po.do)

We thus have the following result:

Theorem 2.1.34 ([[10]). The sets @n,r and %n are monoids with the multiplication inherited from Ry +
and Ry, respectively; the sets By and By, are subgroups of Rn + and Ry, respectively.

Proof. The second statement follows from the first, since by definition the sets B, » and B, are
closed under taking inverses. Thus we focus only on the first statement of the theorem.

That the product is associative on 371 +and Bn follows from the fact that it is associative on
Rn,r and Ry, respectively. Notice that the single-state identity transducer over ¢, is synchronizing
at level 0 and the two state identity transducer over €y r is synchronizing at level 1. Thus the

identity element of R, and Ry, are in the sets B and Bn r respectively. The closure of the product
follows by Proposition[2.1.32} O

The subgroups of Ry, and Ry, that this thesis is concerned with are in fact subgroups of By, »
and By, though at times we consider submonoids of @n,r and @n. It is therefore sensible at this
stage to discuss how one might detect if an arbitrary element of R, or Ry, is an element of B
or %n. This forms the content of the next section.

2.2 Detecting membership of %m [ B,]in Rnr [ Rl

In this subsection we present an algorithm for detecting when an arbitrary finite automata is
synchronizing (see Definition and which, moreover, returns the minimal synchronizing level
of the automata. As a transducer is synchronizing if the underlying automata of the transducer is
synchronizing, we thus are also able to detect when an arbitrary finite transducer is synchronizing.
Since elements of Ry and R, are precisely those homeomorphisms of ¢, » and €, respectively,
which can be represented by finite initial transducers, we therefore have a way of determining
when an arbitrary element of R, (Rp,+) is an element of %n,r (%n) By applying this algorithm
to the inverse of a given transducer, we may also detect when an arbitrary element of Ry, (Rn )
is an element of By, » (Bn). The method we present below is one of several possible that may be
used to detect when a transducer is synchronizing. For instance one can use a pumping lemma
like argument since there are finitely many states. We conclude the section by considering some
examples and non-examples and by presenting some other checks for detecting whether an element
of Ry, is synchronizing or not.

Observe that the restriction to transducers with finitely many states is not really a loss of
generality. This is because by Remark [2.1.7]a synchronizing transducer has only finitely many
states, thus a transducer with infinitely many states cannot be synchronizing.
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We now state the algorithm for checking if a finite automata is synchronizing. First we require
the following construction.

Construction 2.2.1 (Collapsing procedure). Let A = (X, Qa,7a) be a finite automaton. For each
state g € QA let [q] be the set of states p € Qa such that the functions 7 (., p) : X — QA and
Al q) : X = Qa are equal. Let Qa, := {[q] | ¢ € Qa} and observe that Q A, is a partition
of Qa. Form a new automaton A; = (X,QAa,,7a,) Where, for i € X and [q] € Qa,, we set
A, (i, [(ﬂ) = [ﬂAl (i, q)]

Remark 2.2.2. Let A be an automaton and let A; be the automaton resulting from applying the
collapsing procedure to A as above. If |A;| = |A|, we must have A; = A. This is because, for a state
q of A, the state [q] of Ay is the set{q}.

Let A = (X, Qa, A ) be an automaton. Form a sequence (A;)icN of automata where Ag = A
and such that, for j € N1, Aj = (X, Qa;, Ta;) is the result of applying the collapsing procedure to
the automaton A;_;. The set of states Q A of A;j is a partition of Q Aj 4 the set of states of A;_;.
Since Qa, is a partition of Q 4, then, by induction, the set Q A of states of Aj corresponds to a
partition P(Q Aj) of Qa. Thus for j € IN;, we identify the states of A; with the elements of this
partition so that states of Q; correspond to subsets of Qa. For g € Qa and j € N we fix the
notation [q]; for the state of Q; containing q; if j =0, set [q]o := q. By definition of the collapsing
procedure, for j € IN, and distinct states [p]; and [q]; of Aj, [pl;11 = [qlj41 if and only if the
functions 7 A (+ [pl;) and 7t A (+, [ql;) are equal. In particular we have the following claim:

Claim 2.2.3. Forx € Xand q € Qa, A, (x,[qlj) = [ma(x, q)l;.

Proof. We proceed by induction. By construction the claim holds for A;. Let k € IN; and assume
that the claim holds for A; forall1 < i < k. Let x € X and [q]k be a state of Ay. Observe that
gl ={p € Qa I A, , (Y, [Plk—1) = ma,_,(y,[qlk—1) for ally € X}. However by the inductive
assumption we have: [qlx ={p € Qa | [mA(y,P)lk—1 = [mA (Y, @)lk—1}. Thus for any p € [q] and
any y € X, we have [1ta (y, q)lx = [ma (y, p)lk since [7a (Y, p)lk—1 = [TA (Y, q)k-1- O

Whenever we have an automaton A and a sequence (A;)icn of automata with Ay = A and
such that each subsequent term of the sequence is obtained from the previous one by applying
the collapsing procedure, we shall identify, as above, the set Q A of states of A;j with a partition
of Qa and elements of Q A; with subsets of Q 5. Further observe thatifi,j € IN and i < j, then
|Ail > |Ajl. Thus the sequence (A;)ic is eventually constant.

We have the following result.

Lemma 2.2.4. Let A = (X,Qa, A ) be an automaton and (Ay)icN be the sequence such that Ag = A
and each subsequent term is the automaton resulting from applying the collapsing procedure to the previous
one. Let p,q € Qa, then [pli = [ql; in Ay for some i € N if and only if for all words T’ € Xt
mA (T, p) = 7a(T, q).

Proof. We proceed by induction on i. Let i = 0 and p, q be states of A such that [ply = [qly. Since
Ay = A, we have p = q. Moreover, for any s,t € QA such that 7wa (e,s) = ma (€, t) then since
s=1al(€,s)and t = wa (€, t), we conclude that s = t. This establishes the base case.

Assume that for k € IN7 and for all 1 < k, i € N, the statement of the lemma holds.

Let p,q € Qa be such that [pl = [q]x. Let T € X*~! and x € X be arbitrary. Since [pl} = [qlx,
by construction of the Collapsing procedure it follows that for all y € X, [ma(y,p)lk—1 =
[tA (Y, q)lk—1. Thusif p’ := A (x,p) and q’ := A (X, q), then we must have, [p'lx_1 = [q']}_1-
Therefore by the inductive assumption we have, ta (I', p’) = ma (', q’), from this it follows that
7ia (XTI, p) = A (XT, q). Since x € X and T € X* were arbitrary, we conclude that the functions
7ia(s,p): XK = XX and A (o, q) : X* — XK are equal.

Now let p,q € Qa be such that the functions 7ta (., p) : X* — X¥ and ma (., q) : Xk — Xk
are equal. Let x € Xk be arbitrary, and p’ = ma (x,p) and q’ = ma(x,q). Observe that the
functions 7ta (., p’) : X¥°1 = X*¥Tand ma (., q’) : XK1 — Xk 1 are equal since the functions
7ia(s,p) : XK = X¥and ma (., q) : xX*71 = xX* 1 are equal. Thus by the inductive assumption
for k — 1 we have that [p'lx—1 = [q']x—_1. Therefore as x € X was arbitrary, we have that for all
ye X, ma, (Y, Iplk—1) = ma, ,(y,[qlx—1), and so [plx = [qlk as required.

O
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We may restate the lemma above as follows:

Lemma 2.2.5. Let A = (X,QAa, A ) be an automaton and (A;)icN be the sequence such that Ag = A
and each subsequent term is the automaton resulting from applying the collapsing procedure to the previous
one. Let p,q € Qa, then [ply # [qli in A4 for some i € IN if and only if there is a word & € X* such that

ﬂA(é/p) 7é ﬂA(é/ q)

As a consequence of this lemma we have the following theorem characterising when a finite
automaton is synchronizing.

Theorem 2.2.6. Let A = (X, Qa, 7t ) be an automaton. Form the sequence (A;)ieN where Ag = A and
each subsequent term of the sequence is the result of applying the collapsing procedure to the preceding term.
Let k be minimal such that |Ay| = |Ax 1|, then A is synchronizing if and only if Ay consists only of a
single state. Moreover, if k is minimal such that |Ay| = 1, then k is the minimal synchronizing level of A.

Proof. Observe that for all | € Ny we have Ay = Ay by Remark[2.2.2 Thus if |Ay| # 1, then
|A1| # 1 for any 1 € Ny. Therefore for any j € Ny_1, there is a pair of states q,p € QA such that
[qlj+1 # [plj+1 and so, by Lemma@ for any j € Ny there is a word & € X)*! and states
P, q € QA such that ma (8, q) # 7; (5, p). From this we conclude that A is not synchronizing.
Now suppose that |Ay| = 1 then by Lemma[2.2.4 we have that for any pair p, q € QA and any
word " € XX, a (T, p) = A (T, q) and so A is synchronizing. Moreover since k is minimal such
that |Ay| = 1, Lemma[2.2.5|guarantees that it is the minimal synchronizing level of A. O

An easy consequence of the above theorem is the following:

Theorem 2.2.7. Let A = (X, Qa, tA ) be an automaton of size m. If A is synchronizing, then the minimal
synchronizing level of A is at most m — 1

Proof. Let (Ai)ieN be the sequence such that Ag = A and A;; is obtained by applying the
Collapsing procedure to A;. Notice that after each application of the collapsing procedure, the
new resulting automaton, if it has size bigger than 1, must have strictly fewer states than the
previous one. Thus it requires at most m — 1 applications of the collapsing procedure for the
resulting automaton A,,_; to be the single-state automaton. The result now follows by applying

Theorem

Remark 2.2.8. We shall later give examples of automata with m states and minimal synchronizing
level m —1 for each m € INj.

The results above demonstrate that it is possible to decide if a given finite automaton is
synchronizing. We now relate these results to statements about transducers over ¢, » and €.

Theorem 2.2.9. Let Tq, be an initial transducer over € [€n +]. Then Tq, is synchronizing if and only
if A(Tq,) [A(Tqy)\{qo}] is synchronizing. Moreover if k is the minimal synchronizing level of A(Tq,)
[A(Tq,)\qo} then the minimal synchronizing level of T is k [k + 1].

Proof. The proof is a consequence of Definitions[2.1.14|and [2.1.18{and Theorem above. [

We consider some examples below.

Example 2.2.10. Consider the transducer T below:
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Figure 2.2: A finite transducer over ¢y,

Its underlying automaton A(T) is as follows:

Figure 2.3: The underlying automaton of the transducer T

After one iteration of the collapsing procedure, we find that the states qp and q; are in the same
equivalence class and q; is in a class on its own. The resulting automaton T; is shown below:

0
1

DS O=t
2
1 0

Figure 2.4: Resulting automaton after applying one step of collapsing procedure

After the second iteration of the procedure the resulting automaton is as follows:

0

RO
Figure 2.5: Resulting transducer after 2" application of Collapsing procedure

We can likewise perform the same process on A(A~1), which is given below:
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Figure 2.6: The underlying automaton of T~!
This automaton can also be collapsed to a single state automaton in 2 steps. One can check that
A is bi-synchronizing at level 2 and the synchronizing map is given by:

00— qp 10— qp 20— qq
f: 0l—q1 11—q; 21~ qo (2.1)
02—=qy 12—=qy 22— qa

Example 2.2.11. We now illustrate a non-example. Let By, be the following transducer over €3 ,:

2 11

Figure 2.7: A non-example

This transducer is not synchronizing at any level. This is because for different choices of initial
states, after processing a finite string of zeroes the new active state is either qo, q;1 or . Therefore
we expect that after repeated applications of the collapsing procedure, all automata in the resulting
sequence have size strictly greater than 1. The automaton A(Bq,)\{qo} is depicted below:
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Figure 2.8: The automaton A(B 4,)\{qo}

Observe that the automaton A(By,)\{po} is invariant under the Collapsing procedure, since
for any two distinct states qi, g5, i,j € {0,1,2}, the functions 7g (., qi) : X3 — QA(BqO)\{qo} and
7B (+ 4j) : X3 = Qa(Bg,)\(qp) are distinct. Therefore By, is not synchronizing by Theoremw

2.2.1 Other checks for detecting whether a transducer is bi-synchronizing

We present below lemmas which give other ways of characterising the synchronizing property. As
various proofs later on demonstrate, these are, in certain situations, more helpful ways of thinking
about the synchronizing property. Once more we state the lemma first for arbitrary automata and
deduce application to transducers over ¢, or €,, , from these.

We need some more notions about words first.

Definition 2.2.12. Let X be a finite alphabet, and v, w € X*, then v is called a rotation of w if there
are words uq,uy € X* such that v =u;uy and w = upuy. If v = w then we call v a trivial rotation
of w otherwise we call v a non-trivial rotation of w. Two words uy, u, € X* are said to commute if
wjuy = upuy. For v, p € X*, v is called a power of n if there is some j € IN; such that p = vi. A
word p € X* is called a prime word if there are no § € X* and j € IN; such that p = &.

The following is a well known result and can be found in most combinatorics text books (see
for instance [50]).

Theorem 2.2.13. Let X be a finite alphabet and uy, up € X*. Then wy and uy commute if and only if there
is a word v € X* such that uy and uy are both powers of v.

As an easy consequence we have the following corollary:

Theorem 2.2.14. Let X be a finite alphabet. A word w is prime if and only if it is not equal to a non-trivial
rotation of itself.

Let X be a finite alphabet. The relation, ~ on X* given by u ~ v if and only if u is a rotation of v
is an equivalence relation. We denote by X/ ~ the set of equivalence classes of X under ~. For a
word w € X* we denote by [w]. the equivalence class of w under ~.

We have the following lemmas which are in certain situations easier checks for determining
whether an automaton is synchronizing.

Lemma 2.2.15. Let A = (X,Qa,7ta) be an automaton. Then A is not synchronizing if and only if
there is a word w € X of length at most |Qa|(IQal—1) + 1 and distinct states p, q € Qa such that

Tia(w,p) = pand A (w, q) = q.

Proof. The reverse implication follows since, for p, q and w satisfying the hypothesis of the lemma,
and for any i € N we have, ma (wh,p) =p and A (W}, q) = q. Now, if A is synchronizing at some
level j € IN then it is synchronizing for at level k for all k € IN;j. Therefore there is some i such that
mia (Wh,p) = A (W, q) which is a contradiction, however, this contradicts the assumption that
P # q and so A is not synchronizing.
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For the forward implication, assume that A is not synchronizing. This means that for any i € IN
there is a word w’ € X! and distinct states states p’ and q’ such that 7t (W/,p’) # ma (W, q’).
Leti > |QAl(IQaAl—1) + 1. Notice we may assume that [Qa| > 1 since an automaton with
one state is synchronizing, thus i > 1. Let w,p, q be such that w ¢ X!, p and q are distinct
states of A, and 1A (w,p) # ma(W,q). Letwq € X, 1 < a < i, be such that w = wiwy ... w3,
and let pq = mMaA(W1...wq,p) and qq = mA(W1...wq,q) for 1 < a < 1. Observe that
AW, p) = pi # qi = maw,q). If pq = qq forsome 1 < a < i,thenforalla < b < i
db = Po by definition of the transition function. In particular, q; = p; which is a contradiction.
Therefore pq # qq for all 1 < a < i. Since there are only at most |[QA|(|Qal —1) ordered
pairs of elements of Q A, there are natural numbers a and b such that1 < a < b < iand
(Pasqa) = (Pv, qv)- Let W =wawg ... wy. We thus have, ta (W, pa) = pa and a (W, qa) = qa,
moreover [wWq| =b—a+1 < i O

A corollary of Lemma [2.2.15]is the following;:

Corollary 2.2.16. Let A = (X, Qa,7ta) be an automaton. If A is synchronizing, then its minimal
synchronizing level is at most |Qa|(|Qal —1) + 1.

Proof. We may assume that |A| > 1 as the statement is satisfied trivially when |A| = 1. If A is not
synchronizing at level i := |QA|(|Qa|—1) + 1, we may find a word w € X' and distinct states p, q
for which 7ta (w, q) # 1A (W, p). We then imitate the proof of Lemma to find states p’, q" and
aword w’ € X of length at most i such that mta (w/,p’) = p’ and A (W', q’) = q demonstrating
that A is not synchronizing. Thus if A is synchronizing, it must have minimal synchronizing level
at most i. O

Remark 2.2.17. Notice that this bound is not optimal as indicated by Theorem[2.2.7]
As a further corollary of Lemma [2.2.15|we have the following:

Lemma 2.2.18. Let A = (X,QAa,7ta) be an automaton. Fix a unique representative in X* for each
equivalence class of X\ ~ and let 'W be this set of representatives. The automaton A is synchronizing if and
only if there is some j € IN such that the set W ; of all elements of W of length greater than j consists of
synchronizing words (of A).

Proof. The forward implication follows straightforwardly, since if A is synchronizing at level j the
set of all words of length greater than to j consists entirely of synchronizing words.

For the reverse implication, assume that there is a j € IN such that W consists only of
synchronizing words. Assume for a contradiction that A is not synchronizing. By Lemma
there isa word w € X™ and distinct states p, q such that 7ta (W, p) = p and 7ta (w, q) = q. By raising
w to powers if necessary we may assume that [w| = k > j. Let v € Wy; be the unique choice of
representative for the class [w].. Since W consists only of synchronizing words, there is a unique
state s € QA such that ta (v,.) : Qa4 — QA takes only the value s. In particular s (v,s) = s.
Letwg € X, 1 < a < k, be such that w = wyw, ... wy. If v =w, then p = q = s and we obtain
the desired contradiction. Thus we assume that v # w, therefore v = wiw; 1 ... Wi wqy...w;_q
for some 2 < i< k. Letpg = ma(Wy...wq,p), and qq = A (W1...Wq, q). Notice that p = p,
qx = q. Since p and q are distinct then, as in the proof of Lemma[2.2.15 we must have po # qq are
distinct for all 1 < a < k. Therefore one of p;_1 or q;_; is not equal to s. We assume, relabelling
if necessary, that qi_1 # s. Now observe that 7ta (Wi ... Wi w1 ... Wi_1,qi—1) = qi—1 # s. This
is because as qi_1 = A (W1 ...wi_1,q) it follows that A (Wi ..., Wy, qi—1) = qkx = q, thus
A (Wi ... Wi W1 ... Wi_1,di_1) = di_1. Therefore we conclude that 7ta (v, qi) = qi # s which is a
contradiction since v € W ; is a synchronizing word. O

Using Corollary [2.2.16{we can make Lemma[2.2.18|qualitative as follows:

Lemma 2.2.19. Let A = (X, Qa, A ) and let k = |QAl(IQal — 1) + 1. Fix a unique representative in X*
for each equivalence class in X/ ~ and let 'W be this set of representatives. A is synchronizing if and only
if there is a 1 < j < k such that for any j < a < 2k, the set Wq of all elements of W of length equal to a,
consists of synchronizing words.
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Proof. The forward implication proceeds exactly as in the proof of Lemma and applying
Corollary 2.2.16|to deduce that A is synchronizing at some level j < k.

For the reverse implication we again imitate the proof of the reverse implication of Lemma
For suppose there is some 1 < j < k such that for all j < a < 2k the set W consists only of
synchronizing words. If A is not synchronizing then we may find a word w € Xj; of length at
most k and distinct states p, q such that ta (w,p) = p and 7ta (W, q) = q. Now since 1 < w| < k,
there is an m € INy such that k < m|w| < 2k. Thus we may replace w with w™ and assume that
j < k < [wl. Therefore, as in the proof of Lemma there is a word v € W),,| and distinct
states p’ and q’ such that 7t (v, p’) = p’ and 7a (v, q") = q’ contradicting the assumption that
W),y consists entirely of synchronizing words. Hence we conclude that A is synchronizing. [

We now deduce from the above lemmas implications for transducers over ¢;, and ¢y, .

Lemma 2.2.20. Let T be a finite transducer over Xy.. Let k = |Q7|(IQ1| —1) + 1 and fix a unique
representative in X* for each equivalence class in X/ ~. Let W be this set of representatives. The transducer
Tq, is synchronizing if and only if there is a natural number j such that 1 < j < k and for any natural
number a,j < a < 2k, the set W of all elements of W of length equal to a consists of synchronizing words
for Tq, if and only if there is some 1 € IN such that the set W1 of all elements of W of length greater than 1
consists of synchronizing words.

The proof follows by applying the previous results to the underlying automaton of a transducer.
For Ty, a finite initial transducer over &y, ;, the results apply to the automaton A(Tq,)\{qo}-

In the next section we introduce certain important subgroups of B, » and B, which are
characterised by imposing restrictions on the core of the bi-synchronizing transducers inducing
these homeomorphisms.

2.3 Higman-Thompson groups G, and their automorphism
groups Aut(G,, ,)

In this section we give several definitions of the Higman-Thompson groups G for n € INj
and r € INj such that r < n. Let us call a pair (n,r) such thatn € Npandr € N; r < nan
allowable pair. For a fixed allowable pair (n, ), the group G, is a subgroup of H(Cy, ) the group
of homeomorphisms of Cantor space €y, r. As we saw in Section [1.4] there are many different ways
of viewing the Cantor space €, v, this leads to the different characterisations of the groups Gn ;.
Our final characterisation shall be as a subgroup of By, » consisting of those homeomorphisms
of ¢y, » which may be represented by bi-synchronizing transducers with a certain restriction on
their cores. We then show that the group B, , is precisely the normaliser of the group G, in the
rational group. By appealing to results in the author’s article [10], some of which also appear in
Yonah Maissel’s thesis ([39]), we will deduce that B, » is actually isomorphic to Aut(Gy, ). In the
latter sections we investigate the quotient of By, » by Gn » (thought of now as a normal subgroup
of By, ), and highlight an important subgroup of this quotient. We begin by briefly recapping the
history of the groups Gn, and why they are important in group theory.

The Thompson groups F, T and V were introduced in 1965 by Richard Thompson [52] in
connection to questions in logic. He subsequently demonstrated that the groups V and T are
finitely presented infinite simple groups, giving the first examples of groups of this type. The
group V was later identified with the automorphism group of an algebra V, ;. Higman generalised
this construction creating algebras Vi, » for n,v € IN and identified the groups G, with the
automorphism group of these algebras. (The group G, is equal to Thompson’s group V.) Higman
then showed that for n even the group G, is simple, and when n is odd the commutator subgroup
is simple and has index 2. The groups Gn - and G, ,s are isomorphic if and only if n = m and
ged(n—1,7) = ged(n —1,v'). Higman demonstrated in [34] that G+ = Gy, ;7 implies thatn =m
and ged(n—1,1) = ged(n —1,7'), the converse was shown by Pardo in [45]. This gives rise to
infinitely many examples of finitely presented infinite, simple groups. Moreover, we can restrict
ourselves to the groups Gn,» where (n,r) is an allowable pair. There are two known families
of finitely presented infinite simple groups: those generalising the Thompson groups and those
arising like the Burger-Moses groups [18]. The recent paper [8] gives a infinite presentation of the
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group V highlighting some similarities to the alternating group Ay, showing, perhaps, why the
group V was the first discovered finitely presented, infinite simple group.

We now present the different ways we will be thinking about the groups Gy, . Our exposition
here will be based on [10] and [20] however there are many other sources which contain a good
introduction to these groups ([2], [49] and so on). Though we mentioned above connections to
certain algebras we shall not make use of these connections in this thesis.

For the rest of this section, unless otherwise indicated, (n, r) shall always be allowable.

2.3.1 Higman-Thompson groups G, , as prefix exchange maps on ¢, ;

Our first description of Gy, r shall be as homeomorphisms of ¢, which are given by prefix
exchange maps.

Notation 2.3.1. Let v, u € X{| |, then we shall denote by gv,,, the map from U, to U,, given by
v — udfor & € €. Letu = {uy,...,um}and ¥ = {vy,..., v} be two complete antichains of
Xjr of equal length. We shall denote by gyy the map g : € — € r such thatfor 1 <i<m,

g Fuui = gu—irvi'
The following result is straight-forward:

Proposition 2.3.2. Let U = {uy,...,um}tand v = {vy,...,vin} be two complete antichains of X3, , of
equal length. The map guyy is an element of H(&€y, ) with inverse gy 4.

Proof. That the map gq v is injective and surjective follows from the fact that U and ¥ are antichains
of equal length. Since for every element § € &, r there is precisely one u; in w and v; € v such that
ui < dand vy < 6. In fact gg% = gva.

Let b € ¢y, and suppose & = u;y forsomei € IN,1 <i<m,andy € &,. Then (8)ggv = viV.
Let U be an open neighbourhood of v;y. Let ¥ be a long enough prefix of y such that U,,.3 C U.
Then the set U,,,7 is an open neighbourhood of §, moreover (Uy.y)gavy € Uy, € U. Thus ggy is
continuous. Since, as remarked in the previous paragraph, g % = gv,a, we therefore have that g is
a homeomorphism. O

Notation 2.3.3. Set
Gn,r :={guv | 4,V are antichains and [u] = [v]}.

We shall show that G, ;- is a subgroup of H(€, ) however to do so we require the following
definitions and results.

Definition 2.3.4. Letu ={uy,...,um}and v = {vy,..., v} be two antichains of X7, ;. of the same
size. Two k-fold expansions, u’ and v/, of u and V are called compatible expansions of u and v if there
is a sequence (@, V) := (U, Vo), . . ., (U, Vi) := (u’,¥’) such that:

(i) for 1 <1i< ku; is a single expansion of u;_; and V; is a single expansion of v;_,

(i) if vi_q ={v1,...,valand ;1 = {py,..., uq} then v; is a single expansion over v; of v; 1 if
and only if u; is a single expansion over y; of W;_.

Remark 2.3.5. Let © = {uy,...,un} and v = {vy,...,vin} be two complete antichains of the
same length. Let @’ and v’ be compatible single expansions of @ and V respectively, then
Juv = Gyyr- This follows since if, for 1 < i < m, @ is an expansion over u; of u then
= {u,...,ui_1,ui0,wl,...,uin —1,ui4q,..., Um}, since @’ and v’ are compatible we also
have v/ ={vq,...,vi_1,vi0,vil,...,vin—1,viy1,...,vim}. Now for j € Xy, since gﬁ,ﬂuwl = Qu;v;
we have guvlu, ; = Gwijvij = 9a/v [uy,;- Thus Guslu,, = 9uvlujex, Uni = 939 Ty, - Since

gﬁ,v[uul = g’ v/ [uul for 1 € {1,..., mN\{i}, we therefore conclude that ggv =5/ '

The following lemma follows by a simple induction argument:

Lemma 2.3.6. Letu ={uy,...,um}and v ={vy,...,vin} be two complete antichains of the same length.
Let u’ and V' be compatible expansions of W and v respectively. Then gy = g7 y7-

59



We require a few additional facts about antichains.

Lemma 2.3.7. Let 1 be a complete antichain of X¥,. Then there is a complete antichain @', an expansion of
the complete antichain {€}, such that © = u’ as unordered sets.

Proof. We proceed by induction on the length of u. First suppose that [u] = 1. Observe that since u
is a complete antichain, then for all i € X, iis a prefix of some element of U or some element of u
is a prefix of i. Now suppose that u = {x}. If x # €, then there is a j € X;, such that j is not a prefix
of x. Thus x = € and u = {e}.

Now assume that for m € IN; all complete antichains of length less than m are expansions of €.

Let ¥V be a complete antichain of length m. Let u be the largest complete antichain of length
strictly less than m such that all elements of u are prefixes of some element of v. We may further
assume (reordering u if necessary) that u is an expansion of the antichain {e}.

Lety € u\V (such elements exists since [u| < m and u and Vv are complete antichains). It must be
the case that for all a € Xy, ya is a prefix of some element of ¥ since V is a complete antichain. Thus
replace all elements of w\V with the elements y0,v1,...yn — 1 creating a new complete antichain
u; which is an expansion of u. If u; # V, then as all elements of elements of u; are prefixes of
elements of v, then [u;| < [v|, however this contradicts maximality of u. Therefore u; = V as
unordered sets and we are done O

As a corollary we have:

Corollary 2.3.8. Let U be a complete antichain of X3, .., then there is a compete antichain @’ an expansion

of{i, ..., T} such that @' = W as unordered sets.

Remark 2.3.9. A consequence of the results above and Remark|1.1.22]is that the length of any
complete antichain of X7, ; is equal to r modulon —1.

Definition 2.3.10. Let u and Vv be two antichains of X7, ., then u is called a re-ordering of vif u = v
as unordered sets.

Lemma 2.3.11. Let Vq,Vy be complete antichains of X3, ... Then there is an expansion W of V1, and a
re-ordering W' of W which is an expansion of V.

Proof. 1f ¥7 = ¥, we are done. Therefore we assume that ¥ # ¥;. Set wg = v1 and let y € Wy\v,.
Observe that either v is a proper prefix of some element of v, or some element of v, is a proper
prefix of . If the set of elements vy € Wy \V, such that y is a proper prefix of some element of ¥, is
empty, then set W = w. Otherwise, let y € ¥;\V, be a proper prefix of some element of v,. For
any a € Xy, since vy is a complete antichain, ya is a prefix of some element of v,. Thus replace all
Y € Wo\V2 such that vy is a proper prefix of some element of ¥, by v0,...,yn —1. This creates a
new antichain w; which is an expansion of v;.

If the set of v € W1\V; such that v is a proper prefix of some element of v, is empty, then set
w = wj. Otherwise, repeat the above process with w; in place of W, to create a new antichains
Wy, W3, ... which are an expansions of (or equal to) Wy. Since V; is a finite antichain, there is some
k € IN; minimal such that any element of ¥, is a prefix or equal to some element of Wy.. Set w = Wy
and observe that it is an expansion of v;.

We now show that there is a re-ordering W’ of W which is an expansion of v3. It suffices to
show that for any elementy € V5, either v € W or there is a complete antichain {uy, ..., u;} of X, ;
such that {yuy,...,yur} C W. This is because by Lemma the antichain {yuy,...,yu,}is equal
to a reordering of an expansion of the antichain {y}.

Suppose there is an element y € V,\W. Let uy, Hp, ..., i be all elements of X;; such that
YHq € W for 1 < a < k. Since W is a complete antichain, it follows that {pq | 1 < a < k}isalsoa
complete antichain. O

Remark 2.3.12. Let uj, Uy, V1, V2 be complete antichains such that [u;| = [v;| for i € {1, 2}, then
there are complete antichains Wy, Wy, U and u} such that:

(i) Wy = Wy as unordered sets,

(if) W, is an expansion of Vi and Wy is an expansion of vy,
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(iii) The antichains W; and u, for i € {1, 2}, are compatible expansions of ¥; and u; respectively.

To see this, observe that by the above lemma, there are expansions w; of v; (i € {1,2}) such that
the w; are re-orderings of each other. Now by expanding along the u; appropriately the remark
follows.

We now have the following proposition:
Proposition 2.3.13. The set Gy v is a subgroup of H(€r r).

Proof. That Gn r is closed under inversion and is a subset of H(C,, ) is a consequence of
Proposition[2.3.2}

Let gy, v, and hy, g, be two elements of G, ;. By applying Lemma [2.3.11jwe may find complete
antichains u{ and Wi, i € {1, 2}, such that u] and W; are compatible expansions of u; and v;, and
W is a reordering of w,. By Lemma we have: gy, v, = gg/w, and hy,u, = Ny, 5. Notice
that [uf| = Wil for i € {1,2}. Let 1 < a < [u]| and let uq and wq be the ath element of Uy and W,
respectively. There is a b € IN; such that b < [w;| and the bth element wy, of W5 is equal to wg.
Let up, be the bth element of @), then, g,/ w, © hwzlﬁé [uua is equal to gu g, wq © My, uy [uuu. As aq,
1 < a < [ay], was arbitrarily chosen, it follows that, gy, , w, © he,w, = falm, € Gnre O

Therefore, the Higman-Thompson groups G are precisely those homeomorphisms of &,
which are prefix exchange maps. However, this is just one way we will be thinking about these
groups. Recall that in Section[I.4 we demonstrated that Cantor space €, » may be identified with
the boundary of the r-rooted n-ary tree. In the next section we show that elements of the group
Gn,r can be represented by pairs of finite subforests of T with the same number of leaves, and a
bijection between their leaves.

2.3.2 Higman-Thompson groups G, ; and their action on Ty, .

In this section we demonstrate that elements of the group Gy, » can be represented pictorially
according to their action on the tree T, ;. This pictorial representation is by the so called forest pair
diagrams. We define these first and then show how one can obtain a forest pair diagram for an
element of Gy r.

Definition 2.3.14. A forest pair (of Ty, +) is a pair (A, B) of finite subforests of Ty, » with the same
number of leaves.

Let Th,» be the r-rooted n-ary forest labelled as in Section[1.4)and let @ be a complete antichain
of X, ;- Recall (Remark ) that we denote by T% | the subforest of Ty, with leaves the vertices
inu.

Letu = {uj,wp,..., ux}and v = {v1,vy, ..., vk} be two complete antichains of X7, ;. of equal
length, and let ggv € Gn, be the homeomorphism of ¢, ; corresponding to these antichains.
Observe that the pair (Th ., T3, ;) is a forest pair. Let o be the bijection from the leaves of T}, . to the
leaves of ‘J’Ym such that, for 1 < i < [u], we have (u;)o = v;. The triple (‘J’E,r,ﬂ'ﬁ,r, o) represents
the homeomorphism gg v by indicating how it changes finite prefixes. The bijection o is usually
indicated by a numbering of the leaves of U’Tﬁm and the induced numbering, by o, on the leaves of

Definition 2.3.15. A forest triple (of T ) is a triple (A, B, p) where (A, B) is a forest pair and p is a
bijection from the leaves of A to the leaves of B.

Remark 2.3.16. Every element of Gy, » corresponds to a forest triple, and every forest triple gives
rise to an element of G, r.

Remark 2.3.17. Let U = {uy, ..., uy} be a complete antichain for Xj, ;. and let 4’ be the complete
antichain arising by a single expansion of @ over an element u; € u. Let U’g/r and ‘J’EL/r be the finite
subforest of T, » with leaves which are elements of @ and @’ respectively. The leaf u; of T}, ;. is now
an internal vertex of ‘J’E,r and has children {uja | a € X, }; all other leaves of T4 | remain leaves of
T4’ . We say that T . is obtained from T2 . by adding a caret to the leaf w; of T2 ... Alternatively
we say that T% | is obtained from T% . by deleting a caret of T%
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Definition 2.3.18. Let A,B be finite subforests of Ty, then we say that A is an expansion
[contraction] of B if either B = A or there is a sequence B := By,By,...,Bx = A, k € IN of
finite subforests such that, for 1 < i < k, B; is obtained from B;_; by adding a caret to a leaf
[deleting a caret] of B;_1. If k = 1 then we say that A is an single expansion [contraction] of B.

Remark 2.3.19. Observe that, by Remark and a simple induction argument, if u and u’ are
complete antichains such that @’ is an expansion (contraction) of u then, ‘J“T‘jT is an expansion
(contraction) of T4 ... Therefore it follows that if i and ¥ are complete antichains of the same length,
then there are infinitely many forest triples representing the map ggv.

Example 2.3.20. Consider the complete antichains u := {1,20,21,22} and v := {22,21, 20, 0} of X350
and the map ggyv of G3>. Below we give the forest triple representing gy v.

Figure 2.9: The forest triple representing the map gg v

The bijection from the leaves of T}, ;. to the leaves of T}, | is indicated by the numbering of the
leaves of both trees. We shall also use the following picture for the representation above:

i 2 i 2
AN
1 2 3 4 4 321

Figure 2.10: Alternative representation of Figure

Remark 2.3.21. For the case where r = 1, we modify the terminology above by replacing the
occurrences of ‘forest” with ‘tree’.

We shall mainly utilise forest/tree pair diagrams in the last part of the thesis. However, these
diagrams give a nice way of thinking about the group G, and the reader is encouraged to keep
them at the back of their mind as a way of informing subsequent discussions.

For the moment however, we describe the final way we will be working with the groups
Gn,r- One should observe that the action of elements of Gy, on €, ;- utilises only finitely many
local actions, in particular, after modifying a finite initial prefix, elements of G act like the
identity. This means that Gy, is a subgroup of Ry, r. The next section characterises the transducers
representing elements of G, and so gives a representation of elements of G by finite initial
transducers.

2.3.3 The Higman-Thompson groups G, . as subgroups of B, .

In this section we characterise the finite initial transducers representing elements of G, . As a
consequence of this characterisation, we demonstrate that G, r is in fact a subgroup of By, (and
so a subgroup of Ry, ), moreover, the core of a transducer representing an element of Gy, is
precisely the single state identity transducer. We conclude with an example constructing a minimal
initial transducer representing an element of G, .

We begin with the following result:

Proposition 2.3.22. Let g € Gn v, then there is a minimal transducer A q, € B such that hq, = g and
Core(Aq,) = id.
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Proof. It suffices to show that for an element g € Gy, there is a k € IN; such that for any word
Y € X}, ; of length k the local action g, is the identity map on €. It then follows, by Remark|1.5.30}
that the transducer A § constructed using Construction has the property that after processing
a word of length k, the new active state induces the identity homeomorphism on €. Thus if A4,
is the minimal transducer such that hq, = g, then A 4, is synchronizing at level k and has trivial
core.

Let u and v be complete antichains of X7, ;. such that g = ggy. We may assume that [u > 1
and [v| > 1 by RemarkIZ.E thusu C X} . and v C X ,.. Let k = max cg{/ul} and pick y € X'fm.
Observe that there is a word § € X{| . such that for any p € ¢;, we have,

(vp)guyv = dp. (2.2)
This implies that (y)64 = Us. Thus for any p’ € €, we have (p’)gy = (vp')g— (v)8g = p’; the
last equality is a consequence of Equation[2.2] O

Definition 2.3.23. Let %n,r (id) be the subset of @n,r consisting of all those elements of R, » which
may be represented by a synchronizing transducer with trivial core.

By Proposition:2.3.22 above, Gy is a subgroup of B, » and is contained in %n,r(id). We have
the following result:

Proposition 2.3.24. Let g € %n,r(id)/ then g € G r.

Proof. Let g € By r(id), and Aq, = (t, Xn, Qa, A, Aa) be a minimal transducer such that hg, = g.
By definition of By, +(id), A g, is synchronizing and Core(A4,) = id. Let k € INy be minimal such
that for any vy € X‘fm we have 7a (v, qp) = id (one may take k to be the minimal synchronizing
level of Ag,). Setw = XX . — a complete antichain for X3, and suppose that u is ordered such
thatu ={uq,up,...,w}. For1 <i< 1, setvi =Aa(uy, qo) andletv={v; |1 <i< 1}

We claim that Vv is also a complete antichain for Xj, ... For suppose vi = v;7 for distinct
i,j € {1,2...,1}, and T € X{,. Let p € &, and consider Aa(uip,qo) and Aa (ujTp, qo).
Since Core(Aq,) = id, and 7tA (ui, qo) = 7a(uj,qo) = id, we have: Aa(uip,qo) = vjTp and
AA(ujTp, qo) = vjTp. However, since u; # u; (as u is a complete antichain for Xj, ,.), we conclude
that hq, is not injective yielding the desired contradiction. Thus V is an antichain. That V is a
complete antichain follows since h, is surjective, and 7ta (ui, qo) =id forall 1 <i < L

Consider the map ggy. Let 8 € &y ;- be arbitrary, thereisap € € U€, and 1 <1 < lsuch
that, & = u;p. Observe that (ujp)hq, = Aa (uip, qo) = vip, however, (uip)gav = vip also. Since
b € €y was arbitrary, we have hq, = ggv as required. O

Putting together Propositions [2.3.22|and [2.3.24{ we have:

Theorem 2.3.25. The subset By, »(id) of B v is a subgroup of By » and is equal to G, .

Remark 2.3.26. In keeping with the identification of R, 1 with Ry, (Remark1.6.15) we shall think
of the group Gn,r as a subgroup of Ry, acting on €,,.

Example 2.3.27. Below we give the minimal transducer representing the element ggyv of
Example|2.3.20

0l11, 1/10, 2/0

ile
00,1]1,22 C@ — /6\
oz \_/

Figure 2.11: A bi-synchronizing transducer representing the element gy of Example|2.3.20
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For the remainder our discussion we shall alternate between viewing elements of G+ as
prefix exchange maps (Subsubection ; as forest triples or pairs (Subsubection[2.3.2); and as
subgroups of B, » (Subsubection[2.3.3). As we mentioned before (Section[2.3) the groups G also
arise as automorphisms of the Higman algebras Vi, ;- (see for instance [2]). We mostly eschew this
approach, though we might sometimes draw comparisons.

In the next section we explore how the group G, r interacts with elements of Ry, » and B, . In
particular we show that N, (Gnyr) =Bnr-

2.4 Automorphisms of the Higman-Thompson groups G,

In this section we show that the group B, is equal to the normaliser Ng,. . (Gnyr) of G in Ry 7.
By appealing to results in [10] and a result of Rubin [47] we conclude that Aut(Gn ) = B+
We first begin by illustrating the idea behind the proof with synchronous transducers over €.
Recall (Example[1.7.39) that for an invertible synchronous transducer A g, over €,, hy, € Rpy
for all states p € Q. We also recall Notation [2.3.1] for the map g5 : Uy, — Us, v,8 € X, and
Notation whereby for a state r of an invertible, synchronous transducer we denote the state
(e,T)of A=" by r~1. We have the following lemma which first appears in [24]:

Lemma 2.4.1. Let A, be a minimal, synchronous, invertible transducer over €, and p € QA be a fixed
state of A. Then A q, is synchronizing if and only if for every state q € Qa, h;lhq € Gn-

Proof. We begin with the reverse implication.
Let q be any state of A q,. Recall (Example(1.7.39) that Aaol is also synchronous and minimal.

By Lemma the transducer product (A~1xA) (p-1,q)
homeomorphism hy 1hq. Since h;lhq € Gy 1, it must be the case that there is an m € IN such that

is an initial transducer representing the

for any vy € X!, there is a § € Xj, such that h;lhq lu, = 9y,5- We may further assume that m € IN
is minimal with this property. Since (A~1 % A) (p-1,q) is @ synchronous and invertible transducer, it
has no states of incomplete response and so it must be the case that |5| = m. Now, using arguments
similar to those in the proof of Proposition after processing a word of length m from the
state (p~1,q) of (A1« A)(p—ll q)’ the resulting state must be w-equivalent to the identity. Let
I' e X', and suppose TUA-14A) (T, (p~1,q)) = (r—1,1), it follows that h(-14) must be the identity
homeomorphism. Since (A~! % A) (p—1,q) is synchronous, we therefore have that t is w-equivalent
to the state r of A and so t = r since A is minimal.

Let A=A,-(T, p~1). The arguments above demonstrate that 7 (A, q) = r. However, since q
was chosen arbitrarily, it follows that ta (A, q’) = r for any q’ € Qa. Thus A is synchronizing at
level m, since for any word A’ € X, there is a word '’ € XI* such that A 1 (I, p~1) = A’

For the forward implication, assume that A is synchronizing. Let k be the minimal
synchronizing level of A and q be any state of A. Lety € XX, A = A a(y,p 1), 8 =
Ap—1.4 Y, (p~1,q)), and r ! = a1 (y,p~1). Since ma(A,p) = 7, it must be the case, since
A is synchronizing at level k and A € X}?L, that ma(A,q) = r. Therefore, it follows that
Ta-1,4 0, (P71, q)) = (r1,7). Hence hythgly, = gy s- O

Lemma 2.4.2. Let A g, be a minimal, invertible, synchronous, synchronizing transducer. Fix a state p of
Aq, and let k € IN be minimal such that for every state q of A and for anyy € XX, that thereis a & € X},
satisfying h;lhq lu, = 9v,s. The minimal synchronizing level of A, is equal to k.

Proof. Assume that A is an invertible, synchronous, synchronizing transducer with minimal
synchronizing level 1. Observe that by minimality of 1, there is a word v € X} ! and states
q1,q2 € A such that ma(v,q1) # ma(v,q2). Let p € XY ! be such that A, 1 (p,p~!) = v, and
A1 (b, p~ 1) =t (and so A (v, p) = t). Observe that one of 7a (v, q1), A (V, q2) is not equal
to t. Without loss of generality we assume that 74 (v, q1) = s for s a state of A distinct from t.
Since s # t, it follows that the map A 1, 4 (+, (t71,5)) : X = Xy, is not trivial and so moves at
least two points. Thus, there are i,j,1’,j’ in Xy such thati #7j, 1’ #j’, Az—1,4 (1, (t71,s)) =1’ and
A1, 0, (t71,8)) = j’. Therefore, Ay 1,4 (ni, (p~1,q1)) = vi’ and Ay 1,2 (W, (P4, q1)) = vj’,
hence we conclude that h;; 1hal does not act on Uy, as g,, ,,+ for some n’ € X}
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Now let q be any state of A. Lety € XY, A = A-1(y,p 1), 8 = A-1,4(v, (P~ 1, q)), and
T =T (v,p~1). Since ma (A, p) = 1, it must be the case, since A is synchronizing at level 1
and A € X}, that 7ta (A, q) = 1. Therefore, it follows that Ta-1,4 Y, (p~1,q) = (+~1,1). Hence
h;lhq 'u, = 9y,s- Thus lis the minimal number such that for every state q of A and for any

-1

v € X%, that there is a & € X7, satisfying hy, Thy lu, = 9y,s- Therefore 1 =k as required. O
We modify the previous lemma by introducing the phrase ‘strictly accessible” (Definition|1.3.12)).

Lemma 2.4.3. Let Aq, be a minimal, synchronous, invertible transducer over &y. Fix a statep € QA.
Then A q, is synchronizing if and only if for every strictly accessible state g € Q A, h;lhq € Gp.

Proof. The forward implication follows exactly as in Lemma [2.4.1] - For the reverse 1mp11cat10n,
let k be minimal such that for any strictly accessible state ¢ € Qo and for any y € XX, there is a
6 € X}, such that hy; Thg lu, = 9vy,s- Asin the proof of Lemmawe once more Conclude that for
any pair q1, qp of strictly accessible states, 7 (., q1) : Xk = Qa is equal to 7a (s, q2) : Xk = Qa.
However, since any non-initial state q of A is strictly accessible, we conclude that A is synchronizing
at level at most k + 1. O

Lemma 2.4.4. Let A g, be a minimal, synchronous, synchronizing transducer which is not strictly accessible.
Fix a state p of A and let k € IN be minimal such that, for any strictly accessible state q of A and for any

€ XK, thereis a & € X3, satisfying hr_,lhq lu, = 9v,s. Then the minimal synchronizing level of A g, is
either k +1 or k.

Proof. 1t follows from Lemma that Ay, has minimal synchronizing level at least k. The
proof of Lemma demonstrates that A ¢, has synchronizing level at most k + 1, thus the result
follows. O

Corollary 2.4.5. Let Aq, be an invertible, minimal, synchronous transducer over €n. If h G nihq,
Gn,1, then A g, is synchronizing. Ifh e 1hqy = G 1 then hgy € By v and Ag, is bi- synchronzzmg

Proof. Let Aq, be an invertible, minimal, synchronous transducer over €y, such that h G 1hgqy €
Gn,1. In order to show that A g, is synchronizing it suffices to show that A 4, satisfies the equivalent
condition stated in Lemma [2.4.3]

Fix a non-trivially accessible state p of Aq,. Then, by the definition of non-trivial accessibility
(Definition m there is a word vy € X such that nA(y, qo) = p and Aa (v, qo) # €. Let
§ = Aa(v,q0) € Xi{ and observe that 71, - 1(6 do y=pTland Aa-1(8,qy 1y =y . Let q be any
strictly accessible state of A q,, and v € X} be such that q is strictly accessible from qg by v. Observe
that there are complete antichains u and v of the same length such thaty € uand v € v. For

instance, if |[v| < |y|, one may take the complete antichain XD{ | and, since \XD{ ‘I = IXQ ‘I mod n—1,
by repeatedly expanding the complete antichain X| Y using elements not equal to v, one obtains a
complete antichain of the same cardinality as X}, containing v. Reordering if necessary, we may
assume that ggvu, = gvy,v-

Let C;, be the minimal initial transducer representing ggv. Since hy, = ggy, it follows that

Ac(v,10) = v and mc(y, 1) = id. Consider the product (A1 % Cx A)(qal 0 q0)" Observe that
T A-1xCxA) (O (qo_l,ro, q0)) = (p~1,id, q). This follows as 7\A 1(9, qo_l) =v, Ac(v,po) = vand
7ia(v,qo) = q. Observe that the initial transducer (A~! x C A) p-1id,q) is w-equivalent to

the initial transducer (A1 x A)( ~1,q)-
must be the case that h p-1id,q) = h

Moreover, since h( roq0) = h_ guvhq, € Gny, it

p-1,r) Must be an element of Gn,l. This is because as

h(qo 0,40 is a prefix replacement map, and since 5 -1, c.a) (5, (qal,ro, q0)) = (p~L,id, q), we
have (Ug)h (a5 r0d0) = =A(v, qo) (en)h(pfl,id, QO Since q was an arbitrary strictly accessible state
of Ag, it follows that A g, satisfies the hypothesis of Lemma[2.4.3|

Now suppose that Aq, is a minimal, invertible, synchronous transducer over ¢, such that
tf1 Gn,1hqy = Gn 1 Multiplying on the left by hq, and on the right by h* we therefore have that
Gn 1="hq,Gn, 1h . Thus by the arguments in the preceding paragraphs we conclude that A g
and A ag! are synchromzmg, and so hqg, € Bn r. O
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We now extend Corollary [2.4.5/to cover all elements of Ry, ;. The strategy remains the same,
however, we need to adapt the lemmas above, in particular Lemma and Lemma to
allow for all elements of Ry, ;. The proof is slightly more involved but core idea is the same.

We recall (Construction that for a finite invertible transducer A, the states of the
inverse transducer A (¢ q,) = (¥, Xn, R, S, 74, Aj ) are given by a pair (w, q) where q is a state of
A, and w € Xj, is such that U,, C im(q) and (W)©4 = € (Claim[1.7.30). The map O is defined in

Definition|1.7.18| Further recall Notation|1.7.33|that Aq—l = (f,Xn,Rp-1,S54-1,a-1,A5 1) is the
0

minimal transducer representing A (¢ q,)- Observe that any non-trivially accessible state (w, p) of
A(e,qo), iInduces a continuous injection h(y, ;) : €n — &€n. The proposition below first appears in
the author’s article [10].

Proposition 2.4.6. A minimal invertible finite transducer over €, Aq,, is synchronizing if and only if
there is a k € IN so that for any non-trivially accessible state p of A a1 Y state q € S, for anyy € XK

and any T € €y, thereis a & € X}, satisfying, (yI'hphq = 8T.

Proof. Observe that since A (¢ q,) has no states of incomplete response (Proposition [1.7.34), it

suffices to prove the proposition with A, 4,) in place of A gl This is because, as A ag! is otamed
o

from A, q,) by identifying w-equivalent states, if, for any non-trivially accessible state pof A ag’

and any state q € Sa, there is a k so that, for any v € XX and any I" € €,,, thereis a § € X, such

that, (yI')hphq = OT, then for any non-trivially accessible state (w,p’) of A (¢ q,), any state q € Sa,

any vy € X}?L, and any I' € €, there is a § € Xj, such that, (yr)h(w,p/)hq = 5r.

We begin with the reverse implication. For this, our strategy is to show that the subtransducer
Aqols, = Xn,SA,Tals,,AAls, ) consisting of all states in S 5, is synchronizing. To do this we
show that there is a base .’ for A4, [s, over € (Definition[2.1.15). From this it will follow that
A q, is synchronizing at a level equal to the maximum length of a word in this base plus the length
of a minimal path from a state of Aq, to a state in Sz (recall that by Restriction [[R.T)]such a path
always exists). This is because after reading the initial prefix of such a word guaranteeing that
the remaining suffix is processed from a state in S o, the resulting final state is determined by this
suffix.

Fix k € IN such that for any state q € S, any non-trivially accessible state (w’,p’) € Q Ale,aq)’

any y € XK and T € ¢, we have, (VMM pryhg = O8I for some 8 € X3, Letl € ]N be minimal
such that whenever thereisay € XX, q € Sa,and a non-trivially accessible state (w’,p’) € Q A

such that (yINh(,y pyhg = 8T, then |6\ L. Let k > k be such that for any word y € Xk, any
q € Sa, and non-trivially accessible (w’,p’) € QAE,qO, we have, |(Y)A 4y p)Aql > L.

Now fix a non-trivially accessible state (w,p) of Q Aleaq)” Note that w satisfies that

U, € im(p) and (W)®p, = e. Let x1xp...XpXpq1... X € Xk and yi,...yt € X% be such
that, (xqx2...%JAw,p) = Y1---Yt- Let g1 and gz be any arbitrary states of Sa, and let
(yl . .yt)Aql = Z1 .. Z1 XKy 41 - - X4 and (yl .. -yt)qu = UL UL X1 - - - XK e We may
assume that u;, # xi, and zy, # xy,. Here kq < kand lq < lfor a € {1,2}, moreover we may
assume that the 14 are minimal such that (x1x2 ... XX Ry, p)Rge = *1 -+ *14 Xko+1 - - XX Where
(x,a) €{(z,1), (w,2)}

It cannot be the case that (y1 ... yt)Aq, = z1...21, XK, 41 .. Xcp for some p € X3t, since picking a
word p’ which is incomparable to p, we then have, (x; .. .xip’)A(w,p)Aql =Z1 .. 21 XA 41 - - - XPO
for some 5, however, by minimality of l;, p = p’ which is a contradiction. A similar argument
demonstrates that (y1...yt)Aq, #us. UL X1 - XP for some p € Xj,.

Therefore we may assume that k; +1i < kand kp +j < k.

Let 7t (x1 ... g, (W, p)) = (v, 5). Recall that, by Construction[1.7.29)and Lemma|[1.7.32, we have,
wxq ...XE—?\A(yl .Y, p) = vand ma(Y1...Yt,p) = s. Since A(¢ q,) has only finitely many
states (Lemma 1. we may choose k so that v is a suffix of x; ... x. Moreover, we also have
(Wx1...x)®p =y1...Yt. Let wxq ... xx = Aa (Y1 ...y, p) for some k < k. Let m be minimal such
that for any state q of A and any word 1 € X, we have, |Aa (1, q)| = k — k. Now notice that there
is a maximal set & = {1, ... m,} € XJ* such that the greatest common of prefix of the elements of
o is the empty word, and such that, for 1 < a < mjand pa € X}, A(Xq,8) = Xc41...XPa - Thisis
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because (Wxq...x)®p =yi...yt and 1A (Y1 ...y, p) = s. Further notice that the set & depends
only on x1 ...%¢, (w,p) and (v, s), that is, « is independent of the choice of q; and q».

Fix an «qg € «. Let Pq = ma(aq,s) and let im(Py), as usual, represent the image
of the map hp, from &, to itself. Since hq, is injective, (vpqim(Pq))®s = o«q and
(pa im(Pa))h(v,s) = Ugy,. LetT = TA(Y1...Yt,q1) and Ty := ma(y1...Yt, qz) . Observe
that (Xl < XxPa im(Pa))h(W,p) = Uyl---ytoca- Since (Ul .. ~yt)Aq1 = Z1 .- ZU XKy 41 - - XK i and
(Y1 Yt)Aq, = U1 ... U, Xgy41 - - - Xk, 4j, it must be the case, for any 6 € €y, that A (g9, Ty) has
a prefix Xy, yi41 .- XPa, likewise, Aa (a0, T) has a prefix xy, 4j11...XiPa- As we assumed that
A g, has no states of incomplete response, it must be the case that Aa (aqa, Ts) = X, 4441 .- - XPa
for (*,4) € {(1,1), (2,j)}, otherwise the states 7ta (g, T) will be states of incomplete response for
« €{1,2}. Let ' € im(P4) be arbitrary, and let (x; ... X pad’)(W,P) = Y1 ...yt xS, then we must
have, (8)hr, (xo, 1) = (8)Nyp (ao,Ty) = '+ Since 8’ was arbitrary and (pq im(Pa))A(y¢) = Uy,
the previous equality holds for any 6 in €. This means that ma (g, T1) and ma (xq, T2) are
w-equivalent.

Now as q; and qp were arbitrary states of Aq,[s,, we must have, for any pair q1, q; of states
of Aqyls,, that Ta (Y1 ... ytxa, q1) and ma (Y1 ... Ytxa, q2) are w-equivalent (and so equal by
minimality of Aq,) for all xq € . Therefore, the set of words {y; ... ytxa|l < a < my}is a set of
synchronizing words for Aq s, -

We now consider the set 3 := X"\«. Once again {3 is independent of the choice of q; and qp.
Let 3 :={B1,..., Bm,)- Let By € B be arbitrary. By assumption we have that |]A, (B, (v,s))| > k—k,
thuslet x| ;. ..x’fp{, = A (Bo, (v, 3)).

The word x1...x¢X[ ... %Py, has length greater than or equal to k, therefore we may
repeat the arguments above with xj...xc...x  ;xpy, in place of x;...xg. Notice that

A (x1 ...xKx"(H...x'Ep{j,(w,p)) is either a prefix of y;...y¢ or contains y;...y¢ as a prefix.

Let A/, (x4 ~-'XKX/K+1“~X,§F’{V (w,p)) ==yq...yp, and (v/,s") i= 7y (x1 ... XeXp g ...x’fpg, (w,p)).

After repeating the arguments above, we end up with a new set of synchronizing words for Aq, s , -
However, this new set of synchronizing words contains as a subset {y; ... y¢fpncll < ¢ < my}
where the n¢’s all have the same size and form a maximal antichain of Xj,. Take the union of
the sets {y1 ... y¢Bonell < c < myland{y;...yixall < a < my}andlet S (y;...y¢) denote the
union. Continuing in this way across all the $y, € 3, and letting .#(y; ...yt) denote the union at
each stage, we see that .’(y1 ... y¢) is finite and is a base for A, s , over the clopen set Uy, v,

Now to finish to proof it suffices to construct a finite set M C XJ, satisfying the following
conditions:

1.) for every element of v € X7, of long enough length there is an element of M which is a prefix
of a (possibly trivial) rotation of v,

2.) for every word y € M, #(v) exists and is a base for Aq,[s, over the clopen set U, .

To see that this suffices, observe that the conditions above imply that there is some D € IN, such
that for all d € Np and for any word v € X4, there is a rotation v’ of v which has a prefix in M.
Therefore, for large enough D, v’ has a prefix in .7 () for some y € M, and so is a synchronizing
word for A q,, we then appeal to Lemma to conclude that A4 [s, is synchronizing.

To do this let & be the set of all non-trivially accessible states of A (¢ q,). For each (w,p) € 2,
let O((w,p)) ={Ah (@, (W, p)) o< XK}, The arguments above demonstrate that for each word
@ € XX, and each state (w,p) € &, there is a set ./ (M (@, (w,p))) of synchronizing words which
is a base for Aq,[s, over the clopen set Uns (g, (w,p))- Taking M :={ve X |3Iwp e X :ve
O((w,p))} we are done if we can show that M satisfies the first condition above.

Let D = max(y p)ex{Aale, (W)l | @ € Xk} Letd € Np and let 6 € X4. For a € 1,
thereisa b € rand p € ¢, such that, (‘bp)hq0 = a6d6.... Let p; be the minimal prefix of p such
that 7ty (p1, (€, qo)) = (w,p) € Z. Letpy € Xk be such that pp; is a prefix of p. Observe that
since 1), (p1, (€, qo)) = (w,p) € 2, then, by Restriction we must have A, (p1, (€, q0)) # e.
Therefore A, (p2, (W, p)) is a prefix of a (possibly trivial) rotation of §. Since & € X4 was chosen
arbitrarily, it follows that for every element v € XJ,, there is an element of M which is a prefix of a
possibly trivial rotation of v. This concludes the forward implication.
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We now consider the reverse implication of the proposition.

We free all symbols used above. Let A, be a minimal finite transducer over ¢;, » and suppose
that A 4, is synchronizing with k € IN the minimal synchronizing level of A4, . Let p be an arbitrary
non-trivially accessible state of A ag’ (observe thatp € S, 1) and q be any state of S 5. There is a

j € IN such that for any word y € Xil, Aa-1(v,p)l > k. Fixaword p € €y, and let ¢ be the length
j prefix of p and p’ € €, be such that p’ = p. Let d =N, 1(@,p), and, since [¢p| > k, lett € Sa
be the unique state of A, forced by ¢. Let s = 75 -1(@,p), we now demonstrate (s, t) is actually a

state of (Aqa1 * Aqo)(qo—llqo).

Let & € Xj, . be minimal such that 75 -1 (9, qal) = p. Observe that A, -1 (8¢, qal) has ¢ asa

suffix. Thus o | *Aqq) (6¢, (qal, qo)) = (s, t). Since (Aqfl * Aqoj(q ) is w-equivalent to the
Eh) 0

—1
o +9d0
identity transducer, it follows that there is a fixed v € X}, such that, for any & € €, (§)hshy = VE.
Since after after applying the algorithm for correcting the states of incomplete response in

(Aq51 * Agp) (a5 % q0)” all non-initial states of A qp! are w-equivalent to the single state identity

transducer over ¢,,.

Since (s, t) is a state of (Aqu * Aqo)( , we have

dy,90)

(P)hphq = %(Aqal*/\qo)(@, (p, @) (p I hshe.

Thus for v equal to the greatest common prefix of im((s,t)), we have, (p)hphq =
AA 71*Aq0)((p, (p,q))vp’. Since p € €, was arbitrary, we are done.
9o

Remark 2.4.7. Let Aq, be a transducer over &, then by Restriction|(R.1) any state q € Sa is
strictly accessible from qp.

The following corollary extends Corollary to any transducer A ¢, representing an element
of R r.

Corollary 2.4.8. Let A q, be a minimal, initial transducer over €y, ;- such that hq, € Ry r. Suppose that
hgolGn,Thq0 C Gn,r, then A, is synchronizing. If in fact haolGn,rhq0 = Gn,r, then hq, € By, and
Aq, is bi-synchronizing.

Proof. Let Aq, be a transducer over €y, , satisfying the hypothesis of the corollary. We demonstrate
that A4, is synchronizing by showing it satisfies the hypothesis of Proposition [2.4.6}
Fix a non-trivially accessible state p of A agl and a state q € Sa. Let 6 € X, ;. be such that

TaA-1(9, qo_l) = p, >\A—1(6,q0_1) # eand vy = 7\A71(6,q0_1) for some y € X{| .. Furthermore,
since q € S, letv € Xﬁm be such that q is strictly accessible from qg by v. As in the proof of
Corollary2.4.5) let W and ¥ be complete antichains for Xy, ;- of the same length such that y € @wand
v € V. Reordering v if necessary let ggv € Gn r be such that ggv [uy = Uy.

Now let Cy, be the minimal transducer representing gyv. Since hy, = ggyv, it follows that

Ac(v,10) = vand mc (v, 19) = id. Consider the product (AqE] * Cry * Aqﬂ)(qo’l,ro,qo) and observe

that "(Aqq*Cro*Aqo) (5, (qo—llro, qo)) = (p,id, q). Since haOlGn,rth C Gn,r, it must be the case
0

that Nidq) = Mp.q) satisfies the hypothesis of Proposition
If haol Gn,rhqy = Gn,r, then, as in the proof of Corollary we again conclude that A 5, and
A qp! 2re synchronizing and so hq, € Bn,r. O
We are now in position to state the main result of this section.
Theorem 2.4.9. The normaliser of Gn r in the group R+ is precisely By v, that is Ng,. . (Gnyr) = Bnr

Proof. By Corollary we have the inclusion Ny (Gn ) C By r. We now prove the inclusion
Bnyr C Nz, (Gn,r) In the lemma below.

Lemma 2.4.10. Let Aq, be a finite, minimal synchronizing transducer over €y, r, then hgolGn,rhq0 C
Gn,r
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Proof. Let Aq, be a finite, minimal synchronizing transducer. Let C;, be a transducer such
that hy, € Gn . By Proposition [2.3.22) C;, € By r(id). Let A a;’ be the minimal transducer

representing hgol and let k € IN be minimal so that Ay, and C;, are both synchronizing at
level k. Let j € IN be minimal such that, for all y € Xiw we have Ax (v, qy D > 2k. Let
90

Yy € Xim be arbitrary, and & be the length k suffix of Ax | (v, qal). Let ma (v, qal) =p
9o o
and q be the state of Ay, forced by 6. Consider 7t _1#Cry*Aq, (v, (qo_l,ro, do)) and observe that
o

TU(A 1%Cry*Aqy) (v, (qal, 10, q0)) = (p,id, q), since after processing a word of length k, the active

0
state of Cr, is id, the single state identity transducer over €. Notice that (p,id, q) = (p, q) can be

. g . .. -1 . .
identified with a state of (A agt * Aqo )( agd0)" This is because A Aqal (v,qp ) has its length k suffix

equal to 9, and the state of Ay, forced by 6 is q. Since y € XL,r was arbitrary, after processing
any word of X}, , the active state of (A g1 * Cry*Aqp) can be identified with a state of
0

(A

(qg ' 0,q0)

at * Aqo)(qal,qo)‘ Let By, be the minimal transducer representing (Aqa1 * Cyy % Aqo)(qg’l,ro,qo)'

After processing any word of Xim, the active state of By, is id, the single state identity transducer on
Cn. This is because after applying the algorithm all the states of (A ag! * Crg * Aqo) a5\ 0.q0)

which are equal to states of (Aq, x A q—l) (qo,q-1) are w-equivalent to the single state identity
0 740

transducer. Thus By, is an element of By ; with trivial core, and so, by Theorem [2.3.25
htO E Gn,r. D

Therefore if A g, is an element of By, ;, we have, by Lemma [2.4.10 haolGn,rhqo C Gn,r and
hq, Gn,rhgo1 C Gn,r from which we deduce that thlGn,Tth = Gnr. O

Remark 2.4.11. Notice that Lemma [2.4.10 indicates that for an element Ay, € Ry which is
synchronizing but not bi-synchronizing, hgolGn,rhqo < Gn,r, hence hqun'fhEol < Gn,r. The
paper [24] characterises the subgroups of G and overgroups of G,  arising in this way.

Observe that since By, » normalises Gn, r in R, it follows that each element of B, » induces
an automorphism of Gn,» by conjugation. The question thus arises if all automorphisms of G r
arise in this way. This question is answered in the affirmative in the paper [10] of the author’s and
collaborators. We shall not reproduce the proof here but make a few observations about the strategy
of the proof. A key idea of the proof is to find an isomorphism between the automorphisms of
Gn,r and the group Nyy(¢, ,)(Gn,r). To do this the authors” make use of Rubin’s Theorem which
roughly states that given a group G acting on a space X by homeomorphisms, such that the space
X and the group action satisfy some conditions, then every automorphism of G is induced by
conjugation by an element of Niy(¢, )(Gn,r). Thus there is an epimorphism from Aut(Gn ) to
Ny (¢, )(Gn,r), it is then not too hard to show, using the fact that Gy, + is dense in H(€y, ) in the
topology of point-wise convergence, that the kernel of this epimorphism is the trivial group. Thus,
if one is able to show that Ny (€, +)(Gn,r) < Rn,r, then, by results above, we may conclude that
N (€n,r)(Gnr) = Bnr = Aut(Gn ). This is done in the paper [10]. We have the following result:

Theorem 2.4.12 ([10]]). The automorphism group of Gn r is isomorphic to Br, » and contains Gn » as a
subgroup.

For the remainder of the chapter we explore the quotient group B, +/Gn,» = Out(Gn ). We
highlight a particular subgroup of Out(Gr, ) which will be the focus of the next chapter.

2.5 The group Out(G, ) and some of its subgroups

In this section we study the quotient group Bn,+/Gn,r = Out(Gn,r). We show that By /G r
is isomorphic to a group Oy of non-initial transducers with an appropriately defined product.
We highlight a group Hn < Ni<ronOn,r of particular interest. The results and exposition in this
section are based on the paper [10]. The set of minimal transducers inducing homeomorphisms
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of Rnr, by Lemma is a group isomorphic to Ry » under the binary operation which takes
two elements A, By, and returns the minimal transducer AB ,, ¢,) representing (A * B) ) 40
Therefore, for convenience and to ease the exposition, we will henceforth identify elements of R, »
with the set {Aq, | Aq, is minimal and hq, € Rn +}. We might still sometimes distinguish between
the two objects for emphasis.

The following lemma demonstrates that two elements of g;, g2 € B » are in the same coset of
Bn,r/Gn,r if and only if the initial transducers A 4, and By, representing g; and g, respectively
have the same cores. We recall (Notation for initial transducers Aq,, Bp, over € or &y, ,

that AB ) is the minimal transducer representing the product (A * B)

Po.90 Po,do)"

Lemma 2.5.1 ([10]). Let Aq, and By, be transducers representing elements g,h € By r respectively.
Then Core(A q,) =« Core(By,) if and only ifg_lh € Gnr.

Proof. Let c = Core(Aq,) = Core(By,), k € N be such that Aq,, Bp, and Aq—l are synchronizing
0
at level k. Since Core(Aq,) = Core(Bp,), we may choose k such that, if y € XX _, then the

n,rs

state of Aq, forced by v (a state of c) is equal to the state of By, forced by y. Consider the

product (A g1 * B)( 4 Lpo)” Let j € Npaxk,1 be minimal such that for any vy € Xim we have,
0 0

P
Aa—1(v, qo))l = k. Lety € X} be arbitrary, q be the state of A gl forced by v, and p be the state
0

of By, forced by A 5 -1(v, qo). We observe that (q, p) is a state of (Aq51 * AQO)(qgl,q

of Aq, forced by A,—1(v,qg ') is equal to the state of By, forced by Ay-1(v, qy'). Therefore, as

o) since the state

v € X), » was arbitrary, as in the proof of Theorem we conclude that haol hp, € Gnr.
For the reverse implication let Aq, and Bp, be transducers respectively representing
homeomorphisms g,h € By such that g_lh € Gnr. LetA ! be the minimal transducer
0

representing g l,C= Core(Agq,), D = Core(Bp,) and E = Core(Aqal). Since g~ 'h € Gn,r, it

must be the case that the minimal transducer representing the product (A g7 Bpo))( has
0

dp 'po)

trivial core. Clearly (A qalAqO)( ag,d0) also has trivial core.

q
Let q be a state of E and notice that im(q) is a clopen subset of €,,. Fix I' € Xj; such that

Ur € im(q) and let j € IN be minimal such that for all words v € X%-l, Aa-1(v,q)| = ITl. Let
Wi, ..., W be the set of all words in XiL such that, forall 1 <1 < m, A,-1(wj, q) = I'p; for some
pi € X;,. Since Ur C im(q), we have, UjcicmIpi im(mty—1(wi, q)) = Ur. Let w be the greatest
common prefix of the set {w; | 1 < i < m}and, p; and p; be states of C and D respectively
such that (q,p1) and (q, py) are states in the core of (Aqaprﬂ))(qal,m) and (AqalAqo)(qal,Po)
agLpo) and (Aqo_lAqo)(qO_],po) have trivial core, it must be the
case that, for any word v € Xj, (V)ehth] — (e)ehqhm = v and (v)ehthz — (e)ehthz = V.
Therefore, for (i, T) € {(1, A), (2, B)}, we have, A1 (", pi) has a prefix equal to (e)ehthiw. This is
because, as UjcicmIpi im(ma-1(wy, q)) = Ur and (wi)ehth,l — (e)thhp,l = wj, any element
of (Ur)hy, has prefix (€)0y qhp, W and as Aq, and B, have no states of incomplete response,
we conclude that At (T, pi) has a prefix equal to (€)6p, hp, W- In fact it is actually the case that

respectively. Since (A ag’ Bp,)) (

Ar(T,pi) = (e)ehthiw, since if there was some ¢ € X;| such that, A1 (T, pi) = (e)thhpiW(p,
then choosing & € Xj; and 1 < i < m such that wid L we, we have, At(I'pi, pi) L (e)ehthiwié
contradicting the fact that (w;6)0hghy, — (e)ehq hp, = wyb.

Now let A € X! be arbitrary, and 1 € IN be minimal such that, for all words p € XL,

Aa-1(1, q)| = ITA|. By repeating the argument above with I'A in place of I', we again conclude
that, for (i, T) € {(1,A), (2,B)}, AT (T'A,py) = (e)G]»lthi & where £ is the greatest common prefix of
the set of all words p € X%, such that, Aa-1(1, q) =TA¢ for some ¢ € Xj,. Notice that p = wp’
for some 1’ € X%, and so & = wé’ for some &’ € X}. Therefore, since A1 (T, pi) = (€)Ohgh, W,
we must have, A1(A, (T, pi)) = &’. Hence, we conclude, since A € X}, was arbitrary, that
AA (A, 1A (T, p1)) = A (A, mg (T, p2)) forall A € Xj,. This implies that, setting p; := 7 (A, p1) and
psy =g (FA,p2), Ap{ and Bpé are w-equivalent. Since E and D are strongly connected and have
no pair of w-equivalent states, Ap{ =y B‘pé’ and so E and D must be isomorphic, that is they are
equal up to a relabelling of states. O
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Implicit in the proof of the reverse implication of Lemma is the following result:

Lemma 2.5.2. Let E,C,D be core synchronizing transducers over € without states of incomplete
response and no pair of w-equivalent states. Let e,c,d be states of E, C and D respectively. If
Core(EC (¢,c)) = Core(ED (¢ q)) = id, then C =, D.

Lemma 2.5.1) means that we may identify elements of B, /G with the set {Core(Aq,) |
Aq, is minimal and hq, € By +}.

Notation 2.5.3. Set O, = {Core(Aq,) | Aq, is minimal and hq, € By +}. For n = 2, there is only
one choice of r, in this case we write O, for the group 0y 1.

Remark 2.5.4. Observe that by definition, for T € Oy, +, and any state t of T, the initial transducer
Tt is minimal (it is accessible since T is synchronizing).

The following definition gives a multiplication of core synchronizing, automata over ¢;, and is
taken from [10].

Definition 2.5.5. Let C and D be core synchronizing transducers over €, and p and q be states
of C and D respectively. Set CD = Core(CD(, q)), where CD;, ) is the minimal transducer
representing the product (C x D)y, ¢ of the initial transducers Cp, and Dq. We call CD the core
product of C and D.

Remark 2.5.6. Observe that for core, synchronizing transducers C and D over ¢,, with states p
and g, the product CD 4, 4) is synchronizing also by Proposition 2.1.30jand Proposition

The lemma below demonstrates that for core synchronizing transducers C and D over ¢,,, and
transducers A g , Bp, € Bn,r such that Core(Aq,) = C and Core(By,,) = D, the core product CD,

for any choice of states of C and D, coincides with Core(AB , q,))-

Lemma 2.5.7. Let Ay, and Bq, be minimal transducers such that hyp, hg, € Bnr, C = Core(Ap,),
and D = Core(Bg, ). For any choice of state p € Qc and q € Qp, Core(AB, q,)) = Core(CD, 4))-

Proof. Let k € IN be such that Ay,;, Bg,, C and D are all synchronizing at level k. Let j € Ny be
minimal satisfying the following conditions for all y € X}, ;:

i) AA(v,po)l = kand,
ii.) for any statep’ € Qc, IAa (v, p') = k.

For any word v € X}ilr, we have mg (v, qo) € Qp, since Bg, is synchronizing at level k with
Core(Bg,) =D.

Let A € X}, be arbitrary, p’ be the state of C forced by A, and q’ be the state of D forced
by Ac(A,p). Observe that mc.p (A, (p,q)) = (p’,q’). We now show that (p’, q’) is a state of
(A xB) (Po,q0) ). LetT € X]n,T be arbitrary, and A € XJ, be such that the state of C forced by Aisp
(A exists since C is core and synchronizing). The states of A}, forced by ' A and I'A are equal to
p’ and p respectively, since A (T, pg) € Q¢ and C is synchronizing at level k. Thus, A5 (TAA, po)
has length greater than or equal to 2k, by assumptions placed on j. Moreover, the length k suffix
of A (TAA, po) is equal to Ac (A, p). Therefore, it must be the case that 7tg (A a (TAA, po), qo) = q7,
since reading the initial length k prefix from qq guarantees that the length k suffix, Ac(A,p), is
processed from a state of D to the state q’. In total we have, T axB) (TAA, (Po,q0)) = (p ",q").

The arguments above show that for any word p € Xj, of long enough length (length at least
i), Tc«D) (K, (P, q)) is a state of (A % B)(p q,)- From this it follows that Core(A * B),
Core((C D) (p,q)) since the core of any synchronizing transducer is strongly connected.

The conclusion of the proof follows from the following observation. Let E be a synchronizing
transducer, then if E is the transducer obtained from applying the procedure[M2]to the transducer
E, then 7te /[ (Core(E/)) = TE [ (Core(E))- MoTeover, the procedur modifies the transition function
of a state e of E using only information about the function h.. Therefore, after applying procedures
and to (A*B)(py,q0) and (Cx D)y, q) to obtain minimal transducers AB
it is still the case that Core(ABp,,q,) = Core(CDy, 4) as required.

Po.90)

Po,90) and CD(PrQ)'
O
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The following Proposition follows from Lemma

Proposition 2.5.8. The set Oy, equipped with the binary operation core product is a group. Moreover
On,r = Out(Gn,r).

Proof. That the set O+ is closed under the binary operation core product is a consequence of
Lemma That this binary operation is associative is a consequence of the associativity of the
multiplication of minimal transducers, and Lemma once more. We now show that inverses
exist and that they are unique.

Let T € On,, then there is some Aqy € Bn,r such that Core(Aqo) = T. However, since
Aqy € Bn,r, there is some By € By r such that AB (g, ) = BA(p,,q,) = id- LetS = Core(By,),
then by Lemma[2.5.7 we have that TS = ST = id. Now by Lemma or the associativity of the
product, it follows that S is unique.

The map from By, ;+/Gnr — On,r mapping an element [Aq,] € Bn,/Gn,r to Core(Aq,)
is surjective, by the definition of Oy, injective by Lemma and a homomorphism by
Lemma([2.5.7] Therefore we conclude that Oy r = By +/Gn,r = Out(Gn r). O

Definition 2.5.9. Let T € O, » we say that T has a homeomorphism state if there is state u of T such
that the map hy, : €, — €, is a homeomorphism; the state u is called a homeomorphism state.

The question arises if all elements of Oy, » or even of O, possess homeomorphism states. Before
we answer this question, we demonstrate why possessing a homeomorphism state is important.

Proposition 2.5.10. Letr,v’ €{1,2,...,n— 1} bedistinct. If T € On v has a homeomorphism state, then
T € On,r also.

Proof. Let Cq, be a transducer representing an element of Gy, » (and so Core(Cgq,) = id). Let T be an
element of O, ,» with a homeomorphism state t and Bg, € B, »» be such that Core(Bg,) = T. We
form a new transducer D 4, satisfying, Core(Dg,) = T and hp a € Bn,r, by replacing Core(Cg,)
with Tt.

We set Qp := Qc\{id} LI Q7. Define the transition function tp and output function Ap of Dg,
as follows: p [x, x Q7 = 7T, AD X, x Q. = AT; for a € Xnr U Xy and q € Q¢ such that ic(a, q)
is defined we have:

dApl(a,q) =Ac(a, q).
t otherwise and Ap(a, q) cla,q)

o (6, q) = {nc(a,q) if e (a, q) # id
If Cq, is synchronizing at level k, then after processing any input of length k from any state of
Dg,, the active state is a state of T. Since T is synchronizing, it follows that D ¢, is synchronizing
also. Further observe that the set JN of minimal paths in Cg,, from qq to the state id is a complete
antichain for X;{ ;.. Moreover the set of outputs OUT of the set IN when processed from qq, is also
a complete antichain for X\ ... Notice that N coincides with the set of minimal paths in D4, from
qo to the state t, likewise OUT coincides with the outputs of the set JN when processed from qg in
Dg,- Since T, is a homeomorphism state, we therefore conclude that hp a@ is a homeomorphism of
Crre
Lety € IN, and 6 = Ap(y,qo) € OUT. Observe that 6 € XTJ[,r since Cq, is a minimal
transducer over &, ;. Consider (8)@g,, since mp (v, qo) = t, a homeomorphism state, it follows
that (8)©4, =y otherwise hp a@ is not a homeomorphism. Thus 7{; (3, (€, qo)) = (€, t). Moreover,
since y € IN was arbitrary, we deduce that for any 8’ € OUT, [, (8, (€, qo)) = (e, t). Letv € X1*1,r’
satisfy mg(v,Rp) = t and let p = Ag(Vv,Rp) € le,r" By a similar argument, we once more
conclude that 7 (1, (e,Rg) = (e, t). Since t is in the core of Bg,, by choosing a large enough v
we may make p as long as we like. Therefore, if BR61 is the minimal transducer representing
B(e,r,) and Dg-ris the minimal transducer representing D 4,), then an1 is synchronizing and

0
Core(D_ 1) = Core(B,, 1. This is because OUT is a complete antichain of X}, , and after processing
qy R, n,r

any word of OUT from the state (€, qp), the resulting state is (e,t). Hence, we conclude that
hp,, € Bn,r as required. O

Notice that as part of the proof above we show the following:
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Lemma 2.5.11. Let T € Oy, possess a homeomorphism state t, then Ty is a bi-synchronizing transducer,
in particular Ty € By 1.

The example which follows is from the author’s article [10] and demonstrates that elements of
On,r need not possess a homeomorphism state:

Example 2.5.12. Consider the element A, € By 3 below

0/1,22

30,11 112|3/1

211

Figure 2.12: An example of an element of B4 3 whose core has no homeomorphism state

One can observe that Core(Aq,) is the subtransducer induced by the state {q1, 2, g3, 4, g5}
none of which are homeomorphism states. That {q1, q2, q3, q4, q5} is the Core(A 4,) follows since
A q, is synchronizing at level 3. That none of {q1, q2, g3, 4, 5} are homeomorphisms states follows
since the function Aa (s, qq) : X4 — X4 is not injective forany 1 < a < 5.

On the other extreme, one could ask about elements of Oy, all of whose states are
homeomorphism states. These are characterised by the following lemma from [10]:

Lemma 2.5.13. Let T € On, be such that all states of T are homeomorphism states, then T €
Mgt/ <nOn,rr and T is synchronous.

Proof. Fix a state q of T, and observe that since all states of T are homeomorphism states then the
set {A1(i,q) | i € Xn} must form a complete antichain for X};,. However, there is only one complete
antichain of X3, consisting of n elements and that is precisely the set X,. Thus, for any state q of T
the map At (., q) with domain Xy, is a bijection from X, to itself. That T € Ny /<y Op v follows

from Proposition[2.5.10 O

Notation 2.5.14. Let },, be the set of minimal, invertible, synchronous, bi-synchronizing
transducers over €. From Lemma [2.5.13| and the proof of Lemma [2.5.10} it follows that H;,
is precisely the set of all those elements T € N<y<nOn,r all of whose states are homeomorphism

states. We also denote by Hn the set of invertible, synchronous, synchronizing (but not necessarily
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bi-synchronizing) transducers over ¢,,. Note that J{,, is not a subset of Oy, ; for any r since it
contains invertible transducers whose inverses are not synchronizing.

The set H, is closed under the core product given in ]zeﬁnition and so it is a subgroup of
M <r<nOn,r asitis also closed under inversion. The set H,, is also closed under the core product,
however it is not closed under inversion. The next chapter focuses on the monoid Hy and the
group Hy,. Some of the results in the next chapter also concern the monoid P consisting of all
synchronous, synchronizing transducers over ¢, with binary operation a modification of the core
product. We close this chapter with a few more observations about the group O, some of which
may be found in the author’s article [10].

Notation 2.5.15. Let X1, = Ni<r<n—10n,r; in the case n = 2 we have, X, = 0,. Notice that as Ky,
is the intersection of the groups Oy, -, with the binary operation core product, it is a subgroup of
Onyrforalll <r<n—1

A natural question which arises is the following: do all elements of X, possess a
homeomorphism state? Notice that for n = 2 this reduces to answering the question: do all
elements of O, possess a homeomorphism state? The example below demonstrates that the
answer to this question is no, and shows that, in general, X, need not consist only of elements
with homeomorphism states. In fact this example also demonstrates that the subset of X, of all
elements which possess a homeomorphism state is not closed under the binary operation.

Example 2.5.16. The transducers A and B have homeomorphism states py and qg respectively,
such that A, and Bg, are bi-synchronizing. Therefore, by Proposition [2.5.10|and its proof, we
have that A, B € X;,. However, the core product of A and B is a transducer C which, as may be
verified either by hand or in GAP with the ‘aaa’ package, has no homeomorphism state.

0]001

11

Figure 2.13: The transducer A with homeomorphism state pg
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Figure 2.14: The transducer B with homeomorphism state qg

We close with a few characteristics of elements of Oy .
Remark 2.5.17. Let T € Oy -, we have the following:

(1) If there is some state t of T such that T, is minimal, then T, is minimal for any other state u
of T. This follows from the definition of states of incomplete response (Definition|1.6.3)), of
w-equivalent states (Definition [1.6.1), and since T; is accessible.

(2) For any state t of T, the map h is injective and has clopen image. This follows since there is
a transducer A g, € By r such that Core(Aq,) = T, moreover hq, is a homeomorphism.
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Chapter 3

The monoid P, and the group Hn

This chapter will primarily be concerned with the monoid P, which contains the monoid Hy,
and so the group 3y, consisting of all core, synchronous, weakly minimal (see Definition|[1.6.5),
synchronizing transducers. The monoid P, has connections to endomorphisms of the shift

dynamical system, which has implications for the group Hy,. In particular we show that Py is
isomorphic to a submonoid Fs, which together with the shift map generates the full monoid of
endomorphisms of the shift dynamical system. The restriction to 3, of the isomorphism between

the monoid Py, and the monoid Fq, gives rise to a group isomorphism between J{;; and the group
of automorphisms of the one-sided shift dynamical system. Therefore we study the group of
automorphisms of the one-sided shift dynamical system by studying the group J(,,. This result is
similar in spirit to the results of the paper [42] which shows that the group of automorphisms of
the one-sided shift is isomorphic to a group of transducers.

This chapter explores the conjugacy and the order problem in J(,,. We present, in the context of
Hn certain invariants of conjugacy that were already known for the automorphisms of the one-
sided shift. We also describe how to construct potential or candidate conjugators and conjecture a
solution to the conjugacy problem in 3{(,,. We apply these results to show that there are elements
of P, which are not conjugate to their inverses in P,.

The bulk of this chapter though, shall be devoted to the order problem and is based on an
article of the author’s ([44]). We associate to each element of H,, an infinite family of finite graphs.
We show that if an element of H,, has finite order, then these graphs are eventually empty, whereas
if any one of the graphs associated to an element of J{,, has a circuit, then the element has infinite
order. This therefore yields a sufficient condition for an element of J(;, to have infinite order. We
conjecture that this condition is also necessary. We also obtain results about the ‘dual transducer’
(this is defined in Section[3.5.3) of elements of J{(;, which have finite order. More specifically we
study the semigroup consisting of powers of the dual transducer. We show that there is a natural
number m such that the m™™ power of the dual transducer of an element of ¥, is the zero of this
semigroup if and only if it is an element of finite order. It is a conjecture of Picantin in [40] that m
is always equal to the number of states of the transducer minus 1. We verify Picantin’s conjecture
for all elements of Hy, with only two states. By making use of a construction of Delacourt and
Ollinger, we construct examples of elements of H;, which have finite order and such that the
minimal value m for which the m™ power of the dual transducer is the zero of the semigroup
consisting of powers of the dual, is precisely the number of states of the transducer minus 1.

As it turns out, the order problem in J(, is intimately connected to the question of the growth
rate of certain groups of homeomorphisms of Cantor space associated to transducers in H,,. Given
an element h € J(,, we denote by §(h) the group of homeomorphisms of Cantor space associated
to h. We prove that the order problem in H;, is equivalent to the problem of finding an algorithm
which, given an element h € H, determines in a finite time if the group §(h) is finite. Thus, we
survey what was already known about the groups G(h) for h € 3, and present results of the
author’s article [44]. More specifically, we present results of Silva and Steinberg ([51]]) showing
that the groups obtained from elements of J(,, are always finitely generated elementary amenable
groups. This together with results of Chou ([21]) and Rosset ([46]) shows that whenever the group
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obtained from an element of J(;, is infinite, then it has a free subsemigroup of rank at 2. We give
a different proof of this result by showing that whenever a graph in the infinite family of finite
graphs associated to an element of H,, has a circuit, then the group associated to this element
contains a free subsemigroup. Thus whenever the group §(h) for an element h € H,, is infinite, it
has exponential growth rate.

We then consider the question of how the number of states of an element h € J{;, grows under
powers, we call this the core growth rate. We prove some elementary results about the core growth
rate, showing amongst other things that it is invariant under taking powers and conjugation. We
demonstrate that for every n > 2 there is an element of 3{,, with exponential core growth rate.
We conjecture that it is in fact the case that every element of H;,, which has infinite order, has
exponential core growth rate.

Interspersed throughout the chapter will be certain results which do not fit under the umbrella
of ‘conjugacy’ or ‘order problem’ but which naturally arise in our study of the monoid Py For
instance we show that if m = nd, for m,n, d € IN, then the direct sum i}{ﬂ embeds as a subgroup
of Hn. B

We begin by demonstrating the connection between the monoid P, and the endomorphisms
of the one-sided and two-sided shift dynamical system. Throughout this chapter n shall be an
element of IN».

3.1 The monoid P, and the group of automorphisms of the one-
sided shift dynamical system

In this section we establish connections between the monoid P, and the group of automorphisms
of the one-sided shift. The exposition here is partly based on the article [33]] and the forthcoming
article [6] of the author’s. B

We begin with a definition of the monoid Pr,.

Definition 3.1.1. Let P,, denote the set of synchronous weakly minimal synchronizing transducers.
Define a product on P as follows, for T,U € Py, set UT to be the weakly minimal transducer

representing Core(U * T). Thus UT is again in P, by Theorem [2.1.32} and the set P together with
this product forms a monoid.

Remark 3.1.2. Observe that as elements of 3, which are e weakly minimal, are also minimal, then
it follows that the product defined above for element of P, and the ‘core product’ of the previous
section coincide on i]-(n and so f]-fn is a submonoid of ﬂ’

Below we define the one-sided and two-sided shift dynamical system. Recall (1.1.11) that
the symbols XZ and X&' denote, resectlvely, the set of infinite and bi-infinite sequences over
the alphabet X;,. Recall (Section [1.4) we define metrics d, and dw, on the spaces X% and X%
respectively, making each of these homeomorphic to Cantor space.

Notation 3.1.3. Letk € N and v € X3!, set U9 :={y € X% | y_y...y_1Yoy1...yx = Vv}. For
v € X2+, 1Y is clopen, moreover the set Uy en{Uy | v € X25+1} is a basis for the topology on X%
induced by the metric doo

Definition 3.1.4. Define a map oy, : X& UXZ — X% UXZ by x + y where y is uniquely defined
by the rule y; = x4 foralli € N or i € Z as appropriate. Observe that on[xw : X5 — X7
is surjective but not injective, and on[xz : XZ — XZ is a bijection. We shall denote by oy, the
restrictions on [xw and o, [Xz as it will be clear from the context which is meant. The map o, is
called the shift on n letters or snnply as the shift (map) when the cardinality of the alphabet is clear.

Remark 3.1.5. Observe that o, is a continuous map on X and X%. Moreover the inverse of oy,
on X%, we denote this map by o7y,?, is also continuous on X4. Thus o4, is a homeomorphism of XZ.

Definition 3.1.6. We refer to the pair (X}, o) as the full one-sided shift dynamical system on n letters
or the full one-sided shift dynamical system, and the pair (X%, o1, ) as the full (two-sided) shift dynamical
system on n letters or the full (two-sided) shift-dynamical system.
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Remark 3.1.7. There is a notion of sub-shifts (see for instance [12]]) in the literature, hence the use
of the word ‘full” above. However, as we are only concerned with full shifts in this work, we omit
the word full in subsequent discussion. We will also refer to the two-sided shift dynamical system
simply as the shift-dynamical system.

Definition 3.1.8. We denote by Aut(X%, oy,) the group of all homeomorphisms of X4 which
commute with o, i.e the centraliser of oy, in H(X%). We denote by End (X%, 0,,) the monoid
consisting of all continuous functions, ¢ from X% to itself which commute with the shift map.
Analogously, denote by Aut(X{, oy, ) the group of all homeomorphisms of X{{ which commute
with the shift map. The group Aut(X%, oy, ) is called the automorphisms of the shift dynamical system
and the group Aut(Xy, or) is called the automorphisms of the one-sided shift dynamical system. The
monoid End(X%, 0,) is called the endomorphisms of the shift dynamical system.

The groups of automorphisms of the one and two-sided shift dynamical system are important
and well studied groups in symbolic dynamics. It is a result of Hedlund [33]] that for n > 2,
the group Aut(X%, oy ) has a subgroup isomorphic to any finite group. In fact the paper [37]
demonstrates that for any n, m € IN», Aut(X%, on ) is a subgroup of Aut(X%l, om ) and Aut(X%, on)
has a subgroup isomorphic to any countable, locally finite, residually finite group. For n > 3,
Aut(X{, o) contains free groups [12], while for n =2 Aut(X¥’, on) = Z/2Z [33]. Here Z/2Z is
the cyclic group of order 2.

The paper [30] demonstrates that the rational group R, contains subgroups isomorphic to
Aut(XZ, o) and Aut(X®, oy, ) forany n € IN,. Here we demonstrate how elements of Aut(X%, oy, )
and Aut(X¥, o, ) may be represented by non-initial transducers in P,. Notice that this is distinct
from, but related to, the embeddings of the one-sided and two-sided shift dynamical system in
Ry, as such homeomorphisms in R, are represented by initial transducers. However, we shall
require first a fundamental result of Hedlund, (demonstrated independently by Curtis and Lyndon)
characterising elements of Aut(X%, on) and Aut(X¥, o ) by so called ‘block maps’.

3.2 The Curtis, Hedlund, Lyndon theorem

In this section we present the Curtis, Hedlund, Lyndon theorem, characterising elements of
Aut(X%, 0y, ) and Aut(X%, o) by easy to understand combinatorial data.

Notation 3.2.1. For m € IN; denote by F(X;,, m) the set of maps f : X]I* — X,. Amap f € F(X;,, m)
will be called a block map.

Given a block map we may obtain an endomorphisms of the shift dynamical system.

Definition 3.2.2. Let m € INy and f € F(Xy, m). Define a map fy : XTZ1 — XTZ1 as follows: for
X € X%, (x)fxo is the element y € X% satisfying yi := (XiXi+1...X{+m—1)f forall i € Z. In a similar
way we define a map also denoted fy, from X{} to itself by x € X{Y maps to the unique y € XY
satisfying Yi = (Xixi+l .. .Xprm,l)f.

Remark 3.2.3. One should think of a block map f € F(X;,, m) as a sliding window of width m
which processes a string in X% X% by moving from right to left (i.e from +oco to —oo or 0), and
changes the entry at the left-most point of the window according to the information that can
be seen. Negative powers of the shift map may be thought of as providing access to ‘future’
information i.e information to the left of the current index.

We have the following:

Proposition 3.2.4 ([33]). Let m € INj and f € F(Xn,m), then fo € End(XTZl,Gn) and fo €
End(X¥, on).

Proof. Certainly, for m € IN; and a given f € F(Xy, m), the map fo is continuous on X&' and XTZl.
It therefore suffices to show that fo, commutes with the shift map on,.

Let x € szl and lety = (x)on. Notice thaty; = xj,1 fori € Z. Let z = (x)f0n and let
t = (Y)foo. Then z; = ((x)f)it1 = Xia1-- - Xiem)f = Yi---Yirm_1)f =ty for all i € Z. Thus
t =z and foo0n = onf as required.

An analogous argument shows that for any x € X%, (x)feo0n = (X)onfeo. O
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Notation 3.2.5. Set Fo, = {fo, | T € F(Xy, m) for some m € IN1}.
We have the following result:

Theorem 3.2.6 (Curtis, Hedlund, Lyndon). The following equalities are valid: End (X%, on) = (0on, Foo)
and End(X¥, on) = Feo.

Proof. We begin with the equality End(X%, o) = (on,Feo). Let ¢ : X4 — XZ be an element of
End(X%) and V; = (U?)d)fl for i € X;,. For distinct 1,j € Xy, since U? N U? = (), then Vi N'V; = 0.
Therefore, as ¢ is continuous and {U? | i € Xy, }is a clopen cover of XZ, the V;’s i € Xy} are also
pairwise disjoint and a clopen cover for XZ.

Now as the V;’s, for i € X;,, are pairwise disjoint and clopen, there is a minimal k € IN
such that, for distinct i,j € Xy, and any pair x € Vi and y € Vj, dwo(x,y) > 1/(k+1). This

follows since as each V; is clopen there is a minimal k; € IN and a subset #?(V;) C X%Lkiﬂ
such that U, ¢ y(vi)ug = V;. We may thus set k = max;jecx,, ki. Moreover, observe that the set

P = Uiex,, & (Vi) is a partition of X%Lkiﬂ since the V; are a clopen cover of X%.

Define a map f : X3! — X;, by v + 1if and only if U}, C V;. By the assumptions on k above
f is well-defined since for v € X2*1 there is a unique i € X;, such that UY, € V;. We now show
that o, *fo = .

Let x € X%, then x € V; for some i € Xy, and so there is some v € X2*1 such that x € UY.
Lety = (x)0;,*. Observe thatyg...yox = v. Let z = (y)fo and let t = (x)$. Then we have that
1= zy = tg by definition of fx.

Now we use the facts that both f, and ¢ commute with the shift. Let m € Z be arbitrary. Let
x' = (x)on™ y' = (x)or ¥, z/ = (y')fs and t’ = (x’)$. Observe that z;, =z and tm = tj since
(Y )foo = (y)feoopt and (x')d = (x)poqt. However, by the computation in the paragraph above
we have, z) = t) and so z, = tm. Since m € Z was arbitrary, we conclude that z = t. Hence
07 K oo = .

We free all the symbols used above.

For the equality End(X{, on,) = Fo we proceed in a similar way. Let ¢ € End (XY, o). We set
Vi = (U)o ! (recall the definition of U; from Notation . Since the V; for i € X, are clopen
and pairwise disjoint, then, as above, there is a minimal k € IN such that for distinct 1,j € Xy, and
any pair x € Vi and y € Vj, we have, d(x,y) > 1/(k +1). Define f: Xk — Xn by v — 1iif and only
if Uy C Vj. Asin the previous case, f is well-defined.

Letx € XTZL. There is a unique i € Xy, such that x € Vj, therefore if t = (x)$ and z = (x)f then
tp = zp = i. Again, we now use the fact that fo, and ¢ commute with the shift, to conclude that
t=z O

Remark 3.2.7.
1. Theorem demonstrates that o, is equal to f, for some f € F(Xy, m) where m € IN;.

2. If an element ¢ of End(X%, 0y,) or End(X%, 0y) is given by ‘finite data’ e.g. it acts only
on words of a fixed length occurring between certain fixed markers, as in the marker
automorphisms which occur for instance in [33] and [14], then the proof of Theoremm
gives an algorithm for computing k and the map f € F(Xy,2k + 1) such that ¢ = 0~ *f.
This is because we may build a finite clopen cover, which we identify with words in Xj,, for

the sets V; by considering how the map ¢ acts on elements x_ 1, ...%g ... xm for larger and

larger m. The process then terminates as soon as we find pairwise disjoint clopen covers for

the V;. Using these covers the value of k and the map f € F(Xy,2k + 1) can be computed.

Definition 3.2.8. A block map f € F(Xy,, m) is called left permutive [right permutive] if, for any fixed
e XM the map from X, — Xn given by i — (il')f [(I'1)f] is a permutation. A block map
f € F(Xn, m) which is both left and right permutive will be called permutive.

Remark 3.2.9. An element of ¢ € Fo, which is an element of Aut(X{’, o) must be left permutive
otherwise it is not injective. As we shall see later on, Aut(X;y, o) does not coincide with the set of
elements fo,, where f € F(X;,, m), for some m € Ny, is a left permutive block map.

In the next section we show how elements of UNJn can be constructed from elements of F(X;, m).
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3.3 From endomorphisms of the shift dynamical system to
elements of P,, via foldings of De Bruijn graphs

In this section we construct elements of ﬁn from elements of F(X,,, m). We then demonstrate that
this yields an isomorphism from the monoid Fy to the monoid Pn. From this we deduce that
the group 3, coincides with the group Aut(X$’, o, ). This link between the monoid Fy, and the
monoid P, is achieved by foldings of De Bruijn graphs. The exposition in this section is based on
the forthcoming article ([6]) of the author’s.

We begin with a definition of the de Bruijn graph G(n, m).

Definition 3.3.1. The de Bruijn graph B(n, m), for m € INy, is an automaton <7Xn, X7, 7t) such that
fori € Xn and ' € X[, we have, 7t(i,T") = I'" if and only if I'" = il’ where T is the length m — 1
prefix of " Set B(n, 0) to be the single state automaton over Xr,.

Remark 3.3.2. Note that the automaton (X, X, 7/} where 7t/ satisfies, for I' € X', «t/(1,T) =Ti
for T the length m — 1 suffix of T, is isomorphic to the de Bruijn graph B(n, m). However, for our
purposes, it is more convenient to work with Definition [3.3.1}

Further observe that the de Bruijn graph B(n, m) is synchronizing with minimal synchronizing
level m since after reading a word y1v2 ... ym of length m, the resulting state of the automaton
B(n, m) is the state YmYm—1...v1. Clearly B(n,0) is synchronizing at level 0 as it only has one
state.

Notation 3.3.3. As the remark above demonstrates, for a word I' :==y; ... ym € XJi* it is useful to
have notation for the reversed word v, ...v1, and so we denote this word with the symbol ?

Example 3.3.4. We depict below the de Bruijn graph B(2,2).

Figure 3.1: The de Bruijn graph B(2, 2)

Definition 3.3.5. Consider the de Bruijn graph B(n,m) = (X, X{i*, m). Let Q be a partition of
X7 such that for g € Q, and i € Xy, there is a unique q’ € Q such that for any pair 1,1, € q,
n(i, 1), n(i, 1) € q'. Define a map v/ : Xn x Q — Q by 7/(i,q) = q’ where q’ is the unique
element of Q such that forall T € q, 7t(i,T") € q’. The automaton A = (X, Q,n’) is called a folding
of the de Bruijn graph B(n, m). More generally, an automaton isomorphic to a folding of B(n, m)
is also called a folding of B(n, m).

Remark 3.3.6. Observe that if an automaton A is a folding of a de Bruijn graph B(n, m) then,
as a consequence of how the transition function of the foldings are defined, A has minimal
synchronizing level at most m.

Example 3.3.7. Below we depict the foldings of B(2,2) corresponding to the partitions {X3} and
{{00, 01}, {11}, {10}

80



(a) 1
Folding of B(2,2) corresponding 0 0

to the partition {X%}

(b) Folding of B(2,2) corresponding to the partition
{{00,01, {11}, {10}}

Figure 3.2: Foldings of B(2,2).

We have the following proposition relating synchronizing automata and foldings of de Bruijn
graphs. The proposition below essentially states that the de Brujin graph B(n, m) is universal for
the property of being synchronizing at level m.

Proposition 3.3.8. An automaton A = (Xn, Qa, A is synchronizing at level m if and only if A is a
folding of the de Bruijn graph B(n, m).

Proof. The reverse implication is discussed in Remark

Thus suppose that A is synchronizing at level m. For a state q of A let W (m) denote the set
of words I € X[} such that ma (T',-) : Qa — QA has image set {q}. Since A is synchronizing at

%
level m, the set {Wq(m) | g € Qa}is a partition of XT'. Let Wq(m) ={T | T € Wq(m)}, and set
%

Q' :={Wq(m) | q € QJ, then, since the map «+ : X' — X' by I' — T is a bijection, Q” is also a
partition of X7

Let ' € Wq(m) and suppose that for i € Xy ma(i,q) = p. Since A is synchronizing at
level m, it follows that, for all T ::(_1/1 . Ym € Wq(m), y2...vymi € Wp(m). Thus for all
M=vy1...ym € Wq(m), iym...v2 € Wp. Asiand q were arbitrary, it follows that, for any q € Q,

— o

agiveni€ Xy, for p = ma (i, q) and any pair Ay, Ay € Wq(m) we have, iA1,iA; € W (m) where,
for a € {1,2}, Aq is the length m — 1 prefix of A<_a. a

Let " : Xn x Q" — Q' be defined by 7’ (i, Wq(m)) = Wy, (m) if and only if p = 7ta (i, q). The
paragraph above demonstrates that the a:tomaton B = (Xn,Q’/,n’) is a folding of B(n, m) =
(X, X, ) since for any pair I, € Wq(m), 1 € Xy, p = mal(i, q), and for a € {1,2},
A (i, Ta) =ilq € Wy, (again I'q denotes the length m — 1 prefix of I'y).

To conclude, we observe that the map ¢ : Q” — Q by W4 (m) — q is an isomorphism from B
to A, by the definition of 7t’. O

The de Bruijn graph B(n, m) gives us a means of realising a ‘window of length m’ (see
Remark [3.2.3) however, we also need to know how to transform the entry at the "left most point of
the window’. This information is provided by a block map f € F(X;,, m).

Construction 3.3.9 (From block maps to transducers). Let f € F(Xn, m) be a block map.
We construct a transducer Ay = <Xn,XT"J*1,7Tf, Af) as follows: the automaton A(Af) =
<Xn,Xw_l,7Tf> = B(n,m — 1); the output function A satisfies, for i € X, and I' € XT“L‘_l,
Ae(i,T) = (ilNf. Set T¢ to be the weakly minimal transducer representing A¢. Observe that
A(T¢) is a folding of B(n, m — 1) since Ty is synchronizing at level m — 1.

Below we compute the transducer Ty arising from a map f : X%L — Xy such that oo = 0.

Example 3.3.10. We begin with the 2 letter case. Let f : X, — X; be given by (ij)f =j fori,j € X,
and observe that f, = 0». We construct the transducer A+ as in Construction3.3.9
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0[0 11
1/0

Figure 3.3: Element of P corresponding to o3

Observe that A¢ possesses no pair of w-equivalent states and so A¢ = Ts.

Now we consider the general case. As before let f : X2 — Xy, be defined by (ij)f = j for
1,j € Xn. The transducer Tf = Ay has precisely n states corresponding to the elements of X, since,
for fixed j € Xy, and any i € Xy, we have A¢(i,j) = j and m¢(i,j) = 1. Thus At has no pair of
w-equivalent states, and every state j of A¢, j € Xy, induces a map A¢(.,j) : Xn — X which takes
only the value j.

The proposition below demonstrates that for an element T € Py, there is an m € IN and a block
map f € F(Xy,, m) such that T =T.

Proposition 3.3.11. Let T € Py, and suppose T is synchronizing at level m for some m € IN, then there
is a block map f1 : X1 — X, such that T, = T.

Proof. Let T € Py, be synchronizing at level m. Let fr : X1 — X, be given as follows, for

I' e X7, let q be the state of T forced by %, then for i € Xy, set (il')fT = At (i, q). Now form the
non-(weakly) minimal transducer A¢; as in Construction We show that Ty, the weakly
minimal transducer representing A, is isomorphic to T.

For a state q of T, let Wq(m) denote the set of words I' € X' for which the state of T

forced by I' is q. Let Wq(m) = {? | T € Wq(m)}. Observe that for a given q € T the
states of Ay, correspogding to words in Wq(m) are w-equivalent. This follows since for any
i € Xy and any A € Wq(m) we have, A¢, (1,A) = At(i, q)(_(see Construction . Moreover
Tir (1, A) = 1A for A the length m — 1 suffix of A, however iA € W, (; q)(m). Therefore for any
A€ Wq (m), me, (1, A) € WnT(i,q) (m). By induction we therefore conclude that all the states of
Ay, corresponding to Wq(m) are w-equivalent and are in fact w-equivalent to the state q of T.
Since T € Py, then T is weakly minimal, and we therefore conclude that Ty, =, T. O

We have the following proposition relating left permutive block maps to the submonoid Hy, of
Pn.
Proposition 3.3.12. Let T € JTCTL, and let f1 € F(Xyn, m) be a block map such that T¢, =, T, then f1 is
left permutive. Moreover, if f € F(Xn, m) is left permutive, then Ty € Hn.

Proof. LetT € IJTCn and q € Q7. Observe that A1(.,q) : Xn, = Xy, is a permutation. Let m € IN
and f1 € F(Xy, m) be such that T¢, = T. If ft is not left permutive then there are 1,j € X;; and
' € X' such that (il')ft = (jT")f1. By Construction it follows that the state I' of A, does not
induce a permutation from Xy, to itself. If T¢, is the weakly minimal transducer representing A
we therefore have that Tr, % T since Ty, ¢ iﬁn.

Now suppose that f € F(Xy, m) is a left permutive block map for some m € IN. By definition
of the transition function of A in Construction every state of A¢ induces a permutation from

Xn to Xy, Therefore if Tt is the weakly minimal transducer representing A¢, then Ty € ﬂffn. O

Given T € Py, Proposition [3.3.11| guarantees that there is an m € IN and a block map
fr € F(Xn, m) corresponding to T (and vice versa by Construction [3.3.9). This enables us to
define an action of T on XZ.

Definition 3.3.13. Let T € Py, be synchronizing at level m. Define a map, which we also denote by
T, from X% to itself by, x — y where y € X% is uniquely defined by the rule y; = A1(i, qx; ;..xi )
(recall Notation 2.1.9). Whenever it is unclear from the context that we are thinking of an element
TePyasa map on X%, we shall denote the induced map by hr.
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Remark 3.3.14. Let T € i’n be synchronizing at level m. Since ft € F(Xn, m+ 1) is defined, for
ieXnpand T € XY, by (il)fr = A1 (i, q<F), it follows, by definition of the map T : X% — XZ and
the map (f1)w : XZ — XZ, that T and (f1)o are equal. Therefore every element T € ﬁn induces
an endomorphism of the shift, moreover, every element of Fo,, by Construction corresponds
to an element of P,,.

The following Proposition demonstrates that the monoids Fo, and Py, are isomorphic.

Proposition 3.3.15. The monoid Py, is isomorphic to the monoid Fo

Proof. Let §, ¢ € F be distinct elements. Let f and g be block maps such that fo, = ¢ and go, = @
Let Tr and Ty be the elements of P, obtained from f and g asin Constructlonm Letm € N
be such that both T¢ and Ty are synchronizing at level m. Since ¢ # ¢ there is an x € XZ such
thaty = (x)$ # z = (x)@ and so there is some i € Z such thaty; # z;. Let ' = x{41...X{1m, we
therefore have that A, (i, q<—) #* AT, (i, q<—) (since Tr = ¢ and Tg = ¢). Thus we conclude that
Tf 20 Tg and so the map from Fo, — T sending an element f € Fy, to the transducer Ty € Tn is
injective.

It remains now to show that the action of P, on XZ is compatible with the binary operation of
Deflrutlon 1} That is, that the map from Fo, — Pn sending an element f € F, to the transducer
T € Tn isa homomorphlsm LetT,U € T and consider Core(U * T). It suffices to show that
TolU:XZ — XZ is equal to Core(U  T) : XZ — X% since, if UT is the weakly minimal transducer
representing Core(u xT), then UT and Core(u * T) have the same action on X%.

Let m € IN; be minimal such that both U and T are synchronizing at level m. Let x € X%
y = (U, z = (yTand z’ = (y)Core(U*T). Leti € Z be arbltrary and consider A :
AU(Xidm -« Xty Axisomexiomae )- Observe that yiyii1...Yiym is equal to A by Def1n1t10n
Let A denote the length m prefix of A, and observe that zi = A1 (Yi, px)- Since, for any state q of
U, Ay (Xit2m ---Xit1,q’) has suffix A, the state of Core(U * T) forced by X4 2m - - - Xi+1 is precisely
the state (qx;.,..xi;1,Pa)- Therefore, zl = Aust) (X4, (Gxi ) mxi41,9&)) = zi. Since 1 € Z was
arbitrary we conclude that 2z’ = z. O

Observe that as a consequence of the proposition above, endomorphisms of the shift may
be thought of as some negative power of the shift times some element of P,,. Moreover, as
Foo = End(X{, o), it follows that P, = End(X{, o). We thus deduce the following:

Proposition 3.3.16. The group H, is isomorphic to Aut(Xg, on).

Proof. By Remark elements of F, which induce automorphisms of the one-sided shift are
obtained from left permutive block maps. Moreover by Theorem the inverse of such an
element must again be an element of F,, obtained from a left permutive block map. Since left

permutive elements correspond to Hn (Proposition|3.3.12), it therefore follows, since elements of
Hn correspond to left permutive block maps inducing elements of F., whose inverses are again
induced by left permutive block maps that H(;, is isomorphic to Aut(X;y, on). O

Remark 3.3.17. From Proposition [3.3.16| we deduce that elements of ﬂffn\ﬂ{n do not induce
homeomorphisms of X{y. Moreover, the set H,,\J, forms a semigroup under the product

inherited from i]~3n since if H; and H; do not induce homeomorphisms X} then neither does
their product H; Hy.

It is result due to Hedlund [33] that for n = 2, Aut(X5", 02) = Z/2Z, thus by Proposition (3.3.16]
we conclude that Hj, apart from the identity, contains only the single state transducer which
induces the permutation 0 — 1 and 1 — 0.

Below, following a construction of Hedlund we show that the semigroup Hn\Hn forn > 2is
infinite.

We begin with the following Proposition.
Proposition 3.3.18. Let m € INy and f € F(Xy, m) be permutive. Then Tf = Ay and, if m > 1,
T¢ € Hn\Hn. Therefore T¢ has precisely n™ 1 states.
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Proof. First observe that if f € F(Xn,1) then as f is permutive, it induces a permutation from
Xn — Xn. Therefore A¢ consists only of a single state which induces the permutation f in its action
on Xp,. Therefore T = A¢ € J{, and the proposition holds for m = 1. For the remainder of the
proof, we assume that f € F(Xy, m+1) for m € Ny

Let f € F(Xn,m + 1) be permutive, and form A¢ as in Construction Recall that
states of Ay correspond to words in X]*. Let o, 3 € X, be distinct, and consider the words
X1 Xm_10 X1 ... Xm_1P where x; € X;; for1l < i < m—1. Let a € X, be fixed, then,
since f is permutive and, for vy € {o, p}, A¢(a, X1 ... Xm—1Y) = (ax;...x;m—1Y)f, we must have,
Ae(a, X1 ... xme1%) #Z Af(a, X1 ...xm—1P). Therefore we conclude that the states x1 ... x;,_1 and
X1 ...Xm—1p are not w-equivalent. Thus the forx; ... x;m_1 € XTT_l, theset{x;...xm_1b | b € Xn}
contains no pair of w-equivalent states.

Now let y1...Ym,01...0m € X be a pair of distinct words of length m. let1 < i< m
be minimal and a,b € X, be such that yiy = a # b = §;. Let xq...xm_i € X}{‘fl
and observe that, by construction of the transition function of A¢, 7¢(X1 ... Xm—i,V1...Vm) =
X1+ Xm_iVi-.-Vi_1Vvifor v € {y,d}. Setyi...vi1 =&1...0i_1:= Xm—i+1-+-Xm—1- We have,
(X e Xme—i,Y1---Ym) = X1 ---Xm_iaand 7t¢(Xy ... Xm—1,01---0m) = X1 ...xm_ib. However
by the above paragraph the states x; ...xm—ja and x; ... x;n—ib are not w-equivalent, therefore
the states y1 ...ym and 81 ... 6 are not equivalent either. From this we conclude that A¢ has no
pair of w-equivalent states and so is weakly-minimal.

We now demonstrates that A¢ is not bi-synchronizing, that is, we demonstrates that A;l is not
synchronizing since by construction A¢ is synchronizing. By the Collapsing procedure if
Af_l = (Xn, (X}{*)*l, 7'(1?1, 7\f_1> is synchronizing, then there are a pair of states q1, g2 of Af_1 such
that 7Tf_1 (i,q1) = 711,_1 (i, q2) for any i € X;,. By arguments in the paragraph above, for a state
X1...Xxm of Af and for letters 1,j € X5, if ?\]Tl(i, (X1...xm)" 1) = j, then 71171(1, (X1...xm)" 1) =
(%1 ...xm—1)"L. Therefore if q; and q, are states of A;l such that n;l(i, qi) = ﬂ;l(i, qp) for
any i € Xy, then there is a word x;...x;n—1 € X}F_l such that q; = (X1...Xm_10)" ' an
g2 = (X1...Xm_1B) ! for distinct o, p € Xr,.

Let x1...xjm—1 € X}, &, € Xn be distinct and consider the states (x1...%Xm_1&)”
and (x1...Xm_1p)" ! of Af’l. Since f is permutive, there are distinct i,j € Xj such that
A% e Xmo10) = (i1 .o xm1)f = (%1 .. Xm_1B) = As(j, X1 ... Xm_1B). Such i and j must
exist as f is left permutive, and right permutivity implies that i and j must be distinct. Therefore
setting k = A¢(i,x1...xm—10) = Af(j,X1...Xm—1B), we have that nf_l(k, (X1 .. Xmo1x) 1) =

1

(ix1...Xm—1) ! and 7'[1?1 (X, (X1 ... Xm_1B)" 1) = (xq .. Xm—1) "L Since A¢ is minimal, it follows

that (ixq...xm—1)"! and (jX1...Xm_1)"" are not w-equivalent states of A;l. Therefore, as

X1...Xm—1 € Xyt and «, 3 € X,, were chosen arbitrarily we conclude that there are no pair
of states q1 and gy of /Z\f_1 such that, for any i € Xy, ﬂf_l (i,q1) = 7Tf_1 (i, g2). By Theorem we
conclude that A;l is not synchronizing. O

Remark 3.3.19. It is a result of Hedlund [33]] that an element f, of F, arising from a permutive
block map f € F(Xy, m) for m € INy, induces an m-to-1 map of XTZ1 — that is every element of XTZ1
has precisely m pre-images under the map f.

Below we present a construction in [33] for constructing permutive block maps.

Construction 3.3.20. For m € INj define f : X' — Xy, as follows: (y1...vym)f = (v1 +vm)
mod n. For fixed &1 ...8,_1 € X771, the map from X, — X, givenbyi—i+6,,_1 mod nisa
permutation. Moreover, for fixed 81...6:n_1 € X}?_l, the map from X, — X, givenby i — &1 +1
mod n is also a permutation. From this we conclude that the map f is permutive.

As consequence of Construction 3.3.20|and Proposition 3.3.18| we have the following result:
Proposition 3.3.21. The semigroup Hn\Hn is infinite.
We identify the following submonoid of P

Definition 3.3.22. Set P, to be the subset of fT’n consisting of elements which induce self
homeomorphisms of XZ.
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Remark 3.3.23. Observe that if ) € Py, is such that on1 = oy, then by post- and pre-multiplying
by P! we have V1o, = onp 1, therefore P;, is a submonoid of Aut(X%, on ). Moreover, all
elements of Aut(X%, 0y,) can be written in the form o} for some \ € Py, by Theorem

By definition elements of Py, induce homeomorphisms of X% however, this does not imply that
elements of P, possess homeomorphism states (see Definition [2.5.9). We present such an example
below.

Example 3.3.24. Below is an example of an element of 534 which is in fact an element of P4 since its
square, after identifying w-equivalent states, is equal to the 4-shift, oy.

0[0

10,31 33

211
300,111 12|31

21

Figure 3.4: An example of an element of P4 with no homeomorphism state

Notice that this element is actually the core of the transducer in Example[2.5.12|and so is an
element of O4 3. Further connections between the monoid P, and the outer automorphisms of
Gn,r are explored in the forthcoming article [[6] of the author’s.

The next section shall mainly be concerned with the group H,,, however some of the results
are for the monoids Py, P, Hn.

3.4 The monoid §>n

In this section, we develop tools for working with the monoid P. Some of the results here may be
thought of as an interpretation of known results about the group of automorphisms of the shift in
the context of synchronizing transducers and we shall highlight these as we come to them.

We require first some further notation.

Notation 3.4.1. It will sometimes be convenient to work with non-weakly minimal transducers,
and so given a non-initial synchronous, transducer A over ¢, we use the notation min(A) for the
weakly minimal transducer representing A. Notice that if A Hy, then min(A) is the minimal
transducer representing A. We also observe that for a non-core, synchronous, synchronizing
transducer over €, min(Core(A)) = Core(min(A)), thus we write min Core(A) for the weakly
minimal transducer representing Core(A).
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Notation 3.4.2. Let " € X' for some m € INy. We denote by ... TTT... the bi-infinite word x € X%
such thatxg...xrj_; =Tand fori € XZ, Xi|T| - -+ X(i4+1)|r|—1 = I'- More generally given a sequence
Ay € X{ for i € Z, we denote by ...A_1AgA; ... the bi-infinite word x € X% such that, after
disregarding indices, x = ... A_1A¢A1...and Xg ... X|a 1 = Ao.

Notation 3.4.3. Given a set X we denote by Sym(X) the symmetric group on X, that is, the group
of permutations of the set X. If [X| = m for some m € IN; then we also write Sym(m) for Sym(X).

We recall, for a transducer A over Xn, a state g of A and a word vy € X}, Notation [I.3.7]
(V)Aq :=2Aaly,q).

We make the following results about A which will be useful later on. The first two shall apply
to all elements A € P,.

Lemma 3.4.4. Let A and B be elements of ﬂ~’n, and let m € IN\{0} be minimal such that both A and B are
synchronizing at level m. Then if A %, B, thereis aword T', [I| =k > m, and states p and q of A and B,
respectively, such that:

(i) p is the state in A forced by T" and q is the state in B forced by T..
(ii) p and q are not w-equivalent.

Proof. Since A #, B they induce different homeomorphisms of X%, and so there is a bi-infinite
word w = ...X_>X_1XgX] ... which they process differently.

Let wi = ...y_2y_1Yoy1yz... and wp = ...z_pz_1zpz1z;... be the outputs from A and B
respectively. Let k € IN\{0} be such that A and B are synchronizing at level k. Note that k > m.
Let 1 € IN be minimal such that yy # z; or y_1 # z_. Then one of the words x;_ ...x;_pX;_1 or
X_1_k-..X_1_2X_1_1 satisfies the premise of the lemma. O

Lemma 3.4.5. Let A € Py, be such that min Core(A') %, minCore(Al) for any pair i,j € N . Then

fori#j € N and any two states wand v of A* and AJ respectively, the initial transducers Al and A, are
not w-equivalent.

Proof. Observe that since min Core(Al) 2, minCore(A)), by Lemma there is a word T of
size greater than or equal to the maximum of the minimum synchronizing levels of A and B such
that the state of min Core(A') forced by T is not w-equivalent to the state min Core(A) forced by T.
Now since A* and AJ are synchronizing, the initial transducers A}, and A), are also synchronizing.

~ ~

Moreover Core(AL) =, min Core(Al), likewise Core(Ai,) = min Core(A)). Therefore let A be
a long enough word such that when read from the state u of A* and state v of A) the resultant

state is in the core of At and AJ respectively. Now let u’ and v’ be the states of A}, and A,
respectively reached after reading AT in A} and A},. Then u’ and v’ are not w-equivalent since
Core(Al) =, minCore(A!), and Core(A),) =, minCore(A}). Therefore there exists a word

S XHT}I such that (5)Ah, + (6)Ai, therefore we have that (AT8)Al, # (AF(S)A{',. The result now
follows. O

Proposition 3.4.6. Let A € Hy, be bi-synchronizing at level k. Then for any non-empty word T’ € X there

is a unique state qr € Qa such that (T, qr) = qr. Moreover, for any j € INy the map K]- : Xil — XL
given by ' — A(T, qr), where (T, qr) = qr, is a permutation.

Proof. Through out the proof let I be any non-empty word of length j > 1. We observe first that if
there is a state q such that 7t(T", q) = q then this state must be unique. Since if there was a state q’
such that 7t(T", q/) = q’ then 7t(T%, q) = q while 7t(T%, q’) = q’, and since I'* has length at least k
we see it is a synchronizing word and so can conclude that g = q’.

To see that such a state q exists, consider again the word r'k. Since T is non-empty, Tk > k,
so there is a unique state q such that 7a (T'%, q) = q. Now consider the state p so that (T, q) = p.
Since 7t(T'%, q) = q it is the case that t("'**1, q) = p, but I'* and I'**! have the same length k suffix,
so that p = q. In particular, we have 7t(T", q) = q.

We now free the symbol I'. We want to show the map defined on X}, (words of length exactly j),
by I' = A(T, q), where (T, q) = q, is a bijection.
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To prove this map is injective, suppose there are two words, I' and A, with associated states ¢
and r respectively, of length 1, such that A(T, q) =T’ = A(A, r). Now, as q is the state forced by rk
as above, while r is the state forced by Ak (again as above), we see that ("), q) = q while
()%, 1) = r, but as (I')¥ is synchronizing for A~! we must have that q = r, and then, by
injectivity of A, that T = A, so that in particular I' = A.

Therefore for each j € IN, j > 1 the map induced by A, from the set of words of length j to itself,
is injective. Therefore as this set of words is finite, the map is actually a bijection. O

Remark 3.4.7. Notice that we have only used the full bi-synchronizing condition in arguing
invertibility. The existence and uniqueness of the state q € Q such thatfor1 <j € Nand T € X},

7(T", q) = q holds for all elements of the monoid P. Observe that such a map indicates the act1on
of an element of P, on a periodic word ...TIT...for T € X{.

We illustrate the above proposition with the example below.

Example 3.4.8. Let C be the following transducer:

011

112 211 2|0

Figure 3.5: An element of 3

It is easily verified that this transducer is bi-synchronizing at level 2. The sets {00, 10,21},
{01,111, 20} and {02, 12, 22} are, respectively, the set of words which force the states q, q; and qp.
The permutation of words of length 2 associated to this transducer in the manner described above
is given by: (00 11 22)(10 20 12)(21 01 02). The attentive reader might have observe that these
disjoint cycles have an interesting structure: if we consider the states forces by each element of a
cycle then the result is a cyclic permutation of (qg q; q2). We shall later see how such behaviour
plays a role in understanding the order of an element.

We establish some further notation.

Notation 3.4.9. For A € Hy bi-synchronizing at level k, and 1 < j € N, let A7] represent the

permutation of XJ, indicated in Proposmonm Let X}, denote the set of prime words in X}, and
let Ay [xl denote the permutation that A; induces on the set XCY,.

Remark 3.4.10. Observe that a similar proof to that given in Proposition will show that we
can analogously associate to each element of Pn\Hn a map from X5 = X, for every 1 <je€NN.
However this map need not be invertible for every such 1 < j, (we shall later see that for one-way
synchronizing transducers there is some j, where the map so defined is not invertible). In light of
this, for each A = (X, Q, 7, \) € P and 1 <j € N let A; : XJ, = XJ, be the transformation given
by I' = A(T, q) where q € Q is the unique state such that 7(l', q) = q. We observe thatif A € P,
then A; is a permutation for every j € IN. This is because P, induces a homeomorphlsm of XZ.
Since 1f for some j € IN, A is not injective, then there are words I', A for which (I')A;j = (A)A;, this
means that the bi-infinite strings (...TIT...)and (...AAA...) are mapped to the same element of
XZ by A contradicting injectivity.
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Remark 3.4.11. If we have found a permutation (as above) for a transducer A for words of length
j = 1, then the disjoint cycle structure of this permutation will be present in all permutations
associated to A for words of length mj, for m € IN\{0}. This is seen for exampleif (I ... I)isa
disjoint cycle in the permutation associated to words of length j , then (Il ... I1I7) is a disjoint
cycle in the level 2j permutation. This is because each [} is processed from the state of A it forces
and the output is I ;. Generalise in the obvious way for the permutation of words of length
mj. For instance in the example above (0...01...12...2) will be present in the permutation of
words of length 2m associated to C (where each i...1i1is of length 2m, 1 € {0, 1, 2}). From this we
deduce that for an element A € J~3n andle N, Ay depends only on K]- for 1 < j < 1—1 such that
jll and the permutation A1 induces on the prime words in X},. This is because any non-prime word
rextisa power of some smaller word, y € X}, for some 1 < j < 1, and so the action of Aj ony is
determined by A;.

The following lemma shows that these maps behave well under multiplication. This is
essentially the well known result about automorphisms of the shift that the action on periodic
words induces an homomorphism to a symmetric group (see for example [13]])

Theorem 3.4.12. Let A = (Xn,Qa,7a,Ap) and B = (Qp,Xn, 715, A) be elements of ﬁn. Let
AB = (QAa, S, TaB, Aa«B) be the core product of A and B, where S C QA x Qp is the set of states in the
core of A * B. Then (AB), = A{Bj.

Proof. Let T be a word of length 1 in Xy, and let p € Qa be such that ma (I, p) = p. Let
A = Ax(T,p), and let g € Qp be such that mg(A,q) = q. Then (p, q) is a state of AB such
that mag(T, (p,q)) = (p, q). If A = Ag(A, q), then we have in (AB), that I' — A. However AB;
sends I" to A also. Since I' was an arbitrary word of length 1, this gives the result. O

Letty: 3~’n — Sym(X},) be the map defined by A — A for every 1 € N. Below we demonstrate
the usefulness of these maps.

Proposition 3.4.13. Let A and B be elements of P Then the following hold:

(i) A and B commute if and only if for every | > 1 Ay and By commute.

(ii) A and B are conjugate by an invertible element of P if and only if there is an invertible, h € P,
such that for every 1 > 1 ﬁfoq =By

(iii) A and B are equal if and only if for every | > 1 A = By.

Proof. The forward direction in all cases follows by Theorem B.4.12above which shows that the map
71 : P — Sym(XY,) is a monoid homomorphism. We need only prove the reverse implications.
We proceed by contradiction.

Forhsuppose that A; and B; commute for every 1 however Core(B * A) %, Core(A x B). Let
m € IN\{0} be such that both Core(A * B) and Core(B * A) are bi-synchronizing at level m. Let I’
be a word of length m as in Lemma such that p is the state of Core(A * B) forced by I' and q is
the state of Core(B * A) forced by I".

Let Aap and Apa denote, respectively, the output function of Core(A x B) and Core(B * A).
Since p is not w-equivalent to q there is a word A, of length 1 > 1 say, such that A :=
AAB(A,p) # Aga(A,q) = Z. This now means that in Core(A * B)iy, AI' — AWj and in
Core(B * A) , AT = ZW) (for some words Wy and W of length 1). Therefore we conclude that
Core(A # B)1 m # Core(B * A)ym which is a contradiction.

Part ((i1)] proceeds in a analogous fashion. Suppose A,B and h are as in the statement of
Proposition but Core(A * h) # Core(h x B). Let m € IN\{0} be such that Core(A * h) and
Core(h = B) are bi-synchronizing at level m. Let I' be a word as in Lemma and p and q be the
states of Core(A * h) and Core(h x B) forced by I' such that p and q are not w-equivalent. Now we
are able to construct a word as in part demonstrating that Core(A * h); # Core(h = B); for some
1 yielding a contradiction.

Part follows from Part|(ii)|with h the identity transducer. O
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Remark 3.4.14. Notice that Proposition (3.4.13| also follows since periodic points are dense in
XZ, and indeed the proof essentially relies on this fact. The corollary below is in some sense a
qualitative version of Proposition[3.4.13

Corollary 3.4.15. Let A and B be elements of ﬁn, and let k > 1 € N be such that both A and B are
synchronizing at level k. Then the following hold:

(i) A =Bifand only if A1 = Bry1.

(ii) Let BA and AB denote the minimal transducers representing the products Core(A x B) and
Core(B*xA) and 1 > 1eN be su(iz thai both AB and BA are synchronizing at level 1, then
AB = BA ifand only if Ay11B141 = BiyiAvgr.

(iii) A and B are conjugate in Pn if and only if there is an invertible h € P such that K 1Ah
(where this is the minimal transducer representing the product) is synchronizing at level k and

771 J— J— J—
h 1Ak rthiyr = By

Proof. Throughout the proof all products indicated shall represent the minimal transducer under
w-equivalence representing the product.

Observe that parts (ii)|and are consequences of part[(i)] Since for part[(ii)) AB and BA are
synchronizing at level 1; for part B and h™!Ah are synchronizing at level k (where h is the
conjugator). Therefore it suffices to prove only part (i)l

The forward implication follows by Proposition so we need only show the reverse
implication. Let k be as in the statement of part and assume that Ay 1 = By, 1. Denote by a
triple (Z,u, V) for = € XX, and 1 and v states of A and B respectively, such that u is the state of A
forced by = and v is the state of B forced by =. Notice that for each such = € XX such a triple is
unique.

LetT € X}i, belong to a triple (I, p, q). Let i € Xy, be arbitrary. Since A1 = Byy1, we must
have that (1)Ap, = (i)Bq since (T1)Ax;1 = (T'1)By1.

Free the symbols I', p, and q.

Now letw = ...w_y...Ww_1wWowq ... Wy ... be a bi-infinite word. We show that A and B
process this word identically. Let w; i € Z denote the ith Jetter of w. Then the it letter of (W)A is
(wi)A, where p is the state of A forced by I' = wi_ ... w;_1, the word of length k immediately
to the left of w;. Likewise the ith letter of (w)B is (wi)Bq where q is the state of B forced by T.
Therefore (T, p, q) is an allowed triple. However from above we know that (w;)A, = (wi)Bg.
Since i € Z was arbitrary, (w)A = (w)B, and A = B since w was arbitrary and A and B are
assumed minimal. O

Definition 3.4.16. Letj € Ny and p € Sym(Xle), then we say an element A € 3~’n is unique for the
pair (j, p) if A is synchronizing at level j and A; 1 = p. By Corollary|3.4.15/such an A, if it exists,
must be unique.

Proposition 3.4.17. It is a result in [13|] that given L € IN and a finite sequence of permutations (p1)1<1<t
of XY, there is an element A of Pr, such that A [xi = pufor 1 < 1< L. Therefore given an element

B € Pnand L € N, one may find an element A € P, such that Ay = By for 1 <1< Land Ay 1 # Bp41.
This implies that one cannot omit the synchronizing level in the uniqueness statement of Definition |3.4.16

Remark 3.4.18. A group is said to be residually finite if for any non-identity element g of the group,
there is a homomorphism onto a finite group mapping g to a non-trivial element. Corollary
part (i) demonstrates that the group P is residually finite. This is because the map sending
A € Py to Ay 1 in the symmetric group on n**! points where k is the synchronizing level of A is
a homomorphism.

Remark 3.4.19. Partof Corollary [3.4.15/demonstrates that if B € P is synchronizing at level
j>1€N,and A € Py is synchronizing atlevel k > 1 € N, then B commutes with A if and only if

Ajx4+1 commutes with Bj_ 1 by Proposition 2.1.33
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Remark 3.4.20. In ordg to restate Ci)rollary 3.4.15 for a non-invertible h € ﬁn\?n showing
that the equation Ay {1hy 1 = hi 1Bk 1 holds might no longer suffice. Instead we might have to
check that Aj1hj 1 = hj1B;j;1 where j € N is a level such that Core(A * h) and Core(B * h) are
synchronizing at level j.

We have the following result distinguishing between elements of H,, and IJN{n. We recall the
notion of prime words and rotations of words introduced in Subsection

Proposition 3.4.21. Let A = (Xn,Qa,7A,AA) be an element of Jffn\f}(n (ie A is one-way
synchronizing) with synchronizing level k and A= = (X, Qa—1,7a-1,A5—1) be the inverse of A.
Thereisan 1 € N with 0 < 1 < k(|Qa|*> + 1) such that Ay is not a permutation. In particular, the action of
A on X% is non-injective: there exists words A and A in X such that A is not a cyclic rotation of A and
the bi-infinite strings (... AA...) and (... AA...) have the same image under A.

Proof. We first establish some notation: for a state p of A we shall let p~! denote the corresponding
state in A~1. We shall also apply the convention that (p~1)~1 = p.

Suppose A is synchronizing at level k. Since A~! is not synchronizing it follows that
IQal = IQa-1] > 1. Moreover, there is a pair of states (r1,12) such that there is an infinite
set Wi of words w; € X}t for which 7s 1(wj, 1) # 75 1(wji, 12). This follows since A~ 1lisnot
synchronizing at level 1 for any | € IN. Therefore for each | € N there is a pair states (r},15)
and a word w; € X}, such that 7 A1 (Wl,r}) F a1 (wl,ré). Since A is a finite transducer there
is a pair of states (1, 13) such that for infinitely many | € IN, (r}, r%) = (r1,12), therefore taking
Wi :={w]l € N and (r%,ré) = (11,12)}, (11, 72) and Wj satisfy the conditions.

Now since W is infinite, by an argument similar to that above, there is a pair of states (s, s2)
such that 71, 1 (wi, 1) = sy and 5 -1(wy, 12) = sp and s; # s, for infinitely many w; € Wj. Let
W, denote the set of words wj such that s 1(wji, T1) = s1 and s 1 (wy,12) = 5.

Let w; € W, be such that jwi| > k(|Qa[> +1). Now since s; # s, then for any prefix
¢ of wi we must have 7y _1(@,71) # ma-1(@,12). Moreover since [w;| > k(|Qal? +1) there
are prefixes @1 and @3 of w; such that [|@1] —[@2|| = jk < k(IQal? +1) G € IN\{0}) satisfying
ma-1(@1, 1) =ma-1(@2,m) =p tand a1 (@1, 12) =Ta-1(@2,2) = ¢ withp™! # ¢!, and

Z1 -1
P9 €Qa.

Assume @i is a prefix of ¢, and let v be the such that ¢;v = ¢;. By construction v
satisfies 7, 1(v,p) = p and mp-1(v,q) = q such that p~! # q~!. Let A = Ay—1(v,p~!) and
A=A -1(v,q71). Since A is synchronizing at level k and synchronous, A # A, otherwise p = q
and since A is synchronous |A| = |A].

Therefore in A we have, ta (A, p) = p and A (A, q) = q moreover, Aa (A, p) =Aa (A, q) = v.

This shows that A 5 is not a permutation of XL{\ . We now make the assumption that A and A are

the smallest words such that ta (A, p) = p and A (A, q) = q moreover, Aa (A, p) =Aa (A, q). Let

vE Xlrf\l be such that Aa (A, p) =Aa (A, q) = v.

In order to show that A represents a non-injective map on X% observe that the bi-infinite strings
(...AA...)and (...AA...) are mapped to the bi-infinite string (... vv...) under A. Therefore taking
(...000...) for © € X to represent the element y € XZ defined by Yj|@|Yj|O+1 - - - Yj|e|+e]—1 =
© for any j € Z, we see that (... AAA...) and (... AAA...) are distinct elements of X% which have
the same image under A. This shows A is non-injective.

To conclude the proof we now need to argue that there exists words A’ and A’ which are not
cyclic rotations of each other such that (... A’A’A’...) and (...A’A’A’ ...) are mapped by A to the
same word.

Suppose that A is a cyclic rotation of A, otherwise we are done.

Since ma (A, p) = p we must have that v is equal to a non-trivial cyclic rotation of itself. This is
the case if and only if v is equal to some power of a third word v strictly smaller than v (see for
instance [50, Theorem 1.2.9]). In fact if v = v/v"/ = v//v/ then both v/’ and v’ are powers of this
word v.

We may assume that v is a prime word (that is, it cannot be written as a powers of a strictly
smaller word). Let r € IN be such that v" =v. Notice that r|v| = [v| = |A|.

First suppose that there is word u € XR/ "such that (W)A}y) = vand u' is a rotation of A. If a
non-trivial suffix u; # u of u is a prefix of A, then since Aa (A, p) = v© = v, we must have that
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v is equal to a non-trivial cyclic rotation of itself contradicting that v is a prime word. Therefore
A =u". However, since (A)A| 5| = (A)A|5| and A is a cyclic rotation of A then u" is also a cyclic
rotation of A. Therefore by the same argument we must have that A = u". However this now
implies that A = A yielding a contradiction since we assumed that A # A.

Now since |v| < |v|, then either there is a word u, such that [u| = |v| for which (u)XM =v

or KM is not surjective from Xlrt/ " to itself, and so it is also not injective (since XlT:/ lis finite). If
the latter occurs, then there are strictly smaller distinct words A’ and A’ and states p’ and q’
such that ta (A/,p’) = p’ and A (A, q") = q’ so that, A (A/,p’) = Aa(A’, q’). Notice that since
A € Hy, all its states are homeomorphism states, therefore p” and q’ cannot be equal or A would
have a non-homeomorphism state. However this is a contradiction since we assumed that A and
A were the smallest such words. Therefore there is a word u so that [u| = |v| and (u)KM = V.
Notice that u”™ cannot be a rotation of A by an argument above. Moreover the bi-infinite sequences
(...u™u"...)and (...AA...) are mapped by A to the same bi-infinite string (...vv...). O

Remark 3.4.22. Let A be an element of JN-Cn\J{n which is invertible as a transducer, then A
represents a surjective map from the Cantor space XZ to itself. In particular as a consequence of
the proposition above an element A € Hy is injective on X% if and only if it is a homeomorphism
if and only if it is bi-synchronizing.

Proof. Our argument shall proceed as follows, we shall make use of the well known results that
the continuous image of a compact topological space is compact, and that a compact subset of a
Hausdorff space is closed. This means it suffices to argue that the image of A is dense in X%.

Let k € IN be the minimal synchronizing level for A.

Notice that since A is invertible as an transducer each state of A defines an invertible map
from XN to itself. Therefore given an element y € X%, let p be a state of A and fix an index
i € Z, then defining z := y1Yi11Yi;1. .. in XY, there exists x € XY such that the initial transducer
Ap: XN xN maps x to z.

Now lety, p, z and x be as in the previous paragraph, and let ' € XX be a word such that the

state of A forced by I'is p. Letu € XZ be defined by wiltit1... ==X Wi Wi_k41.. - Wi—1 =T,
and u; :=0forallj <i—k.
If w € XZ is the image of uw under A, then wiw; ;1 ... = z. Therefore for any y € X% we can find

an element in (XZ)A as arbitrarily close to y with respect to the metric given in Definition O

Remark 3.4.23. Given an element A of H,,, Proposition 3.4.21 gives an algorithm for determining if

AecHnorifA € JTCn\iHn since we have only to check if Kj is a permutation forall 1 < j < kM(A),
where k is the synchronizing level of A and M(A) is quadratic in the states of A.

Remark 3.4.24. It is a consequence of the proof of the proposition above that for A € Py, Ay
maps prime words to prime words for every 1 € IN. This is because if, for some prime word T",
(M Ay = (y)" for for |y| < |l and v € Ny, then either A; : XD{‘ is not surjective and so it is not
injective either, or there is a word & € X3, such that (§)A{ =y. Since I' is a prime word it follows in
either case, as in the proof of Proposition that A does not induce a homeomorphism of XZ.
An alternative proof of this fact can be found in [10].

Proposition|3.4.13indicates that if two elements A and B in Hy, are such that Aj and Bj have
the same disjoint cycle structure for all j € IN then A and B are likely to be conjugate. This however
need not be the case as will be seen in Theorem 3.4.35 First we make the following definitions.

Definition 3.4.25. Let " = vy, ... vk — 1 be a word in XX for some natural number k > 0. Define
the it rotation of T" to be the word: I' = YkiYk—itl---YOY1---Yik—i_1-

Remark 3.4.26. One can think of I" as decorating a circle divided into k intervals (counting from
zero), and I/ is the result of rotating the circle clockwise by i. Then the 0 rotation of I" is simply T

Definition 3.4.27 (Rotation). Let A € P, and let 1 € IN. Given a prime word I" € XL, let C be the
disjoint cycle of A{ containing I'. Notice that C consists only of prime words by Remark Let
1 <'s < length(C) be minimal in IN such that (F)Kf is a rotation of ' and 0 < 1 < 1 be minimal
such that ("A] is the i rotation of I'. We say that C has minimal rotation i of T'. We call the triple
(length(C), s, i)r the triple associated to C for T.
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Lemma 3.4.28. Let C € Ay be a disjoint cycle with associated triple (length(C), sc, vc)r, for Ty a prime
word belonging to C. Then we have the following:

(i) for any other word T belonging to C we have:

(length(C), sc,rc)r, = (length(C), s, ve)r,

(ii) and Length(C) = o - sc where o is the order of v¢ in the additive group Z,, if rc = 0 then take
o=1.

Proof. Let C = (Ip...Tj) and let (length(C), sc,rc)r, be the triple associated to C for Iy, where
Iy is a prime word . Then s¢ is minimal such that I . is the rcth rotation of I). Now since I is
the output of the unique loop of A labelled by T, then T 1 is also a r¢ ' rotation of Iy. This
is because the unique loop of A labelled by T 1 is the rc™ rotation of the loop labelled by .
We can now replace C with the disjoint cycle (I7 ...TjI7) and repeat the argument, until we have
covered all rotations of C. This shows that the triple (length(C),sc, rc)r, is independent of the
choice of Ty.

For the second part of the lemma, first observe that if s¢ = length(C), then r¢c = 0 and we are
done. Therefore we may assume that 1 < s¢ < length(C).

Now observe that by minimality of s¢ and the above argument, Is . ;5. is the 2rcth rotation
of Ty, moreover no T for sc < k < 2sc is a rotation of ;. Notice that r¢ has finite order in the
additive group Z;. Let o be the order of rc. Then Ty is the orc rotation of T which is just
. Moreover by minimality of sc, and repetitions of the argument in the previous paragraph,
o is minimal such that I',s. = . However by the first part of the lemma, we must also have
(M)AL®S =T 1 < k < j. Minimality now ensures that osc = j. O

Definition 3.4.29. As a consequence of the remark above, for a given disjoint cycle C € A we call
(length(C), sc,vc) the triple associated to C.

Remark 3.4.30. We observe that for a cycle C of AL, A € P, the number r¢ is what is called
the ‘return number’ in [13], although we arrived at this notion independently. From the ‘return
numbers’ the authors of [13] derive what they call the ‘gyration function’. This has proven to be a
very important and useful function, however we shall not require it for this work.

Definition 3.4.31 (Spectrum). Let A € P, and let k € IN. For each triple (L¢, Sc, Tc) associated to
a disjoint cycle of prime words in the disjoint cycle structure of Ay, let dc denote the multiplicity
with which it occurs as we consider all such triples associated to the disjoint cycles of Ay.
Then define Spy(A) = {(k,dc, (Lc,Sc, Te))} as C runs over all disjoint cycles of Ay. Define
Sp(A) == Uxen SPK(A).

Theorem 3.4.32. Let A € P, and let k € IN, then Spy.(A) is a conjugacy invariant of A in Pr.

Proof. Let C be a cycle in the disjoint cycle structure of Ay and let (Lc, Sc, Te) be its associated
triple. Let ] € Py, be arbitrary and invertible.

That L is preserved under conjugation by J follows from Proposition [3.4.13} and standard
results about permutation groups.

That Sc is preserved under conjugation is a consequence of the fact that ] € Py,. To see this first
suppose that C = (I ... Tj) for some j € N. Let A; = (T})]x. Then (A; ... A;) is a cycle of T;lﬂkfk.
Since A; is the output of the unique loop of ] labelled by I (1 < i < j), and since S¢ is minimal so
that I's . is a rotation of Iy, then Sc is also the minimal position so that Ag . is a rotation of A;.

That T¢ is preserved under conjugation is once more a consequence of the fact that ] € P,,. Let
It and A; for 1 < i < j be as in the previous paragraph. Since I's_. is the T¢ th rotation of I, then as
A is the output of the unique loop of | labelled by I, As.. is the Tcth rotations of A;. O

Corollary 3.4.33. Let A € Pr, then Sp(A) is a conjugacy invariant of A in Pr.

Remark 3.4.34. Theorem [3.4.32/and Corollary [3.4.33|are known already in the literature centering
around the automorphisms of the shift, in particular they appear in [14] in the language of ‘return
numbers’. However we arrived at our results independently and only later learned about the
results of Boyle and Krieger.
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Let M be the element of J{,, below. By computing Sp3(M) and Sps(M~1) and using
Theorem we shall show that M is not conjugate to its inverse in P and therefore in
Hn.

02
1/0 @ 02
012 201
100, 21

11
| 210

Figure 3.6: An element of J{;, which is not conjugate to its inverse

M3 =(000 222)(111)
(001 220 112 110 012 200 122
100 022 211 011 201 020 212
010 202 121 101 120 002 221)
(021 210 102)

and

M, | =(000222)(111)
(001 221 002 120 101 121 202
010 212 020 201 011 211 022
100 122 200 012 110 112 220)
(021 102 210)

From this we see that Sp3(M) = {(

3,1,(21,7,1)),(3,1,(3,1,2))}, and Sps(M™!) =
{(3,1,(21,7,2)),(3,1,(3,1,1))}. Since Sp3(M) # Spz(M™1), then M is not conjugate to M-t by
Theorem [3.4.32

Theorem 3.4.35. There are elements M € Py, such that M and M~ are not conjugate in Pr,.

Note that the above theorem is false in the group of automorphisms of the n-ary rooted tree.
The author was unable to find Theorem in the literature on automorphisms of the shift
dynamical system.

We now return to the question of conjugacy in Pr. In light of Corollary we describe
below a method of constructing candidate conjugators. We first begin by identifying a subset of
Sym(X),) forj € N.

Definition 3.4.36 (Allowable Permuations). Letk > 1 € IN and p be a permutation of Xk+1 then
p is called an allowable permutation if the following hold:

(1) there do not exist i,j,1 € X, and T" € XX such that (il')p = jA and (1I")p = jA for some A and
Ain XX;
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() letT = g1g2...gx+1, and set gg = €. Let A = dydy...dyand Ay € XK (1 <i<k+1)
be such that (gigi+1---9k+191---9gi-1)p = diA; for 1 < i < kand (gx4191---9K)p =
di11\k+1, then A = (I)p.

Definition 3.4.37. Letj € N and let p : X%H — X%H be any transformation of the set X%H, if p
satisfies part[(2)] of Definition [3.4.36] then we call p an allowable transformation.

The following lemma is immediate from the definition of allowable transformations and the
definition of A for A € Py, (Remark 3.4.10) so we omit its proof.

Lemma 3.4.38. Let A € Hy, (A € Pp) be synchronizing at level j, then Aj.y1 is an allowable permutation
(transformation).

Proposition 3.4.39. Let p be an allowable permutation [transformation] of X5 forj € Ny, then there is
an element A € Hn [A € Pn] which is synchronizing at level j, which is unique for (j, p).

Proof. Let p and j be as in the statement of the proposition. We construct A = (Xn,Q,A,m) as
follows. The state set Q of A will be the set X},. Fix a state I' of A, let T denote the length j — 1 suffix
of I'and i € Xy, then the following equations determine the transition of state I' on input i:

n(i,T) =Ti
A(i,T) =j, where (ilp = jA for A € X},

Observe that the resulting transducer A is synchronizing at level j, since for two words A, T in
Xk, regarding A as a state of A, we have (I, A) = I'. This argument also shows that A is equal to
its core. Moreover, by Deﬁnitionpart we have that A € K, since all states of A induce a
bijection from X;; — Xn,.

We now argue that Aj;; = p from which it will follow that A is unique for (j, o) by
Corollary First we establish some notation: for a word = € X} set Z[; to be the first
letter of =.

LetT'=v1...vj41 € XLH andsetT :=7v;.. -Yj+1. Observe that T is the unique state of A with
a loop labelled T, since 7t(T",.) : Qa — QA takes only the value I'. Moreover, for 1 <i<j+1we
have

UYL, Vit YiY1---Yie1) = Yis2---¥jY1--- Vi
and
AV Yigr--- YY1 Yiet) = (ViYie1r---YiY1---Yi—1)eh

ifi=j+1takei+1=1vyy,andifi =1takey;_1 =e. Setd; = Alvi,Yig1---VjY1---Yi-1) =
(Yivig1---¥jY1---vi-y)eh and A = 87...85,1. Observe that A = (T')Aj,1. Moreover, by
Definitionpart we have that A = (I")p. Since I € X%H was chosen arbitrarily we have,
p= Kjﬂ. Set B to be the weakly minimal transducer (and so minimal since A € i]ffn) representing
A, then B is synchronizing at level j, by Proposition moreover §j+] = Kj+1 = p since the
map Aj 1 is unaffected by minimization.

The other reading of the proposition is proved analogously. O

Remark 3.4.40. Observe that given any transformation p of the set X)H, one can construct an
element f € F(Xy,j + 1), by setting (I')f = (I"p[; for T € X%. Thus from any transformation p
of X%H one can obtain an element A of f]v’n which is synchronizing at level j. However, it is not
always the case that KjH = p. If we further insist that p is an allowable transformation of Xil,

Proposition 3.4.39|guarantees that we can find a unique element A of P which is synchronizing at
level j for which A; = p.

Let A,B € Hy, be transducers and let k € IN; such that A and B are synchronizing at level
k. Suppose Ay ;1 and By ;1 have the same disjoint cycle structure. If h is a permutation of XX
conjugating Ay to By, then Proposition allows us to construct candidate conjugators for A
and B where h is an allowable permutation. We describe the process in detail in the following
construction.
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Construction 3.4.41. Let A, B € H,, and suppose that A and B are conjugate in Hy,. Let k € IN; be
such that both A and B are synchronizing at level k. Consider the permutation Ay 1 and By 1.
Pick a representative for each disjoint cycle of Ay ;1 and By 1 the cycle. For instance if (I} ...T}) is
a cycle of A then we may chose (I ...T7) or any cyclein theset {(T5 ... 317 ...Ti_1) |1 <i< 1} We
identify the disjoint cycles of Ay 1 and By, 1 with their representatives. Set C(A} ;1) and C(By 1)
to be the set of disjoint cycle of Ay 1 and By 1. Let ¢ : C(Ax 1) — C(By1) be a bijection from
the disjoint cycle of Ay ;1 to the disjoint cycles of By 1. Such a bijection exists since A and B are
conjugate. We may further insist that for C € C(Ay 1) and D € C(By,1) such that (C)c = D,
the triple (Lc,sc,rc) associated to C (see Definition is equal to the triple (Lp,sp,Tp)
associated to D by Theorem We now construct an allowable transformation p of X}.

Fix a cycle C € C(Ay41) and a cycle D € C(By1) such that (C)c = D. Suppose C = (I ... )
and D = (I7...T1 ), fix 1 <1< lc, and suppose that I = vi1...vik1 and Ay = 81... 8 k+1-
Set (Fl)p = Air and for 2 < ] < k+1 set (Yi,j o Yik4+1Y1 - .’Yiljfl)p = 51,]' ce 5i.,k+161 N 61,]',1.
Observe that this requirement means that p satisfies part[(2)|of Definition Repeating this
process across all disjoint cycles of A, we see that the transformation p so constructed is in fact a

permutation of X}, since every element I' € X}, is in at most one disjoint cycle of C(A} ;1) and of
C(Bx1)- Moreover by construction p is an allowable transformation. Furthermore, observe that
since, for a disjoint cycle C = (I} ...N.) € C(Ax11) and D = (A;...Ay,) € C(By41) such that
(C)c = (D)¢, we have that (T;)p = A forall 1 < i < ¢, it thus follows, from well known results
about conjugacy in the symmetric group, that p~'A} ;1p = By 1. Therefore we may construct

a transducer H € P,, such that Hy ;1 = p. If moreover H € H,, (which can be checked in finite
time) and is such that min Core(H~!'AH) is synchronizing at level k, then Theorem [3.4.12/ and
Corollary3.4.15|indicate that min Core(H'AH) =, B.

We illustrate Construction 3.4.41| with a example below.

Example 3.4.42. Consider the conjugate transducers A, B € H;, below. We construct a conjugator
H € H;, as in Construction|3.4.41

110

0 ()
01 2|0

(a) Element A of 33 inducing a
permutation

2|0
(b) Element B € H3

Figure 3.7: Conjugate elements of 3.

In order to construct a candidate conjugator we need only consider disjoint cycles of A3 and B3
for each rotation class of a word I' € X3,. We give these below.
For A3 we need only consider the permutation:

(000 111 222) (001 112 220)
(002 110 221) (012 120 201)
(021 102 210)

For B3 we need only consider:
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(000 222 111) (102 220 110)
(001 221 012) (020 200 002)
(112 211 121)

This is because, for instance, one may deduce from these that the cycle containing 010 in A3 is
(010 121 202), thus the conjugator H is determined by understanding what it does to elements on
the cycles given above.

Consider the permutation p of X3, given as follows:

(111 222) (111 222)

(001 102 211 022 011 122 201 002)
(010 021 112 220 110 221 012 020)
(100 210 121 202 101 212 120 200)

One can check p~!A3p = B3, and that p is an allowable permutation. The element H € I3
which is unique for (2, p) is given below:

211 o, 11
O G=lk
12
010

Figure 3.8: The conjugator H unique for (2, p).

The following question is natural to ask at this stage:

Question 3.4.43. For two conjugate elements A,B € Hy and k € IN minimal such that both A and
B are synchronizing at level k, is there always an element H € Hy, synchronizing at level k such that
H™'AH = B?

Of course an answer in the affirmative yields a solution to the conjugacy problem in J(;,.
In the next section we focus on the order problem in H,, and the related finiteness problem for
groups generated by transducers in Hy,.

3.5 The order problem, finiteness problem and groups and
semigroups generated by transducers in P,

This section shall deal mainly with the order problem and the related finiteness problem for
groups generated by transducers in H . We shall also be concerned with the growth rates of the
groups generated by transducers in Hn, and also the rate at which the number of states in the core
increases with raising an element of Hn to powers. As in the previous section some of the results
in this section shall concern the semigroups generated by transducer in Pn. All transducers in this

section shall be over the alphabet X, unless otherwise stated.
We begin by making relevant definitions and stating known results.

Definition 3.5.1. Let A be a synchronous transducer over the alphabet X,. For each state ¢ € Q
the initial transducer A 4 induces a continuous function hq : ¢, — €, (see Subsection[1.5.T). Thus
set §(A) to be the semigroup generated by the set {hq | ¢ € Qa}. If A is also invertible, then for
each state ¢ € Qa, the map hq : € — &, is a homeomorphism, thus set §(A) to be the group
generated by the set {hq | g € Qa}. We call the semigroup S(A) the automaton semigroup generated
by A and the group G(A) the automaton group generated by A.
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Remark 3.5.2. Synchronous transducers are elsewhere in the literature referred to as Mealy-
automata (see for instance [30]) hence the phrases ‘automaton group” and ‘automaton semigroup’.
For a (semi)group G, we shall use the phrase ‘G is a (semi)group generated by a transducer’ to
indicate that there is a synchronous (invertible) transducer A such that G = G(A). We will suppress
the adjective ‘synchronous’ as this section deals only with synchronous transducers.

Given a set M of self-homeomorphisms of ¢,,, we will sometimes be concerned with both the
group and semigroup generated by M, we establish the following notation to distinguish between
the two.

Notation 3.5.3. Given a set M of continuous functions m : €, — &, we denote by (M), the
semigroup generated by the elements of M. If M consists of self-homeomorphisms of €,, then we
denote by (M) the group generated by M.

Groups and semigroups generated by transducers are a well studied class of groups and have
proven to be a source of groups with interesting properties. For instance the first example of a
group of intermediate growth, the first Grigorchuk group, is a group generated by a transducer.
The following algorithmic questions are in some sense natural to ask about this class of groups:

The finiteness problem: Given a finite, synchronous, transducer A is there an algorithm which
decides in finite time if the automaton semigroup (or group if A is invertible) generated by A is
finite?

The order problem: Given a finite, synchronous, invertible transducer A is there an algorithm
which, given an element g € G(A), decides in finite time if g has finite order?

As we shall see, for groups generated by transducers in H,, the order problem and finiteness
problem are equivalent.

The finiteness problem for semigroups generated by transducers has been demonstrated to
have a negative answer in general by Pierre Gillibert ([27]). However, the finiteness problem
for groups generated by transducers remains open. The order problem, has also recently been
shown to be undecidable by Gillibert ([26]) and, independently by Bartholdi and Mirtofanov ([3]).
However, it remains open in certain classes of automaton groups including those generated by
transducers in f}N{n.

In the literature around automaton groups, it is also a normal procedure to investigate the
growth rate of a group or semigroup G generated by a transducer A with respect to the word metric.
It turns out that, in the semigroup case, this is equivalent to the growth rate of the transducer A
itself. We introduce these two notions of growth below.

Definition 3.5.4. Let G = (M) be a finitely generated group, that is, [M| < co. Given an element
g € G we say that g has length 1, if 1 is minimal in IN such that g can be written as a product
g=mymy...my formy € Mand 1 < i < 1. Write 1(g) for the length of g.

We now define the growth function.

Definition 3.5.5. Let G = (M) be a finitely generated group. Define a function yg : N — N by
vYe(l) =g € G|lg) < U}]. We call yg the growth function of G.

Definition 3.5.6. A finitely generated group G = (M) is said to have exponential growth (rate) if
there is a C € R* such that yg (1) > e“; G is said to have polynomial growth if there are C,d € R*
such that yg (1) < Cl9 for all 1 € N; G is said to have intermediate growth if y g is greater than any
polynomial function on IN and less then any exponential function on IN.

Definition 3.5.7. Given two non-decreasing functions g; : N — N and g, : N — IN, we write
g1 = gy if there is a constant C € R™ such that (1)g; < (Cl)gs. If g1 < g and go =< g7 then we
write g1 ~ gs.

Remark 3.5.8. It is a standard result that the growth rate of the group is independent of the choice
of generating set. Observe also that one may make analogous definitions for a finitely generated
semigroup S = (M) for a finite set M. Thus we obtain analogous notions of a semigroup of
exponential, intermediate and polynomial growth.
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The following result is standard in the literature around the growth rates of group and
semigroups.

Theorem 3.5.9. If a finitely generated group or semigroup G contains a non-abelian free subsemigroup,
then G has exponential growth.

For a semigroup G generated by a transducer A, the growth rate of the group is connected to
the growth rate of the transducer A which we define below.

Definition 3.5.10. Let A be a synchronous transducer over the alphabet X;,. Define a function
YA : N = N by ya(l) = |min(Al)|. We call ya the growth function of the transducer A. We
say that A has exponential growth (rate) if there is a C € R such that ya (1) > eCl; A is said to
have polynomial growth if there are C,d € R™ such that ya (1) < Cld forall 1 € IN; A is said to
have intermediate growth if y 5 is greater than any polynomial function on IN and less then any
exponential function on IN.

Remark 3.5.11. Notice that for a synchronous transducer A over the alphabet X, and 1 € IN, the
value y A (1) is precisely the number of distinct elements of §(A) which can be written as a product
of length | with respect to the generating set {hq|q € Qa}.

The following proposition is standard in the literature on automaton groups and can be found
in [28].

Proposition 3.5.12. Let S be a semigroup generated by a transducer A, then ys ~ y o where the growth
function ys of S is with respect to the generating set {hq | ¢ € Qal.

The remainder of this chapter shall be devoted mainly to investigating the finiteness problem,
the order problem for groups generated by transducers in Hy, and investigating the growth rate of
groups and semigroups generated by transducers in Hn. We begin by considering what initially
seems to be a special case, that is we consider the case of level one synchronizing transducers.
Such transducers are called reset automata elsewhere in the literature and the groups generated
by reset automata were studied by Silva and Steinberg in [51]. We present some of their results
relating to the structure of the groups generated by reset automata and demonstrate the relation to
groups generated by synchronizing transducers.

3.5.1 Level one synchronizing transducers

In this section we present some known results about level one synchronizing, synchronous,
transducers. Such transducers are elsewhere in the literature called reset automata and groups
generated by reset automata have been studied by Silva and Steinberg in [51]. Reset automata also
have connections to tilings of the plane ([36]) and making use of these connections Gillibert [27]]
was able to demonstrate that the finiteness problem for semigroups generated by reset automata
is undecidable. However we shall not make use of the connections to tillings of the plane in this
work.

Our first result will be to demonstrate that making the reduction to reset automata makes no
difference when analysing the group or semigroup generated by synchronizing, synchronous
transducers. We begin with the following construction.

Construction 3.5.13. Let A = (X, QAa,7a,Aa) be a synchronizing, synchronous transducer,
and let k € IN;y be the minimal synchronizing level of A. Form a new transducer Ay =
(XK, QA,7A,,AA,) with the same set of states as A and input and output alphabet the set of
words of length k. The transition and output function of A are defined as follows, for I' € XX and
p € Qasetma, (I,p) =7a(l,p)and Aa, (T, p) = Aa (T, p). Observe that since Ay is synchronous,
then A is a function from XX x Qa to XK.

Remark 3.5.14. Let A = (X, QA, A, AA) be a synchronizing, synchronous transducer, and let
k € IN; be the minimal synchronizing level of A. Since A is synchronizing at level k, it follows
that Ay is a reset automata, furthermore if A is invertible then Ay is also invertible, moreover
(A D = (A ! by definition of the transition and output functions of Ay.
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We have the following result:

Proposition 3.5.15. Let A be a synchronous, synchronizing transducer which is synchronizing at level
k. Form the reset automaton Ay as in Construction [3.5.13] then S(A) = 8(Ay) and, if A is invertible,
S(A) = G(Ax).

Proof. We begin with the semigroup case. Let A be a synchronous, synchronizing transducer and
let k € INq be the synchronizing level of A. In order to distinguish between states of A and Ay, for
a state p of A we shall denote by p’ the corresponding state of Ay.

Letpy,p2,...,prand q1, g2, ..., qm for L, m € INy be states of A. Suppose that the composition
hp,...hp, # hq; ... hq,,. Observe thathy,, ... hy, isequaltoh(,, . for (py,...,p1) astateof Al,
likewise hq, ... hq,, isequalto h(q, . q.)-Since hip, o) # Riq,,..,qm), thereisaword I' € Xk

for some m € INj such that A 51 (T, (p1,...,p1)) #Aam (T, (q1,...,qm)). However, since " € (xkym,
by definition of the output function Ay, , we have, AAt(r, (p1,---,p)) # A (T, (a1, -, qm))-

Therefore hp{ hp{ # hq{ ~.hqr .

Let ¢’ : QAo — Qa, be defined by (p)¢’ = p’ forallp € Qa. Then ¢’ extends to a
homomorphism ¢ : S(A) — 8(Ay). Since ¢ is onto the generators of $(A) it is surjective, and by
the preceding paragraph it is injective. Therefore, ¢ is an isomorphism.

For the case where A is invertible, we likewise define the map ¢’ : Qa — Qa, by p — p’.
We then observe that for states p1,...,p1 of Qa, 1 € INy, and €; € {—1,+1}, if the composition
hp!...hp! is not trivial, then there is a word I' € X%, m € INj such that (MNAp! ... A5t #T.
However, since Ay, and (Ak)p{ coincide on X** for m € IN; by definition of the output function

and transition function of Ay, we have, (I") (Ak)gi . (Ak)a # T. Therefore, the map ¢’ once more
extends to an isomorphism ¢ from G(A) — G(Ax). O

Proposition [3.5.15/implies that, from the standpoint of the finiteness and order problem, the
reduction to reset automata is without loss of generality.
The following result is due to Silva and Steinberg [51].

Theorem 3.5.16. For an invertible, synchronous, reset automaton A the group G(A) is infinite if and
only if there is a state p € QA such that (hyp) = Z. Moreover, in the case that G(A) is infinite, we have
G(A) = N x (hy,) for N a locally finite group.

In order to prove this result, we first require the following lemma.

Lemma 3.5.17. Let A be a synchronous, synchronizing transducer with synchronizing level k, then A1 A
is synchronizing at level k, and Core(A~1A) = id.

Proof. This follows from the forward implication of Lemma and its proof. O

Observe that Lemma implies that given a synchronous transducer A synchronizing at
level k, then for any pair p, q of states of A, h;lhq is an element of G, ; which, for everyj € IN,

induces a map from XJ, to itself.
We are now ready to prove Theorem 3.5.16]

Proof of Theorem[3.5.16] Fix a state p € Qa. For ease of notation, for a state ¢ € Qa, we
identity q with the map hq. Set G = (p~'q | g € Qa). By Lemma G is a subgroup
of Gn1. Let N = (p7'Gp* | i € Z). Observe that for iy,1y,...,11,j € Z and g1,92,...91 € G,
(g]l:’11 ...gfll)p] = gfllﬂ...g{’tm € N,and so for v € Nandj € Z, vP' € N. Further
observe that for any state ¢ € Qa we have, ¢ = p(p~!q) and q~' = p~t(p(g~p)p 1),
therefore q,q~! € (p)N for any q € Qa. Moreover given ji,jo € Z and v1, v, € N we have,
plivipizy, = p51+izvf)2v2 € (p)N since v‘f)z € N. Therefore, G(A) = (p)N.

Now we demonstrate that N is locally-finite. Let 1 € INy and vy,...,vy € N. Consider the
subgroup (vi | 1 < i < 1) < N. Since, forall 1 < i < 1, v; is a product of elements of the
form pigp™,j € Z and g € G, there exist numbers m,M € IN, such that forall 1 < i < 1,
P Mvip™ € (p'Gpt |1 <t < M). SetH = (p7t'Gp' | 1 < t < M) and observe that
(vi | 1 <1i<1)isasubgroup of H. Since p is synchronizing, p* is synchronizing for 1 < t < M
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by Lemma and since G is a subgroup of Gy, 1, it follows by Lemma[2.4.10} that H C G, 1.
Moreover, as every element of H preserves the length of words (since A is synchronous), it follows
that H is a finite group, and so (v; | 1 < i < 1) is also a finite group. Therefore, N is locally finite.
If (p) is infinite, then we have that (p) "N ={id}, and G = (p) x N. If p has finite order o(p),
then N = {p~tGp' | 1 < i < o(p)} is a finitely generated locally-finite group and so finite, from
which we deduce that G is finite. O

Theorem [3.5.16| extends to invertible, synchronous, synchronizing transducers by applying
Proposition|3.5.15, thus we have the following Corollary.

Corollary 3.5.18. Let A be a synchronizing, invertible, synchronous transducer, then G(A) is either finite
or isomorphic to N x Z for a locally finite group N. Moreover G(A) is infinite if and only if there is a state
P € QA such that hy, has infinite order.

Remark 3.5.19. Observe that if a state p of a reset automaton has infinite order, then by
Theorem all states have infinite order. Moreover, by Theorem [3.5.16] the finiteness problem
for a group generated by a reset automaton is equivalent to the order problem. This is because
if the finiteness problem is soluble in this class of groups, then given a reset automaton A it is
possible to determine if the states have finite order or not. If the states have infinite order, then
using the semi-direct product decomposition of §(A) = N x (hp) for N a locally finite group and p
a state of A, the order problem is soluble in §(A). If the states have finite order, then §(A) is finite
by Theorem [3.5.16 and so all elements of G(A) have finite order. Making use of Proposition[3.5.15}
it follows that the finiteness and order problem for groups generated by invertible, synchronous,
synchronizing transducers are equivalent.

It follows from Theorem that given a synchronizing, invertible, synchronous, transducer
A the group G(A) is elementary amenable. This is a consequence of the definition ([22]]) of
elementary amenable groups as those which may be built from all finite groups and abelian groups
by taking subgroups, direct unions, quotients and extensions.

In the next section we show the equivalence of the finiteness and order problem for groups
generated by synchronous, synchronizing, transducers to the order problem in the group H, by
considering what happens to the core of elements of such transducers when raised to powers.

3.5.2 The equivalence of the finiteness and order problems for groups
generated by synchronizing, synchronous transducers to the order
problem in I,

In this section we demonstrate that the finiteness problem and order problem for groups generated
by synchronous, synchronizing, transducers is equivalent to the order problem in 3(,,. Notice
that by Remark it suffices to show that the finiteness problem for groups generated
by synchronous, synchronizing transducers is equivalent to the finiteness problem for groups
generated by transducers in Hn. We then show that the finiteness problem for groups generated
by transducers in Hy is equivalent to the order problem in Hy,.

We begin with the following proposition, but first observe that given a minimal, invertible,
synchronous, synchronizing transducer A, min Core(A) € Hn by definition.

Proposition 3.5.20. Let A be an invertible, synchronous, synchronizing transducer, and let B = Core(A).
Then G(A) is finite if and only if G(B) is finite.

Proof. Clearly §(B) is a subgroup of §(A), hence if G(A) is finite, then (B) is finite. Thus, suppose
that §(B) is finite. We now demonstrate that §(A) is finite as a consequence.

Let k € IN be the minimal synchronizing level of A, then as B = Core(A), for any word I" € XX
and any state p € Qa we have, ma (I, p) € Qp. Letpy,...,p1 € Qa for | € INj and consider
the product hy,, ... hp,. This product is equivalent to h(m,-.-,m) where (p1,...,p1) is a state of
Al LetT € XK be arbitrary and observe that a1 (T, (p1,...,p1)) is a state of B!. Thus we may
represent hy,, ... hp, asa pair (p, (g1, 92, ..., gnx)) where p is a permutation of X‘f1 and g; € §(B)
for 1 < i < n¥k. This is because after processing a word of length k through a state of Al the
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resulting output is a word of length k and resulting active state is a state of B'. Now since the state
(p1,...,p1) of Al was arbitrary, and the set of permutations of Xk and G(B) are finite, it follows
that G(A) is also finite. O

Thus the finiteness and order problem for groups generated by synchronous, invertible,
synchronizing transducers, is equivalent to the finiteness and order problem for group generated
by transducers in J(;,.

Remark 3.5.21. Let A € H, and suppose that for a state p € Qa the initial transducer A,
has finite order (this is equivalent to the map h, having finite order). Suppose o(p) € N is
such that (A;,)°P) =, id, notice here that we are taking a product of initial transducers and
(r) o(p)

(PP
Proposition|2.1.32 Ag(p)fl is also synchronizing. Moreover, since A is synchronizing, it is strongly

connected, and since A Ag(p)—l =1id, it follows that A—1 = Ag(p)_l, thus A is bi-synchronizing.

so Ap'P’ corresponds to the initial transducer A - Since Ayp is synchronizing, then by

Hence an element of ¥, which generates a finite group must be an element of 3{,, and all elements
of Hn\JHn, for n > 2 generate infinite groups.

We have the following lemma for elements of 3{,, which have finite order.

Lemma 3.522. Let A € Jn be bi-synchronizing at level k and have finite order m. Let
{(g91,92,---,9m)} € Q™ be the states of Core(A™). For each state (q1,q2,...,qm) of Core(A™),
let W q,,q2,...qm) e the set of words T" € XK™ for which the state of A™ forced by T is (q1,q2, - - -, qm)-
Then, for a fixed state (qq,qz,...,qm) of Core(A™), a word ' € W ) and any state

(plr e ,Pm) € QAm/ we have )\Am(r/ (p]/ s /pm)) € W(ql,qz,...,qm)'
Proof. Fix astate (q1,q2,...,qm) of Core(A™), and let I} be a word of length km in W, ¢, . qum)-

Let (p1,P2,...,pm) be any element of Q™. Let A}, represent A initialised at state p;. Suppose we
have the following transition:

91,92, dqm

A A A
nen Sl Aeep @3.1)

Since I € Wq,,q,,..,.qm We must have that T} € W, for 1 <i < m (here Wy, are the set of words
in A of length greater than or equal to k such that the state of A forced by an element of W, is q).
Let us now consider what happens in A™. Here we have the following transition taking place:

MMt

(P, P2/, Pm) (91,92,.-.,9m)

Now observe that since A™ is bi-synchronizing at level km (Proposition [2.1.33) and since
(d1,92,...,qm) is a state in Core(A™) and all states in Core(A™) are locally the identity map then
the following must happen:

rm+1|rm+1

M1

(plrpZI--~rpm) (qlquI-nrqm)
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This means that 'y, 11 is again in W(q, q,,..,qm)- NOW since 7 was arbitrary in W4, q,,..,qm ), then
the same holds for every word in this set. O

The following result links the size of the group generated by an element of 3, to the order of
the element in the group Hr,.

Theorem 3.5.23. Let A € Hn. Then G(A) is finite if and only if A has finite order as an element of Fy.

Proof. Suppose G(A) is a finite group. It follows from Theorem 3.5.16|that there is a state p € QA

and o(p) € IN such that Ag(p) =, id. Now observe that Core(A°(P)) is a subtransducer of Ag(p)

)

since A°(P) and Ag(p) are synchronizing and Ag(p is a subtransducer of A°(P). Therefore we

have that Core(A°(P)) =, id since Ag(p) is synchronous and w-equivalent to the single state
identity transducer. Thus we have that A has order dividing o(p) as an element of H,.

Now suppose that A has finite order m as an element of H,. Observe that this means all states
of Core(A™) must induce the identity transformation on X;. The fact that A generates a finite

group is a consequence of Lemma|3.5.22
For let j € IN and suppose that j = rm + s for some r € INand 1 < s < m— 1. For a state

(t1,t2, ..., tm) of A™, let Wy, t, +..) be the set of all words in Xk™ such that the state of A™
forced by these words is (p1, p2, ..., pyml). Lemmaabove means that if py ... pj is any word
in the input alphabet of A", then reading any word in W(41,q0,-.,qm) from the state (p; ...pj) of AJ,
the resulting state will be ((q1,92,...,9m)", q1,...,qs). Since Core(A™) =, idand (q1, q2,... qm)
is a state of Core(A™), we have that the state (q1q2...qm)"q1 ... qs of AJ is w equivalent to the
state (q1,...,qs) of A®. Thus it follows that the map hp, ... hp; can be represented as a pair

(p,(91,92,---,9ynk)) where gi =hg, ;... hq, forqi1,...,qis statesof Aand 1 <1 < nk, and p is
the permutation of XX™ induced by the state (py,...,p;j) of AJ on XK™. Since j € N was arbitrary
and (py,...,p;j) was any state of AJ, it follows that such a decomposition holds for any j € N. Now

as there are only finitely many permutations of X™ and, As’, for 1 < s’ < m — 1, has finitely
many states, it follows that G(A) is finite. O

Remark 3.5.24. Putting together the results of this section and the previous one we deduced that
the following are equivalent:

(1) the finiteness problem is soluble for groups generated by synchronizing, synchronous
transducers,

(2) (Theorem[3.5.16|and Corollary(3.5.18) the order problem is soluble for groups generated by

synchronous, synchronizing transducers

(3) (Proposition|3.5.20) the finiteness (or equivalently order) problem for groups generated by
transducers in H,, is soluble,

(4) (Remark3.5.21) the finiteness or order problem for groups generated by transducers in J(,, is
soluble,

(5) (Theorem [3.5.23)) the order problem in H;, is soluble.

We should point out that the paper [23] gives a different proof that the finiteness problem for groups
generated by reset automata is equivalent to the order problem in the group of automorphisms of
the one-sided shift (which is isomorphic to J{.,).

The remainder of this chapter shall be devoted mainly to the order problem in J{;,, though
there shall be other results which do not fit directly under this heading. For instance we also

investigate the growth rate of groups generated by transducers in Hn, and the rate at which the

number of states in the core of elements of };, grows with powers. In the course of investigating
the order problem in ., we shall give a different proof of Lemma [3.5.22| which generalises in a

natural way to the monoid Pr.
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3.5.3 The order problem in J{,,

In this section we shall start to introduce the tools needed to understand the order problem in the
group . However, as the techniques are applicable to P, and will be relevant in later sections,

we shall work with the monoid Py, for majority of this section. It is standard in the literature to
tackle the order problem by investigating the structure of the dual transducer, see for instance [38,
1], and this is what we do below. The exposition and results in this paper are from the paper [44].

The dual at level k

Let A = (X, Q, 7, A) be a synchronous transducer and let k € IN.
We form the level k dual,

AY = (X, Qi AY)
of A as follows. The state set Q,/ of A is the set of all words of length k in the input alphabet X.

This dual transducer has its input alphabet equal to its output alphabet and they are both equal to
X]\(/ := Q the set of states of A. The transition function ng is defined as follows: for states q,q’ € Q,

and T, T’ € Q) we have:
1. 7Y (q,T) =T’ if and only if A(T, q) =, and
2. 7\X(q,r) =q’ifand onlyif (T, q) = q’.

We observe that A}/ = AY x A} . For suppose that 't a word of length k + 11s a state in A}/ iy

and q is any state symbol of A such that after reading q from I'i in A, ; we are in state Aj and the
output is p. Then in A we have 7t(I'i, q) = p and A(T'i, q) = Aj. We can break up this transition into
two steps. Suppose 1t(T', q) = p’, then we have A(T, q) = A, A(i,p’) =jand n(i,p’) = p. Hence in
AX we read ¢ from I' and transition to A and p’ is the output p’. Moreover in Alv we read p’ from
i and transition to j with output p. Therefore the state (I',1) of A¥ * A}/, is such that we read q
from this state and transition to the state (A, j) and the output produced is p.

Notation 3.5.25. As we shall sometimes work simultaneously with a transducer A and its dual,
given i € IN; we shall, occasionally write a state (p1,...,pi) of A* asa word p; ... p;.

The following definition gives a tool which connects the synchronizing level of powers of an
element of P;, to a property of the dual transducer.

Definition 3.5.26 (Splits). Let A be an element of P, with synchronizing level k. Then we say that
AY (r > k) splits if we have the following picture in AY:

D=6 @0

qils1

Pils1
C Palsa @ Plst @

Figure 3.9: A split

where IT € Wy, and Ay € W4, for distinct states t; and t; of A, and for all other pairs (I3, A;),
1<i<1-1,T;and A are in the same W,,,. We say that the l-tuples (py,...,p1) and (q1,...,q1)
split A)/. We shall call {py, q1} the top of the split, {t1,t2} the bottom of the split, and the triple
((q1---,91), (p1,---, 1), T) asplit of AY.
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Definition 3.5.27. Let A be an element of 3~9n, with synchronizing level k. Let r > k and let
((q1---,91), (p1,---,P1),T) be a split of AY forT € X%, and (q1...,q1), (p1,...,p1) € Q}L\. Let
{t1, t2} be the bottom of this split. Then we say that the bottom of the split ((qi ..., q1), (p1,---,p1),T)
depends only on the top if for any other tuples Uj, U, € Q}{l we have that ((q1, Uy), (p1, Uz), T)
is also a split with bottom {t, t} and we have for any w,u’ € Q, ma111 (T, (p1,...,pL,u)) =
a1 (T, (p1, Up,u’)) and maa (T, (q1,..., quu)) = mari(T, (q1, g2, u’)). The last condition
means thatif Ay (T, (qq, ..., q1)) € Wy, thensoalsois A51(T, (q1, Uyq)) and likewise for (py,...,p1)
and (P, U,).

Definition 3.5.28. For a transducer A, we define the r splitting length of A (for r greater than or
equal to the minimal synchronizing length) to be minimal 1 such that there is a pair of l-tuples of
states which split A} . If there is no such pair the we set the r splitting length of A to be co.

Remark 3.5.29. Let A be a transducer with minimal r splitting length 1 < co. By minimality of 1 it
follows that for a given pair in Q' x Q' which splits A}, then the bottom of the split depends only
on the top. Therefore the top and bottom of the split have cardinality two. In particular for any
split whose bottom depends only on its top, the top and bottom of the split both have cardinality
two.

Remark 3.5.30. Let A be a transducer such that the minimal r splitting length of A is infinite for
some 1, then the minimal r + 1 splitting length of A is also infinite.

The following lemma demonstrates that for A € Pnandr > 2, the r splitting length of A is
bigger than the r — 1 splitting length of A.

Lemma 3.5.31. Let A € Py, be synchronizing at level k, and suppose that the mk splitting length of A is
finite for m € IN, m > 0, then the (m + 1)k splitting length of A is strictly greater than the mk splitting
length of A.

Proof. Suppose that A has mk splitting length 1. It suffices to show that for any word I € x{mrbk

and any L+ 1-tuple P in Q}\H, the output of P through I' depends only on I".

First we set up some notation. Let AJ := (Xy, Q)4 ,Aj, 75;) and let A)V = (Qa, X%,A;/, njv) for
j € N. For a word y € XX let gy denote the state of A forced by T.

Now since A has mk splitting length 1, it follows that for any P := (py,...,p1) and T :=
(t1,...,t1) in Q4 and I' € XI'* we have that A, (P,T) = AY,, (T,T). By definition of the dual,
A (P, T) = m (T, P).

Now let y € XK be arbitrary and let p € Qa and P € Q) also be arbitrary. Consider
(Pp,T'y), we have:

\
)\(m+1)k

7\(vm+1)k(PPr Iy) = m1(Ty, Pp) = m(y, m (T, P))my (A (v, o (T, P)), 7 (A (T, P), p))

However observe that since A is synchronizing at level k that the suffix

7t (AL(y, (T, P)), (A (T, P), p))

depends only on A (v, 7ty (T, P)). However since Arvnk has minimal splitting length 1 we have that

(T, P) depends only on I'. Therefore we have that ?\?/m H)k(Pp, I"y) depends only on I'y. O

Remark 3.5.32. It follows from the lemma above that if A € P,, is synchronizing at level k, then
the mk splitting length of A, if it is finite, is at least m for m € IN, m > 0.

The following lemma shows that the minimal splitting length is connected with the
synchronizing level of powers of a transducer.

Lemma 3.5.33. Let A be a transducer with synchronizing level less than or equal to k. If A has k splitting
length 1, then min(Core(AY1)) has minimal synchronizing level m > k + 1.
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Proof. Let 1be as in the statement of the lemma. Now consider Core(A!). The states of Core(A'!)
will consist of all length 1 outputs of A}/. Moreover by choice of 1, Core(A!) is also synchronizing
at level k.

Let " be the word which achieves the minimal 1, and suppose the picture is exactly as given in
Figure where Il € Wy, and Ay € Wy, for distinct states t; and t.

We now consider B := Core(A x Core(Al)). Itis easy to see that there are states in B of the form
(p1,P), (q1, Q) for appropriate P, Q € Core(Al). Therefore in B we have that when we have read
I" through (p1, P), we are in state (sq,..., s, t1), and when we have read " through state (q;, Q)
we go to state (sq,...,s1,t2). Since t; # t; these states are not w equivalent. This concludes the
proof. O

Lemma 3.5.34. An element A € H, either has finite order or for all k € IN there is an N € IN such that
for all m € IN we have that AN™ is bi-synchronizing at level greater than k, moreover N is depends only
on A and k.

Proof. Suppose that A does not have finite order. Since A has infinite order then A]-v splits for every

j € N, therefore there is an my € N and Ny € IN such that min Core(AN1) is bi-synchronizing at
level my. In order to simplify the notation we shall identify AN1 with the minimal, core transducer
min Core(AN1).

Now consider the permutation X:&),
cycles. Let d be the order of this permutation. Let I' € X', then I' belongs to a cycle (I ... Fa;)
where I7 = I" and dr|d. Let er = d/dr. To this cycle there is associated a tuple of states

(ar, dry,-- -, qrdr) where qr, is the state of AN forced by Ii for 1 < i < dr. Now observe that

we shall assume that it is written as a product of disjoint

(qu,qrz,...,qrdr) is a state of AN14r, moreover since AN, (T3, qry) = Tigq for 1 < i < dr, and
AN, (Taps qrdr) = Iy, then we have that

T[Nldr(rll (qul QF2/~--/qrdr)) = (qul qrzl" '/qrdr)'

Now let tr be the order of the permutation induced by (qr,, qr,, ..., ary, )er on X1,

Let t be the lowest common multiple of the set {tr|y € X1, In order to keep the notation
concise let Pr represent the state (qr,, qr,, ..., qr ar )ért. Notice that Pr acts locally as the identity

forall T € Xp'°. Moreover Pr is the state of AN19t such that 7N, ae (I, Pr) = Pr.

Now let N = Njdt, and let m > N. Suppose that A™, (where again A™ is identified with the
minimal core transducer of A™) is synchronizing at level my. Since m > N we may write m = rN
for some r € N and 0 < s < N. Therefore states of A™ look like P for P a state of AN.

Now observe once more that all the states Pr are locally the identity for all T € X3 and
T (I, Pr) = Pr. Now since A™ is synchronizing at level N, we must have that the state of A™
forced by T is precisely Pr. Therefore the states of A™ can be identified with the states Pr. Now as
all of these states are locally identity it follows that A™ is the identity. Which is a contradiction of
our initial assumption that A does not have finite order. Therefore A™ must be synchronizing at
level greater than my. O

Lemma 3.5.35. Let A € P, be a core, minimal transducer such that |A| > n(n+1). Let B be any
transducer synchronizing at level 1. Then min Core(AB) is synchronizing at level strictly greater than 1.

Proof. For each i € X, let J; = {ma(i,p)lp € Qa}. Notice since A is synchronizing it is also
strongly connected, therefore for all p € Q 5 there is a set J; for some i € Xy such thatp € J;. It
now follows that Uicx, Ji = QAa.

Now if |J;] < n+1 for all i then we have that:

n
Al = Usex, 53 < 310 < nx(n+1) < |A]
i=1

which is a contradiction. Therefore there must be an i € X;, such that |J;| > n + 1. Fix such an
i€ Xn.
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Now since |J;| > n + 1, there must be states p;, p3, p1, P2 € Qa such that p; # p and pj # p;
and such that the following transitions are valid:

for some j € Xy,.

Now observe that there are states (p1, q7) and (pj, q;) in the core of AB where q; and q are
states of B. Let 7rg (j, q1) = q; and g (j, q;) = qj (since B is synchronizing at level 1).

Therefore the following transitions are valid:

ol a) I pra) (s as) S (p2, q5)

where 1; = Ag(j,q7) an l = Ag(j, q3) Now if min Core(AB) is synchronizing at level 1, then
(p1,q;) an (p2, q5) would be w-equivalent, since (p1, q1) and (p;, ;) are states in the core of AB.
However (p1, qj) = (p2, q5) implies that p; =, p2, but by assumption p; and p; are distinct and
A is minimal and so p; =, p2 is a contradiction.

Therefore min Core(AB) is not synchronizing at level 1. O

Now suppose that A € P, and the semigroup (A) = {Al[i € N} is finite. Notice that if
A € Hn and the semigroup (A) ; is finite then it coincides with the group generated by A. The
next result demonstrates that in the case where the semigroup (A) is finite, there must be some
j € IN, j > 0 for which the j splitting length of A is infinite. From this result one may deduce
Lemma

Lemma 3.5.36. Let A € Py, be synchronizing at level k. Suppose that the semigroup (A) L is finite, and
that j is the maximum of the minimal synchronizing level of the elements of (A).. Then A has infinite j
splitting length.

Proof. This is a consequence of Lemma [3.5.33] Since if A has j splitting length 1, then by
Lemma(3.5.33/min(Core(A'*1)) has minimal synchronizing level j + 1, which is a contradiction. [

Remark 3.5.37. The above means that we can partition AY into components Dy, ..., Dj such that
to each component there is a pair of words Wj ; and Wj, in the states of A such that the only
possible outputs from the component D; for any input have the form uw(W; ;)'v where u is any
suffix of Wi 1 W, o, including the empty suffix, and v is a prefix of W; » including the empty prefix.

Below are some examples of finite order bi-synchronizing, synchronous transducers witnessing

Lemma[3.5.36)

Example 3.5.38. Consider the transducer C below. This is a transducer of order 3, in particular, it
is a conjugate of the single state transducer which can be identified with the permutation (0, 1,2).

01

12 2/1 2|0

Figure 3.10: An element of order 3 in Hn,
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This transducer, as noted before, is bi-synchronizing at the second level. The level 3
dual has 27 nodes and so we shall not give this below. However utilising either the AAA
package or the Automgrp package [41] in GAP [25], together with (in AutomGrp) the function
“MinimizationOfAutomaton( )” which returns an w-equivalent transducer, applied to the third
power of the dual transducer, we get the following result:

doldo, 91l90, 92190 @ qolq2, q1l92, 92/92

dold1, 91l91, q2/q1

Figure 3.11: The level 3 dual of C.
Since the original transducer C has order 3 we can see from its level 3 dual above that the states
in the core will be cyclic rotations of (qg, q1, q2) all of which are locally identity.
We illustrate another example below, but now with an element of order 2.
Example 3.5.39. Consider the transducer of order two given below constructed based on an

example in [10].

110
00

212

=0 (@)

0/1

11

Figure 3.12: An element of order 2

This transducer is synchronizing on the first level. We give the dual below.

qoldo

dq1ldgo
qold1, g1lg1

q1l9o

qolqo

Figure 3.13: The level 1 dual.

It is easy to see that the states 0 and 1 are w-equivalent, and can be identified to a single node
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that produces qq for all inputs. The states in the core of the square of the original transducer will
be (do, qo) and (q1, q1)-

For a transducer of finite order, A, as above, we have the following result about the semigroup
(A ).

Theorem 3.5.40. Let A € Py, be synchronizing at level k. Suppose that the semigroup (A) . is finite with
j € INy the maximum of the minimal synchronizing levels of the elements of (A), then /1\].v =(AV) isa

zero in (AY) ., the semigroup generated by AV .

Proof. It suffices to show that A]V is a right zero of the semigroup since the semigroup (AY) is
commutative.
Our strategy shall be to to show that for any state I of A]V and any state x of AV, that the state

x of AY,  is w-equivalent to a state of A]V. To this end let T € XJ, be a word of length j +1. By
Lemma and Remark[3.5.37] there is a pair of words Wy r, and W, such that any input read
from I has output of the form W; (Wy)lvforle Nandva prefix of W, otherwise the output is
a prefix of Wi. Lety € XL be the length j suffix of . Observe that the outputs of the state y of
AY must also all be of the form W;(W,)lvforl € Nandva prefix of W,, otherwise the output is
a prefix of Wi and the output depends only on the length of the input word. Therefore we must
have that I and y are w-equivalent.

On the other hand, given a word y € X),, then a similar argument demonstrates that the state
xy for any x € X, is w-equivalent to y. O

The next result observes that Lemma(3.5.36|gives a complete characterisation of elements of
Hn with finite order.

Proposition 3.5.41. Let A be an element of P and suppose A is synchronizing at level k. Then the
semigroup (A) generated by A is finite if and only if there is some m € IN such that the following hold:

(i) A, is a zero of the semigroup (AY),

(ii) Ay, is w-equivalent to a transducer with v components Dy 1 < i < 1. For each component D; there
is a fixed pair of words wj 1, Wi (in the states of A) associated to Dy such that whenever we read
any input from a state in the Dy, the output is of the form willw},zv for L € N and v a prefix of wi »
or has the from u for some prefix U of w; 1. Moreover the output depends only on which state in the
component D we begin processing inputs.

Proof. = This direction follows from Lemma3.5.36) Remark [3.5.37|and Theorem [3.5.40

«<: Assume that A}, has r components and let w;; and wip 1 < 1 < 1 be the pair of
words in the states of A associated with each component D;. To see that the semigroup (A) is
finite observe that the assumptions that A}, is a zero of the semigroup (A" and that the output
depends only on which state in the component D; of A}, we begin processing inputs means that
Alis synchronizing at level m for all L € IN. Therefore the set {All € N} is finite, since there are
only finitely many transducers which are synchronizing at level 1. O

Remark 3.5.42. In the case where A is an element of H,, in the above proposition, then each
component D; is a strongly connected component. In particular one of wj ; or w; » will be the
empty string for any component D;. We should point out that Picantin in his habilitation thesis [40]
conjectures that a level one synchronizing transducer A in 3y, is finite if and only if (AY)/Qal=1
isa zero of (AV); ={(AY)'[ie N} Proposition gives a partial answer to this conjecture.
Picantin’s conjecture generalises to elements A € H,, which are synchronizing at level k as follows:

Conjecture 3.5.43 (Picantin). Let A € J(y be synchronizing at level k, then A generates a finite group if
and only zf(Av)k”QA‘*l) is the zero of (AY ) = {(AV)!|i€ N}.

If Picantin’s conjecture is true, then the order problem in }(, is soluble. The author is grateful
to Laurent Bartholdi for drawing the results of Picantin’s habilitation thesis to his attention.
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Remark 3.5.44. Given a transducer A € @n which is synchronizing at level k, by
Construction one can identify A with an element of Ay of f]snk. It is an easy exercise
to verify that (A )V = Ay, therefore, (Ay)Y = Aﬁ, hence by Proposition Ay has finite
order if and only if A has finite order. In order to simplify calculations, we shall often assume that
our transducers are synchronizing or bi-synchronizing at level 1.

Applications to the order problem

On the surface Proposition appears to reduce the order problem in H,, to an equivalent
problem of deciding whether the semigroup generated by the dual has a zero. However a
consequence of the above lemmas (in particular Lemma [3.5.36), is that for certain transducers
where the dual at the bi-synchronizing level has some property, we are able to conclude that this
transducer will be an element of infinite order. We shall need a few definitions first. Once more we
shall make these definitions for elements of P,,, we then apply the results to H,, as a special case.

Definition 3.5.45 (Bad pairs). Let A € P be a transducer which is synchronizing at level k,
and let 1 > k. Let 1 be the minimal splitting length of A). Let %, be the set of tops of those
pairs ((q1...,9m), (p1,...,pm)) of m tuples, m > 1, which split A, and for which there is a split
((gq1---,9m), (P1,--.,Pm),T) such that the bottom of the split depends only on the top. Then
we call %, the set of bad pairs associated to A, . Notice that if B € %, then B ¢ Q and [B| = 2.
Furthermore observe that by minimality of 1, %, contains the tops of all splits consisting of a pair
of l tgples and a word in XJ,. Let B, C %, be this subset. We call B, the minimal bad pairs associated
to A

Definition 3.5.46 (Graph of Bad pairs). For a transducer A € P,,, and for r greater than or equal
to the minimal synchronizing level, such that AY has minimal splitting length 1, form a directed
graph G, (A) associated to A, as follows:

(i) The vertex set of Gr(A) is the set %, of bad pairs.

(ii) Two elements {x1,x2}, and {y1, Yo} of %, are connected by an arrow going from {x1, xo} into
{y1,y2}, if there are pairs (Ty, Tp) € Q™ x Q™, for some m > 1, splitting A/, with top {x1,x2}
and bottom {y1, Y2} and such that the bottom depends only on the top. By Remark|3.5.29|this

definition makes sense.

We call G,(A) the graph of bad pairs associated to AY. This graph possesses an interesting
subgraph Gr(A) whose vertices are elements of B, the set of minimal bad pairs, with an edge from
{x1, %2} to {y1,y2}, {x1, %2}, {y1, y2} € By if there is a split of minimal length 1, with top {x1, X2} and
bottom {y1,y>}. We call Gy (A) the minimal graph of bad pairs.

Remark 3.5.47. There is a much larger graph containing G.(A) which we do not consider here.
This graph has all subsets of QA x QAo with size exactly two, and there is a directed edge between
two such vertices if there is a split of AY with top the initial vertex and bottom the terminal vertex.
The reason we do not consider this larger graph is due to the existence of elements of finite order
in K, whose dual at the synchronizing level splits (see Example . This means that in the
larger graphs contain information which is not carried by powers of the transducers.

The following results link graph theoretic properties of G(A) and the order of A when A € Hn.
All of these results apply also to the minimal graph of bad pairs Gy(A). In most cases the
information given by Gr(A) can already be seen in G, (A), however this is not always the case as
we will see in the examples to follow.

Lemma 3.5.48. Let A € Ky, be a transducer, and suppose that  is the minimal synchronizing level of A.
Let v > k and let Gy (A) be the graph of bad pairs associated to AY . If Gy (A) is non-empty and contains a
circuit i.e there is a vertex which we can leave and return to, then A has infinite order.

Proof. Let 1 be the minimal splitting length of AY. The proof will proceed as follows, for every
m > 1, we construct a word, w(rm), of length rm, such that there are two distinct elements of
Q™1 which have different outputs when processed through w(rm) (in AY,,). This will contradict
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A having finite order, since by Lemma [3.5.36|above, if A has finite order, then there will be a j such
that any two sequences of states of any length will have the same output when processed through

a word of length 1j (see Remark3.5.37).
Since G (A) is non-empty, and has a circuit, there exists a circuit: {xq,y1} = {x2, Y2} = ... =

{xj,Yj} = {x1,y1}. Fori € N let Al = (Xn, QY 7y, Ay).

Now for m = 1, since {x1, Y} is a vertex of G (A) with at least one incoming edge, there is a
state I} of A}/, and a pair (S;, T;) € Q4 x QY (for l; > 1) such that (S, Ty, ) is a split of A with
bottom {x1,y1} and such that the bottom depends only on the top. We may assume that the top
of this split is {xj, y;}. Therefore for any p € Q, the output of S;p when processed through T is
not equal to the output of T;p when processed through I'1. However the output of S; and T; are
equal when processed through I} since the bottom of the split depends only on its top. Hence the
following picture is valid, for appropriate U € QY.

< : : phx1 Q
S.u

iU <> Ply1 Q

Figure 3.14: Stage 1 of construction

Now since {x1,y;} is connected to {xy, y»} there is a word Ay € X}, such that there is a pair
(S, Tr) € Q2 x QR and (Sy, Tp, A1) is a split with top {x1,y1} and bottom {x3, Yy} such that the
bottom depends only on the top. Let A{ be the word of length r such that Ay, (A{, U) = Aq (such
a word exists since A is invertible). Since the bottom of the split depends only on the top there
is V € Q2 such that for any P € Q2! we have m, (A1, (x1,P)) =V =1, (Aq, (Y1, P)). Let V' be
the state of Al such that iy, (A],U) = V'. Then let w(k2) = 1 A{. Now by the Remark we
have the following transition

S1/v/
PV U phx2

Figure 3.15: Stage 2 of construction.

for some P € Q12 and p € Q. Now we can iterate the above process, since {x,,y»} is a vertex
of G;(A) with an outgoing edge to another vertex of Gr(A), and the output of S1P and T; P when
processed through ' A{ are the same.

Label the levels of the above picture by 1,2, 3,4.We grow our word from bottom to top. Let A
be the word such that there is a pair (S3,T3) in QB x QY and (S3, T3, A1) is a split of A with top
{x2, Y2} and bottom {x3,y3} such that the bottom depends only on the top. Attach A; to right end
of both words representing the states of level 3. There is a word A{ such that A, 1, (A}, V'V) = A;.
Hence W(r3) = I A{A]. Moreover since the bottom of the split (S3, T3, A1) depends only on its top
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we see that A?Yr has a split of length 1; + 1, + 13 with bottom {x3, ys} whose bottom depends only
on its top. We repeat the above process and in this way construct the words w(rm) demonstrating
that A, hasa split with bottom {x{,yi} where 1 <1i <j,and i =m mod j such that the bottom
depends only on the top. O

Remark 3.5.49. The proof above in fact demonstrates that if A € Hy is such that for some r bigger
than or equal to its synchronizing level, the graph G.(A) of bad pairs has a circuit, then there is an
v’ > r depending on the length of the circuit in G, (A), such that G,/(A) has a loop.

The above gives a sufficient condition for determining when an element of Hn, has infinite
order, although it does not produce a witness. The next results show that when the graph of bad
pairs contains a circuit for an element of Hn, then we are also able to generate a rational word on
an infinite orbit under the action of the transducer.

We start with the case where the graph of bad pairs contains a loop and prove the general case
by reducing to the loop case. First we recall that rational word is a word which is accepted by an
automaton in the language theoretic sense.

Proposition 3.5.50. Let A € H, be synchronizing at level k, and let v > k. If the graph G (A) of bad
pairs has a loop, then there is rational word in X% in an infinite orbit under the action of A.

Proof. Let{p, q} be a vertex of G»(A) with a loop. Furthermore assume that m € IN is the minimum
splitting length of A). Let T} € X%, and P,Q € Q}(l be such that (pP, qQ, I'1) is a split with top
and bottom equal to {p, q} such that the bottom depends only on the top.

Let A' = (X, Q', 7y, Ay), then since (pP, qQ,T7) isa split with top and bottom equal to {p, q} such
that the bottom depends only on the top, there is a state Sy such that 7t (pP, ) = So = m(qQ, I')
for any P and Q in Qk\_l. Therefore let S1 := m (I, Sp). Let I € X, be the unique word such that
A(2, S1) =Ty. Assume that I is defined and S; is equal to 7ty (I3, Si—1), then let I 1 be the unique
word in X{, such that A1(T;11,Si) = I7. Eventually we find there are i <j € IN such that I} =Tj 1.

Suppose that A1 (I, pP) = A and A((T7, qP) = A. Consider the bi-infinite word:

CAATY T (T (T

where ‘A’ indicates that A starts at the zero position. There are two cases to be considered.

Case 1: A € W, and A € Wy. We consider how powers of A! act on this word. Since A € W,
and forany T € PQY L A(M,T) € W,, the bottom of the split (pP, qQ, ') depends only on the
top, we must have that:

. Al .
CCAAT T (T ) (T Ty) e = ok ATy T (T (T T)
Now since Ay € W), we can repeat the above

1

. A ./
*OAlFlFl,l(FlF])(FlF]) — *0*1A2F1F1,1(F1F))(F1F])
Therefore after applying A' t times for some t € IN we see that from the position i onwards
the output is of the form ATy ... T5_1(T;...T[5)(Ty...T5) ..., and Ay, € Wp,. Therefore if Ty # Ty,
W AAT T (T .. T5) (T .. Ty) - is on an infinite orbit under the action of Al. This follows for
if t,t’ € IN such that t # t’, then we have:
(o AATY T g (T T (T Ty) DAY 2 (CAAT T g (T T (T Ty) L AR

otherwise:

CAATY T (T T (Tl T) e = (L AAT LT g (T T (T Ty) AR

However by minimality of i, we have that I # I'; for 1 < t < j, yielding a contradiction.
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If Iy = Ty then our original word ... AAFl (. (T T;) ..., becomes

CAA T (T T )

Notice that the infinite word corresponding to the coordinates IN\{0} is periodic with period
i—1. Now if I7_1 & W)y, Then for any t € IN such that t > 0 we have:

(CAATY T ) (T Tig) DA 2 AAM T (T T ...

since A¢(i—1) # Tt(i—1) = 1. Therefore for any t,t’ € N such that t # t/, we must have that:
(CCAA(T T ) (T Tisg) DAY D 2 (L AA(T T (Ty . T ) L DAL ()

If I =Ty and I3 € Wp, then consider the bi-infinite word . .. /\/-\I"l .. iq (... Ty—1), since
q#pand A € WgandT; 1 € W), wehavely (1) =Ti 1 # Agi—1) forany m € N. Here Ay (1

is defined analogously to A (;_1). Therefore by the argument above . .. /\/.\Fl (e ).

is on an infinite orbit under the action of Al.
Case 2 : We assume now that A € W, and A € W),. As in the previous case we consider how

powers of Al act on the word . ..AAFl (M T )
Making an argument similar to case 1, we have that:

. Al .
G AATY T (T T (T 1) B b AT T (T ) (T T)

However, in this case A; € Wy,. Applying A' again we have:

. Al .
*OAll"l]"l,l(FlF])(FlF])—>*0*1A2F1F1,1(F1F))(F1F])

where Ay € Wq. Therefore given t € IN we know that after applying A' t times, the resulting word,
from the t position onwards is of the form: Al ... Ty (T3 ... T;)(T}...Tj) ... where Ay € Wy if t
is even, and Ay € W, if tis odd.

By considering the bi-infinite word: ... AAIy...T{_¢(T;...T5)(T;...T)..., and similarly
defining the A¢’s t € IN, we see that after applying A' t-times to this word, the output, from the
tth position onwards is of the form: AT ... Ti_1(I}...T5)(T;...Tj) ... where Ay € Wy if tis odd,
and Ay € W, if tis even.

Now we go through the subcases as in Case 1. If [} # I7, then the argument proceeds exactly as
in Case 1.

Hence consider the case I} = I7. Again we split into subcases. Now either I1_; € W, LW
or it is disjoint from these two sets. We assume I _; € W (the other case is proved analogously).
Since Ay¢(i—1) € Wp, for t € IN then by similar arguments to Case 1 above we conclude that

. /\/.\Fl ~.Tiq(Ti...T5)(Ty ... Tj) ... is on an infinite orbit under the action of A%l and so under
the action of Al
Ifl’i_l N (Wp qu) = U)then...AAFl...Fi_l(l“l...Fi_l)...and.../\/I\Fl...Fi_l(l“l...l“i_l)...
are on infinite orbits under the action of A! by repeating the argument in Case 1.
O

Remark 3.5.51. In the proof above, in showing that the witness is in an infinite orbit under the
action of the transducer, our argument has made use only of the right infinite portion corresponding
to the coordinates IN LI{—1, ..., —r}. In particular this means that we can replace the left infinite
portion corresponding to the coordinates {. .., —r — 3, —r — 2, — — 1} by any infinite word in X.

Corollary 3.5.52. Let A € Hy be synchronizing at level k, and let v > k. If the graph G (A) of bad pairs
has a circuit, then there is rational word in X% on an infinite orbit under the action of A.
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Proof. This is a consequence of the proposition above and Remark (3.5.49 O

As a further corollary of Proposition [3.5.50| we are able to prove Picantin’s conjecture for all
two state transducers in J{,,. We observe first of all that a two state synchronizing transducer is
necessarily a reset automaton by Construction and Theorem

Corollary 3.5.53. Let A € Hy, be a two state transducer then either (AY), = {AY} or A has infinite
order and there is a rational word in X% on an infinite orbit under the action of A.

Proof. Since A is a two-state element of Hyn, then A is reset. Further observe that as A has only two
states, then by construction, either the graph G;(A) is empty or it consists of a single vertex with a
loop. If G1(A) is empty, then by definition A" does not split, thus it follows by Proposition
that A has finite order as an element of J{,,. If G1(A) is non-empty, then it has a loop and by
Corollary A has infinite order and there is an rational word in X4 which is on an infinite
orbit under the action of A. O

Below is an example of a transducer B whose graph of bad pairs at level 1, G;(B) satisfies
the conditions of Lemma [3.5.48 We also construct a witness as in Proposition [3.5.50] which
demonstrates that the transducer has infinite order.

Example 3.5.54. Let B be the transducer in Figure Its dual is given by Figure[8.17]

2|0 011
2|0 q1 q0
11
12
02

Figure 3.16: An element of infinite order in H,,

qolqo

qolqo /O\ q1lqo )
N

qold1,91l91

q1l90

Figure 3.17: The level 1 dual of B

From this it is easy to see that the pair {qo, q1} is a vertex of G1 and there is a directed edge with
initial and terminal vertex {qo, q1}. Therefore the conditions of Lemma are satisfied and B
has infinite order. Going through the construction in the proof of Proposition we see that
...111(02)(02) ... is on an infinite orbit under the action of B.

Example 3.5.55. The transducer A shown in Figure demonstrates that though the graph of
bad pairs may contain a circuit at some level, the minimal graph of bad pairs at the same level may
not do so.
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2|3

Figure 3.18: An element of infinite order whose minimal graph of bad pairs has no circuits.

It is easy to see that this transducer is bi-synchronizing at level 3 using the Collapsing procedure
(Construction [2.2.1), or by direct computation in GAP. The graph G3(A) of bad pairs has a loop at
the vertex {q1, q2}. The minimal graph of bad pairs G3(A) is as shown in Figure

Figure 3.19: The graph G3(A) of minimal bad pairs

Here the the double-circled state pair (q, q3) is not a minimal bad pair, and in fact reads any

word of length 3 into a pair of the form (p, p) (it acts like a sink through which we escape the
minimal bad pairs).

Example 3.5.56. The transducer H € H5 shown in Figure is an element of finite order whose
dual at its minimal bi-synchronizing level splits. However the next power of its dual is the zero of
the semigroup generated by the dual. This means that the splits can be fixed by taking powers of
the dual.
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Figure 3.20: An element of finite order whose graph of bad pairs splits.

We have the following conjecture, which might in some sense be thought of as complementing
Picantin’s conjecture.

Conjecture 3.5.57. Let A € 3y, be an element of infinite order which is synchronizing at level k, then
there is an v € Ny such that G(A) has a loop.

If Conjecture is true, then the order problem in Py, is soluble and every element in J{,, of
infinite order has a rational word in X on an infinite orbit.

Alternative conditions for having infinite order

In this section we give an algebraic condition which implies that the graph of bad pairs for a
transducer for some power of its dual has a loop.

To this end let A € H,,, and let r € N be greater than or equal to the minimal synchronizing
level of A. Let 1 € N be the minimal splitting length of AY.

To each state ' of AY we associate a transformation o of the set Q o of states of A. We do this
as follows. For each state q € Q4 and for any L — 1 tuple S € Q'~!, there is a unique state p € Qa,
such that if A is the output when T" is processed through qS in A!, then A € W,,. This is because as
L is the minimal splitting length of A\, the state p is independent of which 1 — 1 tuple S we chose.
Therefore define oy such that g ¢ p.

Forj € IN let &, ; be the set of all products of length j of elements of the set {or[I" € X[, }. We
have the following result:

Proposition 3.5.58. Let A € Hy, and r € N be greater than or equal to the minimal synchronizing level
of A. Let L € N be the minimal splitting length of AY . Then S, | QA 241 Contains a transformation of QA

which is not a right zero if and only if the graph G (A) of minimal bad pairs contains a circuit.

Proof. Let A, r, and 1 be as in the statement of the proposition.

115



Now &, , 241 contains a transformation of QA which is not a right zero if and only if there

is a product or,or, ... UF\QA|2+1’ forT; € Xj, 1 <1< QA% + 1, whose image set has size at

least 2. This occurs if and only if there are pg, o € QA which map to distinct elements under
or, 0T, "'GF|QA\2+1' Let p; :== (po)or,or,...or, and q; == (qo)or,0r,...0op, for1 < i< QA2 +1.

Notice that p; # q; since pg and qo have distinct images under or, or, . .. Ol et
A

By the pigeon hole principle there exists 1 < 1,j < |Qa[? + 1 such that {p;, qi} := {pj, q;t-
This implies that in the graph G (A) of minimal bad pairs we have: {pi, qi} = {pi+1, qi+1} =
.. —1{pj, g5} = {pi, qi}. This follows by definition of the 04, A € X, and of the graph G+ (A).

Now suppose the graph G;(A) contains a circuit. Let j € IN be the length of the circuit, and let
{pi, qi} 1 < i < j be the vertices on the circuit.

Let 1 < i< j be arbitrary. Now an edge {pi, qi} — {pi+1, qi+1) corresponds to the existence of
some I3 € X], and S, T; € Q}{l such that (p;Si, qi Ty, [7) is a split of A,/ with bottom {pi1, qis1).
It then follows that the product o, ... or; maps {p1, 91} — {p1, q1}. This means that Gr,\QAIZH
contains a transformation of Q o which is not a right zero. O

Corollary 3.5.59. Let A € Hn, and let v € N be greater than or equal to the minimal synchronizing level
of A. Let L € IN be the minimal splitting length of A} . If 8, Q241 contains a transformation of Qa

which is not a right zero then A has infinite order. Moreover there is a rational word in X% on an infinite
orbit under the action of A.

Remark 3.5.60. The above now implies that if A € Hy, has infinite order, but none of its graph of
minimal bad pairs, G(A), for r € N greater than or equal to the minimal synchronizing length,
has a loop, then &, |, 21 consists entirely of right zeroes.

We have already seen that given an element A € P, we can associate a transformation A; of
the set X}, to A. We shall now introduce a new transformation, which is defined only for elements
of ﬂttn.

Definition 3.5.61. LetH ﬁn, and let j € IN, we shall define a transformation ﬂj of Xil by

— (Mqp!

where qr is the unique state of H forced by I', and (F)qF1 is the unique element of Xil such that
An((T) qFl, qr) =T If j is zero, then H; is simply the identity map on the set containing the empty
word.

Remark 3.5.62. Given an element H € #,, and a j € N such that j > 1, then H; is not injective in
general One can check that for the transducer B of Figure [3.16} B; is not 1n]ectlve The map ¢;

from U-Cn to the full transformation semigroup on X] which maps H to H is not a homomorphism.

Lemma 3.5.63. Let H € Hy, and let j € N be greater than or equal to the minimal synchronizing level of
H, then H; is not injective if and only if Hv has a split of length one such that the top and bottom of the
split are equal

Proof. (=): suppose that, for j € IN and H as in the statement of the lemma, H; is not injective. This

means that there are two distinct elements I' and A of X] such that (T H; = (A)H Let A== (T')H;.
Let qr and g be the states of H forced by I and A respectively. Then by def1n1t1on of H; we have:
A(A, qr) =T and A(A, qa) =
Observe that as consequence it must be the case that qr # qa. Therefore it follows that we
have the following split in H].v:
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Figure 3.21: Split in A].v with top equal to bottom

(<) Suppose that A]-v has a split of length 1 such that the bottom of the split is equal to its top.

This means that there exists I', A and A in X%I1 so that if q 4 is the state of H forced by A and qr is
the state of H forced by ', then we have A(A, qa) = A and A(A, qr) = qr. This now means that
A = (T')H; = (A)H; and H; is not injective. O

Corollary 3.5.64. Let H € H and let j € N be greater or equal to the minimal synchronizing level of H.
If H; is not injective then H has infinite order and there is a rational word in XZ on an infinite orbit under
the action of H.

We segue briefly to present those results about the group H,, and the monoid P, which do not
sit under the headings of ‘order problem’ or ‘growth’, but which are still related. Following this

segue, we shall turn to the question of the growth rate of groups generated by transducers in H,,
and the growth rate of the core of elements of J(;, with powers.

3.6 Combining elements of P, and some embedding results

This section shall be concerned mainly with describing methods for combining elements of Py, to
create an element of P, for large enough m. As a consequence we shall prove some embedding

results for the group H,, and the monoid P,.

3.6.1 Two element case

In this section we describe a several ways of combining two elements of ﬁn and iT)m, into a single
element of P+ n. As we will see, this has interesting consequences when we restrict to the group
Hn.

Let A = (Xn,QaA,7a,Ap) and B = (X;n, Qp, g, Ag) be elements of P, and Py Itis a
consequence of Proposition 3.4.6/that for all 1 <i <mnan1 <j < mthere is a state, q; of A and P;
of A and B respectively such that ma (1, qi) = q; and 7 (j, pj) = Ppj-

Form a new transducer B = {n,....n4+m-—13}, Qg 73, )\g) with input and output alphabet

{n,...,n+ m— 1} such that the states of B are in bijective correspondence with the states of B; we
denote them by ¢, where q is a state of B.

The transition and rewrite function of B are defined by the following rules for i,j € Xm:

ng(n+1,q)=p < mp(i,q)=p

Now we form a new transducer, A LUB = (Xn4+m, Qaus, Taus, AauB) as follows:
Qaup = Qa UQg; the states of Qa transition exactly as in A for all inputs in Xy, and the states

of Qg transition as in B for all inputs in Xn+m \Xn. Finally for all i € Xy, and for any q € QE'
we have A (1, q) = pi, where p; is the state of Qa such that 7a (i, p;) = pi, furthermore,
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Aaug (i, q) = i. Ananalogous condition holds in A LI B for the states of A on inputs in X \Xn. We
shall demonstrate this in Example[3.6.4]

Now further assume that A € Py, and B € P,,, both have finite order (notice that this implies
A € H,, and B € H,y,). We argue that the order of A L B is at least lem(O(A), O(B)) — the lowest
common multiple of the orders of A and B.

First we show that A LI B has finite order.

Let k be the maximal bi-synchronizing level of A and B. We shall give two different proofs
showing that A U B is synchronizing; similar arguments show that (A LI B)~! is also synchronizing
atlevel k4 1.

Claim 3.6.1. A U B is bi-synchronizing at level k + 1

Proof 1. Observe that as soon we read i, i € Xy,, we must be processing from a state of A and if we
read an n +1, i € X;;, we must be processing from a state of B.
Let T € X5 a word of length k + 1.

IfT e Xlﬁ“ orT e{n,...,2n —1}**! then the state of A UB forced by T is the state of A or B
forced by T'. Since reading the first letter guarantees, by the observation in the first paragraph, that
the active state is a state of A (or Bif T € {n,...,2n —1}**1), and A and B are bi-synchronizing at
level k.

Hence we need only consider the case that I' contains at least one letter from X;, and one letter
from Xon \Xn,.

LetT" = gp...gx. Let gi € X;y and assume gp € Xon, \ X (the other case follows by a similar
argument) and suppose that 0 < j and j is minimal bigger than i such that g; € X2, \Xn . By the
observation in the first paragraph, regardless of the starting state, after processing the gy, the active
state must be some state of A. By the minimality of j, after processing g;_1, the active state is still
some state of A. Now, notice that every state of A will read g; to a fixed state ﬁgj of B. Therefore
regardless of the starting position, we always process the final k —j inputs from the state qg;.

To see that (A U B) ! is also synchronizing at level k + 1 observe that the states corresponding
to states A~! in (A UB)~! process words in X}, exactly as A~! does. Moreover all states of
(AuB)1 corresponding to states of A1 read a fixed letter jin{n,...,2n — 1} to a unique state
a;l corresponding to the state ﬁ]’l of B~. Analogously for the states of (A LI B)! corresponding
to the states of B! and elements of {n,...,2n —1}* and letters in Xy . Therefore we may repeat the
argument already given for (A LI B) to show that (A UB)~! is synchronizing at level k+ 1 also. [

Proof 2. We apply the Collapsing procedure (Construction 2.2.1). Since k is the maximal bi-
synchronizing level of A and B, then after k steps of the procedure, the copies of A and B have
both been reduced to singletons. Now since every input in Xy, is read into A and every input in
Xn+m\Xn is read into B, we only need at most one additional step to reduce A LI B to a singleton.
The result now follows. The same argument shows that (A U B)~1is synchronizing at level
k+1. O

We now free the symbol k. To show that A LI B has finite order, we prove the following claim.

Claim 3.6.2. Let k be minimal such that both A/ and By are the zero of (A"') and (BY) ;. respectively.
Then A UBY, , is w-equivalent to a disjoint union of cycles as in Proposition|3.5.41

Proof. First we consider the case where ' € Xkt orFe (n+1,...,n+m— 1} LetT = gg... gy.
By the assumption that both A and B (hence B) have finite order, this implies that there is a state
q of A (or BifTl ¢ Mm+1,...,n+m—1}t! ) such that the image of I' is in the set W. This
is because after reading gg we are enter a state of A (or BifTl € m+1,...,n+m—1}*1, and
using the fact that g; ... gy belongs to a cycle of states as in Proposition in A) (or BV if
re{n+1,...,n+m—1}*1). Moreover if I' € XX, then the image of I' through any state of A LI B
is also in XK and analogously if I' € {n+1,...,n+m — 1}¥*1. Therefore the fact that I belongs to
such a cycle of states is a consequence of the fact that A and B have finite order.

Now we consider the case where I" contains a letter in X, and a letter in Xy, \Xy,. Similarly
to the proof of Claim[3.6.1} let ' = gog ... g Suppose that a letter from X, (the other case being
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analogous) occurs first and let j be minimal such that j > 0 and g; € Xy, +m\Xn. The proof of
Claim shows that the state of A LI B forced by I" depends only on the suffix gjgj1...gx. Let

qg; be the state of B such that 75(9j, dg;) = Qg;- Since every state of A acts as the identity on
Xn+m\Xn, it is the case that processing I' from any state of A LU B, the first letter of the output is
an element of X;, and the jth letter is the minimal element in Xy +m\Xn and is in fact equal to
gj, moreover since we process the length j — k suffix from the state qg;, the length j — k suffix is
independent of the state we begin processing from. However we can now repeat this argument to
show that the output through any state of the set of images of I', have the same j — k suffix and
the i letter equal to gj. It now follows from the observation above that the state of A LU B forced
depends only on the length j — k suffix, and by induction, that I' belongs to a cycle of states as in

Proposition|3.5.41
The above two paragraphs show that it is possible to decompose A LI B into a disjoint union of
cycles as in Proposition|3.5.41|and so A U B has finite order. O

The following alternative way of combining elements of P, also has the property that
combining finite order elements results in elements of finite order by mechanical substitutions in
the arguments above.

Let A € i’n and B € iTDm be as above and form B as before. For each 1 < i < n, let p; be the
state of A such that ma (i, pi) = pi, by the definition of the transformation (in the case where A
and B have finite order a permutation), A1, we have Ax (i, pi) = A1(i), likewise there is a state g
of B such that Ag(j, qj) = B1(j) for 1 <j < m.

We form A @ B analogously to A L B. The set of states, and the transition function, tagp are
identical but we make some adjustments to the rewrite function. For any letter i € X, and any
state g of B, we take Mes (i, q) = A1(i), likewise for any lettern+j € {n,...n+m—1} and any
state p of A, we have Aa g (j, p) = n+ B1(j).

We have the following claim analogous to Claim and proved in a similar way.

Claim 3.6.3. Let k be minimal such that both A/ and By are the zero of (A"') . and (BY') ;. respectively.
Then A & B/ 1 is w-equivalent to a disjoint union of cycles as in Proposition|3.5.41

The methods described above of combining elements of P, do not exhaust all possibilities, for
instance we could fix a state of B such that reading any letter X, 1 m \ Xy from A goes into this state,
and likewise we could fix such a state of B. Similar arguments to those given above will show that
these methods also give rise to elements of finite order whenever the initial elements have finite
order, in fact we may prove versions of Claim for each by making mechanical substitutions in
the original proof.

We remark also that as there are new cycles of states introduced in (A U B)]\</ y1and (A& B)X 1
that are not present in AY or B) it might be that the order of A LI B is strictly greater than
lem(O(A), O(B)) in some cases.

We give an example below.

Example 3.6.4. Consider the elements of Hz and H, = Z/2Z of order three and order 2
respectively,
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Figure 3.22: Elements of J(3 and J{,.

we now combine them to give an element of order 6 in Hs. Using any of the methods describe
above will yield an element of order 6, we only illustrate one such method.

12

Figure 3.23: The result of combining the elements in Figure @

3.6.2 Embedding direct sums of P in Py forn large enough

The aim of this section is to show that for given n € IN and for a sequence of non-zero natural
numbers d; < d2 < ... < dy such that Zl 1 di =n, the semigroup P, contains a subsemigroup
isomorphic to del X de2 . X CPdll This will then yield, as a corollary, that 3{,, contains a
subgroup isomorphic to 34, x Hg, x ... x Hg,. In order to do this, we first extend the results of
the previous section. Essentially we shall simultaneously merge the elements of }4,, as opposed
to inductively applying the construction in the previous section, this allows us to better control the
synchronizing level of the resulting transducers.

LetneNandletd;, 1 <i<l,be as in the prev1ous paragraph. Let X :={0,1,...,d; — 1} and
for2 <i<lletX; = {Z]l % d],Z) 14 +1,. Z]:1 d; — 1}. Furthermore let A 1<i<1lbe
synchronous synchronizing transducers on the alphabet Xi. We shall now describe how to form
Lt A€ P, which will simply be an extension of the 2 element case described in Subsection

For each i € N let A; denote the transforrnation of the words of length 1 induced by A; as in
Remark 0} The transducer |_|l 1AL = (Xn, i21QA,, m, AL) will consists of the disjoint union
of copies of the A; which are connected in a specific way. Fix a j such that 1 <j < 1, and consider
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the copy of A;j in U}_; A;. Then the copy of Aj in U}_;A; € Py, transitions precisely as A;j does
when restricted to X;; we now describe how Aj; acts for inputs not in X;.

Let 1 < i < Lbe arbitrary, then for any x; € Xj, there is a unique state qx; € Qa, such that
TiA,; (X1, dx;) = qx; and A, (xi, dx;) = (xi)A;. Therefore in u}zlAi € Pn we set m(xq, Aj) = qx;
and Ay (xi, Aj) = (xi)Ai. Hence we have now described how the copy of Aj acts on all inputs in
Uizji<i<iXi

Repeating the above for each Aj, 1 < j < 1, we now have that u{zlAi is connected and all
states are defined on X;, :={0,1...n—1}.

The proof that I_I,-}:lA;L €Pn (i.e that the resulting transducer is synchronizing) requires only
the obvious amendments to the 2 element case proven in the previous Section. Therefore the
following theorem is valid:

Theorem 3.6.5. Let n € IN and let d; 1 < i < 1 be an increasing sequence of non-zero natural
numbers such that Z%:l di = n. Let X3 = {0,1,...,dy—1}and for 2 < i < llet Xy =
{Z}j d; —1, Z}j dj,..., Z}Zl dj —1}. Furthermore let Ay 1 <1 < 1 be synchronous synchronizing
transducers on the alphabet X;. Then U}_, A is an element of P If k; is the synchronizing level of each
A, 1 < 1< 1then the synchronizing level of u}zlAi is at most maxycici{ki} + 1.

Remark 3.6.6. If we begin with elements A; € P4, acting on the alphabet X;, such that one of
the A; does not possess a homeomorphism state, then the resulting transducer LIt _; A} does not
represent a homeomorphism of XZ.

Proof. To see this let i € {1...1} be such that A; does not posses a homeomorphism state.
Then since A; is a synchronous transducer there is a state q; of A; and xi,y; € Xj such that
AA;(xi,91) = Aa (x],qi). Let py := ma, (x4, qi) and p] = 7a, (x], q;). Let gz, be the state of A;
such that a (zi, qz;) = qz;, and let I} in X} be a path from g, to q;. Furthermore let x; € X;j for
je{l,...,1\{i}, and let Ax; be the state of A; such that A, (x5, Ax; ) = Qx;-

Now observe that by definition of I_l}czlAk, the words x;zilixix; and ijirix{xj are such
that 7 (XjZiFiXiX]', qu) = qu and 7 (XjZiFiX{X]', qu) = qu' Moreover Ay (szil“ixix]-, qu) =
AU (X]' zil“ixi’xj, qu )

Therefore uizlAk maps the bi-infinite strings ... (xjzilixix;) ... and ... (xjzi[ixi%;) ... to the
same element of X%, and so it is not injective. O

Remark 3.6.7. If we restrict instead to J{4, instead of P4, then the resulting transducer Ui:lAk
will be in H,, as we will see below.

It was shown in the 2 element case, that for A and B acting on alphabets X; and X, such that
X1 UXp2:=1{0,1,...,n—1} then A LB has finite order if and only if A and B have finite order. In
this more general setting we prove the following stronger result.

Theorem 3.6.8. Let n € IN and let d; 1 < i < 1 be an increasing sequence of non-zero natural
numbers such that Z%:l di = n. Let X; = {0,1,...,dy —1}and for 2 < i < llet Xy =
{Z};% d;, Z;;% dj,..., Z}:l d; — 1}. By an abuse of notation let iT’di denote the monoid of synchronous,
synchronizing transducers on the alphabet Xi. Then the map ¢ : @%:1 i’di — fj)m (Aq,..., A1) —
Lt Ay is a monomorphism.

Proof. That this map is injective follows from that the fact that the action of each A; on X% is
replicated exactly when we restrict Ul_; A; to XZ. Therefore we need only prove that ¢ is a
homomorphism.

Let (Aq,...,A1) and (B7...,B1) be elements of ¢ : @%:1 idi, and let (Cq,...,Cy) be their
product, hence C; = Core(A; * B;). We shall show that the D := (Zore(uil:l}hL * u}lei) = I_I}ZlCi.

First notice that for q; € Qa, and p; € QBJ. the pair (qi, p;) is not a state of D. This is because
for any word I' € X}, such that the state of |—|L11Ar forced by I' is qi, then I' must have a non-empty
suffix in X}, and hence so also must its output through any state of LIL_; A, by construction.
Therefore the output of I' through any state of U!_, B, will synchronise to a state in Qp,. Therefore
the states of D are precisely a subset of Li}_;Q A; X QB
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Now since the states of D intersecting Qa, x Qg arising from the transducer product A; * B;
form precisely the sub-transducer C;, therefore to conclude the proof it suffices (by the injectivity
of ¢) to show two things. Firstly, that for j # 1i all states of A; x Bj act on X; precisely as
Ci1 = Ai1 x By (the final equality follows from Theorem . Secondly, that all states (qj, p;)
of Aj x Bj read an x; € X;j into the unique state of C; with a loop labelled by x;.

The first part follows from the following observation. By construction for any j # i the cop
of Aj iri_l}zléi acts on X; precisely as A;; does, similarly in U!_;B;. Now by Theorem
Ci1 := Ai1 x Byy. Therefore the first part is proved.

For the second part consider the following. Notice that for any j # i and for any state q;, a state
of the copy of A; in I_ILlAi, and for any x; € X; we have that 74 (xi, 9j) = qx;, where 715 is the
transition function of I_I}:1Ai, and gy, is the unique state of A; such that 7ta, (i, qx;) = qx;. An
analogous statement holds for I_ILlBi. Therefore given (qj,p;j) € Aj x Bj, and x; € X;, we have
b (X4, 95, P;) = (Mua (x4, q;), B ((xi)Ai1,Pj)), however this is simply the state (qxi,p(xi)A—U)
of A; x Bi. However, since by definition of Aiy, (xi)Ai; = Aa, (xi, qx;), then (Axi/ P (x)AT,) I8
precisely the unique state of C; with a loop labelled by x;.

O

Remark 3.6.9. It is straight-forward to see from the above that ¢ maps @}_, Haq, to a subgroup
of J(y, since @%:1 Haq, is a subgroup of Pr,.

Corollary 3.6.10. Let n € IN and let d; 1 < i < 1 be an increasing sequence of non-zero
natural numbers such that 2}11 di = n. Let Xy :=={0,1,...,dy — 1} and for 2 < i < 1 let
Xi = {Z};% dj — 1,2};% dj,..., Z}:l d; — 1}. By an abuse of notation let iT’d.l denote the monoid
of synchronous synchronizing transducers on the alphabet X;. Given (Aq,..., A1) € @%:1 ﬁdi, u}zlAi
has finite order if and only if each of the Ay’s have finite order. Moreover the order of LIt_ A is precisely the
lowest common multiple of the orders of the Aj.

Proof. This is a consequence of Theorem and well known results about direct sums of
groups. O

The following result generalises Claim

Proposition 3.6.11. Let n € N and let d; 1 < i < 1 be an increasing sequence of non-zero
natural numbers such that Z}:1 di = n. Let Xy :=={0,1,...,dy — 1} and for 2 < i < 1 let
Xi = {Z}j dj,Z}j djr---/Z)Ll d; — 1}. By an abuse of notation let i’di denote the monoid of
synchronous, synchronizing transducers on the alphabet X;. Given (Aq,..., A1) € @i_, JNDdi andk € N
minimal such that (Ai)]\(/ is the zero of <Ai\/>+, 1<i<, then (u%zlA)XH is the zero 0f<|_l}:1Av>+.

Proof. The proof is the natural generalisation of the proof of Claim and so we omit it. O

It is a result by Boyle, Franks and Kitchens [12] that for n > 3 J,, contains free groups.
Therefore we have the following corollary:

Corollary 3.6.12. Let n > 3 and let m and 1 be natural numbers such that n = 3m + 1 where 0 < 1 < 3.
Then Hy, contains a subgroup isomorphic to TI™ , Fo where F; is the free group on two generators.

Notice that since F, x T, has undecidable subgroup membership problem, it follows that for
n 2= 6 Hy, has undecidable subgroup membership problem.

Remark 3.6.13. We can modify the construction above. Let n, d; and A, 1 < i < 1, be as before.
For each A; fix a permutation o; of X; and an element S; € Qf\i_l. Then we may form the transducer
ULL%S_IAi = (Xn,l_lLlAi, Au, ). For a given j € {1,...1} the copy of Aj in I_I%:L%S_IAi is
precisely A; when restricted to X;. However for i # j, and any state q; of A;, then given any
xi € X; we have A (x4, qj) = (xi)0y; mu(xy, g5) is the entry of S; corresponding to the position of
xi when the elements of X; are ordered according to the natural ordering induced from IN. Then
once more the resulting element of Py, is synchronizing and has finite order if and only if all the
Aji’s have finite order. Moreover we may prove a version of Proposition|3.6.11|in each case.
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3.7 The difference between the synchronizing and
bi-synchronizing level

Using the techniques developed in Section [3.6) we now construct a class of examples of finite
order elements which are all synchronizing at level 1, but whose inverses are synchronizing at the
maximum possible level for the given number of states. A side-effect of the construction is that the
alphabet size increases with the gap in the size of the synchronizing and bi-synchronizing level.

Our base transducer B is the transducer in Figure to the left. Let A be the transducer on
the right.

212

44

00, 11 312 33

Figure 3.24: The base transducer B and an element of J{;

Notice that B is synchronizing at level 1 but bi-synchronizing at level 2. Observe that by
Theorem a transducer with j states is synchronizing at level at most j — 1, since we must
identity two states at each step of the algorithm. Therefore B! attains the maximum synchronizing
level for a 3 state transducer. One can check that B has order 4, moreover 2 is minimal such that
B, is the zero of (BY).

Now we attach A to B using the construction described in Remark Let oy be
any permutation of {0,1,2,3} that maps 0 to 3. There is only one permutation of {4}; form
U%:L%SiCi = (Xn, I_I%:1Ci, Au, ) where C; = B, C; = A, and oy is the identity map. The

resulting transducer is as shown in Figure to the left:
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22

0[0, 1]1

5|5
A/
010, 11 33
32
B/

Figure 3.25: The resulting transducer B’ which is a merge of B and A and an element A’ of H;

Since all the states B map {0, 1} — {0, 1}, p is not w-equivalent to any state of B’ := u%zl o1 Ci.

013 2|3 313 .
Moreover notice that since there is a path p L qz L q 1 $ q4, in order to identify p~! with

q1 , Ay Land q3 in B/ we must first have identified q1 ,dy Land 3 5 1. Therefore since B~ is
synchronizing at level 2, it takes 3 steps to collapse B’~! to a single state. It follows by Theoremm
that B’ is bi-synchronizing at level 3 and synchronizing at level 1. Moreover since 2 is minimal such
that both By’ and Ay are zeros in (BY) and (AV) respectively, it follows by the appropriate
generalisation of Proposition that 3 is minimal such that B} is the zero of (B’) since,
B}Y is zero and 3 is the minimal bi-synchronizing level of B’

Now since all the states of B’ fix 4, we can repeat the process. Let A’ be the transducer to the
right of Figure and let 0} be any permutation of {0, 1,2, 3,4} that maps 4 to 3. Then by the

repeating the arguments above the transducer B” := uf 1,08, Ci = (Xn,U?_,Ci, Ay, M) where

C; =B’ C; =A’,and O'l is the identity map, is br—synchronrzrng at level 4 and synchronizing
at level 1. Moreover, again by the appropriate generalisation of Proposmonm 3.6.11} 4 is minimal
such that B} is the zero of the semigroup (B V) ;. We may continue on in this way, to construct
transducers D of finite order with r states, r > 3 such that D has minimal bi-synchronizing level
r—1and r— 1 is minimal such that D) ; is the zero of (DY),

In the next section we again consider Pincantin’s conjecture.

3.8 Level one synchronizing transducers and Picantin’s
conjecture

In this section we make use of the result of the previous section and a construction of Delacourt
and Ollinger in [23], to construct elements A of H,, of finite order with m states, m € N3,
which are synchronizing at level 1 and such that m — 1 is minimal so that AY. ; is the zero
of (AV); ={AY | i € N}. Recall that Picantin’s conjecture states that a level 1 synchronizing
transducer in H, of finite order, with m states, satisfies A\, ; is the zero of (AV) ..

We begin by first describing the construction of Delacourt and Ollinger. This construction
embeds elements of End (X, or) of the form fy, for a left permutive map f € F(Xn,2) into
Aut(Xn, o) for m large enough, and is given in terms of the action on XZ. We describe the
construction below in terms of level 1 synchronizing transducers in J—Cn, and as an is isomorphic
to the monoid of left permutive elements of End(Xy,, o) ( Proposition[3.3.12), we get an equivalent
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construction to that of Delacourt and Ollinger. The author is once more indebted to Bartholdi for
drawing his attention to this construction and for helpful discussions.

Construction 3.8.1 (Construction of Delacourt and Ollinger). Let A € Hn, be synchronizing
atlevel 1 and letm € Ny and 1 < 1 < m—1. Let p be a symbol distinct from Qa, set
QA =Qau{ptand XM = {(x(V | x € Xp,1 <i<mh Letma,  : X(™ xQa, = Qa,,, be
defined as follows: for q € Q Amy and x € Xn we have, 7wa | (x(Y, q) = gx (see Notation .
Fori € {1,2,..., m}\{l}, any q € QAmt and any x € X, we have, TA 1 (x(i),q) = p. Also
define a function Ap_, : XM x Qa — X(M) as follows: for ¢ € QA and for x € X,, we
have, AAm,l(x(m),q) = ()\A(x,q))m and ?\Am/l(x(m),p) = x(1), For q € Qa1 X € Xn, and
1 <1< m—1, we have 7\Am’l(x(i),q) = xH. Set Ay = <X(m)’QA1n,l’T[Am,1’>\Am,l> a
transducer.

Remark 3.8.2. Letm € Nrand1 < 1 < m—1andlet A € ﬂffn be synchronizing at level 1.
Observe that Ay, 1 is also reset. This is because for i € {1,..., m\{l}, ma_ , (x(1),,) takes only the
value p for any x € X;, whereas TIA 1 (x“), .) takes only the value qx. Moreover, if A € CJTCn
has a state q such that Aa (., q) : X, = X, is the identity map, then, since A is reset and the
maps )\Am,l("q) : Xm) 5 x(Mm) and )\Am,l("p) s XM X(M) are equal, the state q € QA
and the state p are w-equivalent. Therefore, whenever A has a state q which is the identity, we

identify the state q with the state p in Ay, 1 and for convenience we shall use the symbols p and q
interchangeably to denote this state.

Definition 3.8.3. Let A = (X, QA, A, AA) be a synchronous transducer. We say that A possesses a
local identity state if there is a state q € Q o such that A5 (., q) : X — X is the identity map.

Remark 3.8.4. Observe that if A is a minimal, reset automata, the A has exactly one local identity
state, otherwise A is not minimal.

We have the following claim:

Claim 3.8.5. Let m e Npand1 <1< m—1. Let A € 9~{n be a level one synchronizing transducer, then
A1 18 bi-synchronizing at level 1.

Proof. That A is reset demonstrated in Remark[3.8.2} That A is invertible follows from the fact that
for each q € QAmrs )\Am/l(., q) is a permutation. This is because for i # m, AAr (x(1), q) =
x(I#imedm) “and for i = m, we have , for g € Qa, Aa,,,(x(™,q) = Aa(x,q))) and
AA ot (x(m),p) = x(). Thus for q € Qan }\Am,l("q) is surjective from X(M) to X(M) and so
bijective. To see that A is reset observe that by construction of Ay, forany x € X, and i,j €
{1,2,...,m—1}such thatj # 1+ 1 and AAr (x(1), q) = xU), we must have that TIA L (x(), q) =p.
On the other hand for any x € Xy, 1 € {1,2..., m — 1} such that AAr (x4, q) = x(1+1) we must

have thati=1land 7ta | (x(Y), q) = qx. From this it follows that A, is bi-synchronizing at level
1. O

Proposition 3.8.6. Let m e Ny and1 <1< m—1. Let A € Jffn be synchronizing at level 1, then A, |
is finite if and only if A has finite order. In the case that A has finite order, let k € INy be minimal such that
AX is the zero of (A, then, if A has a local identity state, k is minimal such that (Am,l)X is the zero of

(Ama)Y )+, otherwise (A 1)y, is the zero of ((Am1)Y )+

Proof. We begin with the following observation. Let xg € Xy, and qo € Q. Suppose in AV there
is a path:

doldx \
X0 — Xq... Argr Xy

: +
Consider a word azg...am,09002,1..-Am,191..- Q21 ... Amrqr € QAm,l where aij € Qa,,, for

2<i<mand0 <j<r. Whenazg...am0q0a21...0m,191..-02,5 ... Gm,rJr is read from the

state X(()l) in (Amll)\/ the output is,

boo...brodxeb21---bmadxy --- b2y b rdx, b2 i1 b1,
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where b;y; = p for all valid 1,j € IN, and the resulting state is xggl. Observe that that
the resulting output is of the same form as the input, but with a shorter length word
preceding the q term. We fix this deficit by ‘backtracking” and “padding’ the input word
appropriately as follows. Let w € Q;'\:} and consider what happens when we read the word

wag ... am,0q002,1 - Am,191 .- A2 - .. Am,rqr from the state xélﬂ) i.e we pad the input with a

word of length m — 1 and, correspondingly, backtrack from x} to xé“. The resulting output is

bz,() v bm,OqXQbZ,l ce bm,l Qxq - -- b2,r e bm,rqxrbZ,r+l v bmfl+l,1‘+lr where bi.,j =P for all valid

(1)

i,j € N, and the resulting state is x,. i1

dxgld xr|Qyr .
Now suppose for yp € Xy, we have, yo  ~—— " y1... Derldy Yre1-In (A 1)V after reading the

1
word byg ... bmoqxeb21 .- bm1dx; -+ b2 bmrdx, b2 ry1 ... bin_141,+4+ through the state yé ),

the output has a prefix
bz,() v bl,quobZ,l e bm,l qy1 v b2,r e bm,TqyrbZ,r—H . bm—1+1,r+1/

where bi; = p for all valid i,j € IN, and the resulting state is 9&31' Since w €

21’} was arbitrary, we may backtrack once more and consider what happens when
m,

WIW2020 ... Am,09002,1 - Am 1G] ... A2r ... Am,rqr, fOr Wi, wy € QR‘;}, is read from the state
x(()Hm_m) mod m)yé. We see that the output has a prefix

b20. - bmodyeb21---bm1dy; - b2r - Bmrdy b2rp1 - bt

where b; ; = p for all valid 1,j € IN. Since the states qo, ..., qr € Qa were chosen arbitrarily, it
follows by induction that given a word I' € X]Ti, there is a word (T') € (X(™))* and M(r) € N,
such that whenever a word qoqs ... qr € Q}, is read from I' with output q;... q; in Aﬁ, then there

isa word w(qg,...,qr) € Q/I\\/l:l] such that when w(qq, ..., q+) is read from (T') the output has a

prefix (b ... bm0q)---bor.. . bmrqy) in (Amrl)ﬁ. Therefore whenever there is a split in A¥ for
k € NN, there is also a split in (Am,l)]\</~ Thus if A has infinite order A, | also has infinite order
by Proposition Moreover if A has finite order and k € N; is minimal such that A/ is the
zero of (AY), then if A1 has finite order, the minimal k’ € IN; such that (Amrl)]\(// is the zero of
<A\n/1,k>+ is greater than or equal to k.

Now suppose that A has finite order, we show that A, | also has finite order. We may assume
that A contains a local identity state. This is because if A does not have a local identity state, then
by picking a symbol p distinct from QA and setting a/(x,p) = qx € Qa, Aa/(x,p) = x for all
x € Xn, and Qa» = Qa U{p}, we may form a new transducer A’ = (Xn, Qa/, a7, Ap7). Now
since for all states q € QA and all x € Xn, ma/(x,q) € QA it follows that if A/ is the zero of
(AY) 1, then A}, is the zero of (A"V)... Thus we may replace A’ with A if necessary.

Let k € IN be such that A1\</ is the zero of (AY) ;. We now show that (Am,1)¥ is also the zero of
(AY).

Let y(()l) € X(™). As in the first half of the proof, the output when

azo..-a0m,09002,1---a4m,191--- 02+ ... Amrdr
1)

is read from vy,  is of the form

boo...brodxeb21---bmadxy ---b2r o b rdx, b1 b1,

where b;; = p for all valid i,j € IN, xp = 7vo, and qx;...qx, is the output when
qi---qr is read from vy in AY. Once more for any w ¢ QR:}, the output when
Wag0...Am,090021 -+ Am1q1--- A2 ... Amrqr is read from yélﬂ) has a prefix equal to

bz,o cee bm,OqXObZ,l cee bm,l qxq --- bz,r oo bm,Tquer—b—l cee bm—l+1,1‘+lr where bi,j =P for all valid

1,j € N. Let ygd) € XM be arbitrary and suppose that d € {2,...,m}. Consider what

happens when by ... bm,0qx, 02,1 --- bm10x; -+ - b2+ . bmrqx, D241 ... bm—141,r+1 is read from
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yid). We observe that the output in QXml is a fixed word independent of qx,, ..., qx,. This is
because the state p acts by adding one to a superscript and correcting modulo m so superscripts

remain between 1 and m. Thus after reading by ... by o through ygd) in AY |, the resulting

m,l’
state is y%dfl). Since d # 1, for any state ¢ € Qa, , we have, )\A(yidil],q) = Yid),
and we are back to the start state. Hence, by induction, we see that the output when
. d) .
bz/o . bm,quobZ,l . bm,l qxq - -- b2,r ce bm,‘rqxrb2,r+l . bm—l+1,r+1 is read from yi ) m A\T:‘L,l

is a fixed word independent of qy,,...,qx,r and depending only on yid). Therefore if d €

{2,..., m — 1} then, since we may chose r as large as we wish and (Am,1)¥ is finite, we see that for

any input, the output when the input is read through y(()lﬂ)ygd) is a fixed word independent of

Qxgs - - - » Gx,+ and depending only on ygd). Hence for any (A) € (X(M)Yk=2 there is a fixed periodic

word in Q%' such that the output of any input read through the state y(()lﬂ)yid) (A) is a prefix of
this word.

Hence, we may assume that d = 1. In this case, the output when

b2o- - bmodxeb21 - bm1dxy - b2r  bmrdx, b2t bt

is read from ygl) in A\n/m,l has a prefix equal to

020 bLody b2t Pmidxs b2 b Qg Do r g B

where b;; = p for valid i,j, xy = vy1 and Ax) - Ax! is the output when qy,...qx

is read from y; in AY (notice that this is the same as the output when qoq;...qr is
read from vypyi). As in the first half of the proof, choosing wy,wy € QR:}, and
(14+1)_ (1) (1+(2l—m mod m))_ (1+1) i

backtracking from vy, "y, to 7y, Yy , we see that the output when
. (1+(2l—m mod m))_ (1+1) .
WiW2Q20 .. Am,0q0021 - - Am,1q1--- A2, - .- Am,rqr iS read from vy, Y, is,

d/
bop... bm,québZ,l cobmt qx{ b bm,‘rqx4b2,r+1 oo bm—t41,r41- Let ’Yé ) e X(M) Once
again if d’ # 1, then the output when

b2g. . bmodxsb21- - bmadys - b2 PG b2t P

is read from yéd/) is a unique fixed word depending only on yéd). Therefore, for any

(A) € (X(m))k=3 and all states accessible from yéHm_m mod m))yiHl)yéd)(A) in (Am,l)¥,

the output of any input read through such a word is a unique fixed word independent

of the input and depending only on yéd). Therefore, we may assume that d = 1.

By backtracking to the state y(()1+(317m mod m))yilHZFm mod m”yéwl), and padding the

input word wiwiazg...am 090021 ... Am,1q1..- 425 ... Am,rqr With a word of length m —1

at the front, we see that the output when the new input is processed from the state

yél+(3l—m mod m))yil—b—(Zl—m mod m))'YéH_l) has a prefix equal to

bz,o ce bl,qué’bZ,l . bm,l qx{’ .. bZ,T - bm,qu4’b2,r+1 . bm,1+1’1~+1,

where by ; = p for valid 1, j, x; =y2, and Oyl -+ Oxyr 18 the output when A/ -+ 9x; 18 read from vy
in AV (notice that this is the same as the output when qoqs ... qr is read from v(yy;y2). Continuing
on in this way, and choosing, at each step the letter ygl) arbitrarily, we see that for any word
(A) € (X(M))k there are two possibilities. Either there is a word A€ XK such that if, for any
word t = t1 ...ty the output when t is read from Ais $182...5r, then, for any word w € Qj\m,[
of appropriately large length, the output when this word is read from the state (A) has a prefix
equal to bz,o vee bl,031b2,1 N bm,l So... bZ,r cee bm,rsrbzﬂq_] N bm—l+l,r+1/ where bi,j =P for valid
i,j. Otherwise, there is a fixed periodic word in Q' such that the output of any input processed
through the word (A) is a prefix of this word. In part’icular, since AX is the zero <A¥>+, and since
we may chose T as large as we wish, we see that (Am,1)¥ is also the zero of <(Am,1)\/>+- O
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Applying the Proposition to the examples of Section 3.7 gives examples of elements
A € Hy, for large enough n, with r states which are bi-synchronizing at level 1 and such that v —1
is the minimal value for which A , is the zero of (A"),.. We construct one such example below.

Example 3.8.7. We apply Construction for the case m =2 and | = 1 to the transducer B in
Figure To simplify the transducer we let x represent any element of X4 and, for q € Qg, we

set (x)q :=Ag(x, q).

2(2) (@) (1)

Figure 3.26: The transducer B; ;

We now turn in the next section to the question of the growth rates of groups generated by
synchronizing transducers.

3.9 The automaton group generated by a synchronizing
transducer has exponential growth

In this section we study the growth rate of groups generated by elements of Hyn. Recall that
by Theorem all such groups are finitely generated elementary amenable groups, more
specifically, they are finitely generated locally finite-by-cyclic groups. It is a result Chou ([21]])
that such groups are either have polynomial growth (and so are virtually nilpotent by Gromov’s
result ([32]])) or they contain a free subsemigroup of rank at least 2 and so have exponential growth.
Unfortunately, Chou'’s original has a gap, however this is fixed by a result of Rosset [46] stating
that for a finitely generated group G of subexponential word growth, and a normal subgroup N
of G such that G/N is soluble, N is finitely generated. Thus we deduce that groups generated by
transducers in H,, are either finite (as Z is soluble and a finitely generated locally finite group
is finite) or contain a free subsemigroup of rank at least 2 and so have exponential growth rate.
In this section we give a different proof of this result. Our approach is to link graph theoretic
properties of the graph of bad pairs to the existence of free sub-semigroups in the automaton
semigroup generated by an element of J{,,. We should also mention that Silva and Steinberg
give some sufficient conditions (but not necessary) for when the (semi)group generated by a reset
automata contains a free subsemigroup of rank 2. We begin with the following proposition:

Proposition 3.9.1. Let A € Hy be an element of infinite order. Either there is a j € IN such that the
minimal graph of bad pairs G;(A) has a loop or the automaton (semi)group generated by A contains a free
semigroup of rank at least 2.

Proof. We may assume, by changing the alphabet size that A is bi-synchronizing at level 1.
Since A has infinite order then for each j € N, (AY) splits. Fixj € N and let Top; be the set

of pairs of states {p1, po} such that there exits (p1,s1,...,sr) and (pa,s1,...,s;) which split (AV)I
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where 1 is the minimal splitting length of (AY)). By definition Top; is the set of tops of minimal

length splits of Ajv. Analogously, for fixed j € IN let Bottom; be the set of bottoms of minimal
length splits. That is Bottom; consists of sets {t1, t>} such that there exists a split of minimal length
(T, (s1,...,s¢),(s1,...,5})) of A)V with bottom {t, t}.

Since A has finitely many states there exists an infinite subset J’ C IN and a fixed set of pairs
{t1, to} such that {t1, to} € Bottom; for all j € J’. Now consider the set of tops of all splits of AY,
j € 3’ with bottom {t;, to}. Since |J'| = oo and {t1, t} € Bottom; for all j € J’, there exists an infinite
subset J C J’ and a fixed set of pairs {p1, p2} such that {py, p2} € Top)- for all j € J and there exists

splits of Ajv with top {p1, p2} and bottom {t1, tp} for all j € J.

If {p1, p2} = {t1, 1o} we are done, since G]- (A) has a loop for any j € J. Therefore assume that
this is not the case. Under this assumption, we have two cases to consider.

Case 1: Suppose that there are i,i’ € N, i,i’ > 1and $1,5] € Qtand S, Sj € Qi/ such that
(p1,S1) is w-equivalent to (t,S1) and (p2, Sy) is w-equivalent to (tp, S;). We may assume that
i =1’ by padding out one of the pairs (p;, Si) and (t;,S),i=1,2.

Letj € J be such thatj > i+ 1. Consider (AY)J, it has minimal splitting length, r, greater
than or equal to j. Now by choice of {py, p2}, there exists (p1,s1,...,5+—1), (P2,S],---,51 1)
elements of Q" and T a state of (AY) such that ((p1,s1,...,5r—1), (p2,8y,---,8_4),T) is
a split of (AV) with bottom {tj,t,}. Hence, by minimality of r, it now follows that
((p1,S1,8i41,--+,8r—1), (P2,S2,8{ 1 2,---,51_4,T) is also a split of (AV) with bottom (ti,1tp).
However this now implies, again by minimality of r and since (t1, S7) and (t2, S}) are w-equivalent
to (p1,S1) and (pa, S2) respectively, that ((ty,S{,si41,...,5r—1), (t2,S2,8{,5,...,5/_;),T) isalso a
split of (AV)) with bottom (t1, tp). Therefore (AY)) has a loop.

Case 2: We assume that Case 1 does not hold, that is for all i,i’ € IN there does not exist a
choice of $1,S{ € Q" and S5, Sj € QU such that (py,S1) is w-equivalent to (t1, S7) and (py, Sp) is
w-equivalent to (t,S}) . We may also assume that none of the graph of bad pairs G;(A) has a loop
for any j greater than the minimal synchronizing level of A, since otherwise we are done.

The latter assumption implies that &; |, 241 consists of transformations with image size 1 by

Remark [3.5.60, However since (AY)) splits for every j € IN, then for j larger than the minimal
synchronizing level, there are elements I' € X}, such that o1 has image size at least 2. Fix an

arbitrary such I'. Since U‘FQA‘ZH has image size 1, then there is a state p € Q A such that (p)or = p.
Therefore there is a pair of states pq, p» € Qa such that there is a split of (AY) with top {p1, P2},
and bottom {tq, pa}.

The above argument now implies that we may chose {p1, p2} and {t1, to} above so that p, = tp,
and there exists I' € X}, j € J, such that (p)or = t; and (p2)or = pa.

Now since case one does not hold, and py = t,, therefore it follows that for any m € IN\{0}
and any S1,S, € Q™ that p1S; is not w-equivalent to t1S,. We now argue that the sub-semigroup
(p1,t1)+ of 8(A) (the automaton semigroup generated by A) is free.

Now as A has infinite order, it follows that Core(At) %, Core(AJ) for any i #j € IN. Therefore
given two words v and w in (p1, t1)+ such that v and w are w-equivalent it follows that |v| = |w|.

Therefore consider the case of words v, w € (p1, t1)+ such that [v| = [w|. Supposev =v; ...
and w = wj ... wy, where [v| = [w| = L. Let 1 <1 < 1be the minimal index so that v; # w;. We may
assume that v; = p; and w; = t. Therefore v =v1...vip1viso...viand w = v ... vit;wiio ... wy.
Hence v is w-equivalent to w if and only if p1vi ;... vy is w-equivalent to tyw;i 2 ... w,. However
by assumption this is not the case. Therefore given any two distinct words in {p1, t1}*, they
represent distinct automorphisms of the rooted n-ary tree hence we conclude that (py,t1)+ isa
free semigroup. O

Corollary 3.9.2. Let A € Hy, be an element of infinite order. Either there is a j € N such that the graph of
bad pairs G;(A) has a loop or the automaton (semi)group generated by A contains a free semigroup of rank
at least 2.

In the proposition below we introduce a condition on the graph of bad pairs G;j(A) which
guarantees the existence of free subsemigroups of certain rank in the automaton semigroup

generated by an element of Hn. This condition at first glance appears to be very strong, however
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we shall introduce a large class of examples which satisfy the hypothesis of the Proposition. In
particular whenever the graph of bad pairs has a loop the hypothesis is immediately satisfied.

Proposition 3.9.3. Let A Hn and suppose that A is synchronizing at level k and is minimal. Let G;(A)
be the graph of bad pairs for some j > k € IN. Suppose there is a subset § of the set of states of A, such that
the following things hold:

(i) 18| =2,
(i) the set 8(2) of two element subsets of 8 is a subset of the vertices of Gj(A),
(iii) for each element of 8(2) there is a vertex accessible from it which belongs to a circuit,

then the automaton (semi)group generated by A contains a free semigroup of rank at least |8|. In particular
the automaton (semi)group generated by A has exponential growth.

Proof. First observe that since Gj(A) is assumed to have a circuit, by Lemma A has infinite
order. Now let U and V be distinct non-empty words in 8%, if |U| # V| then since A has infinite
order Ay cannot be w-equivalent to Ay by Lemma Therefore we may assume that [U| = [V].

LetU=1uy...uryand V =vq...vy and let 1 < i < r be the minimal index so that u; # vy. If
i = r then we are done, since U = Sq and V = Sp (or vice versa) for some S € 8™ and q # p € 8.

Therefore assume that i < r and that U = SqT; and V = SpT, for S € 8§71, T, T, € 871
and q,p € 8. If Uand V are not w-equivalent, we are done. Therefore assume that U and V are
w-equivalent.

Since p, q € 8(2), there is a path in G;(A) from {p, q} to a vertex which belongs to a circuit.
Therefore we may assume that there is path in the graph G;(A) as follows :

r, 9} ={po, 90} = {p1, q1} = ... = {qu P} = {141, Pr1}

where for each {pa, qa}, 0 < a < 1 there is a split of length m with top {pq, qa} such that the
bottom depends only on the top, and the bottom is {pq+1, a+1} and {p14+1, q1+1) is a vertex on a
circuit in Gj(A). Notice that mq > 1 for all 1 < a < L. Therefore by travelling along this circuit in
Gj(A) as long as required, we may also assume that mg +mq +...+my+1>r—1+1.

By appending a common suffix to U and V, thus preserving w-equivalence, if necessary we
may further assume that r—i+1 = [qTy| = [pT,| is equal to m; +m; ...+ my + 1. Redefining Ty
and T, we assume that U = SqTyt; and V = SpTt; where |qT;| = [pTo| = mg+my ...+ my+1and
t; and tp are possibly distinct elements of Qa. Since |qTy| = [pTo| = mp+my ... +my + 1, write
qTy = RiRy... Ry and pTy; = P1P;... Py where Rq,Pq € QE“ for 1 < a < 1, moreover R; begins
with q and P; begins with p.

Since {q, p} is a vertex of G;j(A), there is a word T" of length j belonging to a split of length
my, whose bottom depends only on the top {q, p}, and with bottom {q1, p1}. Let A be the word
such that the output when processed through Ag is I'. Let Sr be the state of A™0 such that
TtAm, (I, P1) = Mam, (I, Q1). Such an Sr exists by definition of what it means for the bottom of
a split to depend only on its top (see Definition ). Then we have, on reading A through
Ay and Ay respectively that we transition to the states S’SrQ1Qj ... Q{t] and S’SrP{P;... P[t].
Moreover Qj begins with q; and P{ begins with p;. Once more Q € Q" for1 < a <.

Since, by assumption, each {pq, qq} for 1 < a < 1 has an outgoing edge corresponding to a
split of length my whose bottom, {p4+1, qq+1}, depends only on its top, we can now repeat the
argument of the above paragraph until the last letters of the final pair of state are a vertex of G (A).
Therefore we are in the situation that i = r at which point we conclude that the final pair of states
are not w-equivalent.

Now since U and V are w-equivalent, then the final pair of states should also be w-equivalent,
since we read the same word from Ay and Ay into this pair. This yields the desired contradiction.
Therefore we conclude that Ay and Ay are not w-equivalent.

The above now means that the semigroup (Ap[p € 8) satisfies no relations and so is a free
semigroup. In fact this argument actually demonstrates that for any word W € Q* (Q being the
set of states of A), the semigroup (Awplp € 8) is a free semigroup. O
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There are a few ways of extending the argument. One can also show that for a subset § C Q
satisfying the conditions of the proposition, and for any vertex on a path from a vertex of Gy to a
vertex accessible from §(2), then the pair of states making up this vertex generate a free semigroup.
Notice that if the graph of bad pairs has a circuit then the conditions of the Proposition are
satisfied.

Remark 3.9.4. In proving Propositions and we have made use of the cancellative
property of automata groups generated by elements of J(,,, in particular the above arguments can

be extended to elements of P;, where we still retain this cancellative property.

Corollary 3.9.5. For an element A € Hy the automaton (semi)group generated by A contains a free
semigroup of rank at least 2.

Proof. This follows from Propositions and O

Theorem 3.9.6. Let A € H,, then the automaton (semi)group generated by A has exponential growth.

Proof. This follows from standard results in the literature on the growth rates of groups
and semigroups and the fact that the automaton semigroup generated by A contains a free
semigroup. 0

We return briefly to the order problem in the next section, before considering a special class of
transducers in H,, introduced in [51].

3.9.1 Further conditions for having infinite order: avoiding loops

In this subsection we outline a method for detecting when an element of H, has infinite order
which does not depend on detecting loops. This turns out to be particularly effective when n = 3.
Our approach is to deduce implications on the local action of states of the transducer from a power
of the dual transducer being a zero.

First we need the following notion.

Let A € H(,,. For each letter i € Xy, let [i] := {ma(i,p) | p € Qa}and let [i] ' := {ma i,p 1|
p! e Q;l}. Note that it is not necessarily the case that if p € [i] then p~! € [iJ7!. Let
PB(A)q :={[il | 1 € Xn}. Now refine 31 as follows: whenever i,j € Xy, are such that if [i] N [j] # 0,
then let [i,j] := [il U [j], let B(A), be the result of this process. An element of P3(A); is either of the
form [i,j] for i,j € Xy, orjust [i] for some i € X;,. Repeat the process: whenever two elements of 3,
have non-empty intersection, we take their union, and let [i, iy, ..., im] denote the resulting set,
where the 1;’s are distinct for 1 <1< m, [i{] C [iy,12,...,1m] and m is at most 4. Recursively form
sets B for j € IN. Since [Xy| = n there is a j € IN such that B(A); = P(A);j41. Let P(A) = P(A);
for this j. Notice that 3(A) is a partition of the states of A, and we call (A) the letter induced
partition of A.

Lemma 3.9.7. Let A € Hy, and let P(A) be the letter induced partition of A, then there exists P € L(A)
and distinct letters i and j in Xy, such that [iJ U [j] C P.

Proof. Let A € Hy,. Since A~ is synchronizing, it follows (see Construction that there are
distinct states p—! and q~! of A~! such that for all 1 € Xy, we have 51 (1,p) = 5-1(1, ). Now
since A is minimal and synchronous, A1 is also minimal, therefore there is an i’ € Xn such
thati = A 1 (i, p~1) # As-1(i’,q71) = j. Hence in A we have, n(i,p) = 7(j, q). It follows by
definition that there is some P € 3(A) such that [i] U [j] C P. O

Lemma 3.9.8. Let A € Hy, and let ‘B(A) be the letter induced partition of A. Let k € IN be greater than
or equal to the synchronizing level of A. Suppose that Ay splits and that if A}/ 1 Splits then it has minimal

splitting length strictly greater than the minimal splitting length of (A)%. We have the following:
(i) P(A) #{0,1...,n—1]}

(ii) ForanyT € XX the transformation oy has image size strictly less than n . In particular given T € XX
then for a given P € PB(A) then there exists a q € Q such that for all t € P we have q = (t)or.
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Proof. Let A € Hy, be as in the statement of the lemma and let 1 be the minimal splitting length of
(AY)¥. Let m € IN be minimal such that P(A)m, = P(A).

For partlet I'be a word in XX such that or has image size at least 2. Let q1q2...q1 € QY
be any 1 tuple of states, then since AY has minimal splitting length 1 then the 1" letter of the
output when q1qy ... qy is processed from the state I" of (AV)k depends only on q;. In particular
for i € Xn,, and for any word py ... py in the state of A the 1™ letter of the output when py ... py is
processed from il depends only on the state 7t(i, p1). In particular this letter is equal to (7t(i,p1))or.
However since the splitting length of (AY)**1 if it splits, is strictly greater than 1 then it must be
the case that (nt(i, p1))or = (n(i,p))or for any state p of Q4.

Now if j € Xy, is such that [i] N [j] # 0 i.e [i,]] is an element of P(A), then there are states q;
and qp of A such that (i, q1) = 7(j, q2). It therefore follows that (n(i, q1))or = (n(j, q2))or. By
the previous paragraph we therefore have that for any q in [i] and p € [jl, (q)or = (p)or.

Now assume that for all 1 < r < m for any set P; € 3(A), and any pair of states q; and qp in P;
we have that (7(1, q1))or = (7(j, q2))or. Now let P; and P; in B(A); such that Py N P, # . This
means that there is a pair i,j € Xy such that [i] C P; an [j] C P, such that [i] N [j] # 0. Therefore
by repeating the argument in the previous paragraph we have that (n(i, q1))or = (7(j, q2))or
for any pair of state q; € [i] and qy € [j]. By the inductive assumption we therefore have that
(m(i, q1))or = (n(j, q2)) or for any pair of states q; € P; and qp € Py.

Now since o has image size at least 2, there are states t; and t; of A such that (t;)or # (tz)or.
Now as A is core and synchronizing, there are elements P; and P, of 3(A) such that t; € P; and
ty € Po. Now by observations in the previous paragraph it follows that P; # P,. This demonstrates
(@)

The second part of the lemma now follows since as demonstrated above for P € ‘B(A), there
is a fixed q € Qa such that ¢ = (t)or for all t € P. Therefore, by Lemma we have
2 < [im(or)| = [B(A)l < n. O

Remark 3.9.9. Notice that if A € H,, has infinite order, then there are infinitely many numbers
k € N, where k is greater than or equal to the minimal synchronizing level of A, such (AY)* has
splitting length strictly less than (AY)**1. For each such k, any I' € XX and a given P € (A) all
elements of P have the same image under or. In particular since (AV)k splits there elements P; and
P; such that for t; € P; and t, € P, there is some A € X]f1 such that (t;)oa # (tp)oa. Furthermore
we may insist that there is an infinite subset § C IN such that for all j € J there is a A € X}, such
that (t;)oa # (t2)oa for t; € Py and t; € P,. This follows since there are infinitely many numbers
k € N, where k is greater than or equal to the minimal synchronizing level of A, such (AY)¥
has splitting length strictly less than (A" )**1. Now by repeating, with slight modifications, the
proof of Proposition if no power of A" has a loop then for any pair t; € P and t, € P, the
semigroup generated by t; and t; is free.

Remark 3.9.10. Notice that if A € H(3 has infinite order, then 3(A) has only two elements, P; and
P2. Moreover for all numbers k € IN, where k is greater than or equal to the minimal synchronizing
level of A and the splitting length of A/, is strictly greater than the splitting length of A}/, there

is some I" € XX such that (t;)or # (tp)or for any pair t; € Pland t; € P,.

Now consider the case that n = 3. By Lemmas and if an element A € 3, has
infinite order then 3(A) contains only the elements [ij, i,] and [i3] where {i1, 15, i3} := X3.

Lemma 3.9.11. Let A € H3. Let iy, ip, and i3 be distinct elements of Xs. Suppose that [i1] N [ix] # 0. If
for some 1 € N there is an iq € X3 and a pair of states S1, Sp of/l\1 = (Xn, QY, a1, AAL) such that:

(i) mai(ia, $1) = marlia, S2),
(it) Aar(ia, $1) € {i1, 2} and,
(iii) Aar(ia, S2) =13
then either (AN )% = (AY)**1 where k is the minimal synchronizing level of A, or A has infinite order.

Proof. It suffices to show by Proposition [3.5.41|that if A € H3 with minimal synchronizing level k,
has finite order and satisfies the conditions of the lemma then A}, ; = AY.
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Therefore let A € H3 be an element of finite order which satisfies the conditions of the lemma.
Let k € IN be the minimal synchronizing level of A. Let 3 o be the letter induced partltlon of A. If
AY.1 = A/ weare done. Thus suppose that there is some m >k, m € N suchthatAY, ., =AY
but A}, splits.

Since A% splits it follows from Lemma and the condition that [i;] N [i] # () that the letter
induced partition of A consists of the elements [i3, i;] and [i3]. Moreover there are states q; and q,
and some I € X' such that q; = (t1)or and qp = (t2)or for any pair t; € [i1,1z] and t; € [is].

Now let S3 = mta1(ia, S1) = a1(ia, S2), and let A € X' be such that Ax1(A, S3) =T. Consider
the word i4A a state of A, +1- Now after processing the words S; and S; from the state i4A of

m+2

A¥1 1 the active states are i, I" and 131" iy, € {i1,12}. Now since [ip] C [iy, 12], it follows from the

previous paragraph that for any input of length 1 processed from the state i, " the 11 letter of the
output must be q;. Likewise for any input of length 1 processed from the state i3I" the 1" letter of

the output must be q,. Therefore we see that A/, _; splits also which is a contradiction. O

As a corollary we have:

Corollary 3.9.12. Let A € Hs and suppose that ‘I?( ) #{[0,1,2] } Let 14, 12 be distinct elements of
X3 such that [iy,1,] is in P(A), then if 1171 N i~ = 0 either Ak+1 = Ak where k is the minimal
synchronizing level of A or A has infinite order.

Proof. Let A € J3 satisfy the conditions of the lemma and let k be the minimal synchronizing level
of A. Furthermore assume that A}/ splits and so A}/, | # AY.

Since A is synchronizing it follows that there are states q; and g, of A such that for all i € X;,
mia (i, q1) = ma (i, q2) (see Construction 2.2.I). Since A is minimal there is a j € Xy, such that
AG,q1) # A, q2)-

Now the Condition that [il]_l ﬂ i 1=0 implies by Lemmathat, since A¥ splits, either
lig) 1 7é for i) TNl ;é 0. We assume by relabelling if necessary that 171N [ig]*l #*
0. ThlS means that, since A sphts P(A™ 1) consists of the elements [i1,13] 1 := [i;] "1 U [i3] ! and
[iz]~!. Hence we have that A(j, q;) = i; and A(j, q2) = i3 or A(j, q1) = i3 and )\(J q2) = i1. In either
case we have that A satisfies the conditions of Lemma[3.9.11]land we are done.

O

Remark 3.9.13. The above corollary implies that if A € 33 is such that B(A) = {[iy, i2], [iz]} for
(i1, 12,13} = Xn, then either P(A™1) = {[iy, i) 71, [iz] ™'} where [iy, i) := [i1] " U lia] ™ 1 or AY
does not split.

We conclude the section with the following lemma:

Lemma 3.9.14. Let A € H3. Assume that B(A) = {[i1, 2], [i3]} and P(A™Y) = {[i1, 1), liz] 71} Let
q1 and q; be distinct states of A such that for all i € Xn, ma (i, q1) = ma (i, q2) and {q1, q2} is a subset of
some P € P(A). If there are (not necessarily distinct) states p1, p2 of A and (not necessarily distinct letters

j1 and jp in Xy such that 7(j1, p1) = q1, ™02, P2) = d2, A(j1,p1) € {i1, 12}, and A(j2, p2) = i3, then there
is a conjugate B of A such that |Qg| < [QAal.

Proof. Let A € I3 satisfy the conditions of the lemma. Observe that the condition B(A) =
{liy, 2], iz} and P(A™Y) = {[i1, 1)L, liz] 1} implies that whenever a state q of A is such that there
is some state p of A and an i € Xy, with, ma (i,p) = q and Aa (i, p) = i3, then for any other state
p’ and any letter i’ such that 7a (i, p’) = q we must have that A (i, p’) = i3. Thusif i € Xy, is

such that Ax (i, q1) = i3 then A (i, q2) = 13. Therefore if q,° 1 qs is the permutation of X;, induced

by the state qz_lql of A71A, qz_lql fixes i3. This is because if i = A  —1 (i3, qz_l) then A(i, q1) = is.

Likewise let qfl qz be the permutation of X, induced by the state q;° lgy of A71A, dy g this also
fixes i3 by a similar argument. Moreover for any state t of Q o such that there is some j € X, and
7A (j,t) = q1, we must also have that A (j, t) € {i1, 12}. Now since qq and g, are states of A then j;
and j, are either equal, or {j1, j2} = {i1, i}, by an abuse of notation write [j1, j2| for the element of
B(A) containing q; and qp.

Let C = (X3, Qc,7c, Ac) where Q¢ := {cy, cp} be defined as follows. 7tc(i,.) : Q¢ — {cq}if
1 € {j1,j2} otherwise mc(i,.) : Qc — {cz}. The map Ac(s, c1) : X3 — X3 is the identity permutation.
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Set the map Ac(.,c2) : X3 — X3 to be the permutation q, 1q1 if 1,92 € [i1, 1] otherwise set

Ac(s,c2) : X3 — X3 to be the permutation ql_1 q2. Notice that both ¢y and ¢, map i3 to i3. Moreover
since q; and q are distinct states of A and A is a minimal transducer we also have that the state c,
induces the transposition swapping i, and 1. Therefore C is a minimal transducer. Furthermore
since whenever we read i; and i, the active state is ¢4 for some a € {1,2} and the output is an
element of the set {ij, i} we also have that C is bi-synchronizing at level 1 and has order 2.

Now consider Core(CAC). Since A is synchronizing it follows that Core(CAC) is synchronizing.
Let k be greater than maximum of the minimal synchronizing length of Core(CAC) and the
minimal synchronizing length of A. Using the conditions that 7t(j;, p1) = q1 and A(j1, p1) € {i1, 12},
there is a string I' € XX with last letter equal to j; such that the state of A forced by I'is q;. This
means by an observation in the first paragraph that the output of I' when processed from any state
has last letter in the set {i;,1,}. Likewise there is a word A € XX with last letter j, such that the
state of A forced by A is qp and the output of A when processed from any state has last letter equal
to i3. Now since ¢; and g, belong to the same element [jq, j2] of PB(A), it follows that any word of
length k in Wy, or W, must have last letter in the set {j1,j2}.

Now all states of C map {j1,j2} to the set {j1,j2} (since they all fix i3), therefore for any word
A € XK and any state c of C such that Ac (A, ¢) € Wq, we must that the state of C forced by A is
c1 and the last letter of A is in the set {j;, j2}. Therefore reading such a word A from any state of
CAC beginning with c the active state will be (c1, q1, ¢[3, 1,]), where ¢y, 3,1 = c1 if {j1,j2} = {i1, 12}
otherwise c[;, 1,) = c2. This is because by an observation in the first paragraph all single letter
inputs to the state q1 have output in the set {i1, i2}. Therefore (c1, q1, c[3, 1,1) is a state of Core(CAC).
Likewise for any word A’ € XX and any state ¢’ of C such that Ac(A/,c’) € Wq, we must have
that the state of C forced by A’ is ¢ and the last letter of A’ is in the set {j1,j2}. Therefore reading
such a word A’ from any state of CAC beginning with ¢’ the active state will be (c1, qp, Cliz])s
where c(;,) = c1 if {j1, jo} = {i3} otherwise c(;,) = c2. This is because by an observation in the first
paragraph all single letter inputs to the state g, have output equal to i3. Therefore (c1, g2, c[i,) is
also a state in Core(CAC).

Now the above arguments are actually independent of q; and q; and demonstrate that if dqd’
is a state of Core(CAC) then d depends only the set S of J3(A) such that q € S and d’ depends
only on the set S’ of B(A 1) such that q~! € S’. Therefore Core(CAC) has as many states as A.

We now demonstrate that (c1, q2,cfi,)) and (c1, q1, ¢y, ,1,)) are w-equivalent. Since C is
synchronizing at level 1, since both states of CAC begin with c;, since q; and gy satisfy
A (1, q1) = A (i, q2) for all i € X4y, and since all states of C read i1 and i, to the same location, it
follows that for any word i € Xy, we have mcac(i, (c1, 92, ¢[i,))) = Tcac(i, (€1, 92, €[4, 1,1))- This
is because for any i € Xn, {Aa (1, q1),Aa (1, q2)} = {i1, 2} or {AA (i, q1),AA (1, q2)} = {i3}. Thus, it
suffices to show that (c1, qp, ¢[3,]) and (c1, g1, ¢[4, 1,)) induce the same permutation on Xy,. However
this follows by construction, since if {ji, j2} = {i1, 12} we have that c;,) = ¢, the permutation of

Xn induced by ¢ is g, 1 q1 and c([iy, i2]} = c1 (recall ¢; induces the identity permutation on X;,).
Therefore the permutation of Xy, induced by the states (c1, g2, ¢(3,) and (c1, q1, ¢[3,,1,)) coincide
and is equal to 7. On the other hand if {j1, jo} = {i3} we have that c;,) = c1, c[3,,1,] = c2 and the
permutation of Xy, induced by c; is equal to ql_lq 2. Therefore the permutation of X;; induced
by the states (c1, g2, 0[13]) and (c1, q1, C[i1,iz]) coincide and is equal to qp. Therefore setting B to
be the minimal transducer representing Core(CAC) we see that B € J{(3 is a conjugate of A with

IQal—1Qgl = 1. O

3.9.2 The growth rate of Cayley machines

In this section we show that for a finite group G, the automaton semigroup generated by the Cayley
machine, ¢(G) has growth rate, |G|™. To this end, we begin by describing the construction of the
Cayley machine which were introduced in the paper [51]]. We note that the Cayley machine of a
finite group satisfies the sufficient conditions for containing a free subsemigroup of rank at least 2
given in [51]].

Let M be a finite monoid (e.g. a finite group), then one can form the transducer (M) :=
(M, M, 7, \) called its Cayley machine, with input and output alphabet, M and state set M. The
transition and rewrite function satisfy the following rules for 1, m € M:
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(1) (L, m):=ml
(2.) A(L,m):=ml

In each case ml is the evaluation of the product of m and 1 in the monoid M. If M is a finite
group G then by Cayley’s Theorem no two states of C(G) are w-equivalent, and the functions
n(, m): M — M and A(., m) : M — M are bijections. Hence C(G) is reduced and invertible. It is
not hard to see that (¢(G)) 1 is synchronizing at level 1 (or is a reset automaton).

Remark 3.9.15. With a little work it can be shown that (€(G))~! satisfies the conditions of
Proposition where, in this case, § = G. This shows that the automaton semigroup generated
by C(G) is free. Silva and Steinberg give a proof of this in [51]].

We have the following lemma for synchronizing transducers:

Lemma 3.9.16. Let A = (Xn,Q,mA) € ﬁn be a transducer, which is synchronizing at level k.
Furthermore assume that for every T € XX and for all states q € Q, there is a state p € Q such
that N(T,p) € Wq. Then under this condition, A has the property that for all m € N, Core(A™) = A™,

Proof. We may assume, by increasing the alphabet size, that A is synchronizing at level 1.

We proceed by induction on m. For m = 1 it holds that A = Core(A) by assumption that
A€ ﬂ~>n.

Assume Core(A)) = Al forallj < m—1.

Consider A™~! = Core(A™1). Fix an arbitrary state by ... b1 € A™~1 There is a state
ai...am—20m_1 and letters x and y in X;; such that

x|y
a...qm—20m—1 — by... bm—l

Lety’ be the output when x is read from a; ... a;,—2. Notice that since A is synchronizing at
level 1 the state of A forced by y’ must be b,,,_1. By assumption, for every state q € Q thereis a
state p such that A(y’,p) € Wq. Therefore given an arbitrary q € Q, by setting a,_1 := p we may
assume that y € Wy moreover, the inductive hypothesis guarantees that a; ... a1 is a state of
Core(A™1).

Observe that A™ ! is synchronizing at level m — 1 and so there is a word A of length m — 1
labelling a loop based at a; ... am_2a.,m—1. Let A be the output of this loop. Then reading Ax in
(A)™~! from the state a; ... am_pam_; the output is Ay. Now, the state of A forced by Ay is q,
therefore reading Ax through any state a; ... am_2am,_1s for any s € Q, the active state becomes
bi...bm_1 q.

The above paragraph now implies that by,...b,,_1q is a state of Core(A™), since A™ is
synchronizing at level m, hence the state of A™ forced by Ax is by, ... b;n_1q. Therefore for any
q € Q,by...byy_1qis a state of Core(A™). Moreover b1 ... by, 1 was arbitrary, so we conclude
that Core(A™) = A™ as required. O

In our next result we apply Lemma [3.9.16|to the transducer (C(G) )~ for a finite group G by
showing that (C(G ))~! satisfies the condition of the lemma.

Theorem 3.9.17. Let G be a finite group, then |(C(G))™| = |G|™, hence the transducer CG has growth rate
|G|™. Moreover every state of C(G)™ is accessible from every other state.

C(G) is free it suffices to show that (€(G)~!) satisfies the conditions of Lemma

Since the states of (C(G))~! are in bijective correspondence with the states of C(G) we shall let
g’ be the state of (C(G)) ™! corresponding to the state g of C(G).

Let g, h € G. We shall show that there is a state m’ of (C(G)) ! such that Aj; (g, m’) = h (here
A4 represents the rewrite function of (€(G))~1).

By definition of C(G) it suffices to take m’ = (gh™!)". O

Proof. Since, either by Remark(3.9.15|or a result in [51]], the automaton semigroup generated by
i3.9.16

In next section we introduce the notion of ‘core growth rate” and investigate the core growth of
elements of P, and H,,.
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3.10 Growth rates of the core of elements of ﬁVDn

In this section we explore how the core of elements of P grow with powers of the transducer.

Definition 3.10.1 (Core growth rate). Let A € P, be a transducer, and let x be one of ‘logarithmic’,
‘polynomial’, and, ‘exponential’, then we say that A has core x growth (rate) if the core of powers of
A grows at a rate X with powers of A.

Lemma of the previous section indicates that there are many examples of elements of
Pn and Hn, n € N and n > 2 which have core exponential growth. In particular the Cayley
machine of any finite group. Notice moreover that Lemma applies to transducers without
homeomorphism states. The transducer in Figure 3.27]is a non-minimal synchronizing transducer
whose action on X% induces the shift-homeomorphism. We call this the 2-shift transducer. This
transducer satisfies the hypothesis of Lemma 6.9 and so has core exponential growth rate.

1/0
00 11
11

Figure 3.27: The shift map has core exponential growth rate

If we restrict to I(y,, then it is a result due to Hedlund [33] that 3(; is the cyclic group of order 2.
However using Lemma [3.9.16|one can verify that the element H of 34 shown in Figure has
core exponential growth rate.

1 200,33

0
2|3

112
02, 11 3(0

Figure 3.28: An element of 34 with core exponential growth rate

Now for, n € IN let P be the single state transducer which acts as the identity on the symbols
i e Xn\{0,1,2,3}. Then by Theorem HU P is an element of H,,. Furthermore, by the same
result, we have min Core((H U P)™) = min Core(H™) U P. Therefore H U P is an element of H;,
with core exponential growth, since H has core exponential growth. We have now shown that for
n > 4 3{,, contains elements with core exponential growth, which leaves J{3.

The transducer G shown in Figure is an element of J(3, we shall show that this element
has core exponential growth rate. Our argument for demonstrating this is somewhat convoluted.

00 0/0
12
112
2|11
21

Figure 3.29: An element of H3 with core exponential growth
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The graph of bad pairs of G at level 1 has a loop it then follows by Proposition the
automaton semigroup generated by G has exponential growth and is in fact a free semigroup. This
means that different words in {a, b} of the same length represent inequivalent states of some power
of G. Since no reductions can be made, we will denote by Core(G') the transducer representing
the core of G* for some i € IN.

Observe that bl is a state of Core(G?) for all i € IN, since 71(0,b) = b and Gy, (0) = 0. Therefore
we can treat G as an initial transducer with start state b.

To keep the analysis simple we shall reduce to the case of transducer on a two letter
alphabet which will serve as a ‘dummy’ variable for G in a sense that will be made precise.
To do this, consider the binary tree in Figure representing how the initial transducer
Gpp = Core(G2) transitions on certain inputs. The left half of tree corresponds to transitions
from the set {1} x {0,2} x {0, 1} x {0,2} x {0,1}... the right half of the tree corresponds to transitions
from the set {2} x {0,1} x {0,2} x{0,1} x{0,2}.... Let T; := {0,2} x {0,1} x {0,2} x {0,1}... and
Tp:=1{0,1} x {0,2} x{0,1} x {0,2}.. ..

Figure 3.30: Binary tree depicting the transitions of Gy

Using Figure 3.30|we form a dummy transducer which mimics the transitions of Gyy, as follows.
We shall only be interested in the transitions of this dummy transducer and so whenever we take
powers of the dummy transducer we will not minimise it. First form new states B ~ bb, o] ~ ab,
O'(l) ~ ba, 08 and 0'(1). Here 08 corresponds to the state bb whenever we read an element of {0, 1}
from bb and 0'(1) corresponds to the state bb whenever we read an element of {0, 2} from bb. Now
notice that all states on the left half of below the root, at odd levels map {0, 2} into {0, 2} and at all
states at even levels map {0, 1} into {0, 1}. Analogously all states on the right half of the tree below
the root map {0, 1} into {0, 1} at odd levels and {0, 2} into {0, 2} at even levels. Since we only care
about transitions we may transform the tree into a binary tree by replacing all the 2’s with 1's so
long as we still encode the information about which side of the tree we are on, and about parity,
even or odd, of the level of the tree we are acting on. This is achieved by the states o) and o which
represent the occurrence of bb on the left half of the tree at even levels and on the right half of
the tree at odd levels. The resulting initial transducer ég = {0,1}, ﬁj\) on a two-letter alphabet
now transitions similarly to Gy, and has states corresponding to states of G. In particular, by

construction, any state of G* (we do not minimise this transducer as we are interested only in

transitions) accessible from B (in G) will correspond to a state in G' (where we replace (r]i, 1,j=0,1
by the corresponding state of G) accessible from bb (in G) by reading either a 1 or 2 then, in the
first case alternating between reading an element of {0, 2} and an element of {0, 1} and in the second
between an element of {0, 1} and an element of {0, 2}.

137



00

11

011

Figure 3.31: The dummy transducer Gg

The point of building the transducer G is that it encodes the transitions of G in a fashion which

is much easier to describe. One should think of G as a dummy transducer for G in which it is much
easier to read transitions as we shall see.

Since we transition from B! to (o1)! by reading 0 it suffices to show that the initial transducer
G ol has exponential growth. Recall that here we are interested in how the number of states of G
grow without considering the w-equivalence of these states. We shall then argue from this fact
that G has core exponential growth since the automaton semigroup generated by G is free and the
states of G correspond nicely to the states of powers of G (without minimising).

First we argue that the number of states of étc% )i is at least 2/1/2]. We stress once more that
we are not concerned with the w-equivalence of some of these states, they merely act as dummy
variables for the states of G%bb)i’ In particular whenever we raise é( o1) to some power, we shall
not minimise it.

Notice that for x,1,j =0, 1,

. i
7i(x, 07) = o7}y (32)
Alx,0l) =x+j mod 2. (3.3)

In and subscripts and exponents are taken modulo 2. Since a+b mod 2 = ((a
mod 2) + (b mod 2)) mod 2 and ab mod 2 = ((a mod 2)(b mod 2)) mod 2, we can iterate
the above formulae.

We shall require the following notation in order to simplify the discussion that follows. Set, for
ijeZi>1.

i U lig
Shi)=> > ...D) L

L=1L=1 =1

If j = 0 or is negative then take X(i,j) = 0. Notice that the Z(1,j) is simply the sum of the first j
numbers j > 1. Furthermore observe that

j
D I,k =Z({i+1,j) (3.4)
k=1

Remark 3.10.2. It is straight-forward to show either by finite calculus or by induction making use

of the identity ) (¥) = (J+1) that £(i,j) = (17]). We shall not require this fact.
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Freeing the symbol k, let k > 1 € N and let x1xp...xx € {0, 1}, In what follows below
whenever we have an x; for i € Z and 1 < 0, we shall take x; to be 0 and xy = 1. We have the
following claim:

Claim 3.10.3. For i even and bigger than or equal to 1 after reading the first i terms the i term of the
active state is

GXiJr(1*1)X171+Z(1,i*1)X172+Z(2J*Z)Xi73+z(3,i*2)X174+---+Z(i*Z,i*i/Z)XHrZ(171,171/2)-1 (3.5)
1 . .

After reading the first i+ 1 terms of the sequence x; ... xy through G‘FG% e the ' term of the active state is

O.Xi+l+).xi+z(1rj—1)xifl+z(2;)._1)7%72"‘2(3r]'_2)xif3+z(4/j —2)xi_g+..+EZ(i-1j—1/2)x+Z(1j—1/2)-1
0

(3.6)
exponents are taken modulo 2.

Proof. The proof follows by induction and a mechanical calculation making use of[(3.4),
We first establish the base cases i = 1 and i = 2. The top row of array [(3.7)| consists of k copies

of the state o} of Gg. The first column of the second row indicates the we are reading the letter

x1 through state o}. In the second column, the symbol x; + 1 is the input to be read through the

+x1

14x; - ~ . .
second copy of 0, and o, ! is equal to 7(x1, 0}). The remaining columns are to be read in a

similar fashion.

1 1 1 1
o7 o3 o3 e o]
x1 x1+1 0'(1)+X1 X1 +2 0'31+2 x1+3 O'SH_S ..x1+k Ggﬁ_k (3.7)

Therefore after reading x; from the state (G%)k the active state of the transducer é](‘cl )k is

x1+1 _x1+2 %143 x1+k
0 0 ) ... 0y

which is as indicated by the formula

Now we read x; through the active state o3 "' o} 72031 ... 6317 to establish the case i = 2.

We shall make use of an array as in|(3.7){to do demonstrate this.

0_661+1 0_())<1+2 0_6<1+3
X2 Xa+x+EI(1,1) 02 xg+2x+£(1,2) o2 PEMD ) gy 4 5(1,3) gr2 Pt (123 8)

A simple induction shows that the (k + 1)% entry of the second row is:

Xo +kxq + 2(1,k) G;cﬁ(k—l)xﬁi(l,k—l)

and so all the terms of the active state are as indicated by the formula|(3.5)

Now assume that iis even and 2 < 1 < k — 1 and that the jth of the active state after reading
the first i terms of x1 ... Xy is as given by the formula We now show that after reading x;1
through the active state the j™ term of the active state is as given in We shall proceed by
induction on j.

By assumption the first term of the active state is 07 ". Therefore 7t(xi41,0;") = Ggi“ﬂ" and
Y Xi41+Xq

Alxi1, Gi‘i) = Xi4+1 + x{. Therefore the first term o of the new active state satisfies the

formula|(3.6)|with j = 1.

By assumption the second term of the current active state is Gfiﬂi’l + X(1,1)xi_p. Therefore

~ i+Hxi1+Z(1L,1) x4 i1 +H2xi+xi1+X(1,1)x—
T[(Xi+l +xi, 0-;(1 Xi-1 (L1)xy 2) —_ O—gl+l X{TXi—1 (L1)xi 2

and
xi+xi—1+Z(1,1)xi 2

A (Xi+1 +xq, 07 ) =xXi41 + 2% +xi-1+Z(1, 1)xq_o.
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Now we may rewrite {41 +2xi +xi—1 + Z(1,1)xi_p as xj+1 +xx; + Z(1, 1)xi—1 + Z(2, 1)xi_2
since X(2,1) = X(1,1) and X(1,1) = 1. Therefore the 2nd term of the new active state
oy ! T2t R (L xiat 2 21)%2 g pisfies the formula (3.6)|with j = 2.

Now assume that for 2 < j < k the j — 15t term of the new active state is given by:

GX'1+1+(i—1)Xi+Z(1ri—2)Xifl+Z(2,)' =2)xi 2+2Z(3,j-3)xi3+X(4j—3)xi g+.+Z(i—-1j—1-1/2)x;+X(ij—1-1/2)-1
0

and the output when x; is read through the first j — 1 terms of the current active state is

Xi+1+ () —Dxi+Z(1,) —2)xi1 + (2, —2)x42 + Z(?),j —3)xi_3+ Z(4,j —3)xi_g4+...
+Xi-1,j—-1—-1/2)xq +X(1,j—1—-1/2)- 1.

Therefore the jth term of the new active state will be the active state after x; 11 + (j — 1)x{ + Z(1,j —
2)xi1+Z(2,j —2)xi—2+2(2,j —3)xi—3+ X3, —3)xi—4+... +Z(i—1,j —1—1/2)x¢ + Z(i,j —
1—1/2) - 1is read from the current active state. By assumption the current active state is:

O_Xi_Jr(j*l)Xi71+z(1,]’71)){1724’2(2,)’72)7(.173+Z(3,].72)X174+--.+Z(1’.72,].7‘1/2)7(-1+Z(i*l,j*‘i./z)*l
1 .

Making use of the and and the rule the new active state is given by

O_Xi+1+jxi+2(1,j71)xi,1+z(2,)'71))61724*2(3,)'72)X'1,3+):(4,]'72)X174+...+Z(171,171/2)X1+Z(i,j71'./2)-1

0
which is exactly the formula given in|(3.6)
The case where 1 is odd is proved in an analogous fashion. O
i+1
(0-1 yit+1s
the following formulas determine the exponents of the first j terms of the active state after reading
the first i + 1 terms of the sequence X1, ... xy. The subscripts of these states are all 0.

Observe that for all i > 0 we have £(i,1) = 1. Now for i even and j = i/2+ 1 consider G

Xi+1HXq
Xip1+2xi + Z(1, Dxi1 + Z(2, Dxi 2
Xip1 3% + Z(1,2)x 1 + Z(2,2) %2 + Z(3, 1)xi—3 + Z(4, 1)xi—4

X1 — Dxi + £(1,) —2)xi 1 + 22, — 2)xi 0 ++5(i—3,j — i/2+ 1)xs - A2, — /2 + 1)xa
Xip1Hixi 21— Dxi1 +Z(2,) —Dxi2+... Z(1—1,j —1/2)x + (1, — 1/2)

Let yq,...y; in {0, 1}j be any sequence. Since the coefficients of the last two terms of all
the equations above is 1, there is a choice of x; ...x;1 such that the exponent of the 1 term

(1 < 1<j) of the active state after reading x; ... X1 in G }:11) is yy. This is achieved inductively,
1

i+1
first we solve xi11 + xi = yj in Z,. This determines x; 1 and x;. Next we pick x;_; so that
Xit1 +2xi +Z(1,1)x;_1 =0 mod 2, and set x;_p = yp. This determines x; 1 and x;_. Therefore
we may now pick x;_3 so that xj11 +3x; + Z(1,2)x;—1 + X(2,2)xi—2 + Z(3,1)x4_3 = 0 and set
Xi—4 = Yz. We carry on in this way until we have determined x; for i +1 < 1 < 2. Then we solve
the equation

Xi1+Fixi+Z(Li—Dxi 1 +Z2,j—Dxio+...+(2(1,j—1/2) —yj) +Xi—-1,j—1/2)xy =0

for xq in Z5.

That is for any sequence y; ...y; € {0, 1), there is a state of é}:ll) whose first j terms are
1

i+1
Y1 Yj
o' ---0p - B
1 H 3 .
Now for G o1/ 2 similar argument shows for any such sequence y; ... yj, there is a state of G, ol)i

whose first j terms is o} ... 0},
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Now using the correspondence stated above that 0'% ~ ab, O'(l) ~ba and 0'8 ~bb and cr? ~ bb,

the states of é?l and é;l correspond to states of G' and G'*! accessible from the state (bb)t
. 1 1

and (bb)**1. Since the automaton semigroup generated by G is free, then two different words in

{a, b+ will correspond to distinct states of G2(*1)). Now by the arguments above we have

that for every element y; ... y; in the set {0, 1Y G :;%Ll and G :y% have states beginning with 031 - ng
and o}'... O'Iiﬁ respectively. Now using the fact that the automaton semigroup generated by G

. ) / /
is free, it follows that for y; ...y; and y; y]’ in {0,1Y, the states o7 ...cr‘f’ and 01131 ...0?3 for

1 € {0,1} correspond to distinct states of GJ. Therefore G}Ké)m has at least 21/2 +1 = 2[(i+1)/2]

states G }bb)i has at least 2/ (1+1)/2] states. It now follows that for arbitrary i € IN, Gy,: has at least

211/2] gtates for anyi>1eIN.
The above all together now means that G is an element of J{3 with core exponential growth.
Therefore we have:

Theorem 3.10.4. For any n. > 2 there are elements of 7, which have core exponential growth. [

Remark 3.10.5. for i € N, the maximum difference in the size of elements of H,, which are
bi-synchronizing at level i grows exponentially with i.

Proof. For each i € IN it is possible to construct an element of J{,, which is bi-synchronizing at
level i, see Figure 3.32]for an indication of how to do so. On the other hand there are elements of
Iy which are bi-synchronizing at level 1, and which have core exponential growth (for instance
the example in Figure . Let G be such an element. Then min Core(G?) is bi-synchronizing at
level i by Proposition and has at least e®! states for some positive constant c. Therefore the
maximum difference in the size of elements of J{, which are bi-synchronizing at level i is at least
et —i—-1. O

Figure 3.32: An element of J{3 bi-synchronizing at level i

00,11

010,1]1

In the subsequent discussion we explore some of the elementary properties of the core growth

rate, and state a conjecture about the core growth rates of elements of 3, which have infinite
order.

Lemma 3.10.6. Let A € Py, be an element of infinite order. If B is conjugate to A in Py, then core growth
rate of B is equivalent to the core growth rate of A.

Proof. Let C € Py, be such that B is the minimal transducer representing the core of C"!AC.

Since Py restricting to the core is a part of multiplication in P,. It follows that
min(Core(C"1A™C)) =, B™, where A™ and B™ are here identified with the minimal transducer
representing the core of A™ and B™ respectively.
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This readily implies:

ICIIA™(IC] = [B™
as required. O
The next lemma shows that the core growth rate is invariant under taking powers.

Lemma 3.10.7. Let A € Py, of infinite order, and let x be one of ‘exponential’, ‘polynomial’, or “logarithmic’.
Then if there is some m € IN such that Core(A™) has core x growth rate, then A also has core x growth
rate.

Proof. This is a straight-forward observation. Let m € IN be fixed such that Core(A™) has
exponential growth.

Leti € Z, and let k € N. Now notice that | min(A*™*1)| > |min Core(A™)kH1|/|AM™—1 >
expC (KD /M= > expelkmti)/m /Am=1 for a positive constant c. Now as every positive
integer can be written at some qm+1,0 < q € Z and i € Z,,, we are done.

If Core(A™) has polynomial growth rate, then there are positive numbers C and d such that
| min Core(Core(A™)¥)| < Cn¢. Now consider the following inequalities:

IAI'C(km +1)® > |A]'Ck? > |A]'| min Core(Core(A™)¥)|
> |Atmin Core(Core(A™)%)| > | min Core(AK™*1))|

An Analogous argument shows that if Core(A™) has core logarithmic growth rate then so does
A. O

As a corollary of the lemma above we are able to reduce the question of determining the core
growth rates for non-initial automata to the question of determining the growth rate of initial
automata.

Corollary 3.10.8. Let A € Hy, then the core growth rate of A is equivalent to the growth rate of some
initial transducer B q,.

Proof. By Remark|3.4.10|we can associate to A a transformation A of X,,. Now observe that there is

ani € N such that there is an x € Xy, such that (x)A" = x.

This means, by Theorem there is a state of qg of min Core(A!) with a loop labelled x|x
based at qo. This readily implies that for any power Akt of A' the state q is in the core, since this
is the unique state of Akt with loop labelled x|x. Therefore we may take B = min(Aiq 0 ). O

We have the following conjecture about the growth rates of elements of Hon:

Conjecture 3.10.9. Let A € Hy, be an element of infinite order, then the core growth rate of A is exponential.

A strategy for verifying this conjecture is to show that in reducing to the core we do not lose
too many states. To this end we make the following definition:

Definition 3.10.10. Let A be a finite synchronous transducer. We say has core distance k if
there is a natural number k such that for any I' € X‘f1 and any q € A, ma(l', q) is a state of
Core(A). Let CoreDist(A) be the minimal k such that A has core distance k. If A = Core(A) then
CoreDist(A) = 0.

The lemma below explores how the function CoreDist behaves under taking products.

Lemma 3.10.11. Let A, B € Py, and let ka and kg be minimal so that A is synchronizing at level kA and
B is synchronizing at level kg then CoreDist(A % B) < kg.

Proof. Indeed observe that given a state U of A such that the transition U XYy for X,y € XK and

V a state of A holds in A, then since U is in the core of A (as A = Core(A)) there is a word, z of
length kA such that there is a loop labelled z|t’ based at U. Let p be the state of B forced by y.
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Observe that since A is synchronizing at level k4, there is a path V A% U Y v Therefore

there is a loop labelled zx|ty based at V. Therefore in A x B there is a loop labelled zt based at Vp,
since the state of B forced by y is p. Hence for any state Uq of A x B, we read an x into a state Vp
which is in Core(A x B).

O

We have as a corollary:

Lemma 3.10.12. Let A € Py, be synchronizing at level 1. Let A™ represent the minimal transducer
representing the core of A™, then CoreDist(A™ x A) < 1.

Notice that by Lemma [3.9.16| there are elements A € P, for which CoreDistA™ = 0 for all
m € IN.

Lemma 3.10.13. Let A € 3y, by bi-synchronizing at level k. Then CoreDist(A™) < [mk/2].

Proof. First notice that A™ = AL™/2) « AT™/2] " Furthermore both AL™/2land A™/2] are bi-
synchronizing at level [m/2].

Let U and V be states respectively of AL™/2) and AI™/2] LetT ¢ xhm/21, Suppose we have
the transition:

uB

Since AL™/2] is bi-synchronizing at level [m/2], then the state of A~L™/2] forced by A is U/~!
(the state of A~ Lm/2] corresponding to U’). Therefore there is a loop labelled A[l'’ based at U’ —1
in A~Lm/2] hence there is a loop labelled I''|A based at U’ in Alm/2],

Let T be the state of A[™/2] forced by A, then U/T’ is in Core(A™).

Hence we have shown that for any state T of A[™/2] then the state UT is at most [m,/2] steps
from Core(A™). Since U was chosen arbitrarily this concludes the proof. O

Lemma once again shows that the lemma above is an over-estimate in some cases.

If we are able to obtain good bounds on the function CoreDist for a given transducer A € J(;,
of infinite order, then it is possible to prove core exponential growth. In particular it is not hard
to show that if there is an M € IN such that CoreDist(A™) < M for all m € IN then A has core
exponential growth rate if it has infinite order.

We have seen above that there are elements of P,, which attain the maximum core growth
rate possible. The proposition below establishes a lower bound for the core growth rate of those
elements A of H,, of infinite order such that their graph G of bad pairs possesses a loop for some
reN.

We have the following result:

Proposition 3.10.14. Let A € Hy, be an element of infinite order, and suppose that for some r € IN the
graph Gy (A) of bad pairs of A has a loop, then A has at least core polynomial growth.

Proof. By Lemma [3.5.33|we know that the synchronizing level of A grows linearly with powers of
A

By the collapsing procedure ( Construction[2.2.)), a transducer with minimal synchronizing
level i must have at least i states, since at each step of this procedure we must be able to perform a
collapse.

Therefore we conclude that the core growth rate of A is at least linear in powers of A. O

In the next chapter we once more view H,, as a subgroup of On  for 1 < r < n. In particular
we consider the ¢-twisted conjugacy problem for an element ¢ € Aut(Gy ) with core an element
of Hn.
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Chapter 4

¢-Twisted Conjugacy and Ry, in Gp ¢
for certain ¢ € Aut(Gn 1)

In this chapter, we consider the ¢-twisted conjugacy problem in G, , for ¢ an automorphism of
Gn,r with core in J(;,. We show that there are infinitely many ¢-twisted conjugacy classes for this
choice of ¢. Recall (Section that Aut(Gn, ) may be identified with elements of B, ;- (which we
identify with the transducers inducing the homeomorphisms of ¢, +), thus it makes sense to speak
of Core(¢) for ¢ € Aut(Gn ). In the latter half of this chapter we hone in on the case n = 2. In
this case the group H; is the group of order 2 and consists only of the identity transducer and the
single state transducer which induces the permutation swapping 0 and 1 by a result of Hedlund
[33]. By adapting the arguments for the conjugacy problem in V = G ; outlined in the paper [49],
we show that for ¢ € Aut(V) with core in H;, the ¢p-twisted conjugacy problem is soluble in V.
We begin by briefly introducing the ¢-twisted conjugacy problem for a finitely generated group G
and an automorphism ¢ of G.

4.1 Introduction

Let G be a group given by a finite presentation, and let Aut(G) denote the automorphism group of
G. Then for p € Aut(G), the p-twisted conjugacy problem, is the problem of deciding whether for
two elements f, g € G, there exists an element h € G such that:

g=h"1f(h)p (4.1)

and in the case where such an h exists we say that f, g are p-twisted conjugated to each other.
Furthermore we say that a group has soluble twisted conjugacy problem if the p-twisted conjugacy
problem is soluble for any p € Aut(G). This means that there is an algorithm, terminating in a
finite time, which given the two elements f, and g and an element p € Aut(G) decides if f and g
are p-twisted conjugate to one another. If moreover, G has infinitely many p-twisted conjugacy
classes then we say that G has the Ry, property.

In this chapter we shall be concerned with tackling these questions for the family of groups
Gn,r which are introduced in Section (note that Gy ; is also denoted by V in the literature).
Recall (Section [2.3) that the group V has subgroup F and T with T simple and F possessing a simple
derived subgroup. It is shown in [19]that Thompson’s group F has soluble twisted conjugacy
problem and Thompson’s group T and F have the Ry, property. The paper [7] gives a different
proof that Thompson's group F has the R, property.

In Section2.4|we give a description of Aut(Gn,) as the group homeomorphisms induced by
finite initial invertible bi-synchronizing transducers. Using this classification of Aut(Gn ) we
are able to demonstrate that, for automorphisms p € Aut(Gn, ) with core in H;,, the Higman-
Thompson groups Gn,r, of which V = Gy 1, have infinitely many twisted conjugacy classes.

We introduce notation for this class of automorphisms of G .
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Notation 4.1.1. Let BJ(,, » denote the subgroup of those elements of B,  with core an element of
JHn. For r = 1 we shall denote this subgroup by BH,.

For the case of V = Gy, it is a result of Hedlund that H; = Z/2Z. In this case we are able
to say a little bit more, and shall demonstrate, building on techniques in [49], that V has soluble
¢d-twisted conjugacy problem for ¢ € BIH,.

4.2  G,, has infinitely many ¢-twisted conjugacy classed for
¢ € BH,,

Recall that in Chapter 2| Section [2.3|the automorphism group of G, » was classified as consisting of
those homeomorphisms of Cantor space €, which can be represented by a certain finite reduced
initial transducers that are bi-synchronizing at level k for some k € IN. Using this information we
demonstrate that the family of groups G, » has the infinitely many ¢-twisted conjugacy classed for
¢ € BHn,r. Throughout this section we mainly view elements of G, » as maps between r-rooted
n-ary forests (Subsection [2.3.2) since this fits in well with the language used in [49]. There is an
alternative way of looking at elements of G, which is as automorphisms of the Higman algebras
Vi,r (see [2} section 3] for example). The two views are equivalent, however as the first is more
suited for discussing dynamics we cast our discussion entirely in this language.

421 Twisted Conjugacy in Gy,

Let t be an element of Aut(Gn,) (i.e T acts by topological conjugation by an element T of By, 1),
the t-twisted conjugacy problem is the algorithmic problem of deciding, given two elements
f,g € Gn,r if there exists an element h € G, ; such that the following equation holds:

hlgt(h) =h gt thr =7 (4.2)
Rearranging slightly this yields:

h gt th=fr! (4.3)

Therefore the above is equivalent to deciding if there exists an h € G such that gt and
ft (elements of the group of homeomorphisms of €, ;) are conjugate by h. We remark that by
Lemma [2.5.1]if two reduced transducers A 4 and A}, have equivalent cores then we can take one
to the other by multiplying by an element of G, . Hence the above question is equivalent to
determining whether the homeomorphism induced by two elements of BJ{,, » with equivalent
core are conjugate by an element of Gy, ,. For n = 2, r = 1 there is only one non-trivial element
of B, 1 which acts on an infinite strings of zeroes and ones by swapping ones and zeroes. In
the next section we develop a way of representing elements of BH  using forest pairs which
generalises the forest pairs representation of G, of Subsection[2.3.2}

4.2.2 The elements gt

Here we describe how to denote the elements 1 = gt for g € Gn » and T € BH, + generalising the
approach for denoting elements of gR given in Section .3} Assume that T is a reduced transducer
such that t € Aut(Gn r)(wWhere € sends g € Gn + to T_lgr). Since T € BHn,r, it is bi-synchronizing
and so there is a k such that after we have processed a word of length k the transducer is in the
synchronous core. Therefore form the set of minimal paths Pi,, from the start state to any state in
the core, and the corresponding output paths Pyt as in the previous section. These form complete
anti-chains. Form the corresponding forest triple as in Subsection[2.3.2} but now we attach states in
the core to the leaves of the range forest. That is, if (A, B, 0) is the resulting forest triple, we modify
the map o to a map © as follows. If u is a leaf of A, and p is the state in the core of T such that after
we have read u from the start state we are in p, then (1) = vp,. Inductively, if (u)T = vy, then
(ut)o = vA<(1, P)r,(i,p)- Note that for a node x of Ty, » which lies at or beneath a leaf of A we also
write (x)gt for the leaf (x)o of B. The forest triple representing gt is now (A, B, 7). In other words
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the elements gt, g € Gn,r, look like elements of Gy, » with transducers attached to the leaves in
the range forest. Notice that if T was a transducer representing an element of G, ; the forest triple
(A, B, 0) is exactly as in Subsection[2.3.2]

Definition 4.2.1. Define an elementary contraction (and so expansion) as follows. Let (A, B, )
be a forest for an element gt as described above. Let c1xxq, ... cyxan be leaves beneath a node
c1x of A. Let cpy B1p, ---€2YyPnp, be the corresponding leaves in B such that (c1xxq)0 = coy Bip;-
If there is a single state q in the synchronous core of T such that for all «;, 1 < i < n, we have
i (ay, q) = pi and Ar(«q, q) = By, then we delete the leaves beneath ¢1x and cpy and form a new
map p, such that pla\ (¢;xaq,..cixan} = OIA\{c1xaq,.cixan} N (€1X)p = €2y q. Since we assumed
our transducer is reduced, such a state g is unique. This is because any other state satisfying the
above, will process elements of ¢, identically to q. A forest triple (C, D, p) is called an expansion
[contraction] of (A, B, T) if it can be obtained from (A, B, ) by applying a sequence of elementary
expansions [contractions].

This definition makes sense since the states of the core are synchronous and represent
homeomorphisms of €, . Moreover, by definition of the minimal forest all such contractions must
happen on leaves strictly below the leaves of the minimal forest, since otherwise we are not yet in
the core.

Given an element g7, any expansion (A, B, ©) (including the trivial expansion) of the minimal
forest pair representing gt together with a bijection & between the leaves of the forest pair, is called
a representative forest triple. The rationale behind this being that we want to be able to guarantee
processing from the core which will be useful later on. Below we illustrate such a forest triple
representing the element of B3, given in Figure

2V NN
1 2 3 4 4q 3q; 2q; 1lgq,

Figure 4.1: The forest triple representing the transducer from Figure

Notice that if T represents an element of Gy, ;- then this definition of contraction and expansion
is exactly the same as that given in Subsection[2.3.2} since the core is a single state transducer which
acts trivially on all inputs.

Olga-Salazar Diaz introduces in [49] revealing pairs for examining the dynamics of elements of
R. Thompson group V, the techniques introduced there can in fact be generalised to the Higman-
Thompson groups Gn,r as demonstrated by Bleak et al in [9, section 4]. We now further extend
these techniques to the elements gt in the section below. The exposition which follows is based on
[15} section 10] which gives a very clear exposition of revealing pairs.

4.2.3 Revealing Pairs

For the discussion below, unless otherwise specified, whenever we use the term forest we shall
mean precisely an n-ary r-rooted forest. We shall fix throughout this section T € By, » and
g€ Gnr.

Definition 4.2.2. Let A be a finite forest. The leaves of A shall be defined, in the usual way (See
Section , as those nodes in the full n-ary forest T, whose children are not in A. Those nodes
of A which are not leaves will be called interior nodes of A. Given a node v of Ty,, the n + 1-tuple of
v and the children of v, (v,vg,Vv1,...,vn_1), is called a caret.

Let (A, B, ) be a representative forest triple for gt (noting that the leaves of B will have states
in the core of our transducer attached), we shall denote by A — B the carets in A which are not
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carets of B and likewise define B — A. Finally A N B shall be those carets of A which are also carets
of B, therefore all leaves of A which are also leaves of B will be contained in A N B. We have the
following definition:

Definition 4.2.3. Let (A, B, 7) be a forest triple representing gt. We define an augmentation of
(A, B, m) as follows. Let U be any finite subtree of Ty, and a any leaf of A and b, with p the attached
state of the core, be the leaf representing its image under gt, that is b, = (a)7. Take an expansion
of (A, B, m) until we have the subtree U rooted at the leaf a. Simultaneously, we have rooted at
b a tree U’ which we call the image of U through the the state p. Since the states in the core are all
synchronous, and represent homeomorphisms of €;,, the number of leaves of U and the number
of leaves of U’ are the same. We also have a new bijection 7’ (corresponding to this expansion)
between the leaves of the new forest pair. Notice that all the leaves of U’ will have states in the
core attached to them.

Clearly the new augmented pair is also a representative forest pair for gt, since it is simply a
sequence of elementary expansions of the original forest triple. Following [15] we now go on to
‘iterate augmentations’, but first we make the following definition which is similar to the definition
of an X-component in [2, section 4.1].

Definition 4.2.4. Let (A, B, ) be a representative triple for gt and let us, ..., u, be a sequence of
leaves of A. Such a sequence is called an iterated augmentation chain if:

(1) All the uy are distinct and all the (uy )7 in B are distinct (thought of simply as leaves of B).
2) (uy)m= Uit1, (1 £ 1< r—1and where p is a state in the core)

Notice in the above definition that the second condition implies that the leaves u;, 2 <i<r
(ignoring the states attached to them) are leaves of A N B.

Definition 4.2.5. Let gt be represented by the forest triple (A, B, ) and letuy, ..., u, be an iterated
augmentation chain. Let p;, a state of Core(7), be the state attached to 7y, for 1 < i < . We define
two types of iterated augmentations of (A, B) as follows.

(1) Forward iterated augmentation: Let U be any finite subtree of T,,. Take an augmentation
(A/,B’,m’) of (A, B, m) at node u; using subtree U. We now have a subtree U’ attached to
the leaf u, in B the range tree. Now perform an augmentation of (A’, B/, ') at leaf up in A’
using the subtree U’. We repeat this process until we have performed an augmentation using
the leaf u, and an appropriate finite tree.

We call the alterations described above to the forest triple (A, B, ), a forward iterated
augmentation by Walong uy,, ..., u,.

(2) Backward iterated augmentation: Let U be any finite subtree of T,,. Take an augmentation
(A/,B’,m’) of (A,B,n) at node u, using a subtree U’ such that the image of U’ through
state p is U. Such a U’ exists since p represents a homeomorphism of €;,. We now have a
subtree U attached to the leaf (u,)7 in B, the range tree, and a subtree U’ attached to u, in
the domain tree. Now perform an augmentation of (A’, B/, ') at leaf u,_1 of A using the
subtree U” such that the image of U” through the state p,_ is U’. We repeat this process
until we have performed an augmentation using the leaf u; and appropriate finite tree.

We call the alterations described above to the forest triple (A, B, n), a backward iterated
augmentation by U along uy, ..., u,.

Remark 4.2.6. Backward and forward iterated augmentations are equivalent, however we
distinguish between the two in order to highlight, in the forward case, that the focus is on the first
leaf in A, and in the backward case, the focus is on the leaf (u, )7 of B.

We now define an imbalance of a tree pair exactly as in [15, p. 10.7]

Definition 4.2.7. Let (A, B, 7) be a forest triple representing gt. Since A and B have the same
number of leaves, they have the same number of carets, therefore A—B = A — (BN A) and
B — A = B — (A NB) have the same number of carets. We call this number the imbalance of the
forest triple (A, B, m) .
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Definition 4.2.8. Let (A, B, 7t) be a forest triple for an element gt. A leaf of A which is also a leaf
of B is called a neutral leaf

Let (A, B) be a representative pair which has the minimal number of components of B — A
amongst those pairs which have minimal imbalance and minimal number of components of A — B.
Now using the definition of iterated augmentation in Definition [4.2.5} it is easy to see that lemmas
10.2 to 10.5 of [15] hold in this context. The proof is modified only by applying either a forward or
a backward iterated augmentation, depending on if we are working with components of R — D or
D —R. In order to illustrate how we apply the iterated augmentations as defined above we include
both the statements of lemmas and their proofs.

Lemma 4.2.9. It is impossible to have an iterated augmentation chain u, . .., U, so that wy is an interior
node of B and ()7 is an interior node of A.

Proof. Suppose for a contradiction the lemma is false. Since (u,)m is a leaf of B and an interior
node of A, then it is the root of a finite n-ary tree of the forest A — B. Let U denote the component
with root (u,)m. Perform a backward iterated augmentation by U along uy, ..., u,. By construction
of the backward iterated augmentation, after this process all the leaves of U are now neutral leaves;
for 2 < i < 7, the subtree U(V) attached to u; in A is precisely the same subtree attached to 1
in B and so the leaves of these subtrees are now also neutral leaves. Notice that as the states
in the core are synchronous all the subtrees U() have the same number of carets as U. Finally,
if s is the number of carets of U, since 1, is an interior node of B, the subtree U@ contributes
strictly fewer than s carets to the new caret difference. Since all other components of A — B and
B — A are unchanged we have a forest triple with imbalance strictly less than (A, B, ) which is a
contradiction. O

Lemma 4.2.10. It is impossible to have an iterated augmentation chain uy, ..., U, so that uy is not a node
of B, so that (u, )7t is an interior node of A and so that the component of A — B containing \, is not the
component of A — B whose root is at (u,)7).

Proof. Suppose for a contradiction that the statement of the lemma is false. Let U be the component
of A — B rooted at (u,)m. Take a backward iterated augmentation by U along us,...,u,. By
construction, and analogously to the proof the previous lemma, the process is such that the leaves
of U become neutral leaves in the resulting forest triple; introduces new neutral leaves which are
the children of the u; 2 < 1 < r; and adds a subtree with the same number of leaves as U rooted at
u; to the component of A — B containing u;. In particular, the resulting forest triple has the same
imbalance as (A, B, 7), since u; is not a node of B, but reduces the number of components of A — B
which is a contradiction. O

Lemma 4.2.11. It is impossible to have an iterated augmentation chain uy, ..., u, so that (u,)mis not a
node of A, so that uy is an interior node of B and so that the component of B — A containing (u, )7 is not
the component of A — B whose root is at u;.

Proof. The proof is analogous to that of Lemma only here A and B swap roles, and
we perform a forward iterated augmentation by the component of B — A rooted at u; along
U, ..., Up. O

Lemma 4.2.12. For each non-trivial component U of A — B there is a unique leaf A(Ul) of U so that if r(U)
is the root of U, then there is an iterated augmentation chain A(U) =y, ..., us with (ug)m = r(U).

For each non-trivial component V of B — A there is a unique leaf A(V) of V so that if v(V) is the root of
V, then there is an iterated augmentation chain v(V) = uy, ..., us with (us)m = A(V).

Proof. We prove only the first statement, since the second is proved similarly.

Since r(U) is the root of a component of A — B, it must be a leaf of B, therefore there is a leaf u,
of A such that (u;)7t = r(U) (we shall ignore the state in the core we are processing from for the
moment.) Now by Lemmas and since u; is a leaf of A such that (uy)7 is an interior
leaf of A, then either u, is a leaf of U or it is a leaf of B. If u; is a leaf of U we are done, otherwise
there is a leaf u; of A such that (uy)7m = u;. Relabel 1 := uy and uy = u;.
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Inductively assume we have an iterated augmentation chain uy, ..., us such that (us)m = r(U).
Once more, by Lemma [£.2.9]and [£.2.10} either u is a leaf of U or it is a leaf of B. If u; is a leaf of U
we are done.

Assume that u; is a leaf of B. Increase the subscript of every element of the iterated
augmentation chain by 1, and redefine u; = (up)n~!. Arguing as in the previous paragraph
either uy is a leaf of B or a leaf of U, and so we have increased the length of our chain.

If we enter into a cycle of neutral leaves, since (A, B, 7t) represents a homeomorphism of &;,
and all the states in the core are homeomorphisms of €, this will be a contradiction. Therefore we
may exclude this case. Since A is a finite forest, the process must stop eventually. O

We now define repellers, attractors, sources and sinks.

Let gt be represented by a forest triple (A, B, ) such that (A, B, 7) is a representative pair
which has the minimal number of components of B — A amongst those pairs which have minimal
imbalance, we have the following definitions:

Definition 4.2.13.

(i) A leaf of A (B) which is A(U) [A(V)], according to the notation of Lemma[4.2.12} for some
component U [V] of A — B (B — A) is called a repeller [attractor]. The period of a repeller u is
the value s such that (u)® = r(U). The period of an attractor, v, is the value, s, such that
(V)3 =1(V).

(if) A leaf of A [B] is called a source [sink] if it is a leaf of a component U of A —B [V of B — A]
not equal to the repeller [attractor].

Finally we define what it means for a forest pair to be a revealing pair for an element gt:

Definition 4.2.14. A forest triple (A, B, ) representing an element gt is called a revealing pair if
every component of A — B has a repeller and every component of B — A has an attractor.

We have the following lemma which is very similar to lemma 4.18 of [2] and is a consequence
of the results above.

Lemma 4.2.15. Let (A, B, ) be a revealing pair for gt, and let u be a leaf either of A or of B then one of
the following holds:

(i) wis an attractor or repeller.
(ii) wis in an orbit of neutral leaves.
(iii) s in the iterated augmentation chain of a source or a sink.

(iv) W is a source or a sink.

Remark 4.2.16. It is a consequence of above lemmas that if u is a source then there is an iterated
augmentation, u = uq, Uy, ..., us such that (us)mis a leaf of B — A and, since entering into a cycle
of neutral leaves will yield a contradiction, is a sink in particular.

Let (A, B, mt) be a revealing triple for gt and let x a leaf of A be in a finite cycle of neutral leaves
of length m. Suppose the orbit is as follows:

X i=X1 — X2p, e d Xmpm_1 — X1pm

Since Ay, is a synchronous transducer, it induces a permutation in Sym(Xy, ) for inputs of length 1.
Let o, be the associated permutation. Let o be the product op, 0p, ... 0p,,, Written as a product
of disjoint cycles. Letj € {0,1,...,n— 1} and suppose the disjoint cycle containing j (in the cycle
decomposition of o) has length 1. This means that (j) o' =j and lis the minimal value for which
this holds. Observe that (x1j)(gT)™ = x1(j)0. Therefore (xj)(gt)'™ = x;(j)o* = xj. Therefore xj is
also in a cycle of neutral leaves. Applying induction, we therefore have, for I' € {0, ..., n —1}*, that
xI" is in a cycle of neutral leaves whenever x is.

We now focus on elements  with revealing pairs (A, B, ) such that A = B. That is all the
leaves of A (and so of B) are in finite orbits of neutral leaves. It is not true that such an element
has finite order in general, since the argument above demonstrates that the length of the finite
orbits usually increase when we make an elementary expansion. The order of such an element is
therefore tied to the order of the synchronous core.
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4.24 Gy, has infinitely many ¢-twisted conjugacy classes for ¢ € BH,,

Let 1V be an element of BH, » with revealing pair (A, B, ) such that A = B. Let h € Gy be
arbitrary such that h is represented by the revealing pair (K, L, 8). We can assume that K is a subset
of A since it is not hard to come up with algorithms to take an arbitrary pair to a revealing pair.
Therefore, by taking expansions, (A, A’,0') is a representative pair for h. Let us now consider
what happens when we conjugate 1\ by h.
First observe that as h has a trivial core, then by Lemma we know that the core of h~!{ph
is equivalent to the core of . Let ¢ := h~1ph. Let x be a leaf of A and let x’ = (x) a leaf of A’,
then:
xph = xhe =x'h. (4.4)

This shows that ¢ permutes the leaves of A’. Now suppose that the state attached to x’ is q. We
show that ¢ necessarily has the same state q attached to x’h. Let ' € €y, then

xThe = xIMph = x'(MNAgh =x"h(INAq = xhe(TAq (4.5)

The transducer representing ¢ after processing the word xh outputs the string x’h and is in
some state. Equation [£.5now shows that this state is equivalent to the state q. This means that
(A’,A’,p) is a revealing pair for @, with p defined according to Equation [4.4|above. Moreover if
x € A is in a complete finite orbit of length d under 1 then xh is in a complete finite orbit of length
d under ¢ and vice-versa.

Let \ be a periodic element as above, that is all revealing pairs for 1 are such that all leaves
are in finite cycle of neutral leaves. Let (A, A, ) be a revealing pair for {p with the additional
property that no proper contraction (using the definition of contraction established earlier) of A
is a revealing pair for 1. Assume now that (C,C,0) (C # A) is any other revealing pair which
also has this property. Let u be a root of a component, U of A — C (relabelling if necessary). Then
u is a leaf of C and is in a finite cycle of neutral leaves of C. However this means that there is a
contraction of A such that all the leaves are in a finite cycle of neutral leaves. This is a contradiction.
Therefore there is only one revealing pair with this property and so all revealing pairs for {) must
be expansions of it. Let us call this revealing pair the minimal revealing pair. We frame the above
observations in the proposition below:

Proposition 4.2.17. Let \ and ¢ be elements of BHr, » with minimal revealing pairs (A, A, n) and
(B, B, 0) respectively. Let C(A) = {C(xi) : x4 is a leaf of A} be the collection of finite cycles of neutral leaves
of A (one for each cycle, that is if x; and x; are in the same orbit we include only C(xy)), likewise define
C(B) ={C(ui) : yi is a leaf of B}. Then \ and ¢ are conjugate if and only if there exists partitions P of
C(A) and Q of C(B) such that the following hold:

(i) there is a bijection, f, between P and Q such that f(P) = Q if and only if

(a) the sum of the cycle lengths in P is congruent to the corresponding sum in Q modulon —1,

(b) for all C(x;) in P there exists C(y;i) in Q such that if \(x;) and 1(y;) are the lengths of C(x4)
and C(yi) respectively, then there are positive integers &1 and &y which can be factored as
products of elements in the set {1,2,...,n} such that 511(xi) = d21(yy); likewise for each C(y;)
there exists such a C(xy),

(ii) these partitions are realisable, meaning that there are expansions of (A, A, m) and (B, B, ) such that
for each cycle under the leaves of an element P € P, there is a unique cycle under the leaves of an
element Q € Q having the same length and same labelling of states (up to cyclic reshuffling), moreover
the number of cycles under the leaves of P is equal to the number of cycles under the leaves of Q.

Proof. The forward implication follows immediately from the observations above. Let h be the
conjugator such that h~!{h = @, and let (K, L, p) be a pair representing h. Let (A’,A’,7t/) be
a revealing pair for 1\ (and so an expansion of (A, A)) such that K € A’. Now by expanding
appropriately we may obtain a pair (A,B’,p’) representing h. As observed earlier the pair
(A’,B’,p’) representing h is such that (B/, B/, ') is a revealing pair for ¢, with 8’ defined according
to Equation Note that (B’,B’,8’) is an expansion of (B, B, 0). Take a cycle C(x1) in A and take
all the cycles underneath it (in (A’, A’, ")), these correspond under h, to cycles (in (B’,B’,8)
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under a set of leaves C(y1), C(y2), ..., C(yy) of B. The last sentence holds since by Equation
¢ permutes the elements B’ = A’h and (B, B, ) is a minimal revealing pair for ¢. Now as all
the cycles in (B/, B/, 0’) under the leaves C(y1), C(y2), ..., C(yx), correspond by h™! to cycles in
(A’,A’, "), we may now cycle back and forth until we have a set P of cycles in A and corresponding
set Q of cycles in B such that the cycles under P (in (A’, A’, 7t’)) are in one-to-one correspondence
to the cycles under Q (in (B’,B’,0’)) by h. Note that since we can expand along P and Q such
that they have the same number of leaves, then the sum of cycle lengths in P must be congruent
to the corresponding sum in Q modulo n — 1. Moreover, observe that when we take a simple
expansion along the leaves of a cycle, the new cycles obtained have lengths which are multiples
by 1 < k < n of the original by the discussion following Remark [4.2.16| Now we may repeat this
process beginning with the next cycle, C(x;) € C(A) not already in P. Observe that the cycles
under C(xp) in (A, A’, ") cannot correspond under h to cycles in Q, as all cycles in Q correspond
under h™! to a cycle in P. We may thus repeat the above process to obtain a set of cycles P’ and Q’
such that the cycles under P (in (A’, A/, 7t’)) are in one-to-one correspondence to the cycles under
Q (in (B/,B’,0)) by h. Carrying on in this way we obtain a partition P of C(A) and Q of C(B)
and a map f : P — Q which maps P € P to the corresponding Q € Q, satisfying Parts|[(i)a]and [[i)b]
Moreover these partitions are realised by the expansions (A’,A’,7’) and (B/,B’,0’) of (A, A, 7)
and (B, B, 0) respectively.

The backward implication is likewise straightforward. Take expansions (A’, A’, ) of (A, A, )
and (B’,B’,0’) of (B, B, 0) which realise the partitions P and Q. Then as every cycle of leaves of
A’ corresponds to a cycle of leaves in B of the same length and with the same labelling of states
in B’ we can define a bijection p : A’ — B’ by mapping leaves in a cycle of leaves of A’ to their
corresponding leaves of B’ ensuring the states match. It is easy to check that h = (A’, B, p) is such
that h " ph = . O

The above proposition is sufficient to show that G, has the infinitely many ¢-twisted
conjugacy classes for ¢ € BHy r.

First recall Example stating that for a synchronous finite transducer Aq, =
(X1,X0,Q, A, m) q, the inverse transducer is given as follows, whenever there is a label on arrow
ilj replace it with the label j|li. We shall use a “ ’ ” on the states and transitions of the inverse
transducer to distinguish them from the states of the original in the synchronous case. Now
let T = (, X, Ry, St, Tig, Ar) € BHn,» a transducer representing a homeomorphism of ¢, ». By
definition B = Core(t) € Hy. Let p and q be any two states in B. Consider the product of the initial
transducers By, and B/ := By !. These two initial transducers are synchronizing at the same
level as the core, say the synchronizing level is m. Observe that by the proof of Lemma after
reading a word of length m trough the state (p, q") of B, * By, the resulting state is w-equivalent
to the identity map and so By, * B4 is an element of G, 1.

Notice that Core(t—1) = Core(t) !, this follows since the map from Aut(Gn ) to On,» mapping
T — Core(T) is a homomorphism. Alternatively, we can see this by considering a forest triple for
T as in Subsection [£.2.2] Recall that the range forest has attached to its leaves initial transducers
initialised at some state in the core of T. The inverse map is then given in the usual way by
swapping the range and the domain forests, and whenever we had A4 attached to a leaf, we
replace it by Aq L.

Let s be a prime number, we construct an element 1 € BH,, » with a revealing pair which
contains a cycle of length s and all other cycles of length 1. Let T € B}, ;- and take an element
P’ € Gp,» with a revealing pair which contains a cycle of length s and with all other cycles having
length 1. Suppose ' has j leaves. Decorate the j leaves of the range forest with states in the core of
T. Let (A, A, p) be the resulting forest triple, and let ) € BI, » be the resulting homeomorphism
of ¢ r, we show that ) = gt, for some g € Gn,, by showing the product Pl e Gn,r . We
compute this product as we would in G, » using the forest triple for T as in Subsection [4.2.2and
the definition of expansion and contractions (Definition ). Take expansions so that the range
forest of \p and domain forest of T~! match up. Suppose the forest triple for { and T~ are given
by (A’,A’,p’) and (A’, B, 5). The forest triple for 1! is given by (A’, B, ) where 8 is defined as
follows. If a leaf y of B is mapped to a leaf z, -1 by o then, if x is the leaf of A such that (x)p =yp,

we have (x)0 =z —1. Since we have demonstrated that T, * ¢ ~1is an element of Gn,1, we

Tp *Tq

see that Pt~ is an element of Gn,r. Therefore { = gt for some g € G r.
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Let t be a prime distinct from s. We may likewise construct an element ¢ = ht, h € Gy -, with
revealing pair (C, C,y) containing a cycle of length t and all other cycles of length 1. Now for s
and t larger than n, by Proposition there is no f € G satisfying the equation:

et =g

Since this would mean that

flhtf = gt
However, any revealing pair of 1\ has a cycle of length a multiple of s, but all revealing pairs
for @ have cycle lengths equal to 1 or divisible by some element of {2, ...,n}U{t}. Therefore {
and o are in different t-twisted conjugacy classes (where % denotes conjugation by T7—1). Now, as
there are infinitely many primes there are infinitely many t-twisted conjugacy classes. Since t was
arbitrary in BH(y, v, this holds for every © in B}y . Therefore we have the following result.

Corollary 4.2.18. The group G+ has infinitely many ¢-twisted conjugacy classes for ¢ € BIHn r.

Now fix T = (Xn, Qr, i, Ar) € Hy an element of finite order m. By the discussion in
Section we know that the level k dual of 7, for some k greater than the synchronizing
level of T, is a disjoint union of cycles such that the output of each cycle on any input word in
the states of T, is a cyclic rotation of some word in Q7 independent of the input. Fix k € N such
that ) is the zero of (t"),.. We assume that we are working with the minimal transducer under
w-equivalence representing the level k dual of T. We have the following lemma.

Lemma 4.2.19. Let \ be an element of BHy  with revealing pair (A, B,0) and Core(\p) = t. Let
{C(x1)11 < i < 1} be the cycles of neutral leaves of (A, B, ), then there is a number M € IN, which is
computable and depends on (A, B, 0) and <, such that for any expansion (A’,B’,0") of (A, B, 0) the length
of any cycle of neutral leaves of is bounded by M.

Proof. First observe that since m is the order of T, then Y™ is an element of Gy, . Moreover since
Y™ € Gn,r, there is a number 1, which is computable, such that for any representative pair of p™,
all cycle of neutral leaves of ™! have length exactly 1. Therefore all cycles of neutral leaves of any

expansion of (A’,B’,0’) must have length bounded by ml.
O

The rest of the discussion will be focused on the group G,;1 = V, as noted above here we
have a much simpler description for }{, and so we are able to go further: we solve the ¢-twisted
conjugacy problem for ¢ € BH, ;. The overlap with Subsection above, serves to illustrate the
ideas of this subsection for a given element of B}, ;.

4.3 Thompson’s group V = Gy

Let R be the element of J{(;, which is the single state transducer swapping 0 and 1. Note that as
R is also an element of B, ;. We consider elements of V as acting on Cantor space €. In order
the solve the ¢-twisted conjugacy problem in V for ¢ € BJH; 1, given g, f € V we need to find an
element h € V such that:

g = h M (k 'hk), if Core(¢) = id (4.6)
g = h (k"' RhRk), otherwise. 4.7)

Rearranging slightly, the above becomes:

gk ' =hl(tk Hh (4.8)
gk 'R =h1(fk IR)h (4.9)

Equation [(4.8)]is solved by the methods given in [49]. Therefore to solve the ¢p-twisted conjugacy
problemin V for ¢ € BIH, 1, it suffices to show that there is an algorithm which determines whether
two elements fR, gk, f, g € V are conjugate by an element of V.
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4.3.1 Revealing pairs for elements of VR

Here we illustrate Subsection [4.2.3| with the specific instance of VR.

Let f € V and let (A, B, 0) be a representation of f by a forest triple where o is a bijection
between the leaves of A and B. Let f’ = (A, B/, 0’) be a new element of V, where B’ is the reflection
of B about the root such that each leaf of B’ preserves its labelling of the leaves. Let ¢’ be the
bijection from the leaves of A to the leaves of B with this relabelling. Then fR is given by appending
R to every leaf of B/, by which we mean that the full binary tree beneath that node is being acted
upon by R. We call the tree pair (A, B’) the tree pair associated to fR. This is illustrated in the
example below:

Example 4.3.1. Constructing the product fR given an element f € V.

A B A B’ A B’
f f/ fR
— — —

2 3 2 3 2 3 3 2 2 3 3 2%

Definition 4.3.2. For an arbitrary finite binary tree A we shall call the reflection of A about the
root, the flip of A.

Definition 4.3.3. In this context, an elementary expansion of a triple (A, B, o) representing an element
fR, is an addition of a caret to a leaf of A and to its image point such that when we renumber the
leaves of A, if 1, j are the labels for the leaves of the added caret (ordering left to right), then j& and
ig are the labels for the added caret in B. We call a tree pair (C, D, p) a contraction of (A, B, o) if
there is an elementary expansion taking (C, D, p) to (A, B, o). This is simply a restatement of the
definition we had earlier. A forest triple (A’,B’, 0’) is called an expansion (contraction) of (A, B, o) if
it can be obtained from (A, B, o) by a sequence of elementary expansions (contractions).

Considering Example we can see the triple (A, B, o) (where o is given by the numbering
on the leaves) is an elementary expansion of the following tree pair:

C D
A /N
1 2 2% 1z

We now discuss methods for moving from one revealing pair to another as in section 3.5 of [49].

4.3.2 New Rollings

Following [49] we make the following definitions.

Definition 4.3.4. Let U be a binary tree, and let v be a node of U. Let UL, be the subtree of U rooted
at v, then we denote by UV the caret difference U — U,,, that is UV is the subtree U with the nodes
under the vertex v deleted. Notice that v is a leaf of UV.

The definition above should be compared with Definition 1.2.22

Definition 4.3.5. Let (A, B) be a revealing pair associated to an element fR. A sequence of leaves
is called cancelling chain if it satisfies one of the following criteria:

(i) the sequence of leaves is the set of all leaves of A in the forward orbit of a single repeller,
(if) the sequence of leaves is the set of all leaves in the forward orbit of a single source,
(iii) the sequence of leaves is a finite cycle of neutral leaves,

(iv) the sequence of leaves is the set of all leaves in the backward orbit of a single attractor.
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Definition 4.3.6. Given a cancelling chain of type we define a cancelling tree as follows.
Let U be a component of A — B [B — A], with root u and repeller [attractor] s, let v be a node in the
path from the root u to the repeller [attractor] s. Then UV is a cancelling tree. If v # s, UV is called a
proper cancelling tree.

For a chain of type we identify two cases. If our finite cycle of leaves is odd, then a
cancelling tree will be any finite tree which is symmetric about the root. If the cycle is even then, a
cancelling tree is any finite tree.

Finally for a cancelling chain of type((ii)|a cancelling tree is any finite tree.

Definition 4.3.7. Given a cancelling tree for a chain of type[(i)| & where v is chosen to be the
first node in the path from the root u to the repeller/attractor s, then we call such a tree a small
cancelling tree for s.

For a cancelling chain of type (ii)| or a small cancelling tree is a single caret (which is
symmetric with respect to the root).

We now define a new set of rollings.

Definition 4.3.8. We say that a tree pair (A’, B') is a single rolling of type E of (A, B), if it is obtained
from (A, B) by one of the following ways:

(a) Adding a cancelling tree to each of the leaves uj, uy, ..., upy 41 of a cancelling chain of type
(iif) in A, where the cycle of leaves has odd length, and to B at (ug)fR, (up)fR, ..., (u.)fR.

(b) For uj,up,..., upx a cancelling chain of type adding a cancelling tree to each of the
leaves uj, u3, ..., upk_1 and the flip of the cancelling tree to each of the leaves uy, uy4, ..., upy
in A. Furthermore for each tree added to a leaf u; we add the flip of that tree to the leaf
(uy)fR of B.

(c) Adding a cancelling tree to all the odd numbered leaves and the flip of the cancelling tree to
all the even numbered leaves of a cancelling chain uj, uy, ..., un of type|(ii)} Furthermore for
each tree added to a leaf u; we add the flip of that tree to the leaf (u;)fR of B.

If the cancelling tree in all the above cases is small, then the rolling is called a small single rolling
of type E.

We say that (A’, B) is a single rolling of type I if it is obtained from (A, B) in one of the following
ways:

(a) By adding the flip of a proper cancelling tree to the last leaf in A of a chain of type|(i)} and
working backwards through the leaves alternating between adding the flip of the cancelling
tree and the cancelling tree. i.e if we attach the proper cancelling tree to u;, then we add the
flip of the tree to u;_1. Furthermore for each tree added to a leaf u; we add the flip of that
tree to the leaf (u;)fR of B.

(b) By adding a proper cancelling tree to the first leaf in A of a cancelling chain of type
moving forwards through the leaves, alternating between adding the flip of the cancelling
tree and the cancelling tree i.e if we attach the proper cancelling tree to u;, then we add the
flip of the tree to u;.1. Furthermore for each tree added to a leaf u; we add the flip of that
tree to the leaf (u;)fR of B.

Once more if the cancelling tree is small, then the rolling is called a small single rolling of type I.
The tree pair (A’, B’) is called a single rolling of type II, if it is obtained from (A, B) in one of the
following ways:

(a) By adding a component U of A — B to the leaf (u, )fR and the flip of this component to the
leaf un, where ug,uy, ..., un is a cancelling chain of type|(i)jand u; is the unique repelling
leaf of U.

(b) By adding a component W of B — A to the leaf u; of A and the flip of the component W to
the leaf (u1)fR, where uj, uy, ..., un is a cancelling chain of type and where (un )fR is
the unique attracting leaf of W.

In this case a single rolling of type II will also be called a small single rolling of type II.
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Remark 4.3.9. Notice that the tree pair obtained by applying a rolling, is by definition an expansion
of the original tree pair, therefore we do not change the element fR, f € V, defined by a tree pair by
applying a rolling.

Below we illustrate an elementary rolling of type E to a finite cycle of leaves of length 4 using
an asymmetric finite tree.

1 2 3 4
11/>\ /<\ll 11/>\ /<\11

1, leaves leaves 1, 1, leaves leaves 1,

The fact that an application of these rollings produce a revealing pair, follows by making slight
modifications to the proofs given in Section 3.5 of [49] as we see below.

Lemma 4.3.10. If (A, B, 0) is such that (A, B) a revealing pair for an element R, f € V, and (A’,B’,0”)
is obtained from (A, B) by a small single rolling, then (A’,B’) is a also a revealing pair for fR.

Proof. We consider each rolling separately.

(i) For arolling of type E applied to a cycle of neutral leaves of odd or even length. By definition
this has no effect on the components of A — B or B — A and so these still have unique attractors
and repellers. Furthermore, in both cases, after the rolling is performed, by construction, the
new leaves introduced are all neutral leaves.

For a rolling of type E applied along a chain of type the leaves added along the neutral
leaves of this chain, are, by construction leaves of A’ and B'. A caret is added to the source in
A and to the sink in B; attractors and repeller are unaffected as are the number of components
of A—B.

(ii) For a rolling of type I applied along a cancelling chain of type|(i)} Let U be the component of
A — B containing the repeller, u be the root of U and s, the repelling leaf and I' = «I" denote
the path from uto Sin U, here « = 0,1. Let s = uy,uy, ..., un be the iterated augmentation
chain such that (un )0’ = u. By construction of this rolling, the leaves of the cancelling tree
attached to the neutral leaves of this iterated augmentation chain, are still neutral leaves
of (A’,B’). Therefore A —B = A’ — B’. After this rolling the component U is transformed
into a new component U’ as follows: U’ is the subtree of U now rooted at uet but with the
cancelling tree U* or its flip attached to the leaf s. This is because the subtree U* of U rooted
at uis now a component of A’ and B/, and U — U%* = U and the definition of the rolling.

Finally consider the leaf s& (wWhere & € {0, 1} is either equal to or not equal to alpha depending
on whether a U* or its flip is attached to s). By construction of the rolling o type I, and
definition of the map ¢’, we must have that (s&)(c’) (") = yo. Therefore s is the unique
repeller of the component U’ of A" —B’.

We now consider the case of a small single rolling of type I applied along a chain of type iv)].
This is exactly the dual of the previous case and is proved analogously. In this case also, if w
is the root of the component W, and a is the attractor of this component such that A = BA
is the path from w to a and B € {0, 1} is the first letter of A, then af is the new attractor of
the component W’ constructed as in the previous paragraph. We note once more that f = 3
precisely when we attach W and not its flip to a.

(iii) Finally we consider the case of a small single rolling of type II. First consider the case of a
small single rolling of type II applied to a cancelling chain of type

Let U be a component of A — B with repelling leaf s, and iterated augmentation chain
s = X1,X2,,...,Xr such that (x;)o is the root of U. Assume that the rolling of type II is
performed along this iterated augmentation chain using the component U. By definition
of a small single rolling of type II, the leaves of the subtree rooted at (x)o are now neutral
leaves of A’ and B’. However since x. is a neutral leaf of A, there is a component U’, the flip
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of U, rooted at x, of A’ — B’. All other components of A’ — B’ and B” — A’ are precisely as
in A—B and B — A. If I is the path from the root of U to the repelling leaf s, then the leaf
s’ of the path '’ (which is T with the zeroes and ones swapped) from the root of U’, is the
repelling leaf of U’. Since, by construction, (s’)o’ =s.

The case of a small single rolling of type II applied to a cancelling chain of type is
analogous to the previous case.

O

4.3.3 Effects Of New Rollings

We consider the effects of the new rollings to the length of finite cycles, source-sink chains, and
attracting and repelling orbits. We also consider the effect the rollings have on the path I' from the
root of a component of A — B or B — A to the attractor or repeller in that component.

The following lemma follows easily from the definition of the rollings.

Lemma 4.3.11. Let (A’, B’) a revealing pair obtained from a revealing pair (A, B) associated to an element
fR by an application of a small single rolling of one of the three types given above, then the following hold:

Type E.(i)

Type E.(ii)

Type 1. (i)

Type L. (ii)

Type I1.(i)

Type I1.(ii)

If (A’,B’) is obtained by a small single rolling of type E applied to a finite cycle of odd leaves
Q... dpk+1, then each child of the ay is in a finite cycle of leaves of length 2(2k + 1). i.e we double
the length of the cycle and increase by 2 the number cycles of length 2(2k + 1), and decrease the
number of cycle of length 2k +1 by 1.

If the finite cycle of leaves is even of length 2k, then each child of a leaf in the cycle yields a new cycle
of leaves of the same length i.e we simply increase the number cycles of length 2k by 1.

If (A’,B’) is obtained by a small single rolling of type E applied to the cancelling chain of a source,
then we increase the number of sources (and so sinks) of that period by 1.

If we obtain (A’,B') by applying a small single rolling of type I to the cancelling chain of a repelling
leaf u of a component U of A — B with root r, then we have two cases.

If the length of the chain is odd and T = oA (o = 0,1 ) is the path from the root  to the leaf u. The
new repeller path is Ax (X = ()R is zero if « is 1 and vice-versa) and the length of the repeller
path stays the same. Sources in the new component U’ of A — B which were also sources of U are
unaffected by the rolling. If z is a source of U which is not in U’ then we can assume that z = rp
where p does not begin with «. Let p = (p)R, then z' = up is a source of U'. Moreover the length of
the source sink chain of 2 is the sum of the length of the repelling path and the length of the source
sink chain of z.

If the length of the chain is even and I' = a/A (x is 0 or 1) is the repelling path. The new repelling
path is given by A, and the length of the repeller path stays the same. Sources in the new component
U’ of A — B which were also sources U are unaffected by the rolling. If z is a source of U which is not
in U’ then we can assume that z = rp where p does not begin with o. Then z’ = pu is a source of U’.
Moreover the length of the source sink chain of 2" is the sum of the length of the repelling path and the
length of the source sink chain of z.

If we obtain (A', B') by applying a small single rolling of type I to the cancelling chain of an attracting
leaf (W)fR of a component W of B — A with root v, then this case is analogous to the previous one.

Let U be the component of A — B with which the small rolling of type II is applied to obtain (A’, B').
Let u be the unique repelling leaf of U and T be the path from the root v of U to u. The new component
U’ of A’ — B’ is the flip of U, with path T from the root to the new repelling leaf '. Furthermore, the
length of the new iterated chain corresponding to the repelling leaf u’ is the same as before. All sources
U’ corresponding to the sources in U, have lengths of their chains one greater than their counterparts
in UL

Let W be the component of B — A with which the small rolling of type II is done to obtain (A’, B’).
Let u be the unique attracting leaf in U, and T be the path from the root v of U to u. The new

156



Proof.

Type E.(i)

Type E.(ii)

Type L. (i)

Type L. (ii)
Type IL.(3)

component W’ of B’ — A’ is the flip of W, with path T from the root to the new attracting leaf (u')fR.
Furthermore, the length of the new iterated chain corresponding to the attracting leaf (u')fR is the
same as before. All sinks W' corresponding to the sinks in W have lengths of their chains one greater
than their counterparts in W.

Letuy, ..., upi1 be the finite cycle of neutral leaves to which we apply the small single rolling
of type E. Notice that in B all these leaves have the transducer R attached to them. Moreover
observe that R?**1 = R and R2(2k+1) = id. Therefore for i = 0,111 belongs to the following
cycle of neutral leaves in (A/,B’) v; := wji, vy = wp(1)R,v3 := usi, ... a2 = Upk41 (1R,
Hence the number of cycles of neutral leaves of length 2k + 1 is one less than in (A, B) and
we have a new cycle of neutral leaves of length (4k + 2) as required.

By a similar argument, since R to an even power is the identity transducer, applying a small
single rolling of type E to a cycle of neutral leaves of even length, will produce two cycles of
neutral leaves of equal length to the first.

Letuy,, ..., uy be a cancelling chain of type|(ii) with which we perform a small single rolling
of type E where u; is a source and uy is a sink. Leti = 0,1, then in (A’,B’), uji is still
a source and belongs to the cancelling chain, v; = wji, vy = up(i)R,... vy = uy (P)RkT,
since uy is a leaf of a component of B — A not equal to the attractor, then uyi is a leaf of the
corresponding component in B’ — A’ and is also not equal to the attractor. This demonstrates
the lemma.

Let u := ug,uy,...,up41 be the cancelling chain of a repelling leaf to which we apply
a rolling of type I. Let U be the component of A — B containing the repeller u, and let
I' = aA (¢ = 0,1) be the path from the root r of U to u. Let T := U%, notice that rx is
a leaf of T. By definition of a small single rolling of Type I, in (A’,B’), the component
U’ corresponding to U, has the flip of T rooted at uin A’, and in B’ the leaf r of B now
has a copy of T rooted at r. Consider the leaf ux of U’, this belongs to a cancelling chain
V1 = U, Vp == Up(X, ... Vpk+1 = Upk+1X. Note that since uyy 1 under fR is mapped to 1, then
(Upk+1®@)fR = r(&)fR = ra. Therefore since T« is a parent of u, ux is the repeller of U’. The
repeller path is now A®, and is of the same length as I', moreover the length of the cancelling
chain is unchanged.

Sources of U’ which were also sources in U, by definition are not affected by a small single
rolling of Type I. Let z = rp where the first letter of p is not equal to «, then we claim that
z belongs to the cancelling chain of the source z’ = up. Notice that since the flip of T is
rooted at u, then z’ is a leaf of U’ not equal to the source. Consider the first 2k + 1 members
of the cancelling chain of z/, these are z; = up,z; = uzp, ... zx+1 = up. Now observe that
(up)fR = rp. Hence after the first 2k + 1 members, the remaining members of the cancelling
chain are precisely the cancelling chain of z in (A, B). This proves the lemma in this case.

For a cancelling chain of type II of even length the proof proceeds analogously. The differences
arising since in the component U’ of A’ — B’, corresponding to U, we have a copy of T = U*
rooted at u and not its flip.

The attractor case is proved analogously to the repeller case.

Let U be the component of A — B with which the small single rolling of type II is performed.
Let u be the unique repelling leaf of U, and let u = uy, ..., u, be the iterated augmentation
chain of U such that (uy)fR is the root v of U. Now there is a component U’ of A’ — B’
rooted at U which is the flip of U, moreover all the leaves of the component U of A — B are
now neutral leaves of (A’, B’). Let I' be the path from r to the repelling leaf u. We show that
the leaf v = un T is the repelling of U’. Observe that by construction (u,T')fR = u;, hence
the iterated augmentation chain for vis v = v, uy,up,...,uy_1, note that u; is a neutral leaf
of (A’,B’). Now (un_1)fR = upn is the root of U’. For the second half of this point, let z
be a source of U in (A, B). Then there is a path A # T from r to z. The leaf z is a neutral
leaf of (A’,B’), however the leaf z’ = u,A is a source. Observe that (z')fR = z, thus if
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z=129,2y,...,2m is the iterated augmentation chain of z, then z/, zy, ...,z is the iterated
augmentation chain of zy,. Notice that z,, remains a sink in (A’, B/).

Type I1.(ii) This case is analogous to the previous one so we omit its proof.
O

The lemma below follows again from the definitions, and gives a relation between rollings of
type I and type IL. It is identical to claim 17 of [49].

Lemma 4.3.12. Let (A, B) be a revealing pair for R, and U be a component of A — B with root r and
repeller u. Let n be the length of the iterated augmentation chain containing wand let T" be a finite non-empty
word in 0’s and 1’s of length k such that (u)(fR)"T" = w. Then an application of k small rollings of type I
on U has the same result as an application of n small rollings of type 1 on U.

Proof. This is a straight-forward induction argument using the definition of the rollings and

Lemma[3.111 O

4.3.4 Conjugacy in VR

Let fR and h be elements of VR and V respectively with associated tree pairs, (A, B), (K, L) such
that K C A and K C B. Making elementary expansions to the tree pair (K, L) we have (A,A’) and
(B, B’) are also tree pairs associated to h. In order distinguish between tree pairs for elements of
V and VR, for a finite tree D we shall let D4 denote the same finite tree with R attached to each
leaf to represent its action on the tree beneath those leaves. Observe that for an element g € V
with associated tree pair (D, E), for a leaf z € D, there is a corresponding leaf z € D such that
(z)gx = (zx)g.

The following results are proved in detail in [49]] for elements f, h of V. The proofs we give
below for elements of VR are modifications of these.

Claim 4.3.13. The pair (A’,BL,) is a tree pair associated with hfRh 1

Proof. Let x be a leaf of A’ then there is a leaf y of A such that (y)h = x. Since y is a leaf of A,
(Y)fR = zg is a leaf of Bx. Hence, there is a leaf z of B corresponding to zx (z <> zx), for which
(z)his a leaf of B’ and so (z)hg = (zx)h is a leaf of B, Therefore (x)hfRh ! is a leaf of B,

Let z a leaf of B/;. There is a leaf z <+ zg of B'. Lety be the leaf of B such that (y)h = z, then
yx of By is such that (yx)h = z¢. Let x a leaf of A be such that (x)fR = y. Since x € A, there is a
leaf w of A’ such that (w)h = x. We now have: zg = (yg)h = (x)hfR = (W)hfRh L. O

Claim 4.3.14. If (A, B) is a revealing pair associated to fR then (A’, B’) constructed above is a revealing
pair associated to hfRh 1.

Proof. Let W be a component of A’ — B’. Let w be the root of W and let wy, ..., wn, be the leaves
of W. Notice that wy,...,wn, are all leaves of A/, and w is a leaf of B’. Let w; = wr; for some
I € X;r and 1 < 1 < m. Since w;’s are leaves of A’ and (A’, A) is a tree pair for h, there are leaves
u; of A such that (uj)h =w;i, 1 < i< m. Since wisleaf of B’ and (B, B’) is an tree pair associated
to h, there is a leaf u of B such that (u)h = w. Now consider (w;)h~! = (Wl )h~1, since (B’, B)
is an associated tree pair for h~1, we have (wi)h =1 = (w)h 1T} = ul}. However we also have
(wi)h™! = uy aleaf of A, hence we see that 1 is an internal node of A and a leaf of B. Moreover the
component U of A — B rooted at u has leaves uj, uy, ..., u,. Therefore we have that the component
W of A’ — B’ is taken by h™! to the isomorphic (as rooted trees) component U of A — B.

Now since (A, B) is a revealing pair for fR, there is an iterated augmentation chain p =
U1, Uz, ..., un, where y; is a leaf of U, and (pn )fR = u. Let v be the leaf of W such that (u)h = v.
Observe that (v)h "} (fR)"h = (u)h =w. Thus vis a repelling leaf of W. Since W was an arbitrary
component of A’ — B’ we see that all components of A’ — B’ contain a repelling leaf.

In a similar way one can demonstrate that all components of B’ — A’ contain an attracting leaf.
Thus (A’, B’) is a revealing tree pair for fR. O

Proposition 4.3.15. If fR, gR € VR are conjugate, then there exists revealing pairs (A, B), (C, D) for fR
and gR respectively, and h € V which is given by a bijection from the leaves of A N B to C N D such that
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(1) If (ay,...,ap) is a cycle of neutral leaves of A then((aj)h, ..., (ap)h) is a cycle of neutral leaves of
C.

(2) Given a component U of A — B with a cancelling chain, w = uj,uy, ..., un, of type (i)} where
u is the repeller in U and T is the path from the root of U to wi.e (u)(fR)"I" = (un)fRI" = u,
there is a component U of C — D with a repeller u’ in an iterated augmentation chain v’ =
ug, (up)h, ..., (un)hand gR((un )W) =u’.

(3) Given a component W of B — A with a cancelling chain, t1,t,, ..., tn =1, of type[(iv)} where (t)f
is the attractor in W and A is the path from the root of W to (t)f i.e (t1)(fR)™ = (tn)fR = t1A.
Then there is a component W' of D — C with an attractor (t')gR in an iterated augmentation chain
(t)h, (t2)h, ..., (th)h = t" and (t')gR = ((tn)h)gR = (t1)hA.

(4) The components U of A — B and U’ of C — D are isomorphic as trees.
(5) The components W of B— A and W' of D — C are isomorphic as trees.

(6) Let s be a source in A ies = (un)fRA where un is as in and there is a cancelling
chain, s = s1,82,...,8m Of type where (s)fR™ = (sm)fR = 110 with t; as in
Then, the source s’ = ((un)h)gRA in C has cancelling chain s’, (sp)h, ..., (sm)h and satisfies
(s")(gR)™ = ((sm)h)gR = (t;)h© € D.

Proof. The proof is a consequence of Claim [4.3.14{and its proof. O

Proposition 4.3.16. If (A, B) and (C, D) are revealing pairs associated to elements fR and gR such that
all the conditions Proposition are satisfied, then fR and gR are conjugate. Furthermore the element
h € V with associated tree pair (A NB, CN D) is a conjugator.

Proof. 1t suffices to show that h"1fRh = gR, however this is a consequence of the fact that h
satisfies the hypothesis of Proposition O

4.3.5 Criterion for Conjugacy

Let (A, B) and (C, D) be revealing pairs associated with elements fR and g of VR respectively,
moreover, by Lemma we can assume that all finite cycle of neutral leaves have an even
period.

In what follows we shall give an all but identical construction, modifications warranted by the
introduction of R, as in section 4.5 of [49].

Let Uy, Uy, ..., Uy, be the components of A — B reading left to right, likewise let W1, W5, ..., W4
be the components of B — A. Each component Uy has a repelling leaf x[ which is the first
leaf in an iterated augmentation chain xi‘,xg, - ,kalk and T is the path from the root to the
repelling leaf. Each component Wy has an attracting leaf, (yn,)fR = wy such that yn, is the
last leaf of an iterated augmentation chain y},y%, ..., Yn, and Ay is the path from the root to the
attracting leaf. Moreover, leaves of A which are not sources belong to one of r finite cycle of leaves:
(a%a%, e, a%l ),...,(ajag,..., at,) By assumption all the t;’s, 1 < j < 1, are even.

Analogously let U7, UJ, ... ,U{), and W/, Wj, ... ,W(’], be the components of C—D and D — C

respectively with corresponding repellers x‘l‘, and attractors wj in iterated augmentation chains
of length n; and n| respectively, and I/ and A the respective paths from the root to the
repelling/attracting leaves. The leaves of C which are not sources belong one of r’ finite cycle of

(el 1 ror! / . ;.
leaves: (cqcy,..., ¢y )y, (c] ¢ ,...,c{,r/) By assumption all the t';’s are even.

7 t/l
By Proposition[4.3.15and the fact that any two revealing pairs for fR have the same number of
attracting and repelling leaves [49, section 3], we know that for fR and gXR to be conjugate by an
element of V then we must have thatp’ =p and q’ = g.
Let Th, be the finite rooted tree with n leaves and with n —1 the length of the geodesic (see
Section from the root to the rightmost leaf .
Add copies of Uy, ..., Up to the leaves T}, and copies of W1, ..., W to the leaves of T. To each
component associate the period of the corresponding repeller/attractor. For a component U; map
each leaf representing a source of (A, B) to the corresponding sink in some component U;. No
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mapping is assigned to the repellers/attractors. Denote the pair of trees with the mapping above
(A, B)«. We shall refer to leaves of (A, B), corresponding to sources/sinks/attractors/repellers of
(A, B) as sources/sinks/attractors/repellers.

Define a (p + q +4)-tuple X := («1,...,&p, B1,...,Bq,TT1,TT2,01,07) such that 0 < oy < [T
and 0 < 31 < |Ai], TTj is a permutation in Sym(p) (see Notation , I € Sym(q),0; is a tuple
of the form (oy,...,0p) 03 € {0,1}, and ©; is a tuple of length q with entries 0 or 1. For such a tuple
X construct (A, B)%, by replacing U; by the new component obtained when we apply a rolling
of type I using the prefix of length «; of I' and, if ©1(i) = 1, applying a rolling of type II using
the newly created component and adjoining the resulting component to the leaf TT; (i) of T7,. If
01 (i) = 0 then we do not perform a rolling of type II. We adjust the W;’s in an analogous manner
(depending on the value of @,(1)) and adjoining it to the leaf in position IT(j) of Tq.

Define =, as the set of all (A, B)X as X runs over all possible p + q -+ 4 tuples.

For each source s of (A, B), let, L(s) be the length of the source sink chain. Let L(A, B), be the
(length) vector with entries L(s) for all s (we take the left to right ordering induced by the leaves of
A once more).

Given two length vectors L and L’ of the same size above, let D = L — L'. Define vectors R; and
K; as follows: R; has an entry one for each source in the component U; and an entry zero for each
source not in U, similarly K; has an entry one for each source whose sink is in the component
Wj and an entry zero for sources with sink not in Wj. Define an equivalence relation of length
vectors by L ~ L"if D = L — L’ has even entries and D/2 can be given as a linear combination with
integer coefficients of the vectors R; and K;. Observe that by construction this linear combination
of vectors R; and K;j gives an indication of which components rollings of type II should be done in
order for the length vectors to match up.

Given a pair (E, F) € Z¢x, let (G, H) be the pair obtained by adding a caret to a source uwin E
and to F at its corresponding sink v. Suppose the added carets are labelled (left to right) &, &1
and Po 1. If L(u) is even, we map «; to B and if L(u) is odd we map o to 3141 (addition of
indices mod 2), the mappings for the remaining sources are unaffected. We write (E,F) — (G, H)
and associate a length vector L(G, H) to (G, H) where L(«;) = L(u). Notice that — corresponds to
a single rolling of type E applied to the iterated augmentation chain of the affected source.

The following lemma is proved almost identically to [49} claim 21].

Lemma 4.3.17. Let (A’,B’) be a revealing pair for fR which is a rolling (not necessarily a single rolling)
of another revealing pair (A, B) of fR, then there is a pair (E,F), € Z¢x such that (E,F), —* (E/,F') and
L(A’,B’), ~ L(E',F'). (Note that —* denotes an application of none or finitely many —).

Proof. First observe that applying rollings of Type E commutes with applying rollings of Type I or
Type II and rollings of Type I commute with rollings of Type II. Thus we may assume that all the
rollings of Type E are performed last, rollings of type I second and rollings of type II first. Now
observe that after performing all the rollings of type I and Type Il to (A, B) we obtain some tree
pair (E, F) such that (E, F), € Z¢x by Lemma[4.3.11] This is because the number of rollings of type
I per component of A — B or B — A has to be less than the length of the path from the root of that
component to the repelling or attracting leaf by Lemma Let (A”,B”) the revealing pair
obtained after applying all type I rollings. Now observe that an even number rolling of type II do
not change the structure of the components of A” —B” or B” — A" but might change their left to
right order, whereas an odd number of rollings of type II will replace a component of A — B or
B — A with its flip as well as changing the left right order. Thus we may find a (p + q + 4)-tuple X
such that (A, B)} = (E, F),. Moreover, after performing all the rollings of type I and type II, we see
that L(E,F), = L(A’,B’).. Now as rollings of type E do not affect the length of source-sink chains,
but the number of source-sink chains of a given length, we see that after applying the rollings of
typeE, (E,F). —* (E/,F/)and L(A’,B’). ~ L(E/,F'). O

The next result is a corollary of Proposition[4.3.15

Proposition 4.3.18. If fR and gR are conjugate then there are revealing pairs (A, B) and (C, D) for fR
and gR respectively such that (A, B), = (C,D), and L(A,B) = L(C, D)

The theorem below, which is a modification of [49, Theorem 2], gives a necessary and sufficient
criterion for when two elements fR and gR are conjugate.

160



Theorem 4.3.19. Let fR and gR be elements of VR with revealing pairs (A, B) and (C, E) respectively.
Furthermore assume that all finite cycle of leaves in both pairs have an even period (by Lemma we
can make this assumption without losing generality). Let Cx and Cgx denote the set of periods of finite
cycles of leaves. Let p be the number of components of A — B, q be the number of components of B— A, p’
be the number of components of C — E and q be the number of components of £ — C, then fR and gR are
conjugate by an element h € V if and only if the following hold:

(i) p'=pand q’ =q,
(i1) as sets we have Cyx = Cyx,

—

(iii) there exists (A,B)X € Z¢g and (C,E)ffl € Zgx with periods on repellers and attractors the
same, such that there is pair (G, H) with (A,B)ff —=* (G, H)fx = (G,H)gx *<—(C,E)f',and
L(G,H)fj{ ~ L(G/ H)gj{

Proof. (=) follows by Proposition4.3.18} and Proposition(4.3.15
(«) Carry out rollings of Type I and Type II (note that we only perform at most one rolling of

Type II per component) to (A, B) and (C, E) to get new revealing pairs (A’,B’) and (C’, E’) for fR
and gR respectively, and such that (A’,B’), = (A,B)X and (C/,E’), = (C, E)X By assumption,
we know that (A, B)X and (C, E)f/ can be taken under applications of —* to pairs (G, H)¢x and
Eg g ]‘ll:_)/%g{. Apply the rollings of type E indicated by —* to the appropriate sources in (A’, B’) and

Notice that as finite cycles of neutral leaves do not feature in our construction of (A’, B’), and
(C’,E’)«, we can apply rollings of type E to the finite cycles of neutral leaves in (A’, B’) or (C’,E’)
so that the number of cycles of each period coincide and not affect (A, B’), and (C’, E’),.

Let (A”,B”) and (C”,E"”) be the revealing pairs obtained after all rollings of type E have been
performed.

By assumption we have that D = L(G, H) s — L(G, H) g can be written:

D =L(G,H)sx —L(G H)gr =D 2ciRi+ ) 2d;K;

Rewrite the above as follows:

> 20iRi+ Y 2djKj+L(G H)gr = Y (—2c)Ri+ Y (—2dj)K;+L(G, H)ex

Ci>0 dj >0 Ci<0 dj <0

Let (A, By) and (Cy, Ep ) be the revealing pairs obtained after applications of 2c; rollings of
type IT using component U’; of C”” — D" for i € IN such that ¢; > 0, —2c; rollings of type Il with
component U; of A” —B”, for j € N such that ¢; < 0, 2d;/ rollings of type II with component
W' of D" — C”, for i’ € N such that di > 0 and —2d;/ rollings of type Il with component W;j.
of B” — A", forj’ € N such that dj» < 0. By Lemma and since an application of an even
number of rollings of type Il leaves a component unchanged, we have that (A, Bn). = (G, H)¢x
after permuting the components, and (G, H)gx = (Cn, En)+. Moreover, by Lemma the
chain length of sources and sinks, the length of iterated augmentation chains of repeller and
attractors, and the number of finite cycles of neutral leaves of each period coincide in (Ay, By)
and (Cy,, Ep). Therefore, we must have that the number of leaves in all the trees Ay, By, C, and
Ep are the same. In particular, |[Ay, N Bn| =|Cp NEw]. Let h € V be the map with representative
tree pair (A, N By, Cr, N Ey ), and a bijection o between the leaves such that, finite cycles map to
finite cycles, the root of a component Ury, (1) of Ay, — By, gets sent to the root of the component
u’ m, (i) of Ch — En. Neutral leaves of Ay, in the iterated augmentation chain of any leaf in a
component Uy, (i) get sent to the neutral leaves of By, in the iterated augmentation chain of the
corresponding source in U'yy, ;). Analogously for neutral leaves in the iterated augmentation
chain of the attractor in a component Wry, ). The map h thus defined is such that (Ay, By),
(Ch, En) satisfies Proposition [4.3.16] O

Remark 4.3.20. Note that there is an algorithm for computing the solution of the equation
ZciRi + ZdjKj = D/2, where D/2 is an integer matrix using standard linear algebra techniques.
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We now go through a detailed example to illustrate the ideas of the proof.

Example 4.3.21. Let fR and g be as follows:

1 4 ﬂ 2y 11R
2 3 7 7R 6r 3%
5 6 4% 5x

1

12 13

6 4x 3% 13g 1

Ag
45 7 8 8x 124

The element R has 2 repellers of period 1, and an attractor of period 2, and no finite cycle of
neutral leaves (Note that boxed components are the non-neutral leaves). The element gR has two
repellers of period 1, and an attractor of period 2. The length matrices are as follows:

5 2
L(A/B)* = |:1:| 7 L(C/D)* = 2
5

Carry out a single rolling of type I using the attracting leaf 4 of B, and a single rolling of type E

using the source 5 of A, to get a new revealing pair (A’, B’) for fR. Such that (A’, B’), is as follows:
Q /<X
50 51 51

Let X = (1,0,0,T14,id, (0,0), (1)), where TT; simply swaps the first and second component then
we have that (A, B)} — (G, H)¢x which is just (A’, B), with components of A — B swapped and
the component of B — A flipped. (G, H)gx = (C, D).

/(G}l /<>\
7 8 ) (7)(gR)?* ((8)(gR)* 7 (11)(gR)°
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/(03 /G\
50 51 (50)(fR)? (51)(fR)? 7 (3)(fR)°

4

2 2 0
L(G,H)¢tx = [2] , LG, H)gx = [2} ,D=L(G,H)tx —L(G,H)gr = [0]

5
1 0 1
1], Ro= (0], Ky = |1
0 1 1
Therefore D = OR; + 0R; + 0Ky. Hence after an application of single rolling of type 1 to the

attracting component of A’ — B’ we get the tree pair (Ap, By) . Carefully following the algorithm
set out in the proof of Theorem[4.3.19] gives us, h as follows:

An By,
o7
6
10 2
1 7 8 9 10
3 9 6
5
4 1

2 345

Moreover we have

Ry =

Corollary 4.3.22. Thompson’s Group V has soluble R-twisted conjugacy problem.

Proof. Given fR and gR in VR with revealing pairs (A, B) and (C, E) respectively, there are only
finite many elements of Z¢x and Zyx. For each pair (A,B)X € Z¢x and (C,E)f/ € Zgx, one
can determine in finite time if (A, B)X —* (G, H)¢x = (G, H)gx *(C,E)X’, and L(G,H)¢x ~
L(G, H)gx- O

Remark 4.3.23. Theorem and the corresponding Theorem in [49] solving the conjugacy
problem in V, gives a solution to the conjugacy problem in BH,. Note that every element of
BH, can be written in the form gR for some g € V, since R € BH,. Now let {, p be elements
of BJ,. Consider the equations h~ph = p and Rh~phR = p for h € V. We can rearrange the
second equation so it reads: h~1ph = RpR. Therefore in order to decide if two elements 1\ and
p are conjugate in BJ(,, reduces to deciding if \ is conjugate to p by an element h € V or if 1\ is
conjugate to RpR by an element h € V.
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