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Two Numerical Methods for Approximating
High-Dimensional Posterior Distributions

ABSTRACT

The three chapters within this dissertation are largely self-contained, though
chapter 3 does build on the ideas and work of chapter 2. The underlying
similarities and connections are discussed in the foreword, but the content may
be summarized separately:

Chapter 1 Online data assimilation in time series models over a large spatial
extent is an important problem in both geosciences and robotics. Such models
are intrinsically high-dimensional, rendering naive particle filter algorithms
ineffective. I present a novel particle-based algorithm for online approximation of
the filtering problem on such models, using the fact that each locus affects only
nearby loci at the next time step. The algorithm constructs hybrid particles at
time ¢ using an MCMC that combines values obtained by progressing various
particles at time ¢ — 1, using custom-built proposal and acceptance probabilities.
I show simulation results that suggest the error of this algorithm is uniform in
both space and time, with a lower bias, though higher variance, as compared to a
previously-proposed algorithm. Since this variance may be fixable with more
computing power, this tradeoff is promising.

Chapter 2 Variational inference is a way to estimate posterior distributions,
especially in cases such as models with many latent variables that make MCMC

difficult. Existing techniques such as mean-field methods can fail to account for
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posterior correlations, leading to downward bias in estimates of posterior
variance. We present a novel technique, Laplace Family Variational Inference, for
creating posterior estimates with more-realistic posterior correlation structures.
We show that this technique outperforms Gaussian mean-field variational
inference in two models: one simple two-variable model and one model based
on a multi-site study. We give results of the latter model on real data for an
educational intervention, Early College High Schools.

Chapter 3 Ecological inference — inferring individual-level quantities from
group-level data — appears in many contexts, but is particularly key to
demonstrating violations of the US Voting Rights Act. In this setting, the
standard approach to solving the ecological inference problem is King’s EI. We
extend the EI framework in two ways. First, we give a flexible Bayesian model of
voting behavior that can be easily customized for different scenarios. Second, we
show how to use the techniques from the Chapter 2, along with some
observation-dependent reparametrizations, to perform variational inference on
our model. We demonstrate this on simulated data based on actual racial voting
patterns in the 2016 Presidential election in North Carolina. We show that this
technique is comparably accurate to existing methods. Our model, however,
easily permits extensions which would allow for increased power and/or

addressing open questions in ecological inference.
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Conditioning is the soul of statistics.

Joe Blitzstein

Foreword

Statistics is the discipline that deals with the use of quantitative evidence. Thus,
as Professor Blitzstein reminds us, the key step is to condition on that evidence,
using Bayes’ theorem. For observed evidence £ and a hypothesis  from the

space of possible hypotheses H.:

_ P(E|H)P(H)
PUHIE) = T Ea) Pl

Usually, the hardest part about finding the posterior distribution on the left is
dealing with the denominator on the right, the normalizing constant. This
becomes especially tough when H, the space of possible hypotheses, is
high-dimensional, so that attempting to numerically approximate an integral over
all possible hypotheses is essentially hopeless — at least, without additional

constraints or assumptions.



This thesis concerns itself with two novel methods for approximating two
different types of high-dimensional posterior distributions. In chapter 1, the
posterior in question is a filtering distribution; the best guess of the state of a
system with known dynamics, conditional on an ongoing time series of data that
must be assimilated over time. Chapters 2 and 3 deal with a more-traditional
statistical problem of posterior distributions of model parameters. Specifically,
chapter 2 gives methods for a general class of latent variable models, and chapter
3 applies these methods to the specific problem of ecological inference.

Creating numerical methods like these is a finicky job. It involves building an
algorithm with several steps when, in one or more of those steps, exact solutions
are difficult or impossible to come by. Thus, one must find good approximations,
while keeping a good intuitive grasp of how they interact holistically. Meanwhile,
one must keep juggling the different roles necessary — mathematician,
programmer, data wrangler, writer, and project manager.

Of course, I did not invent either of the basic methods expounded here out of
whole cloth; they are based on prior work. But in both cases, they combine
several original ideas and/or original applications of existing ideas into a coherent
and working whole.

I would not have been able to accomplish all this without the help and support
of the people mentioned in the acknowledgements above. In particular, Mira
Bernstein has been a close collaborator and colleague in my work on the second
and third chapters. Still, in each chapter, the key idea is my own: in chapter 2,
using Laplace families for variational inference, and in chapter 3, applying these

techniques to ecological inference.

0.1 COMMONALITIES BETWEEN THE TWO METHODS DISCUSSED

The basic problem of estimating high-dimensional posterior distributions is a
difficult one. In low-dimensional cases, it may be possible to use simple
approximate numerical integration to estimate the normalizing constant. But in

high-dimensional cases, the variance of such estimates becomes unmanageable.



Thus, one is forced to find and take advantage of additional regularities,
constraints, or reasonable assumptions on the problem domain to make it
tractable.

Though the two methods introduced in this thesis are different in nearly all of
their particulars, they have several aspects in common. In both cases, I address a
relatively broad class of problems with practical importance, problems which
existing methods struggle to resolve. Then, in both cases, I take advantage of two
constraints or assumptions about the problem space; in each case, this includes
one that relates to the dependency structure of the data, and one that relates to
the dynamics and/or distributions involved for individual data points. Through
these constraints or assumptions, I am able to reduce problems that are nearly
impossible to ones that are merely difhicult.

The two basic methods themselves also have some overall features in common.
In both cases, there is one initial core idea, but in order to get it to work, we have
had to adapt other subsidiary ideas in order to create a full, working algorithm.
And in both cases, the resulting final algorithm I lay out here works and shows
broad promise, but I see possibilities for further adaptations and/or refinements

in order to apply it in a more practical sense.

0.2 THE PROBLEM DOMAINS ARE IMPORTANT AND GENERAL

For chapter 1, the domain is data assimilation. That is, the goal is an online
algorithm to incorporate information from a time series of observations of an
evolving system, and use it to build a coherent understanding of its possible
current state. This has broad and important applications in applied settings: for
instance, in modeling geophysical processes such as weather, or in allowing
robots to maintain a model of their surroundings. The problems that current
techniques have with high-dimensional problems of this type are well-known,
and I hope that this thesis shows that my general approach is very promising.
For chapters 2 and 3, the domain is latent variable models for independent

units. Such models are common in many scientific settings, both experimental



and observational. It remains to be seen whether MCMC, SMC, or variational
inference will ultimately prove to be the best workhorse for these problems, but if
it is the latter, I believe that something like the approach given here will be part of
the way forward. And even if, ultimately, we find ways to resolve the difficulties
with MCMC or SMC in these high-dimensional cases, some of the steps I've
used here (such as analytic amortization) may still prove useful.

Specifically in chapter 3, I've focused on a problem relating to voting. While
this is far less general a case than chapters 1 and 2, it is still of paramount interest.
For me, personally, voting-related issues were what inspired me to pursue a

doctorate in the first place, and I intend to continue exploring this area.

0.3 How TO MAKE EACH OF THE PROBLEMS TRACTABLE: CONSTRAINTS

AND ASSUMPTIONS

In chapter 1, the key constraint that I've used to make the problem tractable is
spatial structure. For instance, in the case of a weather model, a cloud at one
location at time ¢ may affect nearby locations at time ¢ + ¢, but can not affect
far-off locations until more time has passed. In practice, this means that the
estimated posterior should respect the correlation structure between nearby
locations, but can ignore that between far-off ones. This is what allows my
“Finkelstein” approach, of cutting locations apart and then putting them back
together in a principled way, to work.

In chapters 2 and 3, the key structure I take advantage of is the conditional
independence of each unit’s observations, given global parameters and

observable unit characteristics (covariates).
0.4 SECONDARY IDEAS AND CONTRIBUTIONS, AND DIRECTIONS FOR

FUTURE WORK

In chapter 1, the central idea is to modify Rebeschini and van Handel’s block

particle filter algorithm by using the forward probability in order to ensure that



the resulting hybrid particles are more plausible; that they do not have
problematic "seams” between loci with different implied histories (smoothing
distributions). In order to make this basic idea work, I have created a
Metropolis-Hastings-like MCMC algorithm, with proposal and acceptance
probabilities that have been built from principled mathematical arguments and at
least somewhat tuned for practical performance. Bringing together this MCMC
over multiple loci, with a Horvitz-Thompson estimator over multiple histories to
approximate the acceptance probability, is, I believe, an interesting combination,
and one that might be applicable elsewhere.

Meanwhile, there is further work to be done to ensure this idea reaches its full
promise. I've begun to explore how to modify it for cases when the system
dynamics are deterministic or nearly so, such that the version presented here fails
for lack of ergodicity. I also have ideas about using concepts from unscented
Kalman filters to improve the proposal distribution, and thus the mixing rate, of
the Finkelstein MCMC.

In chapters 2 and 3, the central idea is to use observed information to create a
variational guide family that respects posterior correlations without needing to fit
an excessive number of parameters. The ideas about how to combine this with
analytic amortization and subsampling, including taking advantage of the "free”
step of Newton’s method in the amortization, came up along the way. Still, it may
be possible to separate these "secondary” ideas from Laplace family variational
inference, and to use them in the context of SMC or MCMC. There are also
further improvements in the amortization functions, as well as simple
computational optimizations, that I have not had time to include in this work, but
that I hope to add later.

In particular, for chapter 3, the point of creating an extensible model is to try
out extensions, while the current work has only gone so far as validating the basic
methodology. It is clear that this method has some ability to infer real patterns in
the data. My interest in voting issues was what inspired me to approach a PhD in

the first place, and so I will continue to work on these issues.



A High-Dimensional Particle Filter
Algorithm

1.1 BACKGROUND

Filtering problems arise in many applied contexts, whenever noisy observations
over time must be combined, using an explicit dynamical model, into a
best-guess distribution of a current state. In cases where the system being
modeled involves processes over a large spatial extent, such as models of weather
or other large-scale fluid dynamics, filtering is also called data assimilation. [ ]
This is an active area of research, with broad applications in predictive

geoscience[6][55] and robotics[52]. In fact, it is considered to be among the



central problems in both of these disciplines."

The basic filtering problem is as follows. We model the state of the system at
time ¢ as a random variable X;. In our context, .X; will have values x; at each
spacial locus [, for a large number of loci. We assume Xy, ..., X1 forﬁn a Markov
chain with known and sampleable densities for both the initial state () and
transition function (P, which maps states or densities at time ¢ — 1 to densities at
time ¢). We also have a series of observations Y7, ..., Y7, and we assume that each
Y; depends only on the corresponding X; according to a known and sampleable

observation density f(Y;|X}). This is shown graphically in Figure 1.1.1.

CITT

Yo Y, o Yr_q Yr

Figure 1.1.1: Graphical model of a low-dimensional filtering problem, with
time going horizontally from left to right.

At each time step ¢, we wish to estimate the filtering distribution: that is, the
probability density 7; of X;|{Y7, ..., Y;}. Because the X are Markovian, and Y;

depends only X, we can write 7, recursively as
() = EX171~7rt71[P(Xt € '|Y;f7Xt—1)] (1.1)

To minimize subscripts, we adopt the following notation:

« We abbreviate the filtering distributions 7;_; and 7, by 7 and 7

respectively.

!According to the papers cited above, there is “much focus in the [geoscience] literature on
the assimilation of data and numerical models pertain[ing] to the sampling of high-dimensional
probability density functions” [6], and “The SLAM [simultaneous location and mapping] prob-
lem is generally regarded as one of the most important problems in the pursuit of building truly
autonomous mobile robots.”[ 52 ]



« We abbreviate samples from X;_; and X by « and z respectively.
« When y;_1 is not relevant, we write y for y;.

« Superscripts should not be read as exponentiation for these and similar

entities.

The recursive formula for 7; suggests the possibility of online calculation, with
only a constant computing time required to update from 7 = m;_; to ™ = .
However, unless we assume a particular parametric form for 7, there is no finite
set of sufficient statistics that could stand in for the full distribution. Thus, aside
from very simple special cases, exact calculation is impossible; we look for an
approximation instead.

A widely-used recursive algorithm for approximating the filtering distribution
is the bootstrap particle filter. Assuming we have a sampleable distribution 7 at
time £ — 1 that approximates the true filtering distribution 7, we proceed as

follows:

1. Sample M iid particles ' from 7. (Note that if we have been following

the algorithm up to step t — 1, then 7 takes the form of step (3) below.)
2. For each ', progress it to get candidate particle 2 ~ Pz’

3. Find weights w’ = f(y|z"). The set of weighted particles forms

Zij\il wi(s(zi)
Zi]\il wt

Here 6(a) is the Dirac delta density; for example, £ (6(0) + 6(1)) is the

Bernoulli distribution with p = %

T=

A key property of the particle filter algorithm is that, for large enough M, the
Monte Carlo error remains under control, even as the time steps accumulate.[ 11]
Specifically, let 7 be the approximation to 7; obtained using M particles, as

above. Let F be the set of functions from the domain of 71, to (—1, 1). For each



f € F, denote Ex.r, (f(X)) and Ex_zu (f(X)) by m(f) and aM(f)
respectively. Then
C
sup E|m(f) — #M(f)| < —,
}_P ’ t( ) t ( )| = \/M

for some constant C' that does not depend on t. The outer expectation here is taken

(1.2)

over the randomness of the algorithm itself; that is, considering the distribution
7 as itself a random variable, while 7 is fixed.[ 44, p. 2814]

Now suppose that we are interested in modeling processes with a large spatial
extent. For instance, in a weather model, one might use a lattice of points that
cover the region of interest, with various continuous values (temperature,
humidity, pressure, wind, etc.) recorded at each locus. If X; contains information
about L separate spatial loci, and the state space at each locus has dimension /£,
then the full state space of X, has dimension /K L. In practical applications, this
can easily be 107 or more.[54]

To see why, consider a schematic diagram of the model (Figure 1.1.2), where

the state of the system at time ¢ and locus [ is denoted x;.

Figure 1.1.2: Graphical model of a (simple) high-dimensional filtering prob-
lem. Time is still represented left-to-right, and a single spatial dimension is
represented by diagonal sets of simultaneous variables.

Note the following assumptions implicit in the diagram:



e (yi|®;) 1L 24 This assumption will be used in the following for
t ot t
simplicity, although I believe it can be relaxed in practice with only minor

additional complications.

« More crucially, ; depends on = 1, only for k in some small spatial
“neighborhood” j\/ (1) of I. The p;ecise composition of A/(/) depends on
model assumptions as well as the way that the L loci are positioned in
space. The diagram depicts the case where the loci are all laid out along a
single spatial dimension, so that the immediate neighbors of locus [ are
locil — 1 and ! + 1. In practical applications, the loci would more likely be

connected in a 2D or 3D grid.

I'will discuss this locality of dynamics assumption further below, as it is key to the
performance of the algorithm I propose in this paper.

Technically speaking, the error bounds in 1.2 still apply: errors are stable over
time and inversely proportional to the square root of the number of particles
(o< 1/+v/M). But it is widely recognized that the bootstrap particle filter is no
longer a practical solution in this context, due to weight degeneracy.[51][7][3]
The problem is that, in the resampling step, the majority of the weight will tend to
be carried by only a small fraction of the proposed particles. To see why, note that
the log likelihood of each particle is the sum of its log likelihood at each locus.
Since these terms are roughly independent, as L increases, the empirical
distribution of log likelihoods of the particles comes to resemble a Gaussian
distribution with variance that scales linearly with L. Thus the weights come to
be distributed approximately according to a log-normal distribution, whose
skewness increases exponentially with L. Thus, the fraction of particles with
above-average weight will shrink exponentially with L. >

In fact, without an exponentially large number of particles, not only will one of
them tend to have more weight than all the others, but it is likely that there is

some missing value whose weight would dominate even our best particle. At this

*Bickel et al.[ 7] formalize this line of argument, showing that the variance of the log likelihood
may be seen as an estimate of the effective state dimension depicted by the measurements y.

10



point the particle filter ceases to be a useful approximation of the filtering
distribution. That is, although the constant C'in Equation 1.2 does not depend
on time, it does grow exponentially with L. This is what is known as curse of

dimensionality for particle filters.

1.1.1 EXISTING STATE OF THE ART (REBESCHINI AND VAN HANDEL, 2015)

There have been various proposals for dealing with this curse of dimensionality in
general. In fact, there are three different recent survey articles reviewing and
comparing these, by Septier and Peters[49], Morzfield ef al.[36], and Farchi and
Bocquet.[15] Some of these prior methods do not use the locality of dynamics
assumption, which I believe limits their effectiveness. This includes Gilks and
Berzuini,[ 17] who suggest rejuvenating particles with MCMC steps, targeted to
the filtering distribution, to avoid the duplication problem from resampling; and
Goodsill and Clapp,[ 18] who propose using bridging densities such as annealed
quasi-filtering densities to solve the problem of lack of overlap between the
progressed density PT = (z|y1, ..., Y4—1) and the likelihood f(y;|2).

The two previous proposals that do use locality of dynamics come from
Poterjoy[40][41] and from Rebeschini and van Handel.[ 44] Of these two,
Rebeschini and van Handel’s proposal is more generally applicable, so I will
explain it further below. Poterjoy, on the other hand, suggests a scheme that, as
given, is limited to situations of sparse observations; it uses estimated covariance
matrices to blend resampled particle filter values at a local scale with
un-resampled values at a meso-scale.

Rebeschini and van Handel’s proposal is called the block particle filter; also
sometimes termed the localized particle filter. In simple terms, they replace the
global resampling step of the bootstrap particle filter with a local resampling step
which constructs new particles by resampling neighborhoods independently.

They begin their theoretical discussion by offering an overall point of view of
the problem which very much inspired the current work. They focus on the

decay of correlations between local values as spatial distance increases, which
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they say is “in essence a spatial counterpart of the much better-understood
[temporal] stability property of nonlinear filters”. This decay of correlations,
discussed further below, is a product of the locality-of-dynamics assumption
shown in the diagrams above.

Rebeschini and van Handel partition the loci 1, ..., L of the progressed
particles into .J zones { Z; }, where each zone consists of a small number of
(contiguous) loci. They then weight and resample values from each zone
independently. This produces what I would call “Frankenstein” particles, sewn
together from zone-sized pieces of different particles. Because of the reweighting
and resampling, each piece tends to fit well with observations locally, but at the
“seams” between zones, values at neighboring loci often come from progressing
different particles from time ¢ — 1.

The precise steps of the block particle filter algorithm are as follows:

1. Given 7, a sampleable distribution that approximates the ideal filtering
distribution 7, sample M iid particles ' from 7. (Note that if 7 takes
the form of the output of step (3) below, then this amounts to sampling,
independently with replacement, a k; for each zone Z;;1 < j < Jand
particle ¢ with probability wz / Enng ; then putting those together to

, ki
make the final particles, so that| € Z; = 2z} = z;”.)
2. Foreach ', progress it to get z' ~ Pex.

3. Find weights for each particle for each zone, based on the local

observation likelihood: wiZj =[] 2] (y1|2}). Then

_ é 5‘41 wy, 5("/’%)
j=1 Zz le

Intuitively, cutting the progressed particles into zones and reconstituting them
is a way to solve the exponential curse of dimensions. However, it gives rise to a

different problem: it breaks any inter-locus dependencies across zone
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boundaries, whether those come from pre-existing dependencies at the ¢ — 1
time step or are induced by cross-border dynamics during the latest time step
(because the transition kernel uses a history that overlaps the boundary). These
broken dependencies lead to error at the boundaries, which does not disappear
even as number of particles goes to infinity.

In particular, this could lead to unrealistic dynamics near the boundaries at
later time steps, especially if the forward density operator P is nonlinear. [44,

p- 2829] For instance, imagine a weather model in which the hypothetical air
pressure in a particle varied reasonably within each zone, but a discontinuity at
the zone boundary led to a prediction of a tornado forming in the next time step.
Note that the algorithm proposed in this paper avoids such discontinuities, but
for unrelated reasons can be ill-suited to modeling models with nonlinear
dynamics; I will address this issue in later work with a proposed extension to my
algorithm.

For the block particle filter method to be useful, correlations between local
values must tend to decay with distance. If such decay of correlations holds, then,
far enough from a zone boundary, the dynamics return to normal.

This intuition helps explain the error bounds that these researchers prove their
algorithm obeys. They show that the error for the value at a given locus [ satisfies

eBlZ]

~ —yinf |[— c
Il = 7l < (= + 77 (13)

where the constants a, 3, > 0 do not depend on ¢. (They define a norm for
this purpose which measures the distance between random distributions; I will
not reproduce this definition; here, this result is merely stated as a guide for
intuition.)

One can see that there is a tradeoff: using smaller zones and/or more particles

. 817y . .
allows better guesses for a given zone to control the term £ \/Ml , while using larger

zones means that there are loci farther from boundary effects and thus controls
: e,
the term e~ "™ =Y€Z"| In practice, Rebeschini and van Handel give a simple

example where it would still be possible to control average error per locus, based
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on finding an optimal balance between adding particles and increasing
neighborhood size, but in that example the inverse of their error bound grows
only logarithmically with the computing resources/number of particles — in
other words, as tolerances tighten, the required number of particles can still grow
exponentially. Thus, although their algorithm in practice gives error far lower
than that of the bootstrap particle filter, it has not fully overcome the problem of
needing exponential computing cost, especially if one wishes to achieve fixed
error bounds that are lower than what comes easily with a moderate

neighborhood size.

1.2 THE FINKELSTEIN SOLUTION

In this section, I will sketch out the basic outlines of a recursive algorithm in
which each particle at time ¢ is composed of values at different loci which are
drawn from state vectors progressed from different particles at time ¢ — 1. The
choice of which values for a given locus combine with which values at other loci
is made by running a separate Metropolis-Hastings MCMC to create each
composite particle, proposing to replace one locus value at each MCMC step.
What acceptance ratio p to use for those proposals will be discussed in later
sections.

I name this the Finkelstein algorithm, after the character Sally Finkelstein from
the movie “The Nightmare Before Christmas”. I have already compared the block
particle filter to a Frankenstein solution, in which the progressed particles are
chopped up and then randomly sewn back together. In that algorithm, the
suitability of the values in each zone of each particle is measured against
observation, but not against the other zones on which it borders. Finkelstein can
improve on this. Though herself originally a Frankenstein’s-monster-like creation
of a stereotypical mad doctor, now that she has been animated, Sally is able to
lose her body parts and sew them back on, and thus presumably to choose for
herself only those body parts that best fit together. In my terms, Finkelstein

would be able to run an MCMC process on her own body, targeting whatever
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distribution she pleases.

A key aspect of this algorithm is the Metropolis-Hastings acceptance ratio p.
When choosing a formula for such a ratio, the key question is, what distribution
do we wish to target? I'll begin by showing an algorithm that targets the natural

unnormalized density:

waT(z\y):/f(z\y,a:)T(zc)dw (1.4)
x / f(y. 2)f (2 x)7(x)dz
— [T f ()] / L f (2| ()

It will turn out that targeting this density still suffers a similar curse of
dimensionality as the bootstrap particle filter, so I will modify the algorithm,
such that its stationary distribution is not precisely the above expression. Still,
this expression is still the starting point; by approximately targeting it, I
approximately target 7.

Here are the steps of the basic Finkelstein algorithm. I do not include a
formula for the acceptance probability p here; I will develop and discuss several
alternatives for such a formula, based on modifications of the density above, in

the following sections.

1. Assume we have 7V

, a sampleable distribution which in some sense
approximates the ideal filtering distribution 7, and which must be of the
form - Zf\il §(x"). Note that unlike the cases of the bootstrap and
block particle filters, the final 7 produced by this algorithm already has
equally-weighted particles; so if 7 comes from 7 of a previous iteration

of this algorithm, resampling is not required.

2. For each particle &', progress it to get a full particle Z* ~ Pz’ whose local

values are known as Z,. (In later steps, I will assume for simplicity that
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there are no duplicate values at any locus, so i # j = Z} # Zl] , but

relaxing this assumption should be straightforward if necessary.)

3. Find likelihood weights for each such local value, denoted w} = f(y;|z});

and forward densities conditional on @7 for all j (including j = 7),
denoted f/ 7" = fp(Zi|2?).

4. Inparallel, fork =1, ..., M, do the following:

(a)

(b)

Create a new proposal particle by independently sampling each
locus of a vector £ € {1..M } . This vector specifies the source for
the value of Z that is being considered at each locus; that is, after
running the MCMC for S steps, the final value ¢* will be used to
define 2" by setting 2" = ZZLZS The initial sampling at each locus uses

the probabilities
P() =1) = wll/Zle
J

(Note that these initial sampling probabilities are arbitrary and, if
the MCMC successfully runs until convergence, irrelevant. The
probabilities above represent a reasonable starting point that should
converge reasonably well, but it may be possible to get even faster
convergence through some sampling scheme that is not

independent across loci.)

Run a Metropolis-Hastings MCMC chain targeting an
approximation of the filtering distribution, for s = 1, ..., .S steps to

(assumed) convergence:

i. Choose a spatiallocus A(s) € {1, ..., L} uniformly at
random. For brevity, I will refer to this as A, suppressing the

dependency on s, in the steps that follow.

ii. Sample a proposed particle * from which to draw the
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replacement value Z4 for locus ), with probability
P(* =i) =0} = wf\/Zwi
J

As with A itself, I am omitting here the subscript s, even though
this will be resampled at each step. Note that unlike ¢°, which is
a vector of one integer per locus, this ¢* is only one integer,
which determines the source for the proposed value only at
locus \. So for convenience in the formulas below, I will also
define the vector ¢** such that ¢.}* = +* and
Vke{l,. A =1L, A+ 1, L} =7t

ili. Accept this proposed change with M-H probability:
LA p(¢*71 X, 1*), where p is defined below. In case of
acceptance, t* := ¢**; Otherwise, in case of rejection, make no

change, so that t* := S

S
(c) Let zlk = ZZL’ ; that is, leave the particle unchanged at all locations

Y

5. The final set of particles forms

1 & ,
= > 6l ).
i=1
We would like to tune the proposal and acceptance probabilities so that this
algorithm targets the distribution (z|y, {x'}). Insofar as we succeed, the full
algorithm will be very similar to a bootstrap particle filter, which similarly targets
that distribution. Thus, on a purely intuitive level, it is unsurprising that this
should work if the MCMC does. But the whole process depends on the validity
of the MCMC, which in turn depends on the M-H acceptance probability
p(e*71 X\, %), left unspecified above.
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1.3 DEVELOPING A WORKING FORMULA FOR P

In this section, I'll first develop some motivating understanding of what p should

be like, then develop two specific formulas for p:

1. The first formula, pgy, is for illustrative purposes only. Though it is, by
construction, asymptotically correct — that is, the algorithm using pg
approaches the correct filtering distribution as the number of particles M/
approaches infinity — it is unsuitable for use in practice. Not only does it
lead to impractically high computational costs for a specific M, it also

suffers from similar dimensionality problems as the bootstrap particle

filter.

2. The second formula pj,,; only considers values of the MCMC in some
local neighborhood of A(s). It thus does not suffer the weight degeneracy
problem of the bootstrap particle filter or pg,y, while still being possible to
calculate in computing time that’s polynomial in number of particles, and

linear in dimension and number of time steps.

In the next section, I'll develop a further formula for p that improves the
computational characteristics, as well as proposing some other computational

optimizations.

1.3.1  Pg: FULL ACCEPTANCE PROBABILITY

I will begin by using a standard Metropolis-Hastings ratio to derive a pgy that
targets the (unnormalized) density 1.4. That expression is promising in one
sense: it suggests that one can judge the fit of local proposals drawn from two
different particles using an expression involving the transition kernel forward
density. However, the fact that it involves a sum over all particles, of a product
over all loci, makes pg,; computationally unworkable in practice. And even if

there were enough available computational power to calculate this at every step
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of an MCMC, taking a product over all loci would lead to similar problems with

high dimensions as those of the naive high-dimensional bootstrap particle filter.?
If we propose replacement 2z} for the value at a given locus \ with probability

proportional to some value ’Ug\ , we can construct a Metropolis-Hastings

acceptance probability in the usual way, by multiplying a ratio of target densities

(proposed over current) by a ratio of proposal densities (current over proposed).
(To avoid nested subscripts/superscripts in the following, Ileave out

redundant 1nd1ces for locus; thus usmg the notation fk " rather than f ]_nk

(s—1)

—1
using f;. 77151 pather than I 1 ,and using w,"~ "’ rather than w, L)

L Y e MG e
full = - - . ) L** _
[U}/\( 1)Hk7ﬁ>\wk( )] [H fj—> 1) ] ZM j—>

(1.5)

Let’s consider these terms from left to right, taking the version of each term as

it appears in the numerator:

1. w : The likelihood at the locus in question; the term which depends on

y. Iwill set v§ so as to cancel this out.

2. I Aw,;(s_l): The likelihoods at other loci. These cancel out naturally.

3. ;[ fj - ] This sum of products term is the heart of the calculation at
each MCMC step. Each product is the forward likelihood of the
current/proposed hybrid particle conditional on a given history; the sum
of products is proportional to the forward likelihood of the

current/proposed hybrid particle conditional on 7.

4. Uf\(sfl): Weights that define the proposal distribution and can be chosen

arbitrarily (up to normalization).

*The dimensionality problems of using pg, are similar in cause, but different in effects, to those
of a bootstrap particle filter. While the bootstrap particle filter suffers from degenerate particle
weights as dimension grows, the Finkelstein algorithm does not have particle weights; instead, the
stationary distribution of the MCMC, and thus all particles, will be dominated by a single state
whose values at all loci come from progressing just a single history.
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5. Zj]‘il /]\‘_n(s_l): The part of the proposal density that’s due to 7/; the
probability density that a given value would have been in
{24 : 0 < 1 < L} tobe available to be sampled. To someone used to
other variations of particle filtering algorithms, it may seem
counterintuitive to include this term; usually, taking advantage of the
forward density is a key aspect of how the algorithm works, not something
that needs canceling out. However, from the perspective of a
Metropolis-Hastings construction, it is necessary to include this in order
to target the intended (unnormalized) density 1.4. On a more intuitive

fi_”(s_l) for each j

level, one might note that the forward density values
appear both here and in the sum of products term in the denominator; so
if one did not include this term, that would in a sense be double counting
these forward density values by allowing them to cause an increased

proposal density and then also increase the acceptance ratio.

The unnormalized proposal weights v5 can be set at will; as stated above, I let
vy = wj, so that these terms cancel out. Now p is just a ratio of sums of
products, multiplied by a ratio of the forward mean proposal densities f3. I could
have set vé\ to also cancel out ff\, but as seen later, this would slow convergence.

The quantities fi do not change for different MCMC chains or for different
steps in each chain and can be precalculated for each i and A in O(L M ) time. We

thus have

M L j—** M rj—u(s—1)
Zj:l[nkzl k ] Zj:l A

M L j—i(s—1) M pj—u
Y, fi | Xz fi

(1.6)

Prll =

By construction, this acceptance probability satisfies the conditions for
detailed balance of a Metropolis-Hastings MCMC, and thus converges to the
desired target stationary distribution 1.4 under standard regularity assumptions.
At convergence, the algorithm will give M/ samples from the correct target

distribution, but with the constraint that the value for each sample at each locus
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must be available in 2'"M. As M — 00, the set of values available at each locus
will become dense, so the conditionality will not be restrictive. Thus,
asymptotically, one would expect that each 2’ should be a sample from the
correct filtering distribution, conditional on & ~ FMi-1

Yet pg is not useful in practice, for two reasons. First, on a relatively trivial
level, actually calculating the sum of products terms once for each step of the
MCMC would be computationally prohibitive; though not exponential, the
resources required would be extreme.

Even more importantly, unless M;_; is exponentially high, C;P7"t-1 is not a
good approximation of C;P7, because of a curse of dimensionality very similar to
that which causes the bootstrap particle filter to fail in high dimensions. In pg,
the acceptance probability is based on a sum over histories of products over loci
of likelihoods. Following a similar logic as Bickel et al.[ 7], discussed above, for
showing weight degeneracy in the bootstrap particle filter, we see that, assuming
that the likelihoods associated with distantly-separated loci are roughly
independent, then as dimension increases the distribution of these products over
loci will approach a log-normal. Since the variance of that distribution will grow
with dimension, the sum is likely to be degenerate unless number of particles
grows exponentially with dimension; just one history particle will contribute
more to the sum than all others put together.

Consider the example of a weather model of the continental United States,
where imperfect measurements of atmospheric conditions are taken daily over a
set of cities. In this case, the sum would be degenerate because, although any
given proposal particle (weather map for today) might accord well with a given
history (possible weather map for yesterday) for some cities, you'd nevertheless
need to consider an exponentially large number of possible histories before
finding one which accords well across all cities with a given realistic present.

In essence, rather than resolving the high-dimensionality problem at time ¢,
we’ve merely pushed it off to time ¢ — 1; because of the high variance of the
product terms [T7_, ,z ", the sums will tend to be dominated by the product

term for a single history j, losing most of the benefits of a high number of
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particles.

1.3.2  Plocal: SIMPLIFYING THE PRODUCT TERMS BY FOCUSING ON LOCAL NEIGH-

BORHOODS

The main computational burden of calculating pg,; comes from the sum over
histories of a product over loci. To deal with these computational issues, as well
as with the degeneracy of the sum, it would be good to take this product over
fewer terms. To do so, I restrict the product over loci to only consider loci in
some neighborhood of the locus [ which the proposal would change.

This idea gains some support from the decay of correlations property of that
Rebeschini and van Handel (2015) demonstrate. This is a complex issue which
occupies a significant portion of their paper, but to summarize briefly: they
assume particle filters with local dynamics, and both forward densities and
observation likelihoods that are strongly bounded away from zero and infinity,
Given those assumptions (which they argue are probably stronger than necessary
in most practical cases), they show that changing the value at locus k cannot
change the conditional distribution of the value at [ by more than a quantity that
falls exponentially as the distance between £ and [ increases. Thus, it would seem
logical that, in calculating an acceptance probability to target the distribution at [,
one may safely ignore faraway loci k.

To use this idea for the Finkelstein algorithm, assume there is a natural
distance metric d(l, k) over loci; for instance, if loci were arranged in a square
lattice, d(l, k) could be the ¢ -distance. Use this distance to define neighborhood
balls 5,.(\) = {l : d(\, 1) < r}, and use the natural notation that
xp.(n) = {2 : | € B,()\)}. Thus, the new p would be:

Ll j—1(s—1
XM e, fi ] B e

Plocal = oi(s— o (1.7)
e [Mees, oo fL 7Y ST

If this works, it will have finally conquered the curse of dimensions. For any

locus [, there are only | B, (1) | terms in each product; a quantity which does not
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depend on the overall dimension of the problem, only on the local connectivity.
We can therefore choose a fixed M large enough such that this sum of products is
not degenerate (not dominated by just one of the products) for

N = max; |B,.(1)] loci.

However, it should be noted that with this acceptance probability, the
algorithm is no longer strictly speaking Metropolis-Hastings. In particular, the
overall MCMC is no longer guaranteed to obey detailed balance. If one
repeatedly replaced the values of a single locus /, the MCMC would, by the
standard Metropolis-Hastings construction, show detailed balance at a unique

stationary distribution with a density proportional to:

filalzn, s 2, 2, e 22) = (02 Layeqz) 2550 ke, ) fr (26]27)]
(1.8)

This function is not only of z;, but of all 2, such that k& € B,.(1). However,
since this density is not the same for two different values of /, this detailed
balance can and will break down. The MCMC is still uniformly ergodic, so a
unique stationary distribution still exists; but without detailed balance, we lack
the nice guarantees that Metropolis-Hastings would offer as to what that target
distribution is. At present, then, my use of pjoc., and all later versions of p that
build on it, is based on empirical validation, as seen below in the simulation

section, not rigorous theory.

1.4 COMPUTATIONAL OPTIMIZATIONS

1.4.1  Pgampled: A VERSION OF joco] WHICH REPLACES NUMERATOR AND DENOM-

INATOR BY UNBIASED ESTIMATORS

Running the Finkelstein algorithm with acceptance probability pjo., does not
require exponential computation, but even polynomial amounts of computation
can be daunting in practice. Recall that the of sums over all histories in pjo., are

proportional to the forward likelihood conditional on 7, the M -particle
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approximation of the filtering distribution 7. At each step, we can save
computation by, effectively, estimating 7 with only an arbitrary fixed number

H << M particles; that is, by using only / history terms for these sums and
using those to get unbiased Horvitz-Thompson estimators of the totals. This
leads to pgumpled- Note that the specific H history particles used will change from
step to step and locus to locus in the MCMC, thus taking advantage of the full M
particles in equilibrium.

The idea of using unbiased estimators to calculate the Metropolis-Hastings
acceptance ratio is not new, and, as Andrieu and Roberts 2009 4] show, this can
be made to conserve the stationary distribution, provided that any randomness
used in finding the estimator is maintained as part of an expanded
Metropolis-Hastings parameter space. This could work for pg,;. But now that we
are working from pj,,, this is impossible because the MCMC is already not true
Metropolis-Hastings with a single common parameter space. As discussed above,
the target distribution of the particle as a whole is different when changing values
at different loci, although there’s reason to hope that the difference for nearby loci
is small. Thus, psampled Will inevitably have a different stationary distribution from
Plocal- Nevertheless, in the algorithm below, in an attempt to ensure that the
stationary distribution changes as little as possible, I expand the parameter space
of Psampled With a matrix 7°. This ensures that the same [ histories used when
accepting a value at alocus are also used when deciding whether to change that
value later.

In addition to showing that using unbiased estimators can conserve the target
distribution when the parameter space is expanded, Andrieu and Roberts also
discuss the case where the parameter space is not expanded. They show that this
case still has a stationary distribution, which converges to the original target
distribution as more samples are taken. With minor modifications, the same
proof applies to the MCMC using pgumpled; the stationary distribution of pgampled
is not the same as that of py,,;, but converges to it as / — oo.

Thus we revise the algorithm from section 2 as follows, expanding the

parameter space for use with Psampled:
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. Asbefore, assume we have 7.

. As before, for each particle ’, progress it to get a full particle 2 ~ Px’.

. As before, find likelihood weights w; = f(y|2}) and forward densities
T = fo(2f|2) foralli,j € {1,...,M}Yandl € {1,...,L}.

. Inparallel, fork = 1,..., M, do the following:

(a) Asbefore, sample t” € {1..M}” to initialize the state of the new

proposal particle.

(b) In addition, initialize an L X H matrix ° with entriesin {1...M},
sampled iid with probabilities

( li—n?)

Py = 1) = —"—4-
S0

Y
where ¢ is an arbitrary monotonically increasing function.

Each entry 7)), gives the index i of one history =’ which we will later
use to estimate the denominator of p. The significance of g will be

explained in more detail below.

(c) Asbefore, run a Metropolis-Hastings MCMC chain, for steps
s =1, ...,.5, updating 17 and ¢ at each step:

i. Asbefore, choose a spatial locus A(s) (aka A) uniformly at

random.

ii. Asbefore, sample a proposed replacement ¢*(s) (aka ¢*) for

locus A, with probability
P =1i) = wf\/Zwﬂ
J

Also, define t** as before.
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iii. Inaddition, sample (iid) a set (7}, ..., 77;;) of histories by which

to judge this proposed replacement, where

C_ )= g(fi")

(/]7}7, - 1—> %N\
Zig(fA7)
Define the matrix 7** by
. n, il =\
Mp =
b Mt AL

iv. Finally, define

_ 1 Myt M pj—usl
Ehe{l..H}gx(n;ﬂ”L**)[HZEBT(/\)fl ] MR

psampled = * 51 M rj—*
netrm gy Mes. o i 1 2=
(1.9)
where L
- 9(fi )
a(i,J) = ==
Yrg( l_>j)

As usual, we accept the proposed replacement with M-H

k3%

probability 1 A pgmpled- In case of acceptance, let ¢* := ¢™* and

s—1

1n° := n**. Otherwise, make no change, so that ¢* := ¢** and

,’75 = 7’]8_1.

S
(d) Asbefore, set 2} = Z;l .

5. As before, the final set of particles forms

7

1 > i i
M;é[(zl,...,zL)].

A few words on the function g which defines the probability of considering a
given history ¢ in determining the acceptance probability. First, note that the

sampling probabilities for 77° are in principle arbitrary, so could be a function of
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the full current vector ¢°. In the above discussion, however, they are a function of
only f{7*"; this simplifies both notation and computation. Second, g should be
chosen to be some non-decreasing function of f\'_”* , so that the variance in
Wies, () fln;;—n** is at least partially offset by that in g, increasing the efficiency of
the estimation process. Another way of saying this is that we should make it more
likely to sample plausible histories than implausible ones. Possible choices for g
are discussed in Section 1.4.3 below. Whatever g is chosen, the denominator
Yig( i_)L* ) can be precalculated for each possible choice of t*, meaning that this
does not meaningfully increase computing requirements per MCMC step.

How much computation does pgmpled save? The pjoq, algorithm requires
running M different MCMC chains, with each of L loci going through S steps,
and at each step calculating a p using a sum over )/ histories of a product over
the up to IV locations in the relevant 13, (). The total computation cost is at least
O(M?LNS). This is better than O(M?L2S) that pg,; would have taken, but
still somewhat burdensome. To get pgumpled, 0N the other hand, we only calculate
the product of locus likelihoods for an arbitrary number / of histories rather
than all M of them. Thus, the total computation cost falls to O(M H LN S);
since /1 and IV are arbitrary constants that can be set independently from the full

size M and L respectively, this is a substantial improvement.

1.4.2 DI1SCUSSION OF PROPOSAL WEIGHTS

In the above discussion, the proposal weights v$, used by all versions of p, are
arbitrary. That is, any proposals with nonzero weights could be used; the v} are
accounted for out in the F term.

Ideally, these proposal weights should both be tuned for maximum efficiency
of the MCMG; that is, insofar as it does not substantially increase the
computational costs per step, to try to ensure that the variance of the acceptance
probability is as low as possible (approaching the Gibbs sampling case where it’s
uniformly 1) while maintaining disperse (high-variance) proposal values for

good ergodicity/mixing.
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For vf\ , that is similar to the idea of an optimal proposal distribution, which is
common in the particle filter literature.[ 50] The low-dimensional bootstrap
particle filter uses (z|x'") as a proposal, then reweights using (y|z). In such a
case, the idea of an ideal proposal distribution is that if you could propose from
(z]ztM ), the reweighting step would not be necessary.

Applying a similar idea to v}, it becomes clear why I have set it equal to w}. Of
course, including a factor of w¥, in v¥ helps these terms cancel and thus simplifies
the calculation of p. But if simplicity of calculating p were the(onl)y consideration,

i =ML e

I could have set v$ to wizjﬂil 1", so that the ratio ==

STy oy Py would cancel
Ej:l 1

out too.

But setting v = w, ensures that the proposal density for z), conditional on
2 M and y,is (25 |x'M, 1)) — not too far from the ideal
(2a|2tM y, ¢ g:(l/\)\ ;) which would allow an acceptance probability of
uniformly 1. That’s because the density of (2)|z'+*) is included implicitly
through the progression procedure, while that of (2, |y, ) is handled explicitly

through w}.

1.4.3 REFINING THE HISTORY SAMPLING WEIGHTS

What about the history sampling weights gli_)j ? As above, these are arbitrary.
Ideally, to minimize the variance of the acceptance probability, they would

approximate:

i ps—1 2G| i 51
91 (Cgr(z)\z) o fe(F|z, zgsr(z)) (1.10)
= ees, 0 fr
... because this expression in the Horvitz-Thompson inverse sampling weight
term would cancel exactly with its relative contribution to the estimated sum of

products, so that the overall estimator would be governed solely by the sum of

weights term in the denominator.
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It is computationally infeasible to calculate these quantities exactly for each
step of the MCMC, so I use ngj . In the simulation below, I've tested two

formulas for these weights:

1. guniform(l') =1

o i —log(min g
2. Goentiog () = log(/3 ) lag( L) 4 maxz(0,log(x) — log(max(z) + /),

where min(z) and max(x) are the precalculated minimum and maximum

values of ff\_)] and «v, (3 are positive constants.

Both of these options are simply computationally-convenient first attempts;
though simulations show gpentog is an improvement over guniform, it is surely not
optimal in this regard. In further work, I will look into using proposal
distributions that are conditional on the current values at other loci, not just on

the observations at the current locus.

1.4.4 THEORETICAL LIMITATIONS OF THE ALGORITHMS IN THIS PAPER

Both the block particle filter and the Finkelstein particle filter proposed here are
intended to deal with the curse of dimensionality. However, both may fail in
cases where forward densities — that is, the relative probabilities of given states
at time ¢ conditional on the state at time £ — 1 — are concentrated around
particular values, and thus insufficiently ergodic. Rebeschini and Van Handel’s
error bounds rely on a strong ergodicity assumption, bounding the forward
density away from 0 in a way that they themselves acknowledge is unrealistic in
real-world cases. In a separate paper, they explore further the kind of problems
that can arise when this assumption does not apply, and the regime where that
failure occurs in practice.[45 ]

For the Finkelstein particle filter, I am not giving any formal proofs of
performance, but it is clear that if ergodicity is poor enough, my algorithm will
also break down. For example, suppose that the forward density from history x’
to raw locus value 2 is less than € if i # 7, and otherwise greater than 100¢. In

that case, the MCMC will strongly tend to get stuck in states where all locus
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values come from the same history. Metaphorically, Sally Finkelstein would be
too picky, never selecting nearby body parts that didn’t match perfectly. The
result would then reduce to the bootstrap particle filter, with more useless
computational cost.

Do the real-world problems to which these algorithms are applied have
enough ergodicity for them to function? For these algorithms to be appropriate,
we'd need a situation with enough nonlinear effects that simple Kalman filters
don’t suffice; yet also one which still has plenty of new randomness at each time
step, such that even if the forward density is not actually strongly ergodic, it is at
least diffuse enough for these algorithms to work. In SLAM (simultaneous
location and mapping) models for robotics applications, such situations arise.
But in fluid dynamics models, chaotic dynamics are the rule. Such models can be
deterministic or nearly so, with highly concentrated forward densities, yet still
have interesting dynamics. Uncertainty in the initial conditions is amplified at
each time step, so even in a deterministic model with new measurement tending
to reduce the uncertainty at each time step, the uncertainty will rise again by the
next time step, and so overall uncertainty can remain in equilibrium.

Due to the “picky Sally” problem explained just above, the Finkelstein
algorithm as explained in current paper does not deal well with such
deterministic or nearly-deterministic models. However, in a follow-up paper, I

will offer a modification of this algorithm to address such models.

1.5 NUMERICAL SIMULATIONS

1.5.1  SETUP

Filtering algorithms cannot be expected to precisely infer the underlying true
state of the hidden Markov model. Instead, the goal is merely to infer its
conditional distribution, and most of the interest of the problem lies in the fact
that this distribution remains non-degenerate; as we acquire more information in

order to narrow down the possible states, the state itself evolves, so we never
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catch up.

Thus, we cannot simply follow the recipe of a more traditional simulation
study of a technique for parameter inference. In traditional parameter inference,
the object of interest is the true parameter value(s), which can be arbitrarily
chosen when running a simulation. Although inference algorithms may yield an
inferred distribution for the parameter(s), the interpretation of this distribution
as a confidence distribution (for frequentist methods) or a credible distribution
(for Bayesian methods) is in some sense not inherent to the problem; for
example, in the case of Bayesian methods, a credible interval is only as valid as the
priors that produce it. However, in this case, we are not making arbitrary
assumptions in order to get the best or the most robust performance; the
assumptions are given by the problem, and the aim is to calculate a true
probability distribution. In order to efficiently measure an algorithm’s
performance, we'd like a setting where the correct value of the object of interest
— not the point value, but the conditional distribution — is known.

So, in order to run a simulation study, I fall back on a linear Gaussian model,
where the Kalman filter algorithm gives an analytically-correct filtering
distribution. Of course, given that such an analytic solution does exist, one
would never in practice use an inexact filtering algorithm such as those discussed
by this paper. However, the ability of our more-general algorithm to roughly
reproduce the results of a Kalman filter is, at the least, encouraging.

The particular linear Gaussian model I use is a model based on a progression

matrix P, a novelty matrix /V, and a measurement error covariance matrix F:

z=Pr+6 (1.11)
Yy=z+¢€

§ ~N(0,N)

e~N(0,E)

P is a tridiagonal matrix. NV and E are diagonal matrices with periodic
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structure, so that some loci are best learned about through their neighbors.
Specifically, N’s elements alternate between a higher and a lower variance, each
value occurring at every 2nd locus, while £’ has a lower variance at every sth

locus.:

0
a c
P= a b (1.12)
c
_O a b_
a=.40=.35c=.05a+b+c=.8<1
g o]
q
1
N =
q
0 q]
qg=.25
1 2 4 5 6 d
1| e 0
2 1
4 1
FE =
5 e
6 1
d | 0 1
e=.16

32



The state was initialized at mean o and variance 5 independently at each locus.
The model was run for 10 time steps, and for the particle filtering algorithms the
outcome variables of 5 separate runs were averaged.

A number of parameters were tried for the algorithms, but a good set of
numbers for comparing different models was: 400 particles for the Finkelstein
variants, 4002 = 160000 particles for the bootstrap particle filter, and
400%/5 = 32000 particles for the block particle filter algorithm. These numbers
were chosen so that each algorithm would take roughly comparable computing
time; the only step that requires computing power that is quadratic in the number
of particles is pre-calculating the forward densities flj 7" in the Finkelstein
algorithm.

All results for Figures 1.5.2 and 1.5.3 are for a 30-dimensional model. Results
for both Finkelstein and block particle filter algorithms remained materially
similar as model dimension was varied from 30 to 9o, demonstrating that the
Finkelstein and Frankenstein algorithms’ errors are roughly independent of
dimension, as expected.

The Finkelstein algorithm was used with pgumpled, With 45 histories per location
and two formulas for the history sampling probabilities ¢ (Guniform, and Gbentlog
with @ = 3 = 5). The neighborhood width was = 1, which is to say that
max |B,.(1)| = 3. Similarly, the zone size for the block particle filter algorithm
was 3.

Note that I am not the first to simulate outcomes for the block particle filter.
Although Rebeschini and van Handel’s paper originally proposing it relied on
proofs rather than simulations, more recent papers have implemented it and
given results.[35] [15] [57] The results there are not directly comparable with

those given here due to different models used.

1.5.2 REsuLTs

To get an intuition for this situation, I will begin by showing the evolution of a

single run of the model. The top panel of figure 1.5.1 shows the evolution over
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Sum of loci 3-5

sum of loci 3:5

time of the true value (2?23 21), the observed value (2?23 1), and the filtering
distribution as calculated by a Kalman filter (E . (ZZS:3 21|ly1, ..., Yi), for the
sum of loci 3-5. The bottom panel shows the the mean of the estimated filtering
distribution for each of the four algorithms I tested — Kalman filter (analytically

correct), bootstrap particle filter, block particle filter, and Finkelstein particle
filter.

Time series of truth, observation, and ideal Kalman filter

6- Algorithm
41 — Kalman filter
2 -
0 - Observed value
- True value
Time step
Time series using various filtering estimation algorithms
5.0 .
Algorithm
25 — Kalman filter
- Block PF
0.0 Bootstrap PF
- = Finkelstein PF
_2.5 T T T

o 1 2 3 4 5 6 7 8 9 10
Time step

Figure 1.5.1: Time series from a single run of each algorithm for 10 time
steps, in a model with 90 dimensions. Parameters for each algorithm are given
in text.

In the upper panel of Figure 1.5.1, one can see that the observations vary
relatively widely around the truth, while the Kalman filter mean follows those
observations with more conservative moves, thus staying closer to the true value.

In the lower panel, one can see that the bootstrap particle filter falls to the curse
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of dimensionality; while the block and Finkelstein particle filters both manage to
approximate the correct Kalman filter distribution relatively well.

To compare outcomes of the two working algorithms in greater depth,

Figure 1.5.2 shows the average squared error per locus: that is, the squared
difference between the estimated distribution mean and the correct mean as
given by the Kalman filter, conditional on a single fixed series of observations
(Y1, ---, Y10)- Note that we are measuring error relative to the mean of the Kalman
filter rather than to z;; this is because the Kalman filter result is the ideal filtering
distribution that we are trying to capture here. Though it’s not visible in these
graphs, both algorithms do a relatively good job of reproducing the variance of
the filtering distribution; this is within 3% of the true value for both algorithms.

Figure 1.5.2 makes two things clear. First, there is a bias/variance tradeoff
between the block particle filter and the Finkelstein particle filter; with
comparable run times, the block filter has a higher bias but almost no variance in
its distribution error. Second, as expected, the performance of the block particle
filter differs for loci that are central to their neighborhood Z}, as opposed to loci
that are on the border of their neighborhood. (The small apparent difference in
performance of the Finkelstein algorithm between the two kinds of loci is largely
an artifact of the specific realization of (y1, ..., J10) that was used to generate this
graph. The Finkelstein algorithm does not use fixed neighborhoods {Z; }, so the
distinction between central and peripheral is simply does not apply, except for
the first and last loci overall.)

The error of the Finkelstein algorithm, like that of the block particle filter,
appears to remain stable over time, as seen in Figure 1.5.3. This shows the time
evolution of the KL divergence between the true filtering distribution, as
calculated using the Kalman filter, and a Gaussian with mean vector and
covariance matrix inferred from a Finkelstein particle filter. It appears that
uniform sampling (Guniform ) can occasionally be unsuccessful in sampling good

histories, as reflected by the spikes in that line; log sampling ( gbemlog) had
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Figure 1.5.2: Breakdown of average squared error per locus.

superior stability.

1.6 CONCLUSION

I have introduced the novel Finkelstein particle filtering algorithm for estimating
the filtering distribution of models with high dimensionality due to large spatial
extent. In such models, the simple bootstrap particle filtering algorithm is

unusable. But, as with the previously-proposed block particle filter, my algorithm
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Figure 1.5.3: Stability of KL divergence across time steps.

relies on the locality of dynamics to resolve this problem, focusing on a small area
at a time.

Using simulations, I have showed that the error of means of my algorithm has
lower bias but higher variance than the block particle filter, given comparable
parameters. All in all, the total squared error of means of the Finkelstein
algorithm is more homogeneous across loci than that of the block algorithm;
lower for loci peripheral to a neighborhood in the block particle filter, but higher
for those which are central. I also give empirical evidence that the error of this
algorithm is stable over time, making it a candidate for online data assimilation
tasks.

It is commonplace to prefer variance over bias when such a tradeoff is possible,

because this allows improving precision with additional computing power by
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independent reruns of the algorithm. That improved precision would certainly be
possible in this case with the Finkelstein algorithm. This picture is slightly
complicated by the fact that such computing power might enable better results
from the block particle filter by increasing the neighborhood size. But there are
several problems with just increasing neighborhood size. Above all, computing
power (that is, number of particles) needed could be up to exponential in
neighborhood size, while it’s just quadratic in number of Finkelstein particles or
linear in independent Finkelstein runs. Second, unlike number of particles,
neighborhood size comes in sizeable discrete intervals; it may not be possible to
effectively use a small additional amount of computing power. And finally, to
reduce the bias of the block particle filter, neighborhood size must be increased
up-front, while the variance Finkelstein particle filter can in be reduced by
independent runs (perhaps even by different scientists).

Thus, I believe that the Finkelstein particle filter algorithm offers meaningful
advantages over prior proposals. In future work, I will extend this to cover

chaotic dynamics in a deterministic or quasi-deterministic model.
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Laplace Family Variational Inference for

Independent Latent Variable Models

In this chapter, we provide an approach for approximate Bayesian inference in
latent variable models: models where, in addition to a set of global parameters,
there is a separate vector of latent parameters for each observation. The
potentially large number of model parameters can cause difficulties with
traditional inference techniques.

We approach the problem through variational inference (VI); that is, we aim
to approximate the model posterior (in the sense of minimizing KL-divergence)
with a parametric distribution from some variational family. Variational inference
is an alternative to MCMC (Markov Chain Monte Carlo). While MCMC
converges (under broad conditions) to give samples from the true distribution of

interest, it can be impractical with high-dimensional models. Variational
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inference, on the other hand, relies on approximations, but may be more practical
and/or faster.!

Our key innovation is to define a new variational “guide” family of multivariate
normal distributions, which we call the Laplace family. The Laplace family has a
relatively small number of variational parameters, yet contains good
approximations to the posterior (in the sense described below). Importantly,
unlike the commonly used mean-field approximation, the Laplace family
captures the fact that the model parameters are generally not independent. This is
important to accommodate the fact that, even in cases where they were
independent a priori, conditioning on observations induces dependence in the
posterior.

After introducing this guide family, we show how two standard methods for
speeding up variational inference — stochastic VI and amortization (variational
autoencoding) — can be incorporated in this context. We also broaden the idea
of amortization to include “analytic amortization”, useful when the individual
distributions that make up the model can be solved analytically for their

maximum likelihood values.

2.1 DEFINING NOTATION: LATENT VARIABLE MODELS AND VARI-
ATIONAL INFERENCE

2.1.1 LATENT VARIABLE (LV) MODELS

For our purposes, a latent variable model consists of 3 core elements:

« avector 7y of global parameters, with v € I' = RY, assumed distributed
by the prior density p(-y)

o vectors Ay, ..., Ay of latent parameters, drawn independently from a

parameter space A = R where )\, is distributed by the density

'A third alternative is SMC (Sequential Monte Carlo) methods. Though these techniques are
promising in the context of high-dimensional models, they are not yet as mature and easy-to-apply
as MCMC, and we will not discuss them further.
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P(A]Y, x:); here, x; represents known covariates for unit 4, which will be

implicit hereafter.

. observations &1, . . ., &y, drawn independently from p(x|A, ), with

In other words,

N
p (77 Alv ceey ANa Iy,... ,QCN) = p(’Y) Hp(AZ|7) p<mZ|A277) (2'1)
i=1
which implies that
(@i, M) LL (5, A)] |y fori # (22)

where p(7) represents the prior(s) on ~y.

In some latent variable models, the global parameters ~y are the quantities of
interest, while the latent parameters A are merely nuisances; in others, it is the
other way around. In either case, the motivation for using the full model is the
hope that including both kinds of parameters will improve inference overall. That
is to say, the goal of inference is to understand the full posterior distribution over
alld := g + Nl model parameters.

The techniques described in this paper require that each of the distributions
p(7), p(A|7), and p(x|A, 7) have thrice differentiable density functions. Unlike
in conjugacy-based variational algorithms, we do not require that they come from
exponential families. However, for the purposes of analytic amortization (see
section 2.3.5), we do prefer that, for given 7y and i, there be an analytic solution

for the conditional MAP (maximum a posteori)

A;k = argmax}\p(mil)‘v’)/)> (2-3)

or at least an easily-computable approximation.

41



2.1.2  VARIATIONAL INFERENCE (VI)

Suppose we have a set of observations & and a model for these observations with
parameters @ € R?. In other words, we are given a prior distribution p(@) and a
likelihood p(x|@). We are interested in the posterior distribution

p(x(0)p(6)

p(9|w) = fe,p(wle’)p(O’)dO" (2-4)

The problem is that, in general, the integral in the denominator is very difficult to
compute or even to estimate — especially when d, the dimensionality of 8, is
high.

The variational approach is to approximate the posterior distribution by a
sampleable guide distribution ¢, (0) belonging to some guide family O,
parametrized by the vector of guide parameters ¢ € ®.> [59] To find the best
approximation, we look for the value (,5 € ® that minimizes the Kullback-Leibler
(KL) divergence between g, (6) and our target posterior distribution:

¢ = argmin,, [DKL(qq;(O) H p(0|x) )] . (25)
We can then estimate posterior quantities of interest by using samples from the
fitted guide in place of samples from the posterior. Importance-weighting these
samples by the ratio of the unnormalized posterior density to the guide density
can give a further incremental improvement to the estimation.
Minimizing Dy, ( 74(0) | ‘ p(0|x) ) turns out to be equivalent to

maximizing an expression known as the ELBO (or variational free energy) of

*In other literature, these are sometimes known as the variational distribution, variational family,
and variational parameters respectively.
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p(0, ) with respect to g4 (0):

(2.6)
— [ tosple. 0))ao(6)d6 — | ogas(6)lao(6)d.

= log (/p(a:,@)d@) — Diu (g4(0) || p(6])) (2.7)

The name ELBO stands for evidence lower bound, because the first term in
(2.7), the log of the normalizing constant of the posterior distribution, is
sometimes called the evidence.

Note that the choice of minimizing Dy, ( de { } P ) rather than
Dy, ( P ’ } qe ) is motivated solely by computational tractability: since we know
how to sample from g4, it is easy to estimate expectations over that distribution.
If we could somehow integrate over the posterior p(6|x), we could compute the

evidence upper bound or EUBO?:

EUBO(9) := Eygj) [logp(x, 8) — log q4(0)] (2.8)

= log (/p(m,@)d@) + Dx1 ( p(0)x) H 74(0) ) (2.9)

The EUBO is actually a more useful quantity than the ELBO, as it can help
bound the error when estimating posterior quantities based on
importance-weighted samples from the fitted guide[ 12, 34]. Later in this paper,
we will use the EUBO to evaluate the quality of our variational approximation to
a posterior distribution for which we can get sufficient MCMC samples to treat
as known. In general, however, the EUBO is almost never used, since in order to
estimate it, we would need to sample from the very distribution that we are trying
to approximate.

The first term of the ELBO, known as the energy, encourages a choice of g4

3Unlike “ELBO”, the term “EUBO” is not standard.
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whose regions of high probability coincide with regions where

p(0]x) o p(0, x) is high. If we only maximized the energy, while allowing
unrestricted distributions as our guide, the optimum would be a delta
distribution with probability mass concentrated at the maximum of p(0|x),*
which could be a problem if this local maximum accounted for only a small
portion of the total probability mass of the posterior. This is why we also include
the second term, known as the entropy, which encourages a choice of ¢ that
spreads out the probability mass of g4 as much as possible. Using the resulting
fitted guide ¢,;(6) as an approximation of p(6|z) is usually a better way to
estimate quantities of interest than using the MAP (maximal a posteriori) point
estimate.

Note that the ELBO is itself an intractable integral, except in a few special
cases that allow closed-form solutions using conjugate distributions. When no
closed-form solution exists, we estimate the integral by one or more samples from
the guide. This is known as Black-Box Variational Inference (BBVI)[42]. The
term “black-box” draws a contrast with older forms of VI that only worked for
exponential family models with conjugate distributions. The number m of guide

samples used for estimation is an arbitrary parameter to be set by the researcher.

2.2  CommoN TyPES OF GUIDE FAMILIES

2.2.1 MEAN-FIELD AND NORMAL GUIDE FAMILIES

A key part of variational inference is choosing an appropriate guide family Q.
The most common choice of guide family is some form of mean-field family: a
product of independent exponential-family distributions for each model
parameter 6;[39]. There are, of course, some cases where this assumed posterior
independence holds or nearly holds, but such cases are, if anything, the
exception. Consider Berkson’s paradox: two parameters that are a priori

independent but both positively correlated with an observable will become

*Assuming, of course, that a delta distribution was in the guide family (or, if our definition of
“optimum” includes limits, in the closure thereof).
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negatively correlated with each other after conditioning on that observable. This
sort of problem arises frequently in hierarchical models.

Our goal is to give a general method for constructing guide distributions that
do capture the correlations among the model parameters. The natural choice is to
pick a family of Gaussians: unlike many other distribution families, Gaussians are
naturally multivariate, and make it easy to control correlation structure.
Moreover, asymptotic theory shows that under loose regularity conditions,
posterior distributions of continuous parameters tend towards normality.
(Although these asymptotics only apply to the global parameters in our model,
not to the latent variables.)

Of course, in restricting our attention to normal guide families, we may be
foregoing the chance to choose conjugate distributions and/or ones that
naturally have the correct support. Generally, we deal with issues of support by
using transformed parameters whose support extends over the full real line. For
example, if a parameter in the model is restricted to the positive real numbers, we
can transform it to its logarithm, resulting in a guide that is effectively lognormal
over the untransformed parameter. If these transformations are smooth, much of
the asymptotic theory mentioned above still holds.

For multivariate normal guide families, the mean-field restriction of
independence is equivalent to restricting the covariance matrix of the posterior
on the parameters, which we’ll call %, to be diagonal. Thus, a Gaussian mean-field
family has 2D guide parameters; a mean and a variance for each of the d model
parameters. This gives a poor fit if posterior correlations are significant. It is not
hard to show that, if the true posterior approaches a multivariate Gaussian, the
optimal mean-field approximation approaches the conditional variance of each
component. Figure 2.2.1, reproduced from Figure 1 of [ 10], shows this problem
graphically.

Even if the true posterior is not quite Gaussian, by the law of total variance
(“Eve’s law”), conditional variances are systematically (though not necessarily

uniformly) lower than marginal ones. Thus, a mean-field guide, which assumes
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Mean-field Approximation_a

—4
Exact Posteripr

Figure 2.2.1: Stylized image of a credible set of a 2-dimensional correlated
Gaussian posterior, and the optimal mean-field approximation thereof. (The
ellipses are 20 contours of the relevant Gaussian distributions, where the
mean-field distribution has conditional variance of 1 in each dimension and
correlation of .9. This figure is reproduced from Figure 1 of [10].)

no correlation between model parameters, will systematically underestimate
their posterior marginal variance. Since estimating posterior marginal variances is

often of primary interest in Bayesian analysis, this is a significant concern.

2.2.2  NON-MEAN-FIELD GUIDE FAMILIES: PRIOR WORK

One obvious way to address mean-field’s problem with correlations would be to
use an unconstrained Gaussian guide family; that is, the fitted posterior could
be any multivariate Gaussian distribution on R%, with no artificial limitations on
the form of its covariance matrix .. However, this means that the guide family
will have O(d?) guide parameters. Without further restrictions or assumptions,
this is impractical for LV models.

Copula VI[21][53] allows arbitrary correlation structure in the guide, and

unlike our proposal below, works even when the components of the guide are not
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all Gaussian. However, like the unconstrained Gaussian approach described
above, the dimension of the resulting guide family is O(d?). Thus, it does not
really resolve the issue of latent variable models requiring dimensionality that is
quadratic in d, but rather that of non-normality. It may therefore be
complementary with our approach below.

For time-series models, correlations across time are often of primary
importance. A number of model-specific approaches to incorporating such
correlations into the guide have been developed; for a survey, see [59], p. 12. Our
approach is more general than these.

Hierarchical VI[43] uses a mean-field guide, but then places a prior on the
guide and marginalizes the guide itself out; this allows dependencies among
model parameters to be reflected in the inferred “guide hyperparameters”. This is
an interesting approach, but so far, we do not believe it has been applied in a
black-box context. It may be difficult to extend this approach to cases where
model distributions do not have known conjugate distributions.

An interesting compromise between full-rank correlations and mean-field is
taken by Miller et al. as part of their Variational Boosting technique[33]. Though
their primary focus is on using a series of mixture distributions as guide families,
adding one mixture component at a time, they do allow an interesting correlation
structure within each component, whose covariance matrix is constructed as the
sum of a specific form low-rank matrix and a diagonal matrix. Though unlike our
approach, this does not use the model itself to define the covariance, it does
provide an interesting middle ground between purely diagonal mean-field
approaches and full-rank approaches. They show encouraging results for this
kind of compromise approach.

One way to allow a correlated posterior without explicitly specifying a
correlation structure is by using normalizing flows to transform the guide from a
simple mean-field structure to something more complex[46]. In particular,
Hamiltonian flows, like our Laplace family proposal below, can use the model
itself in defining the guide. In very simplified terms, Hamiltonian flows are

similar to what one would get if by taking a sample from a simple parametric
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guide such as a multivariate normal, then applying one or more steps of a
deterministic Hamiltonian MCMC procedure, leaving an effective distribution
for the final outcome which asymptotically approached the true posterior. Like
our approach here, this effectively uses the model itself to structure the
covariance of the fitted posterior estimate. The computational tradeofts and
necessary approximations involved are different, however; in the future,
comparing these two approaches would be interesting.

Also worth mentioning are the prior researchers who have used Laplace
approximations in the context of variational inference, but not as a full guide
family. Wang and Blei[ 56] use a method they term Laplace Variational Inference,
in which the Laplace approximation is used as a means of improving updates to
non-Laplace guide families, in order to speed convergence of mean-field VI. This
same approach is further pursued by others[60][38][32].

Finally, others have used Laplace approximations for sub-matrices of the
guide-family, in a way similar to what we propose below[61][62][32]. Our work
extends this idea to a more general context and uses it as a way to construct a full

guide rather than just certain key subcomponents.

2.3 VARIATIONAL INFERENCE WITH A LAPLACE GUIDE FAMILY

2.3.1 THE LAPLACE FAMILY

In this section, we introduce a new type of normal guide family that allows us to
capture posterior correlations between model parameters 1, . . ., 6, with only
O(d) guide parameters. (In Section 2.3.5, we will be able to reduce the number
of parameters even further through amortization.)

The intuition behind our construction is as follows. Recall that for a
probability distribution p(8), the observed information at 6* is the negative of
the Hessian of log p(@) with respect to 6, evaluated at 8*:

S, (0") == —H [logp(0)] | . (2.10)

9*
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It is easy to check that if 8* is a mode of p(0), then .7, (6*) is the precision
matrix of the Laplace approximation for p(@) at 8*. Importantly, .#, (6*) can be
evaluated even if we only have access to p(6) up to normalizing constant.

Now suppose we could guarantee that, for our particular model posterior
p(0|x), the matrix .#, (6*) was positive definite for all 6*. Then there would be
a very natural way to define a d-dimensional guide family for p(@|x): use the
family of multivariate normal distributions {gg~ : 0* € R%}, where go~ has
mean 0* and precision matrix .#, (6*). If the mode of p(@|x) (which, in this
special case, would necessarily be unique) happened to maximize the ELBO,
then the fitted guide ¢4, would be the Laplace approximation of p(@|x) at this
mode. More likely, because of asymmetries in the posterior, the ELBO will be
higher if 8* is a slight perturbation of the mode of p; but in any case, we know the
optimal guide is at least as good as the Laplace approximation.

Thus, for each mode 6* of p(8), the Laplace family as defined below will
contain distributions arbitrarily close to the Laplace approximation of p(0) at 6*.
In many cases, we expect our final fitted guide gg- 4 to be close to one of these
distributions, but this will not necessarily be the case. For one thing, the Laplace
approximation is the best-fit Gaussian only locally and is not necessarily the best
approximation to p(@) in the sense of KL-divergence. For instance, the mean 6*
of our fitted guide might not be a mode of p at all. For instance, as we will see in
the next section, a Gaussian centered at a saddle point between two modes of
p(0) may give a higher ELBO than the Laplace approximation at either mode. In
other words, by using the Laplace guide family, we are essentially guaranteeing
that an optimally-fitted guide will be at least as good as a Laplace approximation
at one of the modes of p.° But in many cases, it will be even better.

In general, of course, .%,(0*) will not always be positive definite. But suppose
we could find a function f : Sq — Sy, acting on the set symmetric d X d

matrices, such that

*It is important to note that maximizing the ELBO will lead us not to the highest mode of
D, but to the mode that has the most total density around it. If we think of modes as ”hills” in the
distribution’s density, a shorter but wider hill may have more volume than one that’s tall but skinny.
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« if M € Sy is positive definite with a determinant greater than some small

constant, then f(M) = M;
« Otherwise f(M ) is a positive definite matrix close to M (in some norm).

We refer to such functions as boosting functions; these have been extensively
studied in the context of non-linear optimization. In practice, computing f (M)
usually involves some modification of the Cholesky decomposition algorithm for
positive definite matrices. See [14] for a survey of commonly used boosting
methods.

Using a boosting function f, we could modify the above construction by
letting gg+ have precision matrix f(.#, (6*)). When 6" is at or near a mode of p,
Z, (0*) would already be positive definite and f would not cause any distortion;
thus the Laplace approximation at every mode of p would still be available as a
guide. And, once again, if we find that the ELBO is actually maximized at an
entirely different value of 8%, so much the better.

For additional flexibility, we will use not a single function f, buta

parametrized family of such functions:

Definition: Let S, be the set of symmetric d X d matrices and let U be a subset of
R4 containing 0 in its closure. A boosting family fy is a family of almost

everywhere thrice-differentiable functions fy, : Sq — Sg, indexed by U, such that:
« Foranytp € Vandany M € Sy, the matrix fy,(M) is positive definite.

« If M itself is positive definite then

lim fy,(M) = M. (2.11)

»—0

We are now ready to define the Laplace guide family for a probability

distribution:

Definition: Let p(0) be a (possibly unnormalized) probability distribution on
R% Let ©® C R U C RY, and let fy be a boosting family as above.
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The Laplace guide family Loy (p, fy ) is the set of d-dimensional normal
distributions {qe. : @ € ©, 1 € U}, where qg . has mean 6 and precision
matrix fy, (7,(0)).

Note that the space © X U of guide parameters can have up to 2D dimensions.
However, as we will see below, when working with latent variable models, we
often constrain © and U to lower-dimensional subsets of R? and R? respectively.

While we have defined a Laplace guide family as a Gaussian over all model
parameters, it is of course possible to keep certain parameters out of the
multivariate normal and deal with them in other ways. For example, in this and
the following chapter, there are two cases where we will take a model parameter £
as having a delta distribution in the guide conditional on the guide parameters. In
such cases, the value of £* is still used to determine the point at which we take the
Hessian, but the Hessian itself does not include §. The guide is then defined as
the product of a multivariate normal over the other model parameters, with a
delta distribution for £ = £*.

There are several reasons we might decide to do this:

« There may be some difficulty obtaining the Hessian with respect to &, for

instance because some distribution involving £ is not thrice-differentiable.

« It may be clear from the problem setup that the combined posterior
including  will not be well-approximated by a multivariate normal. For
instance, if { might be a scale parameter controlling the standard deviation

of some other dimension(s) /parameter(s) in the posterior.

« & may simply be a nuisance parameter whose posterior variance is thought
to be unlikely to contribute substantially to the posterior variance of other
more-important parameters. In this case, using a delta distribution would

merely be a time-saving trick to avoid the need to include § in the Hessian.
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2.3.2 A TOY EXAMPLE

Before proceeding to high-dimensional latent variable models, we illustrate the
advantage of a Laplace family over a mean-field family using a simple,
low-dimensional example.

Suppose we want to model an observable quantity x as the sum of two

t-distributed random variables, plus a normally-distributed error term €:

r = Ti+T5+e€ (2.12)
T, ~ StudentT,;i € {1,2}
e ~ N(0,0%

The quantities of interest are the of model parameters 8 := (77, T3); or, to be
precise, their posterior distribution conditional on the observed x and the known
v (degrees of freedom) and o® (observation error variance). Note that, if o is
sufficiently far from 0 and v is sufficiently low, then p(0|x ;) is bimodal: it is
more likely that one of the 7} accounts for most of 2, than that they each
account for roughly half.

We approximate p(6|z.ps) using variational inference with two different guide

families:

« The Laplace guide family Loy (p, f). Here © = R?. For simplicity, we

take W to be one-dimensional:

U= {(¢1,2) € R? - ghy =4} (2.13)

The guide gg- (0) is normal with mean 8* = (77, T) and precision
matrix Po+ 1= fy [Z, (0%)].

o The normal mean-field guide family Fg. Here & = R? x Ri. With
d) = (T1*7T2*7 01, 02) € q)a (2-14)
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the mean-field guide ¢4 (@) is normal with mean (77, T7) and covariance

matrix Diag(o?, 03).

For each family, we fit the guide to the model using variational inference as
implemented in the Python package “Pyro”[8]. We then compare the fitted

guides using two metrics:

« The ELBO with respect to the fitted guide: this is the quantity that
variational inference is trying to maximize. Recall that maximizing the
ELBO is equivalent to minimizing the KL-divergence from the guide to the

posterior.

« The EUBO with respect to the fitted guide (see equation 2.8). Recall that
minimizing the EUBO is equivalent to minimizing the KL-divergence from
the posterior to the guide. (‘This makes the EUBO a more natural measure of
fit than the ELBO.) In general, the integral in the EUBO is intractable, but
in this simple example we can get good numerical estimates by taking a set
of MCMC samples and assuming that they are a consistent approximation

of samples from the true posterior.

Table 2.3.1 shows the results of the comparison for o = 0.4 and several
different values of Zops and v. In all cases, the Laplace family gives a better
approximation than the mean-field family for both of our metrics.

The difference in the EUBO for ops = 7 and v = 2 is particularly striking.
(As the table shows, such an observation is in the 2% upper tail; an outlier, but
not an extreme one.) Figure 2.3.1 helps clarify the situation. When we plot
credible regions for the true posterior (green), the Laplace fitted guide (red), and
the mean-field fitted guide (blue), we see that the true posterior in this case is
bimodal. The mean-field guide is centered at one of the modes and is thus
essentially missing half the mass of the posterior distribution; this explains why
Dx1.(p||q), and thus the EUBO, is so large. In contrast, the Laplace guide is

centered at the saddle point between the two modes of the posterior. This is a
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Table 2.3.1: A comparison of variational inference for the model in 2.12
using Laplace ("Lap”) and mean-field ("MF") families. For ELBO columns,
higher is better; for EUBO columns, lower is better.

Tops V 0 P(lz] < Zops) ELBO EUBO
a priori Lap M-F Lap M-F
0.0 30 0.4 0.00 -1.45  -2.29 .05 0.78
3.0 30 0.4 0.96 -3.43  -4.37 -1.41 -1.03
0.0 2 0.4 0.00 -1.65  -2.52 .08 91
3.0 2 0.4 0.81 -3.10 -4.5§ -0.84 3.26
7.0 2 0.4 0.96 -§.39 -7.23 -2.01 §4.64

case where the the flexibility provided by the additional parameter 1) plays a
significant role in improving the quality of the VI estimate.®

We can also use this example to illustrate the distinction between Laplace
variational inference and a simple Laplace approximation to the posterior around
its maximum density (MAP). Note that if o were not taken as known in this
model, but instead given a prior (such as a half-Cauchy distribution), the
posterior density of 0, € — 0 would be infinite. The ELBO, however, would not
be, because as the energy term approaches infinity, so does the entropy term,
leaving the overall ELBO with a lackluster finite value. This is an important way
in which maximizing the ELBO results in better inference than maximizing the

posterior density.

2.3.3 THE LAPLACE GUIDE FAMILY FOR A LATENT VARIABLE MODEL

In this section, we show why Laplace guide families are particularly well-suited

for working with latent variable models. In particular, we show that latent

®For this example, we use an alternate quasi-boosting family, based on using logsumexp as a
softmax to ensure the matrix is SDD ([symmetric and] diagonally dominant). We use this rather
than the boosting family based on GMW381 because the latter is not smooth with respect to 4. If
this model were more than a toy, we would have chosen one of the other, more-complex methods
outlined in [ 14] rather than this SDD-based method.
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Figure 2.3.1: Posterior and Vl-estimated posterior for zops = 7,v = 2. Green
lines show (approximate) 95% and 50% true posterior credible sets; red and
blue ellipses are estimated 95% credible sets for the fitted Laplace and mean-
field guides respectively.

variable models have a block arrowhead structure on the Hessian, which allows
substantially faster computation in optimizing to find the best-fit guide.

As usual, we assume the model has parameters @ = {v, A1, ..., Ay ), where
~ € R is the vector of global parameters and \; € R! is the vector of latent
parameters corresponding to the observation ;. The Laplace family has one
guide parameter corresponding to each model parameter, and we split up the

corresponding vector of guide parameters, 8, accordingly:
0" = (YA}, ..., AN (2.15)

We refer to v* as the vector of global guide parameters and to A, . .., X}y as the
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latent guide parameters.
Because the \; are conditionally independent in the model, the matrix

Z,(0*) has a block-arrowhead structure:

G C C, ... Cy
cT UL 0 ... 0

g@)=|¢cr o U, ... 0 |, (2.16)
: .0
ct 0 0 ... Uy

This allows us to speed up the computation in several ways. First, for fixed g
and [, computing .7, (6*) takes only O(V') time, rather than the default O(N?).
We can design a boosting family fy for block-arrowhead matrices such that
fuw(#,(0%)) is also block-arrowhead and computing it takes O (V) time. As a
result, sampling from gg+ 4, is also only O(N) rather than O(/N?). See Appendix
2.1 for details and proofs.

We can further speed up the algorithm by setting the components of 1)
corresponding to the different latent parameters to be equal. This reduces the
dimensionality of the boosting parameter space ¥ from g + [N to g + [. From

now on, when working with latent variable models we will always assume that

U = {(¢r,%a,...,%a) : ¥r € R, 9a € RY}, (2.17)

and we will abbreviate ¢ € W as (¢, P4 ).

2.3.4 STOCHASTIC VARIATIONAL INFERENCE WITH A LAPLACE FAMILY

Stochastic variational inference (SVI) is a standard method for speeding up
variational inference on high-dimensional latent variable models. It was first
introduced in [22] for exponential family distributions, but is easily generalized
to black-box VI.

In SVI, each iteration of the ELBO-optimization procedure uses only a
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random (possibly weighted) subsample of the observations and their
corresponding latent parameters. Because the A; are independent conditional on
7, it is easy to get an unbiased estimate of the unnormalized posterior in this way,
evaluating only the terms involving the subsampled units. We can also estimate
the ELBO and its gradient, though these estimates will not necessarily be
unbiased (see below). We then use a specially-adapted optimization algorithm,
which takes the noise in the gradient estimate into account. A number of such
stochastic optimization algorithms are available; Pyro, the probabilistic
programming language that we use for our computations, uses the Adam
algorithm [28] for this purpose.

Implementing SVI for the Laplace family is conceptually straightforward, but
there are a few details that require attention. Recall that our vector of variational
parameters is (0, 1), and that 6* consists of the vector v* of global guide
parameters and /V vectors A7, . .., A}y of latent guide parameters. When NN is
large, we want to be able to estimate the ELBO using only 7 and a subsample of
the A of size n < N.

Fixn,andlet ™ = (71, ..., my) be a vector of nonzero probabilities
(0 < m; < 1) such that Zfil 7 =n.LetS = {iy,...,4,} beasample from
{1,..., N}, drawn in such a way that Prob(i € S) = ;. For instance, for a

simple random sample (without replacement), we would have 7; = n/N for all

i’

Given @ = (v, A1, ..., Ay)andx = (x1,...,xN), define

HS = (’77>\1177>\Zn>7
s = (@iy,...,x;);
1/7Ti
ps(Os,ws) = p(0) [T [phly) pl@iim]|
i€S

"Here we are assuming sampling without replacement and with a fixed sample-size 1, which
allows us to use the Horvitz-Thompson estimator. However, any other sampling scheme that has a
corresponding unbiased estimator would work. The goal, as always, is to find an unbiased estimator
with low variance. How best to do this depends on the situation.
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Note thatlog ps(0s, €s) is a Horvitz-Thompson estimator for log p(0, ).

Now let 8* € O, and define 8% analogously to 8. The Laplace guide
oz (0s) for ps(Os|xs) is defined in the usual way: it a multivariate normal
distribution with mean 0 and precision matrix fy, (%, (6%)). We can do
stochastic gradient ascent on the ELBO of ps with respect to g, 5 (6s), taking a
new subsample S at each step of the gradient ascent. Once we obtain (or get
close to) the optimal values 6* and 1) for this subsampling procedure, we
recompute the full precision matrix (without subsampling) to obtain the final
fitted guide gg- .

Unfortunately, the ELBO of ps is not an unbiased estimate of the ELBO of p,
so we do not expect the stochastic and non-stochastic versions of Laplace VI to
converge to the same guide. However, the fitted guide gg- o, obtained by SV s,
in expectation, a good approximation to ps, and thus should also be a good

approximation to the true posterior as well.

2.3.5 ANALYTIC AMORTIZATION

In a model with a large number of latent variables A; — each of which requires a
separate vector of guide parameters A} — the dimensionality of the guide family
can become too high for even stochastic optimization. Using the algorithm
described in the previous section, even after the global parameters v* converge to
“good” values (i.e, ones that tend to roughly maximize the ELBO), we must still
ensure that for each unit ¢, the corresponding XY € S for enough
optimization-step-specific values of S, to allow the optimized A} to converge to a
“good” value as well. This process of “tying up loose ends” with the latent guide
parameters could easily take more computing time than optimizing the globals.
One common approach is to constrain each A7 to be a deterministic function
M;(~*). In many applications, the function M comes from a neural network and
thus has its own free parameters (weights). The gradient of the ELBO is then
computed with respect to these weights as well as v*, and the weights are

optimized as part of VI. This technique of reducing the number of guide
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parameters to be optimized is known as amortization. In the context of neural
networks, the function M is referred to as a variational auto-encoder; see [29]
for details.

Since we are assuming that our model posterior has a relatively simple
functional form, we take a different approach to amortization: we analytically
derive (or approximate) the MAP of A} conditional on 4* and x;, and then

simply set A} to this value. In other words, we use a deterministic function
M;(v*) = MAP (X! |vY*, x;) (2.18)

that has no additional parameters to be optimized.®

Of course, this kind of analytic amortization is impossible when the relevant
conditional distributions are a consequence of more complicated dynamics, such
as neural nets or other forms of machine learning. But where possible, we believe
that analytic amortization is both simpler and more efficient than the traditional
kind. In this chapter, we use it with a Laplace guide family, but we see no reason
why it could not be used with other guide families as well.

With analytic amortization, the Laplace guide family is defined as usual, but

the guide parameter 8" is restricted to
Oy = {('y*,)q, o AN) €O AT = Mi(y") fori =1, .. .,N}. (2.19)

Thus the ELBO is now a function only of 7* and 1.

It’s worth noting one additional computational trick that should improve
results in some cases. Sometimes, the analytic amortization is approximate; the
exact conditional MAP of A} is not analytically tractable, so the best M, (~v*)
practically available is only an approximation thereof. When this is true, a slight

adjustment to the guide gg+ o can improve its fit at almost no extra

®Note that using the conditional MAP as suggested here is generally appropriate when A; con-
sists of solely location parameters. However, when \; includes a combination of location and scale
parameters, the MAP is often O for the scale parameters regardless of the values of 7; since this leads
to an ELBO of —00 through the entropy term this is undesirable. Resolving this issue is beyond
the scope of the current paper.
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computational cost. Recall that gg+ . is normal with mean 8* and precision
matrix P = fi,(-#,(0%)). Calculating P is the most computationally-intensive
part of the algorithm. However, once we know P, we have all the ingredients that
we need in order to apply a step of Newton’s method to our estimate of

MAP (X! |v*, ;). After all, P is the boosted negative Hessian of log p at 8*, and
in the course of computing P, we had to compute V log p as well. So, for each i,

we can let

X=X+ (Py) ! Viegp(0*, ), (2.20)

where P; and V log p(6*, ¢ ); denote the submatrix (respectively, subvector)
corresponding to ;. We can now let Gg- 4 be the normal distribution with
precision P and mean (", S\T, . 5\7\,) Note that Gg- 4 is no longer
technically a Laplace guide, since its precision matrix is based on a Hessian taken
at a different point than its mean. However, Newton’s method can be expected to
improve the mean of the guide, giving a direct (first-order) improvement in the
energy term of the ELBO, while the slight error this creates in the Hessian should

be a more indirect (second-order) effect.

2.3.6 FULL ALGORITHM FOR AMORTIZED LAPLACE SVI

Putting it all together, below is the full algorithm for amortized, subsampled

Laplace variational inference in a latent variable model.

Given:

« alatent variable model, with notation as in Section 2.3.3;

« anintegern < N (desired sample size in SVI) and a vector 7 of sampling

probabilities®, as in Section 2.3.4;

« afamily f, of boosting functions for arrowhead matrices, as in Appendix

2.1;

°In all the examples, we have used a simple random sample with equal probabilities. In some
cases, this might be improved by tuning the probability weights 7 so as to minimize the variance
of the ELBO estimate. Discussion of when and how to do this is beyond the scope of this chapter.
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« afamily of amortization functions M; : I' — Afori € {1,..., N}, asin

Section 2.3.5;

Algorithm for fitting the guide:

1: Initialize y* to 0; thr and 14 to vectors of small positive numbers (e.g.

0.01 ); and m to a positive integer;

2: while True do

3:

10:

choose an independent sample S := {iy, ..., i,} from
{1, ..., N}, with sampling probabilities given by 7;
setxs == (Tiy, ..., Ti,);
forkel,...,ndo
set A = M;, (v");
set 0% = ('7*, Aj e ,)\Z‘n);
compute . (0%): the negative Hessian'® of the sampled model log
density

= 1
log ps(0s, xs) :=logp(7y) + Z — logp(Ai,, zi |7Y) (2.21)

k=1 "'k

with respect to the variables Os := (v, A, ..., A;, ), evaluated at
(05, xs);

compute Ps := fy, (£ (0%));

(OPTIONAL) set @ := (»y*, AL > where

217 in

A=A+ (P) ! Viegp(0*, x), (2.22)

""When using automatic differentiation, maintaining the distinction between 65 and 0% re-
quires some care. In O, the As are not related to 7y via the amortization function M, so the gradi-

ent of M must be excluded from the calculation of the Hessian; yet when we estimate the gradient

of the ELBO with respect to v*, we do want to include M in calculating the gradient of the point

at which the Hessian was taken. To accomplish this programmatically in pytorch, we make a copy
of v* and use the detach command to sever its connection to the As via M. We use the detached
copy when computing the Hessian and add its gradient onto that of the original variable v* just
before ADAM optimization.
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asin Section 2.3.5;
11: draw m i.i.d samples %, . .., 0% from the normal distribution with
mean 0% and precision matrix Pg;"'

12: set

1 & . .
ELBOgy = — > [logps(6%, s) — (65 — 05)"Ps(6% — 05)] ;

7=1
(2.23)
13: use backwards-mode automatic differentiation to find the gradient
of ELBO ;"2
14: update v* and 1) accordingly, using the Adam stochastic

optimization algorithm;
15 if a stopping condition has been met, break out of the loop;"?
16: redo steps 4-10 with a full sample (all units); thatis, S = {1,..., N} and
= (1,1,...,1), omitting the subscript S from all quantities.
17: return fitted guide gg« : a normal distribution with mean 8* and precision

matrix P.

2.4 A SIMPLE APPLICATION

We compare the performance of three variational inference methods —
mean-field VI, Laplace VI, and amortized Laplace VI — on a relatively simple

latent variable model, using both real and simulated data.

""Note that we can perform the sampling without fully inverting Ps; see Appendix 2.1.

>This is automated by pyro, applying state-of-the-art variance-reducing tricks such as [47].

BThe specific stopping rule for the optimization loop is not our focus here. In practice, we use
an exponential moving average of ELBO,g, with a decay time of 100 epochs; and we stop when
that average is not lower than its value 500 epochs ago.
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2.4.1 THE MODEL

Consider a multi-site experimental study with randomly-assigned treatment and
control groups at each site. Let 2; be the difference in means between the
treatment and control groups at site 7. We can think of z; as an estimate of the
true treatment effect 7; for site 7. For moderately sized groups, we can take the
variance of ; to be s;, the estimated standard error of E[(z; — 7;)?] at each site
(a known quantity). If we then assume that the true treatment effects are
distributed according to a scaled, shifted Student ¢-distribution with unknown

mean /i, scale 0, and degrees of freedom 1/, we obtain the following model:

T;/o ~ StudentT,; i€ {l,...N}
o= u+T; (2.24)
T; N(TZ’,S?)

The site-level quantities of interest are the true treatment effects 7;. The scale
parameter o captures the scale of the variability of 7;, while a low v indicates that
outliers are relatively prevalent.

The Student ¢-distribution may not be the true distribution of site-level effects.
We use it here because its degree-of-freedom parameter v allows us to explicitly
model the prevalence of outliers. Clearly, we will want the expected posterior
variance of the 7;s to (nearly) match the sample variance of the x;’s adjusted by
s;. But this can be accomplished either by setting both 1/ and o to be high
(corresponding to a broad cluster of z;’s with few outliers) or by setting both to
be low (corresponding to a smaller cluster, but with outliers). Lower values of o
and v would lead to higher estimates of the percentage of sites where the
treatment effect would (or did) fall above some nontrivial threshold. Thus, the
extra flexibility from adding v to the model can potentially help us answer this
scientifically-meaningful question.

We use the following priors for our model parameters (transforming where
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necessary to obtain parameters with unconstrained support):

d :=log(v — Vi) ~ N(1,1.5%) (2.25)
s :=log(0 — omin) ~ N(0,2?)
p~ N(0,20)

Unmin = 2.5, Opmin = max(s;) * 1.9

The constant v,,,;, = 2.9 is chosen arbitrarily to ensure well-behaved overall
variance, while the constraint ,,,;,, = max(s;) * 1.9 is chosen to make that
conditional MAP function used in amortization tractable. (See Appendix 2.2 for
details. Note that this minimum on the cross-site variation is problematic,
especially if it conflicts with our prior beliefs about the relative scale of within-site
and cross-site variation. It is required to make our MLE function for analytic
amortization numerically well-behaved, but it could be removed if we were
willing to use an approximation to the MLE for cases where the conditional

likelihood is multimodal.)

2.4.2 THE THREE VI ALGORITHMS

We construct three different guide families for the multi-site model with /V sites:

« The mean-field family has 6 + 2N guide parameters (6 local and 2V
latent), corresponding to the mean and standard deviation for each of

u,g,d,andTl,...,TN.

« The Laplace family has 7 + N guide parameters: 3 global parameters

(", %, d*; N latent parameter 17, . . ., T'y; and 4 boosting parameters

w,uu wca wdu wT-

« The amortized Laplace family has only 7 optimizable guide parameters.
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We amortize the /V latent parameters by setting
T = M;(p*, <", d") == argmax,, p(T;|p", <", d"). (2.26)

The formula and derivation for the function M; can be found in Appendix

2.2,

We use block-arrowhead SDD quasi-boosting (Appendix 2.1) for
unamortized Laplace VI.
For all three VI methods:

« We use stochastic variational inference with sample size n = 100 and

equal sampling probabilities.

« We perform ELBO maximization using stochastic gradient ascent within
the “pyro” python package. We use the ADAM stochastic optimization

algorithm, with standard parameters (including a learning rate of 0.005

and (517 52) = (08, 09))

« For estimating the ELBO, we use either m = 1 or m = 3 samples from

the guide.

Once we obtain the final fitted values of all the guide parameters, we go back
and calculate the Hessian one final time over all the model parameters, using a
numerical approximation for the second derivative of the posterior with respect

to d. The final fitted guide is thus a multivariate normal, as in regular Laplace VL.

2.4.3 TESTING THE ALGORITHMS ON SIMULATED DATA

We generated two datasets from the multi-site model, as follows:
« For both datasets, we set N = 400, 4 = 1.0 and o = 2.0.

« For Dataset #1, we set = 3.0; for Dataset #2, we set v = 30.0;
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+ We used the same vector 8 = (7 .. ., S400) for both datasets; the s; were
sampled independently from Gamma(4, 8), with all values above 1 set to

1;

o For each dataset, we sampled 7; and z; for7 € 1, ..., 400 from the

model, conditional on p, 0, v/, and s.
« The final dataset in each case consisted of z; and s; for 1 < ¢ < 400.

Each of the three VI algorithm was run on each dataset with m = 3. Repeated
runs, as well as runs with m = 1, converged to similar values; that is, the
stochastic optimization seems robust. For each dataset, we also carried out
Hamiltonian MCMC (using the Stan package with NUTS sampler, for 4 chains
of 1000 warm-up and 1000 samples each) and used the distribution of MCMC
samples as a stand-in for the true posterior.

For each algorithm, dataset, and value of 1, Table 2.4.1 reports the following

metrics:

« The average ELBO and EUBO with respect to the fitted guide;

o The average coverage of 7; for 1 < ¢ < 400; that is, the proportion of the
MCMC samples that fall inside the symmetric 95% credible interval of the
fitted guide. Note that this not the sense of “coverage” usually used in
simulation studies; instead of being the percentage of separately-estimated
intervals containing the truth, it is the percentage of the “true”

(MCMC-based) posterior contained in a single estimated posterior.

« The average coverage of /1, and 0, and v in the same sense.

The marginal distributions of six model parameters (1, ¢, d, and three
arbitrarily chosen latents) for the three fitted VI guides and MCMC are shown in
Figure 2.4.2 for Dataset #1 (¥ = 3) and in Figure 2.4.1 for Dataset #2 (v = 30).
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Table 2.4.1: Measures of fitted variational inference outcome quality for two
simulated scenarios, three guide families, and two numbers of guide samples
m. For both scenarios, data were generated with y = 1.0,0 = 2.0.

Dataset v m Family Amortized? EUBO ELBO Coverage of 95% interval

H o v T;
1 3 Laplace Y -357 -1126 0.922 0.813 0.835 0.882
1 3 Laplace N -224 -1130 0.352 0.928 0.914 0.834
1 3 Mean-field N 75 -3913 1.000 0.124 0.538 0.934
2 30 3 Laplace Y -125.97 897 0.912 0.9602 0.593 0.864
2 30 3 Laplace N -101.87 953 0.389 0.947 0.722 0.82§
2 30 3 Mean-field N -183.98 885 1.000 0.000 0.981  .999
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In both the v = 3 (high-outlier) and the v = 30 (nearly-Gaussian) cases,
amortized Laplace is superior to unamortized Laplace, which is (substantially)
superior to mean-field. This is visible in terms of lower EUBO, higher ELBO, and
better (closer-to-nominal) coverage. Nonetheless, even for amortized Laplace,

coverage leaves room for improvement.

2.4.4 AprpPLICATION TO ECHS DATA

We will apply the above model to a multi-site evaluation study of the Early
College High School (ECHS) program. Funded by the Bill and Melinda Gates
Foundation, this is a program in which high-school students earn an associate

degree or up to two years of college credit along with their high-school diploma.
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Figure 2.4.1: Marginal distributions of MCMC values and variational fits to
Dataset #2, generated using u = 1, 0 = 2, and v = 30. In all cases, m = 3
guide samples per step were used in estimating the ELBO.
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Figure 2.4.2: Marginal distributions of MCMC values and variational fits to
Dataset #1, generated using u = 1, 0 = 2, and v = 3. In all cases, m = 3
guide samples per step were used in estimating the ELBO.

Our data set, from [ 13 ], is based on 4,004 North Carolina students who entered
one of 44 lotteries and either did or did not qualify for ECHS “treatment.” The
outcome of interest is a binary indicator of whether a student is “on track” to
complete North Carolina’s Future-Ready Core Graduation Requirements by the
end of ninth grade. In particular, we'd like to understand the distribution of
lottery-specific treatment effects.

We follow Yuan, Feller, and Miratrix[ 58] in terms of data cleaning decisions.
In particular, this means that we only consider those students who could be
linked to the North Carolina Department of Instruction (NCDPI) databank;
whose ninth grade school was within 20 miles of their eighth grade school; and
for whom full covariate data is available (race, gender, free or reduced-price lunch
eligibility, first generation college student status, and eighth grade math and
reading scores). This reduces the sample to 3,477 students across 38 lotteries;
2,021 treated and 1,456 untreated.

Using the multi-site model presented above, we fit the data using both MCMC
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and variational inference. Since there were only 44 sites, we did not subsample.
The marginal results for the global parameters and three arbitrary site-level

(latent) parameters are shown in Figure 2.4.3:
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Figure 2.4.3: MCMC values and variational fits to ECHS data.

The (unamortized) mean-field approach seems to have failed badly in this
case. As for the (largely similar; and, for d, actually indistinguishable) results of
amortized and unamortized laplace, in scientific terms, they seems to suggest that
a Gaussian model, without t-distributions to accommodate outliers, would have
been sufficient. That is to say, the log-degrees-of-freedom parameter d seems to
have its posterior density mode somewhere in the range 2-4, indicating degrees of
freedom v in the range of 10-60 — a distribution of treatment effects that

approaches normality.

2.5 CONCLUSION

In this chapter, we have shown that Laplace families can be a powerful tool for
approximate inference. They can capture important dependencies in the
posterior better than mean-field guides, without the dimensional overhead of
unconstrained Gaussian families. We have given a practical algorithm for using

Laplace families with latent variable models, a domain in which existing
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techniques (either variational or MCMC) can struggle due to the high
dimensionality of the posterior.

Our results on two simple models show the promise of this method, and
justify our plan to use this method for the much more comprehensive ecological
inference model in Chapter 3.

In order to broaden the practical applications of Laplace variational inference,

several directions would be interesting:

« Improve practitioner accessibility. For instance, optimize the code and
make a pyro "autoguide” that can create a Laplace family guide

automatically.

« Investigate the conditions for efficient convergence of stochastic
variational inference to the true optimum member of the guide family.
This would include looking for tricks to reduce the variance of the ELBO
gradient estimate; finding ways to tune the optimization algorithm,
including using the already-calculated Hessian explicitly in the optimizer;

and empirically exploring the variability of the results.

« Combine the Laplace family approach with other techniques. Potentially
promising combinations include the copula approach of [21][53], to
allow the fitted posterior more flexibility than a Gaussian family;
non-analytic amortization like the variational autoencoder, to make the
process of amortization more of an automated turn-key procedure for the
researcher; and perhaps some of the other techniques mentioned in

Section 2.2.2 as “prior work”.

« Experiment with using multivariate ¢-distributions rather than
multivariate normals as guide families, so that fatter tails might tighten the
ELBO-EUBO gap.
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Ecological Inference

Ecological inference is the notoriously tricky problem of inferring individual
behavior from group-level data. Although it comes up in many different domains,
the main setting in which ecological inference has been studied during the past
few decades is the US Voting Rights Act [ 1], as interpreted by the Supreme
Court in Thornburg v Gingles (1986). [2] [19] This is the context that motivates
our work in the current paper and from which we draw all our examples.

In Thornburg v Gingles, the Court established a set of criteria for determining
whether the electoral system in a given jurisdiction violates the voting rights of a
racial minority. Some of the criteria depend on the extent to which voting
patterns in the jurisdiction are correlated with “race”. This raises an ecological
inference problem: how can we determine whether voters of different “races”
tend to vote differently? Election data tell us how many people in each precinct u

voted for each candidate c¢. However, since the ballot is secret, we have no direct
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data on how many of these voters were of “race” 7. Vote counts (if we had them)
would form an R x C matrix Y,, (where R is the number of “races” and C'is the
number of candidates), but, as we’ll see in more detail below, the only data we
have access to are the row and column sums of Y, for each precinct u. Our task
then is to infer credible values for the elements of these matrices.

The inferential strategies to use in such cases were widely disputed until King’s
book A Solution to the Ecological Inference Problem [26] gave a coherent
hierarchical approach for the simple 2 X 2 case. This was later generalized to a
hierarchical Bayesian model for “the R x C' case” (thatis, for R and/or C' greater
than 2) by Rosen, Jiang, King, and Tanner (hereafter RJKT)[48]. King called his
approach to the ecological inference problem “EI”. Since then, EI has become a
broad umbrella term for all approaches that follow in King’s footsteps.

The general outline of the EI paradigm is as follows:

1. Give a coherent a priori model for voting behavior. The model should
include some cross-precinct variability, but also explicitly favor cases
where voters of the same group have similar voting patterns across all

precincts.

2. Condition this model on the observed data, and estimate and/or draw
samples from the Bayesian posterior. Each posterior sample will include
both global parameters (such as the fraction of voters of “race” r who
would be expected to vote for candidate ¢) and precinct-level parameters
(such as the fraction of the voters of “race” " in precinct u who are inferred

to have actually voted for candidate c).

3. Report posterior credible intervals for aggregates of the precinct-level
parameters, not for the global parameters. This is because we expect the
model to be somewhat wrong; we trust the precinct-level parameters more
because they are conditioned on the true data more directly than are the

global parameters.

It is this last step which most distinguishes King’s EI from the approaches that
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preceded it. Note that it is somewhat counter-intuitive. For instance, say we are
interested in the percent of African-Americans who voted for candidate c. In the
El approach, even though we have a single parameter which could be interpreted
as a prediction of what that number would be if we re-ran the election, we do not
simply report a credible interval for that parameter. Instead, for each posterior
sample, we add up the number of African-Americans in each precinct who are
inferred to have actually voted for candidate ¢, and report a credible interval for
that sum. Though more complex, this approach uses the data we have more fully
and efficiently.

RJKT apply this general approach to a specific model of an election with
“races” and C' candidates. They derive a fast, moment-based approximation of
their model posterior, which can give answers more quickly, though less
accurately, than full MCMC. Unfortunately, this derivation depends on the
specifics of their model, and thus does not easily generalize to situations where a
more complex model might be required, such as when the researcher wishes to
use data from multiple elections.

Since RJKT, others have continued to explore different models, mostly
following the basic EI paradigm outlined above. Notable examples include many
of the articles compiled in [27], [24], [20], [25], and [30].

This chapter has three main goals:

1. Give an easily-extensible framework for building election models that can

be used in the EI paradigm.

2. Describe a computationally-tractable approach to approximately sample

from such models (variational inference).

3. Demonstrate the feasibility of this approach by fitting a simple R x C
single-election version of the model on simulated data based on the 2016

Presidential election in North Carolina.

In other words, this chapter will not attempt to break new ground in terms of

results. Though the model we fit can easily be extended in a variety of ways, we do
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not do so. We merely show that its performance on existing "solved” problems is
comparable to that of existing tools. The task of actually extending this model to
new domains is left for future work.

In Section 3.1, we construct a Bayesian model for the most basic version of
R x C ecological inference, which can serve as the basis for more general models.
In Section 3.2, we briefly review how variational inference works in the general
context of hierarchical Bayesian modeling (including the idea of a Laplace family
guide, introduced in Chapter 2 of this thesis). In Section 3.3, we describe how to
apply these techniques to our basic EI model. In section 3.4, we apply this model
to simulated data representing the 2016 presidential election in North Carolina,
and give some results comparing this with the RJKT approach. Finally, in Section

3.5, we show how our basic model can be extended in several possible directions.

3.1 BASIC MODEL FOR ECOLOGICAL INFERENCE

In this section, we describe a hierarchical Bayesian model for the most basic
version of the ecological inference problem. The setting is a plurality election in a
jurisdiction where the voters belong to R different racial (or other) groups. There
are C' candidates (possibly including a “did not vote” option). The jurisdiction
contains U electoral units (precincts). For each precinct u, we know the

following information:

« Ny, = the number of voters of “race” r in precinct v;

« vy, = the number of voters in precinct u who voted for candidate c.

We will denote the combined data for precinct u as «,,. Technically, one might
consider the v as observations and the 7 as givens, but for our purposes, their
meaning is nearly symmetric: they can be seen as 2 row sums and C' column
sums for each of P different matrices. We wish to infer how the votes for each
candidate were distributed among the different racial groups; this could be seen

as the element-wise sum of all the matrices.
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Figure 3.1.1 shows a simple example of a single hypothetical precinct worth of
observations, along with two possible underlying voting patterns consistent with
those observations. Note that, ignoring integer constraints, any possible set of
observations is consistent with a unique possibility in which a randomly-chosen
voter’s “race” is independent of their candidate support, as in case B of the figure;

we will use this fact later.

|
I
]
]
I
Candidate
X Y Z|n,

White| 77 7 400
§ Black| ? 7 7 |200
& Hispanic | 7 ? ? 100

Other| ? 7 2 |100|||F &

v, | 400 200 200 | 800 _%&

Candidate Candidate
X Y Z | ny X Y Z |n,
White | 400 0 0 1400 White | 200 100 100 | 400

Black| 0 200 0 |200 Black | 100 50 50 | 200
Hispanic| 0 0 100|100 Hispanic | 50 25 25 | 100
Other | 0 0 100 | 100 - & Other | 50 25 25 | 100

vw 400 200 200 | 800 _%@é& U | 400 200 200 | 800 _%f

Possible underlying data B: assuming candidate’s
percent support is independent of racial/ethnic

group

(=% (=%
=} j=]
o o
~ ~
o @

Possible underlying data A: assuming largest
groups vote for most-popular candidates

Figure 3.1.1: Observations for one hypothetical precinct, and two possible
underlying vote patterns consistent with those observations.

From a Bayesian point of view, the model’s function is to make reasonable
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assumptions about patterns of voting — for instance, that across precincts, a
given racial group tends to vote in similar proportions for a given candidate — in
order to allow us to infer from data which voting totals are more credible.

For ease of explanation, we begin with a relatively-simple basic model, shown
graphically below in Figure 3.1.2. In Section 3.5, we will discuss possible
extensions of this model, such as analyzing data for multiple elections and/or

incorporating additional information such as the racial category or party of each
g

o ©

[ |
@\ |

T

candidate.

U

- J

Figure 3.1.2: The basic model for ecological inference.
(Gray nodes represent observed quantities. Diamonds represent computed
quantities.)

As usual, gray and white nodes in Figure 3.1.2 represent observed and
unobserved quantities respectively. Circles represent random variables, while
diamonds are computed deterministically. Beginning from the bottom of the

diagram, we have:

+ Quantities considered known a priori: Vectors i, € R* for each

76



u € {1,...,U}, with entries n,, ,; the number of (potential) voters for

each “race”.

Observed variables: Vectors v, € R foreachu € {1,..., U}, with

entries v, . as above; the total number of voters choosing each option.

Latent variables: Vectors y,, » € R” foreachu € {1,...,U} and

r € {1,..., R}. The entry y, , . represents the number of voters from
group 1 in precinct u voting for candidate c. For each precinct u, the
vectors Yy 1, - - - , Yu, g can be stacked to form the rows of the R x C

precinct vote matrix Y,, — the matrix depicted in Figure 3.1.1.

Although the vectors y,, , are unknown to us, they are in principle
observable and independent of any particular model. For this reason, we
refer to them as “latent variables” rather than “model parameters”. Note,
however, that in a Bayesian setting, there is no fundamental distinction
between parameters and latent variables. In particular, in the context of
variational Bayesian inference as described in Section 3.2, the y,, , will fall
under the category of “parameters”, since they are unobserved and need to

be inferred.

For each u and r, the vector y,, , has distribution
Yur ~ Multinomial (1, ) (3.1)

where the probability vector 7r,, - is computed from the model parameters,

as described below.

Model parameters: These are quantities that contribute to 7, , ., the
probability of an individual voter of “race” r in precinct u voting for

candidate c. We distinguish between two types of model parameters:

o Global parameters depend on characteristics of the voter or candidate

that apply across the entire jurisdiction, independent of the precinct
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u. In our simple version of the model, the only such characteristic is

the voter’s “race” r. Our global parameters consist of:

o Avector o € RY, restricted to the C' — 1-dimensional
subspace of mean-( vectors, whose probability density is
proportional to that of & ~ N(0, 0,2I).! The entry cv,
corresponds to the overall support for candidate ¢, across all
racial groups and precincts.

e A matrix 3, whose rows are mean-o vectors 3, € R for each
r € {1,..., R}, and whose columns are also restricted to have
mean o; with density proportional to /3, . ~ N (0, U%I ). Thus,
B € RE*C butit is restricted to a subspace of dimension
(R —1)(C — 1).> The entry 3, . corresponds to an additional
preference for (or against) candidate ¢ specific to racial group 7,

across all precincts.

In more complex models, we may have additional global parameters
corresponding to the “race” or party of the candidate, the year or

type of election, etc.

o Nuisance parameters depend on the precinct © and correspond to

random variation in voting patterns between precincts.

In our basic model, the nuisance parameters consist of matrices

v, € RY, with rows foreachr € {1,..., R}andu € {1,...,U},
iid with distribution 1, .. ~ N'(0, 021). The entry v, ..
correspond to additional preference for (or against) candidate ¢
among voters of “race” r specifically in precinct .

In more complex models we may have additional precinct-level
parameters. For instance, if the data included elections for different

offices and in different years, we might have parameters for party by

'Expressing the prior in this form may seem strange, but it is symmetric over “races” and
computationally-convenient.

*Note that the R(C —1) total dimensions of cx and 3 are the right number to allow any average
pattern of voting preferences for each “race’.
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precinct as well as party by precinct by year by office. The choice of
exactly which combinations of factors to include at the precinct level
would depend on the scientific questions the model was intended to
address, but these nuisance parameters generally should be kept to

only one or two if possible.

Because nuisance parameters are much more numerous and of less
intrinsic interest than the global parameters, we will deal with them
differently when constructing the guide family to perform

variational inference.

Given the model parameters &, 3, and {v,, }, the probability that a voter
of “race” r in precinct u votes for candidate c s
exp(@e + Bre + Vupe)

Ture = . 2
v Zg eXP(Oéé + 57‘,& + Vu,r,é) (3 )

In other words, according to our model, a voter’s propensity to vote for
candidate c is proportional to a product of lognormally-distributed
parameters that correspond to the overall strength of the candidate (),
the global preferences of the voter’s racial group (/3,..), and precinct-level
effects by “race” (14, ;. .). We assume that, conditional on these parameters,

each individual voter’s decision is independent.

« Model hyperparameters: In our simple model, these are just the three
quantities 0,,, 03, and 0, which control the distributions of the

parameters ., 3, ¢, and V,, .  respectively.

In practice, we usually set o, = 03 = 2, which is large enough to allow
the model plenty of flexibility to fit cases where candidates differ in
popularity by factors of 100 or more. (These values are constants because
these values are only very weakly constrained by the data, and as long as
they are not too low, the posterior estimates of c, § should be good). On

the other hand, since our prior belief is that random variation between
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precincts is, on average, relatively small, we let log(c, ) ~ N (—2.5,1.2),
corresponding to a 90% credible interval of roughly (0.01, 0.6) for 0,,.
That is, roughly speaking, the odds of a person of a given race voting for a
given candidate may typically vary by as little as a factor of 1.01, or as

much as a factor of 1.6, across precincts.

In more complex problems, we may have additional hyperparameters
corresponding to the correlation between different model parameters; see

Section 3.5, Example 2 for details.

Generally, in a hierarchical Bayesian model, we are given a distribution of the
observed variables conditional on the latent variables and parameters. But in
ecological inference, the interaction between the data and the model is somewhat
different. The observed variables n,, and v,, impose deterministic constraints on

the row and column sums of the matrix Y, of latent variables:

C

Row sums Zyumc = Ny, foreachr;
c=1
R

Column sums Zyu,r,c = vy, foreachc.
r=1

In other words, for each precinct u, the data vectors 1, and v,, define an
(R — 1) x (C — 1)-dimensional polytope ), in the space of R X C' matrices,
and the likelihood P (m,,, v, | Y.,) is simply the indicator function of this
polytope.?

To illustrate this idea, consider Figure 3.1.3, showing a precinct « in an
election with 3 candidates and 2 “races” (unlabeled). In this 3 X 2 case, the
polytope is 2-dimensional; the figure shows what it would look like projected

into the space of ¥,11 X Yu12.

3Actually, the likelihood is the indicator function of the polytope ), only for integer values of
all elements, and is o for any non-integer values. We address this issue in Section 3.3.2.
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Group

Candidate

A B C | ny

White | Y11 Yutz Yurz | 150
Black | yu21  Yuz2  Yuo3 | 210
120 120 120 | 360

)
N
—
V

- Yull

Figure 3.1.3: Example of precinct-level observations and the resulting J),,.

For ease of notation, we combine our parameters into sets as follows:

« For each precinct u, the known quantities 72, and the observed variables

v,, into a single vector

x, € RO (3-3)
« the global parameters o, 31, . . ., Bp into a single vector
v € T ~ RO (3.4)

« the precinct-level nuisance parameters v, - (for all w and ") into a single

vector

v € RVAY, (3-5)

« the matrices Y,, (for all u) into a single vector of matrices

Y € MY, . ~ RVHC, (3.6)

The posterior distribution of all model parameters and latent variables is just

the prior distribution with Y/, restricted to V.., renormalized accordingly. The
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hard part, as usual, is computing the normalization constant. As usual in the EI
paradigm, we are most interested in the posterior distribution of the latent

variables y,, , rather than the model parameters 3,.

3.2 VARIATIONAL INFERENCE AND LAPLACE FAMILIES

To obtain the posterior on ¥y, we will be using variational inference, with a
transformed, amortized Laplace guide family, as described in Chapter 2. In this
section, we remind the reader of the basic concepts and notation. (Readers who
have Chapter 2 fresh in their minds can safely skip this section.)

Suppose we have a set of observations & and a model for these observations
with parameters @ € R, In other words, we are given a prior distribution p(8)

and a likelihood p(|@). We are interested in the posterior distribution

p(x|6)p(6)
Jop(|0)p(6)d6

p(@\a:) = (3.7)

The variational approach is to approximate the posterior distribution by a
sampleable guide distribution ¢, (6) belonging to some guide family Qg
parametrized by ¢ € ®. We wish to find the value of ¢ that minimizes the
Kullback-Leibler divergence between the guide and the posterior. This turns out
to be equivalent to maximizing (usually using some form of gradient ascent) an

expression known as the ELBO:

ELBO(¢) := E,, [logp(w, 0) — log e (0)]

— [ logp(. 0)as(6)d6 ~ [ llog16(6)l1a(6)d.

So the fitted guide is ¢4 (6)), where

~

b= arg max,, (ELBO(¢)) . (3.8)
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Of course, how well ¢ (0) actually approximates p(@|x) depends on the
choice of the variational family Qg. The most common choice, known as
mean-field family, is a family of Gaussians with the covariance matrix
constrained to be diagonal (in order to limit the number of variational parameters
to be learned).

However, the mean-field family is clearly inappropriate for EI, since the key
model parameters y,, ,. . are clearly highly correlated for each u. Instead, we use
the Laplace guide family L4 introduced in Chapter 2, which has roughly the
same number of parameters as the mean-field family, yet is also able to accurately
capture the correlation structure of the posterior. In particular, the Laplace family
contains (a slight distortion of ) the Laplace approximation to p(6|x) at every
mode of p. We can therefore expect the fitted guide ¢4 (0) to be at least as good at
approximating p as the Laplace approximation at the dominant mode — and
possibly better.

A Laplace family guide g, € L is a multivariate normal distribution, with the
primary component of the parameter ¢ encoding the mean 8%, while the

covariance matrix is obtained from the inverse of the “observed” information

Sy (0°) 1= ~H logp(0.2)]| . 55)
Here, H is the Hessian of log p(8, &) with respect to 0, evaluated at @ = 0*. If
0* is alocal maximum of p(0, ), then ¢, (8) is the Laplace approximation of
p(0 | x)at 6.

Although the matrix .# (0*) itself may not be positive definite, we can adjust it
to be so using a parametrized family of “boosting” functions f;,. The adjustment
is controlled by a second set of guide parameters ). When .# (6*) is already
positive definite (and therefore needs no adjustment), we ensure that
fu(F(0%)) = 7 (6*) asip — 0. (For details on boosting functions, please
refer to Chapter /refcha.)

Due to the presence of precinct-level latent variables, the number of

parameters in an EI model is likely to be very large. To limit the number of guide
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parameters, we make use of a standard method for variational inference in latent
variable models, amortization. We split the model parameters @ into global
parameters 7y (i.e. & and 3, for each ) and latent variables/parameters \,, for
each precinct u (i.e. v, and Y, for each u and r). The guide parameters 6" are
similarly split into 4* and A*,,, with X*,, constrained to be a function of v* and
the precinct-u observations &,,. The resulting amortized Laplace family allows
inference that is both faster and slightly more robust than a pure Laplace

approach. Please refer to Chapter 2 for details.

3.3 VARIATIONAL INFERENCE FOR EI

Our goal is to approximate the posterior p (0,7, v, Y | &) using variational
inference with a Laplace family of normal distributions. However, there are a few

issues that need to be addressed before we can proceed:

1. Our model contains a discrete (multinomial) component, whereas
variational inference methods generally rely on the posterior being
differentiable (and the Laplace approach in particular requires the

posterior to be thrice-differentiable almost everywhere);

2. As explained in Section 3.1, the support of p (Y | @, v, v)is 1V_, ),
where each ), is a closed (R — 1)(C — 1)-dimensional polytope in
Mgz . Thus, because of its highly constrained support,

p(0,,7,v,Y | ) does not lend itself well to a normal approximation.

3. The global parameters o and 3, are naturally expressed as dimension 12
and R x C respectively, but they are restricted to subspaces of dimension
R —1land (R — 1) x (C — 1), because changes in these parameters that
are perpendicular to the product of those subspaces do not affect the

likelihood.*

*The analogous redundancy in &/* is not an issue, since we intend to amortize all the parameters
in V™ rather optimizing them individually.
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3.3.1 HANDLING DISCRETE PARAMETERS

The first problem is relatively easy to deal with: we can define a “continuous
multinomial” distribution,® CMult(n, 7r) with unnormalized density
¥ . C _ .
Hcczlm if Y, Yc=mnandy. > Oforallc;
f(yh'"vyC) =

0 otherwise.

(3.10)

We can now change our model to have (y,, .|y, v) ~ CMult(n,,, 7y, ),
where 7r,, ;. is computed from «y and v as in Section 3.1. Note that we do not
need to compute the normalizing constant for CMult, since the ELBO requires
only an unnormalized density.

Note that CMult is a good approximation of the multinomial distribution for
values far away from the boundary, but is less so near the boundary. This is
because the total probability mass over an interval which is away from the
boundary is likely to be roughly the same for the two distributions, but this is not
so at the boundary; CMult, unlike multinomial, almost never exactly takes
extreme values o or n. In practice, we deal with this by adding pseudo-voters, as
described in the following section, and then subtracting those pseudo-voters out
of our estimates at the end. This effectively extends the boundary of CMult
slightly beyond that of multinomial, allowing impossible negative voter estimates

in rare cases but hopefully reducing the bias overall.

3.3.2 HANDLING POLYTOPE SUPPORT

We address the second problem by reparametrizing the polytopes ). For each

u € {1,...,U}, we define a bijective, almost-everywhere smooth, mapping

My, - RE-DE-1) _y Vu, (3.11)

SWhen presenting this material, we have been asked if the continuous multinomial corresponds
to any reasonable data-generating process. We believe that the answer is no; we are using it merely
as a differentiable approximation to the multinomial.
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where )/,, is the data-specific open polytope (not including the boundary). Via
this reparametrization, any continuous probability distribution on the open set

Y, corresponds to a distribution on RU*=1(¢~1)

with unconstrained support.
One possible construction for m,, is given in Appendix 3.3.

Note that this reparametrization switched from the closed polytope to the
open one, which would mean that a posterior sample can never estimate exactly
zero voters in a given ¥,,.. This is a similar issue to that of the difference between
CMult and multinomial near the boundary, mentioned above, and so we hope
that our step of adding pseudo-voters while fitting but subtracting them from the
final estimates will address both of these issues simultaneously. In effect, this
allows estimates of ¥/,,,., after the pseudo-voters are subracted out, to be slightly
negative; we believe that in this way, the total posterior probability mass near zero
will roughly approximate the probability mass that would be exactly at zero if we

were able to use a discrete multinomial in our model.

The product of the maps my, . . ., my gives us a global reparametrization
 RUE-DE-1) _y HU 1 Vu. (3.12)

Forany W = (W1, ..., Wy) € RVE=DECD we can now define an a.e.

smooth probability density function based on the density function over ),

Pz(0w, Y, v, W) :=p(0,,7,V,me(W) | @) - |, (W), (3.13)

where .J,,, . is the Jacobian of .

3.3.3 SUBSPACE FOR GLOBAL PARAMETERS

To address the third problem, we define reduced-dimension guide parameters
a* € R 1and B* € RE(C-D Thatis, we leave the redundant model
parameters &tc, 3, ¢, and Bp . out of the guide’s parameter space, and generate
them from * or 3* as needed.

The graphical representation of Py, is shown in Figure 3.3.1, with differences
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between P, and p (0,7, v, Y | «) highlighted in red.

oy
Oa op Q
' N

()| ()

@ CMult

G

Figure 3.3.1: Model for pr(0,,~v,v, W).
(Gray nodes represent observed quantities. Diamonds represent computed
quantities. )

In the next section, we will show how to use variational inference to find an
approximation ¢ ¢3(UV’ ~,v, W) for p,. We can then use the map m ! to
transform ¢ ¢ back to an approximation of our original posterior distribution

p(o,,v,v,Y | @), as desired.

3.3.4 DEFINING THE GUIDE FAMILY

To approximate P, (0,7, v, W), we use (a slight modification of ) the

amortized Laplace family as described in chapter 2.
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We define

v = (a7,B7) € RMOY, (3.14)
o, € Rfr;

Xy o= (v, vn, W) € RECHEZDIED for each u;
Oy = {('}/*,X{,...,)\*U) €O A =M,(v") foru= 1,...,U}7

where
M, RR(C*l) N R1+RC+(R71)(071) (3.15)

is a differentiable function that approximates the MAP of (v,,, W,,) conditional
on~* (and implicitly, via the polytope mapping, on &,,):

(03, 0", W*) = M(y") = argmax,_, 1 (aly", 2, W) (3.16)

The derivation for the function M, (~*) can be found in Appendix 3.4.1.

Because both our amortization function M and our transformation m are
poor when any elements of Y are less than 1, we add £ = 1 "pseudo-voter” to
each such element immediately after finding Y*, as well as adding corresponding
amounts to the observations: C to each n,, and R to each v,,. We have no
principled reason to choose k = 1 as the optimal correction factor here, but have
reason to believe that the optimal £ is greater than o, both in order to reduce the
bias caused by the difference between Stirling’s approximation and the Gamma
function when y,, , . is less than 1, and because subtracting these pseudo-voters
back out at the end allows the distribution of m,, (W,,) to include the boundaries
of the true, closed polytope (and a bit beyond), rather than being artificially
restricted to the open polytope by the function m,,.

We define the guide ¢, (7, 0., ¥, W) to be a multivariate normal with mean
(v*, 0%, v*, W*). That is to say, to sample from the guide, we'd draw from a
Gaussian over latent IV space, then transform that to Y space including

pseudo-voters, then subtract out pseudo-voters. The precision (inverse
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covariance) matrix of this multivariate normal is “Laplacian”: the observed
information matrix of the model with respect to all arguments at the mean of the
(v*, ok, v*, WH)].

As explained in chapter 2, we can take advantage of the block arrowhead

guide, adjusted to be positive definite: fy, [.7,
structure of this Hessian for several optimizations, including when drawing
samples from the guide.

A graphical representation of the guide ¢, (7, v, W) is shown in Figure 3.3.2.
The optimization of the ELBO will be performed through Pyro, a Python

package built for stochastic variational inference.

PY*
\ .

s

Nlvy

U

. J

Figure 3.3.2: Graphical model for the guide g4(v,0,,v, W). As usual, dia-
monds represent computed quantities. The grey diamond for o}, indicates that
it is treated as a constant for purposes of computing the ELBO gradient.
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3.3.5§ ALGORITHM FOR AMORTIZING LAPLACE VARIATIONAL EI

Our algorithm for fitting the above ecological inference model follows the
general Laplace guide algorithm as described in section 2.3.6 of chapter 2. To do
so, we must translate generalities to specifics in several regards; most importantly,
in terms of our algorithm for approximating

M(y*) = (o, v, W*) margmax,, v p(V", 00, v, W).

The basic structure of this approximation process is sketched out below, and
fully explained in appendix 3.4.2. It involves a series of rough first-order
approximations, with one step of Newton’s Method at the end to reduce both the
bias and the variance of the approximations. We understand that some of the
decisions in designing this procedure were arbitrary and could probably be
improved upon, but the overall algorithm seems to work.

The basic steps and formulas are as follows. For an explanation of the logic

behind each formula, see Appendix 3.4.2.
1. Find Y* ~ argmax,, p(v*,0, =0,v = 0, Y'). This process is
described in Appendix 3.4.1. Use m ™! to turn this into W*.6

*
Yu,r,c

*
nuy’rﬂ-r,c

2. Estimate U := log ( ) , an estimator of V.

Ru,r —Y roc :
~ur_wne an estimator of 02, the part of the

- 52 .
3. Estimate 0 = wre

u,m,C¢ nuﬂ“y;,r,c

variance of I, , . that is attributable to sampling variance in Y, , ..

52 52
4. Takemaz (0,0, . — &

2 o), foreach u, 7, ¢, as estimates of 0, ; average

these estimates to get 0.

ﬁu,r,c/&ﬁ’r’c o e «1. . » 7. . .
a7 o1/ (o) combining the “likelihood” distribution

with approximate mean and variance [0, ., 02 .,
R

5. Takev™, , . 1=
| and the “prior”
distribution with mean and variance [0, 0};], using a precision-weighted

average.

®We are aware that, because of the Jacobian of m, this introduces bias;
argmaxy, p(m(W),...) # m ![argmaxy p(Y,...)]. Currently, we are hoping that the
one step of Newton’s method at the end addresses this issue sufficiently. We plan to develop a
better fix for this issue in future versions of the algorithm.
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6. After taking the Hessian, use one step of Newton’s method on each
precinct s latent parameters to redefine (W*,,, v*,), as explained in

section 2.3.5 of chapter 2.

3.4 RESULTS

We tested our algorithm on simulated voting data for 2774 precincts, with
precinct racial composition based on the demographics of actual registered
voters in North Carolina in 2016.” Simulated election results for three
“candidates” (Democrat, Republican, Other/not voting) were generated from
the basic EI model in Section 3.1, with model parameters o and 3 set to mirror
the statewide turnout and exit polls in North Carolina for the 2016 Presidential

election (Tables 3.4.1 and 3.4.2).

Table 3.4.1: 2016 Presidential election in North Carolina: turnout and exit
polls

Of those who voted, percent voting for:

“Race” | Voter Turnout | Clinton (D) | Trump (R) Other
Black 64% 89% 8% 3%
White 71% 32% 63% 5%
Other 59% 56% 40% 4%

Using the above values of o and 3,,, we created four datasets with low
precinct-to-precinct variability (o, = 0.02) and four with high variability

(0, = 0.3). We chose 0, = 0.02 as our low value because, for most precincts in

"Precinct-level voter registration data by “race” were obtained from the North Carolina State
Board of Elections. [37] All “races” other than white and black were combined into a single cat-

egory “other”. One voter per racial category was added to each precinct to avoid zeros; this was
taken to be ground truth.

8Sources:
carolina/president;

https://www.wfae.org/post/numbers-are-breaking-down-ncs-2016-voter-
demographics#tstream/0

https://www.cnn.com/election/2016/results/exit-polls/north-
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Table 3.4.2: 2016 Presidential election in North Carolina: model parameters

“Race” | Clinton (D) | Trump (R) | Other/not voting
Black | 5 =049 |B=-123| B=001
White | 8= —043 | B=094 | B=—0.15
Other | 8= —0.06 | 8= 0.30 B=0.14
Total a=0.20 | a=-0.48 a=0.28

our data, this setting makes the variability in y,,,.. due to differences in v,,,.. only
slightly higher than the variability in ¥/, due to multinomial sampling.

For each dataset, we compare the performance of our algorithm with that of
RJKT, which uses MCMC to sample from a hierarchical Dirichlet-multinomial
model[48]. Our algorithm was implemented in python using the pyro
probabilistic programming package[9]. For the RJKT algorithm, we used the
eiPack package in R[31].

As usual in EI, we focus our attention on the posterior distribution of the
R x C matrix (), where (), . is the overall fraction of voters of “race” 7 who voted

for candidate c:

Z'l[j:l Y’M,'I",C
Zg:l nuﬂ”
Let (); be the value of () in Dataset i. For each algorithm .4 € {RJKT, Laplace},

let Q(A’i) and 88"” be estimates of the posterior mean (weighted by n,,) and

(3.17)

Qr,c =

sample standard deviation of () across precincts (ie, the SD of the percent value
in each cell, across samples from the posterior), based on 1000 samples from the
estimated posterior distribution obtained by running algorithm .4 on Dataset i.
Let @U, @(A’g), and Sé?A’J) be the averages of ();, Q(A’i), and SEQA’i)
respectively for the datasets ¢ where 0, = 0. Tables 3.4.3 and 3.4.4 show the
individual entries of these matrices for o, = 0.02 and 0, = 0.3 respectively.
These results show that, in terms of point estimates, our model is performing
comparably to RJKT for the low-variance scenario, and slightly worse for the

high-variance scenario. In the latter case, our model’s results are notably biased
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Table 3.4.3: Results for g, = 0.02

Other/nonvoting  Clinton (D) Trump (R)
A Q SQ Q SQ Q SQ
Truth | 32.4% 22.6% 45.0%
White RJKT | 32.3% 0.086% | 22.5% 0.065% | 44.9% 0.070%
Laplace 32.4% 0.015% | 22.8% 0.014% | 44.9% 0.016%
Truth | 38.0% 56.7% 5.28%
Black RJKT | 38.6%  0.26% | 56.1% 0.17% | 4.81% 0.23%
Laplace 37.9% 0.038% | §6.1% 0.032% | 5.99% 0.026%
Truth | 43.3% 32.7% 24.0%
Other RJKT | 40.9% 1.0% 33.3% 0.37% | 24.4% 0.99%
Laplace 43.8% 0.13% 32.6% 0.11% | 23.5% 0.15%
Table 3.4.4: Results for 0, = 0.3
Other/nonvoting Clinton (D) Trump (R)
A Q SQ Q SQ Q SQ
Truth | 32.3% 22.7% 45.0%
White RJKT | 32.2% 0.069% | 23.0% 0.13% | 44.7% 0.092%
Laplace 32.6% 0.018% | 23.5% 0.016% | 43.9% 0.021%
Truth | 38.9% 55.6% 5.48%
Black RJKT | 41.0%  0.50% | 53.2% 0.53% | 5.29% 0.13%
Laplace 41.0%  0.040% §3.0% 0.031% | 5.99% 0.032%
Truth | 43.0% 32.7% 24.3%
Other RJKT | 37.3%  0.95% | 35.3% 0.55% | 26.0% 0.65%
Laplace 35.5% 0.15% 33.3% 0.12% | 31.2% 0.17%
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towards even splits for each “race” (i.e. towards Q. = % forall ).

We believe that we understand, and have a possible fix for, the reason for this
bias. While RJKT’s model views precinct-level residuals in terms of percentages,
ours naturally does so in terms of odds. For example, consider a precinct where
black and white voters will vote for Trump with probabilities 8% and 38%
respectively. Our model considers it to be equally “hard” to double the odds of
voting for Trump for either “race”, whether it means changing the probability for
white voters from 38% to 55% or changing the probability for black voters from
8% to 15%. Meanwhile, the RJKT model considers that 7% of black voters in a
given precinct switching candidates is much more probable than 17% of white
voters doing so. Thus, when it detects high inter-precinct variability, our model is
biased towards ascribing it to larger groups. We believe that scaling the precision
of v, . by the expectation of y,, , , conditional on observations and global
parameters, may remove this bias.

A more serious issue is that our estimate of s7) is consistently lower than that
of RJKT. Moreover, while for RJKT, we consistently have

(4) < SEQA’G), (3.18)

2.-Q

this is not always the case for Laplace, even when 0, = 0.02. We are looking into

this problem.

3.5 POSSIBLE EXTENSIONS OF THE MODEL

It is easy to extend the basic model to allow for any additional structure and/or
extra data we are interested in. We give just three examples here.

Example 1: An important critique of ecological inference methods was
expressed by Freedman et al.[ 16], who gave examples where KRT’s original
Bayesian ecological inference could give answers at odds with known underlying
truth, and yet the diagnostics of the model did not raise any alarm bells. These

problematic examples hinge on situations in which the voting behavior of a
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majority ethnicity in a given precinct is systematically correlated with the
percentage of one or more given minority ethnicities in that precinct. Such a
model can have a likelihood that is very similar to that of a model without such
correlations, where these cross-precinct differences in majority voting behavior
are incorrectly attributed to the minority voters.

This possibility, where one behavior pattern masquerades as another because
both lead to the same or similar patterns of observable outcomes, may be seen as
problematic for ecological inference on two different levels, practical and
philosophical. On the practical level, it can cause problems with empirical
coverage of practical EI methods such as the ones proposed in this paper. On a
philosophical level, it raises questions of identifiability and consistency that go to
the heart of the very feasibility of any form of ecological inference.

One could begin to address this by including terms in the model to model a
potentially systematic dependence of one group’s behavior on the local
percentage of another group. (Note that adding this to the model does not imply
any stance on its causal status.) Similar to one of RKJT’s modifications of the

RKT model, we can add hyperparameters

Prptc ™ N(()? Uﬂ) (3'19)

for each ordered triplet (7, 7/, ¢) of two racial groups and one candidate, and

change the distribution of v as follows:

(R—1)(ny,»+1)
Vare ~N ; Prrt log S S o, (3.20)

where n, = ZT, Ny, In other words, a [ positive/negative] p,.,+ . represents a
tendency for racial group 7 to vote [more/less] for candidate c when there are
more members of racial group ' present in the same precinct. For simplicity, we
could limit these coefficients to o when 1’ # 7, so that each racial group only
cares about its own prevalence in the precinct, not the ratio between other

groups.

9S



In practice, including such terms in the model will tend to increase the
posterior variance of Y (or, equivalently, W). To understand why, consider that
the model is now able to account for a positive correlation between the
percentage of a given demographic group 7’s prevalence in a precinct and that
precinct’s observed vote totals for candidate c in two different ways: by inferring
that group-r voters tend to vote for ¢, or by inferring that non-r voters tend to
vote more for ¢ when they live in precincts with more group-r neighbors.
Although the likelihood for these two possibilities across multiple precincts will
typically differ slightly, those differences will usually be small unless the number
of precincts is very large. The increased posterior variance should improve the
empirical coverage properties of the model, and so we recommend this sort of
correlation structure be included. In fact, prior knowledge about possible values
of p could be included in this kind of model, improving it yet further.

On a more philosophical level, we believe that such expanded models, and any
resulting improved empirical coverage in cases where this can be checked, can
increase our confidence that ecological inference is feasible. While the above
modification to the model only allows simple linear and homoskedastic
dependence of one group’s behavioral odds on the prevalence of another group,
the flexibility of this methodology would allow more complicated modifications
that include nonlinearity and/or heteroskedasticity to be tried as well. Though
dealing with this matter formally is beyond the scope of this paper, we believe
due to the phenomenon known as the Bayesian Occam’s Razor, that whenever
the observed data is consistent with multiple underlying explanations, the fitted
posterior will tend to discount complicated possibilities of cross-group
behavioral dependencies in favor of simpler explanations, where variations that
correlate with a group’s prevalence are explained by that group’s own behavior. Of
course, if the data is more consistent with cross-group dependencies, a flexible
model should reflect that fact in the posterior.

In any case, sensitivity analyses using model expansions such as this will be
able to increase our confidence in the applicability of EI methods and the

accuracy of their results.
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Example 2: Suppose we are interested in whether voters from two different
groups vote in similar ways.” We can explicitly incorporate such correlation into

our model as follows:

« Letog,0,,and o be as before.

« Add a hyperparameter 3. for each candidate ¢: an R x R matrix to
control the correlation across racial groups of support for c. Give it an

appropriate prior (such as an inverse Wishart distribution).

+ Combine the parameter vectors 31, . . . , B into a single R X (' matrix B,

where column ¢ has distribution A/ (0, 0/2320).

« For each u, combine the parameter vectors v, 1, . . . , I,  into a single

R x C matrix N,,, where column c has distribution N(0, 0233,).

« Letm,, and Y, be as before.

We can then carry out variational inference on this model exactly as in Section
3.3.

Here, once again, our primary object of analysis would not be the parameter
matrix B that gives correlation propensity, but the actual votes y,, ,. . as
constrained by the observed data. However, including B as a parameter allows us
to get a more accurate estimate of the latent values v, ,. . and of their variance,
especially if there is, in fact, nontrivial correlation between the different racial
groups.

Example 3: Suppose we are interested in modeling multiple elections. To do
this, we add anindexe € {1,2,..., E'} to all variables and parameters. We can
also define ¢(e) for the year of election ¢, C(e) for the set of candidates running in

election e, and 7(¢) for the party of candidate c¢. Our data would consist of 12,

°In several recent VRA cases, plaintiffs have claimed that the Gingles criteria ( Thornburg v Gin-
gles, 1986) can be applied not only to an individual racial minority group, but also to a coalition
of such groups. For such cases, in order to establish whether the coalition groups vote as a blog, it
will be important to compare the voting behavior of each individual group in the coalition with the
voting behavior of the coalition as a whole.
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and v, ,, for each e and v, and the latent variable matrix Y, ,, would be
constrained to lie in the polytope Y, defined as before.
There are then two different ways we can extend the basic model, each of

which has a separate role to play:

« We can add more global parameters to our model, representing various
quantities of interest. For instance, we can have a parameter Yz (c) t(e)s
indexed by party and year of election, to capture changes in partisanship
over time, irrespective of “race” and type of election. We could also have a
parameter 7)r(c),, indexed by party and “race’, to capture partisan
tendencies of racial groups that endure over time. As usual, the results of
our analyses would be based on estimates of the latent variables Y. ,, rather
than of the model parameters 7y or 77. However, including these parameters

in the model will help sharpen the estimates of Y ,,.

« We can ensure that the nuisance parameters v are indexed by election and
party — that is, 1, ;. r(c),. — and then add covariance hyperparameters to
capture the fact that precinct-level variation in partisanship is likely to be
somewhat stable across elections. For instance, if we have data for two
consecutive elections e; and €3, we could add hyperparameters p,. () for

each 7 and 7(¢), with a uniform prior over [—1, 1], and let

1 pr,Tr(c)

(Vu,’r‘ﬂr(c),ep Vu,r,w(c),ez) ~ N (070)7 UV2 1
Pr.(c)

(3.21)

If our assumption that precinct idiosyncracies are relatively stable is
correct, them this extended model will be able to better estimate such
idiosyncracies, thus sharpening/improving our estimates of other
quantities (most importantly Y,, .). The improvement here is roughly

analagous to a shift from an unpaired t-test to a paired one.

The examples above demonstrate the flexibility of this basic model format.

Because the model assumes that the mid-level parameters like o or v,, . are

98



mutually distributed as a multivariate Gaussian, it is easy to add internal
correlation structures, adjustments based on covariates, prior information,

individual data, or other factors.

3.6 CONCLUSION

We have described a highly-extensible model for ecological inference, and given a
means of fitting it using variational inference. We’ve shown that the simplest
version of our model and methodology give results almost as good as existing
widely-used methods. We have suggested a simple change that we hope will make
those results comparable to that method. This model opens the door to several
extensions that would not be possible using traditional methods, such as jointly
modeling multiple elections, including hierarchical structure such as variance by

county as well as by precinct, etc.
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2.1  BLOCK-ARROWHEAD PRECISION MATRICES

Recall that for a latent variable model with global parameters v € RY and latents
AL, ..., An € R the matrix Z,(0*) is a block-arrowhead matrix. In this
appendix, we collect some useful results about matrices of this form that are
relevant to Laplace variational inference. Further formulas relating to block

arrowhead matrices may be found in [23].

Theorem 1 Let

G C, Cy ... Cy
ct- v, o ... 0

A= CF 0 Uy, ... 0 (2.22)
T 00 . Uy

be a block-arrowhead matrix, with G € S,, U; € Sp, and C; € Mgy for
1 <1 < N. Ais positive definite if and only if Uy, . . ., Uy and
G =G -V, CU'CT are all positive definite.

Proof: Let

U, 0 ... 0 cT
0 Uy ... 0 CF
B=1] : + -~ i | (2.23)
0 0 ... Uy CF%
C, Cy ... Cy G

Since B is just a symmetric permutation of A, it has the same signature as A.

Form the LD L" decomposition of B, G and U fori = 1,....,N:

B = LBDBLg,
G = LéDéLg; (2.24)
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Elementary linear algebra shows that

Ly 0 0
0 Ly 0
Ly = : : . : : (2.25)
0 0 Ly 0
CiUT'Ly CoUy 'Ly ... ONUR'Ly Lg
and
Dy 0
0 D,
Dp = : : . : : (2.26)
0O 0 ... Dy O
0 0 ... 0 Dg

The theorem follows immediately from the fact that a symmetric matrix is
positive definite if and only if the matrix D in its LD L decomposition has all

positive entries on the diagonal.

Theorem 1 suggests a way of constructing boosting families for
block-arrowhead matrices. Let 1) = (11, 1) ) be as in Section 2.3.3, and
suppose fyr. and fy,, are boosting families defined on Sy and \S; respectively.

Let A be a block-arrowhead matrix as in Theorem 1. Define

Gt ¢, ... oV
cruf ... 0

fy(A) = o R I (2.27)
oL o0 ... Ui
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where

Ut = fya(U;) forl <i <N, (2.28)
N N

Gt = fur (G - ZCZ-(U;”)_IOZ-T> + ZC}(U;)_ICZT. (2.29)
i=1 i=1

Then, by Theorem 1, f,;(A) is positive definite. Moreover, if A is itself positive
definite, then

1})iino fu(A) = A. (2.30)

Thus f, satisfies the conditions of a boosting family for block-arrowhead
matrices. Note that the boosted matrix f;, (A) is itself block-arrowhead.

Theorem 2 Suppose
9:(7,)\1,...,)\N)~N(0*,2), (2.31)

where Y.V is a block-arrowhead matrix as in Theorem 1. Then the marginal

covariance of 7y is
N -1
Yy = (G — Z C’iUilCiT> (2.32)
i=1

Proof: This follows directly from inverting the LD L™ decomposition of ¥~

in the proof of Theorem 1.

For fixed ¢ and [, we thus have the following O (V) procedure for sampling
from N'(6*, X):

. Sampley ~ N (v*, %,);

« Foreach i from 1 to IV, sample from the conditional normal distribution
Ai v N+ U7 (y =), U7, (2:33)
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2.2 AMORTIZATION IN THE MULTI-SITE MODEL

If v and o are held constant, then up to an additive constant, the log posterior of

the multi-site model is:

loglp(T = t/o, @ =x|=—) {u;rllog <1 + ;§d> 4 (z; — ti)z]

2s?
(2.34)
‘We would like to maximize this in order to find the conditional MLE. Note that

i

this could also be called the conditional MAP; because the conditioning typically
screens out any prior distributions, the two are generally equivalent in this case.
Focusing on one site 7 at a time, the derivative of the above — that is, the score

function — with respect to ?; is:

i —t  (v+ 1t

52 v+ 12

(2.35)

The modes of the likelihood are the roots of the cubic equation

fit) =t —ait* + [0*v + s2(v + D]t — o?va,. (2.36)

These roots can be found using the cubic formula. For simplicity, we restrict
our model to the case where the cubic has only one real root (i.e. the likelihood is
unimodal). We can do this by setting a lower bound for ¢ in terms of the s;:

Claim: If 0 > 1.9s; then f;(t) has exactly one real root.

Proof: Letc; = s?(v + 1) and let y = o%v. We can rewrite f;(t) as

fi(t) =t — wt* + (y + )t — 2. (2.37)
It is well know that f;(¢) has exactly one real root if and only if its discriminant,

—4(y + ¢;)° — dzly — a7} (8y* + 20yc; + ), (2.38)
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is negative. Since y, z > 0, the first two terms above are automatically negative.
Thus, to make the entire discriminant negative, it is sufficient (though not

necessary) to ensure that
8y* — 20yc; — 2 > 0. (2.39)

Solving the quadratic for y, we get

5+3v3
> ——¢.

1 (2.40)

Y

Switching back to o and s;, we finally obtain the sufficient condition

54+3vV3 v+1

g > S;
’ 4 v

(2.41)

We have already constrained v to be at least 2.5, so the coefficient of s5; in 2.41 is

at most

54+3v3 3.5
4 2.5

~ 1.889. (2.42)

Rounding up a little, we set the constant 0,5, = 1.9 max(s;). This guarantees
that each of the cubics f;(¢) will have a unique real root.

If we wished to remove this lower bound on o for greater realism, we could
develop a smooth formula that gave some well-defined approximation of the
MLE even in the bimodal case. This would, of necessity, be inexact in some cases,
because the true MLE in some cases changes discontinuous as other parameters
vary, when one of the two modes passes the other; but a smooth approximation
might still work well, especially when the true data-generating parameter values
are sufficiently far from such discontinuities. Developing such a function, and
investigating the performance of the resulting overall algorithm, is beyond the

scope of this paper.
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3.3 REPARAMETRIZING THE POLYTOPE )/,

In this appendix, we give one possible construction for the a.e.'® smooth bijective

(R=1)(C€-1) _y ) mentioned in Section 3.3.2.

map m,, : R
For notational convenience, we index the coordinates of a vector
w € REDED) ysing pairs of numbers (7, ¢) with 1 <7 < R — 1and

1 < ¢ < (C — 1. In other words,
w = (w1,17 w12,...,W1,c-1,W21, - - - ,wal,cq)-

LetY € V., be the matrix with coordinates

Ny * Vye

Yie = —R
27:21 Ny

(3.43)
Figure 3.3.1 shows Y for the precinct-level data from Figure 3.1.3. We think of Y
as a kind of “center” for ),,; its entries corresponds to the most likely voting
outcomes if each voter’s probability of voting for each candidate were
independent of race.

Let P, be the (R — 1)(C — 1)-dimensional hyperplane in Mg ¢ containing
the polytope ),. We construct m,, in stages:

. Define a bijective affine map a : R~ 5 P such that a(0) =Y.

o Define aretraction g : P, — ), continuous everywhere and smooth

almost everywhere, such that g(Y') = Y.

« Foreachw € RE-DED fetm, (w) := g(a(w)). Note that
m,(0) =Y.

The maps a and ¢ are defined as follows:

191t is also possible to construct a function that is smooth everywhere, but the construction is
unwieldy and slows down inference unnecessarily.
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Figure 3.3.1: Example of precinct-level observations and the corresponding
Y e),.

Candidate

X Y Z |n,

White | 50 50 50 | 150

Black | 70 70 70 |210
v, | 120 120 120 | 360

« Forl1 <r < R-—1and1 < ¢ < C — 1, the entries of the matrix a(w)
are given by

a'(w)rc = Wy + Y;“O (3-44)

The remaining entries of a(w) can be filled in based on the row and

column constraints that define P,:

ZR La(w),e = vy foreachg;

r=

(3-45)
chzl a(w),e = mny foreachr.

. Fo_r;each matrix M # Y € P,,let b(M) be the intersection of the ray

Y M with the boundary of V... Note that the function b is smooth on P,

away from a finite union of codimension-1 hyperplanes. Now let || - || be
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the Euclidean norm on Mz ~ REC and define

1% M =Y,
g(M) := .
Y +exp (_%> - (b(M)—=Y) otherwise.
(3.46)

Figure 3.3.2 illustrates the resulting map m,,.

Figure 3.3.2: Visualization of m,, for four input values: 0, w1, we, and ws.

We also need to compute the Jacobian determinant of m,,. To do this, define

RC linear functions on w (corresponding to the RC' possible facets of the
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polytope ),,) as follows:

L.(w) = —;‘-j—:z foreachl1 <r<R—-1,1<c<(C-1;
L.c(w) = lec S e foreachl <r < R—-1;
Lp.(w) = YLRC f’:_ll Wye foreachl < c < (C —1;
brctw) = S
(3-47)

Let s = max, . L,.(w). Then it is not hard to check that

o—(R=1)(C-1)/s
| T, (w)] = SEDO DI (3.48)

3.4 AMORTIZATION

3.4.1 AMORTIZING Y *
PROBLEM STATEMENT

Given:

« an R x C matrix II with strictly positive entries whose rows sum to 1. In

other words, forallr € {1,...,R}andc € {1,...,C},

C
e >0 and ch = 1.
c=1
We denote the 7-th row of I[I by 7r,.

« apositive integer n.

« avectord = (dy,...,dg) € N¥suchthat > d, = n.
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. avector¥ = (V,...,U¢) € NE suchthat ) | 0. =n
.Y, € NO) that

We wish to find an R x C matrix Y (with rows y1,

maximizes the product of multinomial probabilities

2w | d..m),

subject to the constraints
Z Yre = Jr for each .
c

Z Yre = U, for each c.

T

PROBLEM RESTATEMENT USING STIRLING'S APPROXIMATION

We fix the following notation:

Thus our constraints are:

=1, ) d. =1,

Z Gre = d, foreachr,

Z Gre = V. foreach c.

The first-order Stirling’s approximation to k! is

logk! = k(loghk — 1) + O(logk),

where log is the natural logarithm. Ignoring the final O(log k) term, the



logarithm of the multinomial probability p(y, | d,, 7r,.) can be approximated as

follows:

~ y'rc
logp(yr | draﬂ'v') = log (d 'H - )

Yre!

= log(nd,)! + Z (nqrc log 7, — log(nqrc)!>
~ nd, <log(nd ) — 1) + Z nGyr.log T — Z nqrc<log(nqm) — 1)
= Z NGy log mpe — Z ngy,.log (gc

- HZQTC log (d;ﬂ-rc) )

rc

where, if some g, = 0, we take ¢, log g, to equal 0.

Note that this is a (negative) multiple of Dy, ( | |7rr), where 2= and 7, are

d,
seen as discrete probability distributions over {1, ...,C}.

Using this approximation, we modify our goal as follows:

Restated problem: Given

« amatrixIl € Mgy as above;
. avectord = (di,...,dg) € R¥suchthat )" d, = 1;
. avectorv = (vq,...,vc) € RY suchthat v, =1

Foreachr € {1,...,R}andc € {1,...,C},let

vlog (72-) ifz >0,
fTC(x) = drre
0 ifr=0.

We wish to find an R X C matrix () = (qm) with nonnegative entries that



minimizes the objective function

FQ) =" frelare),

subject to the linear constraints

9-(Q) :== Zq,«c —d,=0 foreachr € {1,..., R},

he(Q) :== quc —v,=0 foreachce {l,...,C}.

ANALYTIC SOLUTION TO RESTATED PROBLEM

First we introduce some notation. For any vector v € R¥, let D,, denote the
k x k diagonal matrix with the entries of v on the diagonal.

Let P the set of all R x (' matrices with non-negative coeflicients satisfying
the constraints g, and A, for all 7 and ¢. P is the (R — 1)(C — 1)-dimensional
polytope in Mg, on which we are trying to minimize f. In other words, we are
looking for a minimum of fp, the restriction of f to P.

Claim: The function fp has a single global minimum: it is the unique matrix
Q € P such that
Q = D,I1Dg

for some vectors o € Rf and 3 € Ri. In other words, for all 7 and ¢,

Qrc = O{TWTC/BC .

(Note that while Q is unique, @ and 3 are only unique up to a multiplicative
constant.)
Proof: By the method of Largrange multipliers, a point () in the interior of P

is an interior critical point of fp iff

VAQ) = ar Vg (Q) + Y be Vh(Q),
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for some scalars aq, ..., agr, by, ...,bc € R. In other words, for each r and c,

we must have

dTC rc
8f _L:log(q—)‘i‘l:%«—l—bc.

aQ'I’C quC dT 7T7'C
Exponentiating, we obtain
Grc
= Qp ﬂ 3
7TT’C
be

where o, = dy e tand 3. = e

Thus () € P is a critical point of fp iff there exist vectors c € Rf and
B e Rg such that ¢, = 7.0 ..

Since every summand of f is strictly convex, so is f itself, and hence so is fp.
Thus fp has at most one critical point, and if this critical point exists, it is the
global minimum of fp. To complete the proof of the claim, all that remains to
showis fp does indeed have a critical point in the interior of P.

Suppose, by way of contradiction, that this is not the case. Then fp must
achieve its minimum at the boundary of P, i.e. at some matrix () with one or

more entries equal to o. Consider the matrix
Q. =eQ+ (1 —¢)vd”.

Since vd isan R x C' matrix with positive entries that satisfies all the
constraints gy, ..., ggr, N1 ..., hc,itisin the interior of P. If 0 < € < 1, then

()’ () must be in the interior of P as well. To derive a contradiction, we will now

show that f(Q.) < f(Q) for sufficiently small €.

113



Let U = vd! — Q. Then

o J@Q) —F@Q) L [(Q+eU) ~ f(Q)
e—0 € e—0 3

- [lim fre (Gre + €ye) — frc(qrc)}

e—0 g

r,c

= Y weflda)+ Y {1% @1

7,¢: gre>0 r,C: qre=0

Note that, if ¢,. = 0, then u,. = v.d,, so

I fre(etye)
m ———-
e—0 g

= lim v.d, log (€UC> = —00.
e—0

7T7”C

Thus we have shown that

fim 19 = /(@) S wefllg)+ D[] = —c0.

e—0 g
r,c: qre>0 r,c: qre=0

This means that w < 0 for small enough ¢, s0 f(QL) < f(Q), as
desired. Thus a point () on the boundary of P cannot be a minimum of fp.

To conclude, we have shown that f» has a unique critical point Q in the
interior of P, which is its global minimum on P. Moreover, Q is the unique point
in P satisfying Q= DoIIDg forsome o € Rfand 3 € Rg. Setting Y =nQ,

we obtain an approximate solution to our original problem.

ITERATIVE ALGORITHM FOR COMPUTING Q

Given any two vectors & € R and 3 € RY, let

DHTa
My = € Mryicyxc,
D11
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Mg = € Mrtc)xr;
Dyg
U1
b .= ve € RTC.
dy
dr

Then Do I1Dg € P if and only if a and (3 satisty
Mg-aa=M,-B=0.

All we have done here is rewritten the constraints g1, ..., ggand hy, ..., h¢in
matrix form and in terms of a and 3.

The constraints are redundant, since each of the sets { g1, ..., gr} and
{h1, ..., hc} onits own ensures that the entries of () sum to 1. Thus we can

omit (say) the last row from M, Mg, and b to obtain

Mo € Mric-1)xc,

Mg € Mpgic-1)xr,

b c ]RR-I—C—l

such that Do I1Dg € Pifandonlyif Mg - o = My - B = b. Note that both
M, and Mg are now full rank.
The linear systems Mg - o = band M, - 3 = b are overconstrained and

thus, in general, have no solutions. However, given o, we can find the least
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squares solutions,

Bo = (MI Mu,) "ML b

oo )

and then iterate for k > 1:

ar = (MkalMﬁk—l)_lMgk—llx
Br = (Mngak)_lMaka.
This gives us a sequence of matrices
Qk = DakHDﬁm

with Q, closer to P than Q1 (in Lo-norm). As usual with this kind of iterated
projections, convergence to the fixed point Qis guaranteed.

In practice, of course, we need to stop after a finite number of iterations. Once
QF is close enough to P (i.e. within the tolerance we have chosen), we take the
projection of Q" onto P as the final output of the algorithm. Although the
output is only an approximation to the local minimum of fp, it does satisfy the

constraints gy, . .., gr, b1, . . . , he exactly, as required.

3.4.2 AMORTIZING 0, V"

Recall the procedure for estimating 0, and ™ as given above:

1. Find Y* ~ argmaxy p(v*,0, =0, v = 0, Y'). This process is
described in Appendix 3.4.1.

2. Estimate ¥ := log <M> , an estimator of V.

*
nuﬂ"ﬂ'r,c

*
2 . Nur—Yyre

wre ‘= ,an estimator of o2 ., the part of the

3. Estimate 0 wre

*
nuﬂ‘yu,r,c

variance of I, , . that is attributable to sampling variance in Yy, , ..

52 52
4. Take max(0, 05, ., — &

2 o), foreach u, 7, ¢, as estimates of 0, ; average

these estimates to get 0.

116



- A2
5. Take ™, . = Dure/Ou.rc EL combining the "likelihood” distribution

1/63 rc+1/(0f

with approximate mean and variance [, ., 52

» . »
+.r.c] and the "prior

distribution with mean and variance [0, 07}, using a precision-weighted

average.

6. After taking the Hessian, use one step of Newton’s method on each
precinct s latent parameters to redefine (W*,,, v*,), as explained in

section 2.3.5 of chapter 2.

Here are the assumptions and approximations behind these formulas:
OB

* *
ZC eaC/+Br,c’
c'=1

. c .
u, 7, the vector (Vy .1, ..., Vyr,c) satisfies y_ ~_, mF e = 1. (This

For step 2: we first define 7, := , then assume that for each

assumption can be ensured, without changing the distribution of Y |a*, 8%, v,

by shifting each v, ,. . by a constant k,, ,-.)""

Then, let m&'ﬁ%c := m, " Note that 71'1% is a probability vector. Consider

P . . let . 1
2 . . asif it had been sampled using this vector: y;; . ~ Binom(n,,, ‘m(”))
. . ~ Yy . .
Now, under that consideration, 7, ,. . := log (ﬁ) is an estimate of v, , ., as

E' (619u,'r,c ) — el/u,r,c .
For step 3: we use a first-order Taylor expansion of the equation of our

estimator in the previous step to estimate:

. A re\’
Varmultinomial(Vu,r,c’Vu,r,c> ~ Va'rmultinomial (Z/ch) :,T,C (3-49)
yu,r,c
1 2
= WZ,T‘,C<1 - ﬂ-z,r,c)nuﬁ «
u,r,c

*
nu,r yu,r,c

k
nuﬂ‘yu,'r‘,c

Q

For step 4, we no longer treat v/, ,. . as a given, but recall that it has a

distribution. Thus, since under the prior, E(v,,,.) = 0, we have

"Perhaps it would seem more natural to use those k., » to ensure that each v, , is mean-o; but
like that assumption, this one ensures that if any of the elements of 1, . is nonzero, then there must
be a miz of positive and negative elements.
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EW2, ) =Var(Wu,e) = VarWyre) + Var(Du,vure) = o2 + 6377,76. So

u,r,c

for each u, , ¢, we have an estimator of o'2:

Since a variance can not be negative, we set

05 = ke Youremax(0,v7, . — 7). (In practice, we replace maz (0, x)
with the smooth function % log(1 + €**), using pytorch’s numerically-stabilized
version of logsumexp, with & = 100.)

Step s is self-explanatory as-is, and step 6 is explained in section 2.3.5 of

chapter 2.
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