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Abstract

The first main topic of this thesis is the thorough analysis of two families of piecewise linear
maps on the unit interval, the a-Liiroth and a-Farey maps. Here, @ denotes a countably infinite
partition of the unit interval whose atoms only accumulate at the origin. The basic properties
of these maps will be developed, including that each o-Liiroth map (denoted L) gives rise to a
series expansion of real numbers in [0, 1], a certain type of Generalised Liiroth Series. The first
example of such an expansion was given by Liiroth. The map Ly is the jump transformation
of the corresponding a-Farey map Fy. The maps Ly and Fy, share the same relationship as the
classical Farey and Gauss maps which give rise to the continued fraction expansion of a real
number. We also consider the topological properties of Fy and some Diophantine-type sets of
numbers expressed in terms of the ¢-Liiroth expansion.

Next we investigate certain ergodic-theoretic properties of the maps Ly and Fy. It will turn
out that the Lebesgue measure A is invariant for every map Ly and that there exists a unique
Lebesgue-absolutely continuous invariant measure for F,. We will give a precise expression for
the density of this measure. Our main result is that both Ly and Fy, are exact, and thus ergodic.
The interest in the invariant measure for Fy, lies in the fact that under a particular condition on
the underlying partition ¢, the invariant measure associated to the map Fy, is infinite.

Then we proceed to introduce and examine the sequence of o-sum-level sets arising from
the a-Liiroth map, for an arbitrary given partition ¢. These sets can be written dynamically in
terms of Fy. The main result concerning the a-sum-level sets is to establish weak and strong
renewal laws. Note that for the Farey map and the Gauss map, the analogue of this result has
been obtained by Kessebohmer and Stratmann. There the results were derived by using advanced
infinite ergodic theory, rather than the strong renewal theorems employed here. This underlines
the fact that one of the main ingredients of infinite ergodic theory is provided by some delicate
estimates in renewal theory.

Our final main result concerning the o-Liiroth and a-Farey systems is to provide a fractal-
geometric description of the Lyapunov spectra associated with each of the maps Ly and Fy.
The Lyapunov spectra for the Farey map and the Gauss map have been investigated in detail by
Kessebohmer and Stratmann. The Farey map and the Gauss map are non-linear, whereas the
systems we consider are always piecewise linear. However, since our analysis is based on a large
family of different partitions of %, the class of maps which we consider in this paper allows us
to detect a variety of interesting new phenomena, including that of phase transitions.

Finally, we come to the conformal systems of the title. These are the limit sets of discrete
subgroups of the group of isometries of the hyperbolic plane. For these so-called Fuchsian
groups, our first main result is to establish the Hausdorff dimension of some Diophantine-type
sets contained in the limit set that are similar to those considered for the maps Ly. These sets
are then used in our second main result to analyse the more geometrically defined strict-Jarnik
limit set of a Fuchsian group. Finally, we obtain a “weak multifractal spectrum” for the Patterson
measure associated to the Fuchsian group.
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Introduction and statement of results

The broad subject area of the research contained in this thesis is dynamical systems. For us, a
dynamical system means simply a continuous map on a given topological space and the study of
a dynamical system consists of an investigation into the long-term behaviour of the iterates of
the map. As the title suggests, the work can be split into two parts, the first part on linear systems
and the second on conformal systems.

The linear systems with which we are concerned are studied in Chapters 2 to 5. They are
families of number-theoretic dynamical systems, by which we mean that an expansion (or nu-
meration system) of real numbers can be obtained from them. An example of such an expansion
is the familiar decimal expansion or the continued fraction expansion. Such examples are intro-
duced in Chapter 1, to set the scene for the investigations to come. Also in that chapter can be
found a brief recall of the definition and basic properties of the Hausdorff dimension of a set in
R", which will be used repeatedly throughout this thesis.

We aim to introduce two families of maps defined on partitions of the unit interval, which we
denote by % . So, let & := {A,, : n € N} denote a countably infinite partition of %, consisting of
non-empty right-closed and left-open intervals. It is assumed throughout that the elements of o
are ordered from right to left, starting from A, and that these elements accumulate only at the
origin. Let a, denote the Lebesgue measure A(A,) of A, € ¢ and let #, ;== Y';7 , a; denote the
Lebesgue measure of the n-th tail of a. Then, for a given partition , define the map Ly : % — %
by

0 ifx=0.

The map L, is referred to as the a-Liiroth map. This map can be thought of as a linearised
generalisation of the Gauss map from elementary number theory. For each partition o the map
L gives rise to a series expansion of numbers in the interval %/, which we refer to as the o-
Liiroth expansion. That is, let x € % be given and let the finite or infinite sequence ({;)>; be
determined by LK1 (x) € Ay,. This finite or infinite sequence gives rise to an alternating series
expansion of each x € %, which is given by

La(x) - { <t”_x)/an forxcA,, neN;

- —1
x=t+ ), (=1)" (H aff) te, = 1o, = anle, T agapte; = ..
n=2

i<n

Let us denote finite a-Liiroth expansions by [¢,¢5,...,{]q, for some k € N, and infinite ones
by x = [(1,02,03,...]q. We note that this series is a certain type of Generalised Liiroth Series,
introduced by Barrionuevo et al. in [5]. For later use, let us also mention the cylinder sets
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associated to the map L. For each k-tuple (¢1,...,¢;) of positive integers, define the a-Liiroth
cylinder set Cy (£, .. .,¥¢) associated with the at-Liiroth expansion to be

Coa(lyy..., ) :={y1,y2,--Ja s yi= ¥t for 1 <i<k}.

All the details of the o-Liiroth expansion and the cylinder sets associated to it can be found in
Section 2.1.

Let us now introduce a second family of maps, indexed by the same set of partitions ¢ of % .
For a given partition @ := {A,, : n € N} of %, define the map Fy : % — % by

(1—x)/a1 ifxeAp,
Fo(x): =1 ap_1(x—tyt1)/an+t, ifx€A,, forn>2,
0 if x=0.

The map Fy, is referred to as the o-Farey map.

The first result in Section 2.2 gives the relationship between the maps Fy and L. We have
that Ly is the jump transformation of Fy. The definition of a jump transformation is given in
Definition 2.2.3. The relationship between the o-Liiroth and o-Farey maps is precisely the same
relationship as that between the Gauss map and the classical Farey map (hence the name chosen
for Fy). Some more basic properties of the map F, are given and then we move on in Section
2.3 to consider the topological properties of Fy.

Recall that two dynamical systems 7 : X — X and S : Y — Y are said to be topologically
conjugate if there exists a homeomorphism /4 : X — Y, called a conjugacy map, such that hoT =
Soh. Our first result in Section 2.3 is to show that for any arbitrary partition o, the map Fy
is topologically conjugate to the tent map, T : % — %, which is defined by T (x) := 2x for
x €10,1/2) and T(x) :=2—2x for x € [1/2,1]. We also give an explicit expression for the
conjugacy map in terms of the measure of maximal entropy for Fy, (see Proposition 2.3.1). We
finish the section by showing that this conjugacy map is both Holder and sub-Holder continuous.

The next section is concerned with various more specific types of partition which will be
useful for the remainder of Chapter 2 and in Chapters 4 and 5. We make the following definitions.
Let @ := {A,, : n € N} be a countable partition of % of the form described above. Then:

1. The partition ¢ is said to be expanding provided that

In

lim

= for some p > 1.
et P, P

2. The partition « is said to be expansive of exponent 0 > 0 if the tails of the partition satisfy

the power law
0

th=wy(n)-n 7,
where ¥ : N — R is a slowly-varying function, that is, ¥ is a measurable function that
satisfies lim,_. Y(xy)/y(x) =1, forall y > 0.

3. The partition o is said to be eventually decreasing if for all sufficiently large n, we have
that a1 < a,.



In Section 2.5, we describe various Diophantine-like subsets of 7%/ in terms of the ¢-Liiroth
expansion. By this, we mean that the sets considered here are analogues of the sets of badly-
approximable numbers and other similar sets usually defined in terms of the continued fraction
expansion. Our first main result concerns &-Good sets, which are defined as follows. For each

N € N, let the set G](\,a) be defined by
G\ = {x=[01(x),6(x),.. ] € % : £;(x) > N for all i € N}.

Note that the name “Good” here refers to I.J. Good [31], for the similar results he proved for
continued fractions, and not to any supposed nice property of these sets. We have the following
result.

Theorem 1. Suppose that o is expansive of exponent 0 > 0. Then,
1

lim di (G(“)):—.
N Oy 1+0

Our second main result of this type is as follows. Define the sets F., and G.. by setting
Fl@) .= {x = [01(x), (%), - Ja  lim £,(x) = oo and £y(x) > e,H(x)}

and
Gl = {x — [61(x), 2(x), .. ] : 1im £y (x) = oo} .

n—soo
We obtain the following theorem.

Theorem 2. Suppose that o is expansive of exponent 6 > 0. Then,

dimy (Fog“>> — dimy (Ggoﬂ‘)) - H;G'

Moreover, if o is expanding, then

dimp (F(%) = dimgy (G&f‘)) ~ 0.

Our third main result concerns the following situation. Fix a sequence (s,),cn of natural
numbers with the property that lim,,_, s, = c. Then, let o be given by

.. log(sy---sp) 1
o := liminf — .
n—eo (1+6)log(sy - sn) + 0log(sp+1) . log(s,11)
(1+6)+6  limsup gt
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Finally, let N > 3 and define the set
J((;a) ={x=[01(x),l2(x),...]o : 80 < €y(x) < Ns, for all n € N}.

We refer to these sets as strict «-Jarnik sets, after V. Jarnik [39], for his results on similarly
defined sets in the continued fractions setting. We obtain the following result.

Theorem 3. Suppose that o is expansive of exponent 6 > 0. Then,

dimy (Jf,“)) — 0.

In Chapter 3 we investigate various measure theoretic and ergodic theoretic properties of the
maps Ly and Fy. Throughout this chapter, the partition o is again arbitrary. We first consider
the map Ly. We remind the reader that a measure p is said to be invariant for a dynamical
system T : X — X provided that for every p-measurable set B C X, we have g o T !(B) :=
w(T~Y(B)) = u(B). It turns out that for every partition ¢, the Lebesgue measure A is invariant
for L. We provide a proof, but this result can be found in Dajani and Kraaikamp [16]. We also
have that each map L, is exact. Recall the definition of exactness: A non-singular transformation
T of a o-finite measure space (%, %, 1) is said to be exact if for each B in the tail c-algebra
Muen T " (#) we have that either u(B) or u(% \ B) vanishes. Again, we provide a proof for
this result, but it follows from the result in [5] that each Generalised Liiroth map is Bernoulli. It
is an immediate corollary of the exactness that each map Ly, is ergodic (see also [16]). We finish
Section 3.2 with a variety of results that are obtained in a straightforward way from Birkhoff’s
Ergodic Theorem.

We then turn to the ergodic properties of the map Fy. Before stating our first result, let us
make one further definition. A partition « is said to be of infinite type if for the tails 7, of o we
have that " , #, diverges and is said to be of finite type otherwise. The following lemma details
the invariant measure for the map Fy.

Lemma 4. The A-absolutely continuous measure Vq, defined by the density ¢ which is given,
up to multiplication by a constant, by

is an invariant measure for the system (% ,B,Fq). Moreover, Vy, is a O-finite measure, and we
have that vy, is an infinite measure if and only if & is of infinite type.

It also turns out that this measure v, is the unique A-absolutely continuous invariant measure
for Fy. Our third main ergodic-theoretic result is as follows.

Theorem S. The a-Farey map Fy, is exact.
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From this, just as in the case of the map L, it follows immediately that for each partition &
the map Fy, is ergodic. We finish Section 3.3 by stating various consequences of the ergodicity of
Fy. Note that since the invariant measure for Fy, can be finite or infinite, we enter the interesting
realm of infinite ergodic theory here.

In Chapter 4, we are interested in the so-called a-sum-level sets for a given partition . These
sets are given, for each n € Ny, by

k
,an(a) = {x € Cy(l1,0n,...,0): Z ; = n, for some k € N},
i=1

where, for n = 0, we have put .,2”0(&) := 2 . We will use standard renewal theory to study the
sequence of Lebesgue measures of these sets. Our main result is the following, where the notation
a, ~ b, means that lim,_,.a,/b, = 1.

Theorem 6. (1) For the o.-sum-level sets of an arbitrary given partition o of % we have that
Yo l(gfn(a)) diverges, and that

n—oo

. @) | O if Fy is of infinite type;
fim A ("% ) N { (X 1)~ " if Fy is of finite type.

(2) For a given expansive partition oo which is either of exponent 6 € [0,1] or such that Fy is of
finite type, we have the following estimates for the asymptotic behaviour of the Lebesgue measure
of the a-sum-level sets.

(i) WithKg := (['(2—6)T'(1+6))~! for o expansive of exponent 0 € [0, 1] and with Kg := 1
for Fy, of finite type, we have that

-1
Y A (%(OC)> ~Kg 1 (Ztk> ‘
k=1 k=1

(ii) With kg := (T'(2 — 6)T(0)) ! for « expansive of exponent 6 € (1/2,1] and with kg := 1
for Fy, of finite type, we have that

-1
@\ .. (v
(A% v (£4)

(iif) For an expansive partition o, of exponent 0 € (0,1), we have that

liminf <n-tn-/1 (.z,f”)) _ sinm6

n—oo T

Moreover, if 6 € (0,1/2), then the corresponding limit does not exist in general. However,
in this situation the existence of the limit is always guaranteed at least on the complement
of some set of integers of zero density.
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We remark that the proof of the first part makes use of the standard discrete renewal theorem
due to Erdds, Pollard and Feller [20]. The second part relies upon some rather more intricate
renewal results obtained by Erickson, Garsia and Lamperti [21], [29]. Note that for the Farey
map and the Gauss map, an analogue of Theorem 7 has been obtained by Kessebohmer and
Stratmann [49]. In this paper the results are derived by using advanced infinite ergodic theory,
rather than the strong renewal theorems employed here. This underlines the fact that one of the
main ingredients of infinite ergodic theory is provided by some delicate estimates in renewal
theory.

In Chapter 5, we turn to multifractal investigations of the maps Ly and Fy. This type of
analysis is by now a well-established area of mathematics. It has its origins at the junction of
pure mathematics and statistical physics, and can be considered as an offshoot of thermodynamic
formalism. We consider the Lyapunov spectrum of each map. The Lyapunov spectrum of a
differentiable map S : % — % at a point x € %/ is defined, provided the limit exists, by

n—

1
A(S,x) := lim —

n—eoon

1
log ' (8*(x))].

k=0

Our first main theorem gives a fractal-geometric description of the Lyapunov spectra associated
with the map L. That is, we consider the Hausdorff dimension of the spectral sets {s € R: {x €
U : A(Lg,x) = s} # 0}. This gives rise to the Hausdorff dimension function 7, which is given
by

Ta(s) :=dimy({x € Z : A(Lg,x) = s}).

In what follows, p : R — RU {e} denotes the a-Liiroth pressure function, which is defined by

In addition, we say that Ly exhibits no phase transition if and only if the pressure function p is
differentiable everywhere (that is, the right and left derivatives of p coincide everywhere, with
the convention that p’(u) = oo if p(u) = o).

Theorem 7. For an arbitrary given partition Q, the Hausdorff dimension function of the Lya-
punov spectrum associated with L is given as follows. Fort_ := inf{—1loga, : n € N} we have
that Ty vanishes on (—oo,t_), and for each s € (t_,) we have

Ta(s) = inf (uts'p(u).

Moreover, To(s) tends to tw == inf{r > 0: Y7 | a;, <o} <1 for s tending to infinity. Concerning
the possibility of phase transitions for L, the following hold:

o [If a is expanding, then Ly exhibits no phase transition and t. = 0.

o [f a is expansive of exponent 0 > 0 and eventually decreasing, then Ly exhibits no phase
transition if and only if ¥, w(n) /(19 (logn) /n diverges. Moreover, in this situation we
have that tw = 1/(1+0).
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e If o is expansive of exponent 0 = 0, then Ly, exhibits no phase transition if and only if
Y~ anlog(ay) diverges. Moreover, in this situation we have that te. = 1.

Finally, for partitions which are either expanding or expansive of exponent 8 > 0 and eventually
decreasing, t. is also equal to the Hausdor{f dimension of the Good-type set Gc(x,a) associated to
L.

The proof of Theorem 7 relies heavily upon the general multifractal results obtained by
Jaerisch and Kessebohmer [38]. We then go on to consider the dimension spectrum associated to

the map Fy. We obtain the following theorem.

Theorem 8. Let o be a partition that is either expanding or expansive and eventually decreasing.
The Hausdorff dimension function of the Lyapunov spectrum associated with Fy is then given as
follows. For

r_:=inf{—t~(v) :v € Int(dom(t))} and ry :=sup{—t"(v):v € Int(dom(t))},

we have that Gy (s) vanishes outside the interval [1/ry,1/r_] and for each s € (1/ry,1/r_), we
have

Oq (s) = inf (s7hv+1(v)).

The main work involved in the proof of Theorem 8 is contained in Proposition 5.3.4, where
it is shown that in order to calculate the dimension of a level set associated to the map Fy, it is
sufficient to calculate one connected to the map L. We end Chapter 5 with a section containing
various examples to demonstrate the diversity of different behaviours of the spectra given by
Theorem 5.3.2 and Theorem 5.3.5 in dependence on the chosen partition . This includes a
detailed discussion of the existence of phase transitions. Each partition & under consideration is
eventually decreasing and either expanding or expansive of exponent 6 > 0.

Finally, Chapter 6 contains the work done on conformal systems. We will consider certain
subsets of the limit set of a non-elementary, geometrically finite Fuchsian group G that contains
at least one parabolic element. Recall that a Fuchsian group is a discrete group of isometries of
the hyperbolic plane. Each Fuchsian group G has an associated Riemann surface and each limit
point of G can be thought of in terms of a geodesic movement on this surface. By this, we mean
that the limit point £ is thought of as the end point of the geodesic ray s¢ that starts at the origin
and ends at the point £. From the assumption that G contains at least one parabolic element, it
follows that the surface associated to G has at least one cusp. (All the necessary background
information on hyperbolic geometry can be found in the first section of Chapter 6.) We will be
interested in those geodesic movements which have some prescribed behaviour in relation to the
cusp on the surface. We will begin by defining a cusp excursion, which, roughly speaking, is the
distance traveled by a geodesic into the cusp with respect to some fixed reference point.

The first subset with which we are concerned is the set of all limit points & for which the
ray s¢ makes infinitely many cusp excursions, only stays outside the cusp for a fixed constant
distance in between each cusp excursion and is such that each cusp excursion has hyperbolic
length at least log(7), for some 7 € R. This set will be referred to as the T-Good set and denoted
by ¢z(G). We obtain the following result, where dimy denotes Hausdorff dimension.
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Theorem 9. |
lim dimgy (6:(G)) = =.

T—$oo 2

We remark that this result is perhaps somewhat surprising, since it does not depend on the
Hausdorff dimension of the entire limit set. It is a result of Bishop and Jones [12] that the
Hausdorff dimension of the radial limit set of a non-elementary Fuchsian group G is equal to
the exponent of convergence of the Poincaré series associated to the group, which we denote
by 0 := 8(G). Further, by a result of Beardon [6], for a non-elementary geometrically finite
Fuchsian group G which contains at least one parabolic element, we have that 6 > 1/2. So
our result says that no matter what the dimension of the whole limit set (which must be strictly
greater than 1/2), the dimension of the 7-Good set tends to 1/2.

The second main result of Chapter 6 concerns subsets of the limit set of G that are described
by a given rate 0 of traveling into a cusp. We call these sets strict 0-Jarnik limit sets and denote
them by _Z;(G). More specifically, but without giving all the details here, for { € _7;(G), we
let d,(&) denote the length of the nth cusp excursion and (roughly speaking) let #,(&) denote the
sum of the lengths of the first n cusp excursions. We then define 6 € [0, 1] to be

T dn(§)
0 .—llir;sgp (&)

The points in _#;(G) also have to satisfy the requirement that there is at most a fixed constant
hyperbolic distance between each cusp excursion. We obtain the following theorem, which gives
a complete description of the Hausdorff dimension spectrum {dimy (_#4(G)) : 6 € [0,1]}.

Theorem 10. For each 6 € [0, 1], we have that

dimy (7§(G)) = 5(1-0)

Our final result is an application of Theorem 10 to obtain a "weak-multifractal spectrum" for
the Patterson measure. This is given in Theorem 6.5.1. We remind the reader that the Patterson
measure is a 8 (G)-conformal measure defined on the limit set of G. (In Appendix A, a detailed
description of this highly useful measure can be found.) This result should be compared with the
related work of Stratmann [76] where a similar spectrum was described. The sets underlying the
result in [76] are also defined by a certain rate of traveling into the cusp, but here the restriction
on what happens in between excursions is dropped. The corresponding Hausdorff dimensions
are given by 8(1 — 6) as opposed to the 1/2(1 — 6) we obtain. It is an interesting question for
further research to investigate what could happen if in addition to a rate of traveling into the cusp,
a rate of traveling outside the cusp was introduced. This could perhaps combine the approaches
given in this thesis and in the paper [76] and we conjecture that a whole range of spectra for the
Patterson measure could be obtained in this way.

XVi



Chapter 1

Preliminaries

1.1 Hausdorff measure and dimension

Felix Hausdorff (1868-1942) introduced the theory of the fractional dimension, now called the
Hausdorff dimension, in his foundational paper from 1918, “Dimension und dulleres MaB3” [34].
In this paper Hausdorff adapts a definition of dimension given by Carathéodory [13] so that it
makes sense for non-integer values. (Hausdorff very modestly refers to this ground-breaking
work as a “small contribution”.) For the necessary background in measure theory, the reader is
referred to Cohn [14].

Definition 1.1.1.
1. If U is any non-empty subset of R”, define the diameter of U to be
|U| = sup{|x—y[ : x,y € U}.

In other words, the diameter of a set is the supremum of the distances between points in
that set.

2. If {U;}i>1 is a collection of sets of diameter at most § with the property that F C | J;=, U,
we say that {U;} is a §-cover of F.

Definition 1.1.2. Suppose that F is a subset of R”. Then for any 6 > 0 we define

\U;|* : {U;} is a 0-cover ofF} .
=0

1=

S (F) = inf{

This infimum is non-decreasing as 0 decreases, since fewer covers are available for smaller
values of 0 compared to larger ones, and so it approaches a limit as & — 0. Thus, the following
definition makes sense for any subset F of R".

Definition 1.1.3. The s-dimensional Hausdorff measure of a set F C R" is given by

H(F) = lim 5 (F).
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The limiting value in Definition 1.1.3 can be zero or can be infinite. One can show without
too much work that 2#° is indeed a measure. For the details, the interested reader is referred to
Chapter 2 of Falconer’s book [22]. For a given set F and a given § < 1, it is clear that JZ5 (F) is
a non-increasing function of s. It follows that .72’ (F) is also non-increasing. In fact, if 7 > s and
{Ui}z, is a 8-cover of F we have that

Z ‘Ul"t _ Z ‘Ui’tfs+s < 6tfsz ’Ui‘s
i=1 i=1 i=1

50, taking the infimum over all §-covers, /73 (F) < 6" *J(F). If we then let  tend to zero,
we see that if 777 (F) is finite then 7" (F) = 0 for every ¢ > s. So there is a critical value of s
where .77°(F) jumps from {eo} to 0. This critical value is called the Hausdorff dimension of F,
written dimg (F). Explicitly,

dimy (F) :=sup{s: J°(F) = oo} = inf{s: 7 (F) = 0}.

If s = dimy (F), then #°(F) may be equal to zero or may be infinite, or may satisfy 0 <
H°(F) < oo. A set with this last property is called an s-set.

The following proposition collects some of the basic properties of Hausdorff dimension. For
the proofs, the reader is referred again to [22]. These properties will be used throughout this
thesis, often without explicit mention.

Proposition 1.1.4. Let F C R". Then the following hold:
1. 0 S dimH(F) S n.
2. IfE CF, then dimg (E) < dimg (F).

3. The Hausdorff dimension is countably stable, that is, if F|,F,, ... is a countable sequence
of sets, then

dimgy (U F,-) = sup{dimg(F;) : i € N}.

i>1

Although it is possible to calculate the Hausdorff dimension of a set using only the definition,
it can often involve pages of complicated estimates. Of course, to obtain an upper bound for
the dimension of a particular set F C R" is usually (although by no means always), easier than
obtaining the corresponding lower bound. For the upper bound it is enough to consider specific
coverings of F', while for the lower bound we would have to consider every covering of our set
F. In particular, some of the covers will consist of both very small sets and sets with relatively
large diameters, making obtaining estimates more difficult. A good way around this is to use the
following lemma, proved by Frostman in his doctoral thesis [26]. A mass distribution on F is
a finite measure on R” with support! equal to F. The proof is not complicated so we include it
here for completeness.

I'The support of a measure is defined to be the smallest (in the sense of set inclusion) closed set with complement
of measure zero.
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Lemma 1.1.5. (Frostman’s Lemma.) Let F be a bounded subset of R". Let |l be a mass distribu-
tion on F and suppose that for some s > 0 there exist constants ¢ > 0 and 6 > 0 with the property
that

u(U) < cup

for all sets U with |U| < 8. Then 5¢*(F) > u(F)/c and so
s < dimy (F).
Proof. 1f {U;} is any 6-cover of F, then

0<u(F)< ) wn(U) <c) |Ul
i>1

Taking the infimum over all §-covers of F, we obtain that 75 (F) > p(F)/c for all sufficiently
small 8. Hence, 57°(F) > u(F)/c.
U

1.2 Dynamical systems

For our purposes, a dynamical system is a continuous map on a metric space. In what follows,
the metric space will most often be the closed unit interval with the usual Euclidean distance.
Given two dynamical systems, we would like to make rigorous the notion of them being “the
same”, in some sense. The following definition does exactly this.

Definition 1.2.1. Two dynamical systems 7 : X — X and S : Y — Y are said to be fopologically
conjugate if there is a homeomorphism % : X — Y, called a conjugacy map, such that

hoT =Soh.

In other words, T and § are topologically conjugate if there exists a homeomorphism /4 such that
the following diagram commutes:

Remark 1.2.2.

1. Topological conjugacy defines an equivalence relation on the space of all dynamical sys-
tems.

2. If two dynamical systems 7 and S are topologically conjugate via a conjugacy map h, then
all of their corresponding iterates are topologically conjugate by means of 4. That is, ho
T" = S"oh for all n > 1. Therefore there exists a one-to-one correspondence between the
orbits of 7" and those of S. This is why two topologically conjugate systems are considered
dynamically equivalent.
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For later use, we now introduce a particular dynamical system, namely the shift map on a
finite or countable alphabet.

Definition 1.2.3. Let I be a non-empty finite or countably infinite set, henceforth referred to as
an alphabet. The elements of I will be called letters or symbols.

e For each n € N we shall denote by I the set of all words comprising n letters from the
alphabet /. For convenience, we also denote the empty word (that is, the word having no
letters) by €.

For instance, if I = {0, 1} then
I'=1
and
I ={00,01,10,11},
whereas

I? = {000,100,010,001,110,101,011,111}.

e We will denote by I* := J,n E" the set of all finite non-empty words over the alphabet /.
The set of all infinite words will be denoted by I*° := I, In other words,

I”:={w=(w)Z,:w€lforalliecN}.

e We naturally define the length of a word to be the number of letters it consists of. For every
o € I"UI”, we denote by |w| the length of o, that is, the unique n € NU {e} such that
o € I". By convention, |¢| = 0.

o If ® € I"UI” and n € N does not exceed the length of @, we define the initial block ®|,
to be the initial n-length word of ®, that is, the subword w; @, . .. @,.

e Given two words w,T € I* UI”, we define their wedge @ AT € {€} UI* UI” to be their
longest common initial block.

The wedge of two words is better understood via examples. If 7 = {1,2,3} and we have
words @ = 12321... and 7 = 12331..., then w A T = 123. On the other hand, if y = 22331...
then ® Ay = €. Of course, if two (finite or infinite) words @ and 7 are equal, then WA\ T = = T.

Let us now introduce a metric on the space I which reflects the idea that two words are close
if they share a long initial block. The longer their common initial subword, the closer two words
are.

Definition 1.2.4. Let the metric d : I x I — [0, 1] be defined by d(®, ) = 2~1®/7,

Remark 1.2.5. If ® and 7 have no common initial block, then ® A T = €. Thus, |@ A 7| =0 and
d(®,7) = 1. On the other hand, if @ = 7 then |@ A | = e and we adopt the convention that
(1/2)* =0.

We also have the notion of cylinder sets in this setting.
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Definition 1.2.6. Given a finite word @ € I*, the cylinder set [®| generated by  is the set of all
infinite words with initial block @, that is,

o] :={tel”:1g=0}={r€l”: =0 foral 1<i<|n[}.

We now introduce the shift map, which is defined by dropping the first letter of each word
and shifting all the remaining letters one place to the left.

Definition 1.2.7. The full left-shift map (or simply shift map) o : I*° — I* is defined by o(w) =
0 ((®)ien) = (@i41)ien- That s,

C(WWmay...)=w0m30y...

The shift map is |/|-to-one on I*°. In other words, each word has || preimages under the shift
map. In particular, if 7 is countably infinite, it follows that ¢ is countable-to-one. Indeed, given
any letter e € I and any infinite word @ € I, the concatenation e® = e@| W% ... of e with @ is
a preimage of ® under the shift map, since o (e®) = @.

Proposition 1.2.8. The shift map o : (I*°,d) — (I*,d) is a dynamical system.

Proof. Recall that the definition of a dynamical system is a continuous map on a metric space.
In this case, (I°,d) is a metric space. Also, the shift map is obviously continuous: two words
that are close share a long initial block, and thus their images under the shift map, which result
from dropping their first letters, will also share a long initial block. More precisely,

d(cw,07) = r—loonot| _ s—|ont+1 _ 5 H—|oAT] _ 2d(w, 7)

whenever d(®, T) < 1, that is, whenever |@ A t| > 1. It is evident that if @ = 7, then both d(w, 7)
and d(ocw, o1) are equal to 0.
U

Remark 1.2.9. Note that I is also the infinite product of N copies of the discrete space I. As
such, for every finite or countable alphabet /, the space I~ is totally disconnected. For more
details concerning this remark, see Chapter 8 of Willard [82].

1.2.1 Examples of number-theoretic dynamical systems

In this section, we introduce various dynamical systems that generate real number expansions.
We refer to such systems as number-theoretic dynamical systems. Each example we will consider
here is defined on the closed unit interval, % := [0, 1].

For the first example, let us describe the dynamical system that generates the familiar decimal
expansion of a number in the unit interval. The decimal expansion is generated by the piecewise-
linear map T : % — %, given by

10x, forx € [0,1/10);
10x—1, forxe[1/10,2/10);
T(x):=< . _

10x—9, forxe[9/10,1].
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O 110 2/10 3/10 4/10 5/10 6/10 7/10 810 910 1

Figure 1.1: The map T (x).

Here, “generated by” means that we have a finite or infinite decimal x = 0.x;x2x3 ..., where
each x; € {0,...,9} and the elements x; are given by

T l(x) e |12 :

() {10’ 10
It is clear that 7'(0.x;xpx3...) = O.xpx3... and so the map T can be thought of as acting on
the infinite decimals as the shift map on the symbol space EV, where E is the finite alphabet
{0,...,9}.

Let us now discuss continued fractions. We give here the very briefest of introductions, but for
more details there are several good books available, for instance the classical text by Khintchine
[50] or the more modern approach given by Rockett and Sz{isz [66]. For the dynamical approach
we will outline below, a nice reference is Dajani and Kraaikamp [16].

An expression of the form

1
Craes

where ag € Z and a; € N for each i € N is said to be a regular continued fraction. The numbers
ap,a, ... are referred to as the entries of the continued fraction and the sequence of entries
may be finite or infinite. A finite continued fraction is the result of a finite number of rational
operations, so it represents a rational number. Every infinite continued fraction represents an
irrational real number and, conversely, every real number can be represented as a continued
fraction. We will always assume that ag = 0, so that we are only considering numbers in the unit
interval. To simplify the notation, we write [aj,az,as,...|. The continued fraction expansion of
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a real number arises in a natural way from a dynamical system, as follows. First, recall that the
notation | x| denotes the greatest integer less than or equal to x.

Definition 1.2.10. Let G : %4 — % be defined by

l—tlj for0 <x <1,
G(x)"{é Y ifx=0,

The map G is referred to as the Gauss map.

A

1 .

0 1

Figure 1.2: The Gauss map, G : [0,1] — [0, 1].

The map G generates the continued fraction expansion of a number x € %/, in the fol-
lowing way. There exists a (finite or infinite) sequence of positive integers (a;);>1 given by
G*1(x) € [1/(ax+1),1/a;). Suppose that the sequence is infinite. Then, we have that x €
[1/(a;+1),1/ay),s0 |1/x| =a; and so G(x) = 1/x—ay, or,

B 1
X = @ +GH)’

Similarly, by assumption we have that G(x) € [1/(a;+ 1), 1/ay), so following the same argument
gives that G(x) = 1/(ay + G?(x)) and therefore,

1

xX= T
ap+ a+G2(x)

Without giving every detail, it is hoped that it is clear how the continued fraction expansion of

a number is obtained from the map G. It can easily be verified that the map G acts on a point

x = [aj,ay,...| in the following way:

G(x) = |az,as,...].
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That is, the map G can be thought of as acting as the shift map on NV, at least on the irrational
points of %/. It should be noted, however, that we certainly do not have that G and o are
topologically conjugate. Indeed, since N is totally disconnected and % is a connected space,
there cannot be any continuous map from % to NN (see Theorem 26.3 in Willard [82]). If we
define the map i : NN — %\ Q by setting 1((a1,a2,a3,...)) = [a1,a2,a3, . ..], we do at least have
that hoo = Goh and h is a continuous surjection onto the set of irrational numbers in %7. We
thus say that G is a factor of ©.

Let us now define a related transformation on the unit interval.

Definition 1.2.11. The Farey map F : %/ — % is defined by

| x/(1—x) f0r0§x§%;
Fx) '_{ (1—x)/x forf<x<1.

It is easily shown that the action of the map F on a point x = [ay,ay,...| € % is as follows:
. [al—l,az,...] ifa; > 1;
F(x) —{ [az,a3,...] ifa; = 1.

For this reason, the Farey map is sometimes referred to as the slow continued fraction map,
whereas the Gauss map is referred to as the fast continued fraction map. In Section 2.2 below,
we will see maps with a similar relationship.

Remark 1.2.12. The Farey map is named for John Farey (1766-1826), who was not a mathe-
matician, but a geologist. Farey’s one contribution to Mathematics was the article On a curious
property of vulgar fractions [25], in which he defines Farey sequences in the following way. For
each n € N, list all the rationals between 0 and 1 which, when expressed in their lowest terms,
have denominator at most equal to n. Denoting the n-th Farey sequence by .%,, the first few are

given by
01 011 01121
a. . ) T — ) T, —d_ _ _ = _
fl.—{l,l}, Jz- {1,271}7 J?)- {173727371}7

g._{Qlll%él} gg._{Qlll%l%%il}
4'_ 1747372737471 b 5_ 1757473757275737471 b
The curious property of Farey’s title is that each member of the sequence is equal to the mediant
of its two neighbours. Recall that the mediant of two rational numbers a/b and d'/b’ is by
definition the rational number (a+d')/(b+b'). Farey did not himself provide a proof of his
discovered property? and he was doubtless not the first to notice it. Cauchy supplied the necessary
proof in the same year that Farey’s article appeared.

The link between this sequence and the Farey map is that if we consider the inverse branches
of the Farey map, which are given for x € % by

1
F()(x) = and Fl(x) = 1+x,

2That Farey did not give a proof of his curious property was pointed out by Hardy [33], with the rather unfriendly
comment that Farey was “at the best an indifferent mathematician”.
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and if we iterate the point 1/2 under each of the two branches, each time one of the Farey
fractions turns up. (In Appendix B, there is more about this connection and also how it relates
to the modular group.) However, it should be noted that it is not strictly speaking the Farey
sequence which appears in this manner. The difference is subtle, but important. The rationals
which turn up as the endpoints of intervals in the first few levels of the backwards iteration of the
intervals {[0,1/2],[1/2, 1]} under the inverse branches of the map F are really the Stern-Brocot
sequences. The n-th Stern-Brocot sequence consists of 2" proper fractions (not including 0) and
the n-th sequence is obtained from the (n — 1)-th by adding in the mediant of each neighbouring
pair. Some of the first few are given by:

01121 011213231
%3-_{I7§7§7§7T}7 %4-_{1717575757575717T}7

B 01121323143525341
5_ 175747773787577727775787377747571 DA
The Stern-Brocot sequence was independently discovered by the German number-theorist Moritz
Stern and the French clockmaker Achille Brocot. (Brocot used the sequences to design systems
of gears. For information on these sorts of applications, see Chapter IV of Rockett and Sziisz

[66].) So, it would perhaps be more reasonable to refer to the Farey map as the Stern-Brocot
map. However, we choose to stick with convention on this point.

1.3 The classical Liiroth expansion

In this section, we describe a certain series expansion of real numbers and other related topics
which motivate the investigation in Chapter 2. We will not give all the details of every statement
in this section, deferring instead to the more general case developed in Section 2.1.

In the paper [56], J. Liiroth introduces a series representation of real numbers from the unit
interval. His starting point is the observation that for every real number x in the interval (0, 1),
either x = 1/(¢), for some positive integer ¢ > 2, or, 1/x lies between two successive positive
integers /1 and ¢; + 1 and so

1

X = m—i—x,
where, since x < 1/¢;, we have that 0 < £ < 1/(¢;(¢; +1)). Now, defining x; := £(¢; + 1)¢;

supplies the equation
1 X1

RSN

Note that since 0 < £ < 1/(¢;(¢; + 1)), we also obtain the inequality 0 < x; < 1. Therefore, the
same argument holds for x| as for the original point x, which leads to the equation

X

1 1 X2
O+1 0 L0 +1)(6L+1) 6l +1)0h(6+1)

X
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Clearly, this process either continues until such a time as one of the x; is equal to the reciprocal
of a positive integer that is at least equal to 2, or continues indefinitely. For the special case that
x=1,wenotice that 1 =1/2+1/4+1/8+.... In each case, this gives the series expansion now
called the Liiroth expansion of a real number in % .

Each finite expansion of the form above represents a rational number. Suppose now that
X € % has an infinite Liiroth expansion. Since each ¢ is at least equal to 1, for the k-th term in
the Liiroth expansion of x we have that

1 1

<—.
Ol +1) b (b + D) (G+1) — 2

Thus, it makes sense to write

:2( H£k£k+1 )

For the time being, we will use Liiroth’s original notation and write x = S(¢1, ¢, ...) for this sum.
For instance, we have that 1 = S(1,1,1,...). The next observation in [56] is that if x € % has a
finite Liiroth expansion, that is, if x = S(¢},¢5, ..., ;) for some k € N, then

x:S(ﬁl,ﬂz,...7(€k+1),1,1,1,...).
Indeed, since 1/(n+2)+1/((n+1)(n+2)) =1/(n+ 1), we have that

X = S(fl,fz,...,gk)

1 1
B f1+1+m+€ (b+1) b (G + 1) (b + 1)
1 1
= — -+ +
/141 61(61—1—1) by_ 1<£k71+1)(€k+2)

1 1 1 1
+ +o gt
G+ 1) by (Ge—1 + 1) (e + 1) (6 +2) (2 4 8 )
= S(fl,fz,...,(fk-f—1),1,1,1,...).

It follows that every number x in % \ {0} has an infinite Liiroth expansion. In fact, this
infinite representation is unique (we will prove this for more general expansions in the sequel).
As already mentioned, each finite Liiroth expansion represents a rational number, but it is easy
to see, using only the sum of a geometric series, that each (eventually) periodic infinite Liiroth
expansion is also a rational number. Of course, each finite Liiroth expansion can also be written
as an eventually periodic expansion; in this case the periodic part consists of infinitely many ones.
The proof of these statements are also given in [56].

It seems probable that Liiroth was thinking of a generalisation of the decimal expansion of a
real number when he introduced his infinite series expansion. He states that the given expansion
has many similarities with the representation through infinite decimal fractions and asks whether
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or not it is possible to characterise the numbers which have a finite Liiroth expansion in any other
way, that is, as in the way that rational numbers with finite decimal representations are exactly
those with denominators equal to 2"5™ for some positive integers n and m. As of the present
moment, we are unaware of any answer to this question.

The Liiroth expansion can also be generated by a dynamical system, L : % — %/. The map
L is referred to as the Liiroth map and it is defined by

n(n+1)x—n, forxe [L %), n>2;

n+1?
L(x):=<¢ 2x—1, for x € [%,1];
0, forx =0.
A
1_.
0 1

Figure 1.3: The Liiroth map, L: [0,1] — [0, 1].

The Liiroth expansion of a real number in % is generated by the Liiroth map in the same
way as the map T defined in Section 1.2.1 generates the decimal expansion. More precisely,
let the real number x € % be given and let the finite or infinite sequence (f);>; be deter-
mined by L¥=!(x) € [1/(¢x +1),1/4;). We then use the shorthand x = [¢1,£5,43,...]r. It is
straightforward to check that this coincides with the definition given above, that is, we have that
S(y,Ly,...) = [€1,02,...]r. Recall that certain rational points in %/ have both a finite and an
infinite representation; the map L yields the finite representation in these cases. Referring to the
graphs of the two maps (given in Figures 1.1 and 1.3), it is clear that in some sense the Liiroth
map is a generalisation of the map 7. Also, since

L([£17€27£37 .. ]L) = [627637 .. ']L7

we have that the map L acts as the shift map on the symbol space N, in the same sense that the
Gauss map does (see Section 1.2.1).
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Remark 1.3.1. The Liiroth map is sometimes defined by setting L(x) := n(n+ 1)x — n, where
x€[1/(n+1),1/n) foreach n > 1, so that the point 1 is not in the domain. It makes the definition
look slightly neater, but it is perhaps a little artificial to remove the point 1, since, as already
mentioned, it does have a Liiroth expansion.

Recall the initial blocks of an infinite word, given in Section 1.2. It is natural to do something
similar here. So, we define the n-th Liiroth convergent of x = [{,05,03...];, € % by setting

(ﬁ) = [ela"wgn]L
qn /|,

1 1 1
S R GE TS S I AR (AT [ )

(&) <<&> <...<<&) e
q1 /1, 9/ qn /|,

In the early 1990s, S. Kalpazidou, A. Knopfmacher and J. Knopfmacher [40] introduced a
related series expansion of real numbers, which they called the alternating Liiroth expansion.
This expansion is generated in the same way as the classical Liiroth series, by a similar map,
which is referred to as the alternating Liiroth map. Before giving the definition of this map, let
us first define the harmonic partition o by setting

04 b1 >1
H n+17n =

The alternating Liiroth map Ly, : % — % is then given by

Observe that we have

—nn+1)x+(n+1) forxe L7
O e

With respect to this map, in exactly the way outlined above, the corresponding series expan-
sion of some arbitrary x € %/ turns out to be

n

X = i( n lf —|—1)H(€k(€k—|—l))l)
T
0

k=1
INGERNS) 51(514—1)@2((2-}—1)(3 o

where each /¢, € N, and the expansion can be finite or infinite. We will use the notation x =
[01,02,03,...]a;- The map Lg, can be seen as a linearised generalisation of the Gauss map, as
opposed to a generalisation of the map 7 that generates the decimal expansion. To see why, it is
helpful to compare the graphs of these functions given in Figures 1.2 and 1.4.
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0 14 13 12 1

Figure 1.4: The alternating Liiroth map, L.

Just as for the classical Liiroth expansion, for this alternating Liiroth expansion we can form

the alternating Liiroth convergents by setting

<@> = 1,02, Ll
qn oy
1 1 (=11
- 4+ .
2] fl(fl—f—l)gz El(gl—f—l)...gn,l(fn,l—f—l)&l

The behaviour of the alternating Liiroth convergents is not the same as the behaviour of the
classical Liiroth convergents. We have the following picture, here illustrated by the convergents

to the point 1:

1’171]05H :[171’1]05111 1:[1]aH
|

%:[1’1]0% %:[1 %
: - :
1

ooy

WIN

= 1,1,

We remark that the partition oy is very similar to the partition that is behind the (non-
alternating) Liiroth map. Let us denote the latter by o, so that

ag = {[1/2,1],[1/(n+1),1/n) : n > 2}.

We will henceforth denote the Liiroth map L by L and the Liiroth expansion by [(,/5,...]5.
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The Liiroth map and, to a lesser extent, the alternating Liiroth map have been studied by
several authors. In addition to those already cited above, these works include [5], [15], [27], [28],
[69], [84] and in particular [16].



Chapter 2

Introduction to o-Farey and o-Liiroth
maps

In this chapter we will introduce and study the properties of two families of dynamical systems,
the a-Liiroth and o-Farey systems, which are both indexed by partitions of the unit interval.
These systems are linearised generalisations of the Gauss and Farey maps, respectively, and the
first family includes the map L, which was introduced in Section 1.3. In Section 2.1, we first
make clear exactly what class of partitions of %7 we are interested in and then introduce the
map Ly. An expansion of real numbers derived from the map L, is described in some detail. In
Section 2.2, we introduce the map F, and establish the relationship between this new map and L.
Section 2.3 is concerned with some topological properties of Fy, where we show that for every
partition o the map Fy, is topologically conjugate to the tent map and give an explicit formula
for the conjugating homeomorphism 6. It is then shown that this 6 is both Holder and sub-
Holder continuous. In Section 2.4, some more specific families of partitions are defined which
are used in Section 2.5 to calculate the Hausdorff dimension of various Diophantine-type sets
for the expansion generated by L. Finally, in Section 2.6, we briefly outline the non-alternating
case, that is, the map that generalises the classical Liiroth map.

2.1 Linearised generalisations of the Gauss map

In this section, we aim to introduce a generalisation of the alternating Liiroth map which was
described in Section 1.3. The most natural way to generalise this map is to alter the partition
og. So, throughout the remaining chapters, let o := {A, : n € N} denote a countably infinite
partition of the unit interval %/, consisting of non-empty right-closed and left-open intervals. It
is assumed throughout that the elements of & are ordered from right to left, starting from A1, and
that these elements accumulate only at the origin. Let a, denote the Lebesgue measure A (A,) of
A, € ovand let 7, :== Y ;°  ai denote the Lebesgue measure of the n-th tail of oc. It is clear that
11 := Y, ax = 1 for every partition & under consideration here. Notice that we can also think of
these tails as the endpoints of the intervals composing the partition ¢, since A, = (t,,+1,%,]. Also,
it is perhaps helpful to keep in mind that ¢, | = ¢, — a,.

15
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Definition 2.1.1. For a given partition & of %, define the map Ly, : % — % by

t,—x)/a, forxeA,, neN;
La(x)‘:{é / if x=0.

The map Ly, is referred to as the a-Liiroth map.

Remark 2.1.2. For the harmonic partition, oy := {(1/(n+1),1/n] : n € N}, one immediately
verifies that a, = 1/n(n+ 1) and t, = 1/n. Consequently, the definition given above coincides
with the definition of the alternating Liiroth map as described in Section 1.3.

In the same way as the Gauss map gives rise to the continued fraction expansion and the
Liiroth map gives rise to the Liiroth expansion, for each partition ¢« the map Ly gives rise to
a series expansion of numbers in the interval %/, which we refer to as the «-Liiroth expansion.
That is, let x € % be given and let the finite or infinite sequence ({);>; be determined by
Lk 1(x) € Ay,. Note that the sequence will be finite if at some point we have that L% (x) = 0
and also note that, with the exception of the special case x = 1, each finite sequence has the
property that the final entry is at least equal to 2. This sequence gives rise to an alternating series
expansion of each x € %/, which is given by

-1
X=1ty + Z (—l)n (H agl) g, =1ty —aptey, +apapty, — ...
n=2

i<n

Let us denote finite -Liiroth expansions by [¢1,£2,. .., ]|, for some k € N, and infinite ones by
x=1[l1,03,03,..]q-

Remark 2.1.3. Note that this series expansion is a particular type of generalised Liiroth series,
a concept which was introduced by Barrionuevo et al. in [5] (also see [16]).

We have given a few examples already of expansions arising from maps in this way, but
without going into very explicit detail. Let us now give all the details in this case. First assume
that LX (x) # 0 for all k € N. To start, we have that x € A, and so

Iy, —Xx

La (.x) - aé .
1

Rewriting this, we obtain the relation x = t;, —ay,Ly(x). Then, Ly (x) € A/, and so

1, — Lg (x)
ay '

Lg(x) =

2

Therefore, Lg(x) = tg, — ag,L% (x) and substituting this into what has gone before, we obtain the
expression
2
X =1ty —ayty,+ aglagzLa (x)

Now suppose that for some k € N we have that

k—1

X =1ty —apty, +apapty, —---+ (—1) ap, - 'afqu]((x_l (x)
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Then, L& ! (x) € Ay, and so, just as previously,

tg, — L (x)

Li(x) =
o (%) a

k

Consequently, we have that L5 1 (x) = #;, — ay, L%, (x) and so, by induction, we obtain the desired
infinite o-Liiroth expansion.

If it so happens that LX (x) = 0 for some k € N, since by definition Ly (0) = 0, it follows that
L% (x) = 0 for all n > k and instead of an infinite a-Liiroth expansion we obtain a finite one. If
is the smallest positive integer for which LX,(x) = 0, we infer that

0= L]&(x) = = L]&_l (x) = to, €Ay,

and so we obtain the ¢-Liiroth expansion

k—1

X = tgl—agll£2+-..+(—1) agl---agkilLl&_]@C)

= Iy _a€1t€2+"’+(_1)k_1

ap, -+ -agkiltgk = [f],ﬁz, cen ,Ek]a.
Remark 2.1.4. The final entry ¢, where k > 2, in any finite a-Liiroth expansion cannot be equal

to 1, since otherwise we would have that Lf~! (x) =t = 1, but there exists no x € % that is
mapped to the point 1 by L. However, note that the ¢-Liiroth expansion of 1 is always given by

1]

From this discussion, it is clear that every element x € (0, 1] has an o-Liiroth expansion.
Before going any further, let us describe the action of the map Ly on the expansions it generates.
For each x = [(1,/5,03,...], We have, since x € A, that

Loc(x) = (l‘& —X)/agl = (l‘gl — (l‘gl —ayty, +agapty, + .. .))/agl
= tntapt;+...= [0, 03,0s,.. Ja.

This shows that L, just like the Gauss map and other examples previously mentioned, can be
thought of as acting as the shift map on the space N, at least for those points in % with infinite o-
Liiroth expansions. In the next proposition we will show that every infinite expansion is unique,
but that finite expansions are not.

Proposition 2.1.5.
1. If x € % has an infinite o.-Liiroth expansion, then this expansion is unique.

2. Eachx € (0,1) which has a finite a-Liiroth expansion can be expanded in exactly two ways,
namely,

X = [El,gz,...,fk]a = [El,gz,...,(gk— 1)71]06
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Proof. For the proof of the first statement, suppose, by way of contradiction, that we have two
distinct infinite a-Liiroth expansions for a given point x € %, so

x=1[l1,02,03,...]q = [m1,ma,m3,...]qo.
Expanding this yields
Ly, —ap by, tagapteyy, + ... =ty — Gty + Ay Aoty + - - -

It is certain that
x <ty and x <ty

and since [(1,02,03,...]a =ts, —ay, [¢2,03,...]q, We also obtain the inequalities

x>ty —ayp, and x>ty —ap

1 1°
In other words,

T 41 <x <1y and I +1 <x <l -

Since these are endpoints of partition elements, that is, since x belongs simultaneously to the
intervals [ty y1,%¢,) and [ty 41,4, ), it is apparent that ¢; = m;. However, we now have two
infinite expansions [(5, 03,44, ..]q and [mp,m3,my, .. .| With the property that

[627637647"']05 = [m27m37m47"']06-

The same argument clearly applies again and again, allowing us to conclude that ¢,, = m,, for
every n € N, which finishes the proof of the first statement.

For the second assertion, first suppose that x = [¢},..., (¢ — 1), 1]y and, for convenience,
assume that & is odd (the case k even is almost identical). Then, recalling that #{ = 1, we have

[617"‘7(gk_1)71]06 = t@] _a£|t€2+"'+af1af2“'a€k,1t£k71_aélafz'“aékfltl
=t —apte, ... Fap--ag (tg—1—ag_1)
=ty —apty,+...+ap-ag ty, = [ﬁ],...,fk]a.

To show that these are the only two possibilities, on the one hand if we suppose that x =
[01,....0]a = [m1,...,m]q, then by the same argument as above we have that ¢; = m; for each
1 <i<k. On the other hand, if x = [¢1,...,l]q = [m1,...,mg,Mys1,. .., Myip)o and myq # 0,
then we have that

El' =m; for each 1 <i< k—1 and [Ek]a = [mk,mk+1,...,mk+n]a,

which implies that
t, = tmg — A (Mg 1, - s Mm@ -

There are then two possible cases, either [my1,...,mMiiy]a = 1, S0 mp 1 = 1 and my, j =0 for
2<j<n,or [mgyy,...,min]a € (0,1). In the first case, it immediately follows that my = ¢; — 1.
Therefore, it only remains to show that the second case is in fact not possible. If the second case
were true, we would obtain that #,, 11 = f,, — am, <y, < ti,. This contradiction finishes the
proof.

O]
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In exactly the way described above for the classical (and alternating) Liiroth series, for each
x=1[l1,0,03,...]o € %, if we truncate the a-Liiroth expansion of x after k entries we obtain the
k-th a-Liiroth convergent of x, that is, for each k € N we obtain the finite a-Liiroth expansion

r}ga) (x), given by

PO ) =00, b = tr, —ap ey + -+ (=) ag, - ag, 1,

The behaviour of these convergents is described in the following proposition.

Proposition 2.1.6. Let x = [(1,0,,03,...]q. Then, the sequence of o-Liiroth convergents of x
satisfies the following four properties.

(

1. The sequence <r2(r)f) (x)) ] of even convergents is increasing.
n>
2. The sequence (rézzl (x)> . of odd convergents is decreasing.
n>
3. Every convergent of odd order is greater than every convergent of even order.

4. lim,_e ‘rfi)l (x) — i (x)‘ =0.

Proof. The proof of the first two statements is very similar, so we give only the proof for the
even case. It suffices to show that r\*’ (x) — gg) (x) > 0, for every n € N. We have that

2(n+1)
() () _
r2(n+1)<x) =1 (X) = o —apte, A e, L, a0 A, A A, T,
= (t —ante, +... —an - --ap, 1)

= Qg ap, (t€2n+1 - a€2n+1l€2n+2) =gy Ay, ([lant1,lont2]a) -

It is clear that this last quantity is greater than zero for each n € N.
In order to prove the third statement of the proposition, first fix some k& € N. Then, since

rggll(x) = éz)(x) +ay, ...apt,,,, we deduce that réﬁl(x) > rég) (x). Then, as the sequence

of odd order convergents is decreasing,

(a)

£, =1 (@) ()

(xX) > 137 (x) > >yl (x) > rég)(x).

Now, by way of contradiction, suppose that there exists some n > k with the property that

rgg) (x) > réfgr] (x). It follows, using part one, that réz) (x)<---< rgf:) (x), after which we obtain

the inequality
ré‘:;)rl (x) < rgz) (x) < rgz) (x).

But now, given that régc)+1 (x) — ég) (x) = ay, ...ap,ts,,,, >0, we reach a contradiction. Conse-

quently, there exists no such n, and the proof of part three is finished.
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Finally, for part four, first notice that there must exist a maximum value of a,, since the
sequence (aj,ap,...) sums to 1. Moreover, this maximum value must be strictly less than 1.
Hence,

n
lim <% x) = ¥ )| = limap. ---ap £, < lim | maxa, | =0.
o0 }’H-l( ) n ( ) e 61 4y €n+1 ~ n—eo \ neN n

g
By analogy with continued fractions, for which a number is rational if and only if it has
a finite continued fraction expansion, we say that x € % is an o-rational number when x has
a finite a-Liiroth expansion and say that x is an «-irrational number otherwise!. Of course,
the set of ¢t-rationals is a countable set. The reader should also notice that the o-rationals are
not necessarily equal to actual rational numbers, unless the partition o is chosen to consist of
intervals with rational endpoints. Note that the ag-rational numbers (for the classical alternating
Liiroth map), described in Section 1.3, are all rational. For a second example, consider the dyadic
partition ap = {[1/2",1/2""") : n € N}. In this case, one easily verifies that the oyp-rational
numbers are exactly the dyadic rationals, that is, the set {m/2" : 1 <m <2" n € N}.
We will now define the cylinder sets associated with the map L.

Definition 2.1.7. For each k-tuple (¢1,...,¢;) of positive integers, define the a-Liiroth cylinder
set Cy (01, ..., ¢) associated with the o-Liiroth expansion to be

Co(ly,.... ) :={y1,y2,--Ja s yi= € for 1 <i<k}.

Observe that these cylinder sets are closed intervals with endpoints given by [{1,..., ¢4 and
[01,...,(lx + 1)]q. If k is even, it follows from Proposition 2.1.6 that [¢1,..., 0]y is the left
endpoint of this interval. Likewise, if k is odd, [/, ..., ;] is the right endpoint.

Suppose that k is even. Recall that if £, > 1, then both [¢},..., 0 |q and [¢1,..., (4 —1),1]q
are different representations of the same point in %/. To avoid any confusion note that the point
[01,...,0k]a is the left endpoint of the cylinder set Cy (41, ...,¢) and the right endpoint of the
cylinder set Co (£1,...,(¢x —1),1). These are distinct sets, as consideration of the definition of
an Lg-cylinder set given above will quickly confirm.

Directly from the values of its endpoints, for the Lebesgue measure of Cy ({1, ..., £;) we have
that

A(Callr,....00) =T Tac.

1

Il b
,_‘:

Also, from this formula, we have the relation

k
A(Caltr, - 4) = T AM(Calt).

i=1

Tt would also be reasonable to choose to set the a-rational numbers to be those with finite or periodic c-Liiroth
expansions, in line with the classical Liiroth expansion. However, in light of results such as Proposition 2.2.9 below,
we have decided against this.
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Finally in this section, we give a natural extension for the map Ly. A natural extension is a
way of creating an invertible transformation out of a non-invertible one, by adding on a “past”,
as it were, to each point. In order to do this, we first define the inverse branches of Ly. (For a
more rigorous explanation of natural extensions, the reader is referred to [16].) Note that this is
the same construction as given in [5].

Definition 2.1.8.
1. The inverse branches Ly , : [0,1) — A, of Ly, are given for each n € N by

Lo n(x) =t, —apx.

2. The natural extension L{; : [0,1) X % — % % [0,1) of Ly, is given by
L ((x,9)) = (Lan(x),La(y)), fory € A,, foralln € N.

One immediately verifies that the action of this map is as follows:

Lé([£l)£27£37"']0€7 [m17m27m37"']06) — ([m]7617£27"']a7 [m2am3;m47"']06) .

Since this map is designed to be invertible, it ought to be, and is, easy to describe the inverse.
We have that (L)™' : % x[0,1) = [0,1) x % is given by

(L) ((x,y) = (La(x),Lan(y)) forx € A,, foralln € N.

2.2 Linearised Farey-like maps

Let us now introduce a second family of maps, indexed by the same set of partitions o of %. We
will soon see that these new maps are closely linked with the maps L, introduced in the previous
section.

Definition 2.2.1. For a given partition & := {A, : n € N} of %, define the map F, : % — % by

(1—x)/a; ifxeA,
Fo(x):=1% ap_1(x—ty1)/an+1t, ifxe€A,, forn>2,
0 if x=0.

The map Fy, is referred to as the o-Farey map.

Although the formula looks a bit cryptic, all that the transformation F,; does is map the
set Aj linearly onto the interval [0,1) and, for each n > 2, map the interval A, linearly onto

the interval A,_;. In particular, notice that Fy|4, = Lg|a,. The action of Fy on each point
x=1[l1,0s,...]q € Z is given by
L [52,53,...]06 for€1 :1;
Fa(x) == { [0y —1,0p,05,...]q forl; >2.

Notice that the map Fy acts on the a-Liiroth entries of x in precisely the same way as the
Farey map acts on the continued fraction entries of each point x € % (see Section 1.2.1). This is
the reason for the name given to Fy.
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Example 2.2.2.
1. For the harmonic partition oy := {[1/(n+1),1/n) : n € N}, we obtain the a-Farey map

Fy,,, which is given explicitly by

Foy (%) :=

2—2x forxeAy;
Zfﬂx—ﬁ forx €A, .

172

0 Ua U3 12 1 0 U4 13 12 1

Figure 2.1: The ay-Liiroth and ogy-Farey map, where ¢, = 1/n, n € N.

2. Consider the dyadic partition op := { [1 /2" 1/ 2”*1) :neN } One can immediately ver-
ify that the map Fy,, coincides with the tent map, which is given by

(2 forx € [0,1/2);
Foyy (%) := { 2—2x forxe([l/2,1].

To see this, it is enough to note that for each n € N we have thata,, =27" and 1, = 2—(n=1)
We will revisit this example in Section 2.3.

3. More generally, suppose that the partition o is defined by the condition that t, = 3 =1 for
some 0 < 8 < 1. Then, a,, = (1 — 8)B" ! and the associated otg-Farey map Fy, is defined
by

X forx € [0,1,);

Foy(x) = { ﬁ(l —x) forxe€A;.

In other words, the map Foy is a “skewed” tent map. An example graph is shown in Figure
2.3, below.

=~
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0.5

0 0.25 05 1 0 025 05 1

Figure 2.2: The op-Liiroth and op-Farey map, where £, = (1/2)"~!, n € N.

0 ‘ 1 0 ‘ ‘ 1

Figure 2.3: An example of an ag-Liiroth and ag-Farey map, where § = 3/4.

Before stating the next lemma, we must define the jump transformation of the dynamical system
Fy.

Definition 2.2.3. Let the map py : % \ {0} — NU{0} be defined by setting
Pa(x) :=inf{n >0: Fj(x) € A}.

The map pyq is said to be the first return to Ay map of Fy. Then, let the map F : % — % be
defined by

* Fpa(x)Jrl if 0;
Fa(x):= { 0 ) ifiiO.
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The map F, is said to be the jump transformation on A of Fy.

Remark 2.2.4.

1. In the case of the map Fy, it is clear that the function py, is well-defined for all x € (0, 1]. It
is not always the case for any dynamical system 7 : X — X that such a map is well-defined.
In general, some further condition on 7 is needed, for instance that it is a conservative map.
In fact, Fy, is conservative, as we shall see in Chapter 3.

2. There is some potential for confusion surrounding jump transformations. A related concept
exists in the literature, which is that of the map induced on Ay. Thisis amap Fy, : % — A
defined by first letting ¢ (x) :=inf{n > 1: Fj(x) € A;} and then setting Fy, (x) = F) ® (x).
Although these appear to be very similar, they are not the same. The most obvious dif-
ference is that the range of Fy; is the whole of %, whereas the range of Fy, is only the
partition element A;.

Lemma 2.2.5. The jump transformation F,, of Fy, coincides with the o.-Liiroth map L.
Proof. Since x € A, if and only if x = [n,¢5,/3,.. ], for each n > 2, we have that
Fy(x) = Fi([n,02,03,...]q) = F&'_l([n— 1,00,03,..)q) = = [l2,03,...]oo = Lat(x).

On the other hand, if x = [1,0,,43,...]¢ € A}, then py(x) is equal to zero and so we have that
Fj(x) = Fy(x), which is again equal to Ly/(x), since Lg |4, = Fula, -
O

Remark 2.2.6. It is well known that the very same relationship exists between the Farey map
and the Gauss map, that is, the Gauss map coincides with the jump transformation on (1/2, 1] of
the Farey map.

Let us now describe how to construct a partition a* from the partition o and its associated
coding for the map F,. The partition a* is given by {A,B}, where A := A and B := % \ A;.
Each q-irrational number in %/ has an infinite coding x = (x1,x2,...)¢ € {0, 1}, which is given
by x; = 1 if and only if FX~!(x) € A for each k € N. This coding will be referred to as the a-Farey
coding. The a-Farey coding is related to the a-Liiroth coding in a straightforward way. Namely,
if x € % has o-Liiroth coding given by x = [¢1,0;,¢3,...]q, then the a--Farey coding of x is given
by x = <O£1 -1 1,O€2_1, 1, 043_1, 1,...)a, where 0" denotes the sequence of n 0s. Of course, it only
works in this way for a-irrational numbers, that is, those with infinite o-Liiroth codes. We can
say more though. For an a-rational number x = [¢;,0s,...,¢]q, one immediately verifies that
this number has an o-Farey coding given by (01=1, 1,027 1,...,0%711,0,0,0,...)4. In this
respect, the a-Farey coding could be considered more convenient?, as it allows for an infinite
representation of every number in %/ . For example, we have that 1 = [1]4 = (1,0,0,0,...)4.

>The o-rational numbers still have two representations. For the point [¢1,..., k]« the other is given by
(=1 1,021 1,...,0%2,1,1,0,0,0,...)q.
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Recall that Fj acts on x = [{},{5,...]¢ in the following way:

b —1,0p,05,. . ]q forl; >2;
Fa(x) T { [62,53,...]05 for fl =1.

In particular, this means that if we instead write x in its a-Farey coding, so x = (x1,x2,...)q, then
Fo(x) := (x2,x3,.. )a-

So, again, the map Fy; can be thought of as acting like the shift map o on the shift space E,
where this time the alphabet E = {0, 1} is finite. This is potentially a slight advantage of the map
Fy, since {0, 1} is a compact metric space, whereas NI is not.

Let us now define the cylinder sets associated with the map Fy.

Definition 2.2.7. For each n-tuple (xp,...,x,) of positive integers, define the o-Farey cylinder
set Cg(x1,...,X,) by setting

éa(xl,...,xn) ={1,Y2, e i Yk =Xk, for 1 <k <n}.

Notice that every a-Liiroth cylinder set is also an a-Farey cylinder set, whereas the converse
of this statement is not true. The precise description of the correspondence is that any o-Farey
cylinder set which has the form 605 (OZ' -1, ,ng*l, 1) coincides with the o-Liiroth cylinder
set Cq ({1, ...,0) but if an a-Farey cylinder set is defined by a finite word ending in a 0, then it
cannot be translated to a single ¢-Liiroth cylinder set. However, we do have the relation

Co(0171,1,02711,...,0% L 1,0M = | Calli,ba... . bxsn).
n>m+1
It therefore follows that
A(Co(0171, 1,027 1, 0% 1,0M) = Y A(Callr, o, liyn)) = ag,ap, -+~ gt
n>m+1

In addition, we can identify the endpoints of each a-Farey cylinder set. If we consider the
set é\a(Oélfl, I,... ,Oékfl, 1), then we already know the endpoints of this interval (since it is
also equal to an o-Liiroth cylinder set). On the other hand, if instead we have the a-Farey
cylinder set Co,(0971,1,02711,...,0%1 1,0™), the endpoints are given by [(1,..., ¢, m+ 1]q
and [(1,...,0]a-

Definition 2.2.8. Let the two inverse branches of the map F,; be denoted by
Fao: % — | JAn=Ca(0) and Fgy:[0,1) = Aj = Cq(1).

n>2

With the convention that Fy, o(0) = 0, these are given by

Foo(x) := aZH (x—ty1) +tyyo, forx €Ay, n>1 and Fyi(x):=1—apx, forxe % .

n

Note that F o maps the interval A, into the interval A, , for each n € N,
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In preparation for the next lemma, we now describe the a-Farey decomposition of the in-
terval 2/, which is obtained by iterating the maps Fy o and Fy 1 on % . (This is the equivalent
of finding the Stern-Brocot sequences for the classical Farey map.) The first iteration gives
rise to the partition o* := {Cy(0),Cq(1)}. Iterating a second time yields the refined partition
of == {Ce(00),Cy(01),C(11),Cq(10)}. Continuing the iteration further, we obtain succes-
sively refined partitions oy’ of % consisting of 2% a-Farey cylinder sets of the form 6a (X1, ey Xk)s
for every k € N. It is clear that exactly half of these are also a-Liiroth cylinder sets. Figure 2.4 on
the opposite page illustrates the first four levels of the o-Farey decomposition. In the diagram,
the o-Farey cylinder sets that correspond to a-Liiroth cylinder sets are indicated with thicker
lines.

It is evident that both the endpoints of each of these so-obtained intervals are distinct -
rational numbers, moreover, every Q-rational number is obtained in this way, as we show in the
next proposition.

Proposition 2.2.9. Every o-rational number [{1,0s, ... llq is an endpoint of an interval ob-
tained in the o-Farey decomposition.

Proof. First, one immediately verifies that for x = [¢}, {5, ...] (Where this expansion can be finite
or infinite), the inverse branches of the map Fy act in the following way:

Fa,o(x) = [51 + 1,62,...]05 and Fa’l(x) = [1,51,52,...](1.

In particular, we have that % is mapped by Fy ¢ onto the interval Cu(0) =[0,[2]¢] and [0, 1)
is mapped by Fy 1 (x) onto the interval Co(1). In the next layer of the decomposition, two more
a-rationals appear, namely Fy 0([2]o) = [3]o and Fy1([2]o) = [1,2] - It is clear that by iterating
this process, only o-rationals can turn up in each layer. Moreover, since we start in level 1 with
the point [2]4 and either put a 1 into the first position, moving the existing entries to the right, or
change the first entry to ¢; + 1, each of the added points in each level n has the form [¢;,... 0]y
where Zf;l li=n+1and {; # 1.

It suffices now to calculate the possible number of finite sequences (iy,...,i) whose entries
sum to n, for each n € N, and are such that iy > 2. To do this, we will first prove by induction
that the number of possible finite sequences (iy, ..., i) with Zl}:l ij =nisequal to 21 To start,
notice that there are two ways to sum to 2, namely, (1, 1) and (2). There are also four ways to
sum to 3; these are (1,1,1), (1, 2), (2, 1) and (3).

We want to calculate the cardinality of the set S, := {(i,i2,...,i) ZI;':1
that we can split this up in the following way:

k k
Sp = {(il,iz,...,ik) : Zij:nandik22}U{(i17i2,...7ik,1) : Zij:n_l}_

ij =n}. First notice

It is clear that the latter set in this union has cardinality equal to that of S,_;. Call the first set in
this union S),. We claim that the cardinality of S/, is also equal to that of S,,_;. Indeed,

(ilw"vikflaik) ESn,I <~ (i17"'7ik713(ik+1)) ES;l
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Figure 2.4: The first four levels of the o-Farey decomposition.
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To finish the inductive step, suppose that we have #S,,_; = 2"~2. Then, by the argument above,
we have that #S, = 2-#S,_y =222 =2""1,

To conclude, we have shown that the number of ways of choosing a finite sequence (iy, ..., i)
with ZIJ‘.ZI ij=nand i > 21is equal to 2"=2_ Recall that at level n of the Farey decomposition, we
obtain 2"~ ! distinct @-rationals with entries summing to n -+ 1 and with last entry at least equal
to 2. Given that there can only be 2"~! such expansions, this exhausts all the possibilities. So,

we do indeed come to every ¢-rational in this way.
O

Remark 2.2.10. Note that as the inverse branches of the actual Farey map act on the continued
fraction entries in exactly the same way that the inverse branches of the map F, act on the -
Liiroth entries, this proof also holds for the original Farey map. Of course, the fact that the Farey
decomposition gives rise to all the rational numbers in the interval %/ is well known.

Finally, let us also state a natural extension for the map Fy,.
Definition 2.2.11. The natural extension F,] : % X % — % x % is given by

| (Fapo(x),Fa(y)) forye % \A;
Fo (%) '_{ (Fa1(x),Fa(y)) fory€cA.

One immediately verifies that the action of this map is as follows.

F()Jcr(<x17x27x37"'>067 ()’la}’27y3,- >06) = (<y17x17x27' -->a,<y27)’3>}’47--->a)-

2.3 Topological Properties

Before stating the first proposition, we remind the reader that the measure of maximal entropy
W, for the system Fy is the measure that assigns mass 27" to each n-th level a-Farey cylinder
set’. Also, the distribution function Ay of a measure 1 with support in [0, 1] is defined for each
x € [01] by

Au(x) = ([0,).

Note that a distribution function is always non-decreasing and right-continuous (see Theorem
9.1.1 in Dudley [18]). In the case of the measure L, since [y iS non-atomic, the function Ay,
is actually continuous. Finally, recall that the definition of topological conjugacy was given in
Section 1.2.

Proposition 2.3.1. The dynamical systems (% ,Fy) and (% ,Fa,) are topologically conjugate
and the conjugating homeomorphism is given, for each x = [1,4»,.. ], by

O (x) = —2 Y (—1)F2~ T,
k=1

3For our purposes, this can be thought of as the definition of the measure of maximal entropy. The reader is
referred to Walters [81] for more details.
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Moreover, the map 0y is equal to the distribution function of the measure of maximal entropy [,
for the a-Farey map.

Proof. We will first show by induction that the map 6y, is indeed equal to the distribution function
Ay, of lg. It is sufficient to show that these maps coincide on the set of a-rational numbers”.
To start, observe that Ay, ([1]¢) = 1 = 64([1]«) and notice that for each m > 2 the «-rational
number [m]q appears for the first time in the (m — 1)-th level of the a-Farey decomposition, as
the right endpoint of the cylinder set ax(O, ...,0), with code consisting of m — 1 zeros. By the
definition of the measure of maximal entropy, we have that Ay, ([m]q) = 2-(m=1) = @y ([m]a).

Now, suppose that Ay, ([¢1, ..., kla) = Oa([41,-..,lk]a) for every k-tuple of positive integers
ly,...,0 and each 1 < k < n, for some n € N. Further suppose that n is even. (The case where n
is odd proceeds similarly and is left to the reader.) Recall that the oc-rational number [¢1,. .., {,]q
is, for n even, the left endpoint of the a-Liiroth cylinder set Cy (¢, ...,¢,) whose right endpoint
is the ¢t-rational number [¢1,...,¢,, 1]. This a-Liiroth cylinder set coincides with the (Y7, ¢;)-
th levei) o-Farey cylinder set 605(0&*1, 1,...,0%71 1) and, as such, has p,-measure equal to
2-Lib,

Continuing to the next level in the o-Farey decomposition, this (Y} ; ¢;)-th level set is split
into two ((X1,¢;) + 1)-th level a-Farey cylinder sets, with endpoints given, in order from left
to right, by

[El, e 7’671]&7 [51,.. . 7&1,2]06 and [61, . 7&;72]057 [fl, . ,fn, 1]a.

Each of these sets has uy-measure equal to 2~ (L 4+ If we consider the o-Farey cylinder
set bounded by [¢1,..., 0] and [(y,..., ¢y, 2] in the same way, we obtain two ((X7_, £;) + 2)-th
level o-Farey cylinder sets, with endpoints given, in order from left to right, by

[61,...,»671](17[él,...,€n73]a and [fl,...,gn,:s]a,[fl,...,gn,z]a.

Each of these sets has ug-measure equal to 2~ ((Z 6)+2), Continuing in this way (¢, — 1)
more times, we arrive at the ((Z?jll fi) — 1) -th level a-Farey cylinder set with endpoints given by

[01,....0n)o and [£1,. .., 0y, Lni1]a, Which has pg-measure equal to (T 6)-1) — 9.2~ T b,
This process is illustrated in Figure 2.5.

From this calculation, we are now in a position to finish the proof by induction, as follows.
A,Ua(l:£17'7£n7£l’l+1]a) = A‘u’a([€]7.,£n](x)+“a(<[£],,gn]a,[zl,,En,£n+]]a])
n+l p.
= 0u([l1,... by]a)+2-27 K
n
= —2) (-2 H g () (-1 R
k=1
= Oa([l1,. ., lnlni1)a)-
“This is because if two continuous functions coincide on a dense set of points, they coincide everywhere (see, for

instance, Willard [82], Corollary 13.14). The set of a-rationals for each « is certainly a dense set. With apologies
to the reader for invoking results out of sequence, that 6, is continuous follows from Lemma 2.3.4.
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Level Y. , ¢;:

15 lnla 1y sl 1]g

Level (Y1, ¢;)+1:
Ca(élv.. . 7€I’l7 1)

V»l»-~-:€n;2}a

Level (Y7, ¢i) +2:
Ca([l,...,gn,z)

[‘617"'761173}06

Level (Y1 ¢;) — 1:

Cally, by L1 = 1)

MI P 761'176114»]}0{

Figure 2.5: This diagram illustrates the sequence of o-Farey and o-Liiroth cylinder sets inside
the set Cy (41, ..., 4y).
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It remains to show that the map 6, is the conjugating homeomorphism from Fy, to the tent
system. For this, suppose first that x € %7 \ A;. Then, 64 /(x) is an element of [0, 1 /2] and we have
that

Fop (6a(x)) = 2 (—2 i(—l)kz—if‘—l&> -2 (i(_1>k2—(£1—1)—z§_2&>
k=1

k=1
= 0Oqy ([fl — l,gz,fg,,...]a) = Ga(Fa(x)).

Now, suppose that x € Ay, that is, x = [1,£2,¢3,...]¢. Then, it follows that 64(x) € [1/2,1] and
we have that

Fop(Og(x)) = 2-2 (2-2_1 -2 i(_wkz—l—ﬂ‘_z&) ) <i(_1)k22§_2£i>
k=2 k=2
= 0u([l2,03,...]a) = Oq(Fa(x)).
O

Corollary 2.3.2. For an arbitrary partition Q, the topological entropy of the map Fy, is equal to
log?2.

Proof. Since the topological entropy of the tent map is equal to log2, this follows from the fact
that topological entropy is a topological conjugacy invariant. ( For details regarding topological
entropy, the reader is referred to Walters [81].)

[]

We remark that the proof of Proposition 2.3.1 is inspired by the proof given by Stratmann
and Kessebohmer [48] for the analogous result that the classical Farey map and the tent map
are topologically conjugate. In that paper, the proof appears to be slightly different because of
the fact that the Farey decomposition can be described in terms of mediants of rational numbers.
(There are also some minor misprints that perhaps obscure the picture somewhat.) However, the
idea is basically the same. The conjugating homeomorphism between the tent map and the Farey
map is Minkowski’s question-mark function (see [59] and [70]), the graph of which is a so-called
slippery Devil’s staircase. This means that it is a strictly increasing singular function, where
“singular” means that the derivative is A-almost everywhere equal to zero. We conjecture that
(with one trivial exception, which arises from the dyadic partition p), the function 6y is also a
slippery Devil’s staircase. This question will be the subject of future investigations.

In preparation for the next lemma, we make the following definition.

Definition 2.3.3.

1. Amap T : %4 — % is said to be Holder continuous with exponent x if there exists a
positive constant ¢ such that

IT(x) =T )| <clx—y|*, forall x,y € % .
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2. Amap T : % — 7 is said to be sub-Holder continuous with exponent x if there exists a
positive constant C such that

IT(x)—T ()| >Clx—yl|*, forallx,y e % .

Our next aim is to determine the Holder exponent and the sub-Holder exponent of the map
0, for an arbitrary partition . For this, we define k(n) := —nlog2/(loga,) and set

ki :=inf{Kk(n) :n € N} and x_ :=sup{x(n) :n € N}.

Lemma 2.3.4. We have that the map 0y, is K -Holder continuous and x_-sub-Hélder continu-
ous.

Proof. In order to calculate the Holder exponent of 6, first note that

_vk .
100 (Co (01,02, ..., 6| = |0 ([01, 02, .., lila) — O ([l1, Lay ... bk + 1] )| = 27 =1

This can be seen by simply calculating the image of the endpoints of this cylinder, or by noting
that every o-Liiroth cylinder Cy (41,43, . .., ¢ ) is an n-th level @-Farey cylinder, where Z’J‘-Zl V=
n. Suppose first that kK is non-zero. In this case we have,

k

. X /x4
A(Caltile i t)) = [Tan :Hz_ei/x(ei) > (Hz—rz,) _ (2—Zflé,~>1/x+
i=1 i=1

i=1
= |906(C(X(€17€27"'agk))|]/K+'

Or, in other words,
100, (Co, (01,02, .., 03))| < A(Co(£y,ba, ..., 4)) .

Now, let x and y be two arbitrary ¢-irrational numbers in %/. There must be a first time during
the backwards iteration of % under the inverse branches of Fy in which an o-Farey cylinder
set appears between the numbers x and y. Say that this cylinder set appears in the p-th stage of
the o-Farey decomposition. If we iterate one more time, it is clear that there are two (p+ 1)-th
level a-Farey intervals fully contained in the interval (x,y); moreover, one of these also has to be
an a-Liiroth cylinder set. Let this a-Liiroth cylinder set be denoted by Cy (1,42, ... ,¢;), where
ZIJ‘.ZI ¢; = p+ 1. This leads to the observation that, as C¢(¢1,42, . ..,¥) is contained in (x,y), we
have
=y > A(Ca(lr, L2, €)) 5 > |8 (Ca(lr, ba,... £y))| =27 PFD).

Consider the interval (x,y) again. It is contained inside two neighbouring (p — 1)-th level
o-Farey intervals, and so

100, (x) — O (y)| < 27 P71 427 (P=1) = 2=(P=2) — g .2 =(P+1),
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Combining these observations, we obtain that
|0 (%) — O ()| < 8Jox —y[*+.

In case K is equal to zero, we have that for each ¢ € N there exists mg € N with the property
that for every m > my,

K(m) = < 1, or, in other words, a,, < 2~ ".
—logam ¢
So we have that the sequence of partition elements are eventually exponentially decaying, and
hence, the Holder exponent of the map 6y, is necessarily equal to zero.
It remains to show that the map 6, is k_-sub-Hoélder continuous. Suppose that k_ is finite.
Then we immediately obtain the inequality

|9a(ca(£1w-~a£k))|l/m > A(Callrs- - b))

mlog?2

Now, let x,y € % be arbitrary. Let Cy(¢1,...,¢;) denote the smallest a-Liiroth interval contain-
ing both x and y. Say that p := Z§:1 ¢;. Then there exist positive integers n and N such that
x=1[01,00,..., 0k, X2, Xp13, - - Joo and y = [£1, 02, ..., L, N, Yii2, Yk+3, - - -]o- Thus, the interval
(x,y) is contained in ([ JY.,, Cq (1, ..., 4, i). Hence,

N N
=y < Y A(Cally,.... 0 1) < Y |8 (Cally,. ... b, i))| 5

i=n i=n

= o /eyl g oo/ < (g ) 2 P/

If [N —n| > 1, there exists a level p+n—+ 1 o-Farey cylinder set fully contained in the interval
(x,y) and in that case,

e — y|* < 27 P < 104 (x) — 0 (v)].

The proof is finished in this case. Otherwise, if |N —n| = 1, we must look deeper into the
structure of the a-Farey cylinder sets. If x;.» # 1, we are again finished, as the (p +n+2)-th
level a-Farey cylinder set Cy (41, ... ,4,n, 1) lies entirely between x and y. So, suppose that

X = [61,...,6](,11,1,S,Xk+4,...]a and y= [617"'7&(7”—'— 17”1;)’k+3»~~]a7
for some positive integers s and m. Thus,

|X—y’ < Z l(6‘06(617' o ln+ 17.].))_'—2}’(6‘06(617“'76/0”; 17l))
j=m izs

Z o —(p+nt1+j)/x- +22—(p+n+1+i)/;<_

j>m i>s

o pee/e Y gl -l Y il

j=>m i>s

_ 2—(p+n+1)/1<< 27 + 2 )

IN

1—2-1/x 1—2-1/x

_ (;1/) (2 trrstemf g g-(pinsisafi),
1—2 1/
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Note that for all x € R™, we have that the function x — x’ is convex if # > 1 and concave if < 1.
From the respective properties of convex and concave functions, we obtain that for all x,y € RT,
if# > 1 thenx’ +y < (x+y)" and, if f < 1, then x' +y' < 2!~(x+y)’. From these inequalities it
follows on setting ¢ := 1/k_ that

x—y| < (2_(p+”+l+m) _|_2—(p+n+1+s)> 1/x- _

Since we also have that
|9a(x> . 9a()’>| > 2—(p+n+1+m) _'_2—(17—¢—n—|-1-|—s)7

we finally obtain that
e = y[* < [0 (x) — 6a(y)].

This finishes the proof. We have included below a diagram of the possible positions of the points
x and y, which hopefully serves to make the proof somewhat clearer.
[

Case 1: |[N—n|>1

y X
| o | | o |
1 1 | |

Ca(£]77€k,N) Ca(€17...,€k7n)

Case 2: [N—n|=1and x5 > 1 Co(lr,... lg,n,1)

[E],...,gk’n,l](x [f],...,gk,n]a

Case 3: [N—n|=1and x;,, =1 Calli. . lenxps2)

Ca(€]7...,€k,n—0—l,m) Ca(fl,...,fk,n,l,s)

|
/ Ol o | [0 lim 2
Ca(fl,...,ék,n+1,l) Ca(glv"'aékanalal)

Figure 2.6: Illustration of the three cases considered in the proof that 6, is sub-Holder continu-
ous.
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Example 2.3.5.

1. First, for the tent map itself, F,, we have that a, = 1/2", so immediately we obtain that
k_ = k4 = 1. This is obviously a trivial example, since the map 6y, is the identity.

2. Recall, from from Example 2.2.2 (3), the partition og which is defined for each § € (0,1)
by a, = (1 — [3)[3(”_1). Then, for the conjugating homeomorphism 6, we have that

—nlog?2

neN

ky =inf{x(n):ne N} = inf . :
log (%) +nlogfp

log?2

%log (%) +log (%)

Suppose first that 0 < B < 1/2. Then, since log(/(1 —B)) < 0 in this case, it is clear that
the infimum in the above expression is attained as n tends to infinity. Also, the supremum
(giving the value of x_), is achieved for n = 1. Thus,

= inf neN

log?2 log?2

- —logB ~log(B/(1—B)) +log(1/B) ~ —log(1—B)’

Now, suppose that 1 /2 < B < 1. In this case, log(/(1 — B)) > 0 and so it is immediately
apparent that the values of k_ and k. are simply reversed, that is,

log?2 log?2
Ky =————and k= .
T Clog(1-p) " —log

3. For the conjugacy map 6y, between the maps Fy,, and Fy,,, we have that 6, is log4/log6-
Holder continuous. To show this, first notice that
2log?2 2log?2 log2
og an og < 3log
log6 log6  logl2

k(1)=1>

Then, by considering the derivative, it is easy to show that the function x + x/log (x> + x)
is increasing for x > 3. Also, there is no real sub-Holder continuity in this case as k_ is
infinite. This is clear from the following inequality which holds for n > 2:

n n

> .
log(n(n+1)) — 3logn

Remark 2.3.6. The exponents k_ and k; have significance in terms of the multifractal formal-
ism that will be developed in Chapter 5. They provide the extreme points of the region (s_,s) on
which the Hausdorff dimension function (which will be defined in Chapter 5) of Fy is non-zero.

More precisely, we have

log?2 log?2
K_ = o8 and Kp = o8 y
A S+

where Kk_ = oo if and only if s_ = 0.
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2.4 Expanding and expansive partitions

In this section, we will investigate certain types of partition which will be useful in the remainder
of this chapter and in subsequent chapters. Before beginning this task, let us first make a detour
into the theory of slowly-varying functions.

Definition 2.4.1. A measurable function y : R* — R™ is said to be slowly varying if

lim V)

L =1, forally > 0.

Slowly-varying functions have the following useful properties. From this list, it should be
clear that the idea behind a slowly-varying function is that it behaves like a logarithmic function.

Proposition 2.4.2. Let v, ¢ : Rt — R™ be two slowly-varying functions. Then the following
hold:

1. For any € > 0, we have that

. £ — o . —€ . —
)}grolox Y(x) = o0 and xh_rgox y(x) =0.

. log(y(x)
)}1_>n°1° log(x) =0.

3. For any —oo < a < oo, the functions Y, Y - @ and ¥+ @ are all slowly varying.

Proof. See Seneta [72].
O

The following lemma, which details another property of slowly-varying functions, will prove
helpful in the next section.

Lemma 2.4.3. Let v : RY — R be a slowly-varying function. Then,

lim y(n)/y(n+1)=1.

n—oo

Proof. In order to prove this, let us first suppose by way of contradiction that
lim y(n)/y(n+1) > 1.
n—soo

Then, directly from the definition of a slowly-varying function, we have that lim, . y(cn)/y(n) =
1 for all ¢ > 0. Therefore, we obtain that

i (S VY gy V)

y(2n) y(n+1) y(n+1)

n—sco
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Thus, there exists ng € N such that for all n > ng, we have that

Yy ana Y&y

y(n+1) y(n+1)

This implies that for n > ng we have
y(n)>yn+1)>yn+2)>...>y2n—1)>y(2n) > ynh+1).

This contradiction implies that lim,_,. Y(n)/y(n+1) < 1. However, starting from the assump-
tion that lim, . Y(n)/y(n+1) < 1 leads in an analogous way to a similar contradiction. This
finishes the proof.

U

Definition 2.4.4. Let o := {A, : n € N} be a countable partition of % of the form described at
the start of Section 2.1. Then:

1. The partition « is said to be expanding provided that

. t
lim —=

= for some p > 1.
P P, P

2. The partition « is said to be expansive of exponent 8 > 0 if the tails of the partition satisfy

the power law
]

In= l[/(l’l) no,
where ¥ : N — R is a slowly-varying function.

3. The partition ¢ is said to be eventually decreasing if for all sufficiently large n, we have
that a, 11 < ay.

Note that for a partition ¢ that is expansive of exponent 8 > 0, one has that

0
fim g () (DT
n—eot, ] n—e \ Y(n+1) n

This follows from combining the obvious fact that lim,, ,e.(n/(n+1))? = 1 with Lemma 2.4.3.

Definition 2.4.5. A partition « is said to be of finite type if for the sequence of tails 7, of o, we
have that } ", #, converges. Otherwise, « is said to be of infinite type.

Notice that if ¢ is expanding, one immediately verifies that o is of finite type. This can
be seen, for instance, by applying the ratio test for series convergence. The next proposition
describes the situation for expansive partitions.

Proposition 2.4.6. Suppose that o is expansive of exponent 6 > 0. Then we have the following
classification:

e [f0 €0,1), then o is of infinite type.
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e [f 0 > 1, then a is of finite type.
o [f 0 =1, then o can be either of finite or infinite type.

Proof. Suppose first that « is expansive of exponent 0 € [0,1). Then, by Proposition 2.4.2, for
all € > 0 there exists ng € N such that if n > ng, we have that y(n) > n~%. Let € be sufficiently
small that 6 + € € (0, 1). Then,

I no—1 oo '
z_:ltn = ; v(n) n %+ Z y(n)-n 9> Z n~(0+€) > ; n !

n=ny n=n n

Consequently, )~ t, = oo and o is of infinite type. Now suppose that o is expansive of exponent
6 > 1. Then, again by Proposition 2.4.2, for all € > 0 there exists ng € N such that if n > ng, we
have that y(n) < n®. For € small enough that 6 — € > 1, we then have that

[

i th = i v(n)-n %< Z n(078) < oo,

n=ny n=ny n=ny

Therefore, in this case, the partition « is of finite type. It only remains to prove the third assertion,
which can be done by considering the following two examples. First, let#; = 1 and for each n > 2,
let#, = (nlogn)~!. The partition ¢ defined in such a way is clearly expansive of exponent 1. For
this partition, we have that

Z =1+ Z

which diverges (by the integral test, for instance). So, in this first case, the partition is of infinite
type. On the other hand, if now we set#; = 1,1, =n"!- (logn)~2, we obtain that

Lin=1+} oo
n=1 n=2

which is a convergent series, so in this case we have that the partition is of finite type. This
finishes the proof.

nlogn

logn

[]

Figure 2.7 below illustrates two a-Farey maps with o expansive. The graph on the left-hand
side has o with exponent 6 = 2, so satisfies the condition of the second part of Proposition 2.4.6.
The graph on the right-hand side has o with exponent 8 = 1/2, so it satisfies the condition given
in the first part of Proposition 2.4.6.
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0 ]

Figure 2.7: The graphs of two «-Farey maps with o expansive. The partition on the left is of
finite type with 7, = 1/n%, n € N and the partition on the right is of infinite type with z, = 1//n,
neN.

The following proposition is basically a version of the Monotone Density Theorem, which
can be found as Theorem 1.7.2 in [11].

Proposition 2.4.7. If « is expansive of exponent 6 > 0 and eventually decreasing, then we have
that

a, ~ Gn_ltn.

Proof. Let 0 <M < N < o and, for n € N large enough that the sequence (ay)en is decreasing
for all k > n, consider

Nn
IMn —INn = Z ag.
k=Mn

We have that
n(N—M)aNn ™Mn — INn < n(N—M)aMn

nPy(n) T nbyn) T nfy(n)

Y

from which it follows that

n(N —M)apyy,
n~®y(n)

n(N —M)ay, tMn M y(Mn) tNn N~%y(nN)

o) M) Py(d)  w() N Py(aN)  y(n)

Noting that ty,, /((nN) "0 w(nN)) = tyrn/ (nM) =0y (nM)) = 1, if we set M = 1, we obtain

. n1+9 _(N—G . 1)
msup a .
P AN ) S TN

IN
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Then, letting N tend to 1, since the right-hand side is nothing other than the derivative of —x—¢
at the point 1, we infer that

limsupa, - —— < 6.
n—>oop " y(n) —
Similarly, it can be shown that
146

lilgr_1>i£fan- v ) >0.

Combining these observations, we deduce that li_r>n a,/(0n~ 140 y(n)) = 1, or, in other words,
n—roo

7(1+9)W(n)_

a, ~ 0n

This finishes the proof.
O

We end this section with one more useful lemma concerning partitions that are expanding or
expansive.

Lemma 2.4.8. Let o be a partition such that lim,_,ety /t,11 = p > 1 and such that o is either
expanding, or expansive of exponent 0 > 0 and eventually decreasing. Then:

(1) We have that

. loga, .. logt,
fim = = Jim S = logp.
(2) We have that
lim -2 —p
n—)ooan+1 ’

Proof. Let us first prove that if « is either expanding, or expansive of exponent 8 > 0 and
eventually decreasing, then we have that lim, . (log#,)/n = —logp. Since lim,_,.(log?, —
logt,+1) = logp, we conclude, by using Cesaro averages, that for p > 1 we have that

n—1

1
lim — Z (logtyr1 —logty) = —logp.

n—oon =1

Consequently, since ZZ;} (logtyy1 —logt;) = logt, —logt; = logt,, we have that

log?
8 _ —logp.

lim

n—e n
We will split the remainder of the proof of parts (1) and (2) into two cases; firstly, we will
consider the case where « is expanding, so p > 1, and secondly we will consider the case where
o is expansive of exponent 6 > 0 and eventually decreasing. So, first suppose that p > 1. Then,

we have that
o

lim —%7 — fim Il gy e Pt _,

N Qp gy n—e tyy ] — ) "—>°°1—tn+l}t+2 1-1/p
n
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This proves the statement in part (2) for the expanding case. Moreover, if p > 1, we have that

lim,,_,(loga,+1 —loga,) = —logp and exactly the same argument as that above for the #,s
yields that
. loga, . logt,
Jim = = Jim T = logp.

Now, let us consider the case where « is expansive of exponent 8 > 0 and eventually decreas-
ing. In this instance, Proposition 2.4.7 implies that lim,,_,.(loga, ) /n = 0 for the case p = 1. The
proof of (2) for the expansive case is also an immediate consequence of this proposition. This
completes the proof of the lemma.

O

2.5 Hausdorff dimension of Diophantine-type sets for a-Liiroth
systems

We begin this section with some easily obtained results which have a Diophantine-like flavour.

By this, we mean that the sets considered here are analogues of the sets of well-approximable

and badly-approximable numbers usually defined in terms of the continued fraction expansion
(see, for instance, [50] or [66]).

Lemma 2.5.1. Let #y, be the set defined by

Wo = {x=1[01(x),02(x),...]a €% :limsup £,(x) = oo}.

n—oo

Then, Wy is of full Lebesgue measure.

Proof. We will prove this by establishing that the complement of the set #;, has measure zero.
Notice that the complement of #, is the set of all those x € %/ with bounded a-Liiroth entries.
In other words, if we set By := % \ #u, we have that

%a = U ﬂN,
NeN

where
oy = {x=[l1(x),lr(x),...]q € % : lr(x) <N forall k € N}.

Also, for each N,n € N, define
A\ = {x=[(x),62(x),.. Ja € X : L(x) <N forall 1 <k <n}.

It is clear that o7y C ,Qf]\(,n) and further that sz%]\snﬂ) C d]\s") for all N,n € N. Notice that we may
also write JZ%AS'H—I) in the following way:

%I\SYH_]): U Ca(gla"'7£n+1): U UCa(El"H,Enyk).

L1l i1 fytn k<N
GEN, 1<i<nt <N, 1<i<n
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Thus, for all n € N, we have that

A () = ¥ i (a4”).

k<N

Hence, on applying this argument n — 1 more times, it follows that

A () = <Z ak)n), ().

k<N

Since the last term above is simply a constant and }; <y ax < 1, this shows that A (<) = 0, for
any N € N. Finally, we have that

l(U ssz> < Y A(oh) =0.

NeN NeN

This finishes the proof of the lemma.
U
Although the sets 7y defined in the above proof have Lebesgue measure zero for every N € N,
we can still distinguish between their sizes by calculating their Hausdorff dimension. Luckily,
this is very easy to do, as the next lemma demonstrates.

Lemma 2.5.2.

N
dimy (y) = s, where s is given by Z al=1.
i=1

Proof. All that is required to prove this statement is to notice that for each n € N the set .27y is
an invariant set for a finite iterated function system {La71 .-, LaN}, where Ly , denotes the n-th
inverse branch of the map Ly. Recall that these are given by Ly »(x) := 1, — apx. That 7y is an
invariant set for this system means that

N
«Q{N = U La,i (,QfN) .

i=1

Then, given that these inverse branches are contracting similarities, that is, they satisfy the equal-
ity |La i(x) — Lo i(y)| = ailx—y| for all x and y in %, we have that the dimension of <%y can be
deduced directly from an application of Hutchinson’s Formula (see [22], Theorem 9.3).

O

This observation can be used to calculate the Hausdorff dimension of the set %4, as follows.

Proposition 2.5.3. Let a be an arbitrary partition of % and let By, := U \ Wo, where Wy is
defined in Lemma 2.5.1. Then
dimy (%q) = 1.
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Proof. Since Xy := Uyen “n, we have that

dimy (ABe) = sup {dimgy (o)} .
NeN

Then, by Lemma 2.5.2, dimy (<y) = s, where s is given by Z?/:1 al =1 and dimpy (oy41) =1,
where ¢ is given by Zﬁvzﬁl a; = 1. Therefore, a} +--- +afy, < 1 and so s <. In other words,

dimy (JZ%N) < dimg (%N—i—l) .

Furthermore, as Y7 ; a; = 1, it follows that dimy (%) = 1.

2.5.1 Good-type sets for the o-Liiroth system

Throughout this section, unless stated otherwise, suppose that o is expansive with exponent
0 > 0 and is also eventually decreasing. The first result of this section concerns a-Good sets,

which are defined as follows. For each N € N, let the set Gl(\,a) be defined by

G](Va) ={x=[l1(x),l2(x),...]a € % : ti(x) > N for all i € N}.

Note that the name “Good” here refers to I.J. Good [31], for the similar results he proved for
continued fractions, and not to any supposed nice property of these sets. We have the following
result.

Theorem 2.5.4. 1

lim dimy (GY) = .
oo, R\ &y 1+6

Proof. By assumption, « is expansive of exponent 8 > 0. Therefore, from Proposition 2.4.7, we
have that a, ~ 0y(n) -n~(49) where v : N — RT is a slowly-varying function. This implies
that a, < y(n) -n~U+0)_Since Vv is slowly varying, it follows that for all positive €, we have for
sufficiently large n € N that n=¢ < y(n) < n®. Thus, on combining these observations, we obtain

that
n—(1+9+8) S a, S n—(l—O—G—s).

Let € > 0 be given. Then, recalling from Section 2.1 that A(Cq(¢1,...,4)) = ay, .. .ay,, there
exists a positive integer N := N(¢€) such that for each a-Liiroth cylinder set Cy (41, ..., ¢;) with
£; > N for each 1 <i <k, we have

1 1
< O, ... 0) < _
(£y---4y)1H0+e < A(Cally;--- ) < (0)--- ) 1+0—¢

2.1

In order to compute the upper bound, let & > 0 and choose & large enough that

€ = {Cq(ly,...,0;): £i >N for 1 <i<k}



44 CHAPTER 2. INTRODUCTION TO a-FAREY AND «-LUROTH MAPS

is a -cover of G](Va). Lets:= (1+6 —¢&)~!(1+&y), where €y is chosen to satisfy the conditions
that ey < 1 and —é&y/log(ey) > 1/logN. Then,

1 1+6—¢ (1+978)_1(1+8N)
MCo(ly,. ... 0)) <
; (Callr, ) ;((51---@) )

1 1+ey 1 1+ev\ 0o (14ev) k
= = - < x VTN dx
;’(51"'&) ,;v(l) </N )
1 k
= 1.
<8NN8N) =

Thus, as this estimate is independent of 0, we have that dimgy (Gl(\,a)> <'s. Letting € > 0 tend to

A5 (6y")

IA

zero and choosing the sequence (€v)yen in such a way that Al’im ey = 0, we obtain that
—>00

1
o (65) < Ly

In order to calculate the desired lower bound, we define a certain subset of the set G](Va) for
each N € N. First, choose M € N to be such that ¥, 1/i > 1. Denote this sum by S. Then
define the set

Gz(vofz)vl ={x=[l1(x),l2(x),...]a € % : N < {i(x) <M for all i € N}.
Clearly, GI(\,OCI)V[ C Gl(va) and so a lower bound for the Hausdorff dimension of the subset Gz(vofz)w is
also a lower bound for the set Gl(va). We aim to use Frostman’s Lemma, so, to that end, define a

mass distribution Vv on the set Gz(vaz)w by setting

1

V(Ca(gl,...,gk)) = m

Note that from (2.1), if NV is large enough, we have that

k
VCalltoers ) < (3 ) MCalbrveee ) 107070) <AColtrs)107059),

where the second inequality comes from the fact that 1/S < 1. Also note that

A(C‘Ot(glw-'vfk)) _ 1 §£1+9+£

— <M1+9+£'
)L(Ca(fl,...,ek,fk_._])) ang k+1 -

Now, let x = [£1(x),l2(x),...]q € G;va])v,, let » > 0 and further let k € N be such that we have

A(Ca(by(x),- - lry1(x))) < 7 < A(Cu(l1(x),... & (x)))-
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Itis clear that Co (€1 (x), ..., 0r(x), lr+1(x)) C B(x,r), but it is possible that B(x, r) intersects more
than one cylinder set of length k. However, since there are at most M — N possibilities and the
v-measure of each of them is comparable, without loss of generality we can assume that

Ca(£1<x)7 s 7£k+1(x)> - B(x,r) C C(X(El (x)w"agk(x))'
Then,

V(Colli(x), . £a(x))) < A(Callr (1), b (x))) /(08
MA(Co (01 (x), ... g1 (x)))/0HO+E) < opppl/(1H0+E)

v(B(x,r)) <
<

Hence, by Frostman’s Lemma, it follows that

. () 1
dimi (G 2 ¢

Now, since for each positive integer M > N we have that G,(\,al)v, c G\ , it follows that

1
di (G“”) > -
MHAYN ) =T g e
Finally, on letting € tend to zero, we have that
1

. . (a)) >
Aim dimgy (GN ~1+06°

Combining this with the upper bound given above finishes the proof of the theorem.

For the final main result of this section, let us consider the following sets. Let
Fl) .= {x = [01(), £2(x), - Joc - 1im €y (x) = o and €y (x) > en_l(x)}
n—soo

and

Gl = {x — [61(x), 2(x), .. ] : 1im £y (x) = oo} .

n—oo

It is immediately apparent that % ¢ G(an), so that dimpy (Foga)) < dimH(Ggoa)). We aim to prove

the following theorem.

Theorem 2.5.5. .

dimy (FL®)) = dimy (G) = ——.

1mgy 1mgy 1+ 0

The proof will again be split into the lower bound and the upper bound. Let us begin with the
following useful lemma.
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Lemma 2.5.6. Suppose that x = [{1(x),l2(x),...]q € F\". Further suppose that

A(Ca(li(x), .. b (x), b1 (1)) < 7 < A(Ca(br(x), ..., bk (x))).

Then, for all sufficiently large k,

1
B(x,r) C | Ca(li(x),... 0k(x) +1i).

i=—1

Proof. We consider here only the case in which k is odd, the case k even is analogous and is left
to the reader. Bearing in mind that x € Cy (1 (x),...,¢41(x)), it is clear that if k is sufficiently
large, then the right endpoint of B(x,r) cannot extend past the interval Cy () (x), ..., (x) — 1),
as we are assuming that the partition o is eventually decreasing. On the other hand, the left
endpoint of B(x,r) cannot be smaller than the point [£;(x), ..., 1(X)]a — dg (x) - -Gy (v)- But
this point is equal to

(76, 0) = @0, ()t ea () F -+ F a0 () g () — A () () () — Ay ()" Bty ()

=1 ()~ - a0 () A () (T () — A0 (x) — A0 () " A(0) s ()
=[01(x), - b1 (), b (x) + Vo — ap, (x) - Qg (o)t ()

Notice that the point [¢;(x),...,0k_1(x),fk(x) 4+ 1] is the left endpoint of the the cylinder set
Co(£1(x),...,4k(x)), so it only remains to prove that

g, (x) " Al () U ) s (0) S Qo) Al () ()11 = ACalli (%), b (x) + 1))

In other words, we must show that

A ()1 (1) S Ql(x)+1-

Recall that o is assumed to be expanding of exponent 8 > 0, sot,, =n"?- y(n)and a, < n—(1+0).

v (n), where ¥ : N — R™T is a slowly varying function. Also recall that for each positive €, if n
is sufficiently large, we have that 7, < n=(9=€) and n=(1+0+8) < g, < p=(140-8) Jet e < 0/6.

Then, since x € F\%, so Ui (x) < lpy1(x) for all k, we have that

1 1
Aty (x) = Ek(x)(l+9_8) 'gkﬂ(x)(e—s)
1 1
< (e (x)(1+20-2¢) S (o)1 +G/30)

On the other hand, we also have that

1 1
ag(x)+1 2 (ﬁk(x)Jrl)(HeH) > (£k<x)_|_1)(1+(7/6)6)'
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Therefore, in order to show that ay, (s, , | (x) < ag,(x)+1 1t suffices to show that

1 1
@68~ (G (x) + ) 7/98)

or, equivalently, that

(1/2)6 _ 1+(7/6)6 log(£(x))

= 1+(3/5)0  1+(10/6)8 ~ log({x(x)+1)

But, since the left-hand side is a fixed amount less than 1, depending only on 6, and the right-
hand side tends to 1 as ¢;(x) increases (that is, as k increases), it follows that if k is large enough,
this statement is true. Thus, the left endpoint of B(x,r) lies in Cy (¢ (x),...,¢;(x) + 1) and the

lemma is proved.
[

In the next lemma, we will establish the lower bound for the dimension of Fog,a).

Lemma 2.5.7. |
< di <F(a)) .
1o = imy | F

Proof. We will define a suitable subset of F*) and use Frostman’s Lemma again to obtain the
lower bound. So, first let f; : N — N be a slowly-varying function which satisfies the following
properties:

o lim, . fe(n) = oo.
o fe(n) < fe(n+1)forallneN.
e fc(1) is large enough that if £ > fe(1), then a, > ¢~ (1+0+¢),

Now, define a second function g : N — N by setting g(n) to be the least integer such that

Note that the function g is also slowly varying. Indeed, for any k € N, if f¢(n) € {28 +1,... 2k 1}
it follows that 251 < g(n) < 2K+3. Hence, fe(n) < g(n) < 8f¢(n). Finally, define the set

FY) = {x = [0(x),2(5), .. Ja : fe(n) < lu(x) < g(n) and £,(x) > £, (x) for all n € N}.

It is clear that F ]5:2 c F\%. So, it suffices to show that dimy (F ;802) > 1/(1+46). To that end,
define a mass distribution on F f(ga; by setting

V(Co(l1(x),. .., l(x))) == S '%'Sk . 01 (x) -%-Ek(X).
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Note that due to the choice of f; and g, we have that
V(Co (01 (x), ... lx(x)) < A(Co (U1 (x), ..., L (x))) /(1 H0+E),

In addition, observe that

AMCa(b1(x),... . (%) 1 e .
A(Co(t1(x),-. b1 (%)) ag, () <Llry1(x) <glk+1) _

As in the proof of Theorem 2.5.4, let r > 0 and choose k such that

ACalli(), - b1 (1)) < 7 < A(Calli(¥), ., e(x)).

Again, it is clear that Cy (41 (x), ..., 0k (x),lkt1(x)) C B(x,r), but it is possible that B(x,r) inter-
sects more than one interval in level k. There are no longer a fixed finite set of possibilities, but
for large enough k (that is, for small enough ), we can apply Lemma 2.5.6 to conclude that

Ca(ly(x),....lkr1(x)) C B(x,r) U Co(l1(x),... L(x)+1).

i=—1

Now, let 6 > 0 be arbitrary. Then, recall that g is slowly varying, so that if k is large enough,
g(k+1) < (k+1)% < (1/r)%. Then, the proof of the lemma follows from the following calcula-
tion.

V(B(x,r)) < V(Ca(ti(x),..., lx(x))) < A(Ca(tr(x),..., L (x))) /1T
< gk DACa(lr(x), .-, 0r(x), bt (x))) /1 HOFE)

8(
< (k—l—l) 1/(14+6+¢)
< p/(+6+e)-6

Since this is true for all § > 0, an application of Frostman’s Lemma yields that

1

: (@)
m < dlmH(Ff&g). (22)

Finally, (2.2) shows that for every € > 0 we have that dimg (Foga)) >1/(146+¢), so letting €

approach zero completes the proof.
[]

All that remains for the proof of Theorem 2.5.5 is to give the upper bound for the dimension
of G(an). For this, first observe that if we consider the set

Gz(valz ={x=[01(x),l2(x),...] : €n(x) > N forall n >k},

I

(a)

we can easily see that for all k € N this set has the same dimension as the set G, . To prove this
claim, first let b = (by,...,b;) € N¥, where for simplicity we further assume that k is even, and
define the set

G\%) = {x = [(1(x),02(x),.. Joc : £1(x) = b1, ..., (%) = by, Liyi(x) > N, forall i € N},

=
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Then, notice that the function f : % — % defined by f(x) := [b1,...,bi]a + (ap, . ..ap,)x maps
(@)

the set G](v ) onto GN - This is a similarity mapping (since it is linear) and in particular it is
bi-Lipschitz. It is well known that bi- -Lipschitz mappings preserve Hausdorff dimension (see

Corollary 2.4 in [22], for instance), so we obtain that dlmH(Gl(Val))) = dimy (G](V )). Now, observe
that for any £ € N we can write -

and so

dimgy (G](\%) = sup {dimH (Gl(va,))) :b=(by,...,by) € Nk} =dimy (Gz(va)) )

It is also clear that for all N € N there exists some k € N such that Ggoa) C G;Valz. Therefore, it
follows from Theorem 2.5.4 that

dimgy (G( )> < l—l—;@

Taking this observation together with Lemma 2.5.7, we have proved Theorem 2.5.5.
O

For the final result of this section, let & be an expanding partition. Recall that this means that
o satisfies the property that lim,, ., /1,1 = p, where p > 1. In this case, we have the following
result.

Proposition 2.5.8. Suppose that o is an expanding partition. Then,
lim dimy (GY") = 0.
N—o0
Proof. First note that by Lemma 2.4.8 we have that for any expanding partition ,

. a 1
lim L — ~ .
n—eo  qy, p

This implies that for all € > 0, if n is sufficiently large, then a, < (1/(p —€))". Let € be small
enough that 7 := (p —€) > 1 and let ng € N be such that a, < (1/7)" for all n > ng. Now, fix

N € N with N > ng. We can cover the set Gl(va) by cylinder sets of the form Cy(¢1,...,¢,) where
each /; > N, for 1 <i < n. For any 6 > 0, we can always choose n sufficiently large that the
cover consisting of the family of all such cylinder sets is a 6-cover. Let €y be defined implicitly
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by the equation TV -log(7é) > 1. Then,

A" <Gz(va)) < Y (ag--ap)®

(€1 5tn)
e{N+1,N+2,.}"

< ) 7 (
(01 s-esln)
e{N+1,N+2,..}1

n - n
_ Z T*fEN < (/ T ENX dx>
(>N N

= ([Fioge ] :) = g

Given the choice of €y above, this implies that 77V (G](Va)) < 1 and consequently we obtain that

£1+...+én)€[v

dimH(G](Va)) < gy. By letting gy tend to zero as N increases, we obtain the desired result, namely,
lim dimy (G,(VO‘)> ~0.
N—roo

Note that it is certainly possible to choose a sequence (&y)yen satisfying limy_. &y = 0. For
example, if N is chosen large enough that Nlog(7) > —nloglog(/7) = nlogn —nloglog(7), it
suffices to let ey = 1 /n.

O

Corollary 2.5.9. For any expanding partition o, we have that
dimy; (G)) =0.

Proof. This follows from exactly the same argument as the upper bound for the case of o expan-

sive. Once an upper bound of zero is established, the lower bound is automatically the same.
|

2.5.2 Strict Jarnik sets for the ¢¢-Liiroth system

Again, suppose throughout this section that we have a partition o behind our map L, that is
expansive with exponent 6 > 0. Let us now consider the following situation. Fix a sequence
(8n)nen of natural numbers with the property that lim,,_,.. s, = . Then, let ¢ be given by

o := liminf log(s1 - 5u) = ! .
. log(s),
(1+0)+6 <hmsup loog(;“))
n—yoo

oo (1 + G)IOg(Sl e 'Sn) + elog(anrl)
g(s1-5n)

Finally, let N > 3 and define the set

Jc(;a) ={x=[01(x),l2(x),...]o : $n < £y(x) < Ns, for all n € N}.
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We refer to these sets as strict a-Jarnik sets, after V. Jarnik [39], for his results on similarly
defined sets in the continued fractions setting. The reason for the word "strict” here is that in
Jarnik’s work, the condition given for the continued fraction entries only has to be satisfied for
infinitely many entries, whereas we require our condition to be met for all a-Liiroth entries. We
will prove the following theorem.

Theorem 2.5.10.
dimy (Jc(,“)) — .

Remark 2.5.11. Before beginning the proof of Theorem 2.5.10, notice that for each 0 € R
the set Jc(,a) is contained in the set G\). Therefore the dimension can be at most 1/(1+0).
This is consistent with the result given here, since we have that 6 = 1/((1+ 6) + 0 - ), where

T :=limsup,,_,.,10g(s,+1)/log(sy...s,) > 0.

Proof of Theorem 2.5.10. Let us begin by establishing the upper bound. The set J((,a) can be
covered by sets of the form

aa(ﬁl,...,ék) = U Ca(gl,...,ﬁk,m),

M2 Skt 1

where s; < ¢; < Ns; for each 1 <i < k. We have that

A(606@17 e agk)) =ay, ...apls, -

Recall that since o is expansive of exponent 6 and eventually decreasing, for each positive &g,
there exists k € N such that ¢~ (140+8) < g, < p=(140-€) for ]l £ > k. Since the sequence (s, )nen

tends to infinity, we may assume without loss of generality that if x € J((;a), then

(La(x))"TO7E) < gy < (6,(x) 71078 forall neN.

For each x € J((,a), these observations lead to the estimate

1
(4 ...gk)(1+9+6) (Sk+l)(6+£

1
(01 ) 1+078) (5,1 )(0—€)

) <A (Calli(x),.... l(x))) <

In turn, this yields

1
(Nks1 .. 'Sk)(1+9+8)(5k+1)(9+8) <

1
(51550 107 (501 )(O—2)

A(Ca(li(x),..., (%)) < .(2.3)

Now, define

o log(sy---sp)
O¢ := liminf .
¢ n—eo (146 —g)log(sy---s,)+ (0 —€)log(spt1)
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Directly from this definition, we have that if 6’ € (0g,30¢) and n is sufficiently large, then

2 7 log ((s1--5n) 1108 (5,41)(0—€))
Thus,
o oe log(sy-+sn)
(51 -5,)1T0=8) (5, )0—¢ =\ (510 -8)1H0—8) (5,1 )0—¢
1
- Sl ce Sn ’

It follows that sq - - -5, < ((s1 . -sn)(1+9_£) (sn+1)9_8> . Now, since lim,,_se0 S, = o0, we have
that 1im,,_,.. log(s,) = oo and this in turn implies that lim,_,.(log(sj ---s,))/n = e. Therefore,
for large enough n € N we deduce that log(N — 1) < log(sy ...s,)/n. From this, we obtain the
inequality

o/ —o¢

(N—l)”§((sl...sn)(1+9*£)(sn+1)9*8) T (2.4)

On the other hand, again from the definition of o, there exists a sequence (e of positive
integers such that for all 6’ > o, we have

log(sy -« sn,) < o'+ o;
log ((sl...Snk)(1+9—8)(snk+l)(9—8)) — 2 .
Thus,
0"42*0'5
1 8n, < ((sl . -snk)(HG_S) (snk+1)0_£> . (2.5

Consequently, if we neglect any terms of the sequence (ny) that are too small and rename the
sequence accordingly, by combining the estimates in (2.4) and (2.5), we obtain for all k£ > 1 that

O./
= P 50 )

yfﬁ’(]ﬁ,“)) < tfiminf ¥ A(Callry..., )"
k—yoo
(lljnk)
Sigfi<NSi

o
(N_ l)nksl .. 'si’lk . ((sl .. 'Sl’lk)_(l_‘—e_g) (Snk+1)_(9_£)> S 1_

IN
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Hence, for all € > 0 and all 0’ > o, we have that dimy (J((,a)) < ¢’ and so, dimy (J((;a)) < 0.
It therefore follows, on letting € tend to zero, that

dimy (J((;a)) <o0.

Let us now provide the lower bound. For this, as usual, we will use Frostman’s Lemma. To
that end, define a mass distribution m on Jéa) by setting m(Cq(¢1,...,0;)) = 1/(€1---4;). Let

X e J((;a), r > 0 and choose & such that

A(Co(1(x), .. b1 (%)) <7 < A(Ca(€1(x),... . l(x))).

There are now two possibilities. Either,

ACa(l1(x), .., b1 (1)) < 7 < A(Cal1 (), (%), besr (1)), (2.6)

or,

A(Ca(t1(x), ., 61 (x))) < 7 < A(Calbr(x),.., &(x))). 2.7)

Suppose we are in the situation of (2.6) and, for simplicity, assume that k is odd. It is clear
that if & is large enough, the left endpoint of the ball B(x,r) cannot extend past the cylinder set
Ca(£1(x),...,kr1(x) — 1) (since o is assumed to be eventually decreasing). On the other hand,
the right endpoint cannot be larger than [( (x), ..., e, o +ag, (v - @y, (v)fs,- We claim that
as long as k is chosen large enough, this point lies inside Cq (¢;(x),...,0r1(x) 4+ 1). To prove
this claim, we are required to show that

gy (x) " Ay () sira < Aty (x) 7 Qe (x)+1

or, in other words, that
Ay (1) ser < Ay (1) +1-
Note that by choosing k sufficiently large, the value of #;, , can be made as small as we like, so

it is enough to show that there exists some constant K with the property that for all large enough

neN,
an

<K.
ap+1

Since « is expansive of exponent 6, we have that there exists a constant ¢ such that

i _ et )"y
ane1 — ' Oy(n+1)

It follows that we can set the sought-after constant K equal to the above constant ¢, because
we obviously have that lim, .((n+ 1)/n)'*% = 1, and we have shown in Lemma 2.4.3 that

lim, e Y(n)/y(n+1) = 1.
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In a slight abuse of notation, let us redefine the quantity o used above in the following way:

Ge := liminf log(s1--5n) .
£ s (140 4+€)log(sy---5n)+ (6 +€)log(sps1)

We have shown that B(x,r) C U Cq(£1(x),..., 0 1(x) +1i). Therefore, if we let 6’ < o
and bear in mind that r > ag(x) - - Ay, (x) s> WE obtain, via (2.3) and the definition of o, that

m(B(x,r)) < 3m(Cq(l1(x),...,lr1(x))) < 3
ST Skl
< 3( 1 )6/
- (51 S 1) (1H0FE) (5,5 ) (0F2)
< 37,

In this case, then, an application of Frostman’s Lemma yields that for all € > 0 and all 6’ < o,
we have that
dimy (Jé”) >

Let us now consider the second case, that of (2.7). Again, suppose for the sake of argument
that k is odd. Then, it is clear once more that if & is large enough, the right endpoint of B(x,r)
cannot extend past the cylinder set Co (¢ (x), ..., ¢ (x) — 1), since « is eventually decreasing. On
the other hand, the left endpoint of B(x, r) is not less than [ (x), ..., £x(x)] o — 2y, (x) "+ Qg (x)sis1 -
If k is sufficiently large, it is clear that 2ay, () - - -y, (x)ls . < ag,(x) " A (x) (@8 L5, can be made
arbitrarily small by choosing large enough k). This implies that the left endpoint of B(x,r) is
contained within the cylinder set Cy (¢1(x), ..., ¢ (x)) and consequently B(x,r) can only intersect
the sets Co (£1(x),...,4k(x)) and Cg (¢} (x),. .., 0x(x) — 1) in this level.

Also, note that the smallest size that a cylinder set in the (k -+ 1)-th level can have is at least
equal to (NK1s; .5, 1)~ (14048 Consequently, at most 2r(N sy - s5541)1F04€) of these
cylinder sets can intersect B(x,r). Taking these observations together, we have that

m(B(x,r)) < min{Zm(aa(ﬁl,...,Kk)),<2r(Nk+1s1---sk+1)(1+9+8)>m(Ca(ﬁl,...,ﬁkH))}

k+1g ... (1+6+¢) .
< min { 2 7 2(NF sy spaq) r}
SI .. .Sk

ST SkSk+1
_ 2 {1’ ((Nk+lsl‘"Sk)(1+9+8)(sk+1)(9+8)> -r}.

ST Sk

Note that min{a,b} < a'=*b* for all s € (0,1) and let 6’ < o. It follows from this that

/

m(B(x,r)) < 2 ((Nk+1s1 "'Sk)(1+9+8)(sk+1)(6+8)>6 s
Sl .. .Sk

>We have left out the dependence on x of the entries #;(x), but this is only for lack of space.



2.6. APPENDIX TO CHAPTER 2: THE NON-ALTERNATING CASE 55

By definition of o, we have for all 6’ < o and all large enough k that
1

sl-..sk

/

< ((Nk+lsl gy 1H0+e) (Sk+1)(6+e)) 7

Thus, ,
m(B(x,r)) <2r°.

Therefore, as in the case of (2.6) described above, for all € > 0 and all 0’ < o, we have that
dimy (Jf,“)) > 6.

Finally, since this holds in both cases for all 6’ < o, we first obtain that dimy (J((,a)> > 0¢ and
then, by letting € tend to zero, we obtain that

dimy (J((,“)) > 6.

Combining this lower bound with the upper bound given above completes the proof of the theo-
rem.
g

Remark 2.5.12. A similar situation for continued fractions is considered by Fan et al. in [24].
We will comment further on their paper in Chapter 6.

2.6 Appendix to Chapter 2: The non-alternating case

Just as for the alternating Liiroth map Lg,, and the classical (non-alternating) Liiroth map Lg-,
we could consider a non-alternating version of the map L,. To do this, define the partition
a :={[t2,t1], [tus1,ta) : n > 2}, where the t,,s are the same as for the partition ¢, and then define
the map Ly : % — % by setting

(x—ty41)/an forx € [tyy1,ty), forn > 2;
Lz(x):=<¢ (x—1n)/a;  forx € [tp,1];
0 for x = 0.

In other words, the map L has all positive slopes instead of all negative slopes.

The non-alternating o-Liiroth map L also generates a series expansion of the numbers in 7%/
In this case, the expansion is given by

X = Z Haei Lppt =11 Hag by, tagaplyppr+...
n=1 \i<n

We write [(1,05,03,...]5. This expansion can be finite or infinite, but just as for the classical

Liiroth map, every finite expansion can alternatively be written as an eventually periodic expan-

sion with periodic part consisting of infinitely many 1’s. The convergents and cylinder sets in
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this non-alternating case are defined in the obvious way. It is clear that the Lebesgue measure of
the cylinder set Cg(¢y,...,¢,) is equal to its Ly counterpart.

It is also possible to consider a non-alternating version of the a-Farey map. The map Fy
would again be defined on the partition &, the difference being that the right-hand branch would
have a positive slope. The definition of the left-hand remains basically the same. That is,

Fy(x) = (x—12) /a1 forx € [tp, 1];
O apm1(x—tyr1) Jan+t, forx € [ty11,t,).

Concerning the topological properties of Fg, if we replace the tent map Fy, by the binary
expansion map Fg- : x — 2x (mod 1), then the maps F and Fz; are topologically conjugate, via
the conjugating homeomorphism 65 which is given by

0(x) = ¥ 2 Tl
k=1

where the ¢; are now the entries of the expansion of x with respect to L. The function 8 is
equal to the distribution function of the measure of maximal entropy of the system (%, %, F).



Chapter 3

Ergodic theoretic properties of F, and L,

In this chapter we will investigate various measure theoretic and ergodic theoretic properties of
the maps Ly and Fy. It turns out that the Lebesgue measure is invariant for every map Ly and
that there exists a unique Lebesgue-absolutely continuous invariant measure for F;,. We will give
an exact expression for the density of this measure. Also, we prove that both L, and Fy, are exact,
and thus ergodic. First, we give some background material useful for the results of the following
sections.

3.1 Measure and ergodic theoretic preliminaries

In this section, we give an outline of the main results we need in this and the following chapters.
Whilst there are many available references dealing with various aspects of ergodic theory, the
main reference used here is Walters [81]. Throughout, let (X,.%) be a measurable space.

Definition 3.1.1. A measure p is said to be invariant for a map T : X — X provided that for
every [L-measurable set B C X, we have woT~!(B) := u(T~'(B)) = u(B). We also say that the
map T preserves the measure [L.

In practice, it could be difficult to check that a map preserves a given measure using only this
definition, as it is often the case that no specific information is known about a general measurable
set. However, it is enough to have knowledge of a particular semi-algebra that generates %, as
the following theorem shows.

Theorem 3.1.2. Suppose that (X, B, L) is a measure space, T : X — X is a map and also suppose
that 7 is a generating semi-algebra for . Then, if Lo T~ (B) = w(B) for every set B € .7, we
have that the map T preserves the measure L.

Proof. See Theorem 1.1 in [81]. OJ

Note that if the given measurable space is the unit interval %/, then the collection .# of all
sets of the form [0,b] and (a,b] with 0 < a < b <1 is a generating semi-algebra for the Borel
o-algebra of subsets of % .

57
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Definition 3.1.3. Let 7 : X — X be a transformation and let it be a T-invariant Borel probability
measure. Then 7T is said to be ergodic with respect to u provided that whenever A € 4 is such
that 7~ (A) = A we have that (A) = 1 or u(A) = 0. In other words, an ergodic transformation
only has trivial invariant subsets.

The first major result in ergodic theory was proved in 1931 by G.D. Birkhoff. There are now
various proofs available, the reader is referred to either [81], [16] or, for the proof usually known
as the “non-standard” one, the paper of Kamae and Keane [41]. We shall state it here in the
simplest case of an ergodic finite measure-preserving system.

Theorem 3.1.4. Birkhoff’s Ergodic Theorem. Suppose that T : (X, %,u) — (X, B, 1) is an
ergodic measure-preserving transformation and also suppose that IL(X) < eo. Let f be a -
integrable function. Then, for U-a.e. x € X, we have

n

—1
limEZfoTj(x):/fd/.L.
0

n—yoo jp 4=
Ji

Definition 3.1.5. A subset W of X is said to be a wandering set for a map T : X — X if the
collection {T7"(W) : n > 0} is pairwise disjoint. In particular, this implies that

Y Iwor"<1.
n=0

Definition 3.1.6. A map 7 : X — X is said to be conservative if every wandering set for 7 has
measure zero.

The following theorem is a useful way of determining that a given transformation is con-
servative. The proof is not too long or complicated, so we include it here for completeness.
Throughout, we will use the notation “mod u” to indicate that two sets are equal up to a set of
L-measure zero.

Theorem 3.1.7. Maharam’s Recurrence Theorem. ([1], p.19): Let T be a measure-preserving
transformation on a measure space (X, 9, L) and suppose that there exists a set A € B of finite
measure such that | J;,_oT~"(A) =X mod u. Then T is conservative.

Proof. First observe that T~V (X) = X for every positive integer N and so, for each N, we have
that

U 77"(A) =X (mod p).
n=N
Hence, almost every x € X must belong to infinitely many sets 7%(A), or, in other words,

Z T1p0T" = oo p-almost everywhere on X.
n=0
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Now, let W be a wandering set for 7', so } ;" 1w o 7" < 1. Then, for all positive integers n, the
T-invariance of u implies that

o > p)=pT @)= [ Y ayertau
Tfn(A)kZO
= lwoT*du = /11 niay - Lwo TR d
A L ), Lrw
= Z/(I]_Tkn(A)oTk)(]]_WoTk) d“: Z/(].Tkn(A)]].W)OTk d‘u,
k=0"X k=0"X

= Z/ﬂTkn(A)~1Wdu:/ Y 10T dp.
k=0"X Wi=0

Thus, 4 (W) =0 and T is conservative.
U

Definition 3.1.8. A transformation 7 : X — X of a measure space (X, %, ) is said to be non-
singular if whenever (B) = 0, then u(T~!(B)) = 0. That is, the map T preserves sets of
measure Zero.

Note here that if we have an invariant measure for a map 7', then the map 7 is automatically
non-singular with respect to this invariant measure.

Definition 3.1.9. A non-singular transformation 7 of a 6—finite measure space (%, %, 1) is said
to be exact if for each B in the tail o-algebra (), cn 7" (%) we have that either u(B) or u(% \ B)
vanishes.

Remark 3.1.10.

1. It is immediately clear that this definition only makes sense for non-invertible transforma-
tions. Indeed, if 7 : X — X is invertible, it follows that T~" (%) = 4 for every n € N.

2. The tail o-algebra is not a completely transparent object. It helps to remember that it is
an intersection of sets of sets. In particular, this means that if B € (,en7 " (%), then
B € T7"(#) for all n € N. Thus, there exists a sequence of sets (By,B>,B3,...) such that
B=T""(B,) forevery n € N.

3. Itis easy to see that an exact transformation must be ergodic, forif 7 : X — X is exact and
B is a measurable subset of X such that 7~!(B) = B, then T~"(B) = B for all n € N and so
the set B belongs to the tail o-algebra.

An equivalent formulation of the definition of an invariant measure comes from the transfer
operator, which we now define.

Definition 3.1.11. The transfer operator 7 : L' (u) — L' (1) associated with a map T : X — X
on a measure space (X, %, L) is a positive linear operator given by

/9(f) du:/ fdu, forall feL'(u) and all B € 4.
B T-1(B)
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Lemma 3.1.12. The measure | is T-invariant if and only if 7 (1x) = 1x.

Proof. First notice that from the definition of the transfer operator we obtain
[F0xydu=[ | xdu=pr®). G.1)
B T-1(B)
Now suppose that .7 (1x) = 1x. It follows that

/Bg(ﬂx)dliZ/Bﬂx dp = u(B).

Consequently, the condition that .7 (1x) = 1y implies that the measure y is T-invariant. Con-
versely, if i is T-invariant, we have from (3.1) that

u(B) = u(T-'(B)) = / Z(ly) dp = F(Ix) = 1x.

3.2 Ergodic theoretic properties of L,

Let us begin this section by showing that the Lebesgue measure is invariant under L, for any
arbitrary partition o.

Lemma 3.2.1. The invariant measure for Ly, is equal to the Lebesgue measure A.

Proof. This follows directly from Proposition 2.3.1 in [16], since, as previously noted, the map
L 1s a particular type of Generalised Liiroth map. However, we include a proof for complete-
ness.

Recall from Definition 2.1.8 the inverse branches Ly , : [0,1) — A, of L. These branches are
given by Lg »(x) :=t, — apx, for all n € N. In order to show that Ly is A-invariant, by Theorem
3.1.2 it suffices to show that

Ala,b)) = ALy [a,b)),

for every interval [a,b) with 0 < a < b < 1 contained in % . A straightforward calculation shows
that

AlLg'a,b)) = A (U Lw([a,b))) = il)t(Lam([a,b)))
n=1 n=
= Y |t —an-a) = (tn—an-b)|

neN

= Z an(b—a) =b—a= )“([a7b))

neN

This gives the Ly-invariance of A.
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We can show much more than this, namely, that the map L, is an exact transformation with
respect to Lebesgue measure. Recall that the definition of exactness is given above, in Definition
3.1.9. In fact, that L, is exact follows from the result proved in [5] that each Generalised Liiroth
System is Bernoulli, but we provide a direct proof here for completeness.

Lemma 3.2.2. The map Ly, is exact with respect to A.

Proof. The proof is an adaptation of the proof of Kolmogorov’s zero-one law for the one-sided
Bernoulli shift (see [51]). To start, let B € (),,eny Ly (Z) be given such that A (B) > 0. We aim to
prove that A(B) = 1. As noted in Remark 3.1.10, there exists a sequence of Borel sets (B,),en
such that B = L,"B,, for all n € N. We first claim that for every finite union ¢ of Ly-cylinder
sets we have that

A(BNEG) = L(B)A(F).

To prove the claim, first consider a single o-Liiroth cylinder set Cy (41, ..., £,). Then, for this
set, by the translation invariance and scaling properties of Lebesgue measure and by the fact that
the Lebesgue measure is invariant for the map Ly, we have that

ABNCy(ly,....0n)) = A(Cq(ly,....0m) Ly (Bn))
= A({[t,-- fm,xl,xz, Jo : [x1,22, .o € B})
= Al ]a—F(lzl .ag, By) = ag, ---ag, A(Bm)
= ACalltre )AL (Bu) = A(Callr.. L)) A(B).

One immediately verifies that this also holds for a finite union & of Ly-cylinder sets. From this,
because the finite unions of cylinder sets generate the o-algebra %, we deduce that

A(BNC)=A(B)A(C), forall C € A.
Therefore, by choosing C to be equal to % \ B, we conclude that
0=ABN(Z \B)) =A(B)A(% \B).
This shows that A (% \ B) = 0 and so A(B) = 1, and hence finishes the proof. O

Since exactness implies ergodicity, the following list of properties of the system (%, %, Lq, L)
can be derived quite simply from Birkhoff’s ergodic theorem.

Proposition 3.2.3. For A-almost every x € %, the following statements hold:

(i) lim #{]<n li(x) =k} = a.

n—oon

| &
(ii) r}grgoﬁlog (jI:Ilﬁj(x)> = Z arlogk.
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(iv) Every finite block 01,... 0, € N* k € N appears infinitely often in the o-Liiroth expansion
of x.

(v) With the additional assumption on the partition & that a, < t,y1 for sufficiently large n € N,
we obtain that

hm—log‘ —rn ‘— Zaklogak

n—oon

Proof. Each of the above statements follow directly on application of Birkhoff’s ergodic theorem
to a specific A-integrable function f. For the first assertion, choose f to be the characteristic
function 1,4, . Then, for any positive integer j, it follows that

foLé(x):{ 1 if L (x) = k; :{ 1 iflj 1 (x) =k;

0 otherwise 0 otherwise.

In light of this, we have Z;?;éfoLé (x)=#{1 <j<n:Lj(x) =k} and so

1
hm EfoL r}grolon#{l_]_n.é](x) k} /%ILAkdl a

n—oo n

The second, third and fourth statements follow similarly by choosing, in turn, the function f to

be given by f(x) =log(¢1(x)), f(x) = £1(x) and f(x) = ¢y (y....00)-
For part (v), first notice that under the stated condition on ¢, we have for sufficiently large n
that

ag ...dg,dg, .

< ‘x—r,(f‘)’ <a,...a,. 3.2)

Let f be given by f(x) = log(ay, (v)). Then, by inequality (3.2), we have that

n—1

1 .
J _ _ _ (a)D
,}glgongfoLa(X) ,}glgonZlog ag;x) = ,}glgonZIOg(‘ i
— | togan ) d2 = y | toglar, ) d2
% k=1"Ak
= Z aklog(ak).
k=0
This finishes the proof.
g

Remark 3.2.4.

1. The above list is only a small sample of the possible results available by using Birkhoff’s
ergodic theorem in this manner. The reader can no doubt think of others.
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2. Similar results for the specific example of the alternating Liiroth series were obtained by
Kalpazidou, Knopfmacher and Knopfmacher [40].

3. The above argument for part (v) of Proposition 3.2.3 also shows that

lim L og (A(Ca(61(x), . £al)))) = ki axlog(ay).

n—r

By the Shannon-McMillan-Breiman Theorem (see Billingsley [10], Section 13), we then
have that the measure-theoretic entropy of L is equal to }';7 ;axlog(ax), for suitable par-
titions o.

4. The extra condition on @ given in part (iv) is equivalent to a,/t, < 1/2. For the example
of the alternating Liiroth map, the condition is met. It is also satisfied for any expansive
partition of exponent 6 > 0 and for expanding partitions with p < 2.

5. Part (iv) of Proposition 3.2.3 implies the result in Lemma 2.5.1.

Finally in this section, we describe an invariant probability measure for the natural extension
of Ly, which was introduced in Definition 2.1.8.

Proposition 3.2.5. The 2-dimensional Lebesgue measure A x A is an invariant measure for L.

Proof. This again follows from the corresponding result given in [16] for the Generalised Liiroth
situation, which is Proposition 4.4.1.
O

3.3 Ergodic properties of F,

We now turn our attention to the ergodic theoretical properties of the a-Farey system. The first
of these that we immediately obtain is that Fy, is a conservative transformation. This can be seen
by observing that |J;_oF, " (A1) = % \ {0}, and hence, Maharam’s Recurrence Theorem (see
Theorem 3.1.7) applies, giving that Fy, is conservative.

In the following lemma, we give a Lebesgue absolutely continuous invariant measure for the
system Fy.

Lemma 3.3.1. The A-absolutely continuous measure Vy defined by the density ¢o, which is given,
up to multiplication by a constant, by

dvg > 1,
= — = E —-]]_
(POC da{ Al’l’

n—14n

is an invariant measure for the system (% ,%,Fy). Moreover, vy is a G-finite measure, and we
have that vy, is an infinite measure if and only if & is of infinite type.
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Proof. Let us first show that v, is an invariant measure for Fy. In order to do this, it suffices to
show that

Va(I) = vg o F; 1 (1),

for each interval I belonging to the generating semi-algebra . := {(a,b] : 0 <a < b < 1} U
{[0,b] : 0 < b < 1}. In other words, recalling that Fy o and Fy | denote the inverse branches of
Fy, we must show that

/(j)ad)t:/ ¢ad/1+/ 0o dA.. (3.3)
1 Fa,O(I) Fa,l(l)

Each interval (a,b] is contained in a finite number of elements of ¢, say {A,,A,—1,...,An}. SO
each of the integrals in (3.3) can be split up into a sum over the sets (a,#,],Ap—1,- - ,Am+1, (tms1,b].
We will only show that

(P(x dl - ¢a dﬂ« + (Pa dl,

(a,tn] Fa,O(aJn] Fo 1 (a,tn)

but it is clear that the same calculation extends to each of the other parts in a similar way. So first
note that
t t
dA = = dA="(t,—a).
/(a,tn} Po (a,ty] An an ( " )
Then, Fy o maps (a,t,] linearly into A1, with slope a,1/ay, and Fy 1 maps (a,t,] linearly into
A1, with slope —aj. Therefore,

£ a t
/ 0o dA + g dh = T —a)— —a(ty—a)
Fa,O(“atn] Fa,l(aJn} an+1 an ai
h+a L
= na,, “(ty—a) — (t,—a) = a—’;(tn—a).

It remains to show that the same relation holds for intervals of the form [0,5]. Without loss of
generality, we assume that b = ¢, for some n € N. Then,

ty tht1 In+1
/ ¢ad7L:/ ¢ad/l+/ ¢adl:/ O dA+ 1,
0 0 Ap 0

whereas

Int1 1

/ 00 d + 0o dh — odr+ | Lan
Fo0([0,ta]) Fo.1([0,24] 0

[1,th]a A1
tht1 In+1

1
0 an 0

This finishes the proof of the first assertion of the lemma.
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Regarding the second statement of the lemma, it is clear that the measure v is o-finite and
a simple calculation shows that for each n € N we have that

n n n n n
Ik
va | JAk | =) valAr) = Z/ P dd =Y = =Y u
k=1 k=1 f=1Ax k=1 % k=1
Recalling that « is of infinite type provided that ) ;°_, #x diverges, the proof is finished.

Remark 3.3.2.

1. Itis clear that v, is absolutely continuous with respect to A; indeed, it is defined that way.
The converse is also true, since the density ¢y, is strictly positive. Hence, the measures vy,
and A are in the same measure class.

2. The reader may recall the Bogolyubov-Krylov Theorem, which states that there always
exists an invariant probability measure for each continuous map 7 : X — X on a compact
metric space X. However, this theorem does not say anything about whether the measure
is absolutely continuous with respect to Lebesgue measure. There may be several invariant
measures, but we will shortly see that in our case the A-absolutely continuous one given
by @ is unique.

3. The proof given above is only one possible way to show that v, is an invariant measure
for Fy. Another method is by considering the Ruelle operator. This is an operator %, :
L' (u) — L' (u) defined with respect to a measure y on (% ,%) by

Ra(f) = |Fao'| - (f 0 Fo0) +|Fai'| - (foFa1), forall f € L' (u).

If the measure u is A-absolutely continuous with density y := du/dA and if y is strictly
positive p-almost everywhere, it is easy to verify that % and the transfer operator .%, for
Fy (defined in Section 3.1) are related in the following way:

Fulf) qu/-%(w-f), forall f € L' (v).

So, recalling that u is Fy, invariant if and only if %4 (14 ) = 14, in order to verify that a
particular function y is a density which gives rise to an invariant measure for the map Fy,
it is sufficient to show that v is an eigenfunction of Z, that is,

V=%V 1y).

For the inverse branches Fy, 1 and Fy, o and the density ¢, given in Lemma 3.3.1, a straight-
forward computation shows that we have

P 0 Fg1 =11/a1-1g and ¢g 0 Fuo =Y tut1/ani1 - 1a,.

n=1
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Moreover, one immediately verifies that
/ !/
|Fa,1| =ay -1y and |Fa,0| = Z An1/an - 1a,.
n=1

Using these two observations, it follows that

o [ Apt1 el
Fal0a) = Fas]- (00 Fuo)+|Fart'| ($a0Far) =2( il ot )'L\,;Hl'ﬂﬁ/‘/
n=1 \ dn Qnt1
Int1 In
- R ()= =
n=1 an nzlan

Our next aim is to prove that the map F is exact. A major ingredient in the proof is the
Lebesgue Density Theorem, which we need in a slightly different version to the one usually
found in the literature. Almost always, the Lebesgue Density Theorem is stated in terms of balls
converging onto a point. We need a similar statement, but with the balls replaced by a sequence
of sets that shrink to x in a particular way.

Definition 3.3.3. Suppose that x € R. A sequence (E;);cn of Borel sets is said to shrink to x
nicely if there exists a number a > 0 with the following property: There is a sequence of balls
(B(x,ri))ieN, With lim;_,.. r; = 0, such that for each i € N we have E; C B(x,r;) and

A(Ei) = a-A(B(x,ri)).
We then have the following theorem.

Theorem 3.3.4. To each x € R associate a sequence of sets (E;(x));cn that shrinks to x nicely
and let f € L'(A). Then,
1
f(x) = lim —/ fdA, fora.e. x.
ime A(Ei(x)) JEi(x)
Proof. This can be found as Theorem 7.10 in Rudin [68].
[

Theorem 3.3.5. Lebesgue Density Theorem. If A is a Lebesgue measurable set, then there is a
subset E of A with A(E) = 0 such that every point x € A\ E satisfies

. AANE(x)
Jim AA[Ei(x) := lim =y = b

where (E;(x));cn is a sequence of sets that shrink to x nicely.

Proof. This follows immediately on setting f := 14 in Theorem 3.3.4 above.
g
It is clear that for any x € % the sequence of cylinder sets (Cy (¢ (x),...,0k(x)))ken shrinks
to x nicely. Indeed, if we define B(x, ;) to be the ball centred around x with radius r; given by
max{[l1(x),...,0(x)]q — X, [l1(x),. .., Lk(x),1]o — x}, then Cq(€1(x),...,0(x)) C B(x,r) and
the number a in the above definition can be taken to be equal to 1/2. So, the Lebesgue Density
Theorem is valid in particular for these sequences.
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Theorem 3.3.6. The o-Farey map Fy, is exact.

Proof. Since v, and A are absolutely continuous with respect to each other, it is sufficient to
show the exactness of Fy with respect to A. Let By € (,,en Fg % be given such that A (By) > 0.
The aim is, therefore, to show that A (B(C)) = 0. For this, first recall that there must exist a sequence
(Bn)pen in # such that By = F, "By, for all n € Ny. Clearly, we then have that By, = F§Bm,
for all k,m € Ny.

Secondly, recall from Section 2.2 that the first return map py, is defined by py (x) := inf{n >
0: F!(x) € A1} and that it is finite for every point x in % \ {0}. Further, define the function p ")
by setting

0w =Y (pa (L)) +1).

k=0

Note that for x = [(1,£3,...], We have that p() (x) = Y1, 4.
Using the facts that A is Ly—invariant and Bernoulli with respect to Ly (just as in the proof
that L, is exact), we obtain for A-almost every x = (x1,x2,...)o = [¢1,02,.. ] a>

—p)(y -~
A (Fap ( )Bp(”>(x)mca(x17""xp(”>(x))>
2‘ <6Ot(x17' .. 7'xp(">(x))>

A (L&"Bp(n)(x) ﬂCa(El,...,Kn)>
A (Callr, )
l@&”&m@>l«h@hnw@»
A (Callr, )

= A (Bygy)-

Also, by the Lebesgue Density Theorem, we have for A-almost every x = (x,x2,...)q,

A (Bo|6a(x1,...,xp(n)(x))> =

‘ R B | 1 ifx € By;
lim A (Bo|Ca(x1,...,xp(n>(x))> = 1p,(x) = { 0 ifx¢ By.

n—oo

Combining these observations, it follows that By coincides up to a set of measure zero with the
set Q, where Q is defined by

Q:= {x cew :Jl_tg)lol (Bp<n>(x)> > O}.
(In fact, it is equivalent to put the limit in the definition of Q equal to 1.)

Since, by assumption, A(Bg) > 0, we now have that A1(Q) > 0. Hence, to finish the proof,
we are left to show that A(Q) = 1. For this recall that A is Ly-invariant and ergodic. Thus, it is
sufficient to show that L&IQ = Q, up to a set of measure zero.

Recalling that By, = F&‘Bm, for all k,m € Ny, we have the relation

_ _ P
Bowen () = Bpspn (La() = Fa " Bpo(14(x)- 3.4)
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Suppose that x € Q. From the above relation, we have that B ;) = Fy? ®) (Byns) ( x)). Since
A and vy are in the same measure class, we have that if 1 (B p("+1)(x)) > 0, then Vg (Bp("+1>(x)) > 0.

Therefore, as vy is invariant under Fy, it follows that vy (Fy p) (B p(”+l)(x))) > 0 and, finally, we
obtain that A (F, ” ® <Bp("+1>(x))) > 0. Therefore,

’}E;Iolol (Bp(n) (La (x))) > O.
Thus, Q C L&lﬁ. Therefore, in order to complete the proof, we are left to show that L&IQ C Q,
or, in other words, that

,}E‘;MBM (La(x)) > 0 implies  lim A(B

n—oo p (l’l) (X

) > 0.

By the relation in (3.4) again, the above assertion would hold if we establish that for each € > 0
and ¢ € N there exists k > 0 such that for all C € # with A(C) > & we have A(F.C) > k.
Therefore, assume that A(C) > € and let o denote the /-th refinement of the partition a* for
the map Fy. Also, one clearly can remove an open neighbourhood of the boundary points of
the intervals in ¢ to obtain a closed set U C % such that A(U) > 1 —&/2. Since there are 2°
elements in ¢, this immediately implies that A(CNBNU) > €271 for some B € o;. Indeed,
if this were not the case, we would have that

= — <ol gn—i-1_ ¢
rcnU)y=a| |J cnBnu Y A(CcnBNU) <2 €2 5

*
BEOC; BG(XE

This contradicts the facts that A(C) > € and A(U) > 1 — /2, so proving the claim.

Now, keeping in mind that Fé |p: B— 7 is bijective (and Fé maps B linearly onto the whole
of %), by the choice of the set U there exists a constant ¢ > 0 such that A(F4(BNUNC)) >
cA(BNUNC). It now follows that A (F4(C)) > A(FL(CNBNU)) > 2=~ ¢. Hence, by setting
k:=c2 g, the proof follows.

L

We then have the following immediate corollary.
Corollary 3.3.7. The map Fy, is ergodic.

The next theorem appears as Theorem 1.5.6 in the book [1] by Aaronson. We will use it
to show that the invariant measure v, for the system (%, Fy), identified in Lemma 3.1.10, is
unique.

Theorem 3.3.8. Let T : X — X be a conservative, ergodic, non-singular transformation of
(X,%,1). Then, up to multiplication by a constant, there is at most one l-absolutely contin-
uous o-finite T -invariant measure.

Proposition 3.3.9. Up to multiplication by a constant, the invariant measure Vy, is unique.
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Proof. First, Fy is non-singular with respect to A, since v, and A are in the same measure class.
Then, as Fy is ergodic and (as previously noted) conservative, an application of the theorem
above gives that v, is unique.
U
We end this section by stating the following applications of some general results from infinite
ergodic theory to the system (%, %, Fy,Vy). Note that the first, but only the first, is also valid
for o of finite type.

e A consequence of Hopf’s Ergodic Theorem [37]:
For each non-negative f € L' (vg) with Joy fdva > 0, we have that

n—1
) k — )
lim k;) F(Fx(x)) = oo, for vg-almost every x € % .

e A consequence of Krengel’s Theorem [52]:
If « 1s of infinite type, then we have, for each € > 0,

lim A ({x cU :
n—>oo

e A consequence of Aaronson’s Theorem [1, Theorem 2.4.2]:
If o is of infinite type, then we have, for each f € Ll(/"t) such that f > 0 and for each
sequence(cy)en Of positive integers, that either

> e}) =0, forall feL'(1),f>0.

n—1
1/nY f(F§(x))
k=0

n—1 j
1iminfw -0
N—yo0 Ch ’

or, there exists a subsequence (cy, )ken such that

—1 i
- Lt f(Falx)
k—>o0 Cny, -

e A consequence of Lin’s Criterion for exactness [54]:
For « of infinite type, since Fy is exact, we have that

n—soo

lim / \Z2(f)| dve =0, for all f € L' (vg) such that [ f dve = 0.

We will have occasion to use Lin’s criterion for exactness in Chapter 4.
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Chapter 4

Renewal Theory

In this chapter, we aim to use some classical results from renewal theory to study the sequence
of a-sum-level sets for the map Ly. These sets are defined in Section 4.2. We begin the chapter
with a section describing the renewal theorems that we will later apply.

4.1 Classical renewal results

In this section, we state and prove the original discrete renewal theorem due to P. Erdds, H.
Pollard and W. Feller [20]. For the treatment of this result we follow the book by Krengel [53].
We also state, this time without proof, some more in-depth renewal results.

Let us begin by giving a lemma needed for the proof of the standard renewal theorem.

Lemma 4.1.1. If d is the greatest common divisor of the numbers ny,ny,n3,... € N, then there
exist numbers K and M with the property that every integer dm, where m > M, can be written in

the form
K

dm = Z cxhg, with each c; € N.
k=1

Proof. We can assume that d = 1 (otherwise just divide each of the n; by d), and also that d is
the greatest common divisor of the first K of the given numbers, that is, (n1,no,...,ng) = 1. Itis
well known that there then exist integers ay,as, . . .,a; with the property that!

any+...+agn; = 1.

Letting a := max{|a|,|az|,...,|ax|} and M := an;(n; + ...+ ng), we have that each m > M can
be written in the form

m=any(n;+...+ng)+in; +r(an +...+agny),

I'This can be seen, for instance, by considering moduli of integers. The interested reader is referred to Section
2.9 of The Theory of Numbers, by Hardy and Wright [33].

71
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where i > 0 and 0 < r < n; come from the division algorithm applied to m — M. Therein lie the
factors ¢y and (since an; > ayr), they are clearly positive integers.
0

Definition 4.1.2. Let (v,),cn be an infinite probability vector, that is, a sequence of non-negative
real numbers for which }°;° ; v, = 1. Assume that associated to this vector there exists a sequence
(Wn)nen, such that wo = 1 and such that (w,) satisfies the renewal equation

Wy = Z VimWn—m, foralln e N.

m=1
A pair ((v,), (wy,)) of sequences with these properties is referred to as a renewal pair.

For a given renewal pair ((vy), (w,)), we make the following definitions:

dy:=ged{n>1:v,>0} and d,:=gcd{n>1:w,>0}.

Then, for all n with w, = 0 we also have that v, = 0, since using the renewal equation gives
that w, =0=Y" |, viuws—m and so each term in this sum must be equal to zero. In particular,
vpwo = 0, but since wg = 1, it follows that v, = 0. This implies that d,, is a factor of d,. It is also
possible to show, using a fairly straightforward but somewhat ungainly induction argument, that
d, is a factor of d,,. Thus, these two quantities are always equal.

Finally, before stating the theorem, we also need the following simple analytical lemma. We
include the proof for completeness.

Lemma 4.1.3. Let (a,),>1 and (b,),>1 be two sequences with the property that lim,_e.(ay, + by,)
exists. Then, provided that we do not have liminf,_,..a, = —oo and limsup,,_,., b, = oo, or vice
versa, it follows that

lim (a, + b,) = liminfa, + limsupb,,.

n—oo n—eo n—yoo
Proof. Let a := liminf,,_,ea, and b := limsup,_,., b, and then pick two sequences (n;);> and
(nj)j>1 such that

lima,, =a and lim bnj =b.

[—yoo j—roo

Then, on the one hand we have

lim (a, +b,) = limsup(ay, + by,) < limsupay,, + limsup by,

fi—roo [—oo [—o0 [—o0

< a+limsupb, =a-+b.
n—oo

But, on the other hand,

lim (a, +b,) = liminf(a,. +by,,) > liminfa, 4+ liminfb,

n—yoo j—roo / / joeo oo

> liminfa, +b=a+b.
H—>00

Combining these two inequalities, the lemma is proved.
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Theorem 4.1.4. (Discrete Renewal Theorem.) Let ((vy,),(wy)) be a renewal pair and suppose

thatd, = 1. Then

. 1
lim Wn=Geo .
h—poo Zm:l m:- vy

where the limit is equal to zero if the series in the denominator diverges.

Proof. For ease of notation, throughout we denote S := )| m-v,,. First, we show by induction
that 0 <w, < 1, for each n € NU{0}. To start, notice that w; = v; -wg = v; < 1. Now suppose
that 0 <w, <1 forall0 <k <n-—1. Then

n
Wy =V Wy_1+V3 Wy o+...+Vv,-wg < kag 1.
k=1

Let w := limsup,_,., w, and pick a subsequence (wy, )ren such that limy_,. wy,, = @. Then,
for all m > 1, we have, via Lemma 4.1.3, that

0 = limw, =lm | vy -wy _n+ Z Vs Wy —s
k—reo k—reo 1<s<n
<s<nj

s#m
= lgnmfvm-wnk_m—khmsup Z Vs Wy —s
e k—ro0 lgsgnk
s#m

v liminfwy, _p, + Z vslimsupw,, g
k—oo sEm k—oo

Vi liminfwy, —p + (1 —vp) @.
k—voo

IA

IN

From this it follows that v,,@ < v;, liminfy_,..w,, —,, and so, provided that v,, > 0, we obtain

limsupw, =: @ < liminfw,, _,,.
n—oo k—ro0

Therefore,

lim wy,—m = @. 4.1)
k—so0
Applying this argument many times over, one can say that equation (4.1) holds for all m such
that there exist positive integers my,...m; with each v,,, > 0 so that m = m; +... +m;. Given
that d, = 1, from Lemma 4.1.1 it follows that every large enough m has this form (where we can
do without the factors ¢; as there is no reason that all the m; have to be distinct). In other words,
there exists some M € N such that (4.1) holds for every m > M.
Now, for each n € N, set

(o]
= Y v

m=n+1
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Then rop = 1 and
Z m-vy, = Z Vin + Z Vin + Z Vip+...= Zrn.
m=1 m=1 m=2 m=3 n=0

From the renewal equation and the fact that r,,, — r,,,_; = —v,,, we deduce that

n

ro-wn =wp=— Z (rm_rmfl)wn—m
m=1

and, bringing the negative terms to the left-hand side, we can write this in the following way:
ro-wp+ri wy_1+...+r,wog =19 Wp_1+...+rm_1-wp. 4.2)

Denote the left-hand side of Equation (4.2) by A,, so the right-hand side is then A,_;. Note that
Ao =rp-wo = 1. Thus, in light of Equation (4.2), we have that A, = 1 for all n € N. In particular,

nka

Y riwe ey =1 (4.3)
i=0

We will now show that @ = 1/S. First, suppose that S is finite. In that case, for all positive €
there exists N € N with
r0+r1—|—...rNZS—8

If k is sufficiently large that n, — M > N, then by (4.3) we have that

N
1> Zri'wnk—(MJri)'
i=0

It then follows from (4.1) that
1>o(r+...ry) > 0(S—¢).

Since € was an arbitrary positive number, we obtain the inequality @ < 1/8.

On the other hand, from (4.3) and from the inequalities w, < 1 and (ry41+ryi2+...) <€,
we deduce that N

1<e+ Zri-wnk_(MH).
i=0

Letting k tend to infinity, from the above equation we obtain that 1 < €+ ®) ~_;m- v, and so
we also have the opposite inequality, namely, @ > 1/S.

If we are instead in the situation that S is infinite, we have that for all positive numbers C,
there exists an N € N with

ro+ri+...rv>C,

from which, in a similar way to the above, we obtain the inequality 1 > Cw. Since C can be
arbitrarily large, it follows that @ = 0. Notice that if limsup,,_,., w, = 0, we must in fact have
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that lim,,_,.. w;,, = 0, as these are all positive numbers. Therefore, in the case where S is infinite,
the proof is finished.

In the case where S is finite, we would also have to show that liminf, ,..w, = 1/S. This
proceeds analogously, starting by setting @’ := liminf,,_,..w, and choosing a subsequence that
achieves this lower limit.

[l

Remark 4.1.5. In the above proof, if it so happens that v,, > 0 for every m € N, we could
dispense with the slight complication of having to use Lemma 4.1.1, since in this situation we
would have that Equation (4.1) would hold for every m € N.

We will now state some stronger renewal results obtained by Erickson, Garsia and Lamperti,
which we will apply in the next section. Let the sequences ((vy)neN, (Wn)nenugoy) be @ given
renewal pair, and let the two associated sequences (V,),crn and (W,),cn be defined by

V, = ivk and W, .= iwk,
k=n k=1

for all n € N. The principal assumption in these results is that

Vn - l[/(l’l)n_97

for all n € N, for some 6 € [0, 1] and for some slowly-varying function y.

Strong renewal results by Garsia/Lamperti and Erickson [29, Lemma 2.3.1], [21, Theorem
5]
For 6 € [0, 1], we have that

-1
W,~(T2-0(1+6) " n- <Z Vk) :

k=1
Also, if 0 € (1/2,1], then

—1
wp~ (C(2—0)I(8))7! - (Z Vk> :
k=1

Finally, for 6 € (0,1/2) we have that the limit in the latter formula does not have to exist in
general. However, for 6 € (0,1/2] it is shown in [29, Theorem 1.1] that one at least has
sin7O

liminfn-w, -V, =
n—yoo T

Y

and that if we replace the above “liminf” by “lim”, then this limit exists on the complement of
some set of integers of zero density®.

2The density of a set of integers A is given, where the limit exists, by d(A) = lim,_,.. #A(n) /n, where A(n) :=
{1,...,n}NA. For example, if A := {n?> : n € N}, then since #A(n) < \/n we have d(A) = 0.
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4.2 Renewal results applied to a-sum-level sets

In this section we use standard renewal theory in order to study the sequence of the Lebesgue
measures of the a-sum-level sets for a given partition . These sets are given, for each n € Ny,
by

k
.i”n(a) = {x € Co(l1,0a,...,0) : Z&- =n, for some k € N},
i=1

where, for n = 0, we have put Zo(a) := 7 . The first members of this sequence are as follows:

Ca(1)
Ca(2)UCa(1,1)
Co(3)UCq(1,2) UCx(2,1)UCq(1,1,1)
Co(4)UCx(3,1)UCx(2,2) UCx(2,1,1)UCq(1,3) UCq(1,2,1)UCx(1,1,2) UCx(1,1,1,1)

In order to obtain the precise rate of decay of the Lebesgue measure of the ¢-sum-level sets

.,%(a) , we will now employ the renewal theorems detailed in the previous section. We begin our
discussion with the following crucial observation, which shows that the sequence of the Lebesgue
measure of the o-sum-level sets satisfies the renewal equation. Here, the role of the probability
vector is filled by the sequence of Lebesgue measures of the partition elements of ¢, that is, the

sequence (dp,)meN-

Lemma 4.2.1. For each n € N, we have that

ML) = Y and (L),
m=1

Proof. Since A (,?O(a)) =1land A (.,2”1(0‘)) = ay, the assertion certainly holds for n = 1. For n > 2,
the following calculation finishes the proof.

n—1
ALP) = ACu(n)+ Zl Y ACallr,e.. li,m))

= Co (g ,...,[k‘,m)effnux)
keN

n—1
= A(Cq(n))+ Zﬁam Y ACallr,... )

C(x(él ék)GfrE_m

n—1 n
= aAM AN+ Y and (L) = Y and (L)),
m=1

]

We are now in the position to state our main result. The first part of our main result is valid
for arbitrary partitions, but for the second part we must restrict ourselves to partitions that are
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either expansive of exponent 6 € [0, 1] (recall that these were introduced in Definition 2.4.4) or
of finite type.

Theorem 4.2.2. (1) For the a-sum-level sets of an arbitrary given partition & of % we have
that¥> l(f,,(a)) diverges, and that

lim A

n—soo

(éf(a)> /0 if Fy, is of infinite type;
" N (X tk)_l if Fy is of finite type.

(2) For a given expansive partition oo which is either of exponent 6 € [0,1] or such that Fy is of
finite type, we have the following estimates for the asymptotic behaviour of the Lebesgue measure
of the at-sum-level sets.

(i) WithKg := (['(2—6)T'(1+6))~! for o expansive of exponent 8 € [0, 1] and with Kg := 1
for Fy of finite type, we have that

-1
Y A (L) ~ Ko n: <sz> .
k=1 k=1

(ii) With kg := (T'(2 — 6)T(0)) ! for « expansive of exponent 6 € (1/2,1] and with kg := 1
for Fy of finite type, we have that

—1
@\ . (v
() ~vio- ()

(iif) For an expansive partition o, of exponent 0 € (0,1), we have that

liminf (mn-/l (.z,f”)) _ sinm6

n—oo T

Moreover, if 6 € (0,1/2), then the corresponding limit does not exist in general. However,
in this situation the existence of the limit is always guaranteed at least on the complement
of some set of integers of zero density.

Proof of Theorem 4.2.2 (1). The general form of the discrete renewal theorem given in The-
orem 4.1.4 above can be applied directly to our specific situation, namely, the sequence of
the Lebesgue measure of the a-sum-level sets. For this, fix some partition oo = {A,, : n € N},
and set v, := A(A,) = a,, for each n € N. Notice that this is certainly a probability vector.
Then, put w, := )u((fn(a) ), for each n € Ny. In light of Lemma 4.2.1 and the observation that

wo = /’L(,Zo(a)) = 1, we then have that these particular sequences (v,) and (w,) are indeed a
renewal pair. Consequently, an application of the discrete renewal theorem immediately implies

that B »
im A (2@) = [ ¥ k. [y,
() (L ra) ~(Lx)
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where this limit is equal to zero if };” | #; diverges. Note that, by Lemma 3.3.1, the divergence
of the latter series is equivalent to the statement that the o-Farey map Fy, is of infinite invariant

type.
For the remaining assertion in (1), let us consider the two generating functions a and ¢, which

are given by a(s) := Y ,aps" and {(s) := Y A (3,,(1&)) s™. Using Lemma 4.2.1 and the

fact that A (fo(a) = 1, the following calculation shows that for each s € (0,1) we have that
{(s) — 1 =£(s)a(s). On the one hand, we have that

l(s)a(s) = i ans" + sA (31(a)) i ans" + 5* A (Zz(a)> i ans"+ ...
n=1 n=1 n=1

On the other hand, we also have that

Us)—1 = ix(g,,ﬁ‘”))sm
- (a47) o2 (47) 222 (4 .
= als—l—sz(al?t( )+ )+s (alﬂt( “)+a2)t< >+a3>+
= T ooh (£49) e 74 (A7) E s

Hence, ¢(s) = 1/(1 —a(s)). Since a(1) = 1, this gives that lim, » £(s) = oo, which shows
that) > A4 (92”,1(&)) diverges. This finishes the proof of Theorem 4.2.2 (1).

Proof of Theorem 4.2.2 (2) (i), (ii) and (iii). The statements in part (2) concerning partitions ¢
such that Fy, is of finite type follow easily from Theorem 4.2.2 (1). Indeed, given that

A (L n
lim <—>1 = lim A (£) lim Y =1,
n—oo (ZZ:I tk) n—oo n—>0<>k:1

the statement in part (2) (ii) follows immediately. The corresponding claim in part (2) (i) follows
directly on considering the Cesaro average of the sequence of Lebesgue measures of a-sum-
level sets. Similarly to the proof of part (1), the statements in Theorem 4.2.2 (2) (i), (ii) and (iii)
concerning partitions that are expansive of exponent 6 follow from straightforward applications
of the strong renewal results of Garsia/Lamperti and Erickson to the setting of the ¢-sum-level
sets. For this we have to put v, := a,, V,, :==1t, and w,, := ),(.Zn(a)), and to recall that the pair
((an)nen, (A (.,%(a))) neN,) satisfies the conditions of a renewal pair.

U

Let us now briefly discuss the a-sum-level sets in a more dynamical way. It would appear,
on first sight, that the sequence of sets (.,2”,,(&)) neN 18 not in the least dynamical in character. For
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instance, consider the set liminf .f =Up>1Musm -2 Wthh contains all those x € % that

lie in all but finitely many of the sets .,%( ) If x € liminf fn( ), there must exist some ng € N such
that x = [{1,...,0p,1,1,1,...]q where Y7 | £; = ng. Otherwise, if infinitely often there appeared
an entry not equal to 1 in the a-Liiroth expansion of x we would not be able to sum the entries to
ng +1i for all i € N. Therefore, the set liminfcfn(a) consists of all those x € % whose o-Liiroth
expansion terminates in infinitely many Is. This is evidently a countable set. Now, consider the

set lim supf = Nm>1Unsm L )

many of the sets 02”,1( )

(a)

of limsup.%, "’ have infinite a-Liiroth expansions. In other words, this set contains every o-
irrational number. This is most definitely not a countable set. However, as the following lemma

. This set consists of all those x € %/ that lie in infinitely

. In this case, it is clear that all that is required is that the elements

makes clear, the sequence (.Z,,(a)) ncN can be described in a surprisingly concise dynamical way.

Lemma 4.2.3. 1
24O =F " (£).

Proof. Recall that the inverse branches of F act on x = [{},¢5,...]4 in the following way:
Fay()(x) = [61 +1,4,,.. -](x and Fa,l (x) = [1,€1 o, -](x-

From this, it is easy to directly calculate that .,2”2(“) =F;! (.,2”1(0‘)). Now, suppose that we have
,Zn(f? =Fy (n=2) (fl(a)) for some n € N. For a proof by induction, it suffices to show that

n—1

49~ 7"V (29 = £ (29).

To that end, first suppose that x € .,%n(fi Then x = [{1,¢5,/3,...]o, Where Zi'{:l ¢; =n—1. Since

Foo(x) =01+ 1,0,..]q and Fy 1 (x) = [1,41,£2,...]q, we see that Fa_l(fn(ﬂ) C fn(a).
Conversely, recalling from the proof of Proposition 2.2.9 that there are 2"~ ! ways to sum a

finite sequence of positive integers (i1, ..., i) to n, we have that there are 2"~ a-Liiroth cylinder

sets contained in the set Xn(a). These can be split into the family of 2”2 sets given by

k k
{cawl, L Zf:n—l} {Fal(cael, L Z —n—l}

and the family of 2"~ sets given by
i=1

k k
{Ca(fl,...,fk) :f1>1and Zﬁi :n} = {Fa’o(ca(fl — 1,...,€k)) :f1>1and ZE,' :n}.
i=1

Thus, we have the opposite inclusion, Zn(a) CFy 1 (Zn(f{ ), and the proof is finished.
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We can use the above lemma to give an alternative proof of the first part of Theorem 4.2.2,
using some infinite ergodic theory. The result we need is Lin’s criterion for exactness, which was
stated at the end of Chapter 3. This second proof can be deduced from the following general fact.

Lemma 4.2.4. For all C € B with vo(C) < oo, we have that

lim A (F,"(C)) = 0.

n—oo

Proof. Let C be as in the statement of the lemma and let A € 2 be such that 0 < vy (A) < oo.
Then,

. !
A(F(C)) = /Fan(c)%dva

e e
< ()] e
- “\9a  vala) /[ Vala)

Now, notice that

qbl_a vaA —/% #(A)/Advaz/oldl—lzo

So, we can apply Lin’s criterion, which yields that

pima (@) < i (17 (5~ oty )| 4% ) e = et

Then, on choosing A to have arbitrarily large v4-measure, the proof is finished.

O
Proposition 4.2.5. Let Fy, be of infinite type. Then
tim A (£1*)) =0,
n—oo
Proof. This follows directly from Lemma 4.2.3 and Lemma 4.2.4, by setting C = .Zl(a).
O

Finally, let us now discuss the outcomes of Theorem 4.2.2 with respect to the particular
examples of the alternating Liiroth map, Lg,, and the classical Liiroth map, Lg.- The reader
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might like to see that the Lebesgue measures of the first members of the sequence (fn(aH )) are
as follows:

ML) =1, MA™) = 1, MG™) = 5, ML) = § ML) = B,
Since the Lebesgue measure of the sum-level set .,%,(aé) associated with the map L coincides

with the Lebesgue measure of the sum-level set .,an(a” ), Theorem 4.2.2 gives the following corol-

laries.

Corollary 4.2.6. lim A (3,5“*”) — lim A (9%(5‘7’ )) —0.

n—oo n—oo

Proof. It is immediately clear that both of the partitions ay and o are of infinite type. The
result then follows directly from Theorem 4.2.2 (1). O

Corollary 4.2.7. For the classical and for the alternating Liiroth map the following hold, for n
tending to infinity.

1. Zl('z"(&;»il(gn(w{))fvn(i%)l n

~ ;
= = logn

2 2 () =2 (W) (

>~

-1
AR
k logn’

k=1
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Chapter 5

Lyapunov spectra for F, and L,

Calculating the Lyapunov spectrum of a given dynamical system is a species of multifractal
analysis. This type of analysis is by now a well-established area of mathematics. It has its
origins at the junction of pure mathematics and statistical physics, and can be considered an
offshoot of thermodynamic formalism. We aim in this chapter to describe the Lyapunov spectra
of the maps Ly and Fy. These systems can be described by an infinite iterated function system.
For such systems, which we will soon describe in some detail, there are powerful results available
to us. First, we will outline the classical multifractal analysis situation, where it is assumed that
all alphabets are finite. There are several good references available for this, for instance Falconer
[23] or Pesin [65]. Then, we will describe a very general result due to Jaerisch and Kessebohmer
which we will go on to apply in the third section to obtain our main results. Finally, we present a
section consisting of examples of various of the behaviours that can occur for the a-Liiroth and
o-Farey systems.

5.1 Introduction to multifractal analysis

Let us first introduce the multifractal formalism in as simple a setting as possible, that of a finite
iterated function system consisting of two linear contractions on the unit interval. By an iterated
function system, all that is meant is a collection of (possibly countably many) maps on a subset
of some Euclidean space R?, d > 1. So, suppose that ® := {¢y, ¢, : % — % }, where ¢; and
¢, are linear contracting similarities with contraction ratios r; and r,, respectively. To avoid any
trivial cases later on, we assume that r; # r,. At this point, we assume that the reader recalls
from Section 1.2 the basics of symbolic dynamics described there, including the definitions of
the symbolic space I and the shift map o : I¥ — I". Here, our symbolic space is {1,2}~. For
each o € {1,2}N, write
Pol, = P 000, U — U.

One immediately verifies (by applying Cantor’s Intersection Theorem, for instance) that the inter-
section (,cn @), (% ) is a singleton. This gives rise to a canonical coding map g : (1,22 7.

The image of this map, the set Ag := 7te({1,2}"), is said to be the limit set of the iterated func-
tion system ®. One way of thinking of the limit set of & in this case is that the points from the

83
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limit set are in one-to-one correspondence with the points of the attractor of ®, that is, the unique
non-empty compact set F that satisfies ¢ (F) U ¢,(F) = F. In the case we are considering here,
this attractor is a Cantor set. The coding map corresponds to zooming into a point in F' through
the basic intervals containing that point. The final basic ingredient is the geometric potential
function ¢ : {1,2}N — R, which is defined by setting

o(w,m,ws,...)) = log|¢>(’01(a>z,w3,...)‘ =log(re,)-

Note that “potential” is simply another word for a continuous function.
Given a Holder continuous function y : {1,2}N — R, we say that the multifractal analysis of
the system & with respect to y is the analysis of the level sets

a . N. 1 Skll’(a)) _
Fs .—71:@{0)6{1,2} .gl_r};—sw(w) —s}

in terms of the Hausdorff dimension function f(s) := dimg(-%5). Here, recall that Sif denotes
the Birkhoff sum of f with respect to the shift map which is given by Sy f(@) := Y*~! f(c"(®)).
It will turn out that the multifractal spectrum as defined above is related to the Legendre
transformation of a particular function. The Legendre transformation ¢* of a function 7 : R — R
is defined to be
t*(s) :=inf{vs+1(v) : v € R}.

Note that in case the function ¢ is convex and differentiable everywhere, the Legendre transfor-
mation of 7 has a nice geometric description in terms of tangents to the graph of 7. If 7 is a convex
function, then there exists a range of s, say s € (s_,s4 ), for which the graph of ¢ has a tangent
with slope —s. In this case, t*(s) is the intersection of this tangent with the vertical axis. This is
illustrated in Figure 5.1, below.

t*(s) = su +>

Figure 5.1: The Legendre transform #*(s) of the convex function ¢ is the intersection of the
tangent to 7 of slope —s with the vertical axis. Here, s = —¢'(u).
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Of course, the Legendre transformation of ¢ is still well-defined when 7 is not differentiable
everywhere. Consider a decreasing function ¢ which has a point vy for which the right derivative
tT of t at vy is equal to —s; and the left derivative _ of ¢ at v is equal to —s>. Then for all
s € [s1,52], we have that #*(s) can be explicitly determined by ¢*(s) = svo +1(vp). We will see an
example like this in Section 5.4.

Returning now to the analysis at hand, notice that we have two canonical measures associated
with the system ®. These are the measure of maximal entropy Ly, which is sometimes referred
to as the arithmetic measure, and the d-dimensional Hausdorff measure pg, where 6 denotes the
Hausdorff dimension of F. That is, for each cylinder set [ . .. @,], we have

to([or ... @) =27" and us([@;... o)) = (re, - re,)°.
Since we assumed that r| # r,, these measures are not equivalent. Notice that
to([; ... @,]) = e5¥(@) and ps([o)... 0,)) = 5@,

It can be shown that these two measures in fact correspond to extreme points on a whole spectrum
of measures {ug : B € I} for some interval / C R, with the property that

g (@1 ... 0)) < exp(t(B)Sud(®) + BSuy (@) = (ra, - 7a,) P (27")P,

where the function ¢ is defined implicitly by the pressure equation P(t(f)¢ + By) = 0. Here
P(f) denotes the topological pressure of the system ® with respect to the potential f, which is
defined, in this situation, by

P(f):= lim 1log Z exp( sup S,J(T)) .

n—een T€]0)...00,]

Note that this limit always exists. The pressure function here is convex and real-analytic; more-
over, it always has a unique zero. Further, the function ¢ defined by the pressure equation is also
strictly convex. The measures [ig are said to be Gibbs measures.

Now, for any given 3 € I, the next step is to show that ug (%) = 1, where s := —'(). From

this it follows that for each @ € {1,2}", we have
AT +e o us(B(o,r)) < S
and so the mass distribution principle (see Proposition 2.2 in [23]), implies that
f(s) :=dimg (Z) =t*(s).

We remark that there are three major steps involved in rigorously proving the result outlined
above. The first two are the existence of the function ¢ and the existence of the family of Gibbs
measures. The third is that the Gibbs measures are supported on the level sets.
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5.2 General multifractal results of Jaerisch and Kessebohmer

We come now to the general multifractal results of Jaerisch and Kessebohmer, proved in [38]. In
this paper, multifractal spectra are studied in the context of infinite conformal iterated function
systems (cIFS). We have already seen many examples of such objects in this thesis but without
explicitly describing them as such. An infinite iterated function system (IFS) is given by an at
most countable family of injective contractions ® := {¢; : i € I C N} on a compact connected
subset of a Euclidean space (RY,||-||), for d > 1. As the name suggests, a cIFS is an IFS
consisting of conformal maps. The cIFSs with which we shall mainly be concerned in this
chapter are the o-Liiroth systems, described as a family of linear maps @y := {Lgyn: % — Ay :
n € N} rather than as a piecewise linear map on %/. That is, the cIFS @, is the family of inverse
branches of Ly, which were defined in Definition 2.1.8. The precise definition of a cIFS is as
follows.

Definition 5.2.1. An iterated function system ® := {¢; : i € I} is said to be conformal if the
following conditions are satisfied.

(a) The phase space X is a compact connected subset of R?, d > 1, such that X is equal to the
closure of its interior.

(b) The open set condition. For all i, j € [ with i # j,
¢;(Int(X)) N ¢;(Int(X)) = 0.

(c) There exists an open connected set W D X such that for every i € I the map ¢; extends to a
C! conformal diffeomorphism of W into W.

(d) (Cone property) There exist y,l > 0, y < 1/2, such that for every x € X there exists an open
cone Con(x,7,!) C Int(X) with vertex x, central angle of measure 7y and altitude /.

(e) There are two constants Lgp > 1 and 0 > 0 such that for every i € I and every pair of points
x,yeX,

[y —x{|%.

! — o/ (x L—Cb
|19; )| = ¢; (0[] < 11(0) 1| |x

Here, ||9/||x := sup,cx |¢/(x)| with |¢/(x)| denoting the operator norm of the derivative.

Remark 5.2.2. For our situation of the IFS coming from the a-Liiroth system, @, these condi-
tions are all clearly satisfied. In particular, X = %/, so (a) is obvious. The cone property does not
apply in the one-dimensional case. The open set condition does not trouble us either. Since each
map from Py is linear, (c) is satisfied for any open interval containing % . Finally, condition (e)
is a sort of bounded distortion property, which is satisfied immediately for a linear map, since the
derivative is simply a constant.

Just as in the finite case described previously, for each @ € I and for each n € N, let

(P(U‘n ::q)w]O"-O(pw,l:X—)X.
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Once again, it is a fact that the intersection ey 9|, (X) is a singleton, from which we again
obtain the coding map 7g : I'¥ — X and the limit set 7q (1Y) of the iterated function system .
Given a Holder continuous function y : I — R, let us agree that the multifractal analysis of the
system & with respect to the function y is the analysis of the level sets

S
Ty = e a)EIN:limL(,w):s 5.1
e log[[6], [lx

in terms of the Hausdorff dimension function f(s) := dimg (-%;).
Before going any further, we must return to the pressure function. In the setting of infinite
iterated function systems, the pressure function is defined as follows.

Definition 5.2.3. For a Holder continuous function f : IV — R, the n-th partition function Z,(f)
is given by
Zy(f) =} exp sup (Suf(1)).
welN €[w]
It can be shown that this function is submultiplicative, so the following definition makes sense
for each Holder continuous function f. The topological pressure 22 (f) is defined to be

.1 .1
Z(f) = lim ~logZ,(f) = inf logZy(f).

At this point, exactly as in the finite case, let us define the geometric potential function
¢ : 1N — (—o0,0] by setting ¢ () := log |9, (T(0(®)))]. Itis well known that in the case of finite
conformal iterated function systems (in particular for the linear case described in the preceding
section), that the function f can be related to the Legendre transformation of the free energy
function t : R — R which can be defined implicitly from the pressure equation

Z(t(B)¢ +Pw)=0. (5.2)

Specifically, there exists a closed bounded interval J C R such that for all s € J we have
fls)=17(s) := inf {t(B)+Bs},

and for s ¢ J we have that .%; = 0. (This can be found as Theorem 21.1 in [65], for example.)
The main difficulty that arises when considering the case of infinite iterated function systems is
that the pressure function ?(f) may behave irregularly’, so that we cannot find a solution to
the equation in (5.2). For the case that there does exist a unique solution to this equation, the
multifractal analysis has been discussed by Mauldin and Urbanski in [58] and Roy and Urbanski
in [67]. For the very general results obtained by Jaerisch and Kessebohmer, the first step is to
generalise the definition of the free energy function to account for the fact that a unique solution
to (5.2) may not always be found. Their definition is the following one.

'A complete description of the behaviour of the pressure function for infinite cIFSs can be found in [58].
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Definition 5.2.4. Let ® be a cIFS and y : IY — R be a potential function. Then the free energy
functiont : R — RU{eo} for the pair (P, y) is given by

t(B) :=inf{t e R: 2(t¢ + By) <0}.

We are now almost in a position to state the main result from [38]. The one remaining
ingredient is to set
_:=inf{—¢" (x) : x € Int(dom(¢))}

and
sy :=sup{—t"(x) : x € Int(dom(z))},
where ¢~ denotes the derivative of ¢ from the left, * denotes the derivative of ¢ from the right

and Int(dom(z)) denotes the interior of the the effective domain dom(z) := {x € R: #(x) < 4oo}
of t.

Theorem 5.2.5. The general multifractal result of Jaerisch and Kessebohmer. For all s € R
we have that f(s) < max{t*(s),0} and for s € (s_,s+) we have that f(s) =1t*(s).

The basic idea behind the proof is to exhaust the infinite system (P, y) with finite subsystems.
They introduce the notion of regular convergence for families of cIFS not necessarily sharing the
same index set, which guarantees the convergence of the multifractal spectra on the interior of
their domain. In this way, results from finite systems can be carried over to infinite systems and
the multifractal dimension spectrum can be established without such restrictive conditions as are
usual for infinite alphabets.

We will now translate Theorem 5.2.5 into the situation of the a-Liiroth system. Recall that
we are interested in the cIFS @, given by @ := {¢, = Ly, : x> 1, —a,x | n € N}. The symbolic
space is now NN. Each @ in NN corresponds to some x € %, in that if @ = 10x05... € NN, then

ﬁqya(ﬁﬁz&...) = [51,52,63,...]05 =xXEU.

Note that for each n € N we have that (Lg,)'(x) = —aj, for all x € % . One immediately verifies
that the geometric potential ¢ introduced above is in this case given by ¢ (¢142/¢3...) = logay,.

Consider now the term ||¢(’D‘k ||x from the definition of the level sets given in (5.1). By the chain

rule, we have that

¢C/0|k = (P(i,l ((sz o--- O(Pwk)(p(i)z(q)a)g 0---0 ¢wk) e (P(/Dk_] (¢wk)¢(/ok'

It therefore follows that we obtain

log (|19, |lx) = Zlog = S ().

So, the level sets with which we are concerned can be written in terms of the two potential
functions y and ¢ in the following way:

P N . Siv(w)
Fs = T, {(DEI lﬁwSk(p((D) s}.
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Let (z,)qen be a sequence of negative real numbers and let the potential y be given by y(x) =z,
for x € A,,. We can then rewrite the level sets once again as

k
) 12
Fy ﬂq;a{(DEINI hmM:s}.

ko ¥,y log(ay,)

It remains to translate the free energy function. We must describe &2 ( f) where f(x) :=tlog(a,)+
Bz, for x € A,. We have

P(f) = lim ~logZy(f)

n—oon

1 y
= lim-log ) exp (log(ae,...én)’ +p Z%)
N i=1

4>
ey eNn

S =

o) )

— ,}i_Ig}olOg <Z dj exp (sz)> =log Z aexp (Bzx).

k=1 k=1

The next theorem gathers all of this information together and inserts it into Theorem 5.2.5
above. This is the form of the general result from [38] that we will need in the next section.

Theorem 5.2.6. Let o := {A,, : n € N} be a given countable partition of % and consider the two
potential functions ¢,y : % — R given for x € Ay, n € N, by ¢ (x) :=loga, and ¥ (x) := z,, for
some fixed sequence (z,)en of negative real numbers. For all s € R we then have that

n—1 n—1
dimyy { € : tim ( Y wirh()/ Y ¢><Li;<x>>) - } < max{0,1* (s)}.
7 \k=0 k=0
Here, the functiont : R — R U {oo} is given by
t(v):= inf{ Z ayexp(vzy) <l:ue R}
n=1

and t* is the Legendre transform of t, that is,

t*(s) := inf{t (v) +vs}.
veR
Furthermore, there exist r—,ry € R such that for s € (r_,ry), we have
n—1 n—1
dimg<xe# : lim [ Y w(Ly(x)/ Y o(LE(x) | =53 =1"(s).
7% \ k=0 k=0

In fact, the boundary points r_ and r. are determined explicitly by

r_:=inf{—¢" (v):v€Int(dom(t))} and ry:=sup{—t"(v):veInt(dom(r))}.
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Remark 5.2.7. Note that for s € R we have

n—1 n—1
{x €% : lim (Z w(Ls )/ Y ¢<L’fx<x>>> = } # 0
k=0

k=0
if and only if inf{z,/loga, : n € N} <s < sup{z,/loga, : n € N}. It therefore follows that

r— >inf{z,/loga, : n € N} and r; <sup{z,/loga,:n e N}.

5.3 Main Theorems

In this section, we will give a description of the Lyapunov spectra arising from the a-Farey map
and the o-Liiroth map. For this we use the general method obtained in [38] which was outlined in
the previous section. Before stating and proving the main results, we first give a helpful lemma.

Lemma 5.3.1.

1. Let (ap)uen be an eventually decreasing sequence of positive real numbers and for each
s € R let

o)

(a;)° and fu(s) := Z(ai)s.

1 i=n

s

fls):=

If f(so) is finite for some so € R and if f,,(so) is a slowly-varying function of n, then we
have that s is the abscissa of convergence of f(s).

In particular, if o is a partition of % that is expansive of exponent 0, so t, = Y(n) for some
slowly-varying function ¥ : N — R, we have that t.. == inf{r > 0: Y37 a <o} = 1.

2. Let o be a partition such that lim,_,.t, /t,+1 = p > 1 and such that  is either expanding,
or expansive of exponent 0 > 0 and eventually decreasing. Then there exists a sequence
(€n)nen, with limy,_,e €, = 0, such that for all n € N and x € | J;~,, Ax we have that

1 n—1
p Z log < &,.
k=0

Fi(Fh(x))| ~1ogp

Proof. For the proof of the first part, let (a,),cn be as stated and for each n € N, define the set
Ch:={keN:e"<qg < e_(”_l)}. Further define ¢, := #C,,. Then for each u > 0 it follows that

i cpe” ™ < i an,. (5.3)
n=1 m=1

Now let 9 := limsup,,_,,(logc,)/n and observe that (5.3) implies that ¥ < s¢. Indeed, if on the
contrary yp > s, there would exist infinitely many n € N such that 5o < (logc,)/n, or in other
words, " < ¢,. This would mean that the left-hand side of (5.3) for u = sy is infinite but, by
assumption, the right-hand side is finite. This contradiction proves the claim.
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We now aim to show that in fact ¥ = s9. To that end, suppose by way of contradiction that
1 < so and let v be arbitrary such that 9 < y < so. Further, choose ¥ such that 3 < ¥ < y. Then,
by definition of Y, if n € N is large enough we have that ¢, < e?’". Now, for each n € N, define

ky, := Y., ci. It follows, where k > 0 is some constant and 7 is sufficiently large, that we have
n n ) e)/
kn = ;Ci < K+i:1(67/)’ =K+ m(eyn —1)<e™.
Consequently,
o Jog(kn)
Y

and, since Y —so < 0, we have that
(y—s0)n < log(kY /7).

Recalling that the sequence (a,),cn is eventually decreasing, we infer that for large enough n the
first k,, terms of (a,) all lie in the union of the sets C; for 1 <i < n. Thus,

filso) = Y an <Y el
m=ky, i=n

< % i (e(V*So)>l < elr=son < k}l’SO/Y_
=n
Given that ¥ < sp, and so 1 —s¢/y < 0, in light of Proposition 2.4.2 we have a contradiction to
the fact that f,(so) is slowly varying. Therefore, ¥y := limsup,,_,,(logc,)/n = so.

To complete the proof of part 1, let s < sg9. Then there exist infinitely many n € N such that
(logcy)/n > s, from which we infer that ¢, > ¢ for infinitely many n € N. Therefore the sum in
the left-hand side of the inequality in (5.3) is infinite, and consequently so is the one on the right.
Hence, the sum f(s) diverges for all s < so and the abscissa of convergence of f(s) is indeed
equal to sp.

For the proof of the second part, first recall that F,(x) is equal to the slope of the map Fy, at
the point x, so if x € A, then F/,(x) = "Z—‘l Thus, for fixed n € N and x € A, ; for some j € N,
we have that ’

ln—l 1 Apeil Qptin a; 1
~ Y log|F.,(Fk(x =—<lo ( ks e e e | )):—10 aj—loga,y ).
n];) g |Fo(Fg(x))] n g Gnij Gnij1 a4 n( ga; g n+j)

Therefore, for x € (J;~,Ai, we obtain the following inequality:

Y1) log | Fy(FE(x))| loga; —logan i

—logp| < sup —logp’
n ieN n
— sup logai i logan.ﬁ n+i —logp‘
ieN| 1 n n+i n
= sup ‘ (logai — lOga"ﬁ) — logan'ﬂ —logp‘ =:¢,.
ieN | P l n—+i n—+i
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Since by Lemma 2.4.8 (1) we have limy_,.(logay)/k = —logp, it follows that limy_., & = 0.
O

In order to state the main results of this chapter, recall that the Lyapunov exponent of a
differentiable map S : % — % at a point x € 7% is defined, provided the limit exists, by

1" 1
A(S,x) = lim = Y log|S'($*(x))|.
(8.x) ggnkg og|§'(S*(x))]
Our first main theorem gives a fractal-geometric description of the Lyapunov spectra associated
with the map L. That is, we consider the Hausdorff dimension of the spectral sets {s € R: {x €
U : A(Lg,x) = s} # 0}. This gives rise to the Hausdorff dimension function 74, which is given
by
To(s) :=dimy({x € % : A(Lg,Xx) = s}).

In what follows, p : R — R U {0} denotes the a-Liiroth pressure function, which is defined by

In addition, we say that Ly, exhibits no phase transition if and only if the pressure function p is
differentiable everywhere (that is, the right and left derivatives of p coincide everywhere, with the
convention that p’(u) = oo if p(u) = o). For an interesting further discussion of the phenomenon
of phase transition in the context of countable state Markov chains, we refer to Sarig [71].

Theorem 5.3.2. For an arbitrary given partition Q, the Hausdorff dimension function of the
Lyapunov spectrum associated with Ly, is given as follows. For t_ := inf{—loga, : n € N} we
have that Ty vanishes on (—eo,t_), and for each s € (t_,o0) we have
T (s) = inf (u+s"'pu)).
a(s) b eR( p( >)
Moreover, To(s) tends to teo == inf{r > 0: Y, a, < oo} <1 for s tending to infinity. Concerning
the possibility of phase transitions for Lq, the following hold:

o [If a is expanding, then Ly exhibits no phase transition and t = 0.

o [f o is expansive of exponent 6 > 0 and eventually decreasing, then Ly, exhibits no phase
transition if and only if ¥, w(n) /(19 (logn) /n diverges. Moreover, in this situation we
have that to = 1/(1+6).

o [If a is expansive of exponent 0 = 0, then Ly exhibits no phase transition if and only if
Y anlog(ay) diverges. Moreover, in this situation we have that te. = 1.

Finally, for partitions which are either expanding or expansive of exponent @ > 0 and eventually
decreasing, t- is also equal to the Hausdorff dimension of the Good-type set Ggoa) associated to
Ly, given by

G = {[t1,02,.. Ja Jim £, = oo}
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Proof of Theorem 5.3.2. Directly from the definition of the Lyapunov exponent for the map Ly,
provided that the limit exists, we obtain that

A(Lg,x) := lim — Zlog

n—reo n =0

Ll -Lf(x)| = lim ——Zlog g (x))-

n—oo

We aim to apply the general result by Jaerisch and Kessebohmer, as stated above, to the special
situation in which z, := —1, for each n € N. In other words, the potential function y, instead of
being a step function, is the constant function y : x — —1. Notice that in this case we have that

{xe :A(Lg,x)=s} = {xe% hm ¢0Lk(x):s}

We must now determine the free energy function ¢. In order to do this, consider the function
V1 (tw,o0) — R, which is given by v(u) :=log} ", an, where t. :=inf{r > 0: Y7, a; < oo}.
(Note that this is the ¢-Liiroth pressure function on a restricted domain.) On the one hand, if
lim,_,;_ v (¢) is infinite, then the function ¢ appearing in the result of Jaerisch and Kessebohmer is
identically equal to the inverse v—! of v. To see this, note that

seR
(e o] S
= inf Zn:lzn Sl =
seR | exp (logy >~ a%)

On the other hand, if lim,_,,_v () is finite, say equal to some real number c, then #(s) = v~ (s)
for all s € (—co,c), whereas #(s) = 1., for all s € [c, +).

In order to determine the boundary points of the non-trivial part of the Lyapunov spectrum
associated with the map Ly, in view of the general thermodynamical result stated above, we
consider the asymptotic slopes r_ and r of ¢. It is clear that in both of the above cases, we have
r— = 0 and hence it follows that 7, := +oc0. We also have that

tov(u) = 1nf{2a exp(— <1}

_l‘ —_
ry = lim ﬂ: lim — %
Voo Y u—veo v(u)
and so,
1 _
P e O
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For this, we let amax := max{a, : n € N} and make the following calculation.

—v(u) —log¥sy

U—roo u U—reo u
— 10g <alftnax Z;t.o:l <di1nax> )
U—>oo u
) a !
) - log Zn:l (am’;x )
u
log (1 + Za;«ﬁéamax <aiy;x> )
= inf{—loga, :n € N} — ILm
U—»oo u

= inf{—loga, :n € N}.

Here, the limit in the penultimate line of the calculation above is equal to 0, because each term
an/amax is strictly less than 1 and these terms are eventually decreasing in n. Thus, we obtain
that 7~ = inf{—loga, : n € N}.

Therefore, for both the case that v(z..) is finite and the case that it is infinite, Theorem 5.2.6
shows that the Hausdorff dimension function associated with the Lyapunov spectrum of Ly van-
ishes for s < ¢_ and is given, for s € (_,+o), by

Ta(s) = t*(1/s) = inf (1 (v)—l—s_lv) = inf (u—i—s_llog iaﬁ) .

veR uceR =1

For the discussion of the phase transition phenomena for Ly, one immediately verifies that
for the right derivative of the pressure function p of Ly, where the reader might like to recall that
pis given by p(u) :=1log) >, a%, we have that

Clearly, p is real-analytic on (f.,0). Hence, we have that L, exhibits no phase transition if and
only if lim,~, — pT(u) = +oo. First consider @ expansive of exponent 0. In this case, we have
proved in part 1 of Lemma 5.3.1 that 7., = 1 and so L, exhibits no phase transition if and only if
— Y, anlog(a,) = oo. We now distinguish the following further two cases.

If o is expanding, then there is no phase transition. This follows, since, by Lemma 2.4.8,
we have that limy, e (an+1/a,)* = 1/p* < 1 for all u > 0 and hence, by the ratio test for series
convergence, p(u) < oo, for all u > 0. In particular, fo. = 0 and p(t.) = oo.

If o is expansive of exponent 6 > 0, so that #, = w(n)n~9, then Proposition 2.4.7 implies that
there exists Y such that yo(n) ~ Oy (n) and a, = o (n)n~1+8). Consequently, one immediately
verifies that 7., = 1 /(1 + 0). Hence, we now observe that

Yol (”7(1+6)1I/0(n)>ulog (n(yfo(n))*l/(lw))
lim —p*(u) = (1+6) lim i ‘
U oo UN\too Z:;:] (n7(1+6) WO(”))
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We now split the discussion as follows. Firstly, if ¥°° , w(n)'/(1+9)(logn)/n converges, then,
clearly, in the above expression the numerator and the denominator both converge, and hence,
lim,~ ;. —p™ (u) is finite, showing that in this case the system exhibits a phase transition. Sec-
ondly, if ¥°°, w(n)"/U+0) (logn)/n diverges, then we have to consider the following two sub-
cases. If Y, n_ll//()(n)l/ (1+8) converges, then the denominator in the expression for — pt(u)
tends to a finite value, but the numerator clearly does not. So, lim, ; — p T (u) = 0. On the other

hand, if Y2, n~ 'y (n)'/(1+9) diverges, then for every k € N we have that
L (1+6) k) 1
Z:(—l (n(lj(;())l([/o)()n))u —0asu— ro
and hence for every € > 0 and for all N € N, there exists u > 1/(1+ 6) such that
L1 (kD yo (k)
Yot (=048 g (m))

Thus, it follows that

Yo (”_(1+9)‘l’0(n)>ulog (n(wo(n))_l/(l+9))
Z::Zl (’l_(He)l//o(n))”

and hence we have that lim,\ ,_ — pt(u) = o. Therefore, in both of these sub-cases the system
exhibits no phase transition.

Finally, for the interpretation of 7. in terms of the Hausdorff dimension of the Good-type
set Gc(,oa), as stated in the theorem, we have shown above that .. = 1/(1 + 0) for o expansive
of exponent 0 > 0 and ¢, = 0 for o expanding. By Theorem 2.5.5 and Proposition 2.5.8, this

corresponds to the stated Hausdorff dimension. This finishes the proof of Theorem 5.3.2.

> (1—¢)log (N(‘VO(N))_l/(HG))

]

Remark 5.3.3. Note that the Lyapunov spectrum for the Gauss map and Farey map have been
determined in [47]. Moreover, the Lyapunov spectrum for the classical (non-alternating) Liiroth
map has been explicitly stated in [4], where the authors refer to the proof given in [47] for the
Gauss map.

Our second main aim in the present section is to determine the Lyapunov exponent of the map
Fy. In order to do this, the following proposition is essential. In this proposition, we consider the
potential function N : % — N U {eo}, which is given by

N(x) := {
Proposition 5.3.4. Let & be a partition which is either expanding, or expansive of exponent 0
and eventually decreasing. With TI(Lg,x) := liﬁm (Zz;é log | Ly, (L% (x))| / ZZ;&N (L% (x))), we
n—co
then have for each s > 0 that the sets

{xe % :NI(Lg,x) =s} and {x € % : A(Fy,x) = s}

n forxeA,, forneN;
o forx=0.

coincide up to a countable set of points.
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Proof. Let us restrict the discussion to only the a-irrational numbers, that is, all those x € %
with infinite o-Liiroth expansion. Since the a-rational numbers are but a countable set, it is ob-
viously of no consequence to do this. In this case, we then have for each x that Y/ _ (I)N (LE (x)) =

Y i Uk(x). For ease of exposition, set

L, ( Z log

One immediately verifies that the sequence (L (x)/Y;_; ¢x(x)),cy is a subsequence of the se-
quence (F,(x)/n),cy. Thus, if s > 0 and if lim,, . F,,(x) /n = s, that is, if A(Fy,x) = s, it follows
directly that lim, .. L, (x)/ Y}_, fk(x) = s. Therefore, we have for all s > O that

{xe% : A(Fa,x)=s} C{xe % :II(Lg,x) =s}.

L (LK (x ’ Z log(ay,(y)) and F,, ( Z log

Fo(FE()|.

We will now consider the opposite inclusion. The aim is to show that if II(Lg,x) = s then we
also have that A(Fy,x) = s. So, fix s > 0 and suppose that

L,(x)
N(Lg,x) = lim =0 =,
(La) = 100 o ) = *

Let us fix one further notation. Let

k(n) = 0 for 1 <n < {1(x);

= sup{k € N: Y5  ti(x) <n} forn>¢(x).

That is, if £1(x) + ...+ p(x) <n < li(x)+... 4+ Lp(x) + bus1(x), then k(n) = m. Let us also
define j(n) :=n— Zfi"l) /;i(x) and observe that since Llfx(n) (x) € Al and J(n) < Limy41> by
Lemma 5.3.1 we have that

n—1
Ful) _ 1 1 L s Fa(rb(e)] =

:>I'—k

(T (6) + F o (L™ <x>>)

n

Fa(Fo(L'™ (x)))

k(n) .
Z': li(x Lk n (x) n
= k(n)l 1 l< ) . k(r(z)) + ) ‘]( ) (logp :i:Sj(n)). 5.4)
Yot Gx) +j(n) L2 G(x) L2 G(x) + j(n)
Here, the terms €;(,) belong to the sequence (& )ken Which was obtained in Lemma 5.3.1. We
will split the remainder of the proof into two cases; namely, when s = logp and when s #
logp. Let us first consider the case where s = logp. Let € > 0. By assumption, we have that

limy, oo Ly (x )/Zl { Li(x) =logp. Thus, there exists N € N such that if n > N; we have that

4 0,(0) P o
i (logp —g) + oap )<
i T nw e
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k(n)

0 l(x i(n
= k(z):l . l< ) (10gp—|—8)—|— k(n) ]( ) . (logp+8j(n))'
Yl Li(x) +j(n) Yioi bi(x)+j(n)
If it happens that for n > N| we have that € i) <&, since the above is a convex combination, we
obtain that -
logp < n(%) <logp +e&.
n

Otherwise, if €;(,) > &, since lim, . & = 0, it follows that Jj(n) <M, for some M := M(€) € N.
Thus there exists N, € N such that if n > N,, we have that
£ i(n £
lo p—c< k(n) o -~ 1o p+c’
g Y i(x) +j(n) g

where ¢ = sup,,c €. In this case we obtain that

i g(x)

d
(logp+c)/e—1 aneso

Jj(n) <

):1 i(x) - 1— €
) 6(x) + j(n) logp+c¢

Hence, for all n > max{N;,N;}, we obtain

- (lo —£)+L(10 —c)<—"=<lo —|—8+L(10 +c)
logp +c¢ &P logp —c¢ &P - n EP logp +c¢ &P

and rewriting this yields that

1 — F
ogp 8) < n(%) <logp +2¢
n

logp —& < logp —
ogp —& <logp s(logp—l—c <

Since € was arbitrary, we have that lim,,_, F,,(x) /n = A(Fy,x) = logp.
It now remains only to consider the case where s # logp. Continuing further from Equation
(5.4), we obtain that

F, (x) _ 1 k(n)( ) i 1
T )/ T ) z&ux) 1+ X i) ()
Thus, since we have that limy, e Ly () (x) / Zl 1 ¢i(x) = s (by assumption), it suffices to show that

hmn%m](n)/):i:1 li(x) =0.

The basic idea now is to examine the terms of the sequence (L, (x)/ Zl 1 4i(x))nen at time
k(n) and k(n) + 1. Observe that

~(logp £ &j(n)).

o Ly L) —log(ag, )
S = SR, T s )

Zl‘zl E,(x) Zl 1€< )+£k() ( )

L) (1 oe(/an, 0) ki (0)
= lim . .
IR (1 by @/ ZE )
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Recall the present aim: to prove that lim,,_e j(n)/ Zf("l) ¢i(x) = 0. So, by way of contradiction,

suppose that lim,, . j(n )/Zl { Li(x) # 0. Then, since j(n) € {0,1,... 041 (x)}, it follows
that

1)
lim Leny+1 () £0. (5.5)
k(n)g

n—oo Zi:l i(—x)

As each of these terms is positive, it follows that limsup,,_,., {x(n)+1(x)/ Zi.i"l) ¢i(x) > 0 and so
there exists a sequence (n;);cn such that

gk(ni)—b—l (x)
i—yo0 Zk(ni) O(x)

m=1

=c>0, (5.6)

where ¢ could be either finite or infinite. From this, we infer that for large enough i, the quantity

Cetniy+1(%)/ X "’3 {;m(x) is bounded away from zero. Let us mention one general analytic fact.
If (an)nen and (bp)nen are sequences of positive real numbers satisfying the properties that
lim,, (1 4+a,)/(14b,) = 1 and the sequence (b,,) is bounded away from zero for all sufficiently
large n, then also lim, . a,/b, = 1. (Note that this makes no claim about the existence of any
limit of either of the sequences (a,) or (b,).) From this fact and from the discussion above, we
deduce that

- log( gy, () Lek(ny) ()

] =1 (5.7)
T Ly 11 (6 T ()

Also, since the sequence ():]:n(l’% T/ (x)) ;en 18 Increasing, it follows from Equation (5.6) that along

the subsequence (n;);cny we have that

lim ék( D+ (x) = 09, (58)

i—>o0

In view of (5.8), we can apply Lemma 2.4.8 (1) to infer that

. —log(ag, . ()
lim d

oo ek(n[)+l (X)

=logp. 5.9
Finally, combining Equations (5.9) and (5.7), we obtain that

~log(a r<ey,
I = Jim Ckn; ()) (x) logp 21
ie L)1 ( ) Li(n) (x) s

which is a contradiction and hence finishes the proof in the case that s # log p. As both cases are
proved, this finishes the proof of the proposition.

Y

]
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We are now in a position to consider the Lyapunov spectra arising from the maps F. In other
words, we consider the spectral sets {s € R : oy (s) # 0}, arising from the Hausdorff dimension-
function 0y(s), given by

Ou(s) :=dimy({x € Z : A(Fy,x) = s}).

Theorem 5.3.5. Let o be a partition that is either expanding or expansive and eventually de-
creasing. The Hausdorff dimension function of the Lyapunov spectrum associated with Fy is
then given as follows. For

=inf{—¢~(v): v € Int(dom(t))} and ry :=sup{—t"(v):v € Int(dom(t))},

we have that 6 (s) vanishes outside the interval [1/r.,1/r_] and for each s € (1/ry,1/r_), we
have

O (5) = inf (s~ v +1(v))..

Proof. We aim to use the general result of Jaerisch and Kessbohmer again, in the special situation
that the potential y is defined by y/(x) := —n, for x € A,,. Note that by Proposition 5.3.4 we have
that

{xe% :A(Fa,x)=s} = {xe :1(Lg,x)=s}

. ZZ 110g(a€k(x)) }
= XEZ :lim =g
{ n—eo Y lr(x)
Lk
= XxEZ :lim n—l(P k(x) S P
n—ree Zk:() yolLg (x)

It therefore follows directly from Theorem 5.2.6 that for each s € (1/ry,1/r_), we have that

Ou(s) =1*(1/s) =infyeg (s™1-v+1(v)). -

Remark 5.3.6. It is also possible to phrase Theorem 5.3.5 in terms of the a-Farey free energy
function v : R — R, which is given by

v(u) = inf{re R: i ayexp(—rn) < 1}.

The boundary points of the F,; spectrum are given by the asymptotic slopes of the function v.
These are given by s_ := inf{—(loga,)/n : n € N} and sy := sup{—(loga,)/n : n € N}. This
follows, since for each € > 0 and for u > 0, resp. u < 0, we have

> logay, <Y exp(Fnue) — 0 foru — too
Zexp (nu( n +S$:F8)){ > exp (Fug) — +oo for u — +oo.

n=1

Then, for any s € (s_,s ), we have that

Ou(s) = ulgﬂf@ (u—i—silv(u)).
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As in the case of the map Ly, the map Fy, also in some cases displays phase transition be-
haviour. The definition is equivalent to that for the map Ly; we say that the map Fy, exhibits no
phase transition if and only if the -Farey free energy function v is differentiable everywhere. It
turns out that the following holds:

e If o is expanding, then Fy, exhibits no phase transition. In particular, v is strictly decreasing
and bijective.

e If x is expansive of exponent 6 > 0 and eventually decreasing, then Fy, exhibits no phase
transition if and only if « is of infinite type. In particular, v is non-negative and vanishes
on [1,).

For a detailed discussion of these phase transition phenomena for the a-Farey map and the bound-
ary points of the spectrum, the reader is referred to the paper [42].
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5.4 Examples

In this section, we give various examples which demonstrate the diversity of different behaviours
of the spectra given by Theorem 5.3.2 and Theorem 5.3.5 in dependence on the chosen partition
o.. Each partition o under consideration here is eventually decreasing and either expanding or
expansive of exponent 6 > 0.

Our first example is that of the alternating Liiroth map Lo, and the ay-Farey map. Recall
that the partition o is expansive of exponent 1 and is strictly decreasing. In this case we can
explicitly calculate that the starting point of the oy-Liiroth spectrum is given by log?2 and .. is
equal to 1/2. The ogy-Farey spectrum starts at O (this is easily verified for any expansive partition)
and ends at the point (log6)/2. We see that the spectra overlap in the interval (log2, (log6)/2).

S T 77~<
/ ~<
| S~
| - =
21 \
\ |
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\ |
\ |
Al . |
0 1\\ |
N 1 N
\ T ™™
N 0 5 10

Figure 5.2: The oy-Farey free energy function and the o -Liiroth pressure function. The
figure shows the oiz-Farey free energy v (solid line), the oy -Liiroth pressure function p (dashed
line), and the associated dimension graphs 6, and 7, of the alternating Liiroth system.

Let us comment on the value of s for which 74(s) = 1. In order to calculate this, we have
to find the maximum value of the Legendre transformation of the pressure function p. By con-
vexity, this maximum must be at the point u = 1. Therefore, To(s) = 1 when s = —p/(1) =
Y~ ianlog(ay,). Recall from Remark 3.2.4 that in case « is expansive of exponent 6 > 0 or
expanding, this value is also equal to the measure-theoretic entropy of the map Ly with respect
to the Lebesgue measure. It therefore follows from considerations of 7. that for partitions o that
are expansive of exponent 6 > 0 or expanding, the measure-theoretic entropy of the map Ly is
finite.
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Figure 5.3 below shows the o-Farey free energy v, the o-Liiroth pressure function p and the
associated dimension graphs for the partition o defined by a,, := { (3)_l n=3, where ¢ denotes
the Riemann zeta function. The partition « is of finite type, due to Proposition 2.4.6. Therefore,
by Remark 5.3.6, Fy, exhibits a phase transition. However, since it is clear that )~ a% diverges,
where #.. = 1/3, we have that p(t..) is infinite and so L, exhibits no phase transition.

A\ 4

0 5 10
Figure 5.3: Phase transition for the a-Farey free energy function, no phase transition for
the the a-Liiroth pressure function with ¢ expansive of exponent 2. The a-Farey free energy
v (solid line), the «-Liiroth pressure function p (dashed line), and the associated dimension

graphs for a, := { (3)_1 n=3. Here, F, has a phase transition, namely, p is not differentiable at
1, whereas L, exhibits no phase transition and p(f..) = oo.
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Figure 5.4 shows the a-Liiroth pressure function p, and the associated dimension graph for
the o-Liiroth system defined by the partition o which is given by a, := n~2- (log(n+5))~*/C,
where C := ¥~ n 2+ (log(n+5))~*. Since the partition « is expansive of exponent 1, we
immediately obtain that f., = 1/2. We have that p(t.) is finite, since

= 1 2 > 1
Z n(log n+5)) = (@) +,§’2n(log(n))2

n:

< /°° 1 J /°° du
e — X = _

5] x(logx)2 log2 u?

B 1

~ log2

However, we have in this case that lim,_,; —p™(t) = +o, where the reader might like to
recall that p* () = (X0, &, -log(an)) / (Yo, d,). Indeed, this follows directly from the fact that

Y dylog(1 /) = X0 2(1og(n+5) ) logoog(n+5))
n=1 n=1

= log(n+5)
< —al .
>~ al Og aj +HZZ (10g(n—|—5))4)t

This means that the map L, exhibits no phase transition. Alternatively, this can be proved via
the fact that ¥°°_, w(n)'/(14+)(logn) /n converges (as in the condition stated in Theorem 5.3.2
for the existence of phase transitions).

A 4

+0o0

0 12 1\ | | | .

0 5 10
Figure 5.4: Finite critical value p(f..) < o and no phase transition for the a-Liiroth pressure
function and o expansive. The «-Liiroth pressure function p, and the associated dimension

graph for the a-Liiroth system with a, :=n"2- (log(n+5))~*/C, where C:= Y~ n"2- (log(n+
5))~*. In this case t.. = 1/2 and p(1/2) < oo, but L exhibits no phase transition.



104 CHAPTER 5. LYAPUNOV SPECTRA FOR Fy AND Ly

Our next example shows the o-Liiroth spectrum for a partition ¢ that is expansive with expo-
nent 1 and exhibits a phase transition. Firstly, it is clear that p(t.) = p(1/2) =log},_; ay? < o,
by the comparison test for series convergence, where the series we are comparing with is that
given by the partition in the example directly above. In this case, in contrast to the preceding ex-
ample, we also have that Y°°_, ¢ (n)'/?(log(n))/n converges, where ¢ (n) := 1/C- (log(n+5))"/2.
To show this, we make the following calculation:

> 1 1/2 log(n) & log(n) > 1
L (<1og<n+s>>6) n~ Lonllogn+5)° = L nflog()) =

Then, in light of Theorem 5.3.2, we have that L, exhibits a phase transition.

For this example, we can also calculate that the value of z_ := inf{—loga, : n € N}, which
is achieved for n = 1, is equal to log(C(log6)'?). Recall that for each s € (r_,o0) we have
that 74 (s) = inf,cg {u+s~!'p(u)}. The dashed line for the latter part of the spectrum pictured
in the right-hand side graph in Figure 5.5 indicates that part of the spectrum which does not
come from the real-analytic part of the pressure function, i.e., if 7y := lim,_,;_ —p™ (¢), which
we have just shown to be finite, the dashed line denotes that part of the spectrum for values of
s that lie in the interval (fg,e0). In this part of the spectrum, we can explicitly calculate that
Ta(s) =57 plte) +1e = 57 - l0g (L) 6)7) + oo

+o0

—
—_— e —
-_—

»

0 T T— ) S

Figure 5.5: Finite critical value p(t.) < - with phase transition for the a-Liiroth pressure
function and o expansive of exponent O = 1. The «-Liiroth pressure function p, and the
associated dimension graph for the a-Liiroth system with a,, :=n~2- (log(n+5))~'2/C, where
C:=Y,>1n 2 (log(n+5))"'2. In this case t» = 1/2 and p(1/2) < o and Ly has a phase
transition, namely, p is not differentiable at 1/2. The dotted line in the left-hand side graph has
slope equal to the right derivative of p at the point 7.




5.4. EXAMPLES 105

In Figure 5.6 below, an example of a partition for which the spectral set of the o-Liiroth
map and that of the o-Farey map intersect in a single point is shown. Let o be defined by the
condition a,, := { (5/4) "' n~3/* for each n € N. Then the the partition  is expansive of exponent
0 = 1/4. In particular, by Proposition 2.4.6, we have that ¢ is of infinite type and thus, according
to Remark 5.3.6, it follows that Fy, exhibits no phase transition. It is clear that for f.. = 4/5 we
have that p(f.) is infinite and so L exhibits no phase transition either. One immediately verifies
that7_ = sy =1log({ (5/4)).

As has been shown in [47], the spectral sets of the Farey map and Gauss map intersect at the
single point 2log((v/541)/2). As the examples above have already demonstrated, for the linear
systems considered here this is by no means canonical.

\1_“ ‘ 17 /—‘\\§~
\ / T —
Yoo
\ :
: > |
| .'
\
I
—1' \\ I
\ |
\
\ ; . >
D o\ 0 10 20

Figure 5.6: The -Farey spectrum and the ¢-Liiroth spectrum intersect in a single point, for
o expansive. The a-Farey free energy v (solid line), the a-Liiroth pressure function p (dashed
line), and the associated dimension graphs for a,, := £ (5/4) ' n=%/4,

The next example, illustrated in Figure 5.7 below, is of a situation that is in some sense as
far from the preceding one as it is possible to get. For the expanding partition o defined by
ap :=2-37" for all n € N, we have that the spectral set of F is completely contained in the
spectral set of Ly. It is easy to show that 7 := inf{—1log(a,) : n € N is in this case given by
log(3/2). From Remark 2.3.6 and Example 2.3.5, we can calculate that s_ = log(3/2) and
s+ =log(3).

Let us make a few further remarks on the starting point of the spectrum oy,. If & is a partition
which is expanding and eventually decreasing, as in the example shown in Figure 5.7, it follows
that s_ > 0, whereas 0y (s_) can be either zero or strictly positive. To see that s_ > 0, it is
sufficient to recall that for any € > 0, if n is large enough, we have that

an < (ﬁ) 5 (5.10)
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where | < p :=limy ety /thy1 = lim, e ay/a,+1. Fix € > 0 small enough that p — € > 1 and
let N € N be such that (5.10) is satisfied for all » > N. It follows that

) —logay, . [ —loga; —loga; —logan
_:=inf : > 1 — .
s 1n{ . nEN}_mm{ LT, T Jog(p—€) >0
4_ 1'“ f'\
| \\
/
‘ | \\
‘ I SQ
2 | ] AN
\ ' \\
\
\
\
\
\
) N 2 ]
AN
\\\ . . >
= 0 2 4

Figure 5.7: The set of points for which the -Farey spectrum is non-zero is completely
contained in the set of points for which the ¢-Liiroth spectrum is non-zero, for o expanding.
The o-Farey free energy v (solid line), the a-Liiroth pressure function p (dashed line), and the
associated dimension graphs for the o-Farey and o-Liiroth systems with @, :=2-37", n € N.
The a-Farey system is given in this situation by the skewed tent map with slopes 3 and —3/2.

On the other hand, if & is expansive of exponent 8 > 0 we always have that s_ = 0 and
0¢(0) = 1. In order to see that 64 (0) = 1 is in fact true for any such partition ¢, one argues
as follows. If « is a partition of finite type (recall that this means that )", #, < o), then the
proof follows along the lines of the proof of [30, Proposition 10]. However, if « is of infinite
type, then this follows from the fact that A(Fg,x) = 0, for A-almost all x € 7. To see why this
last statement is true, we turn to Hopf’s Ratio Ergodic Theorem [37] ( also see [86], for a very
neat proof). This theorem states that if T is an ergodic measure-preserving transformation on the
o-finite measure space (X,.«7, ) and if f,g € L' () with g > 0 and [y g du > 0, then

. Snf(x) fo d.u
1 —
i 5,8(x) Jxgdu’

for u-a.e. x € X.

Therefore, letting u = A, T = Lg, f = ¢ and g = N, as in Proposition 5.3.4, we obtain, for A-a.e.

x € %, that

lim Sno (x) _ Y,—1anlogay, _ Z;"zlanlogan'

n—reo SnN(x) 21010:1 n-ap Z::zl Iy
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Since for any « that is expansive of exponent 6 > 0 we always have that } )", a,loga, is finite
(see the discussion after Figure 5.2, above), if ¢ is of infinite type, that is, if & is such that )~ ¢,
diverges, it is clear that the limit above is equal to O for A-a.e. x € %/. Thus, by Proposition 5.3.4,
A({x € : A(Fy,x) =0}) =1 and so dimy ({x € % : A(Fg,x) =0}) = 1. This finishes the
proof of the claim.

So far, each example that we have shown for the Lyapunov spectrum of the o-Liiroth map
has 74(7—) = 0 and each example shown for the a-Farey map has oy (s+) = 0. However, this is
not necessarily always the case. For instance, if we let @ be a partition with a; = a; and with
all other partition elements having smaller measure, it follows immediately that the Hausdorff
dimension of the set {x € % : A(Lq,x) = —loga;} is at least equal to log2/(—logay), since it
contains a Cantor set of this dimension.

Also, let o be a partition such that a; = ,/a; and all other elements have smaller measure. In
this case, we have that

—loga; —loga, —logas
172 73

—logas
307

s+ = sup{ ,...} =sup{—logay, ..} =—logay.

One immediately verifies that for any x = [£|(x),¢2(x),...]q € % with all entries satisfying
li(x) € {1,2}, we have that A(Fy,x) = —loga;. Therefore, the set {x € % : A(Fy,x) = s+}
at least contains a so-called asymmetric Cantor set. The Hausdorff dimension of this Cantor set,

say C, is given by Hutchinson’s formula, namely,
dimy (C) =s, where a}+a5=a+a? =1.

It is straightforward to verify that the value of s satisfying Hutchinson’s formula for the set C is
given by s = (log((1++/5)/2))/(—1logay). Finally, we then have that 64 (s ) > dimg(C) > 0.

It is worth pointing out here that for the partition ap, which is defined by setting a, := 27",
we have that s_ = s = log?2. Therefore, in this case the ap-Farey spectrum is trivial. However,
we still obtain a proper spectrum for the op-Liiroth map.
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Chapter 6

Good sets and strict Jarnik sets for
geometrically finite Fuchsian groups

In this chapter we will study certain subsets of the limit set of a non-elementary Fuchsian group.
Throughout we assume that the group in question is geometrically finite and has one parabolic
element. The sets we are interested in are analogous to those considered in Theorem 2.5.4 and
Theorem 2.5.10 for the o-Liiroth system. The chapter will be organised as follows. In Section
6.1, we give the basic facts necessary from hyperbolic geometry to describe the set-up in the
subsequent sections. In Section 6.2, we describe a certain collection of subsets of S! that will be
used to calculate the Hausdorff dimension results we obtain in subsequent sections. In Section
6.3, we define 7-Good sets for a group G and study the Hausdorff dimension of these sets as T
tends to infinity. In Section 6.4, we define sets analogous to those given in Section 2.5.2 and use
them to obtain the Hausdorff dimension of the strict-Jarnik limit set for G. Finally, in Section
6.5, we apply the results of Section 6.4 to derive a weak multifractal spectrum for the Patterson
measure.

6.1 Hyperbolic Geometry preliminaries

In this first section, we gather together all the background material from Hyperbolic Geometry
necessary to understand the subsequent sections. The treatment here is fairly brief; further details
may be found in the books of A. Beardon [7] and P. Nicholls [62].

6.1.1 The Poincaré disc and upper half-plane models

Let us begin by defining the space and the metric comprising the Poincaré disc model (D?,d),)
of 2-dimensional hyperbolic space.

Definition 6.1.1.

1. Let D? denote the interior of the unit ball in the complex plane, that is, let

D*:={z€C: g < 1}.

109
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Denote by S! the boundary of this disc, that is,

St:={zeC:|z]=1}.

2. Let A : D? — R be given by
2
A(z):

«— —l — ‘Z‘z,

for all z € D?. Then the metric dj, : D? x D> — R¥ is given by

dp(u,v) := inf{/?t(z)|dz| : 7 is a smooth curve joining u and V} :
Y

Remark 6.1.2. It is immediately apparent from the definition that the function d}, is positive and
that the triangle inequality dj,(z,w) < dj,(z,u) +dj,(u,w) holds for all z,w,u € D?. It is also clear
that if x = y then dj(x,y) = 0. To show that this is a metric, it only remains to show that the
converse of this last statement also holds. For this, we refer to [7].

Recall that a map g : D* — D? is said to be a conformal automorphism if and only if it
is bijective, differentiable and preserves angles (magnitude and orientation) between smooth
curves in D2, The set of all conformal automorphisms of ID? forms a group under composition
of mappings. This group will be denoted by

Con(1) := {g: g is a conformal automorphism of D*} .

The elements of Con(1) are a certain type of Mdbius transformation'. It can be shown that if
g € Con(1), then there exist complex numbers a and ¢ with the property that |a|? — |c|*> = 1 and

az+c¢
_Ez—i—a.

8(2)
Lemma 6.1.3. For each g € Con(1) we have that

1 ¢ ()| = 1-lg@)” for all z € D?. In particular, |¢'(0)| = 1 — |g(0)|%.

1—[z]?

X — 2
2. BEERE = ¢ @18 O)

e—y[?

. . . _ +7‘
Proof. By direct calculation, letting g(z) = £

0

In the sequel, we shall be interested in subgroups of the group of isometries of hyperbolic

space with respect to the hyperbolic metric. Recall that an isometry is a transformation of a

metric space that preserves distances between points. We now show that the elements of Con(1)
are isometries of the metric space (D?,d},).

"For more information regarding general Mobius transformations, the reader is referred to the book Visual Com-
plex Analysis, by Needham [61].
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Proposition 6.1.4. For each g € Con(1) we have that
dy(z,w) = dy(8(2),g(w)) for all z,w € D*.
That is, g is an isometry of (D?,dy,).

Proof. Let ybe a smooth curve between z and w and let g € Con(1). Then, using the substitution
u=g(v), Lemma 6.1.3 yields

/ 20dul 28’ 0)lldv] [ 2ldv|
s L=[ul Sy T=[gW)P Sy I—|v]’

Therefore, since elements of Con(1) map smooth curves onto smooth curves, taking the infimum
on both sides gives the desired result.

OJ
We now give one explicit formulation of the hyperbolic distance between points of the unit
disc. There are, of course, a great many other such formulae. For more details we refer to [7].

Lemma 6.1.5. For all 7 € D?, we have that
1
dp(0,z) = log ( + ’Z|> .
1—|z]

Proof. This result can be found in Section 7.2 of [7].

g

Corollary 6.1.6. Hyperbolic geodesics in D? are given by Euclidean straight lines through the
origin, or circles orthogonal to S'.

Proof. The fact that a hyperbolic geodesic through the origin is a Euclidean straight line is ob-
tained in the proof of Lemma 6.1.5. The second half of the statement follows from the fact that
each g € Con(1) consists of a composition of translations, rotations and reflections.
g
In addition to the Poincaré disc model, we will also have occasion to use the upper half-plane
model of hyperbolic space, which we now define.

Definition 6.1.7.
1. Let H denote the upper half of the complex plane C, so
H:={z=x+iyeC:y>0}.
The boundary of H is then the set R U {oo}.

2. The metric in the upper half-plane is given by the map dy : H x H — R™, which is defined
for all z,w in H by
|dz]

dp(z,w) := inf { — : vis a smooth curve between z and w} :
vy
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The geodesics in H are either vertical Euclidean straight lines or semicircles orthogonal to
the real axis. The following lemma is an easy consequence of this fact.

Lemma 6.1.8. For all z,w € H with Re(z) = Re(w), we have that

Im(z)
Im(w) |

log

dH(Z,W) =

The reason for having more than one model of hyperbolic space is purely practical - some
results are easier to phrase in terms of one model than another. In order for this to make sense,
though, the models must be equivalent in some way. The equivalence we require is conformal
equivalence, which means that there exists a conformal map from one model to the other. We
will now define a conformal map from H to D?. Consider the following three maps:

e Let p; be reflection at the line {z =x+iy € C:y=0}, so
p1(z) =73,
where 7 denotes the complex conjugate of z.

e Let py be the reflection at the circle centred at i with radius \/E, SO

2
p2(z) ::i+< V2 ) (z—1).

|z~

e Let p3 be the map given by clockwise rotation around 0 by 7, so
p3(z) := —iz.

Note that each of these three maps is obviously conformal. Now let @ := p3op, o0 py. It is easily
verifiable that ®(H) = D?, ®(R) = S'\ {1} and ®({eo}) = 1. Also, it is easy to check that, for

each z € Hi,
z+1

z—1

z—1i -1 .
d(z) = —— and P (z) = —i
@)= g

Definition 6.1.9. The map @ : H — D? is called the Cayley transformation.

It can be directly calculated that dy(z,w) := dj(P(z),P(w)) for each z,w € H. Also, the
group of isometries of (H, dy) can be obtained by conjugating with Con(1), that is,

Isom(H) = & 'Con(1)®.

Furthermore, the group of isometries of (H, dp) is isomorphic to the group PSL,(R), where

PSL,(R) ::{( Ccl Z ) :a,b,c,d,e Rand ad — bc = 1}/{il}.
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The quotient here indicates that we identify the elements ( Z Z ) and ( :‘CZ :Z )

The group PSL(R) acts on H via linear fractional transformations. That is, the action is de-
scribed by the function yg which is given by

Yy - PSLz(R) x H — H,

where for each g = ( CCZ Z ) € PSL,(R) and z € H, we have
az+b
Vi(s:2) =g(x)=_——

6.1.2 The cross-ratio and some hyperbolic distance estimates
Let us begin by recalling the definition of the cross-ratio.

Definition 6.1.10. The cross-ratio of four points x,y,z,7 in HUR U {eo} is given by

2] = D
X, ¥,Z, =T -
vy —2)(t—x)
A straightforward calculation shows that this quantity is always equal to a real number.
Let us now consider the following situation. Let x and y be two distinct points in the upper-
half plane. Suppose that either Re(x) < Re(y), or, if Re(x) =Re(y), suppose that Im(x) < Im(y).

Let & and 1) denote the start and end points of the oriented geodesic that joins x to y (see Figure
6.1).

iR

3 n K

Figure 6.1: The oriented geodesic through x and y with startpoint £ and endpoint 7.

In this situation we have an extremely useful hyperbolic distance formula, which is given in
the following proposition.
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Proposition 6.1.11. Let x,y, & and 1 be as described above. Then

d]HI(xay) = log([ 7§7x’n])'

Proof. Let g(z) := (az+b)/(cz+d) € PSLy(R). Then, using the fact that g'(z) = 1/(cz +d)>,
it can be shown that the cross-ratio is g-invariant. In other words, for all g € PSL,(R) and all
distinct points x,y,z,t € HURU {e}, we have [g(x),g(y),g(2),g(t)] = [x,y,2,t]. Now define the
map g € PSL,(R) by setting

=6

g(z):= .

This map sends & to zero and 1) to {eo}, therefore it maps the points x and y to two points on the
imaginary axis, say ia and ib, respectively. Then, by Lemma 6.1.8, we have that

d]HI(xay) = dH(g(x).ng))):log(b/a)
= loggilb =log([ib,0,ia,])
= log([g(v),&(&),g(x),g(n)]) =log([y, &, x,n)).

6.1.3 Triangles and circles

Another feature peculiar to hyperbolic geometry is the the double triangle inequality. This comes
from the hyperbolic cosine rule, which we now state.

Proposition 6.1.12. With a,b and c referring to the hyperbolic lengths of the three sides of an
arbitrary hyperbolic triangle and 0 referring to the angle opposite the side of length c, we have

coshc = coshacoshb — sinhasinhbcos 6.

Proof. This result can be found in Section 7.12 of [7].
U
If the triangle in question is right-angled, Proposition 6.1.12 reduces to what is often known
as the hyperbolic Pythagoras’ Theorem.

Corollary 6.1.13. With a,b and c referring to the hyperbolic lengths of the three sides of a
right-angled hyperbolic triangle, where c is the length of the side opposite the right angle, we
have

coshc = coshacoshb

The double triangle inequality is given in the following corollary. Note that it is only valid if
the angle 0 is bounded away from zero.

Corollary 6.1.14. With a,b,c and 0 as above, there exists a positive constant K := K(0) such
that
at+b—K<c<a+b.
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Proof. The right-hand side of this inequality is simply the ordinary triangle inequality. For the
left-hand side, from Proposition 6.1.12 and the definitions of the functions cosh and sinh, we
obtain that

20 +e€) = (e“+e (P +e?)—(e"—e ) (" —eP)cosh

b

> eteb —e%ePcos = e%e?(1 —cosh).

Hence, 4¢¢ > ¢ (1 —cos0) and so we infer that

1—cosO
c>a+b+log —a /)

Therefore, by setting K := log (ﬁ) , the proof is finished.
U
Finally in this section, we discuss hyperbolic circles. Directly from Lemma 6.1.5, it follows
that if C,(R) denotes the Euclidean circle around the origin of radius R and Cj(r) denotes the
hyperbolic circle around the origin of hyperbolic radius r, then C,(R) = Cj,(r) if and only if

r=1og((1+R)/(1 —R)). From this, we deduce the following lemma.

Lemma 6.1.15. With £(Cy(r)) referring to the hyperbolic length of the hyperbolic circle Cy(r),
we have for every r € R,

Z(Cy(r)) = 2msinh(r).

Proof. This is a straightforward calculation using the integral definition of hyperbolic length.
U

Corollary 6.1.16. The statement of the previous lemma holds for any arbitrary hyperbolic circle,
that is, for hyperbolic circles centred at any point z € D?.

Proof. This is proved by first noting that any hyperbolic circle is the image under some hyper-
bolic isometry g € Con(1) of a circle centred at the origin. It is then not difficult to show that

Z(Cu(r)) = Z(g(Cu(r)))-
O

Corollary 6.1.17. For all sufficiently large r,
Z(Cp(r)) xe".
This last statement should be contrasted with the corresponding statement for Euclidean cir-

cles, which is that the Euclidean length of a circle of Euclidean radius R is equal to 27tR, so the
length grows linearly.
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6.1.4 Classification of isometries

In this section, we give a classification of hyperbolic isometries in terms of fixed points and
geometric actions. For convenience, we will work in the upper half-space model, but it is to be
understood that all results here are also valid in the disc model of hyperbolic space (or, for that
matter, any other model).

Let g € PSLy(R). Then g is of the form g(z) = ?;j:s where a,b,c and d are real numbers. It
is clear, on setting g(z) = z, that the fixed points of g are the roots of a quadratic equation with
real coefficients. These will either be two points in R U {eo}, one point in RU {eo} or complex
conjugate roots, giving one fixed point inside the upper half plane. We make the following

definition.

Definition 6.1.18. Each element g of PSL(2,R) is of exactly one of the following three forms:

1. gis said to be hyperbolic if g has exactly two fixed points and these lie on the boundary of
hyperbolic space.

2. g is said to be parabolic if g has exactly one fixed point that lies on the boundary of
hyperbolic space.

3. gis said to be elliptic if g has exactly one fixed point that lies in the interior of hyperbolic
space.

It is a fact that the isometries of hyperbolic space are triply transitive. That is, if (z1,22,23) is
any distinct triple of points in hyperbolic space or its boundary, and (z},z},23) is any other such
triple, then there exists a unique element of PSL;(R) which maps z; to z} for i = 1,2,3. (This is
true of general Mobius transformations and can be proved via the cross-ratio.) In particular, we
can map the fixed points of a hyperbolic transformation to the points {0, o}, the fixed point of
a parabolic transformation to {eo} and the fixed point of an elliptic transformation to {i}. The
isometry is then said to be in standard form.

In the sequel, we will be mostly interested in parabolic points. We have the following propo-
sition.

Proposition 6.1.19. Let g € PSLy(R). Then g is parabolic if and only if the standard form of g
is given by a translation z — z+ B, for non-zero B € R. So the standard form of g maps every
horizontal Euclidean straight line in H into itself. More generally, if g is parabolic then there
exists a Euclidean circle tangent to R or a horizontal Euclidean straight line in H left invariant

by g.

Proof. Denote the standard form of g by ¢ : z+ (az+b)/(cz+d) and suppose that it is parabolic
and fixes {eo}. By considering the fixed point equation, we immediately obtain that ¢ = 0. So,
8(z) = (az+b)/d. If a/d # 1, the map g would also fix the point z = —b/(a — d). In that case,
the map g would be hyperbolic, not parabolic. So, a/d = 1. It is also required that ad = 1, which
implies that a = d = £1. It follows that §(z) = z+ b or g(z) = z— b, for some b > 0. This proves
the first assertion of the proposition. From this, the second statement follows.
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Finally, note that if 2 € PSL,(R) is such that 4 does not fix the point at infinity, then the
map hgh~! is parabolic with fixed point /({eo}). One immediately verifies that the image of a
Euclidean horizontal straight line under such a map # is a Euclidean circle which touches R at
the point 4({e}). Consequently, all of these circles are left invariant by the map hgh~!.

0

These circles and straight lines are called horoballs. In the Poincaré disc model of hyperbolic
space, the horoballs are Euclidean circles internally tangent to S!.

6.1.5 Fuchsian Groups

We can equip the group PSL,(RR) with a topology inherited from R* by identifying the matrix
( ccl z ) with the vector (a,b,c,d) € R*, then defining the norm on PSL,(R) to be the Eu-

clidean norm on R*. This norm then induces a metric, which in turn induces the metric topology.
Recall that a set E in a topological space (X, 7) is discrete if for each e € E there exists an open
subset G € 7 such that ENG = {e}. We make the following definition.

Definition 6.1.20. Let G be a subgroup of PSL,(R). Then G is said to be a Fuchsian group if
and only if G is a discrete subset of the topological space PSL,(R).

Another way to describe a Fuchsian group G is in terms of properly discontinuous group
actions. We say that a group G acts properly discontinuously on a metric space X if and only if
the orbit G(x) := {g(x) : g € G} is locally finite for all x € X. That is, given an orbit G(x), every
compact subset K C X contains at most finitely many points of G(x). Note that the statement
that a group acts properly discontinuously is equivalent to the statement that each orbit of G is a
discrete set of points.

Proposition 6.1.21. Let G be a subset of Con(1). Then G is Fuchsian group if and only if G acts
properly discontinuously on D?.

Proof. See Theorem 5.3.2 in [7].
[l

Definition 6.1.22. Let G be a Fuchsian group. A fundamental domain F for G is an open subset
of D? such that the following conditions are satisfied.

geG

2. g(F)Nh(F) =0, forall g,h € G with g # h.

Thus, each fundamental domain for a Fuchsian group G gives rise to a tessellation of hyper-
bolic space. Let us now describe a particular type of fundamental domain. Let G be a Fuchsian
group acting on ID? and let zg € ID? be a point that is not fixed be any elliptic element of the group
G. Then the Dirichlet fundamental domain D,,(G) of G at the point z is given by

D, (G) :={z € D* : dy(z,20) < di(z,8(20)) Vg € G/{id}}.
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Alternatively, for each g € G/{id} consider the perpendicular bisector of the geodesic segment
joining z and g(zg). This divides D? into two half-spaces. With H, referring to the half-space
containing zp, we have that
D,(G)= () H,.
geG/{id}

That D, really is a fundamental domain requires proof, but we leave this to the reader. As usual,
this definition could equally well have been written in terms of H.

Example 6.1.23. Consider the group

PSL,(Z) ::{( Ccl Z ) :a,b,c,d,€ Z and ad — bc = 1}/{i1}.

This group is referred to as the modular group. The modular group is generated by one parabolic
element P and one elliptic element Q, where

1
P(z)=z+1 and Q(z) = -
It is clear that this is a discrete subgroup of PSL,(R). It can be shown that the region bounded
by the lines Re(z) = 1/2, Re(z) = —1/2 and the unit circle is the Dirichlet fundamental domain
at the point zo = 2i for the modular group. (A proof of this fact is contained in Appendix B.)

We can use the notion of a Dirichlet fundamental domain to obtain an important theorem for
Fuchsian groups. In the following discussion, let D, (G) refer to a Dirichlet fundamental domain
for a Fuchsian group G constructed at the base point zg. The region D, (G) is a hyperbolic
polygon in D> US! (in a wider sense than is usual, since we allow vertices and edges on S' and
allow the possibility that there be infinitely many edges) . Let us consider the edges which bound
the polygon D, (G), where we let s, denote the edge that is part of the perpendicular bisector of
the segment joining zq to g(zp). Observe that

z€5 & di(z,20) = di(z,8(20)) & di(g™'(2),8 ' (20)) = dnlg™'(2):20) & &' (2) € 541

In other words, we have that for the edges s, which bound the polygon D,,(G) we have that

g (sg) = sg-1 and g(s,-1) = sg.

We refer to these identifications of edges under elements of G as the side-pairing transformations
of G. Note that if g is a parabolic element that is also a side-pairing transformation, then the sides
that are paired by g will meet at the fixed point of g.

Theorem 6.1.24. The side-pairing transformations of a Fuchsian group G for a Dirichlet funda-
mental domain D, (G) are generators of the group G.

Proof. See Theorem 9.3.3 in [7].
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Definition 6.1.25. A Fuchsian group G is said to be geometrically finite if there exists a funda-
mental domain for G with only finitely many edges.

From the example given above of a fundamental region for the modular group, it is apparent
that the modular group is geometrically finite.

Remark 6.1.26. A Fuchsian group G is geometrically finite if and only if G is finitely generated.
This can be deduced immediately from Theorem 6.1.24. (The equivalence no longer holds for
discrete groups of isometries of higher dimensional hyperbolic spaces.)

Recall that a Riemann surface is a connected, analytic, complex 1-dimensional manifold. A
Riemann surface S is called simply connected if every closed curve on S can be continuously de-
formed into a single point (so the surface of the 2-sphere is simply connected, whereas the torus
is not). Itis a very deep theorem in the theory of complex functions - the Riemann Mapping Theo-
rem, sometimes called the First Uniformization Theorem - that every simply connected Riemann
surface is conformally equivalent to one of C, CU {eo} or D?. Further, the Second Uniformiza-
tion Theorem states that every Riemann surface S is conformally equivalent to a quotient S/G for
some simply connected Riemann surface S and for some group G of conformal automorphisms
which acts properly discontinuously on S. The quotient S/G comprises equivalence classes of
points in S, where two points are equivalent if and only if they belong to the same G-orbit. If we
are in the case where S is conformally equivalent to D%, then every properly discontinuous group
G is a Fuchsian group. So, here we always have that a Riemann surface conformally equivalent
to ]DDZ/ G is represented by a fundamental domain for the action of G. We can also think of this
the other way around - that every Fuchsian group G has an associated Riemann surface, obtained
by “gluing” the edges of a fundamental domain F for G.

In the figures below, we illustrate various types of surfaces obtainable as the Riemann surface
associated to a Fuchsian group. Figure 6.2 shows a compact surface, which occurs when the
fundamental domain of the group G does not have any vertices on S! and also shows an example
of a surface with funnels. This happens when the fundamental domain has edges contained in
S!. Finally, going back to the example of the modular group, in Figure 6.3 we see the modular
surface. This surface has what is known as a cusp, which happens when the group G contains a
parabolic element. There is then a parabolic fixed point as a vertex of the fundamental domain.

6.1.6 The Limit Set of a Fuchsian Group

Definition 6.1.27. Let w € D? (or H) be given. Then the limit set L(G) of the Fuchsian group G
is the set

L(G) :={& € CU{eo} : & is an accumulation point of the orbit G(w)}.

In fact, the limit set is independent of the choice of w in this definition. This definition implies
that the limit set of a Fuchsian group is always a closed set. We also have that the limit set is G-
invariant, meaning that g(L(G)) = L(G) for each g in G. It is a consequence of the discontinuous
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Figure 6.2: On the left is an example of a Fuchsian group whose associated Riemann surface is
compact. On the right is an example of a Fuchsian group whose fundamental domain has edges
at infinity, which leads to a Riemann surface with funnels.

S
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Figure 6.3: The usual fundamental domain for the group PSL,(7Z) and the modular surface.
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action of a Fuchsian group that L(G) C S'. It is a well-known fact that if L(G) has more than two
points, then L(G) has uncountably many points. We say that G is elementary if L(G) is either
empty (so G generated only by elliptic elements), or consists of only one or two points (so G
generated by either a single parabolic element or a single hyperbolic element). Otherwise, G is
said to be non-elementary. From this point on, we always assume that G is non-elementary.

Let us now define certain subsets of the limit set L(G). First we fix some notation. Let s¢
denote the hyperbolic ray from the origin to the point & € S! and, for r € R, let & be the point
on s¢ such that d;,(0,&;) = . Also, for a Fuchsian group G and ¢ > 0, define A(&;) by setting
A(&) :=dy(&,G(0)). In other words, A(&;) is the smallest hyperbolic distance from the point &
to an orbit point of 0.

Definition 6.1.28. Let G be a Fuchsian group. A point & € L(G) is said to be a radial limit point
if there exists a positive constant ¢ such that

liminfA(&) < c.

Denote the set of radial limit points by L,(G). A point 1 € L(G) is said to be a uniformly radial
limit point if there exists a positive constant ¢ such that
limsupA(&) < c.
t—o0
Denote the set of uniformly radial limit points by L, (G). Finally, let L,(G) denote the set of
parabolic limit points, where a point p is parabolic if it is the fixed point of some parabolic map
in G.

Geometrically, a point & € L(G) is a radial limit point if the ray s¢ intersects infinitely many
balls of radius ¢ around orbit points of 0 and & is a uniformly radial limit point if the ray sg 18
covered by such balls. Note that a parabolic fixed point cannot also be a radial limit point.

It is sometimes helpful to imagine each limit point & of G as represented by the geodesic ray
sg from O to &. So, if L(G) is the whole of S, every geodesic direction from 0 represents a limit
point. If L(G) is a proper subset of S!, certain directions do not represent limit points. On the
Riemann surface M(G) associated to G, the limit points are represented by all those geodesics
which do not escape out of a funnel. The parabolic limit points are represented by geodesics
which end up in a cusp.

The following result is due to A.F. Beardon and B. Maskit [8].
Theorem 6.1.29. Let G be a Fuchsian group. Then G is geometrically finite if and only if

L(G)=L,(G) ULp.
Definition 6.1.30.

1. For any Fuchsian group G, the Poincaré series is defined for s € R and x,y € D? to be

Zs(xay) = Z e_Sdh(xvg()’)).

geG
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2. The exponent of convergence 8(G) of a group G is defined to be the infimum of all those s
for which the Poincaré series converges. That is,

3(G): =68 :=inf{s € RT : ¥ (x,y) < oo}

More explicitly,
oo for s < J;
<o fors> 4.

Y (x Y ) = {
From the triangle inequalities

dn(x,8(y)) < dn(x,y) +dn(y,8(y)) and dp(x,g(y)) > dn(y,8(y)) — dn(x,y),

we can see that
efsdh(xo’) Zs(%y) < Zs(x,y) < €Sdh(x’y) Zs(yvy)a

so the convergence depends only upon G and not upon the points x and y and we are justified in
writing simply 0 (G). Note that without some more information we do not know if the Poincaré
series diverges or converges at 6. So we define a group G to be of divergence type if the Poincaré
series Y (x,y) diverges at the critical exponent s = 0 and say a group G is of convergence type
otherwise. It was proved by Sullivan [79] that if G is a geometrically finite Fuchsian group, then
G 1s of divergence type. The proof is decidedly non-trivial and we do not reproduce it here. This
divergence at the critical exponent is important for the definition of the Patterson measure (see
Appendix A).

It is a result of Bishop and Jones [12] (see also the paper of Stratmann [77]), that for any
non-elementary Fuchsian group G,

dimp (Luy(G)) = dimy (L.(G)) = 8(G).

Combining this result with Theorem 6.1.29 above implies that if G is a geometrically finite
Fuchsian group, then dimg(L(G)) = 6(G). Finally, let us mention another result proved by
Beardon [6].

Theorem 6.1.31. Let G be a non-elementary geometrically finite Fuchsian group with at least
one parabolic element. Then, we have that 6(G) > %

As a direct corollary of Theorem 6.1.31 and the discussion above, for each geometrically
finite Fuchsian group G with at least one parabolic element, it follows that

dimy (L(G)) > % 6.1)
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6.2 Standard horoballs

From this point on, let G be a non-elementary, geometrically finite Fuchsian group which has
one parabolic element, say 7, in its generating set. Let p be the fixed point of the isometry ¥, so
that y(p) = p. Let F be a fundamental domain for G, fixed so that F contains the origin of D?.
Denote by C(L(G)) the intersection of all convex sets containing the set of geodesics in D? with
both endpoints belonging to the set L(G) x L(G) \ {(x,x) : x € L(G)}.

Let us now describe a certain set of horoballs associated to the orbit of the parabolic fixed
point p under the group G, called a standard set of horoballs. This was first introduced, in a more
general situation, by Stratmann and Velani [78]. Assign a horoball Hy to the point p, and let H,
be the image of Hy under the map g € G. Note that if the map g belongs to the stabiliser G, of p,
which is given by G, := {g € G : g(p) = p}, then the horoball H, is equal to H,. It is well known
that the set {H, : g € G/G,} can be chosen in such a way that it is a pairwise disjoint collection
of horoballs. This set is a standard set of horoballs for G. From now on, let {H, : g € G/G,}
denote a fixed standard set of horoballs for G.

Let s¢ denote the hyperbolic half-ray between the origin and the point & on'S!. We will think
of this ray as having an orientation, so that we travel from 0 towards S'. Define the rop of the
standard horoball H, to be the first point on the boundary of H, reached whilst traveling along
Se(p)> that is,

Ty 1= Se(p) N 8Hg ﬂDz.

It was shown in [78] that the point 7, lies a bounded distance away from the orbit of the origin
under G. For completeness, we include the proof here in the Fuchsian groups setting.

Lemma 6.2.1. There exists a positive constant p, depending only on G, such that for each g(p) €
G(p), there exists f € G such that

di (74, £(0)) < p-

Proof. First, note that the each of the sets representing (C(L(G)) N dHy)/G, is compact. Then,
from this fact and the fact that 7y lies in C(L(G)), it follows that there exists a compact arc
K(p) of dHy\ {p} containing 7y, as shown in Figure 6.4. Denote by dx the diameter of K(p)
with respect to the hyperbolic metric and let 7, denote the distance from the origin to 7y, that
is, 1, := dy(0,7y). Fix g € G. Then g(K(p)) is a compact subset of dH, containing the point
g(7y), see Figure 6.4. The point 7, is contained in C(L(G)) and, since C(L(G)) is a G-invariant
set, the point g(Ty) is also contained in C(L(G)). Thus, there exists some map / in the stabiliser
Go(p) = gG,g~! such that both 7, and ho g(ty) lie in ho g(K(p)). Note that the diameter of
hog(K(p)) is equal to dg. It follows that

dp(Tg,h0g(0)) < di(tg,hog(ty)) +dn(hog(ty),hog(0))
dh(fgvhog(fy))+dh(77’0>
< d[(-l-l‘p.

Setting f := ho g and p := dg +1,, the proof is finished.
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Figure 6.4: Illustration of the set K(p) mapped under g to the horoball H,.

Examining the proof of Lemma 6.2.1, we see that it is possible to choose the map g in such
a way that g(K(p)) and the intersection of dH, with the image of F; containing 7, are one and
the same thing. We can now choose a set T of coset representatives of G/G, in a geometric
way, namely, let g be in T if the orbit point g(0) lies in a p-neighbourhood of 7, the top of the
horoball Hg, where p comes from Lemma 6.2.1. That is

g€ T=dy(14,8(0)) <p.

We refer to this as the fop representation and from here on we will write {H, : g € T} for a fixed
standard set of horoballs for G with top representation.

Definition 6.2.2. The shadow map I1: 2 (D?) — 2(S!) is defined by
M(A) :={& €S s NA# 0}

Here, &7 (X) denotes the set of all subsets of X.

We now give an estimate of the size of the shadow of the standard horoball H,. Recall that
two functions f,g : R — R are said to be comparable, denoted f < g, if there exists a universal
constant ¢ > 1 such that for every x € R we have ¢~ 'g(x) < f(x) < cg(x). If we want to refer
only to one side of this inequality, we write either f < gor g < f.

Proposition 6.2.3. For every standard horoball with top representation from the set {H, : g € T}
we have, where |I1(H,)| refers to the length of T1(H,) C S', that

ITI(H,)| = e~ (0:%),
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Proof. Firstly, notice that the Euclidean radius r, of H, is given by 2r, = 1 — |,|. Then, from
Lemma 6.1.5 we obtain that

rg = efdh(ovrg)_
Secondly, if we draw the hyperbolic circle Cp,(1 — rg), centred at zero and with radius 1 —rg,
from Corollary 6.1.17 we obtain for the length of this circle that

L(Ch(1—rg)) x e e

This circle can be covered by approximately e' ~"¢/ 2rg balls of radius r,, so the corresponding
shadow of each of these balls must be comparable to 27rrge’(1”g). Since e ! < e 177 < 1, we
finally obtain the required comparability, namely,

TI(H,)| = rg < e~ (0:%),
O

Remark 6.2.4. Notice that combining Lemma 6.2.1 and the double triangle inequality with the
above proposition yields the corollary that

ITI(Hy)| = e~ n(0.8(0))

Recall the stabiliser G, of the parabolic point p, which is given by G, := {g € G: g(p) = p}.
For example, in the case of the map z — z+ 1 which fixes the point at infinity, the stabiliser is
given by G.y = {g(z) :=z+n:n € Z}. We began this section by letting F be a fundamental
region for G with the property that one vertex of Fg is equal to p. In the tessellation of hyperbolic
space given by the region Fg, each map in the stabiliser of p sends Fg to a region that also has
one vertex equal to p. This structure is illustrated for the map P : z+> z+ 1 in the upper half-plane
and also for the Poincaré disc equivalent in Figure 6.5 below. We will refer to the countably many
copies of Fg that cluster down to each point in G(p)/G, as petals. In somewhat of an abuse of
notation, we will use this word interchangeably to mean the arc of S! enclosed by the two edges
of the petal.

>

0444444

Figure 6.5: Petals around the parabolic point at infinity on the boundary of H and the point 1 on
the boundary of D?.
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Our next aim is to obtain an estimate of the size of the petals around the point g(p) for all
g € G. This will be achieved with the help of the cross-ratio formula for distances given in
Proposition 6.1.11. Let us first consider the petals around the point p itself. First of all, without
loss of generality, suppose that the top of the horoball Hy is actually at 0; this will not alter any
of the estimates by any more than a constant amount, due to Lemma 6.2.1. Then, let r denote
the rotation around O that moves p to 1. This rotates the entire horoball Hy. Now send this
rotated picture into the upper half-plane, by way of the inverse of the Cayley transformation.
This procedure sends the map 7y to a parabolic element of PSL;(R) in standard form, that is,
in the form z — z+ B, for B # 0. Again without loss of generality, suppose that f = 1. We
will now make a particular hyperbolic distance estimate, which is illustrated in Figure 6.6. The
notation“a <4 b” means that there exists a constant K > 0 such thata— K < b <a+K.

/ () -
2¢(n)—(n—1/2) n—sy

Figure 6.6: Illustration of the hyperbolic geodesic joining i to i 4 2c.

Lemma 6.2.5. As in Figure 6.6, with c(n) referring to the centre of the circle whose top half
forms the geodesic in H joining i to n — 1/2, we have that

dp(i,i42c(n)) <4 2logn.
Proof. To shorten the notation, let ¢ := c¢(n). By Proposition 6.1.11, we have that

dp(i,i+2c) = log([i+2c,2c—(n—1/2),i,n—1/2])

e (i+2c—2c+(n—1/2))(i—(n—1/2))

b 1+ (n—1/2)?
- 1g(<1+<2c—<n—1/2>>2>>'

Let r denote the radius of the semi-circle forming the geodesic joining i to n — 1/2. Then, on
the one hand, we have that 72 = 1 + ¢2, but on the other hand, r = n— 1 /2 —c. So, after some
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elementary algebra, we obtain that ¢ = (4n> —4n —3)/(4(2n— 1)). It follows that

2e—(n—1/2) = andso, 1 <14 (2c—(n—1/2))><5. (6.2)

2n—1
Also, 1 + (n—1/2)?> = n®> — n+5/4, which implies that
"2
2
provided that n > 2. Combining (6.2) and (6.3) yields that

<14 (n—1/2)* <n? (6.3)

log(n?) —1og 10 < dj(i,i+2¢) < log(n?).

This finishes the proof.
[

Note that where a refers to the point at the top of the semi-circle forming the geodesic be-
tween i and n — 1/2, as in Figure 6.6 above, it immediately follows that

dp(i,a) =<4 logn. (6.4)

Remark 6.2.6. The cross-ratio can be used in a similar way to find numerous other estimates of
this type. For instance, we can also show that dj,(i,i+n) =< 2logn.

If we now return to the situation we were in before Lemma 6.2.5, that is, if we return to the
picture of the petals around the parabolic point p € S', we are now in a position to estimate the
size of these petals. Let us denote the petal containing 0 by Iy and then call the petals (1,,),en
in sequence as they move around S' to the point p. We are being a little vague here, because
there are actually two sequences of petals clustering down to p, but since they are completely
symmetric there is no real problem. We have for the hyperbolic distance between 0 and the point
r~Yo®(i+2c), where r is the rotation bringing p to 1 and c is as in Lemma 6.2.5, that

dp(0,r L o®(i+2¢)) = log(n?).
We also have, where a is as in (6.4), that
dp(0,r L o®(a)) =, logn.

Note that r~! o ®(a) lies on a horoball at p whose shadow contains all the petals Ij for k > n. We
can calculate that the hyperbolic distance from 0 to the top of this horoball is also comparable
to logn, either using the double triangle inequality or directly via Lemma 6.1.8. (To make this
clearer, see Figure 6.7, below.) From this and from Proposition 6.2.3 it immediately follows that
the size of the shadow of this horoball is comparable to 1/n. Given that this holds for every
n € N, we finally obtain that

1
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Let us now consider an arbitrary horoball H, from the standard set with top representation
{Hg : g € T}. Then H, = g(Hy) and we will assume, again without loss of generality (in light
of Lemma 6.2.1), that 7, = g(0). As already mentioned, each image of the parabolic point p has
the same petal structure. It is then straightforward to calculate in a similar way to that above that

if I,(lg) denotes the n-th petal around g(p), we have that

19| = 0400 1 (6.6)

n2

Figure 6.7: Illustration of the petals around p and the horoball used to obtain the estimate of the
size of I,,.

6.3 Good sets

In this section, we give the first of our results concerning the Hausdorff dimension of certain sub-
sets of the limit set of a non-elementary, geometrically finite Fuchsian group. The first definition
describes the sets we are interested in.

Definition 6.3.1.

1. Let Z(G) denote the set of all those & € L(G) with the property that the ray s¢ intersects
infinitely many standard horoballs H,, (§),Hy, (&), Hg,(§), ..., which we always assume
to be ordered according to their appearance when traveling from 0 to &.
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2. We call the distance traveled by a ray s¢ inside a standard horoball a cusp excursion. For
each £ € Z(G), let d,, (&) denote the depth of the n-th cusp excursion, that is,

dn(G) := max{dn(n,IHg,(§)) : 1 € sg NInt(Hy, (5))}-

3. For x > 0, let B denote the set of all those & € Z(G) with the property that the distance
traveled between each cusp excursion is bounded by k. In other words, %y is defined to
be

By (G):={& € Z(G) :dp(Hg,(&),H,,,,(§)) < x, forall n € N}.
4. Now, for k,7 > 0, define the (7, k)-Good set by
Crx(G) :={& € Bx(G) : dy(§) > logt, forall n e N}.
Then, finally, let the T-Good set be given by

¢:(G) == | €rx(G).

k>0

We now come to the main result of this section, which is to give an estimate of the Hausdorff
dimension of the 7-Good set €;(G). We have the following theorem.
Theorem 6.3.2. |
Th_r)lgodlmy (¢:(G)) = X
Proof. First let k > 0 be given and let us consider dimg (67 (G)). We begin with the upper
bound. Notice that the set €7 (G) can be covered by any of the families

{TI(Hg, (8)) : & € €2x(G)},

{TI(H,, (£)) : £ € 62k(G) }

Eventually, if k is chosen sufficiently large, the cover {I1(H,, (&)) : & € €7 «(G)} will consist of
sets of diameter less than any fixed positive 8. Now, let s = %(1 + €;), where &; is chosen such
that &, < 1 and &;(|t] — 1) > 1. (This is certainly possible. As an example, for any 7 € [3,5),
let &, =3 /4 and for any 7 € [n" + 1, (n+1)"*1) +-1), let &, = 1 /n, for n > 2.) Then, note that for
each & € By (G), the shadows of the standard horoballs intersected by the ray sg form a nested
sequence of intervals of S! which cluster down to the point &. We can associate to the sequence
of horoballs a sequence of positive integers a; (), az(§), ... with the property that

log(an(&)) < dn(§) <log(an()+1).
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Consequently, for any & € B(G) and any n € N, by Proposition 6.2.3 above, we have the
following estimate.

1
e DR ((ay (&) +1)... (an(§) +1))2
It then follows, by the choice of &z, that

(6.7)

< (e, (€))] <

A (Cre(G) <), [(Hg ()
£e%:x(G)

< £ a(E 52 5))
ar>[t) T \ar>[1] D2 a>[t) Y
7] X

B (m)k“

As this is true for any arbitrary & > 0, it follows that J#*(%; (G)) is finite and consequently
that dimy (67 «(G)) < s = %(1 + &;). If for each 7 we then choose &; such that lim;_,.. & =0,
we obtain the desired upper bound, that is,

1
i di G)) < -.
Thn}odlmH(ank( ) < >

For the lower bound, again fix T > 3 and k > 0. We first describe a subset of the set in question
and then employ Frostman’s Lemma to estimate from below the dimension of this subset. So, to
that end, choose 7’ to satisfy the equation

L7’ +1] 1

)}

i=|1]
Denote this sum by S. Let 6% (G) be the set
G x(G) :={& € By :logT < d,(§) <log7' forall n € N}.

> eK/2.

i+1

Let v be a measure supported on the limit set L(G) with the property that
1 1 cq el(kt1)K)/2
= —. <
SE (@(&)+1)...(a(8)+1) ~ \

v (I(Hg, (5)))

k
where ¢y is a constant. Note that by the choice of 7/, the term ¢, (eK/ 2 / S) e/ is simply another

constant, say c. Now, let § € €  and let r > 0. Then choose the first k such that the shadow

of the (k+ 1)th level horoball H,, ,, (§) is at most equal to r, that is, choose k such that

’H(Hgk+1<§))| <r< |H(Hgk(§))|
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Note that for each k € N there can only be a fixed finite number of petals around any point gi(p)
in which it is possible for a point in the set % (G) to end up. Therefore there can only be a fixed
finite number of horoballs that B(&,r) could possibly intersect at each level k and furthermore,
each of these shadows has comparable v-measure, so, without loss of generality we suppose that

I(Hy,,,(§)) C B(S,r) CTI(Hg,(S))-

We now need to compare the sizes of the above shadows. Directly from Proposition 6.2.3, we
obtain that

T (Hg (D] dn(0,,, (£))~dn 0.7, (2))

[TI(Hg,., (8))] '

It can be shown, via the cross-ratio distance formula again, that if zg, denotes the point that
the geodesic segment joining 0 and T, , first intersects the horoball Hy, (§), then d;(0,7,,) <
dn(0,zg, ). It follows that

dh(O, Tng) = dh(O, ’L'gk) + 2dk(§) + K.
Therefore, keeping in mind that d; (&) < log 1/, we obtain that

d (0, Tg,.., (§)) — dn(0, g, (§)) < log 7' + k.

Finally, then, since 7’ is fixed for each 7, there exists another constant c3 such that [TI(Hg, (&))| <
(c3)*[T1(Hy., (§))]. Then,

V(B(E,r) < V(II(Hy(€))) < calTI(Hg, (&))|
< ora|I(H,, ()))2

1
S c4-12,

(S

where 2c4 := cyc3. Thus, by Frostman’s Lemma, we have that dimg (47 (G)) > 1/2 and there-
fore dimy (€7 «(G) > 1/2, too. Combining this and the upper bound obtained previously, we

have, for every k > 0, that

llm dimH (CKT’K‘(G)) - l.

T—oo 2

Therefore, as this does not depend on the choice of K we obtain that
lim dimy (4%(G)) =

1
T—3o0 2"

Remark 6.3.3.

1. If the group G is chosen to be PSL,(Z), this result provides the corollary that if we define
the set Fy := {x = [a;(x),a2(x),...] : an(x) > N for all n € N}, we have

1
lim dimpy (Fy) = .
i i () =3
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This result can also be obtained from Theorem 2 in the 1941 paper of 1.J. Good [31],
where he gives upper and lower bounds for the Hausdorff dimension of each set Fy. For
the details of exactly how the group PSL,(Z) relates to the continued fraction expansion,
the reader is referred either to Appendix B or to Series [74].

2. Since a pairwise disjoint set of standard horoballs with top representation can be associated
to any geometrically finite Fuchsian group with any finite number of parabolic elements,
the restriction to only one is not really necessary, although it does simplify the notation
significantly. This comment also applies to the next section.

6.4 Strict Jarnik sets

In this section we will derive the Hausdorff dimension of another family of subsets of the limit
set of a non-elementary geometrically finite Fuchsian group G with one parabolic element. The
sets we are interested in here can be described by prescribing a particular geometric behaviour.
Before we arrive at this description, we begin with a simple, purely analytical lemma.

Lemma 6.4.1. Suppose that (0,),cn is a sequence with each 0 < o, < 1 and lgn 0, = 1. Then,
n—oo

if (an)nen is a sequence of positive real numbers,

limsup a,0, = limsup a,.
n—yoo n—soo

Proof. Choose a subsequence (dy;) jen such that Jlggo ap; =00 := 1im_>sup ay. Then,
n—roo

lim a,,.0,,, = lim a, - lim 6,,, = Q.
e S N

Therefore, for every € > 0 and for all sufficiently large j we have that
a(l—¢) < ap,0n;-

In other words, limsup,_,., a,0, > a. In addition, given that a,0, < a, for every n € N, we

obtain the opposite inequality, that is, limsup a,0, < .
n—oo

g

In preparation for our first main result in this section, fix @ € R and let s := (s,),en be a

sequence of positive integers such that lim s;,, = o and
n—yoo

1
limsup 0g($1) = .

n—oo 210g(s1 .. .Snfl)

Recall the definition of d, (&) from Definition 6.3.1. Then, with a constant k¥ > 0 and positive
integer N > 3, define the set Fy y (G) to be

Fynx(G) :={& € By :1logs, < dy(E) <logNs, forall n € N}.
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Further, define
F(G):= |J Fnx

N>3
k>0

We then have the following result.

Lemma 6.4.2. {
di F(G)) = —77——.
1mH( S( )) 2(1 + (O)
Before starting the proof of the lemma, let us gather a few useful facts that will be required
in the proof. The first of these has already been used in the proof of Theorem 2.5.10, but we find

it helpful to restate it here.

e Since lim s, = oo, it follows that lim logs, = o and thus that

n—roco n—yoo
1
lim log(st---8n) _ oo, (6.8)
n—soo n
e Define | :
p 1= liminf — 10861 9)

n—soo 10g((s1 ---Sn)zsn—i—l) 2(1—|—0))‘
Then, for all K > 0, we have that

. log(sy...sn)
liminf =p. (6.9)
n—oo 1og((K"sy...51)%Sn+1) P

Indeed, if we write
log(sy...8) B log(sy...sn) 1

log((K"s1...5,)%051)  log((s1...5,)%8p11) 1+10g(&%’

then the statement in (6.9) follows immediately from Lemma 6.4.1 and (6.8).

e Forall K > 0, all p’ < p and sufficiently large n € N, we have that

/

! < ! ’ (6.10)
S1o..Sn — \K2(s1...57) %5041 ’ ’

This follows directly from (6.9) and the definition of the lower limit.

Proof of Lemma 6.4.2. Again, we first establish the upper bound, then the lower bound. To begin,
just as in the proof of Theorem 6.3.2, we can associate to each point & € Fy, , v(G) a sequence
of positive integers (a,(&)),>1, where a, (&) is determined by

log(an(&)) < dn(§) <log(an(c)+1).
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Notice that this implies that the point & lies, up to some constant of comparability, in the a, (& )-th
petal around the point g,(p), for each n € N. We therefore have, from Proposition 6.2.3 and the
extra information given by the sequence (s,),>1, that

1 1 1
e(ntDK(Nngy . s,)2 < M{H,.. ()] < (a1(&)...an(&))? = ($1...8n)

For each positive integer n, define the “shrunken” horoball I-ngn (&) to be the horoball with base
point g,(p) and top 7,, given by

5

dh((), ‘LN'gn) = dh(O, ‘L'gn) +logs;,.
It follows immediately that

1
et DK (Nngy . 5,) 28,01

1

(51...50) %801

< |(Hy,,, (&) < (6.11)

We will now provide the upper bound. This is based on covers of arbitrarily small diameter
for the set Fy, x n(G), which are given by the shrunken horoballs defined above. First, let us
make the observation that if § € Fy, - n(G), it follows that logs, < d,(§) < log(Ns,) and thus
that £ could lie in any of the petals around g,(p) from the s,-th up to the Ns,-th. So, there are
¢(N — 1)s,, shrunken horoballs in the n-th layer that the point £ could lie in the shadow of, where
c is the fixed constant number of these horoballs that have their base point in any given petal.

Now, by the definition of p given above, it follows that if we let p’ € (p,3p), we have for all
sufficiently large n that /

p—p log(sy...s,) .
2 7 log((sy-.-$n)%8ns1)

Consequently, from the identity (1/b)°€4/1°¢b — 1 /4, we obtain the inequality

1 (p'—p)/2 1 log(sy...5n)/1og((s1...52)Sns1) 1
— <|\—— = -
((s1 ...sn)zan) ((s1 ...sn)zsnﬂ) S1...5,

In other words,

St n < (51 80)2s0p1 )P P)/2,

Then we observe by equation (6.8) that for all sufficiently large n we have that log(N — 1) <
log(sy...s,)/n (since the left-hand side is simply a constant depending only on N). Therefore,
for sufficiently large n,

(N=1)" < ((s1...50) 5001 )P P2, (6.12)

Also directly from the definition of p, for any p’ > p, there exists a sequence (1 )ren With the

property that
/

log(sy...8n,) +p

log((s1---Sn,)*Snet1)

P

< , forall k> 1.
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Hence, on rearranging the above expression, we obtain that
2 "+p)/2
Sto-Spe < ((s1...80,) Snk+1)(p +P)/2, (6.13)

Consequently, if we neglect any terms of the sequence (n;)en that are too small and rename the
sequence accordingly, we have on combining (6.12) and (6.13) that for all k > 1 and any p’ > p,

(N = 1) s1 .Sy < ((81+-Sn ) *smps1)P -

Thus, from (6.11) and the above inequality, we infer that

AP (Fen(G) < liminf Y2 [TI(H, ., (§))F
e sm<am(&)<Nsm
lgmgnk

/

< ((N=1)"s1. . os0,) (512 Sn ) Smes1) P<.
Hence, as this is true for all p’ € (p,3p), it follows that
dimy (Fy e n(G)) < p =1/(2(1 + 0)).

For the lower bound, we will again use Frostman’s Lemma. So, to that end, in a similar way
to that in Theorem 2.5.10, define a finite Borel measure m on the limit set L(G) with the property
that

1

m(H(Hgk+1 (x)) = m-

Let & € Fy . n(G). Then for each small enough r > 0, we can find a unique k such that

TL(Hy,,, (§))] < r < TI(Hg, (£))].

The difference in the sizes of these sets is too large to proceed directly from here. All we could
hope to obtain using only this inequality is a lower bound of 1/2. So we consider two further
possibilities. Either,

TU(Hy,,, (§))] < r < [[(Hy,,,(£))]. (6.14)

or,

T(Hy,., (£))] < r < |TI(H, (§))]. (6.15)

First note that by inequality (6.10), if we let p’ < p, then there exists ko such that for all
k > kg, we have that

!

1

1 p
< . 6.16
S1..-8k <(€K)k+1(NkS1...Sk)2Sk+1) ( )
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Now, suppose that we are in the situation of (6.14). Choose r so that k+ 1 > ky. In order to
estimate the m-measure of the ball B(&,r), we must first identify the number of shadows of
standard horoballs in the (k + 1)-th layer that said ball can intersect. Since there are a fixed
number in each petal, it suffices to calculate the number of petals around g;(p) that the ball
B(&, r) can intersect. First of all, note that for large enough k, B(&, r) cannot extend further than
the (ai (&) — 1)-th petal, because the petals are decreasing in size. To finish the proof that B(&,r)
can only intersect a finite number of petals around gi(p), we must show that these petals are not
shrinking too fast. It suffices to show that where ¢ comes from the comparability given in (6.6),
there exists a ko € N such that if k > k( there exists M such that

M 2

C

1
lzi (ax () +1)? = (ax(E))2 (6.17)

This follows immediately from the fact that the sequence (ay(&))ien tends to infinity and that
n—1<Y2 n*/(n+i)? < nforall n € N. Consequently, B(£,r) can only intersect a fixed finite
number of petals around g, (p) for each k € N and can thus only intersect a fixed finite number
of shadows of standard horoballs in each layer. It follows, via (6.16), (6.11) and (6.14), that for
any p’ < p we have

m(B(&,r)) < m(M(Hy,,,(§)))
= <

1 p
<
eX k1) (NKgy s ) 2sp41
< rP.

If we are in the situation of (6.15), it is clear, by similar reasoning to that above, that B(&,r)
cannot intersect more than two petals in the k-th layer, which means that there is again only a
fixed finite number of shadows of shrunken horoballs that B(§,r) can intersect. In addition to
this, a maximum of 2r(kN?)X(sy ...s;)? of the (k4 1)-th layer shadows of standard horoballs are
intersected by B(&, 7). So, denoting by TI(H,, ) and IT(H, .,) the largest possible shadow in layer
k and k + 1 respectively, we have that

m(B(&,r)) < min{2m(H(I—~ng)),2r(KN2)k(s1...sk)zm(H(Hng))}

<

min{1, (kN?)**(s; .. 1) % se1r}

S1...85

and, using equation (6.16) and the fact that min{a,b} < a'=sb* for any 0 < s < 1, it follows that
for p’ < p we have

!

m(B(E,r)) < 2( ! )p-((KNz)k+l(sl...sk)zsk+1r)p

(KN2)K(s1 .. 50) ks
= 2kN**.

!
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Thus, in each case, on applying Frostman’s Lemma and letting p’ tend to p,the proof is finished.
]

Remark 6.4.3.

1. Note that the result in Lemma 6.4.2 does not depend on the particular sequence (s,),cN-
By this, what is meant is that in the definition of Fy we could instead use any other sequence

(1) nen with the property that lim sup 2101‘()#3”)
N—so0 (81 -$pt1)

precisely the same Hausdorff dimension.

=  and the resulting set F; would have

2. Similarly to the corollary to Theorem 6.3.2, we can also derive a continued fractions result
from Lemma 6.4.2. With a,(x) referring to the n-th partial quotient of x, the sequence
(8n)n>1 defined as above and N > 2, we have that

‘ o log(sy...sn)
d 0,1):5, < Ns, Vn € N} = liminf :
imy{x € [0,1) : s, < a(x) <Ns, Vn € N} = limin 10g((s1-.852) 250+ 1)

This result can be found in the paper by Fan et al. [24].

We are now ready to state and prove the main result of this section. First, define 7,(&) :=
dn(0,ze,) +dn(E), where z,, is the point the ray from O to & enters the n-th horoball (i.e., the
point just before the n-th cusp excursion begins). Then, for k¥ > 0 and 6 € [0, 1], define the strict
(8, k)-Jarnik limit set 74 (G) by setting

Fix(G) = {é € By Jim dy(§) = o and limsup Ctl((gé)) _ 9} ,

Define the strict 0-Jarnik limit set to be

S6(G) = 4.0
k>0

We have the following theorem.

Theorem 6.4.4. For the strict 0-Jarnik limit set ¢4 (G), we have that
1

dimyr(_73(G)) = 5(1-6).

—

Proof. Fix k > 0. The first step of the proof is to show that the condition limsup ‘:"((g) =0is
n—eo M
equivalent to the condition that
. dn(S) 6
lim su = .
pomt 21 (E) -+ dy1(8)  1-6
In order to do this, we begin by claiming that
d d 0
lim sup n(5) =6 < limsup n(6) _ (6.18)

n—oo tn(‘g) n—yoo dh(O,Zgn) -6
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Indeed, if 6 > 0, we have that

. dn(§) _ .. dn(&) 1
6 = limsu = limsu = . (6.19)
Therefore,
limsup (&) _ 1 _ 6

neo dp(0,2g,) -1 1-6
On the other hand, if 6 = 0, we have from (6.19) that

(0
timint P O%) _ L imaup %) g

n—eo dy(&) n—oo dh(()?Zgn)_

Thus, since these arguments work equally well backwards, the claim in (6.18) is proved. Next,
notice that

. dn(§) : dn(§) _ 6
P 0. 10 TP E  da@) 10 O
The reason for this is that we have
2(d1(8) 4+ +dn-1(8)) <di(0,2g,) < nic+2(di(8) + -+ +du-1(5)),
(&) _ A (&) 621

nk+2(di(§) +--+dn-1(5)) ~ dn(0,2g,) ~ 2(d1(§) + - +dn1(8))

Then, from the second inequality in (6.21), it is immediate that

‘ dn(S)
-6 =P @ (6))

Rewriting the first inequality from (6.21), we obtain that

A | ! A
2(d1(§)+"'+dn—l(§)) 1+2(d1(§)+.r.l.§_d”71(§)) N dh(()?Zgn)'

Consequently, by Lemma 6.4.1 and from the fact that lim,_,ed,(§) = oo, we also obtain the
opposite inequality, namely,

| dn(E) 6
imsup S BT dia () S 1-6

Combining (6.18) and (6.20) establishes the first step of the proof.
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We now aim to use this equivalent definition to find an upper bound for the sought-after Haus-
dorff dimension. So, suppose that & € ¢ (G), that is, suppose that & € Hy is such that

lim, e dy(&) = o0 and

lim sup (%) = 0
oo 2(d1(E) 4+ dy_1(E)) 1-6

Then, for each n € N pick an integer §), such that
log(§,) < dn(G) <log($p+1).

Since lim, e d, (&) = o0, we can immediately infer that lim, . S§, = co. It is clear that we
can write, say, log$, < d,(§) < log3$,. So then, since & € F;3 ., it suffices to show that

. logs, 0
limsup—~2_ _ — _%_ Byt
n_mp 2log(Gr. 51)  1-0 ’

dn(é) < log(38,)
2(di(8)+-+du-1(8)) ~ 2log($y ... 8n-1)

and
dn(&) > log($,)
2(d1 (&) +--+dy—1(E)) ~ 2log(8;...8,—1) +2nlog3’

From these two inequalities, we see that this reduces to basically the same argument again, in-
volving another application of Lemma 6.4.1. Thus we obtain that

dimp (7 (G)) < dimpy (Fs3 ) = m = 5(1 —0).

Finally, suppose now that N > 2 and § € F; v «(G), where the sequence (s,),en (Which is
not necessarily the same as the sequence ($,,),en), satisfies

) . log s, 0
r}ggosn = oo, IILILSEP og(s .g..sn_l) =19 and logs, < d,(&) <logNs, Vn € N.

By similar reasoning to that above, it is clear that § € _#; ,.(G). Consequently, we have that

1

5 (1= 6) = dimy (Fyn x(6)) < dimy (75 (G)).

Thus, combining this with the opposite inequality achieved above finishes the proof.
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6.5 Weak multifractal spectra for the Patterson measure.

In this section we again assume that G is a non-elementary geometrically finite Fuchsian group
with one parabolic element. We remind the reader that the definition of 7,(£) was given in
Section 6.4. We assume that the reader is familiar with the construction and basic properties of
the Patterson measure; if not, a very short introduction can be found in Appendix A. The Global
Measure Formula, which is one important component of the proof of Theorem 6.5.1 below, is
stated there as Theorem A.2.13.

Let b(&,e™") denote the shadow of the geodesic which intersects the ray sg orthogonally at the
point &, where & is defined to be the point on the ray s¢ at a distance ¢ from the origin. Then we
define the B-strict-Jarnik level sets for the Patterson measure [ to be

e—m(6)
e {5 < 10)timsup AT < p }

Further, let Z(G) := Uy~ %« (G). We obtain the following theorem.
Theorem 6.5.1. For each B € 26 — 1, 8], we have that

dimy (750 2(G)) = % F(B),
where f,(B) :=(B—(26—-1))/(1-9).

Proof. The Global Measure Formula for u gives the existence of a constant ¢ > 1 (depending

only on G), such that for each § € L(G) and every 7 > 0 we have that

lefraef(’éfk(é)) (&) <H( (&, e ))Sce*t%*(&k(é))A(é)_

c

Consequently, where ¢ :=logc > 0, we have that

5+ (5-k(g) ) St < REROGAE D) 5 5y B4 2

Thus, if we lett =1, (&), which implies that A(§) = d,,(§) and k(&) = 1, we immediately deduce

that
logu (b(&;, —inle))
— >:5+<3—l>“mpf§f§>) |

It therefore follows that § € _Z;(G) if and only if { € #(G) and

) 10g”( (5[
fimsup —rn(é>
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Consequently, if B := 6 — (1 — §)8, or in other words, if 6 = (6 — 8)/(1 — 3), we have by an
application of Theorem 6.4.4 that

) ) 1 1 1-20+8

ar* — * - _ - " V== "

dlmH(Jﬁﬂ%(G))_dlmH(/?_g)_2(1 1_5) ) 5
O

Remark 6.5.2. Note that in [75] a “weak multifractal analysis” of the Patterson measure was
given. The analysis there was based on investigations of the Hausdorff dimension of the associ-
ated 0-Jarnik limit set

Fo(G) = {5 € L(G) :limsup% > 9}.

f—3o0 t

In Stratmann [75] (see also [76] and [36]) the result was obtained that
dimy(_Z9(G)) = (1—06)8, foreach 6 € [0,1].

In Stratmann [76] it was then shown how to use this result in order to derive the following “weak
multifractal spectrum” of the Patterson measure:

0 for 0<pB <261
dimH (ﬁﬁ) = 6fp(ﬁ§ ior 25 —61 < B < o) s
or > 0.

where f), is given, as before, by f,,(B) = (B — (26 —1))/(1 — 6) and where .#5(G) is defined by

oo _tn@)

The outcome here should be compared with the result in Theorem 6.5.1. The two spectra are
illustrated in Figure 6.8, below.

F5(G) := {5 € L(G) Jiminf 28K (B¢ "0)) < B}.
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26 —1 0

Figure 6.8: Weak multifractal spectra for the Patterson measure. The upper (dashed) line is the
graph of the spectrum dimy (#5(G)) and the lower (solid) line is the graph of the spectrum
dimH(ﬁE(G)).



Appendix A

The Patterson Measure

This appendix describes the construction and basic properties of the Patterson measure. We begin
with a section on the geometric properties of the Poisson kernel, then move on to the Patterson
itself in Section A.2.

A.1 The Poisson kernel

We begin by investigating the geometry of the Poisson kernel. Recall from Chapter 6 the defini-
tion of horoballs. We can also define horoballs in terms of the Poisson kernel P(z, &), which is
given for z € D? and £ € S' by

L2
P(z,&) = ‘1Z_I€Z||2

We have the following two lemmas.

Lemma A.1.1. For & € S! xeD? and 0 < k < 1, we have that x lies on the horoball of radius
k with base point & if and only if

1k

P(x,&) = —

In particular, this implies that P(x,&) = P(y,&) for any two x,y € D? lying on the same horoball
based at & € S'.

Proof. First, suppose that P(x,&) = (1 — k) /k. Then,
K(1=x?) = (1=k)(x* —2(€ +x€) +1)
and so, on rearranging this expression, we obtain

P12k

2(E+36) = ———
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Consider now the distance between x and the point (1 — k)&, which is the the centre of the
horoball of radius k with base point . We have that

= (1=R)EP = > =2(1—k)(x& +x&) + (1 —k)*
P12k

1-k)? =K.
- +(1-k)" =k

= x>~ (1-k)

Therefore, x lies on the horoball of radius k with base point & (see Figure A.1, below). Since this
argument works equally well backwards, we are done.

Figure A.1: Pictured is the unit disc with a horoball of radius & at the point £ € S'.

Lemma A.1.2. Given x,y € D? and & € S!, we have that

dp(x,w)
L) pg)
w ednw)  P(x, &)

Proof. The lemma follows immediately from the formula

x —w|®

sinh? X, w =
W) 2) = T =Py

which can be found in section 7.2 of [7], and the fact that sinh? (x/2) =< €%, as x tends to infinity.
O

Remark A.1.3. It follows from this last lemma that

dp(0,w)
lim & P(x,§)

w—& edh(Jﬂw) - P(O)é) :P(x=§>-

b

The geometric interpretation of this fact is that the Poisson kernel P(x, &) is the “signed distance’
between the horoballs Hy, with base point & through 0 and H,, with base point & through x.
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In other words, if the distance between the horoballs Hy and H, is denoted by D,, as w — &,
the quantity d,(0,w) — dj,(x,w) approaches D, when x is inside Hy and —(d,(0,w) —dj,(x,w))
approaches this same distance when x is outside Hy. So, if x lies inside Hy, the Poisson kernel
P(x,&) is given by eP+, whereas if x lies outside Hy we have that the Poisson kernel P(x,&) is
given by e~ Px,

Figure A.2: We have that P(x,&) = eP* and P(y,&) = e v, where D, denotes the hyperbolic
distance between the horoballs Hy and H, and Dy denotes the hyperbolic distance between the
horoballs Hy and H,.

Let us now provide a formula for the Poisson kernel in H. The reason for giving this version
here is that it appears incorrectly in various sources in the literature.

Proposition A.1.4. The Poisson kernel Py : H x RU {0} — R is given by
Im(z) forr=oo;

HHI(Z;’") = Im(z)(r?+1) forreR

je—r]? '

Proof. Suppose first that r = co. We have that Pyg(z,0) = P(¢(z),¢(r)) = P(¢(z),1), where ¢
here denotes the Cayley transform introduced above. Therefore,

_i2 . .
=[5 et —lemif _4edm(@)
=i _1|? | —2i]? 4 '
|-
z+i

Py(z,0) =
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For the second case, when r is a finite real number, we have

—i|2 . .
PJHI(Z r) — 1_|%‘ — |Z—|—l|2—|Z—l|2
= (G )t )~ ) ) P)

4-Im(z)(r+1)  Im(z)(r*+1)
Riz=r)> fz=rP

i

Remark A.1.5. We can also see that the geometric intuition behind the Poisson kernel is valid
in the upper half-plane model of hyperbolic space. Since i is mapped to 0 under the Cayley
transformation, in this case we are considering the distance between a horoball H; through i with
base point r and another horoball H; with base point » through any other point z. For r = oo, it
is immediately clear from Lemma 6.1.8 that the Poisson kernel is given by Py(z,00) = Im(z). If
r € R and z = x+iy € H lies inside H;, referring to Figure A.3, basic Euclidean geometry gives
that the height of the horoball H, is given by ; = ((r —x)?4-y?)/y and the height of the horoball
H; is given by hy = r? + 1. The distance between these two horoballs is then, by Lemma 6.1.8
again, given by D, = log(hy/h;). So we obtain that

y(rP+1)

P(z,r =ePi= 1
@) (r—x)2+»?

This coincides with the formula given in Proposition A.1.4. The case where z lies outside the
horoball H; proceeds similarly, except that there we have that D, = log(h /h).

(r,hy)

Figure A.3: We have that Py(z,r) = eP-.
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A.2 The Patterson measure

The Patterson measure was constructed by S.J. Patterson in 1976 [64]. His work was motivated
by a number theoretical problem in the theory of Diophantine approximation. The Patterson
measure is a very effective tool for examining the limit set of a Fuchsian group. For further
details about the Patterson measure, in addition to [64], the reader is referred to the book [62].

Let us now begin the construction. For each s > 0§, we start by defining the measure

ggG e~dx20) g (A) gEG e 480D 5, (A)
Hxs(A) == ZGefsd(O,g(O)) - £5(0,0)
g€

Here, 5g(0) is a Dirac point-mass at the point g(0), that is to say,

[ 1 ifg(0) € A;
6g(0) (A4) = { 0 otherwise.

Let us now investigate what happens when we fix some s > 6 and consider the measures [
as the base point x is allowed to vary. Recall that P(z, &) denotes the Poisson kernel in D?.

Theorem A.2.1. Let G be a Fuchsian group with exponent of convergence 8. Suppose that s > 0
and choose x,y € D? and £ € S'. Let A be a Borel subset of D> US' and for t > 0 let A(&,t)
denote that part of A within Euclidean distance t of . Then for every € > 0 there exists t(€) such
that if t < t(€),

(PEE) —e|matan <utaea < [ (Fog)) e wata

Proof. We have that

BAEN) = sy T e 0 (AE )
s\ Y g

_ 1 Y e shiesl0).

Zs (07 O) geG

eiSdh (y7g(0))
(0)) 5g(0) (A(é 7t)) :

e_Sdh (yvg

From Lemma A.1.2 it follows that there exists a z(€) such that if < ¢(€) and g(0) € A(&, 1), then

o~hlsel0) (29

e—3dn(»,8(0))

The theorem follows immediately on combining these two observations.
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Corollary A.2.2. With x,y and & as in Theorem A.2.1,

L) _ (P

0 s (A(E.0))

In particular, if y = 0, we obtain

o Bas(AE)

o s AE,n) ~ TRE)

We are now almost ready to define the Patterson measure. First, we recall the notion of the
weak limit of a sequence of measures.

Definition A.2.3. Let C(X) denote the set of real-valued continuous functions on a measurable
space X. If (v,),>1 and v are measures on the measure space (X, %) satisfying

n—oo

lim fdvn:/fdv forall f € C(X),
X X

we say that the sequence (V,,),>1 converges weakly to the measure V.

Remark A.2.4. Recall that if X is a set and X, a topological space, then the weak topology
induced on X by a collection of functions {fy : X — Xy : & € A} is the smallest topology on X
such that each f is continuous. Evidently, the sets f, l(UOC), for Uy open in Xy, constitute a
subbase for the weak topology. Weak convergence of measures is weak convergence in a weak
topology induced by C(X) on the dual space

(C(X))":=C*(X)={F :C(X) — R : F is continuous and linear}.

This can be slightly confusing on first sight, because in functional analysis this topology is usually
referred to as the weak™-topology on C(X), but it is a weak topology nevertheless.

The most important result for us concerning weak convergence of measures is the following.
Note that in here the closure is with respect to the norm (or strong) topology on C*(X).

Theorem A.2.5. Alaoglu’s Theorem. The closed unit ball in the dual space X* of a Banach
space X is compact in the weak*-topology on X*. Further, every closed bounded subset of X* is
compact in the weak™*-topology on X*.

Proof. See Dunford and Schwartz [19], Theorem V.4.2.
O

Observe that the set of all measures on a space (X, %) is contained in C*(X), since if v is a
measure on (X, %), then v can be thought of as a function v : C(X) — R defined by

v(f):= /fdv.
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Consider the set M(X) consisting of all probability measures on (X, ). This set is evidently
closed with respect to the norm topology on C*(X). It is also bounded, since if u is a probability

measure, then
Iuti= sop {| [ saub<| [ rau|=1.
feC(X) X X

[1f]leo<1

Provided that X is a compact metric space, the space C(X) is a Banach space. We can then infer
from Alaoglu’s Theorem that the set M(X) is compact in the weak*-topology and hence every
sequence of measures in M(X) has a weakly convergent subsequence.

Returning now to the particular situation of the Patterson measure, from the triangle inequal-
ity we obtain that

dp(0,8(0)) — dp(x,0) < dn(x,8(0)) < dp(0,8(0)) +dp(x,0)

and consequently, for any s > & that

o5 (x.0) | ,=sdy(0,8(0)) ~ ,—sdn(x,8(0)) < psdn(x,0) , ,—5dn(0,8(0))

Summing over all g € G yields that

e~ (x.0) < 1 < sdp(x,0)
Ls(x,0) 7 E,(0,0) 7 Xi(x,0)

which in turn implies that
e—sdh(x,O) < s (DZ U Sl) < esdh(x70) ) (A1)

Let (s;) jen be a sequence of real numbers from (8,28), monotonically decreasing to 6. By
(A.1), for each j € N there exists a real number ; € [e"‘dh(x’o),e“dh(x?o)] with the property that
Vis; =0 j_l s, is a probability measure. Therefore, by Alaoglu’s Theorem, we have that along
a subsequence (which we rename (s;) again),

lim V5, = V.
Jreo T

Note that v, is also a probability measure. The sequence (¢;) jcn is uniformly bounded, so there
exists a subsequence (0, )ken such that limy_,., 0 = . Thus,

dm fes, = Hm 0 Vs, = 00V

and we have shown that for each sequence (s;) jey of real numbers monotonically decreasing to
0, there exists a weak limit measure.

Some more work is required to show that such a measure is unique, indeed, in some cases it is
not. However, in the situation where G is a geometrically finite Fuchsian group, the uniqueness
was proved by Sullivan [79]. This proof is decidedly non-trivial and we will not reproduce it
here. We make the following definition.
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Definition A.2.6. Let G be a geometrically finite Fuchsian group with exponent of convergence o
and let (s;) j>1 be a sequence of real numbers monotonically decreasing to 6. Then the Patterson
measure with base point x is defined by setting

alA) = Tim p(4),

Sj%

for each Borel set A C D?US!.

If the group G is of divergence type, this limit measure will be supported on the limit set
L(G), which we prove in the next proposition. However, if G is of convergence type, we will
simply get another measure supported on the disc ID? with point masses on the orbit of 0. In order
to get around this problem, Patterson introduced an ingenious multiplicative factor h(edh (x.8(0) ))
which does not alter the exponent of convergence, but ensures that the Poincaré series at (G)
diverges. However, as we are only interested here in geometrically finite groups and recalling
from Section 6.1.6 that geometrically finite groups are of divergence type, in all that follows the
factor 4 will be set equal to 1.

Proposition A.2.7. Let G be a geometrically finite Fuchsian group. Then the support of the
Patterson measure [l is the limit set, L(G).

Proof. Let 6 denote the exponent of convergence of G. First suppose that A is a set fully con-
tained in D?. Then

A) = li (A) = 1i —3jd(x.8(0 A) =0,
Hx(A) Sjlina‘ux,s]( ) le_% Zsj ggée y(0)(A) =

since the numerator for each s; is necessarily finite, due to the discontinuous action of the group
G, and the denominator tends to infinity. If L(G) is the whole of S!, we are done. If not, since
L(G) is a closed set, around every point ) € S'\ L(G) there exists an open neighbourhood U of
n so that U is fully contained in S' \ L(G). Then, let € > 0 be not more than the diameter of the
set U and define

U(e) :={xeD*US': |x—n| < e}

Then, as there are no limit points in this set, there are only finitely many orbit points of 0 in U (€),
so, for the same reason as above, L, (U(€)) = 0. Thus, w, is supported on L(G).
O

Remark A.2.8. Obviously, if the group G is elementary, the Patterson measure consists entirely
of atoms. From here on, as usual, we will always assume that every Fuchsian group is non-
elementary.

The Patterson measure has the following invariance property.

Lemma A.2.9. Let G be a geometrically finite Fuchsian group. For each g € G,

Ho(g(A)) = Hg-1(0)(A)-
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Proof. Fix an arbitrary s > 0 and let g € G. Then, by definition, we have that

_ 1 —sd;,(0,h(0))
s(g(A) = 0, A)).

Set f = g~ oh, so that 1(0) is an element of g(A) precisely when f(0) is an element of A. Then,
as h runs over G, so too does f and we obtain that

1 Y o s OO 0 (A) = (g5 (A)-

ALLO,S(g(A)) = Z (0 O)f .

Since s was arbitrary, the proof is finished.
O
It was shown in [64] that the Patterson measure is a -harmonic measure. We state the result
here only for the measure L, but it is valid in more generality, see Theorem 3.4.1 of [62].

Lemma A.2.10. For every Borel set E C S! and every g € G,

ko(s(E)) = [ P(g™'(0),6)° duo(2)

Proof. Recall that for each Borel subset A of D?US! and for all t > 0, we define A(&,7) to be
that part of A within Euclidean distance ¢ of £. By Corollary A.2.2, for all s > §, all positive €
and for all sufficiently small ¢z, we have that

((P(g7(0),€))" &) Hos(A(E.1)) < tyr1(0)(AED) < ((P(87(0),6))"+€) o, (A(E.1).

If (sj) j>1 is a sequence of real numbers monotonically decreasing to d so that iy = limy; 5 Mo

then there exists a subsequence (s;,)x>1 with the property that He-1(0) = limsjk_>5 He=1(0),5,, -
Therefore,

((P(™"(0),6))° — ) mo(AE.1)) < 10 (A(E1) < ((P(s71(0).8))" +€) polA(E,1)).

Thus, the measures Lo and p,-1(g) are absolutely continuous to each other and, moreover, the
Radon-Nikodym derivative is given by
dptg-1(0)
d o

(For details on the differentiation of measures, the reader is referred either to Section 2 of Mattila
[57] or to Chapter 7 of Rudin [68].) This finishes the proof.

)

(&)= (P(g7'(0).£))".

i

Corollary A.2.11. The Patterson measure L is a 6-conformal measure. That is,

ko(s(E)) = [ 1¢/(8)° duo(©).
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Proof. From Lemma 6.1.3 (2), we have, for each g € G and & € S!, that

_o-s®R 1
g 0)-EF [ T(0)— &

18'(g7"(0))[18'(&)]
It follows from the chain rule that

g'(g71(0) = ((g7")(0)~"

and so, by Lemma 6.1.3 (1), we obtain that

(g™ _1-lg"'(O)] _

_ —1
S0 Ef g —ep e 05

18(8)]

O
Sullivan was the first to give a geometric interpretation of the Patterson measure (for this rea-
son, it is sometimes referred to as the Patterson-Sullivan measure). An example of this geometric

insight is the interpretation of d-harmonicity to yield what is called the Sullivan Shadow Lemma
([79],180], see also [62]).

Lemma A.2.12. (Sullivan’s Shadow Lemma). Let G be a Fuchsian group. Then, for all suffi-
ciently large A and for every g € G,

Ho(TT(B(g(0),4)) = 2040
Sketch of proof. The first ingredient of the proof is the estimate (which depends on A),
T1(B(¢(0),4)) < 1 —[g(0)]. (A.2)

This is established in almost exactly the same way as the proof of Proposition 6.2.3. Secondly,
noting that for & € I1(B(g(0),A)),

_1=[g(0)]* _ 1—|g(0)|

P8(0).8) = 120y —EF = Tel0) — 2

and [g(0) — &| =< 1—[g(0)],
we infer that

P(g(0),&) = (1—]g(0)))~". (A.3)

Finally, putting (A.2) and (A.3) together with §-harmonicity and the fact that for all but finitely
many g € G, we have that

to(g™" (TI(B(g(0),A))) < 1,
we obtain that

I = (g™ (TI(B(8(0),4))) = P(5(0),€)° dpo(&)

/H<B<g<o>,A>
/ <;>5d (&) = (1—12(0)))~° ko (TI(B(2(0),A))
T1(B(3(0).4) 0y ) “Hols)=Uis to(T1(B(g(0),A)).

)

1—g



A.2. THE PATTERSON MEASURE 153

O

The Shadow Lemma gives us a way of estimating the measure of shadows of balls around
orbit points of zero. It can also be phrased in terms of A(&;), the distance of the point & from the
orbit of zero. For & € L(G), and positive ¢, let b(&;, e ") denote the shadow of the geodesic which
intersects the ray s¢ orthogonally at the point &. One immediately verifies that b(&;,e™") is an arc
of S! centred at the point & with radius comparable to e~'. As long as A(&) is bounded, which
is to say that as long as we are traveling towards a radial limit point, we can use the Shadow
Lemma to estimate the measure of b(&,e™").

The following estimate, called the Global Measure Formula by B. Stratmann and S. Velani
[78], gives a uniform estimate for the measure of balls in S! around any limit point of G. (Note
that this estimate was first given by Sullivan [80].) In order to state the formula, we require the
following notation. Define k(&) to be equal to 1 if & is inside some standard horoball H, and let
k(&) be equal to & otherwise. (We have stated this only for the case of a Fuchsian group; in the
paper [78], the authors are concerned with Kleinian groups, that is, discrete groups of isometries
of three or more dimensional hyperbolic space.)

Theorem A.2.13. Global Measure Formula. Let G be a non-elementary geometrically finite
Fuchsian group with parabolic elements. If & € L(G) and t is positive, then

to(b(&,e7")) =< e "0 (9KEDAG)

Proof. See Theorem 2 of [78].
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Appendix B

Continued fractions and the modular
group

In this second appendix, we outline a beautiful result which links the geometry of the modular
group (defined in Example 6.1.23) to the regular continued fraction expansion of real numbers.
This link can originally be traced back to a paper by Artin [3] in 1924, but is probably better
known now from the expository works on the subject published in the 1980s by Series, see [73]
and [74]. The first step is to describe a certain tessellation of the upper-half plane, known as
the Farey tessellation. That this is connected to the Farey map gives the first clue that there is a
connection between hyperbolic geometry and continued fractions.

Recall the definition of a fundamental domain from Chapter 6. One particular construction for the
fundamental domain of a Fuchsian group can be very useful. This is the Dirichlet fundamental
domain, which we now define. Strictly speaking, that this genuinely defines a fundamental
domain requires proof, but this can be found in any book on hyperbolic geometry.

Definition B.0.14. Let G be a Fuchsian group acting on D? and suppose that a point zo € D? is
not the fixed point of any elliptic transformation belonging to G. Then the Dirichlet fundamental
domain for G at the point zg is given by

D, (G) :={z€D?: dj(z,20) < d(z,8(z0)) forall g € G\ {id}}.

In other words, for each g € G\ {id}, consider the perpendicular bisector of the geodesic segment
between zo and g(zo). This divides D? into two half-spaces. Let S ¢ refer to the half-space
containing zo. Then,

D,(G)= () S,
g€G\{id}

Recall the modular group:

PSL,(7Z) ::{( Ccl Z ) a,b,c,d,€ 7 and ad — bc = 1}/{i[}.

155
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Also recall that the modular group is generated by one parabolic element P and one hyperbolic
element O, where

P(z) =241 and Q(2) = —%.

We can calculate a Dirichlet fundamental region for the modular group at the point 2i. First note
that 2i is not fixed by any element of PSL,(Z). Then, let D := SpNSp-1 NSp, where

Sp={z€H:Re(z) <1/2}, Sp1={z€H:Re(z)>—-1/2}

and
So={zeH:|z] > 1}.

It is readily verified that these are the half-spaces defined by the elements P,P~! and Q exactly in
the way described above. We want to show that D;(G) = D. It is clear that D,;(G) C D. For the
other direction, suppose by way of contradiction that D,;(G) is a proper subset of D. This would
mean that there exists some z € D and g € PSL,(7Z) such that g(z) also belongs to D. Suppose

that this g is given by g(z) = f;j:g where a,b,c,d € 7 and ad — bc = 1. First, notice that

lcz+d> = ?|z)? +2cdRe(z) +d* > ¢ — |2cdRe(z)| + d?
> & —ed|+d* = (|| - |d])* +|ed| > 1,

since ¢ and d cannot both equal zero simultaneously. Using the easily verified fact that Im(g(z)) =
Im(z) /|cz+d|?, we then deduce that

_ Im(z)
lcz+d?

Im(g(z))

< Im(z).

On the other hand, we can argue in exactly the same way with z replaced by g(z) and g replaced
by g~ . In this way, we obtain

Im(z) = Im(g "' (g(2)) < Im(g(z)).

This is the desired contradiction and hence D C D5;(G).

We begin by creating a new fundamental domain for the modular group, by cutting the
Dirichlet fundamental domain D in half along the imaginary axis and shifting the left half
by applying the map P : z — z+ 1. This gives the region F, a quadrilateral with vertices
{i,i+1,1/2(14+/3i),{eo}} (see Figure B.1 below). Now, let S € PSL,(Z) be given by

1
S(z) = ——— = QoP(z).
(z) ol e (z)
The images of F under S and S? are also shown in Figure B.1.

The union A := F US(F) US?(F) is the ideal triangle! with vertices {0, 1,{cc}}. Finally, de-
note by [ the tessellation of the upper half-plane obtained from the images {g(A) : g € PSL,(Z)}.
This is what is known as the Farey tessellation. It is illustrated in Figure B.2.



i+1

0 1

Figure B.1: The ideal triangle with vertices at 0, 1 and {eo}.
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Notice that the boundary lines of [F can most easily be described by
JF := {g(Im"(2)) : g € PSL2(Z)},

where Im™ (z) denotes the upper half of the imaginary axis. Also note that the vertices of the
Farey tessellation are exactly the images under PSL,(7Z) of the point at infinity; in other words,
the vertices of [F correspond on the modular surface M to the cusp associated with the parabolic
element P. These images are precisely the set of rational numbers and the point at infinity,
QU {}. Moreover, if p/q and p'/q’ are rational numbers such that pg’ — p’q = 1, then they
are linked by a line of JdF. In fact, the lines of the Farey tessellation are built up by successively
joining each neighbouring pair of vertices to their mediant, as can be seen in Figure B.2 above.
Since we can start with 0 and 1 and translate using the element P, the vertices appear as the Stern-
Brocot series (see Remark 1.2.12 above). We are interested in geodesics travelling through the
upper half-plane and the way that they cut through the lines of the Farey tessellation. Let us now
describe the cutting sequence of a geodesic. An oriented geodesic ¢ is divided into segments as
it cuts across the triangles which compose . Travelling along ¢ in the positive direction, each of
these segments intersects a triangle so that there is a single vertex on either the left or the right
of . If the single vertex is on the right-hand side, we label the segment R; if it is on the left, we
label the segment L. This is illustrated in Figure B.3 below. We say that ¢ changes type at a point
where we find two neighbouring segments with different labels. If it happens that our geodesic
¢ either starts or ends at a rational number, we only have finitely many segments to label, and
for the final one, we could choose either R or L. In order to be consistent, we will label the final
(or initial) segment with whichever label the one immediately before (or after) has. Therefore,
there is no type change point directly before termination into a vertex of [F. For the special cases
of geodesics joining —1 to 1 and 1 to —1, we label these as RyL and LyR, where y indicates
a type change point at the imaginary axis. So, each geodesic has a cutting sequence given by
SCRPLYyRM or L 2Ry LMR™ ) with respect to some type change point y.

Figure B.3: The method of labelling an oriented geodesic as it travels through the triangles of
the Farey tessellation.

Let <7 denote the set of all geodesics ¢ in H with /_ and ¢, satisfying |[(| > 1,1 < |[{_| <1
and /_/, < 0. Any such geodesic has a type change point on the imaginary axis in a point we
will denote by y,. If £, > 1 then ¢ has cutting sequence ...L"2R"-1y,[""R" ... and if /_ < —1,
then ¢ has cutting sequence ...R"-2L"-1yR" ["2 .. .. Note that any geodesic in H can can be sent

!'A hyperbolic triangle is said to be ideal if all of its angles are equal to zero.
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by an element of the modular group to a geodesic in the set .7, so the set <7 projects to the set
of all geodesics on the modular surface M.

Now, since each of the boundary lines of IF are the image of the upper half of the imaginary
axis, it follows that they all project to the same line on the modular surface M. We will denote this
line by /. Recall that the unit tangent bundle 77 M is the collection of all unit tangent vectors with
base points on M. We consider a subset X C 71 M consisting of all those unit tangent vectors with
base point x in the line / which point along a geodesic that changes type at the point x. Let us now
define a function ¢ : &7 — X. The function ¢ maps the type change point y, on the imaginary
axis to the corresponding unit tangent vector with base point 7(y;) on I C M which points in
the direction of the geodesic ¢. Note here that there is a slight ambiguity in the definition of the
function ¢ as it is given in [74]. If we consider some 0 < a < 1 and the geodesic ¢, with left
endpoint at —a and right endpoint at 1 + a it is clear that there are two unit tangent vectors at the
point 7(y,,) € I which both point along the geodesic ¢,, but in different places when lifted back
to H. It is not immediately clear which vector we should take to be the image of y,,. So, we really
have to consider the tangent vectors in a small neighbourhood of the point y, for each geodesic
¢ € A to ensure we always take the correct direction at a given base point. This observation was
pointed out to the author by Anna Zielicz, then a student at St Andrews University, see [85].

The main result in [74] is the following.

Theorem B.0.15. The map ¢ : o7 — Xgiven by ¢ ({) = n(uy,) is surjective, continuous and open.
It is injective except that the oppositely oriented geodesics joining +1 and —1 have the same
image. Moreover, if u, defines a geodesic in </ with cutting sequence
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then ¢ = ¢~ (u,) has endpoints given by {, = [n;;na,n3,...] and {_ = —[n_1,n_y,n_3,...].
Alternatively, if the cutting sequence is

LRI xRN
then £ = ¢! (u,) has endpoints given by {, = —[nj;ny,n3,...| and {_ = [n_1,n_p,n_3,...].

Proof. First, to see that ¢ is surjective, if u, € X defines a geodesic y on M, then there is a lift of
¥, call it £, that has a type change point at some line S in JF. Say this type change point occurs at
the point 1, and further suppose, without loss of generality, that the labeling of / changes from L
to R at y. Choose g € PSL(Z) such that g(n,) lies on Im™ (z). Then, since labeling is invariant
under the modular group, g(¢) also changes type from L to R at the imaginary axis. Bearing in
mind that only geodesics in <7 change type at the imaginary axis, it follows, as ¢(g(¢) = u,, that
the map ¢ is indeed surjective. For injectivity, suppose that there are two geodesics ¢,/ € o7
with ¢ () = ¢(¢1) = u,. Both £ and ¢, after crossing the imaginary axis at the points y, and
ye, Tespectively, can only travel into one of the regions F, P! (F),Q(F) or S(F) = Qo P~!(F),
as shown below in Figure B.4. Moreover, by considering the orientation as well as the crossing
point, if ¢ first enters F, the only option for ¢; (unless it actually equals ¢), is to first go into the
region Q(F). The regions P~!(F) and Qo P~!(F) are paired up similarly.
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1

Figure B.4: The regions F and and S(F) are paired up, as are the regions P~ (F) and Qo P~!(F).

Consequently, if ¢(¢) = ¢(¥}), it follows that ¢/; = Q(¢). The only two distinct geodesics in
</ with this property are the two oppositely oriented geodesics joining 1 and —1.

For continuity and openness, we refer to [74]. It only remains to demonstrate the statements
given concerning the endpoints of the geodesics in .7 . First note that for the oppositely oriented
geodesics joining 1 and —1, using the coding outlined above satisfies the conclusion here. So,
suppose that u, € X defines a geodesic on M that is different from either of the geodesics from
—1 to 1. Then there exists a unique geodesic ¢ = ¢*1(uy) on H with cutting sequence given
by either ...L"*2R"*-1y["'R"™ ... or ...R"2["-1yR™M [ ..., where these can be infinite or finite.
Suppose we are in the former case. (The second case can be proved by the same argument as the
one that follows, but starting from the second step.) We have that /, > 1 and so the continued
fraction expansion of £ is given by ¢ = [aj;az,as,...]. Itis geometrically obvious that a; = n;.

If ;. = n; we are done. If not, apply the map

QoP ™M :=py:z+>
Z—n
to the geodesic ¢. This reverses the orientation of ¢, sending ¢_ to the interval (0,1] and ¢, to
the interval (—oo, —1). More precisely, p;(¢y) = |az;as,aq,...]. With 1y referring to the type
change point of / immediately after that at y,, we also have that p;(1,) = y,, (0)-

Now, it is clear just as before that since p;(¢) changes type from R to L at the line Re(z) =
—ap € JF, that ap = ny. If £ = ny + 1/ny, we are done, if not, we continue in the same way by
applying the map |
z+ny
Continuing in this manner until we either come to a stop with a finite continued fraction or
indefinitely otherwise, we have shown that ¢ = [ny;ny,n3,...]. For the left endpoint, consider

QoP":=py:z+—



161

the geodesic Q(¢). First, we must reverse the orientation of this geodesic, otherwise it does not
belong to the set <7. If £ has cutting sequence ...L"2R"-1y,L"'R"™ ... then [Q(¢)]~!, which
travels from Q(¢4) to Q(¢_), has cutting sequence ...R"L"Q(y,)R"-'L"-2.... Hence, by the
argument above, Q(¢_) = —1/¢_ = [n_1;n_p,n_3,...], as required.

U
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convergent
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cutting sequence, 158
cylinder set

o-Farey, 25
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divergence type, 122
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expansion
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expansive partition, x, 37

Farey map, 8

finite type, 37

free energy function, 87
Fuchsian group, 117

Gauss map, 7
geometrically finite, 119
Gibbs measures, 85

Holder continuous function, 31
Hausdorff dimension, 2

Hausdorff dimension function, 84

Hausdorff measure, 1
horoball, 117

infinite type, 37

invariant measure, 57
isometry, 110

iterated function system, 83

jump transformation, 24

Legendre transformation, 84
level sets, 84
limit set, 83

mass distribution, 2
modular surface, 119

natural extension
for the a-Farey map, 28
for the a-Liiroth map, 21

parabolic map, 116
petals, 125
Poincaré disc, 109
Poisson kernel, 143
potential, 84
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renewal equation, 72
Riemann surface, 119

shadow map, 124

shift map, 5

slowly-varying function, 36
standard set of horoballs, 123
Stern-Brocot sequence, 9
sub-Holder continuous function, 32

top representation, 124
topological pressure, 85
topologically conjugate, 3
transfer operator, 59

upper half-plane, 111
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