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Abstract

The Block Cache layer of an operating system stores a subset of recently

accessed disk blocks in the main memory to avoid slow disk operations. The

performance gain is relative to the likelihood of subsequent accesses for the

cached blocks. The eviction policy decides which cached blocks are evicted, and

has a huge impact on the system performance.

I have developed a testing framework to evaluate di�erent eviction strategies

under a cache simulation by using the real world pre-cache access records. The

framework also replays post-cache accesses on a real solid state disk to get a

more realistic measurement of the performance.

I have compared the 2Q, ARC, BRRIP, CAR, CLOCK, CLOCKPRO, LRU,

Random2, RRIP, SpatialClock algorithms under various test captures. In ad-

dition to classic sequential and random categories, I have focused on database

access patterns for B-Tree structured disk �les.

Testing with disk replay was time consuming but revealed that the ordering

of evicted blocks have a signi�cant performance impact. The reduction of num-

ber of I/O requests is not the sole metric for the block cache performance, and

the comparison studies must include the operating time on real hardware.

The randomized algorithms did not perform well for this reason, and the 2Q

turned out to be the most competitive eviction strategy for the tested workloads.
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Chaper 1: Introduction

Storage

Storage retains the digital information being used by the computation, and

is a fundamental part and function of computers. There are many di�erent

storage devices and technologies, but they can be categorized by the following

major characteristics:

Capacity The total amount of information that can be stored on the device

at any given time. The capacity of a device is measured in bytes. It

is generally divided into granular units where each unit has a location

(address) and can be read or written individually. Devices which use a

recording media might provide a read-only capacity. Also, certain devices

such as Solid State Disks (SSDs) might have a limit on how many times

information can be overwritten on each location. The SSDs also have to

erase the unit before writing the new content. The granularity for erase

is generally larger than the write operation.

Throughput The rate at which information can be read from or written to

the device. The throughput of a device is measured in bytes per second.

The write throughput is slower than the read throughput as it involves

physical state changes. If the locations are not accessed in a sequential

order, certain devices, such as the physical disks which need to move the

magnetic head to a di�erent location, could fail to reach their maximum

throughput.

Latency The time it takes to access a particular location. The latency is usu-

ally measured in nanoseconds or milliseconds. Similar to the throughput,

it could be di�erent for the reads and the writes, and it could be a�ected
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by the access order.

Energy use The energy use for the physical storage is generally based on the

accesses as they cause physical movements. The energy use of the elec-

tronic circuit based storage is generally dependent on the operating fre-

quency of the circuit. Operating at a higher frequency requires more

power. Certain volatile devices, such as the computer memory, might

need to draw power constantly for retaining the information whereas oth-

ers might hold the information until power comes back.

High capacity, high throughput, low latency and low energy use are desirable.

Since these characteristics are often in con�ict with each other, it is very hard

to accomplish. Low latency requires circuits to remain active to avoid power

up delays, and this might be costly for large capacities. A device optimized for

large data transfers to gain high throughput might lose latency when handling

a large number of small data transfer requests, because the operation overhead

exceeds the amount of actual work.

This con�ict resulted in a hiearchical storage model commonly found in

computers. The primary storage is the main memory (CPU registers, CPU cache

and the RAM) which has low latency, high throughput but also a high energy

use and low capacity. The secondary storage is the disks (Physical spinning

disks, SSDs, CD-ROM) and other persistent mediums which have high capacity,

lower energy use (relative to capacity) but also have a higher latency and lower

throughput.

Software support is critical for making the best use of this hiearchy for data

sets larger than the main memory and obtaining the optimum performance.
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File Management

Storage hardware could be used by many di�erent applications and it is the

Operating System's (OS) responsibility to share storage resources e�ciently.

The OS also provides additional storage services such as space management,

isolation, redundancy, compression, and encryption.

Modern OSes have a File Management subsystem to manage the Storage

and it is implemented as a series of layers:

Filesystem This layer presents the storage to applications as a tree-like names-

pace where each node is a directory and each leaf is a �le. Files can be

arbitrarily large and information can be read from or written to any po-

sition in the �le. A �lesystem implementation translates this namespace

into linearly addressed �xed size blocks. How �les are laid on the block

addressing space and what kind of metadata is stored is not visible to the

applications.

Block Cache Disk storage has a higher latency compared to the main mem-

ory. It is bene�cial to use the available free memory as a cache for the

recently accessed disk blocks. This will save time if that block is used

again by the �lesystem layer. Delaying the writing of modi�ed blocks can

also be bene�cial as it might allow combining write operations to adjacent

blocks or to the same block. Modern operating systems have uni�ed im-

plementations which combine the general memory management and the

block cache. The blocks are mapped into the memory pages and managed

together with the other application and kernel data.

I/O Scheduler The blocks which are going to be written into or read from

a storage device are entered into a queue. A scheduler might sort these

requests into a more e�cient order for devices which has a slower non-
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sequential access such as physical disks. Time savings from improved

order is usually greater than the extra delays introduced by the scheduling

operation for such devices.

Device Driver At the bottom of the subsystem, there is the device speci�c

driver which turns block requests into the actual hardware commands.

The hardware can also have its own layers, either as a �rmware or imple-

mented as a part of the circuitry, which does internal caching, scheduling

or even mapping. SSDs, for example, internally map blocks to di�erent

addresses when that location is over its overwrite lifetime.

This abstraction is highly desirable for robustness and �exibility. A new type of

device can be used by applications simply by providing a device driver. A new

algorithm for caching or scheduling can be implemented as a simple module.

Yet the evolution of the storage hardware and the new software optimization

techniques often break this abstraction by requiring the knowledge of other

layers' internal operation. The block cache would be more e�cient if it has the

knowledge about which blocks will be needed next by the applications. If a

device features some internal optimizations, repeating them at the �lesystem or

the scheduler level can be unnecessary or even detrimental to the performance.

A �lesystem can layout �les into the blocks in a more e�cient way if it has the

knowledge about how the underlying device deals with the addressing.

There are two general ways to solve this problem: the interfaces between

layers could be extended to pass more information or the missing information

can be predicted from previous operations. Assuming the applications are trust-

worthy, extending the interface provides highly reliable information. However

it also requires modi�cations in all applications, and designing such an interface

involves a trade-o� between generality and usefulness.

The prediction needs to be done in real time with limited computational
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resources. It is usually based on heuristics. Results are less reliable and often

require �ne tuning for expected workloads. However, they are also quick to

compute and they do work well in practice. Such heuristics are commonly used

in production OSes.

Block Cache Eviction

The world of the storage is extremely rich, and each component brie�y de-

scribed here have their own research areas.

This thesis focuses only on the Block Cache layer and further limit its scope

to the selection process for eviction of blocks. Despite being a very small piece in

the whole subsystem, eviction has a major impact on the performance. Keeping

the block that is going to be needed in the memory or combining multiple writes

within a short period before the eviction, can prevent hardware operations which

would be several orders of magnitude more expensive.

The Cache has a very minimal interface. It takes requests to read or write

some blocks, and hopefully sends a smaller number of requests to the I/O layer.

Eviction could happen under three scenarios:

1. When the cache is full, and we are reading a new block from the I/O layer.

In this case, the eviction policy might decide to throw away an old block

and keep the newly read block in the memory. The modi�ed blocks must

be written back to disk when they are being evicted.

2. When there is a memory pressure, and the OS forces the cache to reduce

its size.

3. When there are modi�ed blocks in the cache. Delaying the writes certainly

improves the performance, but leaves the system vulnerable to data loss in

case of a power failure. To prevent this, modi�ed blocks are periodically
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�ushed to the disk based on conditions such as the time after the last �ush,

the age of the blocks, percentage of the modi�ed blocks in the cache, the

current I/O load and others. A �ush can also be forced by a user or an

application using a system call like fsync().

The challenge here is the di�culty of predicting when a given block will be

accessed next, if ever. This information can be guessed from the previous access

patterns or might be given as a hint to the cache by the applications themselves.

There are some common patterns:

Sequential The application reads or writes a �le from beginning to end. A

videoplayer playing a media �le, or a �le compression tool which read

a �le and write the compressed version of it are some examples to this

pattern. Note that even if the �le is accessed sequentially, blocks are usu-

ally not accessed in a linear order at the underlying device. Optimizing

that part is the job of the �lesystem layout, I/O scheduler and sometimes

the device itself. From the perspective of the block cache, there are two

common optimizations: Subsequent blocks could be fetched from the I/O

layer without being asked for (this feature is called readahed), and be-

come already available when the application asks for them. In the second

optimization method, the fetched blocks could be prevented from caching

or associated with a higher eviction priority if the application is not going

to use them in the near future.

Random The application is expected to read or write into a �le in random

order. While this category is traditionally named random, a speci�c dis-

trubition such as uniform distribution is not assumed here. It is more like

a non-sequential category which cover many di�erent patterns. A web

browser or a desktop manager application are some examples.
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B-Tree It is common amongst the database applications which manage huge

datasets to use a B-Tree structure for the on-disk represantation of the

database. This is clearly a distinct pattern where generally the root

branches are accessed more frequently than the leaf nodes.

Hashtable Some data store application prefer this structure because the lookup

and retrieval usually involve one access to the �le. A good hash function

should create access patterns very close to a uniform distribution.

There is a huge body of research on detecting access patterns and optimizing

them for underlying hardware. Many proposed techniques are used in major

OSes. However, the focus is only on a small subset of patterns. As an example,

the POSIX fadvise() system call, or the Windows CreateFile() system call, which

create a �le with a declared access pattern, only support the sequential and the

random �ags. The e�ect of the random �ag is usually just limited to disabling

the read-ahead.

Research Questions

In this thesis, I answer the following questions within this context:

1. What is the performance of the applications with various data access pat-

terns under various eviction policies?

2. Is there a performance di�erence amongst the random access applications

like a general desktop application, or a B-Tree database with respect to

the eviction policy?

3. How much performance is gained for SSDs by using special algorithms ex-

ploiting the device IO characteristics? Would they o�er signi�cant bene�t

over LRU based or adaptive eviction algorithms?
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Chapter 2: Prior Work

Testing

The Block Cache is deeply embedded in the operating system. There is

usually a uni�ed memory management system which handles block caching,

memory mapping of �les, swap management and general memory management.

That makes implementing and trying various algorithms di�cult, because many

code changes and interaction with unrelated subsystems are required. Collecting

application traces and running them under a simulation with various algorithms

is a much more feasible method. However, the trace-driven simulation may not

emulate storage hardware precisely and may produce slightly di�erent results

than real world usage. A good solution to improve the results is to capture

simulation after-cache disk access traces and run them on the real storage device

using a work load player (Kim et al., 2012).

LRU Heuristics

Principle of locality states that the data accesses within a process tend to

bunch together. The Least Recently Used (LRU) policy selects the block for

replacement which has not been accessed for the longest time. The blocks are

maintained in a list sorted by the last access time. Every time there is an access,

that block is moved to the front of the list. The blocks are then evicted from

the back of the list.

The implementation overhead for a true LRU is high, because every access

causes a change in the ordering of blocks, and there are also synchronization

costs when the accesses are concurrent.

A common feature amongst the Memory Management Units (MMUs) of

CPUs is the access bit associated with each memory page corresponding to a
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block. That bit can be cleared by the operating system, and automatically set

by the hardware when there is a read access. There is a similar dirty bit for the

write accesses, set when the block is modi�ed. When the dirty bit is clear, we

can remove a block from the cache. When the dirty bit is set, we must write

the block back to the secondary store. These hardware features are used to

implement LRU approximations with very low overhead.

CLOCK

The CLOCK is one of the earliest LRU approximations. In this algorithm,

all blocks are arranged in a circular list resembling a clock. The hand of the

clock points to the oldest block in the cache. When there is a need to evict

a page, the MMU access bit of the �rst pointed block is checked. If it is not

set, that block is reclaimed and a new block is brought in its place with a zero

access bit. If the bit is set, it is reset to zero and the hand is advanced to the

next block until a block with a zero bit is found. This algorithm approximates

the LRU with the least amount of overhead.

However, this basic LRU approximations don't work well when the applica-

tion scans, reading or writing a large number of sequential blocks, larger than

the cache size. All blocks are evicted before a second access in this scenario.
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2Q

Figure 1: The two queues of the 2Q algorithm.

An important improvement over the CLOCK is the 2Q algorithm. There

are two queues in this algorithm: The A1 queue contains the blocks which are

accessed once, and maintained in the First In First Out (FIFO) order. The Am

queue contains the blocks which are accessed multiple times, and maintained as

an approximate LRU queue using the CLOCK algorithms (�gure 1). A newly

accessed block is �rst put into the A1 queue, and evicted if it reaches the head of

the queue without being accessed again. If the block has been accessed again,

it is moved into the Am queue. This prevents transient blocks from evicting

frequently accessed blocks (Johnson and Shasha, 1994).

Linux kernel uses a custom variant of the 2Q algorithm.
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CLOCKPRO

The CLOCKPRO algorithm is another improvement over the original CLOCK.

Blocks are similarly organized in a circular list. Each block has a type of a Hot

block (recently accessed), a resident Cold block (content is in memory), or a

non-resident Cold block (just a reference to the content). Non-resident Cold

blocks serve as the recent access history. The list can hold items two times the

cache size with a half of them dedicated to the history information. Each block

also has a Test �ag indicating if the block is in test period.

There are also three pointers. Handhot points to the block with the largest

recency. Handcold points to the last resident Cold block. Handtest points to the

last cold block in test period.

Handcoldis used to search for a resident cold block for replacement. It moves

until it �nds an eligible block to evict, and then stops at the next resident cold

block. If the pointed block is accessed since last time; if it is in testing period,

it is made a Hot block, moved to the tail of the list and Handhotis moved, if it

is not in testing period, it is just moved to the tail of the list. If the pointed

block is not accessed since last time, content is evicted, and entry is also evicted

if the block is not in testing period.

Handtest cleans up the non resident blocks as it moves.

Handhot resets the access bits of hot blocks it sees, and turn unaccessed

blocks into cold blocks. If number of non resident clock blocks is larger than

cache size, Handcold is also moved. Handhot also cleans up any non resident

blocks just like Handtest as it moves over them.

CLOCKPRO has no operation for cache hits other than updating the access

�ag. A cache miss could move Handcold to reclaim a block if cache is full. If

block is not seen before, it is inserted as a Cold block. If it is seen before, it is

inserted as a Hot block in testing period, and Handhot is moved (Jiang et al.,
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2005).

RRIP

The Re-Reference Interval Prediction (RRIP) algorithm considers the block

order as the order of re-reference. The last block to evict is predicted to have a

near-immediate re-reference whereas the �rst block to evict is predicted to have

a distant re-reference. Each block has an M-bit Re-Reference Prediction Value

(RRPV). A zero RRPV value indicates that this block is predicted to be re-

referenced in near immediate future, and a maximum value of 2M − 1 indicates

that the block is predicted to be re-referenced in distant future.

The RRIP inserts new blocks with a long but not distant re-reference in-

terval. The suggested value is 2M − 2. The intuition behind this is to prevent

transient blocks from polluting the cache but also to give time to algorithm for

improving the prediction.

The RRPV value is set to zero upon access. The eviction process scans the

block list from left to right until a block with the maximum value is found. If

there is no such block, all RRPV values are incremented by one and the search

continues.

In practice, M = 2 bits gives good results and scan resistance (Jaleel et al.,

2010).

CFLRU

The solid state disks must erase the entire sector before updating a single

block in the sector. The write operation is expensive for this reason. The sectors

also have a limited lifetime before they worn out from writes. Therefore avoiding

the write operations can be more bene�cial than avoiding the reads.

One of the earliest policies for SSDs is the Clean First LRU (CFLRU) al-

gorithm which prefers clean pages over dirty pages for the eviction. Since this
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could �ll the cache solely with dirty blocks and reduce the read performance,

the block list is divided into a working region of most recently used blocks, and

a clean-�rst region of least recently used blocks. The algorithm �rst evicts clean

blocks from the clean-�rst region in the LRU order, and then continues evic-

tion with the dirty blocks from the clean-�rst region in the same LRU order.

Selecting a good partition size is important for the performance (Park et al.,

2006).

LRU-WSR

The LRU Write Sequence Reordering (LRU-WSR) algorithm is similar to

the CFLRU, but instead of always preferring the clean blocks, it gives dirty

blocks a one time chance to avoid eviction. A cold bit is associated with each

block. During the scan, if the least recently used block is clean, it is immediately

evicted. If the block is dirty and the cold bit is zero, the block is moved to the

head of the list, and the cold bit is set. If the block is dirty and the cold bit is

set too, it is evicted (Jung et al., 2008).

FAB

The Flash Aware Bu�er (FAB) algorithm cluster adjacent blocks as a group

to mimic to physical sector layout of the SSDs. These groups are maintained

in an LRU list. The eviction scans the list from the tail to the head until a

group with the full number of blocks is found. If no such group is found, then

the group with the maximum number of blocks seen during the scan is selected

for the eviction. This strategy makes the best use of physical erase-before-write

cycle of SSDs by avoiding erasing an entire sector to just write a single block

(Jo et al., 2006).
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Spatial Clock

The Spatial Clock is another algorithm speci�cally designed for SSDs. It uses

classic CLOCK algorithm and memory reference bit for the LRU approximation,

but the blocks are sorted by their logical sector numbers rather than by access

time. Therefore spatial adjacency is also taken into account for the eviction

decision. Maintaining blocks in the sorted order is an extra cost, but it is done

only when inserting new blocks, and relatively rare when the cache hit ratio is

high (Kim et al., 2012).

Adaptive Algorithms

ARC

Figure 2: The LRU lists of the ARC.

The Adaptive Replacement Cache (ARC) algorithm maintains two lists called

L1 and L2 in the LRU order (�gure 2). The L1 maintains references to the blocks

that have been seen only once, and the L2 maintains references to the blocks

that have been seen at least twice, recently. It can be said that the L1 captures

recency while the L2 captures the frequency. The L1 is further divided into the

top half T1 which are the most recent blocks, and the bottom half B1 which are

the least recent blocks. The L2 is similarly divided into the T2 and B2 halves.

The blocks in the T1 and T2 have their block contents cached in the memory.
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The B1 and B2 only maintain references. The total size of the two lists is 2c if

there is space for c number of blocks in the cache. If there are p blocks cached in

the L1, then the L2 contains c− p cached blocks. ARC dynamically adjusts the

ratio of caching in each list to adapt to the changes in recency and frequency of

the workload (Megiddo and Modha, 2004).

If x is the requested page, the algorithm,

1. If x ∈ T1 ∪ T2 (hit): Moves x to the top of T2.

2. If x ∈ B1 (miss, seen once before): Adapts p = min(c,max(|B2|/|B1|, 1)),

replaces a block using the algorithm below, moves x to the top of T2 and

stores the contents of the block in the cache.

3. If x ∈ B2 (miss, seen more than once before): Adapts p = min(c,max(|B1|/|B2|, 1)),

replaces a block using the algorithm below, moves x to the top of T2 and

stores the contents of the block in the cache.

4. If x /∈ L1 ∪ L2 (unseen miss): Checks conditions below, and then puts x

at the top of T1 and stores the contents of the block in the cache.

(a) If |L1| = c :

i. If |T1| < c : Deletes the LRU block of B1, replaces a block using

the algorithm below.

ii. Else : Deletes the LRU block of T1 and removes its contents from

the cache.

(b) If |L1| < c and |L1| + |L2| ≥ c : Deletes the LRU page of B2 if

|L1|+ |L2| = 2c, and replaces a block using the algorithm below.

The replacement algorithm is:

1. If |T1| ≥ 1 and ((x ∈ B2 and |T1| = p) or |T1| > p) then move the LRU

block of T1 to the top of B1 and remove its contents from the cache.
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2. Else, move the LRU block in T2 to the top of B2 and remove its contents

from the cache.

CAR

Inspired by ARC, the Clock with Adaptive Replacement (CAR) algorithm

uses two circular �CLOCK� lists, T1 and T2 for blocks which are in the cache,

and two FIFO lists, B1 and B2 for the records of the recently evicted blocks

from the corresponding T lists. The goal is to move data structure updates of

ARC from the read/write access time to the eviction time (Bansal and Modha,

2004).

1. A cache hit in CAR just updates the access bit as in the original CLOCK

algorithm.

2. A cache miss sets the reference bit to zero, and:

(a) If the block is in B1: Moves block to the tail of T2, increases the

target size of T1.

(b) If the block is in B2: Moves block to the tail of T2, decreases the

target size of T1.

3. The cache eviction replaces from T1 if its size is larger than the target,

otherwise replaces from T2. This eviction is similar to the original CLOCK

algorithm except that the record for the evicted block is pushed to the

relevant B list.

Randomized Algorithms

Random2

A randomized way to implement an LRU is to take two random choices for

eviction and use the LRU between them. This approach provides a performance
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close to an LRU, and surpasses it for large caches. The same idea also holds

with LRU approximations (Luu, 2014). The mathematical concept behind this

is that randomly distributing n balls into m bins will result in maximum number

of balls in any bin of O(log n) with high probability, but if we choose least loaded

of k random bins, the maximum is now O(log log n/ log k) which is O(log log n)

even for k = 2 and each increment of k reduces the load only by a constant

factor (Mitzenmacher et al., 2000).

BRRIP

The Bimodal RRIP (BRRIP) algorithm is an improvement over the RRIP

which inserts majority of new blocks with 2M − 1 prediction value and some of

them with 2M−2 prediction value with a low probability to guard against cache

thrashing patterns. Since this is degrading performance for normal patterns, a

method called set dueling is suggested to compare two small cache sets with

competing policies to dynamically change this behaviour (Jaleel et al., 2010).
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Chapter 3: Methodology

I have developed a new test infrastructure (�gure 3) for measuring and com-

paring the performance of eviction algorithms. All of the source code of this

framework can be found on web at github.com/meduketto/blockcacheperf and

available for general public use under the GNU GPLv2 license.

Figure 3: Test Framework.

Collection

I use Systemtap for collecting the application I/O access patterns. System-

tap lets the user write small scripts which could then be loaded into kernel as

modules which can tap into any symbols such as functions or variables and take

actions before and after their execution. This is a very �exible way to intercept

application calls at any kernel subsystem and collect information. Systemtap

script accepts parameters to limit its collection to a certain application or a

certain directory.

For each test, a well de�ned set of operations are executed while the System-
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tap script is collecting the Filesystem and Block I/O layer access information. A

separate program then processes the output of script and generates a list of read

and write operations to the storage sectors as if there is no page cache layer in

Linux kernel and the application went directly to disk for each operation. This

could result in non sequential accesses even for reading sequentially from the

same �le depending on how the �lesystem lays out the �le blocks into the disk

blocks. This is more realistic as almost always there is a �lesystem between the

application and the storage unit. Sectors here are de�ned as 512 byte blocks as

that is what Linux kernel chooses as the basic I/O unit.

I have developed some scripts to simulate an Sqlite database for di�erent

workloads. This is used for generating B-Tree access patterns.

Simulation

I have developed a cache simulator which mimics a block cache environment

and generates the post cache accesses for 2Q, ARC, CAR, CLOCK, CLOCK-

PRO, FAB, LRU, RRIP, BRRIP, Random2, and SpatialClock algorithms. The

simulator takes the output of collection phase and generate a post cache output

for each of the selected algorithms. The reduction of the number of read and

write accesses can be seen in this phase.

Linux kernel uses a uni�ed memory management and block cache system

called page cache which uses 4 kb page sizes. The simulator maps the sector

size to page cache size so the algorithms produce similar results as if they are

within the kernel.

The simulator also has many internal checks and some unit tests to catch

any problem with the implementation of the algorithms.
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Player

I have developed this tool to run any post cache access trace on the raw

storage device. This tools avoids any high level layers or caches of the Linux, and

goes directly to Block I/O layer to send commands. It tries to send commands

in batches to allow for any internal device driver optimization.

The bene�t of this tool is to be able to look behind the reduction of requests,

and determine the exact runtime of a given post cache output to measure the

e�ects of block ordering if there are any. Since both spinning and solid state

disks have performance variances based on the location and the type of access,

this step is very important to understand the real performance.

A great care is required for this measurement. It is run directly on the bare

metal without any virtualization. All other OS services and applications are

stopped during the run with the Linux single user runlevel. Test repeat count is

increased until timings numbers are stable. Then each test set is also repeated

�ve times and the lowest number is taken as it conveys the best throughput of

the device for this post cache pattern.

Since running such tests create potentially billions of write requests, a spare

disk must be used for testing purposes as the tool can easily wear out the lifetime

of many blocks.

Hardware

The I/O cache player tests are done with a Samsung 850 EVO 500GB 2.5�

SATA III (MZ-75E500B/AM) SSD drive. All tests are run on a AMD Ryzen5

1600 6-core processor with 16GB ram using Debian 9.3 - Linux 4.9.0 kernel.
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Chapter 4: Test Results

Full set of input �les captured during these tests can be found on web at

github.com/meduketto/blockcacheperf/tree/master/data

Each result includes a description of test input, information about cache size

and number of I/O operations generated by the test, a table of algorithms with

the number their reduced I/O operations and the duration for their replay on

the disk, and a �gure showing their performance.

The I/O duration is normalized to a single iteration. Each algorithm output

is replayed several iterations for each test to measure an error free duration.

The whole tests took a little longer than a week to run.

Test 1 - Kernel Compile - 10k blocks

A bash script is executed which downloads the Linux Kernel 4.15.4, unpacks

it, con�gures with default con�g and compiles with -j8 option for eight thread

parallellism.

Cache size is 10k (40 MB), 39526517 sectors read, 2443430 written.

Read Written Time

ARC 218102 284603 4 .864

CLOCK 199849 287966 4 .933

CLOCKPRO 208026 289128 6 .256

2Q 204673 292278 4 .870

LRU 222473 284602 5 .046

R2 249772 289559 6 .905

SPATIAL 207518 286570 6 .025

RRIP 209661 285915 4 .848

BRRIP 249304 286636 5 .419
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CAR 207868 285431 5 .027

Figure 4: Test 1 - Kernel compile - 10k blocks

The parallel compilation generates an interleave of short sequential patterns

as the compiler reads input �les and generates the output �les which are then

feed into the assembler and the linker.

We can immediately observe that the two performance graphs are not di-

rectly correlated. Post-cache I/O operation numbers are very close to each other

for this relatively simple access patterns. However, SPATIAL and CLOCKPRO
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algorithms came up last in the time test, almost dropping to the performance of

the R2 algorithm which has the highest number of cache misses. Also, BRRIP

algorithm which has similarly high cache misses was still faster than them.

This result indicates that the post-cache I/O patterns could have a signi�cant

impact on the performance.

Test 2 - Kernel Compile - 2k blocks

Test 1 is simulated and played for 2k cache size.

Cache size is 2k (8 MB), 39526517 sectors read, 2443430 written

Read Written Time

ARC 445644 294163 7 .477

CLOCK 451792 294453 7 .623

CLOCKPRO 529762 295091 10 .094

2Q 488947 295398 7 .916

LRU 457784 293662 7 .653

R2 1080066 297306 17 .220

SPATIAL 458587 295172 8 .983

RRIP 443881 293780 7 .396

BRRIP 496553 295713 8 .192

CAR 444338 295903 7 .555
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Figure 5: Test 2 - Kernel Compile - 2k blocks

This is basically test 1 with a tighter cache size. The results are very similar

too. We can see SPATIAL and CLOCKPRO failing in the time test despite

good results for the cache hits.

Test 3 - Sequential File Operations

A large �le is copied and then several text search queries are applied on it

with the 'grep' command.
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Cache size is 10k (40 MB), 5472132 sectors read, 1460956 written.

Read Written Time

ARC 675594 181911 6 .718

CLOCK 675605 181944 6 .721

CLOCKPRO 675625 181939 7 .538

2Q 675594 181910 6 .850

LRU 675594 181910 7 .015

R2 672383 181832 8 .201

SPATIAL 675612 181928 7 .618

RRIP 675618 181935 6 .574

BRRIP 680852 187171 7 .046

CAR 675611 181926 7 .045
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Figure 6: Test 3 - Sequential File Operations

This is a more sequential operation where we scan a large �le several times

for read and write. This simplest pattern resulted in very close cache miss

numbers for all algorithms. Yet CLOCKPRO, SPATIAL and R2 are distinctly

separated from others in the time graph.

R2 approximates LRU for recency, but the output ordering is very di�erent

than the input order. SPATIAL basically outputs in physical proximity order.

CLOCKPRO skips around the CLOCK with di�erent hands. All other algo-

rithms are essentially LRU/CLOCK based, with the optional second chain for
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frequency, and doesn't alter the output order from access order much. We can

speculate that this ordering change might be causing the slowness on the SSD

disk.

Test 4 - Desktop Use

Firefox web browser, LibreO�ce Writer and some other desktop applications

are used for �ve minutes.

Cache size is 16 (64 MB), 52310 sectors read, 14124 written.

Read Written Time

ARC 7217 1942 0 .093

CLOCK 7183 1948 0 .092

CLOCKPRO 7164 1949 0 .096

2Q 7193 1974 0 .094

LRU 7221 1966 0 .093

R2 7352 1979 0 .098

SPATIAL 7200 1972 0 .096

RRIP 7214 1954 0 .094

BRRIP 7277 1990 0 .094

CAR 7224 2000 0 .093
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Figure 7: Test 4 - Desktop Use

This is a basic desktop user pattern. We can still see similar performance

graphs like the previous tests. However, relative time di�erences are very small

in test to provide a strong evidence.

Test 5 - Sqlite - 90% reads - NoAppCache - 10k blocks

Five million transactions are executed on an Sqlite database of ten million

entries, roughly 600MB in size. Sqlite application cache is disabled. About %90

of the transactions are queries and %10 are updates.
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Cache size is 10k (40 MB), 180019987 sectors read, 4930829 written.

Read Written Time

ARC 9477451 1085441 127.789

CLOCK 9470505 1083163 130.360

CLOCKPRO 9650216 1085733 133.140

2Q 9456862 1076526 127.288

LRU 9467084 1082375 127.453

R2 11110855 1086677 152.493

SPATIAL 9464288 1082660 129.893

RRIP 9464738 1078797 126.283

BRRIP 9469541 1075925 127.158

CAR 9466048 1082338 128.873
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Figure 8: Test 5 - Sqlite - 90% reads - NoAppCache - 10k blocks

Now we are looking at the BTree access patterns of the Sqlite. Since Sqlite's

own application cache is disabled, we can see a lot of read operations. For

this read heavy load, most algorithms are in the same range. CLOCKPRO is

still slightly slower but this time its cache miss count is high as well. The R2

performed badly both in cache misses and time.
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Test 6 - Sqlite - 90% reads - 10k blocks

Five million transactions are executed on an Sqlite database of ten million

entries, roughly 600MB in size. Sqlite application cache is enabled. About %90

of the transactions are queries and %10 are updates.

Cache size is 10k (40 MB), 84264936 sectors read, 4913090 written.

Read Written Time

ARC 9480535 1080772 128.388

CLOCK 9475894 1082137 131.232

CLOCKPRO 9671038 1083504 134.037

2Q 9460568 1049441 127.606

LRU 9477130 1079151 126.588

R2 11173377 1085350 152.967

SPATIAL 9467956 1081361 129.184

RRIP 9469578 1077424 128.361

BRRIP 9467682 1077818 130.833

CAR 9527420 1087077 131.183
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Figure 9: Test 6 - Sqlite - 90% reads - 10k blocks

This is test 5 with Sqlite's application cache enabled which reduced the

number of reads. We can observe a similar result. The outliers CLOCKPRO

and R2 also have high cache misses in line with their bad performance.

Test 7 - Sqlite - 90% reads - NoAppCache - 2k blocks

Five million transactions are executed on an Sqlite database of ten million

entries, roughly 600MB in size. Sqlite application cache is disabled. About %90

of the transactions are queries and %10 are updates.
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Cache size is 2k (8 MB), 180019987 sectors read, 4930829 written.

Read Written Time

ARC 11639730 1092052 152.981

CLOCK 12588826 1092689 166.402

CLOCKPRO 13091141 1092653 175.624

2Q 9921201 1088064 132.258

LRU 12664434 1092701 165.201

R2 15148560 1093018 209.044

SPATIAL 12769153 1092642 168.950

RRIP 12177127 1092324 160.696

BRRIP 13880125 1091681 184.622

CAR 10758844 1092788 148.213
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Figure 10: Test 7 - Sqlite - 90% reads - NoAppCache - 2k blocks

This test evaluates the read heavy load with a smaller cache size. We can

now start to observe the relative cache hit performance of the algorithms. Top

performers are the algorithms which can deal with frequency in addition to the

recency. Since application cache is disabled, frequently accessed root nodes of

the BTree are most likely kept in the cache for a longer time compared to the

recency only algorithms.

Cache miss and time graphs are well aligned. The cache miss di�erences are

high enough to hide the e�ect of the output patterns.

34



Test 8 - Sqlite - 90% reads - 2k blocks

Five million transactions are executed on an Sqlite database of ten million

entries, roughly 600MB in size. Sqlite application cache is enabled. About %90

of the transactions are queries and %10 are updates.

Cache size is 2k (8 MB), 84264936 sectors read, 4913090 written.

Read Written Time

ARC 11701194 1089496 157.961

CLOCK 12896862 1089516 171.841

CLOCKPRO 13284963 1089612 178.785

2Q 9903823 1083760 132.345

LRU 12984687 1089273 167.280

R2 15054238 1089448 200.183

SPATIAL 13173075 1089580 176.240

RRIP 12505026 1089240 169.087

BRRIP 13634034 1089675 184.569

CAR 10801379 1090471 144.444
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Figure 11: Test 8 - Sqlite - 90% reads - 2k blocks

With the application cache disabled, we can still observe the advantage of

frequency based algorithms, and the alignment of cache miss and time graphs

as the miss counts are far apart.

Test 9 - Sqlite - 66% reads - NoAppCache - 10k blocks

Five million transactions are executed on an Sqlite database of ten million

entries, roughly 600MB in size. Sqlite application cache is disabled. About %66

of the transactions are queries and %33 are updates.
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Cache size is 10k (40 MB), 180056706 sectors read, 15674525 written.

Read Written Time

ARC 9493880 3421141 167.037

CLOCK 9472682 3396620 180.331

CLOCKPRO 9649310 3406751 180.673

2Q 9458606 3366934 164.008

LRU 9469031 3395257 168.773

R2 11104795 3408930 199.190

SPATIAL 9465422 3394760 177.777

RRIP 9467448 3376988 169.934

BRRIP 9475382 3363940 168.152

CAR 9468689 3395181 176.479
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Figure 12: Test 9 - Sqlite - 66% reads - NoAppCache - 10k blocks

This time we have more updates on the database. Note that even though

the amount of updates are increased, Sqlite still needs to do a lot of reads to

locate and read the record which is going to be updated, so the number of reads

is still high.

Again, apart from CLOCKPRO and R2, cache miss numbers are very close.

We also observe the advantage of frequency algorithms. The CAR algorithm is

interesting because although it has miss counts in the low end, still ended up in

the slower group. Similarly ARC ended up in the second place despite having
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higher miss counts. We are seeing the e�ect of output patterns again.

BRRIP having better performance than RRIP suggests the existence of some

cache trashing patterns.

Test 10 - Sqlite - 66% reads - 10k blocks

Five million transactions are executed on an Sqlite database of ten million

entries, roughly 600MB in size. Sqlite application cache is enabled. About %66

of the transactions are queries and %33 are updates.

Cache size is 10k (40 MB), 86574084 sectors read, 15617024 written.

Read Written Time

ARC 9514558 3413724 165.085

CLOCK 9479804 3396238 179.203

CLOCKPRO 9678869 3401259 178.280

2Q 9466830 3370172 165.067

LRU 9478952 3389903 168.182

R2 11238355 3421023 202.024

SPATIAL 9471743 3392066 176.305

RRIP 9475244 3372653 169.410

BRRIP 9468380 3381504 178.008

CAR 9480038 3401101 181.300
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Figure 13: Test 10 - Sqlite - 66% reads - 10k blocks

The application cache version has very similar results to the test 9 except

the CAR is performed even worse.

Test 11 - Sqlite - 66% reads - NoAppCache - 2k blocks

Five million transactions are executed on an Sqlite database of ten million

entries, roughly 600MB in size. Sqlite application cache is disabled. About %66

of the transactions are queries and %33 are updates.

Cache size is 2k (8 MB), 180056706 sectors read, 15674525 written.
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Read Written Time

ARC 12104223 3464405 198.353

CLOCK 12567234 3468177 217.442

CLOCKPRO 13070870 3467804 225.588

2Q 9924782 3453642 171.744

LRU 12641982 3468101 202.997

R2 15138753 3466971 250.772

SPATIAL 12742142 3467963 216.766

RRIP 12469770 3465647 203.180

BRRIP 14419616 3461717 230.309

CAR 10748832 3469053 195.259
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Figure 14: Test 11 - Sqlite - 66% reads - NoAppCache - 2k blocks

Reduced cache size realized the advantage of frequency based algorithms

again. The graphs are aligned due to the big cache miss di�erences.

Test 12 - Sqlite - 66% reads - 2k blocks

Five million transactions are executed on an Sqlite database of ten million

entries, roughly 600MB in size. Sqlite application cache is enabled. About %66

of the transactions are queries and %33 are updates.

Cache size is 2k (8 MB), 86574084 sectors read, 15617024 written.
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Read Written Time

ARC 12814173 3462407 205.558

CLOCK 13164549 3464528 214.614

CLOCKPRO 13542387 3461983 225.858

2Q 9905103 3440557 170.114

LRU 13486978 3462868 214.977

R2 15410358 3462806 248.135

SPATIAL 13411545 3463034 219.331

RRIP 12998507 3462209 221.310

BRRIP 14242082 3459539 238.372

CAR 11519113 3459256 205.019
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Figure 15: Test 12 - Sqlite - 66% reads - 2k blocks

Application cache is not showing any di�erence compared to the test 11.

Test 13 - Sqlite - 10% reads - NoAppCache - 10k blocks

Five million transactions are executed on an Sqlite database of ten million

entries, roughly 600MB in size. Sqlite application cache is disabled. About %90

of the transactions are queries and %10 are updates.

Cache size is 10k (40 MB), 180189834 sectors read, 40875389 written.
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Read Written Time

ARC 9468506 8679587 267.013

CLOCK 9465074 8571702 285.360

CLOCKPRO 9596896 8600294 278.265

2Q 9456607 8547651 244.293

LRU 9465722 8572023 252.460

R2 10917201 8611326 298.261

SPATIAL 9459656 8567633 279.661

RRIP 9466617 8559252 264.476

BRRIP 9482313 8555522 272.280

CAR 9464081 8570733 277.364
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Figure 16: Test 13 - Sqlite - 10% reads - NoAppCache - 10k blocks

Here the majority of the database operations are updates. Graphs are mostly

aligned. We can see the CLOCK group with the exception of 2Q performing

slightly worse than the others.

Test 14 - Sqlite - 10% reads - 10k blocks

Five million transactions are executed on an Sqlite database of ten million

entries, roughly 600MB in size. Sqlite application cache is enabled. About %90

of the transactions are queries and %10 are updates.

46



Cache size is 10k (40 MB), 87323955 sectors read, 40556357 written.

Read Written Time

ARC 9514098 8691159 252.642

CLOCK 9483961 8576192 298.013

CLOCKPRO 9676427 8596752 277.321

2Q 9469002 8588565 246.178

LRU 9482378 8573839 276.202

R2 11265184 8667172 304.161

SPATIAL 9477041 8569309 278.124

RRIP 9483345 8562202 280.658

BRRIP 9474203 8550724 272.982

CAR 9482640 8578284 299.438
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Figure 17: Test 14 - Sqlite - 10% reads - 10k blocks

Application cache did not change the results much from the test 13.

Test 15 - Sqlite - 10% reads - NoAppCache - 2k blocks

Five million transactions are executed on an Sqlite database of ten million

entries, roughly 600MB in size. Sqlite application cache is disabled. About %90

of the transactions are queries and %10 are updates.

Cache size is 2k (8 MB), 180189834 sectors read, 40875389 written.
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Read Written Time

ARC 12368269 8994393 297.951

CLOCK 12004692 8998002 313.078

CLOCKPRO 12595160 8995274 327.659

2Q 9932803 8962015 265.430

LRU 12083070 8996795 286.205

R2 14805402 8988068 356.623

SPATIAL 12059078 8997296 311.778

RRIP 12489098 8993964 294.418

BRRIP 14876617 8983083 328.119

CAR 10352762 9000539 299.742
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Figure 18: Test 15 - Sqlite - 10% reads - NoAppCache - 2k blocks

The graphs became very di�erent with the smaller cache size. We can see

the CAR reaching a lower miss count but still slightly slower for the actual

duration.

Test 16 - Sqlite - 10% reads - 2k blocks

Five million transactions are executed on an Sqlite database of ten million

entries, roughly 600MB in size. Sqlite application cache is enabled. About %90

of the transactions are queries and %10 are updates.
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Cache size is 2k (8 MB), 180189834 sectors read, 40875389 written.

Read Written Time

ARC 14245071 8940217 307.986

CLOCK 13189318 8958468 334.696

CLOCKPRO 13907809 8963171 339.034

2Q 14594322 8928127 316.901

LRU 14473906 8984360 317.887

R2 15752067 8978034 366.425

SPATIAL 13744973 8962013 329.944

RRIP 13864215 8949789 349.234

BRRIP 14475038 8935423 349.741

CAR 13517720 8978588 334.544
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Figure 19: Test 16 - Sqlite - 10% reads - 2k blocks

This graph with the heavy writes, smaller cache size and application cache is

very interesting. We can see that the �rst fastest entries are not the �rst lowest

cache miss entries. If we ignore the R2, graphs are completely unaligned. Cache

misses are not very close to each other, but the performance is dominated by

the output order.
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Chapter 5: Conclusions

The tests show that the total duration of the operation is not directly cor-

related with the amount of reduction of the I/O requests. Certain algorithms,

such as SPATIAL, CLOCKPRO and R2 show a performance di�erence even

under simple sequential patterns. Smaller cache sizes or certain BTree access

patterns cause a di�erence in other algorithms.

This has important consequences for the algorithm development. The mini-

mum amount of cache misses is not necessarily the optimum cache performance.

Tests on the real hardware is as important as the simulated results, and must

accompany every performance evaluation. Algorithms must accomodate the

unusual performance characteristics of the SSDs.

But what are those characteristics? If we can understand and model them,

we could improve simulations and design better algorithms.

The SPATIAL algorithm was designed to avoid evicting single pages in larger

SSD blocks as the write operation erases the entire block. This e�ect can be

veri�ed with the workload player on the device by comparing the duration of

clustered and separated writes. However, this optimization did not yield a

comparative advantage to other algorithms in tests.

SSDs may have multiple internal channels. If a sequence of reads or writes

are mapped into di�erent channels, they could be executed in parallel. This

e�ect can be observed by comparing a long sequential read with same blocks

read in shu�ed order. However, the optimum pattern is not as simple as the

most sequential pattern. What matters is how the initial mapping is done

from logical order to the physical order inside the device's translation layer,

and how close the second access is to the �rst access. It is di�cult to model

this behaviour without knowing the exact internal layout, mapping algorithm,
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wear leveling algorithm and the internal caching of the SSD controller. This

information is very speci�c to each device and usually not publicly available.

Simple metrics for patterns, such as the number of cache misses, reads,

writes, the locality or sequentality of accesses do not correlate directly with the

resulting operation time. Further study is necessary to create a generic model.

The 2Q algorithm is the winner in nine tests, and very close to the winner

in all others. A good real life performance is not suprising given that the Linux

eviction algorithm is based on 2Q. It deals with BTree patterns particularly

well due to its care for frequency as well as recency, but the real advantage

is how SSD friendly its output patterns are. Without the SSD manufacturer

information or the further studies, we can only speculate that might be because

the SSD controllers are designed to perform well with 2Q output due to its use

in Linux and other OSes.

Further Studies

An accurate and generic model for the SSD performance of access patterns

would be very useful to design and test eviction algorithms.

How can we take an unknown SSD and �nd out its internal structure such as

number of channels, block size and mapping algorithms by measuring the I/O

operation times?

I have observed small changes with and without the Sqlite application cache.

How much di�erence would it make to use larger application caches, or to use

other database products' application caches? Some products can use rawdisk,

ignoring the OS block cache layer altogether. Does that still make sense with

latest SSDs? Do they use any optimizations speci�c to SSDs and their workloads

which could give better performance than the OS cache?

We think about �nding the optimum eviction algorithm for storing BTrees

54



on SSDs. How about the other way? Could there be a more e�cient data

representation which better �ts with the SSD architecture?
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